Antoine Balé 
  
Rémi Rouffaud 
  
Franck Levassort 
  
Renald Brenner 
  
Anne-Christine Hladky 
  
Anne-Christine Hladky-Hennion 
  
Homogenization of periodic 1-3 piezocomposite using wave propagation: Toward an experimental method

 

a Also at CNRS, Centrale Lille, ISEN, Univ-Lille, Univ-Valenciennes, UMR8520-IEMN, 59000 Lille, France b remi.rouffaud@univ-tours.fr

INTRODUCTION

Piezoelectric composite materials are used in various applications such as sensors, actuators and transducers. Among the many patterns of spatial distribution between the piezoelectric and inert phases, 1-3 connectivity, i.e., aligned piezoelectric rods embedded in a polymer matrix [START_REF] Newnham | Connectivity and piezoelectricpyroelectric composites[END_REF] for the corresponding piezocomposite (13PC), can deliver very high performance in the thickness mode [START_REF] Smith | Modeling 1-3 composite piezoelectrics: thickness-mode oscillations[END_REF] , leading to their application in ultrasonic transducers [START_REF] Lethiecq | Piezoelectric Transducer Design for Medical Diagnosis and NDE[END_REF] .

In order to design transducers integrating 13PCs, numerical methods such as Finite Difference Method (FDM) or Finite Element Method (FEM) are commonly used. However, owing to the complexity of the studied system (number of phases, phase arrangement, microstructure), tedious meshing is required when performing detailed modeling of 13PC.

Moreover, depending on the target application the high precision levels achieved by such calculations are not always necessary. Users of numerical methods preferentially model these transducers with a 13PC simulated as a single-phase homogeneous material with effective properties. This theoretical step corresponding to a homogenization procedure is performed in the framework of the long-wavelength approximation and a subject that was extensively studied during the 1980s and 90s when piezocomposites, in particular, 13PC first became available. Typically, models were initially developed for purely elastic materials and subsequently extended to take into account the different coupling phenomena, in particular piezoelectricity.

The simplest approaches are those of Voigt 4 and Reuss [START_REF] Reuss | Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle[END_REF] with uniform trial fields. These have been extended to piezoelectricity to obtain rigorous upper and lower bounds on the effective free-energy [START_REF] Bisegna | Variational bounds for the overall properties of piezoelectric composites[END_REF] . In 1985, Banno derived an analytical expression for the calculation of several effective material parameters for 13PC [START_REF] Banno | Theoretical Equations for Dielectric and Piezoelectric Properties of Ferroelectric Composites Based on Modified Cubes Model[END_REF] , based on the model developed by Newnham [START_REF] Newnham | Connectivity and piezoelectricpyroelectric composites[END_REF] . Smith et al. [START_REF] Smith | Modeling 1-3 composite piezoelectrics: thickness-mode oscillations[END_REF] in addition, considered thickness mode effective parameters of 13PC with analytical expressions. Other workers managed to determine additional effective parameters for all components of the three elastic, dielectric and piezoelectric tensors (electroelastic moduli) for the different piezocomposites [START_REF] Hashimoto | Elastic, Piezoelectric and Dielectric Properties of Composite Materials[END_REF][START_REF] Chan | Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications[END_REF][START_REF] Banno | Theoretical Equations for Dielectric, Piezoelectric and Elastic Properties of a 0-3 Composite Based on Modified Cubes Model-A General Solution[END_REF][START_REF] Levassort | A matrix method for modeling electroelastic moduli of 0-3 piezo-composites[END_REF] . However, the accuracy delivered for all parameters related to the thickness mode in these later approaches were not always congruent and very often remained proprietary, in particular parameters for 13PC.

