
HAL Id: hal-03227151
https://hal.science/hal-03227151

Submitted on 17 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homogenization of periodic 1-3 piezocomposite using
wave propagation: Toward an experimental method

Antoine Balé, Rémi Rouffaud, Franck Levassort, Renald Brenner,
Anne-Christine Hladky

To cite this version:
Antoine Balé, Rémi Rouffaud, Franck Levassort, Renald Brenner, Anne-Christine Hladky. Homog-
enization of periodic 1-3 piezocomposite using wave propagation: Toward an experimental method.
Journal of the Acoustical Society of America, 2021, 149 (5), pp.3122-3132. �10.1121/10.0004824�.
�hal-03227151�

https://hal.science/hal-03227151
https://hal.archives-ouvertes.fr


Homogenization of periodic 1-3 piezocomposite using wave propagation: toward an

experimental method
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1-3 piezocomposites are first choice materials for integration in ultrasonic transduc-1

ers due to their high electromechanical performance, particularly in their thickness2

mode. The determination of a complete set of effective electroelastic parameters3

through a homogenization scheme is of primary importance for their consideration as4

homogeneous. This allows for the simplification of transducer design using numeri-5

cal methods. The method proposed is based on acoustic wave propagation through6

infinite piezocomposite that are considered homogeneous material. Christoffel tensor7

components for the 2mm symmetry were expressed to deduce slowness curves in sev-8

eral planes. Simultaneously, slowness curves of a numerical phantom were obtained9

using a Finite Element Method (FEM). Dispersive curves were initially calculated in10

the corresponding heterogeneous structure. Subsequent identification of the effective11

parameters was based on a fitting process between the two sets of slowness curves.12

Then homogenized coefficients were compared with reference results from a numerical13

method based on fast-Fourier transform (FFT) for heterogeneous periodic piezoelec-14

tric materials in the quasi-static regime. A relative error of less than 2% for a very15

large majority of effective coefficients was obtained. As the aim of the manuscript16

is to implement an experimental procedure based on the proposed homogenization17

scheme in order to determine the effective parameters of the material in operating18

conditions, it is shown that simplifications to the procedure can be performed and19

that a careful selection of only seven slowness directions is sufficient to obtain the20

complete database for a piezocomposite containing square shaped fibers. Finally,21

further considerations to adapt the present work to a 1-3 piezocomposite with fixed22
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thickness are also presented.23
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I. INTRODUCTION24

Piezoelectric composite materials are used in various applications such as sensors, ac-25

tuators and transducers. Among the many patterns of spatial distribution between the26

piezoelectric and inert phases, 1-3 connectivity, i.e., aligned piezoelectric rods embedded27

in a polymer matrix1 for the corresponding piezocomposite (13PC), can deliver very high28

performance in the thickness mode2, leading to their application in ultrasonic transducers3.29

In order to design transducers integrating 13PCs, numerical methods such as Finite Dif-30

ference Method (FDM) or Finite Element Method (FEM) are commonly used. However,31

owing to the complexity of the studied system (number of phases, phase arrangement, mi-32

crostructure), tedious meshing is required when performing detailed modeling of 13PC.33

Moreover, depending on the target application the high precision levels achieved by such34

calculations are not always necessary. Users of numerical methods preferentially model these35

transducers with a 13PC simulated as a single-phase homogeneous material with effective36

properties. This theoretical step corresponding to a homogenization procedure is performed37

in the framework of the long-wavelength approximation and a subject that was extensively38

studied during the 1980s and 90s when piezocomposites, in particular, 13PC first became39

available. Typically, models were initially developed for purely elastic materials and sub-40

sequently extended to take into account the different coupling phenomena, in particular41

piezoelectricity.42

The simplest approaches are those of Voigt4 and Reuss5 with uniform trial fields. These43

have been extended to piezoelectricity to obtain rigorous upper and lower bounds on the44
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effective free-energy6. In 1985, Banno derived an analytical expression for the calcula-45

tion of several effective material parameters for 13PC7, based on the model developed by46

Newnham1. Smith et al.2 in addition, considered thickness mode effective parameters of47

13PC with analytical expressions. Other workers managed to determine additional effective48

parameters for all components of the three elastic, dielectric and piezoelectric tensors (elec-49

troelastic moduli) for the different piezocomposites8–11. However, the accuracy delivered50

for all parameters related to the thickness mode in these later approaches were not always51

congruent and very often remained proprietary, in particular parameters for 13PC.52

At the end of the 1950’s, Eshelby had considered the problem of an ellipsoidal inclusion53

embedded in an infinite matrix and had obtained the analytical expression of the stress and54

strain fields which turned out to be unchanged within the inclusion12. This fundamental55

result today forms the basis of several mean-field micromechanical models used to estimate56

the overall elastic moduli tensor. In 1980, Deeg13 extended this solution to the calculation57

of coupled fields, in particular, piezoelectric materials. Dunn and Taya14 proposed a method58

of obtaining effective parameters of a piezocomposite, as did various other workers15–17. In59

these configurations, 13PCs are a particular case of these models where one of the axes of60

ellipsoidal inhomogeneities tends toward infinity. FEM or more generally numerical methods61

are also used for 13PC homogenization. The main advantage of numerical methods is that62

there is no restriction on geometry, size, material parameters and number of phases in the63

structure18. With these methods, different boundary conditions (displacement and electrical64

potential) are applied to the Representative Volume Element (RVE) in order to determine65

mechanical and electrical fields inside the material. Details of such methods are given in66
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several reports19–26. Recently, the various homogenization methods presented above have67

also been adapted and applied to study novel 13PC in order to demonstrate their enhanced68

properties27,2869

For all these models, the required input data are properties of the constituent phases70

and according to one of the methods briefly described above, this can vary from only a few71

parameters to the full set of electroelastic moduli for the piezoelectric phase. The effective72

parameters obtained by these homogenization procedures are therefor directly dependent73

upon these initial data. However, various 13PC fabrication processes (such as the ”Dice74

and Fill” method29) introduce possible variations of properties for each phase and as a75

consequence variation on the final effective properties. Two examples can be highlighted:76

the machining process of the piezoelectric phase (starting typically from a bulk ceramic)77

to design the rods can degrade the piezoelectric properties while addition of the polymer78

around the rods introduces porosity (air bubbles) which modifies its mechanical properties.79

