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This is a series of lectures on Bishop–Gromov’s type inequalities adapted to metric
spaces. We consider the case of Gromov-hyperbolic spaces and draw consequences of
these inequalities such as compactness and finiteness Theorems. This course is intended
to be elementary in the sense that the necessary background is described in detail.
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0 Introduction

This text is the transcript of a series of lectures given by the authors during a CIMPA
school (see here). It was held in Varanasi, India from December 5 till December 15,
2019; it was organised by Bankteshwar Tiwari and Athanase Papadopoulos.
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The theme is the Geometry of (some) compact Metric Spaces. Why should we care
about metric spaces ? In dimension n > 24, the only known examples of manifolds with
a Riemannian metric of positive sectional curvature also do carry a symmetric metric.
Grosso modo these closed positively curved symmetric Riemannian manifolds are con-
structed using Lie groups and somehow, in large dimensions, they are the only examples
we know. Concerning negative sectional curvature on closed manifolds of dimension
greater than 2 the situation is a bit better since there are several series of examples, and
some sporadic ones, of such manifolds not carrying symmetric metrics. Altogether, they
constitute a sparse and statistically not significant sample.

On the other hand if one considers metric spaces, we get an incredible flexibility for con-
structing examples and we are left with an impressive zoology. Following Felix Klein’s
program we get fascinating properties of the groups acting on these spaces. However,
the difficulty is now to give a meaning to positive or negative curvature. Great advances
have recently been made in this direction. Several good notions of synthetic curva-
ture have been introduced. Among them A. D. Aleksandrov’s approach for a synthetic
version of upper or lower bounds on sectional curvature for metric spaces has been fun-
damental; for details and references the reader is referred to the survey [ABN86] and the
book [BBI01]. Recently synthetic versions of the Ricci curvature has been introduced
by various authors and the reader could check the seminal article [BE85] and the book
[Vil09] for a detailed introduction and lots of references. In these lectures we explore the
negative curvature side and the key notion, which was introduced by M. Gromov, and
which is now called Gromov-hyperbolicity (see [Gro87, GdlH90]).

These lectures intend to be a guide for reading the articles [BCGS20b, BCGS20a], the
joint works mentioned in the subtitle. In the two first lectures we give the basic defini-
tions and we progress towards compactness and finiteness results (see Theorems 3.6, 6.4,
7.18, 9.3, 10.8). One key step is the proof of a version of the celebrated Bishop–Gromov
inequality (see Theorems 1.8, 2.2, 4.3, 4.10). The original Bishop–Gromov inequality
has had a tremendous influence on the Riemannian Geometry of manifolds and we do
hope that our version will have some impact.

We are happy to thank the organisers of this school: Athanase Papadopoulos and par-
ticularly Bankteshwar Tiwari and all the local organisers who made our stay a really
exceptional experience.

1 Lecture 1

This series of lectures is based on the preprints [BCGS20b, BCGS20a] which contain all
the details of the statements that follow. The main character is a metric space that we
will usually denote by (X, d). For the sake of simplicity we will always assume that the
distance is symmetric that is,

∀x, y ∈ X, d(x, y) = d(y, x) .
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This includes Riemannian and Finsler manifolds endowed with the distance coming from
the Riemannian or symmetric Finsler metric.
Eventually we wish to study various families, denoted byM, of metric spaces satisfying
extra assumptions, endowed with the (pointed) Gromov-Hausdorff distance between
metric spaces, denoted by dGH . We then aim at proving that the metric space

(M, dGH)

is compact, whereM = {(X, d); metric space with extra assumptions}. It is the core of
this course to make precise and minimal these assumptions. The reader is supposed to
be familiar with the Gromov-Hausdorff distance between metric spaces and, if necessary,
is referred to [Gro07] Definition 3.4 page 72 or [BH99] page 70.

1.1 Some assumptions

A metric space (X, d) is endowed with the topology induced by the distance function
d. We always assume that (X, d) is proper, i.e. that closed metric balls are compact.
Notice that this excludes infinite dimensional Banach spaces.

1.2 Geodesics

A continuous curve,

c : [0, 1] −→ X , c(0) = x and c(1) = y ,

is said to be rectifiable if

sup
{ k−1∑
i=0

d(xi, xi+1); 0 = x0 ≤ x1 ≤ · · · ≤ xk = 1 , subdivision of [0, 1]
}
< +∞ .

Figure 1.1: A curve

This number is then called the length of the curve c, denoted by length(c) (see [BH99],
Definition 1.18, page 12). A metric space (X, d) is called a length space if ∀x, y ∈ X
there is a rectifiable curve between x and y, and:

d(x, y) = inf
{

length(c); c(0) = x, c(1) = y
}
.
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A geodesic segment is a map
c : I −→ X ,

for I ⊂ R an interval, which is an isometric embedding, i.e.

∀s, t ∈ I, d(c(s), c(t)) = |t− s| .

A length space (X, d) is said to be a geodesic space if any two points in X can be joined
by at least one geodesic segment.

Remarks 1.1. i) Spaces with few or no rectifiable curves are of some interest. They,
for example, appear as boundary at infinity of negatively curved manifolds when the
curvature is not constant.
ii) An easy but important example is a metric graph. We could, for example, decide that
the edges are isometric to [0, 1].

Figure 1.2: metric graph

On figure 1.2 there are two geodesics between v0 and v6.

1.3 Gromov-hyperbolic spaces

The main references that we use and suggest are [CDP90] and [BH99]. The main idea in
this subsection is not to use curvature to prove comparison theorems on triangles, à la
Toponogov, but to use triangle comparison to define a weak notion of sectional curvature
bounded above.
We consider a proper geodesic space X and a triangle ∆ ⊂ X. A triangle is the union
of three points, a, b and c, and a choice of a (minimising) geodesic between each couple
of them. We call α (resp. β, γ) the length of the side opposite to a (resp. b, c).
Because α, β and γ satisfy the triangle inequalities there exists a Euclidean triangle
∆̄ ⊂ R2 with the same side lengths. We call it the comparison triangle of ∆.

Exercise 1.2. Prove the existence of ∆̄.

Now ∆̄ ⊂ R2 has an inscribed circle and we get a map f̄ : ∆̄ −→ T ∗, onto a tripod
which is an isometry when restricted to each side of ∆̄, see Figure 1.4 below.
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Figure 1.3: ∆ ⊂ X and ∆̄ ⊂ R2

Figure 1.4: ∆̄ ⊂ R2 and tripod T ∗

Exercises 1.3. 1. Prove the equalities on the segments of ∆̄ shown in the figure 1.4.

2. Prove that, for any triangle, the associated tripod is unique.

There is also an obvious isometry between the sides of ∆ and ∆̄ of same length. Together
with f̄ this combines into a map

f∆ : ∆ −→ T ∗ ,

which is an isometry between the segment [a, b] ⊂ ∆ (resp. [b, c], [c, a]) and the segment
[a∗, b∗] ⊂ T ∗ (resp. [b∗, c∗], [c∗, a∗]). Now let δ ≥ 0 be a real number, we get the

Definition 1.4. The space (X, d) is said to be δ-hyperbolic (in the sense of Gromov)
if for all triangles ∆ the following property holds. For all x, y ∈ ∆, with f∆(x) = f∆(y)
we have,

d(x, y) ≤ δ .

Such triangles are said to be δ-thin.

Notice that there could exist several triangles based on three points a, b and c, and the
above definition requires that all of them are δ-thin.
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Examples 1.5. 1. Obviously, R2 endowed with the Euclidean distance is never δ-
hyperbolic.

2. On the other hand a tree is 0-hyperbolic; indeed, all triangles are tripods.

Figure 1.5: Tree, δ = 0.

Exercise 1.6. Prove that the hyperbolic plane is hyperbolic in the sense of Gromov and
compute δ.

Note that δ-hyperbolicity characterizes large triangles since, by compactness, for small
ones there always exist a δ satisfying the definition (we recall that the space X is proper).
The interpretation of Definition 1.4 is that large triangles look like δ-thickened tripods.
Looking at the hyperbolic plane with a metric of constant curvature equal to κ < 0
we can check that, somehow, δ−2 behaves like |κ|. In particular an upper bound on
δ can be viewed as a weak and synthetic version of an upper bound on κ; indeed,
δ ≤ C ' κ ≤ −C−2.

1.4 Measures

We endow the metric space (X, d) with a Borel measure that we assume to be non-
negative and non-trivial (i.e not identically zero). At this stage let us give the three
main examples.

a) For a discrete set, possibly infinite, say {p1, p2, · · · } we shall consider the counting
measure that is,

µ =

+∞∑
1

δpk ,

where δp is the Dirac mass at the point p. In the sequel the discrete set will always
be the discrete orbit of a group action.

b) For a graph we shall consider the 1-dimensional Lebesgue measure supported on
the edges which make them of length 1.

c) Finally, if (X, d) is a Riemannian manifold (M,dg) (where dg is the distance induced
by the Riemannian metric) the Riemannian measure, noted dvg, is the most natural
one.
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1.5 Groups acting by isometries

Let Γ ⊂ Isom(X, d) be a subgroup of the isometry group of the metric space (X, d). We
say that the action is proper if for some (hence for all) x ∈ X we have,

∀R > 0 #{γ; d(x, γx) ≤ R} < +∞ .

This is equivalent to Γ being discrete in Isom(X, d) for the compact-open topology. We
shall also consider groups Γ which are finitely generated. We pick a finite symmetric
generating set,

Σ = {γ1, · · · , γn, γ−1
1 , · · · , γ−1

n } .

To this data we associate a graph, the Cayley graph of the group, denoted by G(Γ,Σ). We
turn this graph into a metric space, as before, by deciding that the edges are isometric to
[0, 1]. The distance then defined on G is noted dG . Now, if the metric space

(
G(Γ,Σ), dG

)
is δ-hyperbolic for some δ we say that the group is hyperbolic in the sense of Gromov.
Notice that δ then depends on Σ.
We consider the counting measure on the orbits of the action of Γ on the space X,
namely

µΓ
x =

∑
γ∈Γ

δγx that is , µΓ
x(BX(x,R)) = #{γ; d(x, γx) < R} .

Here BX(x,R) ⊂ X is a ball of radius R around the point x ∈ X. Finally we shall
consider co-compact actions, that is, actions for which the topological space X/Γ is
compact. When (X, d) is a metric space on which a discrete group Γ acts by isometries
we shall call d̄ the distance on X/Γ.

1.6 Entropy of (X, d, µ)

For a metric space with a measure as described in Subsection 1.4 we define the following
well-known quantity,

Ent(X, d, µ) = lim
R→+∞

1

R
log(µ(B(x,R))) .

The name ”Entropy” comes from the dynamical nature of this invariant in the case of
Riemannian manifolds.

Exercise 1.7. 1. Prove that it does not depend on x,

2. and that the lim is indeed a limit when the action is co-compact.

If µ = µΓ
y for some y ∈ X, by abuse of language, we shall denote its entropy by Ent(X, d).
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1.7 Bishop–Gromov’s Inequality

This is a major comparison theorem that has been our guideline in [BCGS20b, BCGS20a].
Let us recall the Riemannian case. We consider a complete Riemannian manifold (M, g)
whose Ricci curvature satisfies,

Ric ≥ (n− 1)κg , for κ ∈ R .

We can now compare the volumes of the balls around a point m ∈M with the volumes of
balls of the same radius in a simply-connected Riemannian manifold of constant sectional
curvature equal to κ denoted by Mκ. More precisely, let R > 0 be a real number, the
classical Bishop’s inequality is:

Vol(BM (m,R)) ≤ Vol(BMκ(R)).

Let us define the function

ϕ(R) =
Vol(BM (m,R))

Vol(BMκ(R))
,

Bishop’s Inequality can then be rewritten: for any R > 0, ϕ(R) ≤ 1. The improvement
by Gromov is then that the function ϕ is non increasing, that is, if 0 < r ≤ R,

ϕ(R) =
Vol(BM (m,R))

Vol(BMκ(R))
≤ Vol(BM (m, r))

Vol(BMκ(r))
= ϕ(r) .

Notice that volumes of balls in Mκ are explicitly computable.
An interesting and obvious consequence is the following. If (M, g) is a Riemannian
manifold as above, say with κ ≤ 0, Bishop’s Inequality yields,

Ent(M,dg, dvg) ≤ (n− 1)|κ| = Ent(Mκ) .

Here, by abuse of language, Ent(Mκ) is computed with the distance and the volume
element coming from the constant curvature metric. When κ > 0 both M and Mκ are
closed manifolds, their entropies are equal to zero and the above inequality is trivial. On
the contrary it is particularly interesting when (M, g) is the universal cover of a closed
Riemannian manifold and g is the pulled-back metric on M and κ ≤ 0.
The conclusion that is our guideline is that any upper bound on the entropy could play
the role of a (very) weak and asymptotic version of a lower bound on the Ricci curvature.
Although the Ricci curvature may not be defined on a metric space, the entropy exists
for a metric space with mild assumptions (the one we described). We then wish to study
the consequences of this weak and synthetic “Ricci curvature bounded below” condition.

1.8 Main Theorem

We now state the main theorem of the first part of this course.
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Theorem 1.8. Let (X, d) be a δ-hyperbolic metric space, Γ ⊂ Isom(X, d) a discrete
group (acting properly) such that

diam(X/Γ, d̄) ≤ D and Ent(X, d) ≤ H.

Then, for every x ∈ X and 10(D + 2δ) ≤ r ≤ R < +∞,

#{γ; d(x, γx) < R}
#{γ; d(x, γx) < r}

=
µΓ
x(BX(x,R))

µΓ
x(BX(x, r))

≤ 3
(R
r

)25/4
e6HR .

Remarks 1.9. i) This inequality does note give any information about small balls,
which is natural since neither the δ-hyperbolicity nor the assumption on the entropy
“see” the geometry at small scale.

ii) Furthermore it is by no means optimal.

iii) However it is a strong Bishop–Gromov inequality obtained without any pointwise
assumption on the curvature, which may not exist in this context. Only large scale
assumptions are required.

2 Lecture 2

In this lecture we intend to sketch the proof of Theorem 1.8 which will be restated below.

2.1 Quadrangle inequality for δ-hyperbolic metric spaces

We need another characterisation of δ-hyperbolicity. Let us consider a proper geodesic
metric space (X, d) which is furthermore δ-hyperbolic and let x, y, z and w be four
points in X. If we choose a geodesic between any two of them we get a quadrangle with
its diagonals as shown on figure 2.1 below.

Figure 2.1: Quadrangle

The quadrangle inequality is the following,

d(x, z) + d(y, w) ≤ Max
{
d(x, y) + d(z, w), d(x,w) + d(y, z)

}
+ 2δ .