At the end of the 1950's, Eshelby had considered the problem of an ellipsoidal inclusion embedded in an infinite matrix and had obtained the analytical expression of the stress and strain fields which turned out to be unchanged within the inclusion [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] . This fundamental result today forms the basis of several mean-field micromechanical models used to estimate the overall elastic moduli tensor. In 1980, Deeg [START_REF] Deeg | The analysisof dislocation, crack, and inclusion problems in piezoelectric solids[END_REF] extended this solution to the calculation of coupled fields, in particular, piezoelectric materials. Dunn and Taya 14 proposed a method of obtaining effective parameters of a piezocomposite, as did various other workers [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF][START_REF] Benveniste | The determination of the elastic and electric fields in a piezoelectric inhomogeneity[END_REF][START_REF] Biao | Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[END_REF] . In these configurations, 13PCs are a particular case of these models where one of the axes of ellipsoidal inhomogeneities tends toward infinity. FEM or more generally numerical methods are also used for 13PC homogenization. The main advantage of numerical methods is that there is no restriction on geometry, size, material parameters and number of phases in the structure [START_REF] Berger | An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites[END_REF] . With these methods, different boundary conditions (displacement and electrical potential) are applied to the Representative Volume Element (RVE) in order to determine mechanical and electrical fields inside the material. Details of such methods are given in several reports [START_REF] Bent | Piezoelectric Fiber Composites with Interdigitated Electrodes[END_REF][20][START_REF] Pettermann | A comprehensive unit cell model: a study of coupled effects in piezoelectric 1-3 composites[END_REF][START_REF] Lenglet | Numerical homogenization techniques applied to piezoelectric composites[END_REF][START_REF] Berger | Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties[END_REF][START_REF] Enab | Evaluation of the Effective Electromechanical Properties of Unidirectional Piezocomposites Using Different Representative Volume Elements[END_REF][START_REF] Kari | Numerical Evaluation of Effective Material Properties of Transversely Randomly Distributed Unidirectional Piezoelectric Fiber Composites[END_REF][START_REF] Kar-Gupta | Electromechanical response of 1-3 piezoelectric composites: Effect of poling characteristics[END_REF] . Recently, the various homogenization methods presented above have also been adapted and applied to study novel 13PC in order to demonstrate their enhanced properties [START_REF] Aimmanee | Micromechanics-based predictions of effective properties of a 1-3 piezocomposite reinforced with hollow piezoelectric fibers[END_REF][START_REF] Zhang | Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer[END_REF] For all these models, the required input data are properties of the constituent phases and according to one of the methods briefly described above, this can vary from only a few parameters to the full set of electroelastic moduli for the piezoelectric phase. The effective parameters obtained by these homogenization procedures are therefor directly dependent upon these initial data. However, various 13PC fabrication processes (such as the "Dice and Fill" method 29 ) introduce possible variations of properties for each phase and as a consequence variation on the final effective properties. Two examples can be highlighted: the machining process of the piezoelectric phase (starting typically from a bulk ceramic) to design the rods can degrade the piezoelectric properties while addition of the polymer around the rods introduces porosity (air bubbles) which modifies its mechanical properties.

Beyond the development of accurate models, measurement of the piezocomposite parameters in operating conditions is essential. Characterization based on 13PC electrical impedance measurements was performed by us [START_REF] Rouffaud | A combined genetic algorithm and finite element method for the determination of a practical elasto-electric set for 1-3 piezocomposite phases[END_REF] and the objective of this present work is to develop a homogenization procedure based on acoustic wave propagation. This theoretical procedure was implemented with the understanding that it could then be applied by adapting it to an experimental set-up and thereby effects a correct estimation of homogenized parameters in operating conditions. This approach used mechanical wave propagation through the 13PC and allowed extraction of the effective parameters in a similar way to reported works for different configurations [START_REF] Chu | Stability of determination of composite moduli from velocity data in planes of symmetry for weak and strong anisotropies[END_REF][START_REF] Potel | Floquet waves and classical plane waves in an anisotropic periodically multilayered medium: Application to the validity domain of homogenization[END_REF][START_REF] Wang | Floquet wave homogenization of periodic anisotropic media[END_REF][START_REF] Wilm | A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures[END_REF][START_REF] Ferin | Experimental and theoretical determination of 1-3 piezocomposite electroacoustic tensor[END_REF] . This method as extended to piezoelectric materials, was inspired by Langlet et al. [START_REF] Langlet | Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method[END_REF] who determined the effective tensor of porous elastic materials.

With the assumption of an infinite piezoelectric material, the behavior of wave propagation is first presented for the two media of interest in section II. Then, in section III, slowness curves from homogeneous media are fitted on heterogeneous media with the analytical determination of some elastic parameters before optimization algorithms were used to deliver all the components of the effective electroelastic moduli. From this fit, a homogeneous equivalent medium is determined. In section IV, these results are compared with effective electroelastic coefficients obtained with a Fourier transform-based numerical scheme for periodic piezoelectric materials in the quasi-static regime [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF][START_REF] Brenner | Numerical computation of the response of piezoelectric composites using fourier transform[END_REF][START_REF] Brenner | Computational approach for composite materials with coupled constitutive laws[END_REF][START_REF] Brenner | Investigation of the effective response of 2-1-2 piezoelectric composites[END_REF] . The same initial database for our numerical phantom was used. This comparison was essential and allowed us to validate our new procedure. The influences of two rod shapes and piezoelectric phase volume fractions on several effective parameters are discussed. Finally, with reference to experimental procedure, two essential points are addressed. First, minimization of the number of slowness values is examined while simultaneously maintaining accuracy on the deduced effective parameters. Finally, considerations aimed at adapting the present work to a piezoelectric medium with a given thickness and lateral dimensions, is put forward.