Beyond the development of accurate models, measurement of the piezocomposite parameters80

in operating conditions is essential. Characterization based on 13PC electrical impedance81

measurements was performed by us30 and the objective of this present work is to develop a82

homogenization procedure based on acoustic wave propagation. This theoretical procedure83

was implemented with the understanding that it could then be applied by adapting it to an84

experimental set-up and thereby effects a correct estimation of homogenized parameters in85

operating conditions.86

This approach used mechanical wave propagation through the 13PC and allowed extrac-87

tion of the effective parameters in a similar way to reported works for different configurations31–35.88
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This method as extended to piezoelectric materials, was inspired by Langlet et al.36 who89

determined the effective tensor of porous elastic materials.90

With the assumption of an infinite piezoelectric material, the behavior of wave propaga-91

tion is first presented for the two media of interest in section II. Then, in section III, slowness92

curves from homogeneous media are fitted on heterogeneous media with the analytical de-93

termination of some elastic parameters before optimization algorithms were used to deliver94

all the components of the effective electroelastic moduli. From this fit, a homogeneous95

equivalent medium is determined. In section IV, these results are compared with effective96

electroelastic coefficients obtained with a Fourier transform-based numerical scheme for pe-97

riodic piezoelectric materials in the quasi-static regime37–40. The same initial database for98

our numerical phantom was used. This comparison was essential and allowed us to validate99

our new procedure. The influences of two rod shapes and piezoelectric phase volume frac-100

tions on several effective parameters are discussed. Finally, with reference to experimental101

procedure, two essential points are addressed. First, minimization of the number of slow-102

ness values is examined while simultaneously maintaining accuracy on the deduced effective103

parameters. Finally, considerations aimed at adapting the present work to a piezoelectric104

medium with a given thickness and lateral dimensions, is put forward.105

II. WAVE PROPAGATION IN AN INFINITE PIEZOELECTRIC MATERIAL106

For a piezoelectric material, constitutive equations interacts the mechanical parameters107

(strain S and stress T tensors) with the electrical parameters (electric field E and electric108

displacement D). In the framework of linear behavior, combining Maxwell equations and109
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Hooke’s law, the interaction is written as follow41:110

Tij = cEijklSkl − eiklEi

Di = ǫSijEj + eiklSkl

(1)

where cE, e and ǫS are, respectively, the elastic tensor at constant electric field, the piezo-111

electric tensor and the dielectric tensor at constant strain and subscripts i, j, k, l ∈ [1, 2, 3],112

the 3 space dimensions. Spatial directions 1, 2 and 3 are used indifferently throughout113

the text with directions X, Y and Z. In the long wavelength approximation, an anisotropic114

heterogeneous medium can be considered as an anisotropic homogeneous medium if size115

inhomogeneities are smaller than the selected wavelength42. With this assumption, the use116

of classical plane waves for the study of homogeneous medium in section IIB is possible.117

A. Heterogeneous structure118

To study the wave propagation in a 13PC, FEM is used.119

1. FE model: 4mm- and mm2-structures120

In this work, two 13PC designs are investigated. The two were chosen because, from121

a practical point of view, both can be manufactured by the well-known ”Dice and Fill”122

method29. In fig.1, top views of the two periodic configurations are shown with grey123

piezoelectric square-shaped rods (fig.1.(a))29 or right-triangle (fig.1.(b))45 shaped rods sur-124

rounded by polymer. To determine the effective symmetry of each structure, the rod-shaped125

piezoelectric material and the relative positionning of rods to each other, are taken into ac-126
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FIG. 1. Top view of elementary 13PC patterns for a) 4mm and b) mm2 symmetries. Surrounded

in blue line, are RVEs meshed with FEM with the local orthonormal basis (XY Z). c) Unit

propagation vector ~n is defined by angles θ and ϕ in the local basis. Grey areas represent the

piezoelectric rods surrounded by a polymer.

count. In the case of Fig1.(a), 4-fold axis of symmetry exists (red square at center of127

the representation42). In the case of Fig1.(b), it is a 2-fold axis (red ellipse at center of the128

representation42). In both cases, two symmetry planes exist (as represented in the structures,129

fig.1). Accordingly, the square rods structure has 4mm symmetry while the right-triangle130

rods structure has mm2 symmetry. These symmetries are dependent on the piezoelectric131
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FIG. 2. Dispersion curves in the mm2-structure for 2 different wave vectors (a) ~k(0, 90), colinear

to ~kx and (b) ~k(45, 90). (c) The final slowness curves for ‖~k‖ = 50m−1, 0◦ < ϕ < 90◦ and θ = 90◦.

