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Abstract

This paper tackles direct 3D model-based pose track-
ing. It considers the Photometric Gaussian Mixtures (PGM)
transform of omnidirectional images as direct features. The
contributions include an adaptation of the pose optimiza-
tion to omnidirectional cameras and a rethink of the initial-
ization and optimization rules of the PGM extent. These
enhancements produce a giant leap in the convergence do-
main width. Application to images acquired onboard a mo-
bile robot within an urban environment described by a large
3D colored point cloud shows significant robustness to large
inter-frame motion, compared to approaches that directly
use pixel brightness as direct features.

1. Introduction

Direct image alignment [ | ] and direct visual servoing [2]
(DVS) have significantly progressed during the last decade
in their respective communities, namely computer vision
and robotics. The best known direct approaches concern
visual odometry [3] and visual Simultaneous Localization
And Mapping [4] (SLAM). For a while, direct approaches
were known to save time by avoiding features processing
and to be of high accuracy whereas suffering of a nar-
row convergence domain [5]. While usually overcome by
encapsulation in a pyramidal scheme [6], the latter nar-
rowness was recently enlarged intrinsically by direct ap-
proaches relying on transforms of images: scale space [7],
frequency domain [8], photometric moments [9] or Photo-
metric Gaussian Mixtures [10] (PGM). The latter optimizes
the Gaussian extent of PGMs (Fig. 1 shows its impact on
PGM smoothness) together with camera pose degrees-of-
freedom. This allows to significantly enlarge the conver-
gence domain of DVS with conventional camera.

This paper investigates the application of PGM to omni-
directional (panoramic) vision. The motivation comes from
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Figure 1: (a) An acquired image I and (b-d) PGMs G(I, 1)
for various extents A.

the fact that the wider field of view of an omnidirectional
camera compared to a conventional camera (perspective-
like) allows more reliable 3D motion estimation [11] and
higher localization rates [12]. This is due to the possibility
to capture information better spread around the viewpoint.
This paper not only considers the PGM of omnidirectional
images but its use in a direct approach for camera and robot
localization with respect to a 3D model of the environment.
Interestingly, the bridge from Visual Servoing (VS) to the
full scale alignment of an image on 3D model is well es-
tablished as Virtual Visual Servoing [13]. It was applied to
direct 3D model-based pose tracking in omnidirectional im-
ages from pixel brightness [14, 15], making full benefit of
environment 3D point cloud with colors for robot localiza-
tion, though sensitive to the amount of inter-frame motion.

Since it is hard to find more recent works of omnidirec-
tional image direct alignment with a 3D model of an envi-
ronment, [14, 15] are considered as baselines. Despite the
variety of contributions in the field of neural networks, only
conventional or rectified images are considered as input of
pose detection [16] approaches. One could generate con-
ventional images from omnidirectional ones [ 7] to feed the
latter methods but, in this paper, we focus on using acquired
images directly without geometric pre-transformation. This
way, one can think about considering large scale direct vi-
sual SLAM with omnidirectional images [ 18] but none im-
plement yet localization within a pre-built map. The latter
functionality is handled by handcrafted feature-based ap-



proaches. But even the state-of-the-art ORB-based visual
SLAM [19] fails in localizing acquired omnidirectional im-
ages in a map that has been pre-built from another camera,
thus making hard to share the map and requiring additional
sensors to estimate the full scale 3D pose of the camera.
The contributions of this paper benefit from both the use
of a pre-built 3D model of an environment and the proper-
ties of omnidirectional vision and are summarized as:
* a 3D model-based visual tracking approach robust to
very large inter-frame motion;
* anew solution of initialization and optimization of the
PGM extent, enlarging the convergence domain;
* PGM adaptation to the omnidirectional camera.

The rest of the paper shortly describes the PGM-based
omnidirectional visual servoing, focusing on the contribu-
tion regarding the new rules of initialization and optimiza-
tion of the Gaussian extent of PGMs. Then, Section 3 re-
ports their evaluation in a virtual environment made of 3D
scans of streets. Finally, Section 4 presents preliminary re-
sults of direct 3D model-based tracking in omnidirectional
images transformed as PGMs, before conclusion (Sec. 5).

