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Abstract— In this paper the problem of restoration of unsu-
pervised nonnegative sparse signals is addressed in the Bayesian
framework. We introduce a new probabilistic hierarchical prior,
based on the Generalized Hyperbolic (GH) distribution, which ex-
plicitly accounts for sparsity. On the one hand, this new prior
allows us to take into account the non-negativity. On the other
hand, thanks to the decomposition of GH distributions as continu-
ous Gaussian mean-variance mixture, a partially collapsed Gibbs
sampler (PCGS) implementation is made possible, which is shown
to be more efficient in terms of convergence time than the classical
Gibbs sampler.

1. INTRODUCTION

This paper tackles the restoration of a sparse nonnegative signal,
observed through a linear operator and corrupted by additive
white noise. The N × 1 observed signal y can be written as
y = Hz + ε, where z is a K × 1 nonnegative sparse signal, H
is a N ×K matrix and ε models the perturbations.

In the literature, sparse signal restoration problems arise in
different fields such as reflection seismology, astronomy and
compressed sensing. The objective is to find a sparse repre-
sentation of a signal y that is a linear combination of a limited
number of elements (atoms) taken from a given dictionary H.
This problem is often referred to as subset selection because it
consists in selecting a subset of columns of H. Mathematically,
this can be formulated as the minimization of the squared error
‖y −Hz‖2 subject to ‖z‖0 < S, where ‖·‖ and ‖·‖0 respec-
tively stands for the Euclidean norm, and the `0 pseudo-norm.
This yields a combinatorial discrete problem known to be NP-
hard [1].

One alternative is the convex relaxation of the problem
which substitutes the `0 pseudo-norm by the `1 norm [2, 3], the
sparsity of the solutions coming from the non-smooth character
of the `1 norm at zero. Greedy algorithms, such as Matching
Pursuit and its improved versions Orthogonal Matching Pur-
suit and Orthogonal Least Squares [2, 4], form another class of
methods. Here the main idea is to iteratively recover the set of
active atoms by incremental selection. Nonnegative adaptations
have been proposed for both convex relaxation and greedy al-
gorithms. For example, the `1 relaxation can be easily extended
to the nonnegative setting [5, 6]. Nonnegative extensions of

greedy algorithms have been also introduced [7, 8].
On the other hand, a hierarchical Bayesian model which ex-

plicitly accounts for sparsity has been proposed for spike decon-
volution, namely the Bernoulli-Gaussian (BG) model [9, 10].
Deterministic optimization algorithms [10] and Markov chain
Monte Carlo techniques (MCMC) [11] are used to compute, re-
spectively, the Maximum a Posteriori (MAP) and the Posterior
Mean (PM) estimators. In the sparse train deconvolution con-
text, where the dictionary is often strongly correlated, the PM
estimator has been shown empirically to give better results than
greedy algorithms and convex relaxation [12]. Moreover, the
Bayesian framework allows one to estimate the model hyper-
parameters (unsupervised case).

In the MCMC framework, a nonnegative adaptation of the
BG model was studied in [13], based on a Bernoulli-Truncated-
Gaussian (BTG) model. Vector z is modelled as a couple of
variables (q,x), where q is a vector of independent, identically
distributed (i.i.d.) Bernoulli variables, and xk is distributed ac-
cording to a centered truncated Gaussian when qk = 1, oth-
erwise xk = 0. Posterior Mean estimation of q and x is then
obtained using an MCMC method. The latter yields satisfactory
results, but it requires a high computational cost. In [14, 15], a
partially collapsed Gibbs sampler (PCGS) inspired from [16] is
proposed to obtain a faster convergence rate in the case of BG
deconvolution. It is based on marginalizing out the amplitudes
x from the joint posterior, which is practically possible because
their posterior conditional is Gaussian. Unfortunately, partially
collapsed sampling cannot be adapted as easily to the context of
nonnegative restoration.

The aim of this paper is to propose a partially collapsed
scheme in the context of nonnegative sparse restoration. Our
main contribution is a new prior based on the Generalized Hy-
perbolic (GH) distribution. On the one hand, the proposed
prior mimics the BTG prior to take the non-negativity into
account. On the other hand, the decomposition of GH distri-
butions as continuous Gaussian mean-variance mixtures allows
us to marginalize the amplitudes, enabling the construction of a
partially collapsed Gibbs sampler which is shown hereafter to
converge more rapidly than the BTG version.

The organization of this paper is as follows. An overview
of the Generalized Hyperbolic distribution and its properties
are given in Section 2. Section 3 introduces the Bernoulli-
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Generalized-Hyperbolic (BGH) model in the Bayesian frame-
work. Its corresponding partially collapsed Gibbs sampler is
presented in Section 4. Simulation results are given in Section 5
to compare the BGH and the BTG samplers both in terms of sig-
nal restoration and convergence. Finally, conclusions are drawn
in Section 6.

