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Abstract—We study the multi-user Bayesian persuasion game
between one encoder and two decoders, where the first decoder
is better informed than the second decoder. We consider two
perfect links, one to the first decoder only, and the other to
both decoders. We consider that the encoder and both decoders
are endowed with distinct and arbitrary distortion functions.
We investigate the strategic source coding problem in which the
encoder commits to an encoding while the decoders select the
sequences of symbols that minimize their respective distortion
functions. We characterize the optimal encoder distortion value
by considering successive refinement coding with respect to a
specific probability distribution which involves two auxiliary
random variables, and captures the incentives constraints of both
decoders.

A full version of this paper is accessible at: https://arxiv.
org/pdf/2105.06201.pdf

I. INTRODUCTION

The optimization of distinct and arbitrary distortion func-
tions resulting from the communication between several au-
tonomous devices with non-aligned objectives is under study.
This problem was originally formulated in the game the-
ory literature and referred to as the sender-receiver game,
where the amount of information transmitted is generally
unrestricted. In the seminal paper [1], Crawford and Sobel
investigate the Nash equilibrium solution of the cheap talk
game, by considering the encoder and the decoder have distinct
objectives and choose their coding strategies simultaneously.
In [2], Kamenica and formulate the Stackelberg version of the
strategic communication game, in which the encoder is the
Stackelberg leader and the decoder is the Stackelberg follower.
This setting, referred to as the Bayesian persuasion game, is
the one under study in this paper by considering two decoders.

This problem is an attractive multi-disciplinary subject of
study. The Nash equilibrium solution is investigated for multi-
dimensional sources and quadratic distortion functions in [3],
[4], whereas the Stackelberg solution is studied in [5]. The
computational aspects of the persuasion game are considered
in [6]. The strategic communication problem with a noisy
channel is investigated in [7], [8], [9], [10], and four different
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Fig. 1: Successive Refinement Source Coding Setup.

scenarios of strategic communication are studied in [11]. The
case where the decoder privately observes a signal correlated
to the state, also referred to as the Wyner-Ziv setting [12], is
studied in [13], [14] and [15]. Vora and Kulkarni investigate
the achievable rates for the strategic communication problem
in [16], [17] where the decoder is the Stackelberg leader.

In this paper, we study a multi-receiver Bayesian persuasion
game in which the observation of the first decoder contains the
observation of the second decoder, as in Fig. 1. More specif-
ically, we assume that the encoder E selects and announces
beforehand the compression scheme to be implemented. Upon
receipt of the indexes, the decoders D1 and D2 update their
Bayesian beliefs over the source sequence and select the output
sequence that minimizes their respective distortion functions.
We characterize the optimal encoder distortion value obtained
via the successive refinement coding with respect to the
distribution that involves two auxiliary random variables, and
that satisfies both decoders incentives constraints.

A. Preliminaries

1) Notations: Let E denote the encoder and Di denote
the decoder i ∈ {1, 2}. Notations Un and V ni denote
the sequences of random variables of source information
un = (u1, ..., un) ∈ Un, and decoder Di actions vni ∈ Vni
respectively for i ∈ {1, 2}. Calligraphic fonts U and Vi
denote the alphabets and lowercase letters u and vi denote
the realizations. For a discrete random variable X, we denote
by ∆(X ) the probability simplex, i.e. the set of probability
distributions over X , and by PX(x) the probability mass
function P{X = x}. Notation X −
− Y −
− Z stands for
the Markov chain PZ|XY = PZ|Y . The information source
U follows the independent and identically distributed (i.i.d)
probability distribution PU ∈ ∆(U).



II. SYSTEM MODEL

In this section, we aim at formulating the coding problem.

Definition 1. Let R1, R2 ∈ R2
+ = [0,+∞[2, and n ∈ N? =

N\{0}. The encoding σ and decoding τi strategies of the
encoder E and decoders Di for i ∈ {1, 2} respectively, are
given by

σ :Un −→ ∆({1, 2, ..2bnR1c} × {1, 2, ..2bnR2c}), (1)

τ1 :{1, 2, ..2bnR1c} × {1, 2, ..2bnR2c} −→ ∆(Vn1 ), (2)

τ2 :{1, 2, ..2bnR2c} −→ ∆(Vn2 ). (3)

We denote by S(n,R1, R2) the set of coding triplets (σ, τ1, τ2).