VQL, VQT1 and VQT2 are group velocities for, respectively, quasi-longitudinal, first quasi-transversal

and second quasi-transversal modes. Calculation is performed with PZT-443 and Epoxy resin44 for

a 1mm-side RVE and a piezoelectric volume fraction vf = 50%.

material used for rods (here, the standard 6mm-symmetry ceramic). Parallelepipedic RVEs132

of each structure are represented in Fig1 for both cases as blue dotted lines. These RVEs133

possess the same symmetry as that defined previously for the two structures. To respect the134

orthotropic axis of 13PC, for the mm2 structure, local basis (OXYZ) is rotated through 45◦135

from the local axis of the 4mm structure. Moreover, the unit propagation vector ~n is defined136

by the angles θ and ϕ in the local basis (fig.1.(c)) and n1 (resp. n2, n3) is the projection of137

~n on X-axis (resp. Y -axis, Z-axis):138

n1 = sinθcosϕ, n2 = sinθsinϕ, n3 = cosθ. (2)
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For the FEM calculations, ATILA software was used46. The whole problem domains139

are divided into elements connected by nodes, where constitutive equations are locally ap-140

proximated. 1mm-side RVE is chosen. In fact, this is a typical size in XY -plane for 13PC141

in medical application. The reader is reminded that there is no variation of phases in the142

z-direction, so the size has no effect on the final results. Isoparametric elements are used143

with quadratic interpolation along the element’s sides. Hexahedrons are used with 20 nodes144

(8 for the corners and 12 for the middle of the edge) for the 4mm-structure. Similarly,145

prisms are used with 15 nodes (6 for the corners and 9 for the middle of the edge) for the146

mm2-structure. Furthermore, the finite element formulation used in ATILA relying upon147

quadratic interpolation functions, the classical λ/4 criterion must be verified in the whole148

mesh to ensure the validity of the finite element result. The λ/4 states that the largest149

length of each element in a given mesh has to be smaller than a quarter of the wavelength150

in the material for the working frequency. For structures studied in this paper, the mesh151

has been chosen in order to respect this criterion. Moreover, the study of periodic 13PC152

structure is greatly simplified by the Bloch-Floquet theorem because only one RVE needs153

to be meshed36.154

2. From dispersion curves to slowness curves155

To establish slowness curves for our two studied structures, properties of PZT-443 and156

Epoxy resin44 in table II were chosen for the two 13PC phases. Dispersion curves were157

initially calculated for a 1mm-side RVE with a piezoelectric volume fraction of 50% and only158

the 3 lowest modes in frequency to be in accordance with the long wavelength approximation.159
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Dispersion curves were calculated for one specific direction of a wave vector in the first160

Brillouin zone using modal analysis. Wave vector ~k is defined by ~k(ϕ, θ) = kx. ~n1 + ky. ~n2 +161

kz. ~n3, where:162

- ϕ ∈ [−180◦, 180◦],163

- θ ∈ [0◦, 180◦] and if θ = 90◦, ~k ∈ (XY )-plane,164

In fig.2, an example of how the slowness curves are determined is put forward for two specific165

propagation directions in the XY -plane (~k(0, 90) and ~k(45, 90)) and for the mm2-structure166

with a step of 91m−1 for ||~k||. Specifically, it is shown in fig.2(a) and fig.2(b), the quasi-167

longitudinal (QL), first quasi-transverse (QT1) and second quasi-transverse (QT2) modes,168

where QT1 (resp. QT2) mode has an out-plane (resp. in-plane) transverse polarization in the169

studied plane (here, the XY−plane). A linear behavior exists at low frequency for the three170

modes where the phase velocity is equal to the group velocity (VQL,VQT1,VQT2). Calculating171

dispersion curves for the whole characteristic volumetric region due to mm2 symmetries172

(0◦ < ϕ < 90◦ and 0◦ < θ < 90◦), the limit of this linear region is approximatively ‖~k‖ ≃173

1500m−1. This limit is indicated in fig.2(a) and (b) with the vertical dotted line. To stay174

within this volumetric linear region, ‖~k‖ was fixed to 50m−1 for the rest of the study. In175

fig.2(c), final slowness curves (inverse of velocities) are displayed for one quarter of the176

XY -plane (0◦ < ϕ < 90◦ and θ = 90◦). The six velocities calculated from fig.2(a) and (b)177

are added to slowness curves (crossed points). For FEM calculation, all the slowness points178

were calculated in this way with a step of 1◦ for ϕ and θ.179
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B. Homogeneous structure180

From the numerical slowness curves in the heterogeneous material, analytical slowness181

curves in a homogeneous material had to be established for a further comparison between182

the two media. A general case is described for the mm2 structure in the following subsection.183

As in section IIA, the medium was considered to be infinite and comprised of piezoelectric184

material.185

1. Wave equation in piezoelectric materials186

Starting from the expression of the mechanical strain Tij (eq.1) and removing the elec-187

trical potential dependency, the wave equation in a piezoelectric infinite medium can be188

written42,47:189

ρ
∂2ul

∂t2
= cEijkl

ekijejkl
ǫSjk

∂2ul

∂nj∂nk

(3)

where ui is the component of the mechanical displacement vector ~u on the axis ni and the190

time t. ρ is the density of the medium of propagation. In the assumption of a plane wave191

propagation problem in an infinite medium in the nj direction and for the eq.(3), a solution192

can be written as:193

ui = u0
i e

jω(t−
njxj

V
) = u0

iF (t− njxj

V
) (4)

where u0
i is the wave polarization and V the phase velocity. When this solution is included194

in eq.3, the wave equation extended to piezoelectric medium becomes:195

ρV 2u0
i = (Γil +

γiγl
ǫ

)u0
l (5)
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where Γil = cEijklnjnk, γi = ekijnjnk and ǫ = ǫSjknjnk. The (Γil +
γiγl
ǫ
) term is called the196

piezoelectric Christoffel tensor and written as:197

Γil =




Γ11 Γ12 Γ13

Γ12 Γ22 Γ23

Γ13 Γ12 Γ33




(6)