Exercise 2.1. Prove that this inequality is equivalent to hyperbolicity in the sense of
Gromov (see [BH99] p. 410).
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2.2 A simple version of Theorem 1.8

Let us now state a weaker but simpler version of Theorem 1.8 which we prove below.
The Main theorem follows from it by iteration, see the details in [BCGS20b].

Theorem 2.2. Let (X, d) be a δ-hyperbolic metric space and Γ ⊂ Isom(X, d) a discrete
group acting properly such that

diam(X/Γ, d̄) ≤ D and Ent(X, d) ≤ H.

Then, for every x ∈ X and R ≥ 12(D + 2δ),

µΓ
x(B(x,R))

µΓ
x(B(x, 5

6R))
≤ 1 + 2eHR .

We start with several (not too) technical lemmas.

2.2.1 Easy lemma

Let µ be a Borel measure on X, finite on compact sets, and Ω ⊂ X a measurable set.
We then have, ∫

Ω
µ
(
B(y, r)

)
dµ(y) =

∫
X
µ
(
B(z, r) ∩ Ω

)
dµ(z) .

Exercise 2.3. Prove this inequality. Hint: this is an easy consequence of Fubini’s
Theorem and of the symmetry of the distance d.

2.2.2 More technical lemmas

The main lemma of this proof, which translates the δ-hyperbolicity, is the following.

Lemma 2.4. Let (X, d) be a δ-hyperbolic metric space. ∀R,R′ ∈ (0,+∞), ∀x, x′ ∈ X
such that d(x, x′) < R+R′, ∃y ∈ X such that,

B(x,R) ∩B(x′, R′) ⊂ B(y, r) ,

with r = Min
{
R,R′, 1

2

(
R+R′ − d(x, x′)

)
+ 2δ

}
.

Figure 2.2: Intersection of balls
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On the figure 2.2, we have R = R′ and d(x, y) = d(y, x′) = 1
2d(x, x′). Hence d(x, x′) < 2R

and d(y, ∂B(x,R)) = R − d(x,x′)
2 = 1

2

(
2R − d(x, x′)

)
. The proof of Lemma 2.4 relies on

the quadrangle inequality (see [BCGS20b], Lemma 8.4).

Exercises 2.5. 1. Show that this is not true in R2 (δ = +∞).

2. Show that this is trivially true on a tree (δ = 0).

We now assume that (X, d) satisfies the hypotheses of 2.2. We also assume that µ is
Γ-invariant. We then have,

Lemma 2.6. For every R and R′ such that 8δ ≤ R′ ≤ R,∫
B(x,R)\B(x,R− 1

2
R′)

µ
(
B(x′, R′)

)
dµ(x′) ≤ µ

(
B(x,R+R′)\B(x,R−1

2
R′)
)
µ
(
B(x,

3

4
R′+2δ+D)

)
.

Proof of Lemma 2.6. We shall only need, for the main theorem, to consider the measure
µ = µΓ

x ; however the proof of this lemma is valid when µ satisfies the above hypotheses.

Figure 2.3:

We have,

I :=

∫
B(x,R)\B(x,R− 1

2
R′)

µ
(
B(x′, R′)

)
dµ(x′)

=

∫(
B(x,R+R′)\B(x,R− 1

2
R′)
)
∩B(x,R)

µ
(
B(x′, R′)

)
dµ(x′) .
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By lemma 2.2.1 we get,

I =

∫
B(x,R+R′)\B(x,R− 1

2
R′)

µ
(
B(x′, R′) ∩B(x,R)

)
dµ(x′) .

Let x′ ∈ B(x,R+R′) \B(x,R− 1
2R
′) (as in Figure 2.3), we have

R−R′ + 4δ ≤ R−R′ + 1

2
R′ = R− 1

2
R′ ≤ d(x, x′) < R+R′ .

We can then apply Lemma 2.4 to get that there exists y such that,

B(x′, R′) ∩B(x,R) ⊂ B(y, r) ,

with

r = Min
{
R,R′,

1

2

(
R+R′ − d(x, x′)

)
+ 2δ

}
=

1

2

(
R+R′ − d(x, x′)

)
+ 2δ ≤ 3

4
R′ + 2δ .

It only remains to include the ball B(y, r) into a ball centred at x. Since the group acts
co-compactly with a quotient whose diameter is bounded above by D, by assumption,
there exists γ ∈ Γ such that d(y, γx) ≤ D. Hence,

µ
(
B(x′, R′)∩B(x,R)

)
≤ µ

(
B(y,

3

4
R′+2δ)

)
≤ µ

(
B(γx,

3

4
R′+D+2δ)

)
= µ

(
B(x,

3

4
R′+D+2δ)

)
,

the last equality coming from the invariance of the measure. We finally get the desired
result,

I ≤ µ
(
B(x,

3

4
R′ +D + 2δ)

) ∫(
B(x,R+R′)\B(x,R− 1

2
R′)
) dµ(x′) .

Starting now we specify the measure µ to be µΓ
x . We however keep the notation µ for

the sake of simplicity.

Lemma 2.7. Under the same hypotheses, ∀x ∈ X, ∀R,R′ such that 12(D+ 2δ) ≤ R′ ≤
R, we have

µ
(
B(x,R′)

)
µ
(
B(x, 5R′/6)

) ≤ µ
(
B(x,R+R′)

)
− µ

(
B(x,R−R′/2)

)
µ
(
B(x,R)

)
− µ

(
B(x,R−R′/2)

) .

Exercise 2.8. Show that these ratios are well-defined, i.e. that the denominators are
not zero. Hint: the measure is µΓ

x hence it counts the number of points of the orbit Γx
in the balls, in particular it takes integer values. Now the fact that the denominator on
the left hand side is positive is obvious (explain why); for the right hand side it requires
a short proof.
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Proof of Lemma 2.7. We recall that µ = µΓ
x , hence, if y ∈ Γx,

µ
(
B(y,R′)

)
= µ

(
B(x,R′)

)
,

by invariance of µ under the action of Γ. We then get

µ
(
B(x,R′)

)(
µ
(
B(x,R)

)
− µ

(
B(x,R−R′/2)

))
= µ

(
B(x,R′)

)
µ
(
B(x,R) \B(x,R−R′/2)

)
=

∫
B(x,R)\B(x,R−R′/2)

µ
(
(B(x,R′)

)
dµ(y)

=

∫
B(x,R)\B(x,R−R′/2)

µ
(
(B(y,R′)

)
dµ(y) .

The last equality comes from the fact that the only y’s weighted by the measure are the
points in Γx. For simplicity we shall denote by N the quantity

N = µ
(
B(x,R′)

)(
µ
(
B(x,R)

)
− µ

(
B(x,R−R′/2)

))
.

Thanks to Lemma 2.6 we then obtain,

N ≤ µ
(
B(x,R+R′) \B(x,R−R′/2)

)
µ
(
B(x, 3R′/4 + 2δ +D)

)
≤ µ

(
B(x,R+R′) \B(x,R−R′/2)

)
µ
(
B(x, 3R′/4 +R′/12)

)
= µ

(
B(x,R+R′) \B(x,R−R′/2)

)
µ
(
B(x, 5R′/6)

)
.

Which proves Lemma 2.7.

2.2.3 Proof of Theorem 2.2

We now proceed to the proof of Theorem 2.2.

Proof of Theorem 2.2. Once more we recall that µ = µΓ
x for some x ∈ X. We choose

R′ ≥ 12(D + 2δ) and define R = kR′/2 for k a positive integer. From Lemma 2.7 we
obtain

µ
(
B(x,R′)

)
µ
(
B(x, 5R′/6)

) ≤ µ
(
B(x, k+2

2 R′)
)
− µ

(
B(x, k−1

2 R′)
)

µ
(
B(x, k2R

′)
)
− µ

(
B(x, k−1

2 R′)
) . (1)

We now set

C =
µ
(
B(x,R′)

)
µ
(
B(x, 5R′/6)

) − 1 and ak = µ
(
B(x,

k

2
R′)
)
,

Equation (1) then yields,

ak+2 − ak−1 ≥ (C + 1)(ak − ak−1) =⇒ ak+2 − ak ≥ C(ak − ak−1) .

We add these inequalities for all integers k between 2 and n to obtain,

an+2 + an+1 − a3 − a2 ≥ C(an − a1) ,
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and because the sequence ak is non decreasing in k

2(an+2 − a1) ≥ C(an − a1) =⇒ an+2 ≥
C

2
(an − a1) + a1 .

Iterating this inequality leads to

a2n ≥
(C

2

)n−1
(a2 − a1) + a1 .

Exercise 2.9. Show that C and a2 − a1 are positive (see Exercise 2.8).

Finally, we can now use the second assumption on the metric space (X, d), that is,
Ent(X, d) ≤ H. More precisely,

H ≥ Ent(X, d) = lim
n→+∞

( 1

nR′
logµ

(
B(x, nR′)

))
= lim

n→+∞

1

nR′
log(a2n) ≥ 1

R′
log
(C

2

)
,

that is,

C ≤ 2eHR
′

and 1 + C =
µ
(
B(x,R′)

)
µ
(
B(x, 5R′/6)

) ≤ 1 + 2eHR
′
.

This ends the proof of Theorem 2.2.

3 Lecture 3

The theme of this lecture is to illustrate the relations between the geometry and the
topology of a space. The idea is that given a topological space Y , the possible metrics on
Y which are compatible with the topology of Y have to satisfy constraints and conversely,
given a metric on Y , the geometrical properties of this metric provides restrictions on the
topology. These questions have been extensively studied in the setting of Riemannian
manifolds. Our purpose in this lecture is to consider one example where the metrics
under consideration are not necessary Riemannian metrics. One important topological
invariant is the fundamental group of Y , which is finitely generated when Y is compact.
The abelianisation of the fundamental group of Y is an abelian group called the first
homology group with integer coefficients. It is also a topological invariant of Y , simpler
than the fundamental group.

3.1 Fundamental group

For “many reasonable” spaces Y , there exist a connected and simply-connected space Ỹ
and a group Γ acting on Ỹ freely and properly by homeomorphisms such that Y = Ỹ /Γ.
The group Γ is called the fundamental group of Y and is denoted by Γ = π1Y .

• The circle Y = R/Z = S1 has fundamental group π1Y = Z.
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unfold

fold

Figure 3.1: S1 = R/Z

• The bouquet of two circles Y = S1 ∨ S1 = T/F2, where T is the regular tree with
valency 4, has the non abelian free group on 2 generators as fundamental group.

unfold

fold

Figure 3.2: S1 ∨ S1 = T/F2

3.2 First homology group

The fundamental group of a space Y may not be abelian. For example, when Y is a
bouquet of two circles, π1Y is the non abelian free group on 2 generators.

Definition 3.1. Let Y be a space with fundamental group Γ = π1Y . The first homology
group of Y with integral coefficients is defined as the abelianised group Γ/[Γ,Γ]. It is
denoted by H1(Y,Z).

Recall that the commutator subgroup [Γ,Γ] of Γ is the subgroup of Γ generated by the
set of “commutators” {aba−1b−1 | a, b ∈ Γ}. The homology group H1(Y,Z) = Γ/[Γ,Γ]
is by definition abelian. When the space Y is compact, Γ = π1Y is finitely generated
and so is H1(Y,Z), therefore by the fundamental Theorem for finitely generated abelian
groups,

H1(Y,Z) ∼= Zr × Z/n1Z× · · · × Z/nkZ,
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where r and the ni’s are integers, r ≥ 0 and ni ≥ 2. In this decomposition, the factor
Z/n1Z× · · · × Z/nkZ [resp. Zr] is the torsion [resp. torsion free] part of the homology
group H1(Y,Z). Notice that when k = 0, there is no torsion part of H1(Y,Z) and
similarly, there is no torsion free part when r = 0.

Definition 3.2. Let Y be a compact space and H1(Y,Z) ∼= Zr × Z/n1Z× · · · × Z/nkZ
the first homology group of Y . The first Betti number of Y is defined as b1(Y ) := r.

Examples 3.3. 1) H1(S1,Z) ∼= Z and H1(S1 × S1,Z) ∼= Z2

2) H1(S1 ∨ S1,Z) ∼= Z2

3) H1(Nil,Z) ∼= Z2, where Nil := Heis(R)/Heis(Z) with

Heis(A) =


1 x z

0 1 y
0 0 1

 / x, y, z ∈ A

 .

3.3 Bounding the first Betti number

The following result is emblematic of the constraints imposed by geometry to topology.

Theorem 3.4 ([Gro07],[Gal83b],[Gal83a]). There exists a constant C(Λ, n,D) > 0 such
that for every closed n-dimensional Riemannian manifold (Mn, g) with Ricci curvature
satisfying Ricg ≥ −Λg and diam(M, g) ≤ D, then b1(M) ≤ C(Λ, n,D).

The following examples show that the assumptions on the curvature and the diameter
are necessary assumptions in Theorem 3.4.

Examples 3.5. 1) Let Σg be a hyperbolic surface of genus g. The fundamental group
Γ of Σg has the following presentation, Γ =< a1, b1, · · · , ag, bg |Πg

i=1[ai, bi] = 1 >, hence
H1(Σg,Z) = Z2g and the first Betti number of Σg is b1(Σg) = 2g. Notice that the
diameter of Σg satisfies D := diam Σg ≥ log(2g − 1). This follows from the fact that
the area of a genus g hyperbolic surface satisfies Vol Σg = 4π(g − 1) ≤ VolB(D) =
2π(coshD−1), where B(D) is the hyperbolic ball of radius D. In particular, the surfaces
Σg have constant curvature κ ≡ −1, diameter and first Betti number tending to infinity
with g.
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Σg , κ ≡ 1

diam Σg ≥ log(2g − 1)

Σg , κ ≡ 1

Figure 3.3: Large diameter and Betti number

2) In the preceeding example, the curvature of Σg is bounded and the diameter and the
Betti number tend to infinity with g. Contracting the hyperbolic metric on Σg so that
the diameter is equal to 1, the Betti number does not change while the curvature tends
to −∞. This second example shows that a lower bound on the curvature is necessary in
order to get a bound on the first Betti number.

diam Σg = 1

Σg, κ→ −∞

Figure 3.4: Unbounded curvature and large Betti number

The next Theorem deals with Gromov hyperbolic metric spaces. We obtain a bound on
the first Betti number with an upper bound on the entropy instead of a lower bound on
the curvature, The entropy assumption is much weaker than the curvature one.

Theorem 3.6. Let (Y, d) be a compact, arcwise connected metric space. We suppose
that the universal cover (Ỹ , d̃) is δ-hyperbolic and that

Ent(Ỹ , d̃) ≤ H and diam(Y, d) ≤ D.
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Then
b1(Y ) ≤ 48 · e24H(8D+15δ).