The coding strategies (σ, τ1, τ2) ∈ S(n,R1, R2) are
stochastic and induce a joint probability distribution Pσ,τ1,τ2 ∈
∆(Un×{1, 2, ..2bnR1c}×{1, 2, ..2bnR2c}×V n1 ×V n2 ) defined
by

Pσ,τ1,τ2 =

( n∏
t=1

PUt
)
PσM1M2|UnP

τ1
V n1 |M1M2

Pτ2V n2 |M2
. (4)

Definition 2. The single-letter distortion functions of the
encoder de and both decoders di for i ∈ {1, 2} are defined
by

de : U × V1 × V2 −→ R, (5)
d1 : U × V1 −→ R, (6)
d2 : U × V2 −→ R. (7)

Definition 3. The long-run distortion functions are defined by

dne (σ, τ1, τ2) = Eσ,τ1,τ2

[
1

n

n∑
t=1

de(Ut, V1,t, V2,t)

]

=
∑

un,vn1 ,v
n
2

Pσ,τ1,τ2UnV n1 V
n
2

(un, vn1 , v
n
2 ) ·

[
1

n

n∑
t=1

de(ut, v1,t, v2,t)

]
,

dn1 (σ, τ1) = Eσ,τ1

[
1

n

n∑
t=1

d1(Ut, V1,t)

]
,

dn2 (σ, τ2) =
∑
un,vn2

Pσ,τ2UnV n2
(un, vn2 ) ·

[
1

n

n∑
t=1

d2(ut, v2,t)

]
.

In the above equations, Pσ,τ1,τ2UnV n1 V
n
2

, Pσ,τ1UnV n1
and Pσ,τ2UnV n2

denote the marginal distributions of Pσ,τ1,τ2 over the n-
sequences (Un, V n1 , V

n
2 ), (Un, V n1 ), and (Un, V n2 ) respec-

tively. We consider the strategic communication game in which
the encoder select σ that minimizes dne (σ, τ1, τ2) and the
decoders choose τi, i ∈ {1, 2} in order to minimize the long-
run distortion functions din(σ, τi), i ∈ {1, 2}.

Definition 4. For any encoding strategy σ, the set of decoder
i’s best reply strategies for i ∈ {1, 2} is defined as follows

BRi(σ) = {τi, din(σ, τi) ≤ din(σ, τ̃i),∀ τ̃i}. (8)

If several pairs of best-reply strategy (τ1, τ2) ∈ BR1(σ)×
BR2(σ) are available, we assume that the decoders choose the
worst pair from the encoder perspective. For (R1, R2) ∈ R2

+

and n ∈ N?, the encoder has to solve the following coding
problem.

Dn
e (R1, R2) = inf

σ
max

τ1∈BRd1 (σ),

τ2∈BRd2 (σ)

dne (σ, τ1, τ2). (9)

We now discuss now the operational significance Dn
e (R1, R2).

• The encoder E chooses, announces the encoding σ.
• The sequence Un is drawn i.i.d with distribution PU .
• The messages (M1,M2) are encoded according to
PσM1M2|Un .

• By knowing σ, the decoder D1 observes (M1,M2) and
draws a sequence pair V n1 according to the strategy
τ1 ∈ BRd1(σ). Similarly, the decoder D2 observes M2

and draws a sequence V n2 according to the strategy
τ2 ∈ BRd2(σ).

• The distortion values are given by dne (σ, τ1, τ2),
dn1 (σ, τ1), dn2 (σ, τ2).

III. CHARACTERIZATION

Definition 5. We consider two auxiliary random variables
W1 ∈ W1 and W2 ∈ W2 with |Wi| = |Vi|, for i ∈ {1, 2}. For
(R1, R2) ∈ R2

+, we define

Q0(R1, R2) =

{
QW1W2|U , R2 ≥ I(U ;W2),

R1 +R2 ≥ I(U ;W1,W2)

}
. (10)

For every distribution QW1W2|U ∈ ∆(W1×W2)|U|, we define

Q1(QW1W2|U ) = arg min
QV1|W1W2

E QW1W2|U
QV1|W1W2

[
d1(U, V1)

]
, (11)

Q2(QW2|U ) = arg min
QV2|W2

E QW2|U
QV2|W2

[
d2(U, V2)

]
. (12)

Note that Q1(QW1W2|U ) ∈ ∆(V1)|W1×W2| and Q2(QW2|U ) ∈
∆(V2)|W2|. The encoder’s optimal distortion is defined by

D?
e(R1, R2)

= inf
QW1W2|U
∈Q0(R1,R2)

max
QV1|W1W2

∈Q1(QW1W2|U
)

QV2|W2
∈Q2(QW2|U

)

E
[
de(U, V1, V2)

]
, (13)

where the expectation in (13) is evaluated with respect to
PUQW1W2|UQV1|W1W2

QV2|W2
.