Eq.5 is an eigenvalues equation where the wave polarization u0
l is the eigenvector of Γil with198

its eigenvalue λ = ρV 2. As Γil is symmetrical, eigenvalues are real and to provide real199

velocities, eigenvalues must also be positive. Eigenvectors are orthogonal because of the200

symmetry of Γil. Therefore, solving eq.5 is equivalent to finding the roots of equation:201

|Γil − ρV 2δil| = 0 (7)

where δil is the Kronecker symbol. Eq.7 has three solutions for a given propagation direction202

~n that are velocities from the 3 known plane waves QL, QT1 and QT2 (i.e., section IIA 2).203

2. mm2-structure (right-triangular rods 13PC)204

As mentionned earlier, the most general case is developed in this section. A mm2205

piezoelectric material is characterized by 17 independent parameters: 9 elastic coefficients206

(cE11, c
E
12, c

E
13, c

E
22, c

E
23, c

E
33, c

E
44, c

E
55, c

E
66, ), 5 piezoelectric coefficients (e15, e24, e31, e32, e33, ) and 3207

dielectric parameters (ǫS11,ǫ
S
22,ǫ

S
33,). In comparison, a 4mm-structure is described by 5 elastic,208

3 piezoelectric and 3 dielectric independent parameters. For both cases, all components of209

the piezoelectric Christoffel tensors are analytically determined (Appendix A).210

From these expressions, velocities VQL, VQT1 and VQT2 can be determined using eq.7 for any211
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direction. Depending on the symmetry class, calculations for all directions is not always212

necessary and can be restricted. For a mm2-structure, three planes of propagation are suf-213

ficient: XY -plane, XZ-plane and Y Z-plane. Solutions for the XY -plane are described in214

detail here and the two other planes in Appendix B.215

In the XY -plane, the components of the projection vector ~n are given by:216

n1 = cosϕ , n2 = sinϕ , n3 = 0 . (8)

A direct consequence of this is the zero value for the Γ13 and Γ23 terms in the Christoffel217

tensor and a simplification of the expression for Γ11, Γ12 = Γ21, Γ22 and Γ33 components.218

Consequently, eq.7 is reduced to:219

(
Γ33 − λ

) [(
Γ11 − λ

) (
Γ22 − λ

)
− Γ

2

12

]
= 0 (9)

where λ = ρV 2
i are eigenvalues. The three solutions of eq.9 are:220





λ = Γ33

λ± = 1
2

[
Γ11 + Γ22 ±

√(
Γ11 + Γ22

)2 − 4
(
Γ11Γ22 − Γ

2

12

)]
(10)

To assign the solutions to the correct polarizations (i.e., QL, QT1 or QT2 mode), eigenvectors221

are determined. As an example, one can describe the expression of the simplest solution222

for the XY -plane is detailed as: λ = Γ33. Substituting Γ33 by its definition, the complete223

expression of the corresponding velocity becomes:224

V 2
QT2 =

1

ρ

[
cE55cos

2ϕ+ cE44sin
2ϕ+

(e15cos
2ϕ+ e24sin

2ϕ)
2

ǫS11cos
2ϕ+ ǫS22sin

2ϕ

]
(11)

Doing the same for VQT1 and VQL (with the two other eigenvalue expressions), the slowness225

curves can be analytically calculated for a homogeneous piezoelectric material in the 3 planes226

of interest for a mm2 symmetry case.227
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III. HOMOGENEOUS EQUIVALENT STRUCTURE228

The symmetry class of the equivalent homogeneous structure must be the same as the ini-229

tial heterogeneous structure (here 13PC) and this condition must be taken into account when230

defining all the components of the cE , e and ǫS tensors. Overlined variables are components231

of the homogeneous equivalent structure. In general, if the symmetry class is unknown, the232

most general triclinic class is chosen by default. In the present case, a mm2-symmetry class233

was retained because right-triangular rods are PZT4 with 6mm-symmetry class. The ob-234

jective was to deduce all the effective components of the elastic, piezoelectric and dielectric235

tensors with a comparison of the slowness curves obtained by the two approaches (hetero-236

geneous and homogeneous materials materials) described earlier. This determination of all237

the parameters is performed in two steps. The first step involves the direct determination238

of several elastic parameters. A fitting process of slowness curves involving calculation by239

FEM is described, in a second step(section IIA). The two step are detailed below. The240241

homogenization process relies on numerical slowness curves calculated by FEM. The case of242

the mm2-structure (fig.1(b)) with a volume fraction (vf) of 50% is presented and numerical243

slowness curves are presented on fig.3.244

A. Step 1: analytical determination of elastic constants.245

For specific directions in any plane (0◦, 45◦, 90◦), the analytical expressions of velocities246

(section IIB) are simplified to enable the determination of some elastic constants. For247

instance, in the XY -plane where general equations (ϕ−dependence) are given by the system248
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(a) (b) (c)

FIG. 3. Numerical slowness curves for three orthogonal planes from the same mm2-structure.

Calculation is performed with PZT-446 and Epoxy resin44 for a 1mm-side RVE and a piezoelectric

volume fraction vf =50%.

