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ABSTRACT

Unlike their biological counterparts, simple artificial neural
networks are unable to retain information from their past state
to influence their behavior. In this contribution, we propose
to consider new nonlinear activation functions, whose out-
puts depend both from the current and past inputs through
a hysteresis effect. This hysteresis model is developed in the
framework of convolutional neural networks. We then show
that, by choosing the nonlinearity in the vast class of rational
functions, the identification of the weights amounts to solving
a rational optimization problem. For the latter, recent meth-
ods are applicable that come with global optimality guaran-
tee, contrary to most optimization methods used in the neu-
ral network community. Finally, simulations show that such
hysteresis nonlinear activation functions cannot be approxi-
mated by traditional ones and illustrate the effectiveness of
our weight identification method.

Index Terms— Convolutional neural networks (CNN),
hysteresis, polynomial and global optimization

1. INTRODUCTION

Over the last decade, thanks to the increasing computational
power of GPUs, Artificial Neural Networks (ANN) have seen
their use thrive in handling big data and artificial intelligence
problems. Conceptually inspired by biological neural net-
works, ANN connect neurons, identified as a whole by a set
of input weights and nonlinear activation functions. A quite
successful neural network architecture in signal and image
learning tasks is the Convolutional Neural Network (CNN)
which can handle data processing objectives from image con-
tent classification [1] to natural language processing [2] by
using the same set of weights — called a convolutional filter
— for multiple neurons in the same layer.

However, unlike their biological inspiration, most current
ANN can be described as “memoryless”, disregarding the or-
der and temporal relations of the input data fed to them. This
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always leads to a loss of information which can be harmful to
the overall performance of the network when the output de-
pends on the temporal correlation of the input data. While
some models have taken a structural approach to the memory
problem in ANN such as Recurrent Neural Nets [3], we focus
on how to embed memory into the activation function.

Our approach consists in introducing a hysteresis (depen-
dence of the system’s state on its history) into the activation
function, to keep track of the input past states and to adapt
present and future behaviors accordingly [4, 5, 6]. These
models rely on a known activation function, to create their
own by introducing two hysteresis branches. The first branch
is activated when the input signal is decreasing and the second
when it is increasing. The model presented in [4] is a binary
hysteresis neural network, based on a binary step while the
hysteretic Hopfield neural network presented in [5] is con-
tinuous, relying on a hyperbolic tangent. Both use gradient-
based resolution methods during training, which comes with
some complications when handling the two distinct branches.
In the present work, we apply the same methodology to create
a new memoryful model called the Softsign Hysteresis Neu-
ral Network (SHNN), based on the Softsign activation func-
tion [7, 8].

Most ANN rely heavily on local algorithms during their
training, usually gradient-based, to find the optimal set of
weights for their neurons. If the underlying optimization
problem is nonconvex, which is common, those methods
always face the risk of getting trapped near a local mini-
mum and can be slow when used on activation functions
with vanishing gradient. Global optimization methods en-
sure convergence to the best feasible weights regardless of
existing local minimima and of gradient’s shape. One such
methods which is specifically designed for rational (or poly-
nomial) loss functions is the moment-SoS (Sum of Squares)
relaxation also known as the Lasserre relaxation [9]. It has
recently been considered in the signal processing commu-
nity, providing good results on sparse signal reconstruction
problems [10, 11].

The SHNN proposed in this article is rational and the as-
sociated optimization problem can therefore be solved glob-



ally using Lasserre relaxation. This genuine combination of
a polynomial model and rational nonlinearity allowed us to
successfully identify the filter coefficients. It can adapt easily
to any semi-algebraic function such as the Rectified Linear
Unit (ReLU) and is able to approximate with an arbitrary pre-
cision many other activation functions from the sigmoid to
the hyperbolic tangent (or S-curve). Finally, note that simi-
lar hysteresis models and identification problems may appear
in many applications of signal processing to physics, control,
electronics (see e.g. [12] and references therein).