Remark 1. The random variables U,W1,W2, V1, V2 satisfy

(U, V2)−
− (W1,W2)−
− V1, (U,W1, V1)−
−W2 −
− V2.

Definition 6. Given QW1W2|U , we denote by QU |W1W2
∈

∆(U)|W1×W2| and QU |W2
∈ ∆(U)|W2| the posterior beliefs

of decoders D1 and D2 that are defined by

Q(u|w1, w2) =
P(u)Q(w1, w2|u)∑
u′ P(u′)Q(w1, w2|u′)

, ∀u,w1, w2,

(14)

Q(u|w2) =
P(u)

∑
w1
Q(w1, w2|u)∑

u′ P(u′)Q(w2|u′)
, ∀u,w2. (15)



Moreover, for (w1, w2) ∈ W1 × W2, we introduce the no-
tations Qw1w2

U = QU |W1W2
(.|w1, w2) ∈ ∆(U) and Qw2

U =
QU |W2

(.|w2) ∈ ∆(U).

Theorem 1. Let (R1, R2) ∈ R2
+, we have

∀ε > 0,∃n̂ ∈ N,∀n ≥ n̂,Dn
e (R1, R2) ≤ D?

e(R1, R2) + ε,

∀n ∈ N, Dn
e (R1, R2) ≥ D?

e(R1, R2).

Together with Fekete’s Lemma for the sub-additive se-
quence

(
nDn

e (R1, R2)
)
n∈N? , this result describes two features

of the asymptotic behavior of the encoder’s long run distortion
function Dn

e (R1, R2):

1) It converges to the optimal distortion D?
e(R1, R2),

2) It does not go below D?
e(R1, R2).

In other words,

lim
n→∞

Dn
e (R1, R2) = inf

n∈N?
Dn
e (R1, R2) = D?

e(R1, R2). (16)

IV. CONVERSE PROOF

Let (R1, R2) ∈ R2
+ and n ∈ N?. We consider (σ, τ1, τ2) ∈

S(R1, R2) and a random variable T uniformly distributed
over {1, 2, ..., n} and independent of (Un,M1,M2, V

n
1 , V

n
2 ).

We introduce the auxiliary random variables W1 = (M1, T ),
W2 = (M2, T ), (U, V1, V2) = (UT , V1,T , V2,T ), distributed
according to Pστ1τ2UW1W2V1V2

defined for all (u,w1, w2, v1, v2) =
(ut,m1,m2, t, v1,t, v2,t) by

Pστ1τ2UW1W2V1V2
(u,w1, w2, v1, v2)

=Pστ1τ2UTM1M2TV1TV2T
(ut,m1,m2, t, v1,t, v2,t)

=
1

n

∑
ut−1

un
t+1

∑
v
t−1
1 ,vn

1,t+1

v
t−1
2 ,vn

2,t+1

( n∏
t=1

PU (ut)

)
PσM1M2|Un(m1,m2|un)

× Pτ1V n1 |M1M2
(vn1 |m1,m2)Pτ2V n2 |M2

(vn2 |m2).

Lemma 1. The distribution Pστ1τ2UW1W2V1V2
has marginal on

∆(U) given by PU and satisfies the Markov chain properties

(U, V2)−
− (W1,W2)−
− V1, (U,W1, V1)−
−W2 −
− V2.

Proof. [Lemma 1] The i.i.d. property of the source ensures
that the marginal distribution is PU . By the definition of the
decoding functions τ1 and τ2 we have

(UT , V2,T )−
− (M1,M2, T )−
− V1,T ,
(UT ,M1, V1,T )−
− (M2, T )−
− V2,T .

Therefore Pστ1τ2UW1W2V1V2
= PUPσW1W2|UP

τ1
V1|W1W2

Pτ2V2|W2
.

Lemma 2. For all σ, the distribution PσW1W2|U ∈ Q0.