(10), and when ϕ = 0◦ and θ = 90◦, velocities are expressed by:249





V 2
QT2(0, 90) =

1
ρ

[
cE55 +

e215
ǫS11

]

V 2
QT1(0, 90) =

cE
66

ρ

V 2
QL(0, 90) =

cE
11

ρ

(12)

From this set of equations the numerical values from dispersion curves (fig.3(a)) at ϕ = 0◦250

and θ = 90◦, cE11 and cE66 are easily determined. Similarly, cE55 can be resolved in the case251

of a purely elastic medium (e15 = 0) but by taking into account the piezoelectricity, three252

unknowns: cE55, e15 and ǫS11 are added. In a similar way, some elastic constants can be253

determined for other directions: cE22 in the direction ~n(90, 90) on the 1/VQL curve and cE12254

in the direction ~n(45, 90) on the 1/VQL and 1/VQT2 curves. In general, all elastic constants255

that can be determined are added to fig.3 in blue color. Other constants that cannot256
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be analytically and independently determined like e15 and ǫS11, are shown in red. Finally,257

cE55 is no longer an unknown value because it can be determined in the ~n(0, 0) direction258

(XZ−plane) on 1/VQT2 curve. The same analysis is performed on the XZ− and Y Z−planes259

(fig.3). Several effective tensor components appear in different directions but in order not260

to overload fig.3, these are displayed only once. For example, it can be observed that cE55261

appears both in the expressions of VQT2(0, 90) (system 12) and VQT2(0, 0) (fig.3(b)). All the262

six parameters that can be determined analytically are summurized in table I. The same263

table is applicable for the 4mm-structure, except that the (90, 90)-direction and the QT1264

mode from the (90, 90)-direction are not necessary, for this symmetry structure.265

Finally, for the mm2-symmetry, with three orthogonal planes and six different directions,266

a system of nine independent equations is achieved with 11 unknowns. Here, the full deter-267

mination of tensor components is not analytically possible. Consequently, the second step268

is a numerical determination performed by a fitting process.269

B. Step 2: fitting process.270

For a full determination of effective tensors, eleven constants have to be fitted: cE13, c
E
23, c

E
33,271

all the five constants of e tensor and the three constants of ǫS tensor. The fitting process by272

the objective function (OF) that is minimized and the settings for the optimization algorithm273

(OA) are described below. Both slowness and velocity are used interchangeably throughout274

the text because once one is determined, the other one is simultaneously determined too.275
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TABLE I. Analytical expressions for particular directions used for determining six elastic constants

in mm2-structure.

(ϕ,θ) Mode ρVQL,QT1,QT2 =

X
Y
-p
la
n
e

(0,90)

QL cE11

QT1 cE66

(90,90) QL cE22

(45,90) QL,QT1

A+B
4 ±

[

(A+B)2−AB+(cE12+cE
66)

2
] 1
2

4

with A =
(
cE11 + cE66

)
, B =

(
cE22 + cE66

)

X
Z
-

(0,0)

QT1 cE55

QT2 cE44

1. Objective function276

The aim of this process is to fit the analytical velocities from a homogeneous medium277

onto numerical velocities considered as the reference from heterogeneous medium. Therefore,278

one needs to minimize the difference between the numerical velocities vijFEM
and analytical279

velocities vijChris
for all propagation directions of the three planes of interest for the mm2-280

symmetry. Specifically, vijFEM
are gleaned from section IIA 2 while vijChris

are calculated for281

each iteration from equations established in section IIB 2 with the new set of parameters282

to be fitted (unknown components of effective tensors). For each new set, a score Sa is283
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calculated by the OF using the least squares method:284

Sa =
M∑

i=1

(
N∑

j=1

(vijFEM
− vijChris

)2

N < v2ijFEM>

)
(13)

where M is the number of slowness curves selected for the fitting process (M = 5 for the285

mm2-structure and M = 3 for the 4mm-structure) and N is the number of propagation di-286

rections used (with a default of N = 360). Finally, <> is the mean symbol. The five specific287

curves (fig.4) were specifically chosen because the remaining unknowns that must be deter-288

mined are involved in their analytical expressions (see red constants on fig3). 4mm-structure289

requires fewer slowness curves to be fitted because there are fewer effective independent com-290

ponents, in a similar way to the simplification of table I for this case, as explained earlier.291

292

FIG. 4. Selected slowness curves (M=5) for the fitting process displayed on one quarter of the

plane (ϕ,θ ∈ [0◦ 90◦]).

293

294
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2. Optimization algorithm295

The OA selects a new set of parameters based on all previous scores returned by OF for296

the different sets, previously selected. The time needed to reach the best optimization score297

is called rate of convergence. In order to achieve a fast convergence rate, an OA based on a298

canonical search is preferred. Here the Nelder-Mead algorithm48, also known as the simplex299

method was used.300

In the case of a mm2-structure, the set of effective parameters to be determined is de-301

scribed by the vector x =
{
cE13, c

E
23, c

E
33, e31, e32, e33, e24, e15, ǫ

S
11, ǫ

S
22, ǫ

S
33

}
. One of the drawbacks302

of using this kind of OA is the requirement of an initial vector (xinit) to start the process.303

Values of xinit are set with the matrix method11 that provides a good approximation for304

longitudinal tensor (subscripts 33) but a weak approximation of the transverse tensors pa-305

rameters. It is worth mentioning that these values are calculated as a function of the 13PC306

volume fraction of piezoelectric phase.307

The second setting for the algorithm is the definition of the search-space limits. These308

are contained in the boundary vectors xUB for the upper boundaries and xLB for the lower309

boundaries. Here, the choice of a large search-space is preferred and boundary vectors are310

defined by xUB = 5xinit and xLB = 0.01xinit.311

In fig.4, the five selected slowness curves for the fitting process are represented only on312

one quarter of their planes for the case vf = 50%. The curves are normalized to their own313

maximum to highlight the differences. The black curves that almost coincide with the dotted314
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blue lines are the FEM calculations. The red curves are the initial slowness curves of the315