II. WAVE PROPAGATION IN AN INFINITE PIEZOELECTRIC MATERIAL

For a piezoelectric material, constitutive equations interacts the mechanical parameters (strain S and stress T tensors) with the electrical parameters (electric field E and electric displacement D). In the framework of linear behavior, combining Maxwell equations and

T ij = c E ijkl S kl -e ikl E i D i = ǫ S ij E j + e ikl S kl (1) 
where c E , e and ǫ S are, respectively, the elastic tensor at constant electric field, the piezoelectric tensor and the dielectric tensor at constant strain and subscripts i, j, k, l ∈ [1, 2, 3], the 3 space dimensions. Spatial directions 1, 2 and 3 are used indifferently throughout the text with directions X, Y and Z. In the long wavelength approximation, an anisotropic heterogeneous medium can be considered as an anisotropic homogeneous medium if size inhomogeneities are smaller than the selected wavelength [START_REF] Royer | Elastic Waves in Solids I: Free and Guided Propagation[END_REF] . With this assumption, the use of classical plane waves for the study of homogeneous medium in section II B is possible.

A. Heterogeneous structure

To study the wave propagation in a 13PC, FEM is used.

FE model: 4mm-and mm2-structures

In this work, two 13PC designs are investigated. The two were chosen because, from a practical point of view, both can be manufactured by the well-known "Dice and Fill" V QL , V QT 1 and V QT 2 are group velocities for, respectively, quasi-longitudinal, first quasi-transversal and second quasi-transversal modes. Calculation is performed with PZT-4 43 and Epoxy resin [START_REF] Pham Thi | Large area 0-3 and 1-3 piezoelectric composites based on single crystal PMN-PT for transducer applications[END_REF] for a 1mm-side RVE and a piezoelectric volume fraction v f = 50%. material used for rods (here, the standard 6mm-symmetry ceramic). Parallelepipedic RVEs of each structure are represented in Fig1 for both cases as blue dotted lines. These RVEs possess the same symmetry as that defined previously for the two structures. To respect the orthotropic axis of 13PC, for the mm2 structure, local basis (OXYZ) is rotated through 45 • from the local axis of the 4mm structure. Moreover, the unit propagation vector n is defined by the angles θ and ϕ in the local basis (fig. 1.(c)) and n 1 (resp. n 2 , n 3 ) is the projection of n on X-axis (resp. Y -axis, Z-axis):

n 1 = sinθcosϕ, n 2 = sinθsinϕ, n 3 = cosθ. (2) 
For the FEM calculations, ATILA software was used [START_REF] Isen | ATILA, Finite-Element Software Package for the analysis of 2D & 3D structures based on smart materials[END_REF] . The whole problem domains are divided into elements connected by nodes, where constitutive equations are locally approximated. 1mm-side RVE is chosen. In fact, this is a typical size in XY -plane for 13PC in medical application. The reader is reminded that there is no variation of phases in the z-direction, so the size has no effect on the final results. Isoparametric elements are used with quadratic interpolation along the element's sides. Hexahedrons are used with 20 nodes (8 for the corners and 12 for the middle of the edge) for the 4mm-structure. Similarly, prisms are used with 15 nodes (6 for the corners and 9 for the middle of the edge) for the mm2-structure. Furthermore, the finite element formulation used in ATILA relying upon quadratic interpolation functions, the classical λ/4 criterion must be verified in the whole mesh to ensure the validity of the finite element result. The λ/4 states that the largest length of each element in a given mesh has to be smaller than a quarter of the wavelength in the material for the working frequency. For structures studied in this paper, the mesh has been chosen in order to respect this criterion. Moreover, the study of periodic 13PC structure is greatly simplified by the Bloch-Floquet theorem because only one RVE needs to be meshed 36 .

From dispersion curves to slowness curves

To establish slowness curves for our two studied structures, properties of PZT-4 [START_REF] Mcgrawhill | American Institute of Physics Handbook[END_REF] and Epoxy resin 44 in table II were chosen for the two 13PC phases. Dispersion curves were initially calculated for a 1mm-side RVE with a piezoelectric volume fraction of 50% and only the 3 lowest modes in frequency to be in accordance with the long wavelength approximation.

Dispersion curves were calculated for one specific direction of a wave vector in the first Brillouin zone using modal analysis. Wave vector k is defined by k

(ϕ, θ) = k x . n 1 + k y . n 2 + k z . n 3 , where: -ϕ ∈ [-180 • , 180 • ], -θ ∈ [0 • , 180 • ] and if θ = 90 • , k ∈ (XY )-plane,
In fig. where QT1 (resp. QT2) mode has an out-plane (resp. in-plane) transverse polarization in the studied plane (here, the XY -plane). A linear behavior exists at low frequency for the three modes where the phase velocity is equal to the group velocity (V QL ,V QT1 ,V QT2 ). Calculating dispersion curves for the whole characteristic volumetric region due to mm2 symmetries (0 • < ϕ < 90 • and 0 • < θ < 90 • ), the limit of this linear region is approximatively k ≃ 1500m -1 . This limit is indicated in fig. 2 are added to slowness curves (crossed points). For FEM calculation, all the slowness points were calculated in this way with a step of 1 • for ϕ and θ.