Proof. The proof follows an argument of M. Gromov and relies on a packing argument.
Let us denote by Γ the fundamental group of (Y, d). Let us recall that H1(Y,Z) = Γ/
[Γ,Γ]. We first notice that the torsion free part Zr ofH1(Y,Z) ∼= Zr×Z/n1Z×· · ·×Z/nkZ
can be seen as a lattice in Rr. From now on we will assume r ≥ 1 since Theorem 3.6 is
trivially true if r = 0. We define the two following projection maps, p1 : Γ→ Γ/[Γ,Γ] and
p2 : Γ/[Γ,Γ] ∼= Zr ×Z/n1Z× · · · ×Z/nkZ→ Zr. We now consider p := p2 ◦ p1 : Γ→ Zr

and φ := ι ◦ p : Γ→ Rr, where ι : Zr ↪→ Rr is the natural inclusion.
We now observe that the set p(S) is a generating set of the group Zr since p is a surjective
morphism. This implies that φ(S) generates Rr as a vector space, therefore r ≤ #S.
Hence, we see that the first Betti number b1(Y ) = r of Y can be estimated by the
cardinality of any generating set of the fundamental group Γ of Y . Unfortunately, there
are no upper bounds of the cardinality of generating sets of Γ; however the following
lemma will allow us to replace Γ by a finite index subgroup Γ′ with a generating set of
bounded cardinality.

Lemma 3.7. Let S′ be a finite subset of Γ generating a finite index subgroup Γ′ ≤ Γ.
Then, the set φ(S′) generates Rr as a vector space. In particular, r ≤ #S′.

Proof. Let V ⊂ Rr be the vector space generated by φ(S′). We want to show that
V = Rr. Since the index of Γ′ in Γ is finite, the subset {γkΓ′}k∈Z ⊂ Γ/Γ′ is finite for
every γ ∈ Γ. Notice that the quotient Γ/Γ′ may not be a group and that it is identified
with the set of right equivalence classes {γΓ′}γ∈Γ. Therefore, there exist k 6= l ∈ Z such

that γk Γ′ = γl Γ′, hence γk−l = γ′ ∈ Γ′ and φ(γ) = (k − l)−1φ(γ′). This implies that V
contains the vector space generated by φ(S), which is Rr.

The proof of Theorem 3.6 therefore boils down to finding a finite subset S′ of Γ generating
a finite index subgroup Γ′ of Γ such that

#S′ ≤ 48 · e24H(8D+15δ).

In order to construct the set S′, we proceed as follows. The idea is that the set S′

has to be sufficiently dense to insure that the group Γ′ generated by S′ satisfies #Γ/
Γ′ <∞ but sufficiently sparse so that its cardinality stays bounded above. This will be
a consequence of our Bishop–Gromov estimate 1.8.
We pick up a point x ∈ Ỹ . Let R > 0 and S′ := {γi}i∈I be a subset of Γ of maximal
cardinality such that

(i) d(x, γi(x)) ≤ 2D +R
(ii) d(γi(x), γj(x)) ≥ R, for i 6= j.

Let Γ′ be the subgroup of Γ generated by S′ = {γi}i∈I .

Claim 3.8. #Γ/Γ′ <∞.
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Γ′x

x

αx

yγ′0x γ′ix

Γx

γ′0γ
′
ix

≥ R+D= R+D

≤ D

(γ′0)−1αx

Figure 3.5: #Γ/Γ′ <∞

Proof. The claim follows from the fact that for every y ∈ Ỹ , d(y,Γ′x) < R+D. Indeed,
if this is the case, for every γ ∈ Γ, we have d(x, γΓ′x) = d(γ−1x,Γ′x) < R + D, hence
for each coset γΓ′, the orbit γΓ′ x meets B(x,R+D). Therefore we have

# Γ/Γ′ ≤ #{γ ∈ Γ | d(x, γx) ≤ D +R} <∞

since Γ acts properly discontinuously on Ỹ . It remains to prove that for every y ∈ Ỹ ,
d(y,Γ′x) < R+D, see the figure 3.5 below.

Assume by contradiction that this is not the case, then there exists y ∈ Ỹ such that
d(y,Γ′x) ≥ D +R. Moving y a bit if necessary, we may moreover assume that

d(y,Γ′x) = d(y, γ′0x) = D +R.

Since the diameter of Y = Ỹ /Γ satisfies diamY ≤ D, we can choose α ∈ Γ\Γ′ such that
d(y, αx) ≤ D. Now, applying twice the triangle inequality gives:

R ≤ d((γ′0)−1αx, x) = d(αx, γ′0x) ≤ 2D +R. (2)

Moreover, also by the triangle inequality, we have d(αx, γ′0γ
′
ix) ≥ d(γ′0γ

′
ix, y)− d(y, αx)

and since d(y, γ′0γ
′
ix) ≥ D +R and d(y, αx) ≤ D by assumption, we get

d((γ′0)−1αx, γ′ix) = d(αx, γ′0γ
′
ix) ≥ R. (3)

We deduce from (2) and (3) that the set {γi}i∈I∪{(γ′0)−1α}} satisfies the above properties
(i) and (ii) contradicting the maximality of the cardinality of {γi}i∈I since α ∈ Γ \ Γ′.
This ends the proof of the claim.
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In order to finish the proof of the Theorem 3.6 we now bound #S′. Let us consider the
counting measure µ =

∑
γ∈Γ δγx of the Γ-orbit of x. Notice that by the properties (i)

and (ii) defining S′, for every γ′i ∈ S′ we have B(γ′ix,
R
2 ) ⊂ B(x, 2D + 3R

2 ) and the balls
B(γ′i,

R
2 ) are disjoint. Therefore µ(B(x, 2D + 3R

2 )) ≥ #S′µ(B(x, R2 )), thus

#S′ ≤
µ(B(x, 2D + 3R

2 ))

µ(B(x, R2 )
. (4)

We choose R = 20(D + 2δ) in (4) and we apply Theorem 1.8 with (r,R) replaced by
(10(D + 2δ), 32D + 60δ). This gives

#S′ ≤ 3

(
16D + 30δ

5D + 10δ

)25/4

e24H(8D+15δ) ,

hence the estimate
b1(Y ) ≤ #S′ ≤ 48 · e24H(8D+15δ)

follows. This concludes the proof of Theorem 3.6.

4 Lecture 4

We now want to extend our version of the Bishop–Gromov inequality to balls of small
radii. Using the notation of Lecture 2 we may distinguish the three following cases.

i) R ≥ r ≥ 10(D + 2δ): this is the case described in Section 2.

ii) 0 < r ≤ R < 10(D+2δ): this is the case that will be treated in the present section.

iii) 0 < r < 10(D + 2δ) ≤ R: this is an easy consequence of the two previous cases
and its proof is left to the reader. However for the sake of completeness we state
this version at the end of this section.

In the previous sections no local assumption was made on the metric space (X, d).
We need now to require another property in order to have some control on the local
behaviour.

4.1 Busemann Spaces

We call normal parametrisation of a geodesic c : [0, 1] −→ X the parametrisation such
that

d(c(0), c(t)) = td(c(0), c(1)) , for all t > 0 .

Definition 4.1. A complete, proper, geodesic metric space (X, d) is said to be a Buse-
mann space if its metric d is convex, i.e. for any two geodesic segments c1 and c2 with
normal parametrisations,

c1, c2 : [0, 1] −→ X such that c1(0) = c2(0) ,

the function t 7→ d(c1(t), c2(t)) is convex.
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Figure 4.1: Convexity in Busemann spaces

Remarks 4.2. 1. On every Busemann space any two points are joined by a unique
geodesic segment.

Figure 4.2: d(c1(t), c2(t)) is not convex

2. Examples of Busemann spaces are given by simply connected manifolds of non
positive sectional curvature (Cartan–Hadamard manifolds).

3. Closed geodesic balls or, more generally, closed convex domains in Cartan–Hadamard
manifolds are also Busemann spaces.

We will furthermore always assume that the space (X, d) satisfies the property of exten-
sion of geodesics, that is, for every geodesic segment

c : [a, b] −→ X , a < b

there exists ε > 0 and a geodesic segment c′ : [a, b + ε] −→ X such that c′|[a,b] = c.
Notice that this excludes closed convex domains with non-empty boundary in Cartan–
Hadamard manifolds. This assumption will be used in the proof of lemma 4.8.

We then state the main theorem of this section.

Theorem 4.3. Let (X, d) be a δ-hyperbolic and Busemann metric space, Γ ⊂ Isom(X, d)
be a discrete group acting properly such that

diam(X/Γ, d̄) ≤ D and Ent(X, d) ≤ H.

Then, for every x ∈ X and 0 < r ≤ R < 12(D + 2δ),

µΓ
x(B(x,R))

µΓ
x(B(x, r))

≤ C
(R
r

)A
exp

(
18H(11D + 20δ)

R

r

)
,

here C and A can be explicitly estimated. More precisely C = 11
2 · 3

25/4 and A = 25/4.
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Remark 4.4. Notice that on the left hand side, at the numerator, we compute the µΓ
x-

measure of the closure of the ball B(x,R). This is an improvement since there might be
points of the orbit of x on the boundary B(x,R) \B(x,R).

The proof of Theorem 4.3 relies on arguments of packing and covering big balls by
smaller ones.

4.2 Packings and Coverings

With the above notation and assumptions, that is, (X, d) is a proper geodesic metric
space and Γ ⊂ Isom(X) is a discrete subgroup, we have the following definitions.

Definition 4.5. i) An r-packing of a ball B(x,R) is any family
(
B(yj , r)

)
j∈J of

disjoint balls included in B(x,R). We set

Pack(x, r,R) = the maximal number of balls in a r-packing of B(x,R) .

ii) A (Γx, r)-packing of B(x,R) is any family
(
B(γjx, r)

)
j∈J of disjoint balls included

in B(x,R). We set

PackΓ(x, r,R) = the maximal number of balls in a (Γx, r)-packing of B(x,R) .

iii) A (Γx, r)-covering of B(x,R) is any family
(
B(γjx, r)

)
j∈J of balls such that B(x,R)∩

Γx ⊂ ∪j∈JB(γjx, r). We set

CoverΓ(x, r,R) = the maximal number of balls in a (Γx, r)-covring of B(x,R) .

Figure 4.3: PackΓ(x, r,R)

We then have the following lemma.

Lemma 4.6. Let us assume that Γ acts co-compactly on X and that the quotient space
has diameter not greater than D > 0, then one has, for every x ∈ X, 0 < r ≤ R,

i) CoverΓ(x, r,R) ≤ PackΓ(x, r/2, R+ r/2).
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ii) PackΓ(x, r,R) ≤ µΓ
x(B(x,R))

µΓ
x(B(x, r))

≤ µΓ
x(B(x,R))

µΓ
x(B(x, r))

≤ CoverΓ(x, r,R).

iii) PackΓ(x, r,R) ≤ Pack(x, r,R) ≤ PackΓ(x, r − D,R), the last inequality making
sense only when r > D.

Exercise 4.7. Prove this lemma.

4.3 A Contraction in Busemann Spaces

We now assume that (X, d) is Busemann and has the property of extension of geodesics.
The second tool that we shall use essentially depends on the convexity of the distance.
We construct a contraction (or a dilation) as follows. Let x ∈ X, ∀y ∈ X we call
cy : [0, 1] −→ X the (unique) geodesic normally parametrised joining x to y, that is
cy(0) = x and cy(1) = y.
Then, ∀λ ∈ [0, 1], we define

ϕx,λ : X −→ X by ϕx,λ(y) = cy(λ) .

Figure 4.4: λ-contraction

Lemma 4.8. One has, ∀y, y′ ∈ X, d(ϕx,λ(y), ϕx,λ(y′)) ≤ λd(y, y′). As a consequence
we get, ∀α ≥ 1,

Pack(x, r,R) ≤ Pack(x, αr, αR) .

Proof. The first inequality follows from the convexity of the distance, indeed

d(cy(λ), cy′(λ)) ≤ (1− λ)d(cy(0), cy′(0)) + λd(cy(1), cy′(1)) = λd(y, y′) .

The second inequality is left to the reader; notice that it is in the proof of this inequality
on the packing numbers that the property of extendable geodesics is needed.

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. For the sake of simplicity, let us set

I =
µΓ
x(B(x,R))

µΓ
x(B(x, r))

.

Lemma 4.6 yields

I ≤ CoverΓ(x, r,R) ≤ PackΓ(x, r/2, R+ r/2) ≤ Pack(x, r/2, R+ r/2) ,
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and Lemmas 4.8 and 4.6 imply, for α ≥ 1 and α(r/2) > D,

I ≤ Pack(x, αr/2, α(R+ r/2)) ≤ Pack(x, α(r/2)−D,α(R+ r/2)) .

We now choose α so that r′ = α(r/2) − D = 10(D + 2δ). This clearly implies that
R′ = α(R+ r/2) ≥ 10(D+2δ) and by the assumption on r (in Theorem 4.3) that α ≥ 1.
Finally, we can apply Theorem 1.8 and get,

I ≤ Pack(x, r′, R′) ≤ µΓ
x(BX(x,R′))

µΓ
x(BX(x, r′))

≤ 3
(R′
r′

)25/4
e6HR′ .

It then suffices to replace R′ and r′ by their respective values in terms of R, r,D and
δ.

Next we prove an inequality relating the Bishop–Gromov ratio associated to a group Γ
to the Bishop–Gromov ratio associated to a subgroup Γ′ ⊂ Γ.

Corollary 4.9. Let (X, d) be a proper geodesic metric space and Γ ⊂ Isom(X) a discrete
subgroup. If Γ′ ⊂ Γ is a subgroup of Γ then, ∀x ∈ X, ∀r,R such that 0 < r ≤ R, one has

µΓ′
x (BX(x,R)

µΓ′
x (BX(x, r))

≤ µΓ
x(BX(x,R+ r/2))

µΓ
x(BX(x, r/2))

.

Proof. From Lemma 4.6 we get

µΓ′
x (BX(x,R)

µΓ′
x (BX(x, r))

≤ CoverΓ′(x, r,R) ≤ PackΓ′(x, r/2, R+ r/2)

≤ PackΓ(x, r/2, R+ r/2) ≤ µΓ
x(BX(x,R+ r/2))

µΓ
x(BX(x, r/2))

.

The inequality between the two packing numbers follows from the obvious remark that
Γ′x ⊂ Γx.

As announced at the beginning of this section, we end it by stating the intermediate
Bishop–Gromov’s inequality for µΓ

x that is when r is small and R is large. More precisely,

Theorem 4.10. Let (X, d) be a δ-hyperbolic and Busemann metric space, Γ ⊂ Isom(X, d)
be a discrete group acting properly such that

diam(X/Γ, d̄) ≤ D and Ent(X, d) ≤ H.