2. GENERALIZED HYPERBOLIC DISTRIBUTIONS

2.1. Description and properties

Generalized Hyperbolic (GH) distributions form a five parame-
ters family ν = (λ, α, β, δ, µ) introduced by Barndorff-Nielsen
in [17]. For a random variableX ∼ GH (λ, α, β, δ, µ) the prob-
ability density is given by

pX(x) =
(γ/δ)λ√

2πKλ(δγ)

Kλ− 1
2
(α
√
δ2 + (x− µ)2)

(
√
δ2 + (x− µ)2/α)

1
2−λ

eβ(x−µ),

where γ2 = α2 − β2 and Kλ is the modified Bessel function of
third kind. We will take advantage of three interesting proper-
ties of the GH distributions:

P1) GH distributions are invariant under affine transforma-
tions. If X ∼ GH (λ, α, β, δ, µ), then Y = aX + b ∼
GH (λ, α/a, β/a, aδ, aµ+ b).

P2) They can be expressed as continuous normal mean-variance
mixtures pX(x) =

∫∞
0
pX|W (x|w) pW (w) dw where X|W ∼

N (µ+βW,W ) and each random varianceW has a Generalized
Inverse Gaussian [18] distribution GIG(λ, γ, δ).

Therefore, a GH random variable can be seen as a hier-
archical model: in order to generate a GH sample, a random
variance W ∼ GIG(λ, γ, δ) is first drawn, and then X|W ∼
N (µ+ βW,W ) is drawn.

P3) The GIG distribution is a limiting case of the GH family

[19]: if X ∼ GH
(
λ, β + ψ2

2 , β, τ
(
β + ψ2

2

)− 1
2 , 0
)

and β →
∞, then X ∼ GIG(λ, ψ, τ) i.e., β is a skewness parameter
with P (X ≤ 0) = 0 when β → ∞. Also it is worth mention-
ing that the variances of the Gaussian involved in the mixture
are inversely proportional to β. Meaning that large values of β
implies highly correlated X and W variables.

2.2. Truncated Gaussian approximation

Here, we would like to approximate a truncated Gaussian dis-
tribution N+(0, 1) with a GH one, while satisfying a trade-off.
On the one hand, a distance between the two distributions must
be made small. Here, we consider the total variation

TV (p, q) =

∫ ∞
−∞
|p(x)− q(x)| dx. (1)

In particular, small values of TV
(
GH (ν),N+(0, 1)

)
impose

that the GH law has a small mass on the negative half-line R−.
Obviously, this is a desirable feature with respect to the non-
negativity constraint. However, putting a too small mass on R−
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Fig. 1: Approximation of the standard truncated Gaussian with a GH distribu-
tions. Total variation between each approximation and the truncated Gaussian
and P (X ≤ 0) are given in the following fashion (TV, P (X ≤ 0)).

happens to be counterproductive in terms of algorithmic effi-
ciency, because it induces strongly coupled pairs (W,X), which
annihilates the benefit from marginalizing the amplitude vari-
ables.

In practice, we propose to proceed as follows. We consider
that parameter β plays a distinct role, since it allows us to con-
trol the mass put on R−. For fixed values of β, we numerically
minimize TV

(
GH(ν),N+(0, 1)

)
with respect to the remain-

ing parameters ν−β = (λ, α, δ, µ). Figure 1 illustrates the re-
sults of such approximations for β ∈ {10, 80, 150} and gives
the associated values of TV and P (X ≤ 0). We will discuss
the value of β in Section 5.

Finally, let νN = (λN , αN , βN , δN , µN ) be the parameters
of the GH approximation ofN+(0, 1). From P1, we can deduce
a GH approximation of N+(0, σ2

x) for any σx > 0 according
to:

GH (λN , αN /σx, βN /σx, δNσx, µNσx). (2)

For the sake of simplicity, as the parameters are fixed given
σx, we will write hereafter GHN (σ2

x) instead of (2) and
GIGN (σ2

x) instead of GIG(λN , γN /σx, δNσx).