From the numerical slowness curves in the heterogeneous material, analytical slowness curves in a homogeneous material had to be established for a further comparison between the two media. A general case is described for the mm2 structure in the following subsection.

As in section II A, the medium was considered to be infinite and comprised of piezoelectric material.

Wave equation in piezoelectric materials

Starting from the expression of the mechanical strain T ij (eq.1) and removing the electrical potential dependency, the wave equation in a piezoelectric infinite medium can be written [START_REF] Royer | Elastic Waves in Solids I: Free and Guided Propagation[END_REF][START_REF] Balé | Homogénéisation et caractérisation de matériaux multiphasiques piézoélectriques (composites de connectivité 1-3 et céramiques texturées) pour les transducteurs ultrasonores sans plomb[END_REF] :

ρ ∂ 2 u l ∂t 2 = c E ijkl e kij e jkl ǫ S jk ∂ 2 u l ∂n j ∂n k (3)
where u i is the component of the mechanical displacement vector u on the axis n i and the time t. ρ is the density of the medium of propagation. In the assumption of a plane wave propagation problem in an infinite medium in the n j direction and for the eq.( 3), a solution can be written as:

u i = u 0 i e jω(t-n j x j V ) = u 0 i F (t - n j x j V ) (4)
where u 0 i is the wave polarization and V the phase velocity. When this solution is included in eq.3, the wave equation extended to piezoelectric medium becomes:

ρV 2 u 0 i = (Γ il + γ i γ l ǫ )u 0 l ( 5 
)
where Γ il = c E ijkl n j n k , γ i = e kij n j n k and ǫ = ǫ S jk n j n k . The (Γ il + γ i γ l ǫ ) term is called the piezoelectric Christoffel tensor and written as:

Γ il =            Γ 11 Γ 12 Γ 13 Γ 12 Γ 22 Γ 23 Γ 13 Γ 12 Γ 33            (6) 
Eq.5 is an eigenvalues equation where the wave polarization u 0 l is the eigenvector of Γ il with its eigenvalue λ = ρV 2 . As Γ il is symmetrical, eigenvalues are real and to provide real velocities, eigenvalues must also be positive. Eigenvectors are orthogonal because of the symmetry of Γ il . Therefore, solving eq.5 is equivalent to finding the roots of equation:

|Γ il -ρV 2 δ il | = 0 (7)
where δ il is the Kronecker symbol. Eq.7 has three solutions for a given propagation direction n that are velocities from the 3 known plane waves QL, QT1 and QT2 (i.e., section II A 2).

mm2-structure (right-triangular rods 13PC)

As mentionned earlier, the most general case is developed in this section. A mm2 piezoelectric material is characterized by 17 independent parameters: 9 elastic coefficients From these expressions, velocities V QL , V QT 1 and V QT 2 can be determined using eq.7 for any direction. Depending on the symmetry class, calculations for all directions is not always necessary and can be restricted. For a mm2-structure, three planes of propagation are sufficient: XY -plane, XZ-plane and Y Z-plane. Solutions for the XY -plane are described in detail here and the two other planes in Appendix B.

(c E 11 , c E 12 , c E 13 , c E 22 , c E 23 , c E 33 , c E 44 , c E 55 , c E 66 
In the XY -plane, the components of the projection vector n are given by:

n 1 = cosϕ , n 2 = sinϕ , n 3 = 0 . (8) 
A direct consequence of this is the zero value for the Γ 13 and Γ 23 terms in the Christoffel tensor and a simplification of the expression for Γ 11 , Γ 12 = Γ 21 , Γ 22 and Γ 33 components.

Consequently, eq.7 is reduced to:

Γ 33 -λ Γ 11 -λ Γ 22 -λ -Γ 2 12 = 0 (9) 
where λ = ρV 2 i are eigenvalues. The three solutions of eq.9 are:

           λ = Γ 33 λ ± = 1 2 Γ 11 + Γ 22 ± Γ 11 + Γ 22 2 -4 Γ 11 Γ 22 -Γ 2 12 (10) 
To assign the solutions to the correct polarizations (i.e., QL, QT1 or QT2 mode), eigenvectors are determined. As an example, one can describe the expression of the simplest solution for the XY -plane is detailed as: λ = Γ 33 . Substituting Γ 33 by its definition, the complete expression of the corresponding velocity becomes: A.

V 2 QT 2 = 1 ρ c E 55 cos 2 ϕ + c E 44 
Step 1: analytical determination of elastic constants.