Then, for every x ∈ X and 0 < r < 12(D + 2δ) ≤ R,

µΓ
x

(
BX

(
x,R

))
µΓ
x

(
BX(x, r)

) ≤ C ′(R
r

)A′
exp

(
18H

(11D + 10δ)2

r
+ 6HR

)
,

here C ′ and A′ can be explicitly computed. More precisely, C ′ = 11
2 ·3

29/4 and A′ = 25/4.
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5 Lecture 5

In this lecture, we derive from our Bishop–Gromov Theorem a version of the Margulis
lemma in the context of cocompact discrete groups of isometries of δ-hyperbolic spaces
with bounded entropy. From this “metric Margulis lemma”, we deduce estimates on
the systole of such actions. Such estimates are classical for manifolds of bounded non
positive curvature.

5.1 Growth of groups

Let Γ be a group and S a finite set of generators of Γ. We denote by (G(Γ, S), dS) the
Cayley graph of Γ with the word distance dS associated to S and for k ∈ N, BS(k) the
ball of radius k centered at e in the Cayley graph. We also define the counting function
v(Γ,S) as

v(Γ,S)(k) := #BS(k).

A finitely generated group Γ has polynomial growth if for one (hence any) generating
set S, there exists a polynomial PS such that

v(Γ,S)(k) ≤ PS(k).

A finitely generated group Γ has exponential growth if for one (hence any) generating
set S, there exists CS > 0 such that

v(Γ,S)(k) ≥ eCSk .

Examples 5.1. 1) For Γ = Zn and for every generating set S, we have

v(Γ,S)(k) ≈ kn .

2) For the non abelian free group Γ = Fn on n generators, n ≥ 2 and for every generating
set S, we have

v(Γ,S)(k) ≈ (2n− 1)k .

3) Let Γ := Heis(Z) where

Heis(Z) =


1 x z

0 1 y
0 0 1

 / x, y, z ∈ Z

 .

Then, for every generating set S, we have

v(Γ,S)(k) ≈ k4 .

4) More generally, let Γ be a finitely generated nilpotent group, and {1} E Γn E · · · E
Γ1 = Γ its lower central series, where [Γk,Γ] = Γk+1. Then, for every generating set of
Γ, the growth of Γ is given by the formula due to Bass–Guivarc’h,

v(Γ,S)(k) ≈ kd(Γ)

where d(Γ) =
∑

k k rank(Γk/Γk+1). In particular, every finitely generated nilpotent group
has polynomial growth, (see [Gui71], [Bas72]).
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We now have the following easy lemma, saying that a group (Γ, S) with polynomial

growth is “C-doubling” at scale kn for a sequence kn tending to infinity, i.e.
v(Γ,S)(2kn)

v(Γ,S)(kn) ≤
C, see the regularity Lemma p. 59 in [Gro81] for a more precise statement.

Lemma 5.2. Let us consider a finitely generated group Γ with polynomial growth. Let
µ be the counting measure on the Cayley graph G(Γ, S) .We claim that there exist C > 1
and a sequence of integers kn tending to infinity such that

µ(BS(2kn))

µ(BS(kn))
=
v(Γ,S)(2kn)

v(Γ,S)(kn)
≤ C.

Proof. Let us prove this assertion. We assume by contradiction that for every C > 1,
there exists N ∈ N such that, for every n ≥ N , we have

v(Γ,S)(2n)

v(Γ,S)(n)
≥ C .

In particular, for every integer k, we have v(Γ,S)(2
kn) ≥ v(Γ,S)(n)Ck. Therefore, for every

x ≥ n, we get

v(Γ,S)(x) ≥
v(Γ,S)(n)

n
logC
log 2

x
logC
log 2 ,

which contradicts the polynomial growth of Γ since C is arbitrary.

Examples 5.3. 1) If Γ = Zn and S its canonical generating set, then,

v(Γ,S)(2k)

v(Γ,S)(k)
= 2n .

2) For Γ nilpotent, it follows directly from Bass–Guivarc’h estimate of the growth that

v(Γ,S)(2k)

v(Γ,S)(k)
≈ 2d(Γ) .

3) If Γ = Fn is the free group on n generators and S the symmetric set of generators,
then

v(Γ,S)(2k)

v(Γ,S)(k)
≈ (2n− 1)k .

For a finitely generated group Γ, having polynomial growth is a strong constraint. The
following theorem, due to Gromov, characterises the groups with polynomial growth.

Theorem 5.4 ([Gro81]). Let Γ be a finite generated group with polynomial growth.
Then, Γ is virtually nilpotent.

According to the lemma 5.2, every group with polynomial growth is C-doubling at
scale kn, for some C > 1 and some sequence kn tending to infinity. This property
of groups with polynomial growth is a step in the proof of Theorem 5.4. With the
following observation in mind, the next theorem, due to Breuillard, Green and Tao may
be considered as a strong version of Gromov’s Theorem. It says roughly that if a group is
p-doubling at one sufficiently large scale with respect to p, then G is virtually nilpotent.
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Theorem 5.5 ([BGT12]). For every p ∈ N \ {0}, there exists N(p) ∈ N \ {0} such that
the following holds: for every group G and every generating set S of G, if there exists a
finite subset A ⊂ G such that

1. SN(p) ⊂ A

2. #A·A
#A ≤ p

then, G is virtually nilpotent.

Remark 5.6. In the previous theorem, the hypothesis 2 is a p-doubling condition for the
set A, while the first one means that the doubling holds at one given scale larger than a
universal function N(p) of p.

5.2 A Margulis Lemma

Let Γ be a group acting properly discontinuously on a metric space (X, d). For every
x ∈ X and r > 0, we set

Γr(x) := {γ ∈ Γ | d(x, γx) ≤ r}.

When X is simply-connected then Γ is the fundamental group of X/Γ and Γr(x) is
nothing but the subgroup of Γ generated by the “small loops” at p of length less than
r, where p is the point on X/Γ having x as a lift. We will denote this subgroup Γr(p)
as well. The following fundamental Theorem due to Margulis says that such groups
generated by “small loops” at a point are virtually nilpotent when r is small enough,
which gives strong informations on the geometry of neigbourhoods of such points.

Theorem 5.7 ([Mar75], [BGS85], [BZ88] Section 37.3). There exists a positive constant
ε(n, a) such that, for every complete Riemannian manifold M whose sectional curvature
satisfies −a2 ≤ Sect(M) ≤ 0, for every point p ∈ M and for every ε ≤ ε(n, a), the
subgroup Γε(p) of π1(M) generated by the loops at p of length less than ε is virtually
nilpotent.

We emphasise that the constant ε(n, a) depends only on the curvature bound and the
dimension. This theorem has been extended to various settings, we do not intend to sur-
vey here all of these and refer to [KW11], [BGT12], [Cou15], [BCGS20b]. In particular,
in [BGT12], the authors deduce from Theorem 5.5 a “Ricci gap Theorem”, saying that if
an n-dimensional Riemannian manifold (Mn, g) with diamM ≤ 1 satisfies Ricg ≥ ε(n),
then the fundamental group of Mn is virtually nilpotent. The purpose of this lecture is
to describe how our Bishop–Gromov Theorem 1.8 allows to prove a Margulis Lemma in
the context of groups acting on metric spaces where the negative curvature assumption
is replaced by δ-hyperbolicity and the lower curvature bound by an upper bound on the
entropy .

Remark 5.8. The following observation is classical, we leave it as an exercise. Let Γ
acting properly discontinuously by isometries on a Gromov hyperbolic space (X, d) be
such that X/Γ is compact. Then, every virtually nilpotent subgroup of Γ is virtually
cyclic (see also [BCGS20b], Section 8).
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Theorem 5.5 provides a sufficient condition for a group Γ to be (virtually) nilpotent.
This condition is formulated by the p-doubling property of the Cayley graph of Γ at a
scale given by the universal function N(p). On the other hand, for a group Γ acting on
a δ-hyperbolic space X with entropy bounded by H and diameter of the quotient space
X/Γ bounded by D, our Bishop–Gromov Theorem 1.8 says that Γ is p-doubling at scale
R0 for p := p(δ,D,H) and R0 := R0(δ,D). Theorem 5.5 then allows to translate the
universal function

ε(δ,H,D) :=
R0

N(p)

into a Margulis constant for such actions.

Theorem 5.9 ([BCGS20a]). For every δ ≥ 0, H ≥ 0, and D ≥ 0, there exists ε0 :=
ε0(δ,H,D) such that the following holds. Let (X, d) be a δ-hyperbolic space, and Γ acting
isometrically and properly on X. Assume that diamX/Γ ≤ D and Ent(X,d) ≤ H. Then,
for every r ≤ ε0 and every x ∈ X, the group Γr(x) is virtually cyclic.

Proof. Let N0 := N(310e300H(D+2δ) + 1) and R0 := 20(D+ 2δ), where N is the function
defined in Theorem 5.5. Denote by ε0 the constant R0

N0
and choose 0 < r ≤ ε0.

We consider G := Γr(x) the subgroup of Γ generated by S := {g ∈ Γ | d(x, gx) ≤ r},
and A ⊂ G where A = {g ∈ G | d(x, gx) ≤ R0}. We will show that G and A satisfy
the hypotheses of Theorem 5.5, which will imply that G = Γr(x) is virtually nilpotent,
hence cyclic since X is δ-hyperbolic.
Let us check the hypothesis 2. Let us denote µGx =

∑
g∈G δgx the counting measure of

the G-orbit of x in X. Notice that A ·A ⊂ {g ∈ G | d(x, gx) ≤ 2R0}, hence

#A ·A
#A

≤ µGx (B(x, 2R0))

µGx (B(x,R0))
.

By the Bishop–Gromov inequality for subgroup G ≤ Γ, cf. Corollary 4.9, we have

µGx (B(x, 2R0))

µGx (B(x,R0))
≤ µΓ

x(B(x, 2R0 +R0/2))

µΓ
x(B(x,R0/2))

.

Applying the Bishop–Gromov theorem 1.8 for Γ and for (r,R) replaced by (R0
2 ,

5
2R0),

we get
µΓ
x(B(x, 2R0 +R0/2))

µΓ
x(B(x,R0/2))

≤ 3 · 525/4e15HR0 ≤ 310e300H(D+2δ).

By the three previous inequalities, we deduce the hypothesis 2 of Theorem 5.5

#A ·A
#A

≤ p

with p := 310e300H(D+2δ).
We now check the hypothesis 1. Recall that we have chosen

N0 := N(p+ 1) = N(310e300H(D+2δ) + 1),
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R0 = 20(D + 2δ) and 0 < r ≤ ε0 = R0
N0

.
By definition of the generating set S, for every g ∈ S, we have d(x, gx) ≤ r. Every
g ∈ SN0 can be written as g = g1 g2 · · · gk with k ≤ N0, hence by the triangle inequality,

d(x, gx) ≤ k r ≤ N0r ≤ R0,

and therefore, g ∈ A, which proves that SN0 ⊂ A and the hypothesis 1.
By Theorem 5.5, we therefore deduce that Γr(x) is virtually nilpotent. We now notice
that, since (X, d) is Gromov hyperbolic and X/Γ is compact, the virtually nilpotent
subgroups of Γ are actually virtually cyclic by Remark 5.8, which ends the proof of
Theorem 5.9.

5.3 The thin-thick decomposition

This section gives geometric applications of Theorem 5.9, These applications are classical
in the case of manifolds with bounded non positive curvature. Let Γ a group acting freely
and properly discontinuously on (X, d). In this section, we will assume X non compact
and Γ torsion free. The systole of this action at x ∈ X is defined as

Definition 5.10. sysΓ(x) := infγ∈Γ\{Id} d(x, γx).

For every r > 0, the r-thin part of the action of Γ is the open set defined as

Definition 5.11. Xr := {x ∈ X | sysΓ(x) < r}.

X

Xr

X\Γ

→

Figure 5.1: r-Thin part

The r-thick part is simply defined as X \Xr. Notice that the thin and thick parts are
defined as subsets of X. When (X, d) is Gromov hyperbolic, the action of Γ on (X, d)
non elementary and X/Γ compact, then the thin part is not connected, as shown in the
next proposition. We recall that Γ is assumed to be torsion free.

Proposition 5.12. Let Γ acting properly discontinuously on a Gromov hyperbolic space
(X, d) such that X/Γ is compact, and let 0 < r ≤ ε0, where ε0 := ε0(δ,H,D) is the
constant of Theorem 5.9. We assume that the action of Γ is non elementary. Then,

1. For every x ∈ Xr, there exists a maximal virtually cyclic subgroup G(x) ⊂ Γ
containing Σr(x) := {γ ∈ Γ | d(x, γx) ≤ r}. The map x→ G(x), defined on Xr, is
locally constant, hence constant on each connected component of Xr.
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2. If Xr 6= ∅, then Xr is not connected.

Proof. Let us prove the first part of the proposition. Let us consider 0 < r ≤ ε0 and
γ ∈ Σr(x) for some x ∈ Xr. Let us assume, to simplify, that γ is a non trivial hyperbolic
isometry with fixed points γ± on the boundary of X (for these notions the reader is
referred to [BCGS20b], Section 8). Notice that every element of Γr(x) fixes the set
{γ−, γ+}
The group

G(x) := {g ∈ Γ | g({γ−, γ+}) = {γ−, γ+}},

is the unique maximal cyclic subgroup of Γ containing γ. We then have

Σr(x) ⊂ Γr(x) ≤ G(x).

γ+

γ−

γ

Figure 5.2: Hyperbolic isometry

Let us show that the map defined on Xr by x → G(x) is locally constant. Since the
action of Γ is proper, there exists β := β(x) > 0 be such that

min
γ∈Γ\Σr(x)

d(x, γx) > r + β.

Let us consider x′ such that d(x, x′) ≤ β/2. We claim that Σr(x
′) ⊂ Σr(x). Indeed, take

γ ∈ Σr(x
′), we then have

d(x, γx) ≤ d(x, x′) + d(x′, γx′) + d(γx′, γx) ≤ r + β.