2. PGM for Omnidirectional Visual Servoing
2.1. Photometric Gaussian Mixture

From an omnidirectional image I with M € N pixels,
we express its PGM in the exact same way as [10] did
for conventional images, i.e., as a mixture of M Gaus-
sians, sharing a unique Gaussian extent parameter A € R*,
weighted by brightness I(u), for the M pixels of coordi-
nates u = (u,v) € Q C N? of the image. To distinguish im-
age coordinates from PGM coordinates, we write the latter
ug = (ug,v,) € Q, leading to express a PGM sample as:

ug —u)? + (vg —v)?
G(ug,LLA) =) I(u)exp <( g )21_2( s=V) ) (1)

The PGM of an image I is written G(I, 1), for compactness.
Figure 1 shows the impact of A on the PGM.

2.2. PGM-based omnidirectional visual servoing

Visual servoing is similar to a Gauss-Newton optimiza-
tion that computes camera pose increments v € R®, min-
imizing the error between a reference (desired) image I*
and the one to align, namely the current image I. I is ac-
quired at pose r = (tx,ty,tz, 0wy, Owy,Owz) € RS, with
[|[wx,wy,wz]|| =1 and 6 € [—x, 7] representing the rota-
tion as axis-angle. I* is acquired at pose r* € R®. Then,
highlighting the dependence of PGMs to the camera pose
as G(r,I,A) for I and G(r*,I*,A*) for I*, and by stack-
ing all their samples (1) as, respectively, G(r,1) € R? and
G* € RM, we express the error vector to regulate to zero:

e(r,2) =G(r,A)—G* ¢ RM, )

In (2), the Gaussian extent A is variable while A* of G*
is not [10], thus they are possibly different. A is not constant
because it is optimized in addition to r by a Gauss-Newton
method computing iteratively increments as [10]:

[VTaz’]T =—Hu [LG Jl]+e(r7)‘)7 3)

where []* is the pseudo-inverse operator, Lg € RM*6 is
the interaction matrix related to G(r,I,A) at pose r and
J, € RM*1 ig the Jacobian of G(r,I,A) with respect to A.
J, is the same as in [10]. However, Lg is now expressed
for the unified central camera projection model (UCM) [20]
instead of the perspective one used in [10]. Considering in-
trinsic parameters o, € R*, ¢, € R* as the generalized focal
length, up € R, vy € R as the principal point coordinates and
& € R as the mirror shape parameter, the UCM relates 3D
points X = [X,Y,Z]T € R to digital image points ug as:

Ug = 04,Xg +ug and vy = 04y, + Vo, @)

with x, = X/(Z+£p), vg = V/(Z+&p) and p =
VX2 +Y2+72. Then, each line L¢ of L is expressed as:

Lo = (ZVG) L )

where:
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with 7 = \/1 +(1—E2)(x2+)2) [14]. This is the key dif-

ference in the computation of Lg compared to [10].
2.3. The two stages strategy: new rules

In (3), A is optimized for the ideal behavior of PGM
VS [10], ie., a large convergence domain (large A) and a
high precision at convergence (A4 tends to A, set small). To
achieve this ideal behavior, [10] reports a sequence of two
PGM VS, that we name here Rule0: Step 1 with a large A*
(exact value depends on experiments) and A = aA*, with
o =2, at initialization; Step 2 with constant A = A* = 1.

In our experimental convergence study (Sec. 3), we ob-
served that setting A = 2A™* at the initialization of Step 1
may lead to unexpected divergence. As such setting can
lead to a current and a desired PGM of very different orders
of magnitude, we assume it is the cause of the problem.

To simplify, we propose to remove factor ¢« and set
A = A* large at the initialization of Step 1. We name this



new rule Rulel. Then, we define Rule2 that keeps Step 2
with A = A* = 1 (or smaller) but we relax the constancy of
A for more coherence with respect to Step 1, more freedom
and to use the exact same control law (3). The following
Section 3 validates the adaptation of the PGM to omnidi-
rectional cameras and evaluates the latter introduced rules.