3. BAYESIAN FRAMEWORK

3.1. Bernoulli-Generalized-Hyperbolic prior

We consider that z = (q,x,w) where ∀k = 1, . . . ,K, qk ∼
B(ξ), and:

when qk = 1,

{
wk ∼ GIGN (σ2

x)
xk|wk ∼ N (σxµN + wkβN /σx, wk),

when qk = 0, xk = 0

such that xk|qk = 1 ∼ GH(νN ), and the sparsity level of z is
tuned by the parameter ξ = P (qk = 1),

3.2. Posterior distribution

We consider an i.i.d. noise vector ε ∼ N (0, σ2IN ). The poste-
rior distribution can be written as follows:

p(q,x,w|θ,y) ∝ exp

(
−
∥∥y −Hx

∥∥2
2σ2

)
p(x,w|q,θ)P (q|θ)

(3)
where x and H respectively gathers the entries xk and the
columns Hk for which qk = 1, and θ = [ξ, σ2, σ2

x]T are the
hyper-parameters.



3.3. Partially marginalized posterior distribution

From (3), one can deduce that x|q,w,y,θ ∼ N (η,Γ), with

η = σ−2ΓH
T
y + ΓW−1µx, Γ =

(
σ−2H

T
H + W−1)−1,

where µx = σµN1L + βN
σx
w, L =

∑
k qk and W = diag{w}.

As a consequence, one can easily calculate the marginalized
posterior distribution with respect to x

p(w|q,θ,y)P (q|θ,y) ∝ |B|−1/2 P (q|ξ)
∏
k

p(wk)

× exp
(
−1

2

(
yTB−1y + µTxC−1µx − 2yTDµx

))
with B−1 = σ−2I− σ−4HΓH

T
(N ×N )

C−1 = W−1 −W−1ΓW−1 (L× L)

D = σ−2HΓW−1 (N × L)

4. PARTIALLY COLLAPSED GIBBS SAMPLER

The sampling strategy adopted here is summarized in Algo-
rithm 1. At each iteration i, first sample q(i)k and w(i)

k for each
k, then sample x(i)|q(i),w(i), and finally sample the hyper-
parameters θ according to their posterior.

Algorithm 1: Partially collapsed Gibbs sampler
At each iteration i:
1. for all k in 1, . . . ,K:

(a) draw qk, wk|q−k,w−k,θ,y according to
Algorithm 2

2. draw x|q,w,θ,y (Gaussian distribution)
3. draw θ|q,w,x,y according to their conditional

posterior distributions

While sampling x|q,w is an easy task (x is Gaussian of
size L), sampling qk and wk need to be considered in a special
framework as the variable wk is defined only if qk = 1 which
implies that the posterior distribution is defined in a space with
a varying dimension. Reversible-Jump (RJ) MCMC methods,
introduced in [20], are able to manage jumps between subspaces
of different dimensions.

For the problem considered here, two states can be distin-
guished; whether qk = 1 and wk ∈ R+, or qk = 0 and wk is not
defined. The RJ-MCMC framework allows to jump between
these two states using the moves hereafter:

Birth: from qk = 0, propose (q′k = 1, w′k),
Death: from (qk = 1, wk), propose q′k = 0,
Update: from (qk = 1, wk), propose (q′k = 1, w′k).

Note that the move from qk = 0 to q′k = 0 is not of interest
as this proposal is always accepted, and introduces no change.
In the following, we denote by puu′ the probability of proposing
a move from the state u to u′. Since we have chosen to system-
atically propose a birth move when qk = 0 then p01 = 1. Other-
wise, when qk = 1, it is reasonable to randomly propose either a
death or an update move with equal probability p10 = p11 = 1

2 .

Algorithm 2: Sampling qk and wk using the RJ frame-
work

if qk = 0 then
– birth:

– propose q′k = 1 and w′k ∼ q01(w′k)
– accept with probability α01.

else
with probability p10
– death:

– propose q′k = 0 and w′k = Ø,
– accept with probability α10.

with probability p11 = 1− p10
– update:

– propose q′k = 1 and w′k ∼ q
(1)
11 (w′k) or

w′k ∼ q
(2)
11 (w′k) with probability 1

2 ,
– accept with probability α11.

end

The w′k candidates are proposed according to the follow-
ing proposal distributions. When a birth move is chosen, it
seems natural to propose w′k according to its prior distribution
q01(w′k) ∼ GIGN (σ2

x). Also, if a death is selected the pro-
posal is deterministic, hereafter for notational convenience we
will write q10(w′k) = δ∅(w′k) (for more details, one may re-
fer to [21, Remark 4.2]). Finally, for the update move, a mix
between two proposals is considered: the first one is the prior
distribution q

(1)
11 (w′k) ∼ GIGN (σ2

x) allowing a better explo-
ration of the feasible domain of wk, while the second is done
via a random-walk Metropolis Hastings where the proposal is
a truncated Gaussian q(2)11 (w′k) ∼ N+(wk, ρ

2) enabling a local
exploration of the posterior [22, 23]. Such a RJ-MCMC step is
summarized in Algorithm 2

To ensure the reversibility, and thus the invariance of
the Markov chain with respect to the posterior distribution
(see [20, 21]), the candidates are accepted according to αuu′ =
min{1, ruu′}, where

ruu′ =
p(w′|q′,θ,y)P (q′|θ,y) pu′u qu′u(w′k)

p(w|q,θ,y)P (q|θ,y) puu′ quu′(w′k)
(4)

Direct evaluation of (4) is inefficient from the computational
viewpoint. Therefore, we have adapted and extended the nu-
merical implementation technique introduced in [15] to reduce
the computation and memory load. A key point is to recursively
handle Cholesky factors instead of matrices B, C and D. Due
to lack of space, calculation details cannot be given here.