Therefore, G(x′) ≤ G(x) hence G(x′) = G(x) by maximality. This shows that the map
x→ G(x) is locally constant on Xr and concludes the part 1.
We now prove the part 2 of the proposition. Let us assume, by contradiction, that
Xr is non empty and connected. Then, since G(x) is locally constant, G(x) = G does
not depend on x ∈ Xr. Notice that Xr is Γ-invariant, gXr = Xr for every g ∈ Γ,
and Σr(gx) = gΣr(x)g−1 for every x ∈ Xr and g ∈ Γ. Given x ∈ X, recall that
G(x) :=

{
g ∈ Γ | g({γ−, γ+}) = {γ−, γ+}

}
, where {γ−, γ+} are the fixed points of some

hyperbolic isometry γ ∈ Σr(x). Hence for every g ∈ Γ, gγg−1 ∈ Σr(gx) ⊂ G(gx) =
G = G(x). In particular, since the set of fixed points of gγg−1 is {gγ−, gγ+}, we deduce
that {gγ−, gγ+} = {γ−, γ+} for every g ∈ Γ, hence Γ = G(x) and Γ is elementary, a
contradiction.

31



r

r + β x
x′

X Γrx

(Γ− Σr)x

Figure 5.3: G(x) locally constant

In the following proposition, we show that if a group Γ acts properly on a δ-hyperbolic
space (X, d) with bounded entropy and bounded co-diameter, then there exists a point
on X with a large systole.

Proposition 5.13. Let Γ act properly discontinuously on a δ-Gromov hyperbolic space
(X, d) such that diam(X/Γ) ≤ D and Ent(X, d) ≤ H and let ε0 := ε0(δ,H,D) be the
constant of Theorem 5.9. We assume that the action of Γ is non elementary and that Γ
is torsion free. Then, there exists a point x ∈ X such that sysΓ(x) ≥ ε0.

Proof. By Theorem 5.9, there exists ε0 := ε0(δ,H,D) > 0 such that for every 0 < r ≤ ε0
and every x ∈ X, Γr(x) is cyclic. Now there are two cases. If Xε0 = ∅, there is nothing
to prove. If Xε0 6= ∅, then Xr is not connected and since X is connected, we deduce that
X \Xr 6= ∅ and there exists x ∈ X such that sysΓ(x) ≥ ε0.

6 Lecture 6

In this lecture we recall the definition of the systole of a proper and geodesic metric
space (X, d) on which a discrete subgroup Γ of its isometry group acts. For the sake of
simplicity we set Γ∗ := Γ \ {e}, where e is the neutral element of Γ. For the next results
we need to exclude “trivial” hyperbolic spaces which we call elementary, we recall below
the definition.

Definition 6.1. A hyperbolic space or group is called elementary if its ideal boundary
has at most two points.

6.1 Systoles

We recall the definition of the systole at a point given in Lecture 5 (see Definition 5.10)
and we define the global systole of a group action.

Definition 6.2. Let (X, d) be as above, we define
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i) ∀x ∈ X, the systole at x is

sysΓ(x) = inf
γ∈Γ∗

{
d(x, γx)

}
.

ii) The global systole of the action of Γ is

SysΓ(X) = inf
x∈X

{
sysΓ(x)

}
.

Remark 6.3. If x0 ∈ X is fixed by some element γ0 ∈ Γ, i.e. if d(x0, γ0x0) = 0, then

SysΓ(X) = sysΓ(x0) = 0 .

We may say that γ0 ∈ Isom(X, d) is an elliptic element. In the sequel we shall always
assume that the space (X, d) is δ-hyperbolic for some δ ≥ 0 in which case an element
γ ∈ Γ is elliptic if and only if it is a torsion element (see Remark 8.16 in [BCGS20b]).
For the sake of simplicity we shall assume in the sequel that all isometries in Γ are
torsion-free. For the general case the reader is refered to [BCGS20b].

6.2 Bounding from below the Systole

We now intend to prove the following theorem.

Theorem 6.4. Let δ ≥ 0 and H,D > 0. There exists s0 := s0(δ,H,D) > 0 with the
following property. Let (X, d) be a non-elementary δ-hyperbolic space which is Busemann
and satisfies the property of extension of the geodesics. If Γ ⊂ Isom(X, d) is discrete,
torsion-free and such that,

diam(X/Γ, d̄) ≤ D and Ent(X, d) ≤ H ,

then,
∀x ∈ X, ∀γ ∈ Γ∗, d(x, γx) > s0(δ,H,D) .

Then,
SysΓ(X) > s0(δ,H,D) .

To understand this result and its proof one should look at the simplest case, namely
the collar lemma for hyperbolic (constant curvature) surfaces summarised in the picture
below as well as the separation between thin and thick parts.

Figure 6.1: Classical Collar Lemma
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Here we have sysΓ(x) = η � 1, sysΓ(y) ≥ εMar, where εMar denotes the Margulis constant
of the surface, and the collar lemma asserts that,

d(x, y) ≥ C| log(η)| .
Proof of Theorem 6.4. For γ ∈ Γ∗ we define,

G =< γ >= {γk ; k ∈ Z} ,
the cyclic group generated by γ.

Lemma 6.5 (Collar Lemma). Let Γ act properly on (X, d) and let R > 0, γ ∈ Γ∗ and
x ∈ X. If there exists y0 ∈ X and ε > 0 such that,

inf
k∈N∗

{
d(y0, γ

ky0)
}
> ε > 0 and d(x, y0) ≤ R

then,

d(x, γx)

4R
≥

(
µΓ
y0

(
B(y0, 4R+ ε/2)

)
µΓ
y0

(
B(y0, ε/2)

) + 1

)−1

.

This is our version of the classical Collar lemma. Notice that the denominator of the
left hand side never vanishes. Indeed we always have µΓ

y0

(
B(y0, ε/2)

)
≥ 1 since y0 is a

point of its own orbit by Γ in B(y0, ε/2).

Proof of Lemma 6.5. By the triangle inequality one has,

d(x, γkx) ≤ d(x, γx) + d(γx, γ2x) + · · ·+ d(γk−1x, γkx) ≤ kd(x, γx) ,

so that, if |k| ≤
[ 2R

d(x, γx)

]
then, d(x, γkx) ≤ 2R. We then obtain,

2
[ 2R

d(x, γx)

]
+ 1 ≤ #

{
k; d(x, γkx) ≤ 2R

}
= µGx

(
B(x, 2R)

)
.

Now,

d(y0, γ
ky0) ≤ d(y0, x) + d(x, γkx) + d(γkx, γky0) ≤ 2d(y0, x) + d(x, γkx) ,

which implies that if d(x, γkx) ≤ 2R then d(y0, γ
ky0) ≤ 4R.

Figure 6.2: Proof of the Collar lemma
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This leads to
µGx
(
B(x, 2R)

)
≤ µGy0

(
B(y0, 4R)

)
.

These inequalities lead to

4R

d(x, γx)
− 1 ≤ 2

[ 2R

d(x, γx)

]
+ 1 ≤

µGy0

(
B(y0, 4R)

)
µGy0

(
B(y0, ε)

) ≤ µΓ
y0

(
B(y0, 4R+ ε/2)

)
µΓ
y0

(
B(y0, ε/2)

) .

The second inequality comes from the fact that µGy0

(
B(y0, ε)

)
= 1 since, by definition

of ε, y0 is the only point of its orbit by G in B(y0, ε). The third inequality comes from
Corollary 4.9 applied with Γ′ = G.

We come back to the proof of Theorem 6.4. We pick x ∈ X, and γ ∈ Γ∗. From
Proposition 5.13 there exists x0 ∈ X such that ∀α ∈ Γ∗,

d(x0, αx0) ≥ ε0 = ε0(δ,H,D) ,

where ε0(δ,H,D) is the constant introduced in Theorem 5.9. In particular, ∀k 6= 0,
d(x0, γ

kx0) ≥ ε0 > 0. However, x0 may not be close to x as required by Lemma 6.5.
Now, because of the fact that the action of Γ is co-compact and that the quotient has
diameter bounded above by D there exists α0 ∈ Γ such that d(x, α0x0) ≤ D. We set
y0 = α0x0 and ∀k 6= 0,

d(y0, γ
ky0) = d(α0x0, γ

kα0x0) = d(x0, α
−1
0 γkα0x0) ≥ ε0 > 0 ,

since α−1
0 γkα0 ∈ Γ. We then apply the previous lemma with R = D and ε0 instead of ε

and we get,

d(x, γx) ≥ 4D

(
µΓ
y0

(
B(y0, 4D + ε0/2)

)
µΓ
y0

(
B(y0, ε0/2)

) + 1

)−1

.

Then it suffices to apply our Bishop–Gromov Inequality to get a lower bound for d(x, γx),
for any x ∈ X and any γ ∈ Γ∗, in term of δ, H and D and also ε0 which itself depends
on δ, H and D. The resulting function of δ, H and D is called s0. Notice that this
is unfortunately not explicit since ε0(δ,H,D) is not. This ends the proof of Theorem
6.4

7 Lecture 7

In this lecture, we study finiteness properties of isomorphism classes of finitely generated
groups acting cocompactly on a δ-hyperbolic metric space with bounded entropy. To be
more precise, we consider the class of metric spaces (X, d) which satisfy the following
assumptions: (X, d) is complete, non elementary δ-hyperbolic and Busemann. The main
statement is that the set of isomorphism classes of group Γ which have a proper isometric
action on such a space (X, d) with diam(X/Γ, d) ≤ D and Ent(X, d) ≤ H has less than
M0(δ,H,D) elements. There are two steps in the proof. One is to find a generating
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set S of Γ with bounded cardinality #S ≤ n0(δ,H,D). This is a consequence of our
Bishop–Gromov Theorem 4.3 and the diastole estimate, cf. Lecture 5, Proposition 5.13.
The second step consists in bounding the number of presentations of the groups Γ. This
is a consequence of the fact that Γ inherits the Gromov hyperbolicity of (X, d) and that
hyperbolic groups admit bounded presentations.

7.1 Marked groups

In this section, we introduce the notion of “marked groups” which will be useful for for-
mulating the finiteness of isomorphism classes of groups. Given a finitely generated group
(Γ, S), where S denotes a symmetric set of generators S := {σ1, · · · , σk, σ−1

1 , · · · , σ−1
k },

and the non abelian free group on k generators Fk := (Fk, {e1, · · · , ek, e−1
1 , · · · , e−1

k }),
we have a morphism

ϕΓ,S : Fk → Γ

defined by ϕΓ,S (e±1
i ) = σ±1

i . In particular, we have

Γ ' Fk/KerϕΓ,S.

Definition 7.1. A marked group is the data of a finitely generated group (Γ, S) with the
morphism ϕΓ,S. We call ϕΓ,S the marking.

As we are interested in isomorphism classes of groups, we define:

Definition 7.2. An isomorphism β : (Γ, S) → (Γ′, S′) is an isomorphism β : Γ → Γ′

such that β(σi) = σ′i. In particular, ϕΓ′,S′ = β ◦ ϕΓ,S and we shall call such a β an
isomorphism of marked groups, denoted by (Γ, S) ' (Γ′, S′).

Remark 7.3. Notice that an isomorphism β : (Γ, S) → (Γ′, S′) induces an isometry
between the Cayley graphs :

β̄ : (G(Γ, S), dS)→ (G(Γ′, S′), dS′).

The next classical Proposition states that, when Γ acts by isometries properly discon-
tinuously and cocompactly on (X, d), then Γ is finitely generated and the Gromov hy-
perbolicity transfers from the space (X, d) to the Cayley graph (G(Γ, S), dS) for every
set S of generators. The main idea is that, under the cocompactness assumption, the
Cayley graph of Γ is quasiisometric to (X, d). Gromov hyperbolicity is then a property
which is invariant by quasiisometry, [CDP90], [BH99].

Proposition 7.4. Let (X, d) be a δ-hyperbolic metric space and Γ acting properly dis-
continuously by isometries on (X, d). Assume that diam(X/Γ) ≤ D. Let x ∈ X, then
S := S6D = {γ ∈ Γ | d(x, γx) ≤ 6D} is a generating set of Γ and (Γ, S) is δ′-hyperbolic
for δ′ := 8

(
5δ
D + 4

)
.

Proof. We only sketch the proof; for details we refer to [BCGS20a]. Let us choose a
point x ∈ X. We first observe that for every k ∈ N∗, the set

S := S(k+2)D(x) = {γ ∈ Γ | d(x, γx) ≤ (k + 2)D}
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is a generating set of Γ. For γ ∈ Γ, set n :=
⌊
d(x,γx)
kD

⌋
+ 1. On a geodesic [x, γx], let

us choose x0 = x, x1, · · · , xn = γx such that d(xi−1, xi) = kD for 1 ≤ i ≤ n − 1, and
d(xn−1, xn) < kD. By the assumption on the diameter, for every 1 ≤ i ≤ n, there is
γi ∈ Γ such that d(xi, γix) ≤ D. Then, defining γ0 = IdX , γn := γ and σi := γ−1

i−1γi for
i = 1, · · · , n, we see that γ = σ1 · · ·σn, and moreover,

d(x, σix) ≤ d(γi−1x, xi−1) + d(xi−1, xi) + d(xi, γix) ≤ (k + 2)D .

This implies that S(k+2)D := {σ ∈ Γ | d(x, σx) ≤ (k + 2)D} is a generating set of Γ.
Choosing k = 4, we see that S := S6D is a generating set of Γ, which proves the first
part of the proposition.

x0 = x xn = γx
x1

x2
× ××

γ1x

γ2x

x3

γ3x

× ×
×

×
×

Figure 7.1: S(k+2)D

From now on, we fix S = S6D. In order to prove that (Γ, S) is δ′-hyperbolic, we first show
that the Cayley graph of (Γ, S) is “quasiisometric” to (X, d) and then, deduce that (Γ, S)
is δ′-hyperbolic. Recall that two metric spacs (X, dX) and (Y, dY ) are quasiisometric if
there exist a > 0, a′ > 0, b, b′ ∈ R and a map f : Y → X such that for every y, y′ ∈ Y ,
we have

a d(y, y′)− b ≤ d(f(y), f(y′)) ≤ a′d(y, y′) + b′.

Let us define a map
f : G(Γ, S)→ X,

as follows. The map f sends homothetically the edges [e, σi] in the Cayley graph onto
geodesic segments [x, σix] in X, (recall that the edges in the Cayley graph have length
equal to 1, hence the homothety factors are the length of the geodesic segments [x, σix],
that is, the distances d(x, σix)). We then define f on every edge by f([γ, γσi]) = γ[x, σix].
The first observation is that the map f : (G(Γ, S), dS) → (X, d) is a quasiisometry: for
every s, t ∈ G(Γ, S),

4DdS(s, t)− 14D ≤ d(f(s), f(t)) ≤ 6DdS(s, t). (5)

We skip the proof of (5), which is a quite direct consequence of the definition of f , and
refer to [BCGS20a], Lemma 5.7, for details.
The second observation below is a direct consequence of (5): given a geodesic segment
[s, t] ⊂ G(Γ, S) between s, t, we have

Length(f [s, t]) ≤ 3

2
d(f(s), f(t)) + 21D. (6)
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Indeed, f([s, t]) is arcwise geodesic in X; thus, by the second inequality of (5), we get
Lengthf([s, t]) ≤ 6DdS(s, t), and (6) follows from the first inequality of (5).

f(s)
f(t)

f([s, t])

≤ 6D ≤ 6D

Figure 7.2: Lengthf([s, t])

We now recall a fundamental property of δ-hyperbolic spaces which amounts to saying
that if a curve c satisfies the property that the length of every subsegment of c is equal
to the distance between its end points up to multiplicative and additive constants, then
c is at bounded distance from each geodesic joining the end points.