3. Evaluation in a virtual environment

The virtual environment is a point cloud of four streets
in the city of Amiens, France. The point cloud is a reg-
istration of thirteen 3D scans with Red-Green-Blue photo-
graphic colors, all acquired with a Lidar scanner Faro Fo-
cus 3D. The virtual camera simulates the UCM (Sec. 2.2)
implemented with a vertex shader in the Unity 3D soft-
ware (http://unity.com) bridged to our C++ implementa-
tion. Camera intrinsic parameters match those of a real cata-
dioptric camera (Sec. 4) calibrated classically by observing
known chessboards [21].

This evaluation compares the PGM omnidirectional VS
(PGMoVS) with Rule0, Rulel and Rule2, and the seminal
Photometric omnidirectional VS [14] (PoVS). Only virtual
images are considered for fair quantitative comparison as
previous works of visual odometry evaluations did [11].

3.1. Protocol

In order to evaluate the convergence domain, 64 ini-
tial poses r are generated around various desired poses
r* with combinations of transformations ty = {—8m, 8m},
ty = {—2m,2m}, t; = {—1.5m,1.5m}, Owx = {—10°,10°},
0wy = {—10°,10°} and 6wz = {—15°,15°}. The initial
positions form together a volume included in streets of
about 12m width (Fig. 2a). For variety, we consider 7 de-
sired poses r* spread within the 3D model (Fig. 2b-2h).

For PGMoVS, we limit Step 1 to 120 iterations, 250 in
total for both steps. For all three rules, A = 15 in order to
have sufficient overlapping area between G and G*. The
control gain u in (3) is set to 0.2 for every VS.

3.2. Results

Figure 3 shows the cumulative distribution of the 448
final position errors for each of the four VS compared. Set-
ting a convergence threshold equal to 2cm, Rule2 achieves
a 97% success rate while Rulel and RuleO respectively
achieve 78% and 70%. For Rulel and RuleO, Step 2 may
converge to a local minimum, whereas for Rule2 most of
the local minima are removed, allowing to reach the global
minimum. In contrast, all the PoVS diverge, which is not
surprising as initial errors allowing PoVS to converge are
known to be below 1.3m [14] whereas initial errors are
greater than 8m in this evaluation.

These results show that the new Rule2 significantly out-
performs the previous RuleO and is hence, considered for
the next experiment of 3D tracking (Sec. 4).
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Figure 2: Convergence domain evaluation: (a) Visualization
of a parallelepiped formed by 64 initial camera poses (gold
arrows) around a desired one (blue arrow); (b-h) Images
rendered at the seven desired poses.
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Figure 3: Cumulative distribution of position errors.

4. Experiment: tracking by alignments

To perform direct 3D model-based tracking using omni-
directional images transformed as PGMs, we compute the
desired PGM (G* in (3)) from an image captured by an ac-
tual camera. The current PGM, G, is computed from an om-
nidirectional image rendered as in Section (3). Brightness
of both images are centered and normalized to improve their
consistency [ 5]. Tracking in a sequence of acquired omni-
directional images is done by successive executions of the
virtual control law (3) with Rule2. The camera pose for the
current acquired image is initialized with the optimal pose
of the previous one in the sequence. The initial pose for the
first image of the sequence is set manually.

The sequence of omnidirectional images is acquired by
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Figure 4: Direct 3D model-based tracking with PGMoT and
PoT using 1 frame every N frame(s): (a) Estimated trajecto-
ries on (b) challenging uneven ground where images as (c)
are acquired; (d-e) Superimposition of the last acquired and
optimal virtual images (N = 20): (d) PoT, (e) PGMoT.