Our paper is organized as follows: Section 2 presents our
model of hysteresis CNN. Section 3 sets the optimization
problem to identify the weights of the network. The Lasserre
relaxation is also briefly sketched. Simulations results are dis-
cussed in Section 4. Finally some concluding remarks are
drawn in Section 5.

2. PROPOSED HYSTERESIS MODEL

2.1. Observation model

Our work focuses on the identification of a single layer CNN.
If x € RT and y € R” denote respectively the input and
output of the network, we assume that the following relation
holds:

y=y+n=0(wxx)+n, (1)

where § = ®(W xx) is the noiseless network output, n € R”
is an additive Gaussian noise, and w € R"™ is the weight vec-
tor of the convolutional filter which is identical for all neu-
rons. The notation W * x stands for the usual convolution of
w and x. It is defined as the vector in R” whose elements are
(W*x), = >.i", W;Ts41—,, where the elements of x with
negative indices are zero by convention. Finally, the func-
tion ® : RT — RT represents the nonlinear activations of
the neurons of the layer. It is defined as the component-wise
function ® = ((I)(t))lgth’ with, for any ¢ in {1,...,T},

&) : R — R being the activation function of the ¢ neuron.

2.2. Hysteresis activation function

We extend here the nonlinearity model classically used for
the activation function to hysteretic ones by creating two
branches. In other words, writing ¢ for a nonlinear S-shape
activation function, we define our new model by introducing
a fixed delay parameter 6 > 0 to separate two branches:
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This hysteresis activation function for the #" neuron is illus-
trated in Figure 1 with the lower (respectively higher) branch
being activated when the argument is increasing (respectively
decreasing).
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Fig. 1. Hysteresis Softsign activation function. The param-
eters @ = 1, 6 = 1 are the ones used in the simulations of
Section 4.

2.3. Hysteresis Neural Network Training

Given the observation model of Section 2.1, and for a given
nonlinear function ¢, our goal and main contribution consist
in proposing a supervised learning method which is able to
estimate the weights w. For a given training input signal X,in
and its associated output y i, a classical approach consists
in minimizing an ¢, error term, which yields the problem of
finding

W = argmin ||y ain — (W * xmm)H; .

weR™
The reconstructed output y = P(W x x) gives an esti-
mation of the expected output y. Considering the hysteresis
model from (2), we obtain the optimization problem

T

Z (yt — <I>(t)((w * X),| (W * x)t71))2 3)

t=1

minimize
weR™
Problem (3) involves mixed discrete and continuous vari-
ables, to handle respectively the two branches and the contin-
uous nonlinearity. As such, it is nonconvex, which is a poten-
tially challenging task. We now illustrate specific choices for
the activation function ¢ that allows one to use an advanced
global optimization approach.

3. GLOBAL WEIGHT IDENTIFICATION

3.1. Softsign Hysteresis

Several common activation functions [13] can be parametrized
by rational or piecewise rational functions, i.e. a quotient of
polynomials. Among them, the ReLU (Rectified Linear Unit)
and the Square Nonlinearity (SQNL) [14] can be explicitly
modeled through polynomial functions and constraints. More
generally, any activation function, such as the sigmoid or the
arctangent, can be tightly approximated by a suitable rational
function [15].

Our work was performed on a Softsign hysteresis, based
on the Softsign defined as softs : u +— %\ul where 6 > 0
is a fixed parameter. Consequently, choosing softs for the
function ¢ in (2), our activation function is defined by:

é(t)(ut\ut,l) = softs(us — sign(uy — ue—1)0)  (4)



This activation function can be expressed by rational func-
tions and constraints. The absolute value can be expressed
using polynomial constraints as shown in [10], by noting that
|u| can be represented by the unique element in the set {a €
R |a >0, a®> = u?}. Similarly, sign(u; — u;_1) has a poly-
nomial formulation by introducing the extra real variables &,
such that €2 = 1 and (uy — us—1)& > 0.