Lemma 7.5 ([BCGS20a], Proposition 6.13). Let (X, d) be a δ-hyperbolic space and
c : [0, T ]→ X a rectifiable curve such that for every u, v ∈ [0, T ],

Length(c([u, v]) ≤ λd(c(u), c(v)) + C . (7)

Then, every geodesic in X joining c(0) and c(T ) is contained in the C1-neighborhood of
c([0, T ]) and conversely, c([0, T ]) is contained in the C2-neighborhood of each geodesic
between c(0) and c(T ), where C1 := 6λ+ 2 + C

6λ+2 and C2 := (1 + λ)C1 + C
2 .

We can apply Lemma 7.5 to the image c := f([y, y′]) by f of geodesic segments [y, y′]
in G(Γ, S). Let c̄ be a geodesic joining f(y) and f(y′). By the observation (6), the
hypothesis of Lemma 7.5 is satisfied with λ = 3

2 and C = 21D, therefore the curve
c := f([y, y′]) is contained in the C1 := 11δ + 21D

11 -neighborhood of the geodesic c̄ and c̄

is in the C2-neighbourhood of c for C2 := 55δ
2 + 168D

11 .
We are now ready to conclude. Let (y0, y1, y2) be a geodesic triangle in G(Γ, S). We want
to show that (y0, y1, y2) is δ′

4 -thin, i.e. that every point u on one side of (y0, y1, y2) is at

distance δ′

4 of the union of the two other sides of the triangle. For every i 6= j ∈ {0, 1, 2},
we choose c̄i,j a geodesic joining f(yi) and f(yj) and denote by (f(y0), f(y1), f(y2)) the
geodesic triangle in X whose sides are the c̄i,j ’s. We can assume that u ∈ [y1, y2]. By
Lemma 7.5 there exists v ∈ c̄1,2 such that d(f(u), v) ≤ C1. Since (X, d) is δ-hyperbolic,
there exists v′ ∈ c̄0,1 ∪ c̄0,2 such that d(v, v′) ≤ δ. We can assume that v′ ∈ c̄0,1. By
Lemma 7.5, there exists f(u′) ∈ f([y0, y1]) such that d(f(u′), v′) ≤ C2. By (5) we have
d(u, u′) ≤

(
1

4Dd(f(u), f(u′)) + 14D
4D

)
, hence d(u, u′) ≤ 1

4D (d(f(u), v) + d(v, v′) + d(v′, f(u′)))+
14D
4D , and therefore,

d(u, u′) ≤ 1

4D
(C1 + δ + C2) +

14D

4D
,

thus, d(u, u′) ≤ 1
4D (40δ + 32D). We conclude that G(Γ, S) is δ′ := 8

(
5δ
D + 4

)
-hyperbolic.
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×
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v′f(u′)

G(Γ, S) X

Figure 7.3: G(Γ, S) is δ′-hyperbolic

7.2 Finitely presented groups

Let us consider a marked group (Γ, S) with its marking ϕΓ,S : Fk → Γ. We then have
Γ ' Fk/KerϕΓ,S.

Definition 7.6. A group Γ is finitely presented if there exists a finite generating set S
such that KerϕΓ,S = 〈〈r1, · · · , rn〉〉 is finitely generated as a normal subgroup. We write

Γ = 〈e1, · · · , ek | r1, · · · , rn〉.

.

Notice that when Γ = 〈e1, · · · , ek | r1, · · · , rn〉, then we have Γ ' Fk/〈〈r1, · · · , rn〉〉.

Examples 7.7. 1. Z2 = 〈a, b | aba−1b−1〉.

2. If M is a genus g surface, g ≥ 2, then

π1(M) = 〈a1, b1, · · · , ag, bg |Πg
i=1[ai, bi]〉.

We set
Bp(3) := {g ∈ Fp | dSp(e, g) = 2, or 3}, (8)

where dSp is the distance on the Cayley graph of the non abelian free group Fp on p

generators and Sp := {e±1
1 , · · · , e±1

p } the associated generating set.
The next classical proposition says that if (Γ, S) is a δ-hyperbolic group, then there exists
a presentation of Γ with relations being words of length less than or equal to 3. Before
stating it, let us define, for every δ-hyperbolic group (Γ, S), the “augmented generating
set” as follows.
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Definition 7.8. ΣS := {γ ∈ Γ \ {e} | dS(e, γ) < 4δ + 2}.

Notice that ΣS is a generating set of Γ since S ⊂ ΣS .

Proposition 7.9 ([CDP90], Theorem 2.5, Chapter 5). Let (Γ, S) be a δ-hyperbolic group
and ΣS the augmented generating set. We set p := #ΣS and RΓ,ΣS := KerϕΓ,ΣS

∩Bp(3).
Then, KerϕΓ,ΣS

= 〈〈RΓ,ΣS
〉〉, in particular Γ is finitely presented.

Remark 7.10. By definition of ΣS, p := #ΣS is bounded above in term of #S and δ,
hence by the above proposition the same is true for the number of relations #RΓ,ΣS of the
presentation of (Γ,ΣS). This fact will be used to show that the number of isomorphism
classes of marked groups such as (Γ, S) is bounded above by a function depending on #S
and δ.

We now define the family of δ-hyperbolic groups having a generating set with bounded
cardinality. In what follows, we fix δ > 0.

Definition 7.11. We define MGk as the class of marked group (Γ, S) such that (Γ, S)
is δ-hyperbolic and #S ≤ k.

Since we are interested in groups up to isomorphism, we consider the following

Definition 7.12. We define Gk as the set of groups Γ such that there exists a generating
set S with (Γ, S) ∈MGk.

Recall that we write (Γ, S) ' (Γ′, S′) when the marked groups (Γ, S) and (Γ′, S′) are
isomorphic, cf. Definition 7.2. We will also write Γ ∼ Γ′ when Γ and Γ′ are isomorphic.
The set of corresponding isomorphism classes are denotedMGk/' andGk/∼ repectively.

Proposition 7.13. The set of isomorphism classes Gk/∼ contains less than

M(k) := 2Nk
Nk∑
p=3

24p2(2p−1)

elements, where Nk := 2k(k − 1)b4δ+1c.

Proof. We sketch the proof; the details can be found in [BCGS20a], Proposition 5.9. It
follows from the definitions that the map from MGk onto Gk defined by (Γ, S) 7−→ Γ
induces a surjective map MGk/' −→ Gk/∼, therefore

#(Gk/∼) ≤ #(MGk/') . (9)

Proposition 7.13 then amounts to finding a bound of #(MGk/'). In order to find such
a bound, we will construct a finite to one map from MGk/' to a finite set.
We first notice that for every (Γ, S) ∈ MGk the cardinality of the generating set ΣS

introduced in Definition 7.8 is bounded above by the number of elements of the ball of
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radius b4δ+ 2c of the Cayley graph of the non abelian free group Fk with respect to the
standard set of generators. Therefore,

#ΣS ≤ 1 +

b4δ+2c∑
i=1

k(k − 1)i−1 ≤ Nk := 2k(k − 1)b4δ+1c (10)

since 1 +X + · · ·+Xn ≤ 2Xn − 1 and by (10), the marked group (Γ,ΣS) then belongs
to MGNk .
We now give several claims which will lead to the construction of a map from MGk/'
to a finite set. We will then sketch the proofs of the claims.

Claim 7.14. The map ψ : MGk → MGNk , defined by ψ((Γ, S)) := (Γ,ΣS), induces a
map ψ̄ : MGk/' →MGNk/'.

For every (Γ,Σ) ∈ MGNk we set p(Σ) := #Σ. Recall that RΓ,Σ = KerϕΓ,Σ ∩Bp(Σ)(3),
where ϕΓ,Σ is the marking of (Γ,Σ). For p ∈ N, we denote by A(p) the set of all subsets
of Bp(3), where Bp(3) has been defined in (8) and we set

A := ∪Nkp=3{p} × A(p).

Claim 7.15. The map Φ : MGNk → A defined by Φ((Γ,Σ)) := (p(Σ),RΓ,Σ) induces a
map Φ̄ : MGNk/' → A. Moreover, Φ̄|Imψ̄ is injective, where Φ̄|Imψ̄ denotes the restriction

of Φ̄ to Imψ̄ = ψ̄(MGk/').

By claims 7.14 and 7.15, the map Φ ◦ ψ : MGk
ψ−→ MGNk

Φ−→ A induces a composed
map Φ̄ ◦ ψ̄,

MGk/'
ψ̄−→MGNk/'

Φ̄−→ A.

We now show that the map Φ̄ ◦ ψ̄ : MGk/' → A is finite to one.
We observe first that for every (Γ,Σ) ∈MGNk , we have

ψ−1({(Γ,Σ)}) = {(Γ, S) ∈MGk |ΣS = Σ}

hence,

ψ−1({(Γ,Σ)}) ⊂ {(Γ, S) ∈MGk |S ⊂ Σ}.

Therefore, #ψ−1((Γ,Σ)) ≤ 2Nk .
We now denote by [(Γ,Σ)] the isomorphism class of (Γ,Σ) ∈MGNk , and we choose some
(Γ′, S′) ∈MGk such that

[(Γ′, S′)] ∈ ψ̄−1({[(Γ,Σ)]}).

By definition, ψ((Γ′, S′)) = (Γ′,ΣS′) is isomorphic to (Γ,Σ). The isomorphism

β : (Γ′,ΣS′)→ (Γ,Σ)

sends (Γ′, S′) on (Γ, S) for some S ⊂ Σ such that Σ = ΣS thus, (Γ, S) ∈ ψ−1({(Γ,Σ)}).
We have shown that each isomorphism class in ψ̄−1({[(Γ,Σ)]}) contains a representative
(Γ, S) in ψ−1({(Γ,Σ)}), hence, #(ψ̄−1({[(Γ,Σ)]})) ≤ #(ψ−1({(Γ,Σ)})) ≤ 2Nk .
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We deduce from the second part of claim 7.15 that the map φ̄ ◦ ψ̄ is 2Nk -to-one, hence

#(MGk/') ≤ 2Nk #A = M(k), (11)

since #A =
∑Nk

p=3 24p2(2p−1).
It remains to sketch the proof of the claims. The claim 7.14 is a direct consequence
of the fact that an isomorphism between (Γ, S) and (Γ′, S) induces an isometry be-
tween the corresponding Cayley graphs of (Γ, S) and (Γ′, S′). In order to prove the first
part of the claim 7.15, we consider two isomorphic marked groups (Γ,Σ) and (Γ′,Σ′)
with marking ϕΓ,Σ and ϕΓ′,Σ′ respectively. We observe that ϕΓ′,Σ = β ◦ ϕΓ,Σ where β
is the isomorphism between (Γ,Σ) and (Γ′,Σ′). This implies that p(Σ) = p(Σ′) and
that KerϕΓ,Σ = KerϕΓ′,Σ′ , therefore RΓ,Σ = RΓ′,Σ′ and Φ((Γ,Σ)) = Φ((Γ′,Σ′)). This
concludes the proof of the claims. Proposition 7.13 follows from (9) and (11).

7.3 Finiteness Theorem

In this section we state a Finiteness Theorem. We will assume that the metric space
(X, d) is geodesically complete, non elementary δ-hyperbolic and Busemann. LetH(δ,H,D)
be the set of torsion free groups Γ which admit a proper and discontinuous action
on a metric space satisfying the above properties and such that diamX/Γ ≤ D and
Ent(X, d) ≤ H. The set of isomorphism classes of groups in H(δ,H,D) is denoted by
H(δ,H,D)/∼.
A first step toward the finiteness theorem is to show that every group Γ ∈ H(δ,H,D)
has a generating set with bounded cardinal. We first recall the following property from
Lecture 5, Proposition 5.13.

Proposition 7.16. Let (X, d) be a non elementary δ-hyperbolic space and a group Γ
acting properly by isometries on (X, d). Assume that diam(X/Γ) ≤ D and Ent(X, d) ≤
H. Then there exists x0 ∈ X such that

sysΓ(x0) ≥ ε0(δ,H,D).

Theorem 7.17. Given δ,H,D, let ε0 := ε0(δ,H,D) be as in Proposition 7.16 and
let Γ be a torsion free group acting properly on (X, d), a non elementary δ-hyperbolic
Busemann space. Then, there exists x0 ∈ X such that

#S6D(x0) ≤ n0(δ,H,D),

where n0(δ,H,D) := 11
2 3

25
4

(
6D
ε0

) 25
4
exp

(
18H(11D + 20δ)6D

ε0

)
.

Proof. Let x0 ∈ X be as in Proposition 7.16. In particular, for every γ ∈ Γ \ {Id}, we
have

d(x0, γx0) ≥ ε0(δ,H,D). (12)

It follows from (12) that µΓ
x0

(B(x0, ε0)) = 1. Applying the Bishop–Gromov Theorem for
small radii, Theorem 4.3 with (r,R) replaced by (ε0, 6D), we then deduce

#S6D(x0) =
µΓ
x0

(B(x0, 6D))

µΓ
x0

(B(x0, ε0))
≤ n0(δ,H,D).
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Theorem 7.18. H(δ,H,D)/∼ contains less than M0(δ,H,D) = 2N0
∑N0

p=1 e
4p2(p−1) el-

ements, where N0 = 2n0(n0 − 1)( 40δ
D

+35)

Proof. Let us choose x0 ∈ X such as in Theorem 7.17,

#S6D(x0) ≤ n0 := n0(δ,H,D),

where

n0(δ,H,D) =
11

2
3

25
4

(
6D

ε0

) 25
4

exp

(
18H(11D + 20δ)

6D

ε0

)
.

By Proposition 7.4, S6D(x0) is a generating set of Γ and (Γ, S6D(x0)) is δ′-hyperbolic
where δ′ = 8

(
5δ
D + 4

)
therefore, (Γ, S6D(x0)) ∈MGn0 , where we have replaced δ by δ′ in

the definition of MGn0 . Proposition 7.13 then implies that there exist less than M(n0)
such groups Γ, where

M(n0) = 2Nn0

Nn0∑
p=3

24p2(2p−1),

and
Nn0 := 2n0(n0 − 1)b4δ

′+1c = 2n0(n0 − 1)b
160δ
D

+129c,

which concludes.