an IDS UI-1545LE-M-GL camera (30 images per second)
equipped with a RemoteReality omnidirectional catadiop-
tric optics (double mirror). The camera was attached to a
Mobile Robots Pioneer 3AT, manually piloted at walking
speed (3 km/h, on average) in streets'. The robot embeds
a SICK LMS-200 Lidar (single horizontal measurement
plane) used by the robot software for SLAM, considered
for qualitative (not synchronized) comparisons (Fig. 4a).
This section shows an extract of a 350m sequence, fo-
cusing on a part of about 4.35m when the robot leaves a
sidewalk to cross a street (Fig. 4b). Although short, the se-
quence is of 210 images. In the firsts, the uneven ground
leads the robot to shake while moving straight forward. Al-
though the images are sharp (Fig. 4c), some inter-frame mo-
tion are large due to the shaking movements of the robot.
Tracking by direct alignment from PGMs (PGMoT), and
from brightness (PoT) for comparison, have been conducted
on this sequence using 1 frame every N frame(s). Various N
values were used in order to simulate different robot speeds
(e.g., N = 20 simulates an average displacement speed of
about 45km /h). Figure 4a shows all the estimated trajecto-
ries and the manually registered Lidar SLAM one, in order
to evaluate the tracking. Due to the motion between con-
secutive images PoT struggles to precisely track the robot
displacements and thus provides noisy trajectories. PoT is
actually strongly influenced by the value of N. Indeed, the
larger N, the more the drift. For N = 20, PoT diverges due
to too important inter-frame motion for its limited conver-

It tp://mis.u-picardie.fr/~-g-caron/videos/PGMomni.mp4.

gence domain. By contrast, PGMoT remains consistent and
succeeds to track the robot displacement even for higher N
values. The poses estimated with PGMoT are more reliable,
precise and thus produce smooth and accurate trajectories
qualitatively on par with the Lidar SLAM.

Figure 4d shows the superimposition of the last real and
virtual images of the sequence, rendered at the optimal pose
computed with PoT for N = 20. The poor alignment is par-
ticularly visible in the areas highlighted in red whereas PG-
MoT leads to a much more precise alignment (Fig. 4e).

We also compare these results with ORB-based visual
SLAM [19] (OpenVSLAM), extended to the unified camera
model (UCM, Sec. 2.2). In short, while a sparse map and
an erratic trajectory can be estimated from the sequence of
acquired omnidirectional images (Fig. 4c), they are up to a
scale factor, furthermore variable as there is no loop closure
in the sequence of images. No way was found to automat-
ically fix the scale despite the several investigations made.
First, the sparse map is too sparse to be registered” with the
dense point cloud of the 3D model. Second, a sparse map
could be obtained from rendered images of the 3D model
but not any acquired image could be localized in that map,
even when built from images rendered at optimal poses ob-
tained with PGMoT. So there is no way to compare quanti-
tatively OpenVSLAM to PGMOoT that reliably succeeds in
the full scale estimation of camera, hence robot, poses.

5. Conclusion

This paper expresses omnidirectional direct visual ser-
voing, representing images as Photometric Gaussian Mix-
tures. Evaluation in virtual scenes of photographic appear-
ance shows a significant increase of the convergence do-
main compared to the previous state-of-the-art photomet-
ric omnidirectional direct visual servoing. The new rule of
Gaussian extent initialization and optimization also shows a
significant improvement over the state-of-the-art rules.

Experiments of direct 3D model-based tracking of the
3D model of a city in omnidirectional images acquired
within streets of the same city show the new tracking suc-
ceeds where large inter-frame motion prevents the success
of the former state-of-the-art one.

6. Acknowledgement

This work is carried out as part of the Interreg VA
FCE ADAPT project “Assistive Devices for empowering
disAbled People through robotic Technologies” (adapt -
project.com). The Interreg FCE Programme is a European
Territorial Cooperation programme that aims to fund high
quality cooperation projects in the Channel border region
between France and England. The Programme is funded by
the European Regional Development Fund (ERDF).

2with geometric algorithms of ht tps://www.cloudcompare.org


http://mis.u-picardie.fr/~g-caron/videos/PGMomni.mp4
adapt-project.com
adapt-project.com
https://www.cloudcompare.org

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

P.-C. Wu, H.-Y. Tseng, M.-H. Yang, and S.-Y. Chien,
“Direct pose estimation for planar objects,” Computer

Vision and Image Understanding, vol. 172, pp. 50 —
66, 2018. 1

C. Collewet and E. Marchand, ‘“Photometric visual
servoing,” IEEE Trans. on Robotics, vol. 27, no. 4,
pp- 828-834, 2011. 1

A. Lakshmi, F. AGJ, and D. Deodhare, “Robust direct
visual odometry estimation for a monocular camera
under rotations,” IEEE Robotics and Autom. Letters,
vol. 3, no. 1, pp. 367-372, 2018. 1