OA and were calculated using xinit in table II.316317

TABLE II. Case vf = 50%. Elastic (cE in GPa), piezoelectric (e in C.m−2), dielectric (ǫS in /ǫ0)

constants and density (ρ in kg/m3) for PZT443 ceramic, Epoxy44 resin, mm2- and 4mm- structures

calculated by the present method and by the FFT method. Initial vector xinit for the OA and

relative differences between FFT and present methods are also given. Star (resp. cross and dash)

indicates constants analytically determined on first step (resp. non-value parameter and known

parameters from others values).

Constants cE11 cE12 cE13 cE22 cE23 cE33 cE44 cE55 cE66 e15 e24 e31 e32 e33 ǫS11 ǫS22 ǫS33 ρ

PZT-4 139 77.8 74.3 - - 115.4 25.6 - 30.6 12.7 - -5.2 - 15.1 730 - 635 7500

Epoxy

7.84 3.9 - - - - - - - - - - - - 3 - - 1100

resin

Constants cE11* cE12* cE13 cE22* cE23 cE33 cE44* cE55* cE66* e15 e24 e31 e32 e33 ǫS11 ǫS22 ǫS33 ρ

xinit × × 7.56 × 7.56 40 × × × 0.0039 0.0039 -0.27 -0.27 9.15 6 6 333 ×

mm2

this work 16.04 8.43 8.28 18.85 9.16 41.50 6.90 4.76 4.98 0.0136 0.0195 -0.33 -0.36 8.69 8 12 332 4300

FFT 16.28 8.58 8.40 19.12 9.37 40.88 7.00 4.85 5.07 0.0112 0.037 -0.33 -0.40 9.07 10 10 326 -

rel. dif.(%) 1.54 1.81 1.62 1.41 2.35 1.50 1.47 1.85 1.79 19.3 61.9 0.51 11.6 4.25 18.5 12.2 1.71 -

4mm

this work 19.37 6.37 8.64 - - 40 5.57 - 3.92 0.0075 - -0.273 - 9.14 5 - 332 4300

FFT 19.25 6.39 8.66 - - 40.73 5.53 - 3.9 0.0167 - -0.353 - 9.08 9 - 332 -

rel. dif.(%) 0.62 0.31 0.23 - - 1.81 0.72 - 0.51 76 - 25.6 - 0.66 57 - 0 -
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IV. RESULTS AND DISCUSSION318

Homogenization results are presented for two different cases: (1) results for a specific319

volume fraction (vf) of 50% for 4mm and mm2 13PC are presented in the first section, (2)320

parameter variation as a function of vf are shown in second section. In both sections, all321

results are compared with the FFT method for validation. The principle of this numerical322

scheme is briefly recalled in Appendix C.323

A. Specific case of vf = 50%324

The volume fraction of vf = 50% was chosen because it is a typical 13PC value employed325

for medical imaging applications. This value allows for the optimization of the thickness326

coupling coefficient (kt) which is an essential parameter for transducer design3. Variations327

of vf are possible (typically between 30% and 90%) depending on the desired optimized328

properties. Fig.4 shows the solution found by the fitting process (blue dotted lines). The329

maximum difference between the initialization and the FEM is located on the QL wave330

in the XZ−plane at 62◦ and its value is 2.98%. After the fitting process, the solution331

presents a maximum difference on the QT2 wave in the XY−plane, equal to 0.3% (equating332

to 10 fold reduction when compared to xinit). It is also noticeable that the curves from333

the QT2 wave in the XY−plane was unchanged between xinit and the solution. In fact,334

this curve is governed by Eq.11. OA can only modify variables e24, e15 ǫS11 and ǫS22 in this335

equation as cE44 and cE55 are already determined and considered fixed values. Essentially, the336

problem is that, in Eq.11, the term
(e15cos2ϕ+e24sin

2ϕ)
2

ǫS
11
cos2ϕ+ǫS

22
sin2ϕ

is approximately 500 times smaller337
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than cE55cos
2ϕ + cE44sin

2ϕ. This means that at least for this case, the variables e24, e15, ǫ
S
11338

and ǫS22 are not highly sensitive. As a result, OA had no influence on them.339

In table II, all effective tensor components from the solution are given in the case of340

the 4mm-structure (fig.1(a)) and the mm2-structure (fig.1(b)). For compararive purposes,341

the same components obtained by the FFT method are also presented. As expected from342

the previous paragraph, large relative differences appear for e24, e15 ǫS11 and ǫS22 until 62%.343

However, these differences are not of critical concern because, in practice, these parameters344

do not affect the expected behavior of 13PC functions either in thickness or flexural modes.345

To reduce these differences, additional work needs to be performed during OF selection, by346

for example, adding another slowness curve for the fit or giving extra-weight for this QT2347

slowness curve.348

B. Results for vf variations349

In this section, the homogenization method is performed on different volume fractions350

(10%, 30%, 50% and 70%) and compared with the FFT method. In fig.5, the elastic con-351

stants calculated from the present study (black crosses) are well evaluated for the most352

effective constants (< 2%). In fact, the largest relative difference with the FFT method (red353

circles) appears to be 6% for cE44 at vf = 70%. This difference is not significant when com-354

pared with the cE44 value of 24% for 4mm-structure (blue crosses). However, these variations355

of elastic constants show that the shapes have a stronger effect on the constant characteristics356

of the x−axis (cE11) as compared with cE22 on the y−axis and cE33 on the z−axis.357
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FIG. 5. Effective elastic constants (in GPa) as a function of piezoelectric volume fraction (vf ) from

the present study represented with the black cross for mm2-structure and blue plus-sign for 4mm-

structure. Results from FFT numerical scheme (red circles) are also added for the mm2-structure.