8 Lecture 8

In this lecture we intend to discuss some homotopical finiteness theorem. We need to
define a new property for a proper geodesic metric space (X, d) using triangle comparison
as in figure 1.3 reproduced below.

8.1 CAT(0)-spaces

We consider, as in Lecture 1, a triangle ∆ ⊂ X and its comparison triangle ∆ ⊂ R2.

Figure 8.1: ∆ ⊂ X and ∆ ⊂ R2
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We choose a point p on the segment [b, c] and a point p̄ on the segment [b̄, c̄] dividing it
in the same ratio, that is,

d(b, p) = td(b, c) and d̄(b̄, p̄) = td̄(b̄, c̄) for t ∈ [0, 1] .

Definition 8.1. The space (X, d) is said to be CAT(0) if for every triangle ∆ and every
such point p ∈ ∆ we have,

d(a, p) ≤ d̄(ā, p̄) .

Remarks 8.2. i) The interested reader is referred to [BH99] for a full treatment of
the notion of CAT(κ)-spaces for κ ∈ R.

ii) Contrarily to δ-hyperbolicity, the CAT(0) property imposes some local restrictions.

Exercises 8.3. 1. Show that CAT(0)-spaces are Busemann. The converse is not true
in general, see [BH99] p.169.

2. Show that a CAT(−1)-space is δ-hyperbolic and compute δ.

Notice that in a CAT(0)-space metric balls are contractible. We can also localise this
notion, more precisely

Definition 8.4. The space (X, d) is said to be locally CAT(0) if for all x ∈ X, there
exists a neighbourhood Ux of x such that every triangle included in Ux satisfies the
CAT(0) property.

Let us recall that we always assume that (X, d) satisfies the property of extension of
geodesics. We then get

Lemma 8.5 (see [BH99]). Every locally CAT(0) metric space admits a universal cover
which is CAT(0) and is geodesically complete.

Let us now choose three real numbers δ ≥ 0, H > 0 and D > 0.

Definition 8.6. We consider compact, connected, metric spaces (Y, d) which are locally
CAT(0), with diam(Y, d) ≤ D, and which have a δ-hyperbolic universal cover whose
entropy is not greater than H. We denote this space by M(δ,H,D) .

The following theorem is an easy consequence of Theorem 7.18.

Theorem 8.7. With the above notations, we have the following.

i) The number of fundamental groups, up to isomorphisms, of elements ofM(δ,H,D)
is bounded above by M0(δ,H,D).

ii) The number of elements of M(δ,H,D), up to homotopy equivalence, is bounded
above by M0(δ,H,D).

The function M0(δ,H,D) is described more precisely in Theorem 7.18.
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Proof. We just have to check that the hypotheses of Theorem 7.18 are satisfied.
i) The fundamental groups of elements ofM(δ,H,D) are in H(δ,H,D), the class defined
in Subsection 7.3. Notice that, on a CAT(0)-space which is Busemann, the isometries in
a fundamental group are torsion-free, see Remark 6.3.
ii) For (Y, d) ∈ M(δ,H,D), its universal cover Ỹ is contractible, hence it is a K(π, 1).
This implies that, for Y, Y ′ ∈ M(δ,H,D), having an isomorphism between π1(Y ) and
π1(Y ′) is equivalent to having an homotopy equivalence between Y and Y ′. We recall
that a homotopy equivalence between Y and Y ′ is equivalent to having two continuous
maps f : Y −→ Y ′ and g : Y ′ −→ Y such that g ◦ f is homotopic to the identity map
on Y and f ◦ g is homotopic to the identity map on Y ′.

Remark 8.8. Theorem 8.7 is certainly true when the hypothesis “locally CAT(0)” is
replaced by the hypothesis “locally Busemann”. However, we have not yet done the
proof.

8.2 Towards a compactness result

The aim of the next step is to endow M(δ,H,D) with a distance function, dGH and
show that the metric space

(
M(δ,H,D), dGH

)
is compact. Let us first recall a few facts

about the Gromov–Hausdorff distance between metric spaces.

8.2.1 Gromov–Hausdorff distance between metric spaces

Let (X, d) be a general metric space and A,B ⊂ X two compact subsets. We define the
Hausdorff distance dX,H(A,B) between subsets A and B of X by,

dX,H(A,B) = inf
{
ε > 0 ; A ⊂ Bε and B ⊂ Aε

}
,

where Aε =
{
x ∈ X ; d(x,A) ≤ ε

}
.

Now let (X, dX) and (Y, dY ) be two compact metric spaces. We consider metric spaces
(Z, dZ) such that there exist two isometric embeddings,

i : X −→ Z and j : Y −→ Z

and define
dGH(X,Y ) = inf

Z,i,j

{
dZ,H

(
i(X), j(Y )

)}
.

Here dZ,H is the Hausdorff distance between compact subsets of Z.

Exercise 8.9. Prove that such spaces Z always exist and that dGH is a distance.

The strength of this definition is clear in the following proposition

Proposition 8.10. The set M of compact length spaces (modulo isometries) endowed
with dGH is complete.
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Remarks 8.11. 1) Notice that M is a set.
2) This proposition is left to the reader. Completeness in this situation is tricky but not
difficult.

Obviously this definition is not really convenient since we have to know all possible
metric spaces Z. We thus turn to the standard more effective alternative approach.

Definitions 8.12. An ε-approximation between two metric spaces (X, dX) and (Y, dY )
is given by two maps ϕ : X → Y and ψ : Y → X which are ε-almost reciprocal, i.e.
such that dY

(
y, ϕ ◦ ψ(y)

)
< ε and dX

(
x, ψ ◦ ϕ(x)

)
< ε for all (x, y) ∈ X × Y and which

furthermore satisfy:

∀x, x′ ∈ X |dY
(
ϕ(x), ϕ(x′)

)
−dX(x, x′)| < ε ; ∀y, y′ ∈ Y |dX

(
ψ(y), ψ(y′)

)
−dY (y, y′)| < ε .

A sequence
(
(Xn, dn)

)
n∈N is said to “converge in the Gromov–Hausdorff sense to (X, d)”

if there exists a sequence of positive numbers (εn)n∈N approching zero and, for every n,
an εn-approximation between (X, d) and (Xn, dn).

Remarks 8.13. 1. This notion of convergence is equivalent to convergence under the
Gromov–Hausdorff distance defined before up to multiplicative factors of εn.

2. The reader may also check yet another definition closest to the one given by Gro-
mov, in [BH99], page 72.

We now define the notion of ε-net.

Definition 8.14. An ε-net Z ⊂ X of a compact metric space (X, dX) is a finite set of

points {xi}i∈I of X such that
⋃
i∈I

B(xi, ε) = X.

Proposition 8.15. Let D > 0 and N : (0, 1) −→ N an integer valued map. We denote
by Met(D,N) the set of all isometry classes of compact metric spaces satisfying

1. diam(M) ≤ D,

2. ∀ε, ∃Z a finite ε-net such that #Z ≤ N(ε).

Then, Met(D,N) is compact for the distance dGH .

This result is classical and not difficult, just a bit boring to describe. We then get the
following theorem.

Theorem 8.16 ([Gro07], Theorem 5.3, p.275). Let Man(n,D) be the set of isometry
classes of closed Riemannian manifolds (M, g) of dimension n such that Ric(g) ≥ −(n−
1) and diameter not greater than D. Then,Man(n,D) is relatively compact in the space
of all isometry classes of compact metrics spaces.

Remark 8.17. The proof consists in showing that Man(n,D) ⊂Met(D,N). However
it is not closed, which explains that the conclusion is only “relatively compact”.
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Proof. We need to show that, for every ε > 0, there exists an ε-net with a uniformly
bounded cardinality, independently of (M, g) ∈Man(n,D).
Now, for (M, g) ∈ Man(n,D), let ε > 0 and choose Z ⊂ M to be a maximal subset
satisfying that if z1, z2 ∈ Z, z1 6= z2 then dg(z1, z2) > ε, where dg denotes the distance
in M induced by the metric g. This is a maximal packing by balls of radius ε/2. Notice
that there might be several subset Z and we choose one. The balls B(z, ε/2) ⊂ M , for
z ∈ Z are disjoints, hence, for m ∈M ,∑

z∈Z
Vol

(
B(z, ε/2)

)
≤ Vol(M) = Vol

(
B(m,D)

)
.

As a consequence,

#Z ≤ Vol(M)

inf
z∈Z

{
Vol

(
B(z, ε/2)

)} =
Vol

(
B(z0, D)

)
Vol

(
B(z0, ε/2)

) =
Vol−1(D)

Vol−1(ε/2)
:= N(ε) .

Here Vol−1(r) denotes the volume of a ball of radius r in a simply connected real hyper-
bolic space of constant sectional curvature equal to −1. This ends the proof of Theorem
8.16.

We finish this lecture by stating one of the main theorems of [BCGS20a].

Theorem 8.18 (see [BCGS20a]). The metric space
(
M(δ,D,H), dGH

)
is compact.

Remarks 8.19. 1. Notice that in the last theorem, contrarily to Theorem 8.16, there
is no reference to any kind of dimension of the metric spaces inM(δ,D,H). How-
ever the core of the proof will show that the bound on the dimension is hidden in
the bound on H.

2. This result is certainly true with the hypothesis “Busemann” instead of “ CAT(0)”.

9 Lecture 9

In the first part of this lecture, we state a compactness Theorem for the set of isometry
classes of locally CAT(0) metric spaces with bounded diameter and universal cover δ-
hyperbolic with bounded entropy. When the metric spaces are assumed to be topological
manifolds, this leads to a topological finiteness Theorem. In the second part of the
lecture, we come back to the growth of groups and raise a few questions that we will
discuss in the last lecture.

9.1 Compactness

We define M := {(Y, d) | (Y, d) compact metric space}. In this section, for every metric
space (Y, d), we will denote by (X, d) its universal cover. In particular, we will not
distinguish the corresponding distances. We denote by M(δ,H) the set of connected,
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compact, locally CAT(0) metric spaces satisfying the property of extension of local
geodesics (see Section 4.1), which is not a circle nor a point and such that its universal
cover (X, d) is δ-hyperbolic and satisfies Ent(X, d) ≤ H. We also denote byM(δ,H,D)
the subset ofM(δ,H) of metric spaces (Y, d) such that diam(Y, d) ≤ D andM(δ,H,D)/
∼ the set of isometry classes of metric spaces in M(δ,H,D).

Theorem 9.1. The setM(δ,H)/ ∼ is complete for the Gromov–Hausdorff topology and
so is M(δ,H,D)/ ∼.

Proof. We just sketch the proof. The details can be found in [BCGS20a], Theorem 4.5.
We consider a Cauchy sequence (Yn, dn) inM(δ,H)/ ∼. Let Γn denote the fundamental
group of Yn. The following Lemma, due to G. Reviron is the main tool in the proof.

Lemma 9.2 ([Rev08]). Let (Yn, dn) be a Cauchy sequence of compact metric spaces
with universal cover (Xn, dn) and fundamental group Γn. Assume that the global sys-
tole of Γn is uniformly bounded below, sysΓn(Xn) ≥ s0 > 0. Then, (Yn, dn) converges
for the Gromov–Hausdorff topology to a compact metric space (Y, d). The limit space
(Y, d) has a universal cover (X, d) satisfying Ent(X, d) = lim Ent(Xn, dn). Moreover,
the fundamental groups of Y and Yn are isomorphic for n large enough.

Indeed, we can verify that the Cauchy sequence (Yn, dn) satisfies the hypothesis of
Lemma 9.2, therefore (Yn, dn) converges to a metric space (Y, d) and it remains to ver-
ify that (Y, d) is in M(δ,H). In order to verify the hypotheses of Lemma 9.2, we first
observe that since (Yn, dn) is locally CAT(0) and satisfies the property of extension of
geodesics, then (Yn, dn) has a universal cover (X, d) which is CAT(0), thus Busemann,
cf. [BCGS20b], Lemma 6.41. On the other hand, since the sequence (Yn, dn) is a Cauchy
sequence and the diameter is 1-Lipschitz with respect to the Gromov–Hausdorff distance,
there exists D such that diam(Yn, dn) ≤ D. Hence, (Yn, dn) ∈ M(δ,H,D) and by Lec-
ture 8, Proposition 6.5, there exists s0 := s0(δ,H,D) > 0 such that sysΓn(Xn) ≥ s0.
Lemma 9.2 then applies and (Yn, dn) converges to a compact metric space (Y, d). In
order to end the proof of Theorem 9.1, we need to show that the limit space (Y, d) is in
M(δ,H), i.e. is locally CAT(0), verifies the property of extension of local geodesics, and
has a universal cover which is δ-hyperbolic.This essentially follows from the continuity
of the distance under Gromov Hausdorff convergence and from the fact that all these
properties are defined by inequalities on expression involving the distance, we refer to
[BCGS20a], Theorem 4.5 for details. We finally observe that M(δ,H,D)/ ∼ is a closed
subset of M(δ,H) hence complete.

We now state a compactness Theorem.

Theorem 9.3. The set M(δ,H,D)/ ∼ is compact for the Gromov–Hausdorff topology.

Proof. It suffices to show thatM(δ,H,D)/ ∼ is precompact since it is already complete.
This will follow from the precompactness criterium that we describe now.
For (Y, d) a compact metric space, and ε > 0, let us denote by Nε(Y, d) be the minimal
cardinality of an ε-net of (Y, d). A subset M′ ⊂ M is precompact for the Gromov–
Hausdorff distance if and only if for every ε, there exists Nε such that for every (Y, d) ∈
M′, then Nε(Y, d) ≤ Nε.
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We now apply this criterium to M′ =M(δ,H,D). Let us consider (Y, d) ∈M(δ,H,D)
and π : (X, d) → (Y, d) the projection from the universal cover (X, d) of (Y, d). For
every ε > 0, we have Nε(Y, d) ≤ Nε(B(x,D)), where y = π(x) is any point in Y and
B(x,D) ⊂ X is the ball of radius D centered at x in X. We recall, from Lecture 4 that,
for every λ > 1,

Nε (B(x,D)) = Cover(x, ε,D)

≤ Pack
(
x,
ε

2
, D +

ε

2

)
≤ Pack

(
x, λ

ε

2
, λ
(
D +

ε

2

))
.

We deduce that for every λ such that λε
2 > D,

Nε (B(x,D)) ≤ PackΓ

(
x, λ

ε

2
−D,λ

(
D +

ε

2

))
≤

µΓ
x

(
B(x, λ(D + ε

2))
)

µΓ
x

(
B(x, λ ε2 −D))

)
≤ Pack

(
x, λ

ε

2
, λ
(
D +

ε

2

))
.