Proof. [Lemma 2] We consider an encoding strategy σ, then

nR2 ≥H(M2) ≥ I(M2;Un) (17)

=

n∑
t=1

I(Ut;M2|U t−1) (18)

=nI(UT ;M2|UT−1, T ) (19)

=nI(UT ;M2, U
T−1, T ) (20)

≥nI(UT ;M2, T ) (21)
=nI(U ;W2). (22)

In fact, (19) follows from the introduction of the uniform
random variable T ∈ {1, . . . , n}, (20) comes from the i.i.d.
property of the source and (22) follows from the identification
of the auxiliary random variables (U,W2). Similarly,

n(R1 +R2) ≥H(M1,M2) ≥ I(Un;M1,M2) (23)

=
n∑
t=1

I(Ut;M1,M2|U t−1) (24)

=nI(UT ;M1,M2|UT−1, T ) (25)
≥nI(UT ;M1,M2, T ) (26)
=nI(U ;W1,W2). (27)

Lemma 3. For all (σ, τ1, τ2) and i ∈ {1, 2}, we have

dne (σ, τ1, τ2) =E
[
de(U, V1, V2)

]
, (28)

dni (σ, τi) =E
[
di(U, Vi)

]
, (29)

evaluated with respect to PUPσW1W2|UP
τ1
V1|W1W2

Pτ2V2|W2
.

Moreover for all σ, we have

Q1(PσW1W2|U ) =
{
QV1|W1W2

,

∃τ1 ∈ BR1(σ), QV1|W1W2
= Pτ1V1|W1W2

}
, (30)

Q2(PσW2|U ) =
{
QV2|W2

,

∃τ2 ∈ BR2(σ), QV2|W2
= Pτ2V2|W2

}
. (31)

Proof. [Lemma 3] By Definition 3 we have

dne (σ, τ1, τ2) =
∑

un,m1,m2,

vn1 ,v
n
2

( n∏
t=1

PU (ut)

)
× PσM1M2|Un(m1,m2|un)Pτ1V n1 |M1M2

(vn1 |m1,m2)

× Pτ2V n2 |M2
(vn2 |m2) ·

[
1

n

n∑
t=1

de(ut, v1,t, v2,t)

]
(32)

=

n∑
t=1

∑
ut,m1,m2,
v1,t,v2,t

Pσ,τ1,τ2(ut,m1,m2, t, v1,t, v2,t)

× de(ut, v1,t, v2,t) = E
[
de(U, V1, V2)

]
. (33)

Given QV1|W1W2
∈ Q1(PσW1W2|U ), we consider τ1 such that

Pτ1V n1 |M1M2
(vn1 |m1,m2) =

n∏
t=1

QV1|W1W2
(v1,t|m1,m2, t).



Therefore

dn1 (σ, τ1) = E Pσ
W1W2|U
QV1|W1W2

[
d1(U, V1)

]
(34)

= min
PV1|W1W2

E Pσ
W1W2|U
PV1|W1W2

[
d1(U, V1)

]
(35)

≤min
τ̃1

E Pσ
W1W2|U

Pτ̃1
V1|W1W2

[
d1(U, V1)

]
= min

τ̃1
dn1 (σ, τ̃1), (36)

hence τ1 ∈ BR1(σ). The other inclusion is direct and the
same arguments imply (31).

For any strategy σ, we have

max
τ1,τ2

dne (σ, τ1, τ2)

=max
τ1,τ2

E Pσ
W1W2|U

Pτ1
V1|W1W2

Pτ2
V2|W2

[
de(U, V1, V2)

]
(37)

= max
QV1|W1W2

∈Q1(Pσ
W1W2|U

)

QV2|W2
∈Q2(Pσ

W2|U
)

E Pσ
W1W2|U

QV1|W1W2
QV2|W2

[
de(U, V1, V2)

]
(38)

≥ inf
QW1W2|U
∈Q0(R1,R2)

max
QV1|W1W2

∈Q1(QW1W2|U
)

QV2|W2
∈Q2(QW2|U

)

E
[
de(U, V1, V2)

]
(39)

=D?
e(R1, R2). (40)

Equations (37) and (38) comes from Lemma 3, whereas (39)
comes from Lemma 2. This concludes the converse proof of
Theorem 1.

V. ACHIEVABILITY PROOF

A. Alternative Formulation

Definition 7. We denote by V ?1 (q1) and V ?2 (q2), the sets of
optimal outputs of decoders D1 and D2 for any distributions
q1 ∈ ∆(U) and q2 ∈ ∆(U).