For specific directions in any plane (0 • , 45 • , 90 • ), the analytical expressions of velocities (section II B) are simplified to enable the determination of some elastic constants. For instance, in the XY -plane where general equations (ϕ-dependence) are given by the system (10), and when ϕ = 0 • and θ = 90 • , velocities are expressed by:

                     V 2 QT 2 (0, 90) = 1 ρ c E 55 + e 2 15 ǫ S 11 V 2 QT 1 (0, 90) = c E 66 ρ V 2 QL (0, 90) = c E 11 ρ (12) 
From this set of equations the numerical values from dispersion curves (fig. 3(a)) at ϕ = 0 • and θ = 90 Finally, for the mm2-symmetry, with three orthogonal planes and six different directions, a system of nine independent equations is achieved with 11 unknowns. Here, the full determination of tensor components is not analytically possible. Consequently, the second step is a numerical determination performed by a fitting process.

B.

Step 2: fitting process.

For a full determination of effective tensors, eleven constants have to be fitted:

c E 13 , c E 23 , c E 33 ,
all the five constants of e tensor and the three constants of ǫ S tensor. The fitting process by the objective function (OF) that is minimized and the settings for the optimization algorithm (OA) are described below. Both slowness and velocity are used interchangeably throughout the text because once one is determined, the other one is simultaneously determined too. 

Q L c E 11 Q T 1 c E 66 (90,90) Q L c E 22 (45,90) Q L ,Q T 1 A+B 4 ± (A+B) 2 -AB+(c E 12 +c E 66 ) 2 1 2 4 with A = c E 11 + c E 66 , B = c E 22 + c E 66 XZ- (0,0) Q T 1 c E 55 Q T 2 c E 44 

Objective function

The aim of this process is to fit the analytical velocities from a homogeneous medium onto numerical velocities considered as the reference from heterogeneous medium. Therefore, one needs to minimize the difference between the numerical velocities v ij FEM and analytical velocities v ij Chris for all propagation directions of the three planes of interest for the mm2symmetry. Specifically, v ij FEM are gleaned from section II A 2 while v ij Chris are calculated for each iteration from equations established in section II B 2 with the new set of parameters to be fitted (unknown components of effective tensors). For each new set, a score S a is calculated by the OF using the least squares method:

S a = M i=1 N j=1 (v ij FEM -v ij Chris ) 2 N < v 2 ij FEM > ( 13 
)
where M is the number of slowness curves selected for the fitting process (M = 5 for the mm2-structure and M = 3 for the 4mm-structure) and N is the number of propagation directions used (with a default of N = 360). Finally, <> is the mean symbol. The five specific curves (fig. 4) were specifically chosen because the remaining unknowns that must be determined are involved in their analytical expressions (see red constants on fig3). 4mm-structure requires fewer slowness curves to be fitted because there are fewer effective independent components, in a similar way to the simplification of table I for this case, as explained earlier. 20

Optimization algorithm

The OA selects a new set of parameters based on all previous scores returned by OF for the different sets, previously selected. The time needed to reach the best optimization score is called rate of convergence. In order to achieve a fast convergence rate, an OA based on a canonical search is preferred. Here the Nelder-Mead algorithm [START_REF] Nelder | A simplex method for function minimization[END_REF] , also known as the simplex method was used.

In the case of a mm2-structure, the set of effective parameters to be determined is described by the vector x = c E 13 , c E 23 , c E 33 , e 31 , e 32 , e 33 , e 24 , e 15 , ǫ S 11 , ǫ S 22 , ǫ S 33 . One of the drawbacks of using this kind of OA is the requirement of an initial vector (x init ) to start the process.

Values of x init are set with the matrix method 11 that provides a good approximation for longitudinal tensor (subscripts 33 ) but a weak approximation of the transverse tensors parameters. It is worth mentioning that these values are calculated as a function of the 13PC volume fraction of piezoelectric phase.

The second setting for the algorithm is the definition of the search-space limits. These are contained in the boundary vectors x UB for the upper boundaries and x LB for the lower boundaries. Here, the choice of a large search-space is preferred and boundary vectors are defined by x UB = 5x init and x LB = 0.01x init .

In fig. 4, the five selected slowness curves for the fitting process are represented only on one quarter of their planes for the case v f = 50%. The curves are normalized to their own maximum to highlight the differences. The black curves that almost coincide with the dotted blue lines are the FEM calculations. The red curves are the initial slowness curves of the OA and were calculated using x init in table II.

TABLE II. Case v f = 50%. Elastic (c E in GPa), piezoelectric (e in C.m -2 ), dielectric (ǫ S in /ǫ 0 )
constants and density (ρ in kg/m 3 ) for PZT4 [START_REF] Mcgrawhill | American Institute of Physics Handbook[END_REF] ceramic, Epoxy 44 resin, mm2-and 4mm-structures calculated by the present method and by the FFT method. Initial vector x init for the OA and relative differences between FFT and present methods are also given. Star (resp. cross and dash)

indicates constants analytically determined on first step (resp. non-value parameter and known parameters from others values). Homogenization results are presented for two different cases: (1) results for a specific volume fraction (v f ) of 50% for 4mm and mm2 13PC are presented in the first section, (

parameter variation as a function of v f are shown in second section. In both sections, all results are compared with the FFT method for validation. The principle of this numerical scheme is briefly recalled in Appendix C.