This will be especially important during the training of
our network, since it will be possible to rely on global op-
timization methods suited for polynomial, rational and more
generally semi-algebraic functions.

3.2. Softsign Hysteresis Neural Network

Using the above activation function, we construct a single
layer CNN that we call the Softsign Hysteresis Neural Net-
work. Based on the rational/polynomial modeling of the acti-
vation function, we obtain the important feature that the train-
ing of our hysteresis model, similarly to the method in [16],
translates to the minimization of a rational function under
polynomial constraints. More precisely, training our network
boils down to solving the problem:

minimize
(w,a,£)eR™ XRT xRT
t=1
a 20 )
2 2
o S ot = (W), +60)
g =1

Problem (5) is rational and therefore is well adapted to the
Lasserre relaxation which is sketched out in the next section.

3.3. Lasserre relaxation for global optimization

In order to solve Problem (5), we use the framework of
Lasserre [9] which is suited for finding global optima of
polynomial optimization problems. It has been extended to
the minimization of a sum of rational fractions in [17], which
corresponds to our criterion.

Lasserre’s approach translates a polynomial or rational
problem on a compact set of RY into a moment problem.
Truncating the moment sequence at a given relaxation order
yields a hierarchy of convex semidefinite programming (SDP)
relaxations. Solving the latter results in a sequence of non-
decreasing lower bounds converging to the global optimum
of the initial problem. It is known that convergence occurs
generically at a finite order [18] and the minimizers can be
extracted [19]. Equality of the lower-bound and the criterion
value also ensures global optimality.

% — Il /][]
5.79%
79.69 %

”ylmin - ylrainHz /Tlrain Hyles( - ymle /ﬂesl
Hysteresis 0.018 0.012
Memoryless 0.268 0.261

Table 1. Comparison of the performance of hysteresis and
memoryless Softsign models on data reconstruction and filter
estimation for 7' = 250, m = 4.

4. NUMERICAL EXPERIMENTS

4.1. Implementation

Simulations were operated on MATLAB R2020a using pack-
ages GloptiPoly [20] to model the polynomial optimization
problem and extract the global optima from the SDP solu-
tion, YALMIP [21] to manage the SDP solver called for the
relaxation, and SDPT3 [22] as the actual SDP solver. These
simulations were run without parallelization on an Intel Xeon
W-2135 CPU at 3.70 GHz with 6 cores and 12 threads using
up to 64 GB of memory.

4.2. Experimental framework

The input x was sampled i.i.d. with standard normal distri-
butions, 20 % of these data were selected as the training set
Xirain and the remaining 80 % were used as the testing set Xie;.
The ground truth convolutional filter weights in W were sam-
pled i.i.d. with a uniform distribution over [0, 1]. The noise
n was sampled i.i.d. with a centered normal distribution of

l1®(

standard deviation o %)”2 where the noise level was set

to 09 = 30 %. The noisy output y was generated following
Equation (1), using the Softsign hysteresis activation function
in Equation (4) with parameters set to # = 1 and § = 1.
Small changes in these values did not modify our results. The
relaxation order in the Lasserre hierarchy was set to 3.

4.3. Results

We compared the two models SHNN and memoryless Soft-
sign based neural network. The filter weights were randomly
generated W = [0.5247,0.6412,0.0162, 0.8369] and data of
size T' = 250 was generated with a time dependency using the
same hysteresis technique given by Equations (1) and (4). The
estimation and prediction results are displayed in Table 1. As
one could expect, usual activation functions are not adapted
to reconstruct data with a strong dependency to the past.

To illustrate performance, we generated 20 Monte Carlo
samples of input data x of size T' = 250 and filters W of size
m = 3.