V ?1 (q1) = arg min
v1∈V1

∑
u

q1(u)d1(u, v1), (41)

V ?2 (q2) = arg min
v2∈V2

∑
u

q2(u)d2(u, v2). (42)

Definition 8. Given a strategy QW1W2|U we denote by
Ã(QW1W2|U , w1, w2) ⊂ V1×V2 the set of action pairs (v1, v2)
that are optimal for the decoders and worst for the encoder.
This set is defined by

Ã(QW1W2|U , w1, w2) =

arg max
(v1,v2)∈V ?1 (Qw1w2

U
)×

V ?2 (Qw2
U

)

{∑
u

Qw1,w2

U (u)de(u, v1, v2)
}
. (43)

Definition 9. Given (R1, R2) ∈ R2
+, we define

Q̃0(R1, R2) =
{
QW1W2|U s.t. R2 > I(U ;W2) ,

R1 +R2 > I(U ;W1,W2),

max
w1,w2

|Ã(QW1W2|U , w1, w2)| = 1
}
. (44)

Definition 10. Consider the following program:

D̃e(R1, R2) =

inf
QW1W2|U∈Q̃0(R1,R2)

max
QV1|W1W2

∈Q1(QW1W2|U
)

QV2|W2
∈Q2(QW2|U

)

E
[
de(U, V1, V2)

]
.

(45)

where the expectation in (45) is evaluated with respect to
PUQW1W2|UQV1|W1W2

QV2|W2
.

Lemma 4. For (R1, R2) ∈ R2
+, we have

D?
e(R1, R2) = D̃e(R1, R2) (46)

The proof of lemma 4 relies on showing that Q̃0(R1, R2)
is dense in Q0(R1, R2). It is provided in the full version of
the paper.

B. Special Cases

E

D1

D2

Un

M1

M2

V n1

V n2

PV1|W1W2

PV2|W2

Wn
1 ,W

n
2

Wn
2

d2(U, V2)

d1(U, V1)

Fig. 2: Achievability of Successive Refinement Source Coding
Setup.

1) R1 = R2 = 0: The auxiliary random variables
(W1,W2) are independent of U . Moreover, message sets are
singletons, and the only possible encoding strategy σ0 is given
by σ0 : Un −→ {1} × {1}. The codebook consists of two
sequences Wn

2 (1) and Wn
1 (1, 1) only. Therefore, the following

result holds:

Lemma 5. D?
e(0, 0) = Dn

e (0, 0) ∀n ∈ N?.

2) R1 > 0 & R2 = 0: Random variables W2

and U are independent for R1 > 0 and R2 = 0, i.e.
QW1W2|U = QW2

QW1|W2U . This means that decoder D2 will
repeatedly chose the action v2,0 ∈ V ?(PU ) that corresponds to
its prior belief PU and maximizes the encoder’s distortion. The
persuasion game is thus reduced to the point-to-point problem
with one decoder D1 as in [11].

3) R1 = 0 & R2 > 0 : The auxiliary random variable
W1 is independent of U . Hence, the encoder transmits the
same index to both decoders. Therefore, both decoders will
have the same posterior belief Qw2

U ∈ ∆(U), ∀w2 ∈ W2. The
output sequences V n1 and V n2 are drawn i.i.d. according to the
optimal QV1|W2

∈ Q1(QW2|U ) and QV2|W2
∈ Q2(QW2|U )

respectively. This case is also reduced to the point-to-point
problem solved in [10], by considering a unique decoder that
selects the optimal pair of outputs (v1, v2).



Definition 11. A family of pairs (λw2
,Qw2

U )w2∈W2
∈ ([0, 1]×

∆(U))|W2| is a splitting of PU if∑
w2∈W2

λw2
= 1, (47)∑

w2∈W2

λw2Q
w2

U = PU . (48)

In that case, the optimal distortion can be reformulated in
terms of a convexification of its expected distortion as follows:

D?
e(0, R2) = inf

(λw2
,Qw2
U )w2∈W2

∑
w2∈W2

λw2Ψe(Qw2

U ). (49)

where Ψe(q) = max
(v1,v2)∈

V ?1 (q)×V ?2 (q)

Eq
[
de(U, v1, v2)

]
.

4) (R1, R2) ∈]0,+∞[2: Fix a conditional probability dis-
tribution QW1,W2|U . There exists η > 0 such that

R2 =I(U ;W2) + η, (50)
R1 =I(U ;W1|W2) + η. (51)

Codebook generation: Randomly and independently gen-
erate 2bnR2c sequences wn2 (m2) for m2 ∈ [1 : 2bnR2c],
according to the i.i.d distribution PWn

2
= Πn

t=1PW2
(w2t).