Fig.6 shows homogenized piezoelectric and dielectric effective parameters. The gap be-358

tween the FFT and the present method on e24 and e15 was unexpectedly negligible for the359

reasons already explained in paragraph IVA. However, this difference was pronounced for360

the higher volume fractions. Details on the constants’ sensitivity are extensively covered by361

Balé47.362363364

25



FIG. 6. Homogenized piezoelectric (in C.m−2) and dielectric coefficients (in /ǫ0) from the present

study represented with the black cross for mm2-structure and blue plus sign for 4mm-structure.

Results from FFT method is also added with red circle for mm2-structure. Variations are according

to volume fraction vf .

C. Simplification for an experimental homogenization: example of the 4mm-365

structure366

In order to apply the present method to an experimental setup, particular effort has to367

be expended on the acquisition of 13PC slowness curves for the 3 planes of interest. In368

fact, in the theoretical methodology (general case), 13PC slowness curves were calculated369

using FEM in all directions at incremental steps of 1◦. Unfortunately, measurements made370

this way, are extremely laborious but also unnecessary. Rather the objective is to find a371

trade-off between the number of measurements and the accuracy of the deduced effective372
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tensors. The example of a 4mm-structure was chosen here because it is the most frequently373

used in practice.374

As shown in section IIIA, specific directions are necessary to determine several constants375

analytically: for the 4mm-structure in the XY -plane, x-direction and (45, 90)-direction pro-376

vide the constants cE11, c
E
12, c

E
66 and the z-direction in the XZ-plane (or Y Z-plane) brings the377

cE44 value. Hence, these three directions are retained. Moreover, the fitting process (section378

III B) for the 4mm-structure has to determine the constants cE13, c
E
33, e15, e31, e33, ǫ11 and379

ǫ33. These constants appear in two specific directions of the XZ-plane (or Y Z-plane):380

• z-direction (already retained at step 1) for cE33, e33 and ǫ33 on the QL mode,381

• and (0, 45)- or (90, 45)-direction for the rest on the QL and QT1 modes.382

To ensure the validity of the effective parameters obtained using a reduced number of di-383

rections (reduced case), the relative difference between these values and the general case384

must not exceed 5%. This limit was arbitrarily chosen. Using only the (0, 45)-direction in385

addition to the three ((0, 90), (45, 90) and (0, 0)) for the analytical determination, results386

were compared with the general case (45 directions in 2 planes = 90 directions) and, were387

generally correct for all volume fractions (10%, 30%, 50% and 70%) with relative differences388

lower than 10% except for e15 due to difficulties explained in section IVA. In table III, the389

30% volume fraction case is presented because it is the case which exhibits the highest rel-390

ative differences. Only the fitted parameters are presented because parameter determined391

by analytical method is, by definition, always equal. It is noticeable that the final results392

deteriorate with relative differences of 93% for the e31 value and 72% for e15. This also393
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confirms that substantial experimental information is lost, with a reduction in angles. The394

objective then is to add a few more experimental data to see whether the accuracy of the395

final results can be improved.396

TABLE III. Effective elastic cE (GPa), piezoelectric e (C.m−2) and dielectric ǫS (/ǫ0) constant of

4mm-structure (vf =30%).

Properties

general case reduced cases

90 directions

4 directions 6 directions

(rel. diff. %) (rel. diff. %)

cE13 6,01 6,71 (12) 6,00 (0.1)

cE33 28,08 26,68 (4) 27,87 (1)

e15 3,54e-4 0.0001 (72) 1,78e-4 (30)

e31 -0.14 -0,27 (93) -0,14 (0)

e33 5,35 5,52 (3) 5,25 (2)

ǫS11/ǫ0 5,81 6,08 (5) 5,56 (4)

ǫS33/ǫ0 202 194 (4) 200 (1)

397

398

For the algorithm, there is a lack of accuracy evaluated on constants calculated from the399

QL and QT1 modes in (0, 45)-direction. Consequently, two additional directions: (0, 30)-400

and (0, 60)-directions are considered. In this way, the algorithm is better able to reveal the401

velocity variations in this plane. These results are also shown in table III (6 directions).402
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As expected, relative differences declined with a maximum of 4% (except for the e15 value).403

With these three cases, the logical trend of increasing accuracy, coupled with the increase404

in measured directions, are highlighted. Finally, when angle reductions are applied to the405

experimental setup, the user is obliged to consider choosing a trade-off between the number406

of measured directions and accuracy of the effective constants.407

V. CONCLUSION408

A method based on wave propagation was successfully implemented to determine the409

effective electroelastic moduli of 1-3 piezocomposites. Slowness curves in several planes410

were used to identify all the parameters, whose, Christoffel tensors were analytically ex-411

pressed. This procedure was performed in two main steps. First, several elastic constants412

(listed in table II with stars) in particular directions were directly determinated using the413

quasi-longitudinal and two quasi-transversal modes. Second, to complete generation of the414

effective data (constants without star in table II) a fitting process using the Nelder-Mead415

algorithm was performed. In this study, two piezoelectric rod shapes (square and right-416

triangle) that can be designed by the well-known “Dice and Fill” method were selected.417