A. Specific case of v f = 50%
The volume fraction of v f = 50% was chosen because it is a typical 13PC value employed for medical imaging applications. This value allows for the optimization of the thickness coupling coefficient (k t ) which is an essential parameter for transducer design [START_REF] Lethiecq | Piezoelectric Transducer Design for Medical Diagnosis and NDE[END_REF] . Variations of v f are possible (typically between 30% and 90%) depending on the desired optimized properties. Fig. 4 shows the solution found by the fitting process (blue dotted lines). The maximum difference between the initialization and the FEM is located on the QL wave in the XZ-plane at 62 • and its value is 2.98%. After the fitting process, the solution presents a maximum difference on the QT2 wave in the XY -plane, equal to 0.3% (equating to 10 fold reduction when compared to x init ). It is also noticeable that the curves from the QT2 wave in the XY -plane was unchanged between x init and the solution. In fact, this curve is governed by Eq. However, these differences are not of critical concern because, in practice, these parameters do not affect the expected behavior of 13PC functions either in thickness or flexural modes.

To reduce these differences, additional work needs to be performed during OF selection, by for example, adding another slowness curve for the fit or giving extra-weight for this QT2 slowness curve.

B. Results for v f variations

In this section, the homogenization method is performed on different volume fractions (10%, 30%, 50% and 70%) and compared with the FFT method. In fig. 5, the elastic constants calculated from the present study (black crosses) are well evaluated for the most effective constants (< 2%). In fact, the largest relative difference with the FFT method (red circles) appears to be 6% for c E 44 at v f = 70%. This difference is not significant when compared with the c E 44 value of 24% for 4mm-structure (blue crosses). However, these variations of elastic constants show that the shapes have a stronger effect on the constant characteristics of the x-axis (c E 11 ) as compared with c E 22 on the y-axis and c E 33 on the z-axis. Fig. 6 shows homogenized piezoelectric and dielectric effective parameters. The gap between the FFT and the present method on e 24 and e 15 was unexpectedly negligible for the reasons already explained in paragraph IV A. However, this difference was pronounced for the higher volume fractions. Details on the constants' sensitivity are extensively covered by Balé [START_REF] Balé | Homogénéisation et caractérisation de matériaux multiphasiques piézoélectriques (composites de connectivité 1-3 et céramiques texturées) pour les transducteurs ultrasonores sans plomb[END_REF] . In order to apply the present method to an experimental setup, particular effort has to be expended on the acquisition of 13PC slowness curves for the 3 planes of interest. In fact, in the theoretical methodology (general case), 13PC slowness curves were calculated using FEM in all directions at incremental steps of 1 • . Unfortunately, measurements made this way, are extremely laborious but also unnecessary. Rather the objective is to find a trade-off between the number of measurements and the accuracy of the deduced effective tensors. The example of a 4mm-structure was chosen here because it is the most frequently used in practice.

As shown in section III A, specific directions are necessary to determine several constants analytically: for the 4mm-structure in the XY -plane, x-direction and ( • z-direction (already retained at step 1) for c E 33 , e 33 and ǫ 33 on the QL mode,

• and (0, 45)-or (90, 45)-direction for the rest on the QL and QT1 modes.

To ensure the validity of the effective parameters obtained using a reduced number of directions (reduced case), the relative difference between these values and the general case must not exceed 5%. This limit was arbitrarily chosen. Using only the (0, 45)-direction in addition to the three ((0, 90), (45, 90) and (0, 0)) for the analytical determination, results

were compared with the general case (45 directions in 2 planes = 90 directions) and, were generally correct for all volume fractions (10%, 30%, 50% and 70%) with relative differences lower than 10% except for e 15 due to difficulties explained in section IV A. In table III, the 30% volume fraction case is presented because it is the case which exhibits the highest relative differences. Only the fitted parameters are presented because parameter determined by analytical method is, by definition, always equal. It is noticeable that the final results deteriorate with relative differences of 93% for the e 31 value and 72% for e 15 . This also confirms that substantial experimental information is lost, with a reduction in angles. The objective then is to add a few more experimental data to see whether the accuracy of the final results can be improved. For the algorithm, there is a lack of accuracy evaluated on constants calculated from the QL and QT1 modes in (0, 45)-direction. Consequently, two additional directions: (0, 30)and (0, 60)-directions are considered. In this way, the algorithm is better able to reveal the velocity variations in this plane. These results are also shown in table III (6 directions).