For each (m1,m2) ∈ [1 : 2bnR1c] × [1 : 2bnR2c] gen-
erate a sequence wn1 (m1,m2) randomly and conditionally
independently according to the i.i.d conditional distribution
PWn

1 |M1Wn
2

= Πn
t=1PW1|M1W2

(w1t|m1, w2t(m2)).
Coding algorithm: Encoder E observes un and

looks in the codebook for a pair (m1,m2) such that
(un, wn1 (m1,m2), wn2 (m2)) ∈ T nδ (PUPW1W2|U ), i.e. the
sequences are jointly typical with tolerance parameter δ > 0.
If such a jointly typical tuple doesn’t exist, the source encoder
sets (m1,m2) to (1, 1). Then, it sends m2 to decoder D2,
and (m1,m2) to decoder D1.

Here comes the main difference with the successive
refinement coding, which is due to the strategic nature
of the problem. Instead of declaring wn1 (m1,m2) and
wn2 (m2) and selecting V n1 and V n2 i.i.d. with respect to
QV1|W1W2

∈ Q1(QW1W2|U ) and QV2|W2
∈ Q2(QW2|U ), the

decoders 1 and 2 compute their Bayesian posterior beliefs
PσUn|M1M2

and PσUn|M2
and select the output sequences V n1

and V n2 that minimize their long-run distortion functions.

Error Event: Given a tolerance δ > 0, the error event is
given by E = {(Un,Wn

2 (m2),Wn
1 (m2,m1) /∈ T nδ }. We have

by the union of events bound P(E) ≤ P(E1) + P(E2(M2) ∩
Ec1), where

E1 ={(Un,Wn
2 (m2)) /∈ T nδ ∀m2}, (52)

E2(m2) ={(Un,Wn
2 (m2),Wn

1 (m2,m1)) /∈ T nδ ∀m1}. (53)

By [18, Lemma 3.3, pp. 62], P(E1) tends to zero as n→∞
if

R2 > I(U ;W2) + η. (54)

P(Ec1 ∩ E2(M2)) goes to zero by [18, Lemma 3.3, pp. 62] if

R1 +R2 > I(U ;W1,W2) + η. (55)

Since the expected error probability evaluated with respect
to the random codebook is small, we have that for all ε2 > 0,
for all η > 0, there exists δ̄ > 0, for all δ ≤ δ̄, there exists
n̄ ∈ N such that for all n ≥ n̄ we have:

E
[
P(E1)

]
≤ ε2, (56)

E
[
P(E2(m2))

]
≤ ε2. (57)

5) Control of Beliefs: We introduce the indicator of error
events E1

δ ∈ {0, 1} for decoder D1 defined as follows

E1
δ =

{
1, if (un, wn1 , w

n
2 ) /∈ T nδ (PUQW1W2|U ).

0, otherwise.
(58)

Assuming the distribution PU |W1W2
is fully supported, the

beliefs of decoder D1 are controlled as follows

E
[ 1

n

n∑
t=1

D(Pm1,m2

t ||PU |W1W2
(·|W1t,W2t))

∣∣∣E1
δ = 0

]
(59)

=
∑

m1,m2,

wn1 ,w
n
2

Pσ,τ1,τ2(m1,m2, w
n
1 , w

n
2

∣∣∣E1
δ = 0)

× 1

n

n∑
t=1

∑
u

Pm1m2
t (u) log2

Pm1m2
t (u)

PU |W1W2
(u|w1t, w2t)

(60)

=
∑

m1,m2,

wn1 ,w
n
2

Pσ,τ1,τ2(m1,m2, w
n
1 , w

n
2

∣∣∣E1
δ = 0)

× 1

n

n∑
t=1

∑
u

Pm1m2
t (u) log2

1

PU |W1W2
(u|w1t, w2t)

−
∑

m1,m2,

wn1 ,w
n
2

Pσ,τ1,τ2(m1,m2, w
n
1 , w

n
2

∣∣∣E1
δ = 0)×

1

n

n∑
t=1

∑
u

Pm1m2
t (u) log2

1

Pm1m2
t (u)

(61)

≤ 1

n
I(Un;M1,M2

∣∣∣E1
δ = 0)− I(U ;W1,W2) + δ

+
1

n
+ log2 |U| · Pσ,τ1,τ2(E1

δ = 1) (62)

≤η + δ +
1

n
+ log2 |U| · Pσ,τ1,τ2(E1

δ = 1). (63)

Similarly, we can control the beliefs of decoder D2. This
completes the proof of achievability.
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