The training was performed on a subdataset Xy, and the
associated Yirin, Of size Ti,in = 50, solving problem (5). An
estimated filter w was reconstructed for each Monte Carlo
sample. Figure 2 represents the relative error of W compared
to w ordered increasingly, along with the associated training
loss and its lower bound returned by the Lasserre hierarchy.
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Fig. 2. Training phase : Relative error of the estimated fil-
ter (— solid green) ordered increasingly reported on the right
axis. Training loss (- - - dashed blue) and lower bound re-
turned in the Lasserre relaxation (- - - dotted red) reported on
the left axis.
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Fig. 3. Testing phase: noiseless testing error distributions
over the 20 Monte Carlo samplings.

When the loss and lower bound are equal, up to numerical
precision, the Lasserre hierarchy has converged and global
optimality is certified. This may not be always the case, as
illustrated by the 12" and 15" Monte Carlo samplings, when
an “hysteresis leap” occurs during training: when two consec-
utive values (W * x), and (W * x),_, are too close, a small
error in W may cause a change in monotony and a switch
of value for the associated &, (this can be seen on Figure 4
at the vertical dotted lines). This results in a leap from one
hysteresis branch to another, which greatly increases the loss.
However, in all cases and even when global optimality cannot
be certified, the relative error of the estimated filter remains
low, which illustrates that our method is successful and robust
for estimation of w.

The learnt filters were tested on the remaining data of
size Tiess = 200, comparing the noiseless model target y =
O (W * Xeq) and the reconstructed § = (W * Xy ). In Fig-
ure 3, the box plots give an overview of the distribution of the
logarithmic error along the same 20 Monte Carlo samplings
ordered similarly to Figure 3. The central red bar indicates the
median, the blue box delimits the span between the 25" and
75" percentiles and the whiskers extend to the most extreme
data points not considered outliers, which fall out of the in-
terquartile range by a deviation of more than 1.5 its span, and
are identified by red marks.

These distributions show that the error remains consis-
tent across all Monte Carlo realization. The upper outliers
on the error with values close to 1 are caused by the same

Wk Xiest
[anll V)
g
|

2L N
100 110 120 130 140 150
- 1F T T T T =
I W
100 110 120 130 140 150

t

Fig. 4. Zoom on the ground truth (blue) and reconstructed
(red) convolution vectors (top) and on the noiseless (blue) and
reconstructed (red) output (bottom) for the 10" Monte Carlo
realization.

”ytest_ylest‘lz/ﬂest ”ytesl_yles&‘lz/j‘lest wa“"/‘l/HWH
T=100 3.2 x 1073 33.0 x 1073 11.67%
T=250 0.8x 1073 12.6 x 103 7.21%
T=500 0.3x 1073 7.3 x 1073 4.32%

Table 2. Comparison of the performance on data reconstruc-
tion and filter estimation for m = 3, T = 100/250/500.

phenomenon of hysteresis leaps observed during the training
phase. As shown in the temporal reconstructions from Fig-
ure 4, the reconstructed convolutions are virtually identical.
Yet when two consecutive convolution values are too close
(highlighted by vertical dotted lines), a small error in W re-
sults in a big error in § due to the discrete nature of the hys-
teresis parameter &;. This hurts common quantitative metrics
such as the signal-to-noise ratio or mean relative error, while
not impacting much the overall quality of most of the recon-
structed points in the signal.

We also compared the performance for m = 3 and differ-
ent sizes of data T' = 100, 250, 500 still using 20 % of data as
training set to compare reconstruction quality and filter preci-
sion. The results of these simulations are presented in Table 2.
As expected, the bigger the data set, the more precise the filter
reconstructed.

5. CONCLUSION

We proposed an extension of usual ANN models to include
memory in their handling of data. It is based on hystere-
sis activation functions, which makes the history of the data
become an important feature in the training of the network.
This approach is different and complementary to architecture
based methods such as RNN and LSTM. By translating our
model to polynomial and rational equations, we were able to
perform a global optimization of the problem associated to
the filter weights identification, thus avoiding the drawback
of possible local minima in traditional gradient-based train-
ing. Our tests on simulated data illustrate the pertinence of
our hysteresis model and its good overall performance to re-
construct various filters.
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