As expected, relative differences declined with a maximum of 4% (except for the e 15 value).

With these three cases, the logical trend of increasing accuracy, coupled with the increase in measured directions, are highlighted. Finally, when angle reductions are applied to the experimental setup, the user is obliged to consider choosing a trade-off between the number of measured directions and accuracy of the effective constants.

V. CONCLUSION

A method based on wave propagation was successfully implemented to determine the effective electroelastic moduli of 1-3 piezocomposites. Slowness curves in several planes were used to identify all the parameters, whose, Christoffel tensors were analytically expressed. This procedure was performed in two main steps. First, several elastic constants (listed in table II with stars) in particular directions were directly determinated using the quasi-longitudinal and two quasi-transversal modes. Second, to complete generation of the effective data (constants without star in table II) a fitting process using the Nelder-Mead algorithm was performed. In this study, two piezoelectric rod shapes (square and righttriangle) that can be designed by the well-known "Dice and Fill" method were selected. ) however, these values have limited influence for most applications using thickness or flexural modes. To validate our approach, the results were compared with a Fourier transform-based numerical homogenization scheme for quasi-static conditions. The idea behind this development was to use this method in operating conditions for 1-3 piezocomposite while also taking into account variations in properties, as compared to the original materials database of each phase, appearing in the fabrication process. From a practical point of view, we showed that with only 7 carefully chosen directions of propagation, the entire database of 1-3 piezocomposite with 4mm symmetry can be determined. Future applications can be guided by adaptation of this method to 1-3 piezocomposite for a given thickness and lateral dimensions. Here, direct measurements of propagative Lamb waves are more suitable.

Just as the method described for volume waves, dispersion curves corresponding to the first three symmetric and antisymmetric theoretical Lamb modes will be exploited. Specific electrode designs on 1-3 piezocomposite will be used to generate modes in a particular direction and scanning laser vibrometer can be used to measure normal displacements at the surface specimen to deduce experimental disperse curve [START_REF] Guyonvarch | Response of bare 1-3 piezocomposite array to localized electrical excitation[END_REF] . This new objective is now underway. The solution fields (C3) can be expressed in Fourier space and the problem is solved using an adequate iterative procedure [START_REF] Brenner | Numerical computation of the response of piezoelectric composites using fourier transform[END_REF][START_REF] Brenner | Computational approach for composite materials with coupled constitutive laws[END_REF] . The effective electroelastic coefficients tensors c E , e and ǫ S are defined by

           V 2 QT 2 = Γ 11 ρ V 2 
T Ω = c E : S Ω -e T . E Ω ,
D Ω = ǫ S . E Ω + e : S Ω (C5)

method 29 .FIG. 1 .FIG. 2 .

 2912 FIG. 1. Top view of elementary 13PC patterns for a) 4mm and b) mm2 symmetries. Surrounded

  2, an example of how the slowness curves are determined is put forward for two specific propagation directions in the XY -plane ( k(0, 90) and k(45, 90)) and for the mm2-structure with a step of 91m -1 for || k||. Specifically, it is shown in fig.2(a) and fig.2(b), the quasilongitudinal (QL), first quasi-transverse (QT1) and second quasi-transverse (QT2) modes,

  fig.2(c), final slowness curves (inverse of velocities) are displayed for one quarter of the

  , ), 5 piezoelectric coefficients (e 15 , e 24 , e 31 , e 32 , e 33 , ) and 3 dielectric parameters (ǫ S 11 ,ǫ S 22 ,ǫ S 33 ,). In comparison, a 4mm-structure is described by 5 elastic, 3 piezoelectric and 3 dielectric independent parameters. For both cases, all components of the piezoelectric Christoffel tensors are analytically determined (Appendix A).

sin 2 ϕ + (e 15 cos 2 ϕ + e 24 sin 2 ϕ) 2 ǫ S 11 cos 2 ϕ + ǫ S 22 sin 2 ϕ ( 11 )

 211 Doing the same for V QT 1 and V QL (with the two other eigenvalue expressions), the slowness curves can be analytically calculated for a homogeneous piezoelectric material in the 3 planes of interest for a mm2 symmetry case.The symmetry class of the equivalent homogeneous structure must be the same as the initial heterogeneous structure (here 13PC) and this condition must be taken into account when defining all the components of the c E , e and ǫ S tensors. Overlined variables are components of the homogeneous equivalent structure. In general, if the symmetry class is unknown, the most general triclinic class is chosen by default. In the present case, a mm2-symmetry class was retained because right-triangular rods are PZT4 with 6mm-symmetry class. The objective was to deduce all the effective components of the elastic, piezoelectric and dielectric tensors with a comparison of the slowness curves obtained by the two approaches (heterogeneous and homogeneous materials materials) described earlier. This determination of all the parameters is performed in two steps. The first step involves the direct determination of several elastic parameters. A fitting process of slowness curves involving calculation by FEM is described, in a second step(section II A). The two step are detailed below. The homogenization process relies on numerical slowness curves calculated by FEM. The case of the mm2-structure (fig.1(b)) with a volume fraction (v f ) of 50% is presented and numerical slowness curves are presented on fig.3.