J. Engel, T. Schops, and D. Cremers, “LSD-SLAM:
Large-scale direct monocular SLAM,” in European
C. on Computer Vision, 2014. 1

S. Park, T. Schops, and M. Pollefeys, “Illumination
change robustness in direct visual slam,” in IEEE Int.
C. on Robotics and Autom., 2017, pp. 4523-4530. 1

J.-Y. Bouguet, “Pyramidal implementation of the Lu-
cas Kanade feature tracker,” Intel, MRL, 2000. 1

Y. Ahmine, G. Caron, E. Mouaddib, and F. Chouireb,
“Adaptive Lucas-Kanade tracking,” Image and Vision
Computing, vol. 88, Aug. 2019. 1

E. Marchand, “Direct visual servoing in the frequency
domain,” IEEE Rob. and Autom. Letters, vol. 5, no. 2,
pp. 620-627, 2020. 1

M. Bakthavatchalam, O. Tahri, and F. Chaumette, “A
direct dense visual servoing approach using photomet-
ric moments,” IEEE Trans. on Robotics, vol. 34, no.
5, pp- 1226-1239, 2018. 1

N. Crombez, E. Mouaddib, G. Caron, and
F. Chaumette, “Visual servoing with photomet-
ric gaussian mixtures as dense features,” IEEE Trans.
on Robotics, vol. 35, no. 1, pp. 49-63, 2019. 1,2

Z. Zhang, H. Rebecq, C. Forster, and D. Scaramuzza,
“Benefit of large field-of-view cameras for visual
odometry,” in IEEE Int. C. on Robotics and Autom.,
2016, pp. 801-808. 1,3

K. Chappellet, G. Caron, F. Kanehiro, K. Sakurada,
and A. Kheddar, “Benchmarking Cameras for Open-
VSLAM Indoors,” in Int. C. on Pattern Recognition,
Milan, Italy, Jan. 2021. 1

E. Marchand and Frangois Chaumette, “Virtual visual
servoing: A framework for real-time augmented real-
ity,” in EUROGRAPHICS C., Saarebriin, Germany,
2002, vol. 21(3), pp. 289-298. 1

[14]

[17]

G. Caron, E. Marchand, and E. Mouaddib, ‘“Photomet-
ric visual servoing for omnidirectional cameras,” Au-
tonomous Robots, vol. 35, no. 2-3, pp. 177-193, Oct.
2013.1,2,3

N. Crombez, G. Caron, and E. Mouaddib, “Using
dense point clouds as environment model for visual
localization of mobile robot,” in IEEE Int. C. on Ubig-
uit. Robots and Ambient Intell., 2015, pp. 40-45. 1, 3

U. Nadeem, M. Jalwana, M. Bennamoun, R. Togneri,
and F. Sohel, “Direct Image to Point Cloud De-
scriptors Matching for 6-DOF Camera Localization in
Dense 3D Point Clouds,” in Int. C. on Neural Infor-
mation Processing, 2019, pp. 222-234. 1

M. Eder, M. Shvets, J. Lim, and J.-M. Frahm, “Tan-
gent images for mitigating spherical distortion,” in
IEEE/CVF C. on Computer Vision and Pattern Recog-
nition, June 2020. 1

D. Caruso, J. Engel, and D. Cremers, ‘“Large-scale
direct slam for omnidirectional cameras,” in IEEE/RSJ
Int. C. on Intell. Robots & Syst., 2015, pp. 141-148. 1

S. Sumikura, M. Shibuya, and K. Sakurada, “Open-
VSLAM: A Versatile Visual SLAM Framework,” in
ACM Int. C. on Multimedia, 2019, pp. 2292-2295. 2,
4

J.P. Barreto, F. Martin, and R. Horaud, “Visual ser-
voing/tracking using central catadioptric images,” in
Experimental Robotics VIII, 2003, pp. 245-254. 2

G. Caron and D. Eynard, “Multiple camera types si-
multaneous stereo calibration,” in IEEE Int. C. on
Robotics and Autom., 2011, pp. 2933-2938. 3