5. SIMULATION TESTS

In this section, our goal is to compare the BTG and BGH sam-
plers, both in terms of signal restoration and convergence rate.
We have designed a classical spike train deconvolution problem
similar to [13]. Figure 2 shows the data y and the impulse re-
sponse h, where the observed signal y (of length N = 300)
corresponds to the convolution of the spike train x with h (of
length P = 21) and corrupted by an additive Gaussian noise
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Fig. 2: Impulse response h and simulated data y for the test scenario.

(signal to noise ratio SNR = 12dB). The explicit expression of
impulse response h is:

hn = cos
(

(n− 10)
π

4

)
e−|0.225n−2|

1.5

, n = 0, . . . , 20.

In other words, the dictionary H corresponds to a convolution
matrix where the entries are shifted versions of h. Furthermore,
we consider a fully unsupervised situation where the hyper-
parameters θ = [ξ, σ2, σ2

x]T are also unknown and sampled. It
is worth mentioning the simulations were run using MATLAB
on a computer with Intel Xeon E5-2680 processors with a CPUs
clocked at 2.8 GHz.

To empirically compare the convergence speed of the dif-
ferent samplers, we have used Brooks and Gelman’s graphical
method to assess convergence [24]. This diagnostic method is
based upon the covariance estimation of J independent Markov
chains of equal length I by calculating the multivariate poten-
tial scale reduction factor (MPSRF). Convergence is diagnosed
when the MPSRF is close to one. As suggested in [24], we have
chosen MPSRF < 1.2. The signal restoration quality have been
assessed by the signal-to-noise ratio (SNR) 20 log(‖x‖2/‖x −
x̂‖2), where x̂ refers to the posterior mean estimate of x.

Figure 3 shows the Posterior Mean estimates of x produced
by both samplers, which are of similar quality (an SNR of 9.40
dB for the BGH and 9.39 dB for the BTG). This indicates that
the approximation method of the truncated Gaussian by the GH
distribution is effective. These results are also compared to the
Bernoulli-Gaussian (BG) model in order to emphasize the im-
portance of the non-negativity of the prior.

Figure 4 gives the MPSRF of the variables x in logarithmic
scale for both samplers, as a function of time. Whereas the BTG
sampler needs around 105 iterations to converge, the proposed
BGH converges in about 104 iterations, thanks to partially col-
lapsed sampling. In terms of computing time, the acceleration
factor is larger than five. Finally, let us stress that the considered
numerical test corresponds to a problem of moderate complex-
ity. For problems of increasing complexity, the relative effi-
ciency of the partially collapsed sampler is expected to increase
compared to the standard sampler, according to [15].

As mentioned above, the tuning of parameter βN is crucial
to ensure the good performance of the BGH. On the one hand,
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Fig. 3: Restored signal x̂ at convergence for the BGH, BTG and BG compared
to its true value (black circles).

βN has to be large enough to enforce the non-negativity, but
on the other hand, too large values of βN degrade the mixing
properties of the PCGS sampler. For this specific experiment,
the parameter βN was empirically set to 150 in order to achieve
the best trade-off between the quality of the restored signal and
convergence properties of the BGH sampler.

0 200 400 600 800 1000 1200 1400 1600 1800
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Fig. 4: Evolution of MPSRF (in log scale) of the BGH, BTG and BG samplers.
The horizontal dashed line corresponds to the 1.2 threshold.

6. CONCLUSION

We have introduced a partially collapsed Gibbs strategy to ac-
celerate nonnegative sparse signal restoration based on Bernoulli
Gaussian model. Our contribution is based on an approximation
of the truncated Gaussian using a Generalized Hyperbolic dis-
tribution, and on the Gaussian mixture decomposition property
of the latter. Nevertheless, this PCGS strategy remains valid for
any given distribution with Gaussian mixture decomposition
property.

An interesting perspective will be to automatically tune pa-
rameter β of the GH distribution, to adjust the trade-off between
the convergence rate of the proposed sampler, and its capability
to enforce the nonnegativity constraint.
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