FIG. 3 .

 3 FIG.3. Numerical slowness curves for three orthogonal planes from the same mm2-structure.

FIG. 4 .

 4 FIG. 4. Selected slowness curves (M=5) for the fitting process displayed on one quarter of the

FIG. 5 .

 5 FIG. 5. Effective elastic constants (in GPa) as a function of piezoelectric volume fraction (v f ) from

FIG. 6 .

 6 FIG. 6. Homogenized piezoelectric (in C.m -2 ) and dielectric coefficients (in /ǫ 0 ) from the present

  QL,QT 1 ± = Γ 22 +Γ 33 ± √ (Γ 22 +Γ 33 ) 2 -4(Γ 22 Γ 33 -Γ fields τ and P are given by             τ (x) = (c E (x) -c 0 ) : S(x) -e T (x).E(x)P(x) = e(x) : S(x) + (ǫ S (x)ǫ 0 ).E(x).(C4)

TABLE I .

 I Analytical expressions for particular directions used for determining six elastic constants

	in mm2-structure.	
	(ϕ,θ) Mode	ρV QL,QT 1,QT 2 =
	(0,90)	
	XY -plane	

  11. OA can only modify variables e 24 , e 15 ǫ S 11 and ǫ S 22 in this equation as c E 44 and c E 55 are already determined and considered fixed values. Essentially, theproblem is that, in Eq.11, the term (e15cos 2 ϕ+e 24 sin 2 ϕ) 2 S 22 are not highly sensitive. As a result, OA had no influence on them.In table II, all effective tensor components from the solution are given in the case of the 4mm-structure (fig.1(a)) and the mm2-structure (fig.1(b)). For compararive purposes, the same components obtained by the FFT method are also presented. As expected from the previous paragraph, large relative differences appear for e 24 , e 15 ǫ S 11 and ǫ S 22 until 62%.

	and ǫ	
	ǫ S 11 cos 2 ϕ+ǫ S 22 sin 2 ϕ	is approximately 500 times smaller

  45, 90)-direction provide the constants c E 11 , c E 12 , c E 66 and the z-direction in the XZ-plane (or Y Z-plane) brings the c E 44 value. Hence, these three directions are retained. Moreover, the fitting process (section III B) for the 4mm-structure has to determine the constants c E 13 , c E 33 , e 15 , e 31 , e 33 , ǫ 11 and ǫ 33 . These constants appear in two specific directions of the XZ-plane (or Y Z-plane):

TABLE III .

 III Effective elastic c E (GP a), piezoelectric e (C.m -2 ) and dielectric ǫ S (/ǫ 0 ) constant of 4mm-structure (v f =30%).

		general case		reduced cases	
	Properties		4 directions 6 directions
		90 directions				
			(rel. diff. %) (rel. diff. %)
	c E 13	6,01	6,71 (12) 6,00 (0.1)
	c E 33	28,08	26,68 (4) 27,87 (1)
	e 15	3,54e-4	0.0001 (72) 1,78e-4 (30)
	e 31	-0.14	-0,27 (93) -0,14 (0)
	e 33	5,35	5,52 (3)	5,25 (2)
	ǫ S 11 /ǫ 0	5,81	6,08 (5)	5,56 (4)
	ǫ S 33 /ǫ 0	202	194	(4)	200	(1)

  These two configurations belong to 4mm and mm2 symmetry class, respectively. For the second and most general case, requiring the determination of17 constants, 10 (c E 11 , c E 12 , c E 13 , c E 22 , c E 33 , c E 44 , c E 55 , c E 66 , e 31 and ǫ S 33 ) were obtained with an accuracy of less than 2%. Larger differences were obtained for the two dielectric and two piezoelectric constants (e 24 , e 15 , ǫ S

	11
	and ǫ S 22

sin 2 ϕ. This means that at least for this case, the variables e 24 , e 15 , ǫ S
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APPENDIX A:

For a piezoelectric material with mm2-symmetry, piezoelectric Christoffel tensor's components are: Expression of the six velocities for XZ-plane and Y Z-plane according to the solutions of equation 7:

-XZ-plane:

Solutions are:

Considering the unit-cell Ω of a periodic piezoelectric media, the quasi-static heteroge- Making use of the Green functions method, the solution fields are expressible as coupled Lippmann-Schwinger equations 39

with Γ 0 and ∆ 0 the Green operators corresponding to a uniform reference material with elastic tensor c 0 and dielectric tensor ǫ 0 . . Ω indicate the volume average over the unit-cell.