These two configurations belong to 4mm and mm2 symmetry class, respectively. For the418

second and most general case, requiring the determination of 17 constants, 10 (cE11, c
E
12, c

E
13,419

cE22, c
E
33, c

E
44, c

E
55, c

E
66, e31 and ǫS33) were obtained with an accuracy of less than 2%. Larger420

differences were obtained for the two dielectric and two piezoelectric constants (e24, e15, ǫ
S
11421

and ǫS22) however, these values have limited influence for most applications using thickness422

or flexural modes. To validate our approach, the results were compared with a Fourier423
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transform-based numerical homogenization scheme for quasi-static conditions. The idea be-424

hind this development was to use this method in operating conditions for 1-3 piezocomposite425

while also taking into account variations in properties, as compared to the original materials426

database of each phase, appearing in the fabrication process. From a practical point of view,427

we showed that with only 7 carefully chosen directions of propagation, the entire database428

of 1-3 piezocomposite with 4mm symmetry can be determined. Future applications can be429

guided by adaptation of this method to 1-3 piezocomposite for a given thickness and lat-430

eral dimensions. Here, direct measurements of propagative Lamb waves are more suitable.431

Just as the method described for volume waves, dispersion curves corresponding to the first432

three symmetric and antisymmetric theoretical Lamb modes will be exploited. Specific elec-433

trode designs on 1-3 piezocomposite will be used to generate modes in a particular direction434

and scanning laser vibrometer can be used to measure normal displacements at the surface435

specimen to deduce experimental disperse curve49. This new objective is now underway.436
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APPENDIX A:439

For a piezoelectric material with mm2-symmetry, piezoelectric Christoffel tensor’s com-440

ponents are:441

Γ11 = cE11n
2
1 + cE66n

2
2 + cE55n

2
3 +

(e15 + e31)
2n2

1n
2
3

ǫS11n
2
1 + ǫS22n

2
2 + ǫS33n

2
3

, (A1)
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Γ12 = (cE12 + cE66)n1n2 +
(e15 + e31)n1n3(e24 + e32)n2n3

ǫS11n
2
1 + ǫS22n

2
2 + ǫS33n

2
3

, (A2)

Γ13 = (cE13 + cE55)n1n3 +
(e15 + e31)n1n3(e15n

2
1 + e24n

2
2 + e33n

2
3)

ǫS11n
2
1 + ǫS22n

2
2 + ǫS33n

2
3

, (A3)

Γ22 = cE66n
2
1 + cE22n

2
2 + cE44n

2
3 +

(e24 + e32)
2n2

2n
2
3

ǫS11n
2
1 + ǫS22n

2
2 + ǫS33n

2
3

, (A4)

Γ23 = (cE23 + cE44)n2n3 +
(e24 + e32)n2n3(e15n

2
1 + e24n

2
2 + e33n

2
3)

ǫS11n
2
1 + ǫS22n

2
2 + ǫS33n

2
3

, (A5)

Γ33 = cE55n
2
1 + cE44n

2
2 + cE33n

2
3 +

(e15n
2
1 + e24n

2
2 + e33n

2
3)

2

ǫS11n
2
1 + ǫS22n

2
2 + ǫS33n

2
3

. (A6)

APPENDIX B:442

Expression of the six velocities for XZ-plane and Y Z-plane according to the solutions of443

equation 7:444

- XZ-plane:

n1 = sinθ , n2 = 0 , n3 = cosθ

Solutions are:445 



V 2
QT2 =

Γ22

ρ

V 2
QL,QT1± =

Γ11+Γ33±

√
(Γ11+Γ33)2−4(Γ11Γ33−Γ

2

13)

2ρ

(B1)

- Y Z-plane:

n1 = 0 , n2 = sinθ , n3 = cosθ
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446 



V 2
QT2 =

Γ11

ρ

V 2
QL,QT1± =

Γ22+Γ33±

√
(Γ22+Γ33)2−4(Γ22Γ33−Γ

2

23)

2ρ

(B2)

APPENDIX C:447

Considering the unit-cell Ω of a periodic piezoelectric media, the quasi-static heteroge-448

neous local problem reads, ∀x ∈ Ω,449





curl(curlT S(x)) = 0, divT(x) = 0,

curlE(x) = 0, divD(x) = 0,

(C1)

with coupled constitutive equations (1)450

T = cE : S− eT.E, D = ǫ
S.E+ e : S (C2)

and imposed periodicity conditions on the local fields on the boundary of the unit-cell Ω.451

Making use of the Green functions method, the solution fields are expressible as coupled452

Lippmann-Schwinger equations39453






S(x) = 〈S〉Ω − Γ0 ∗ τ (x)

E(x) = 〈E〉Ω −∆0 ∗P(x)

(C3)

with Γ0 and ∆0 the Green operators corresponding to a uniform reference material with454

elastic tensor c0 and dielectric tensor ǫ0. 〈.〉Ω indicate the volume average over the unit-cell.455
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The fields τ and P are given by456





τ (x) = (cE(x)− c0) : S(x)− eT(x).E(x)

P(x) = e(x) : S(x) + (ǫS(x)− ǫ
0).E(x).

(C4)

The solution fields (C3) can be expressed in Fourier space and the problem is solved using457

an adequate iterative procedure38,39. The effective electroelastic coefficients tensors c̃E , ẽ458

and ǫ̃
S are defined by459

〈T〉Ω = c̃E : 〈S〉Ω − ẽT. 〈E〉Ω , 〈D〉Ω = ǫ̃
S. 〈E〉Ω + ẽ : 〈S〉Ω (C5)
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