Choosing λ = 4D
ε , we get

Nε (B(x,D)) ≤
µΓ
x

(
B(x, 4D

ε (D + ε
2))
)

µΓ
x (B(x,D)))

≤ C(δ,H,D, ε),

where the last inequality comes from either Theorem 4.3 or 4.10 according to whether
4D
ε (D+ ε

2) < 12(D+2δ) or 4D
ε (D+ ε

2) ≥ 12(D+2δ) with C(δ,H,D, ε) the corresponding
constant. We therefore deduce that for every (Y, d) ∈M(δ,H,D) and ε > 0,

Nε(Y, d) ≤ Nε := C(δ,H,D, ε),

which concludes the prove of Theorem 9.3.

9.2 Topological finiteness

When we restrict the set of metric spaces under consideration to be also topological
manifolds, we show that this set contains only finitely many topological types of mani-
folds. The next definitions are due to S. Ferry and play an important role in finiteness
Theorems, [Fer94].

Definition 9.4. A continuous function ρ : [0, R[→ R+ such that ρ(0) = 0 and ρ(t) ≥ t
is a contractibility function for a metric space (Y, d) if for every y ∈ Y and every t, R
with 0 < t ≤ R, the ball B(y, t) is contractible in B(y, ρ(t)).
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We also define

Definition 9.5. Let ρ : [0, R[→ R+ be a continuous function such that ρ(0) = 0. Let
us define Mman(n, ρ) as the set of isometry classes of metric spaces (Y, d) such that Y
is a topological manifold of dimension n with ρ as a contractibility function.

Theorem 9.6 ([Fer94], Theorem 1). Let M′ ⊂Mman(n, ρ) be a subset such that M′ is
compact in M/ ∼, then M′ contains finitely many topological types of manifolds.

Let us defineMman(n, δ,H,D) the set of isometry classes of metric spaces inM(δ,H,D)
such that Y is a topological manifold of dimension n. Theorem 9.6 has the following
Corollary.

Corollary 9.7. The set Mman(n, δ,H,D) contains finitely many topological types of
manifolds.

Proof. Let π : (X, d) → (Y, d) be the universal cover of (Y, d) ∈ Mman(n, δ,H,D) and
Γ the fundamental group of Y . We have shown that the global systole of Γ is bounded
below

sysΓ(X) ≥ s0(δ,H,D) > 0.

Therefore, since X is a CAT(0)-space, for every x ∈ X, B(x, t) ⊂ X is contractible.
Moreover, for all 0 < t ≤ s0

2 the ball B(x, t) is isometric to B(y, t) ∈ Y where y = π(x),
therefore ρ(t) : [0, s02 [→ R+, defined by ρ(t) = t, can be chosen as a contractibility
function of (Y, d).

9.3 Growth and entropy of groups

Let (Γ, S) be a finitely generated group and (G(Γ, S), dS) its Cayley graph. Notice that
left multiplication induces an isometric action of Γ on (G(Γ, S), dS). We define the
entropy of Γ with respect to S by

Definition 9.8. Ent(Γ, S) = limR→∞
1
R log #{γ ∈ Γ | dS(e, γ) ≤ R} .

Notice that for a finitely generated group Γ, if Ent(Γ, S) > 0 for one generating set S,
then Ent(Γ, S) > 0 for every S, and that Ent(Γ, S) > 0 if and only if Γ has exponential
growth. On the other hand, if Γ has polynomial growth, then Ent(Γ, S) = 0 for every
generating set S.

Examples 9.9. 1. When Γ is the non abelian free group on k generators Fk and Sk the
standard generating set, Ent(Fk,Sk) = log(2k − 1).

2. When Γ = Zk, we have Ent(Zk, S) = 0 for every generating set S since Zk has
polynomial growth.

3. Let us consider the matrix A =

(
2 1
1 1

)
∈ SL(2,Z) and define the group ΓA = ZnZ2

where the product law is given by (n, (p, q)) · (n′, (p′, q′)) = (n+ n′, (p, q) + (p′, q′)An) . It
can easily be shown that ΓA is a solvable non nilpotent group of exponential growth. We
leave it as an exercise.
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However, the entropy depends on the finite generating set S and is in general impossible
to compute. Taking the infimum over all finite generating sets of a group gives the
“algebraic entropy” Ent Γ of Γ defined as follows.

Definition 9.10. Ent Γ := infS Ent(Γ, S), where S is a finite generating sets of Γ.

Answering a question of M. Gromov, Wilson constructed an example of a finitely gener-
ated group Γ of exponential i.e. Ent(Γ, S) > 0 for every finite generating set S, but with
vanishing algebraic entropy, Ent Γ = 0. On the other hand, D. V. Osin has shown that
non nilpotent solvable groups have positive algebraic entropy, cf. [Osi03]. M. Koubi also
proved that when Γ is a hyperbolic group, then Ent Γ > 0, cf. [Kou98].
The following observation is fundamental for getting lower bounds on the entropy.

Lemma 9.11. Let (Γ, S) be a finitely generated group. Assume that there exist two
elements a, b ∈ Γ generating a non abelian free subgroup of Γ. Then,

Ent(Γ, S) ≥ log 3

sup (lS(a), lS(b))
,

where lS(a) = dS(e, a) and lS(b) = dS(e, b). Similarily, if the elements a, b ∈ Γ generate
a non abelian free semi-group, we have

Ent(Γ, S) ≥ log 2

sup (lS(a), lS(b))
.

Proof. We prove the Lemma in the case where the elements a, b generate a non abelian
free group; the second case is identical. We let LS(a, b) := sup (lS(a), lS(b)). We also
write Fa,b for the non abelian free group on a and b and Sa,b the canonical generating set
of Fa,b, namely, Sa,b := {a±1, b±1}. For k ∈ N, we let BSa,b(k) := {γ ∈ Fa,b | lSa,b(γ) ≤ k}
and BS(k) := {γ ∈ Γ | lS(γ) ≤ k}, we have

BSa,b(k) ⊂ BS (LS(a, b) k) ,

therefore,

log 3 = lim
k→∞

1

k
log
(
#BSa,b(k)

)
≤ lim

k→∞

1

k
log (#BS (LS(a, b) k)) ,

hence
log 3 ≤ LS(a, b) Ent(Γ, S).

This Lemma shows that getting a lower bound on the algebraic entropy of a group Γ
amounts to finding, for every finite generating set S of Γ, two elements a, b ∈ Γ generating
a non abelian free group and with LS(a, b) not too large. For linear groups over a field
K that is, Γ ⊂ GL(n,K), the Tits alternative proves the existence of free subgroup as
soon as Γ is not virtually solvable.
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Theorem 9.12 ([Tit72]). Let Γ be a finitely generated group in GL(n,K). Then, either
Γ is virtually solvable or Γ contains a non abelian free subgroup.

In particular, non virtually solvable linear groups have exponential growth. In the fol-
lowing statement, it is shown that for non virtually solvable linear groups, one can find
pairs of elements generating non abelian free semi-groups at uniform bounded distance
from the Identity with respect to all generating sets.

Theorem 9.13 ([EMO05]). Let Γ be a finitely generated linear group GL(n,K) over a
field of characteristic 0. If Γ is not virtually solvable, there exists N ∈ N∗ such that for
every generating set S, there exists a, b ∈ BS(N) such that a, b generates a non abelian
free semi-group. In particular, the algebraic entropy of Γ is positive, Ent Γ > 0.

For solvable groups, D. V. Osin proved the following alternative,

Theorem 9.14 ([Osi03]). Let Γ be a finitely generated (non necessarily linear) group.
Then either Γ is virtually nilpotent or Γ has positive algebraic entropy.

From this discussion, we get the following corollary for linear groups Γ ∈ GL(n,K) over
a field of characteristic 0: either Γ is virtually nilpotent or Ent Γ > 0.
A natural question is whether, given a class C of groups with exponential growth, there
exists a universal positive constant C > 0 such that

Ent Γ ≥ C ,

for every group Γ ∈ C.

10 Lecture 10

In this lecture we consider the class C of groups Γ which have an action on some δ-
hyperbolic metric space (X, d) with Ent(X, d) ≤ H and such that diamX/Γ ≤ D. We
show that there exists a constant C(δ,H,D) > 0 such that the algebraic entropy of every
Γ ∈ C satisfies Ent Γ ≥ C(δ,H,D).

10.1 Algebraic entropy of groups acting on hyperbolic metric spaces

For Γ a finitely generated group, S a subset of Γ and N ∈ N, we denote by SN the set
of elements γ ∈ Γ that can be written as a product of at most N elements in S. Given
two elements a, b in Γ, we write 〈a, b〉+ the semi-group generated by a and b.

Theorem 10.1. There exists N0 := N0(δ,H,D) > 0 such that for every group Γ act-
ing properly discontinuously on a δ-hyperbolic non elementary metric space (X, d) with
Ent(X, d) ≤ H and such that diam(X, d) ≤ D, we have:

1. For every subset S of Γ such that the group 〈S〉 generated by S is not virtu-
ally cyclic, there exists γ ∈ S3N0 and σ ∈ S such that one of the semi-groups
〈γ14, σγ14σ−1〉+ or 〈γ14, σγ−14σ−1〉+ is free.
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2. The algebraic entropy of any finitely generated non virtually cyclic subgroup Γ′ ≤ Γ

Ent Γ′ ≥ log 2

42N0 + 2
.

In particular Ent Γ ≥ log 2
42N0+2 .

Proof. We sketch the proof; the details can be found in [BCGS20a], Proposition 5.18.
The proof relies on the following theorem by Breuillard–Green–Tao that we recall for
convenience.

Theorem 10.2 ([BGT12]). For every p ∈ N\{0}, there exists N(p) ∈ N\{0} such that
the following holds: for every group G and every generating set S of G, if there exists a
finite subset A ⊂ G such that

1. SN(p) ⊂ A

2. #A·A
#A ≤ p ,

then G is virtually nilpotent.

We apply Theorem 10.2 to G = 〈S〉 ≤ Γ. Let R0 := 20(D + 2δ) and x ∈ X. We define

A := {g ∈ G | d(x, gx) ≤ R0}.

By the triangle inequality, we have

A ·A ⊂ {g ∈ G | d(x, gx) ≥ 2R0},

We then have

#A ·A
#A

≤ µGx (B(x, 2R0))

µGx (B(x,R0))

≤
µΓ
x(B(x, 2R0 + R0

2 ))

µΓ
x(B(x, R0

2 ))

≤ p := p(δ,H,D) = 3 · 5
25
4 e300H(D+2δ),

where the second inequality comes from the Bishop–Gromov Theorem for subgroups,
Corollary 4.9 and the third one from the Bishop–Gromov Theorem 1.8 with (r,R) re-
placed by (R0

2 ,
5
2R0). Since the group G is not virtually cyclic, we have by Theorem

10.2
SN(p)) 6⊂ A.

Therefore, setting N0 := N0(δ,H,D) = N(p(δ,H,D)), there exists γ0 /∈ A such that

γ0 ∈ SN0 and d(x, γ0x) > R0 ≥
31δ

2
. (13)

Now, given a finite subset Σ of G, we define
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Definition 10.3. L(Σ) := infx∈X maxγ∈Σ d(x, γx), and L(γ) := L({γ}).

For a non trivial isometry γ of (X, d), we define its “asymptotic displacement” `(γ) by

Definition 10.4. `(γ) := limk→∞
d(x,γkx)

k .

The reader can easily check, using the triangle inequality, that the limit exists and does
not depend on x ∈ X. Notice that

`(γ) ≤ L(γ),

and that for k ∈ Z∗,
`(γk) = |k|`(γ). (14)

By (13), we have

L(SN0) ≥ 31δ

2
. (15)

The following Lemma says that if a subset Σ of G has a large joint displacement, then
there exists an element γ ∈ Σ3 with large asymptotic displacement.

Lemma 10.5. If L(SN0) ≥ 31δ
2 , then there exits γ1 ∈ S3N0 such that `(γ1) ≥ δ.

Proof. We skip the proof of this Lemma and refer to [BCGS20b], Theorem 4.17.

Now, since G is not virtually cyclic, there exists σ ∈ S such that the group 〈γ1, σγ1σ
−1〉

is not virtually cyclic.

Claim 10.6. One of the semi-groups 〈γ14
1 , σγ14

1 σ−1〉+ or 〈γ14
1 , σγ−14

1 σ−1〉+ is free.

The Claim corresponds to the first part of Theorem 10.1. The second part is a conse-
quence of Lemma 9.11. Let us assume for example that the semi-group 〈γ14

1 , σγ14
1 σ−1〉+

is free and write α := γ14
1 , β := σγ14

1 σ−1. Since γ1 ∈ S3N0 , we have lS(α) ≤ 14(3N0)
and lS(β) ≤ 14(3N0) + 2. By the second part of Lemma 9.11, we get

Ent(Γ, S) ≥ log 2

42N0 + 2
.

It remains to prove Claim 10.6. This Claim will be basically a consequence of the
following “ping-pong Lemma” that we now formulate in our particular setting.

Lemma 10.7. Let α, β be two hyperbolic isometries of (X, d). We assume that there
exist subsets U±α , U±β of X and x ∈ X \ (U+

α ∪ U+
β ) such that

U+
α ⊂ X \ (U−β ∪ U

+
β ),

U+
β ⊂ X \ (U−α ∪ U+

α ),

and such that αk({x} ∪ U+
β ) ⊂ U+

α and βk({x} ∪ U+
α ) ⊂ U+

β for every k ∈ N∗, then the
semi-group 〈α, β〉+ generated by α and β is free.
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Proof. We want to prove that, given a non trivial word w(α, β) in α and β, then
w(α, β) 6= Id. Let us consider a non trivial word w(α, β). We can assume without
loss of generality that the word w(α, β) starts with α. There are two cases.

1. w(α, β) = αn1βp1 · · ·αnkβpk ;

2. w(α, β) = αn1βp1 · · ·αnk

where ni, pi ∈ N∗.

α

U+
α

U+
β

α+

β+

β−

α−
U−α

U−β

β x
×

Figure 10.1: ping-pong

It is straightforward to check from the assumptions that w(α, β) · x ∈ U+
α . Therefore,

since x /∈ U+
α , we deduce that w(α, β) 6= Id.

We now briefly sketch how to deduce the claim from the ping-pong lemma. The details
can be found in [BCGS20b], Proposition 4.6 and 4.9. Writing α := γ14

1 and β := σγ14
1 σ−1,

we observe that `(α) ≥ 14δ and `(β) ≥ 14δ by Lemma 10.5 and (14). Now, the idea
is the following: since the asymptotic displacement of α and β is large with respect to
δ and since the fixed point sets {α±}, and {β±} of α, β are disjoint, one can construct
neighbourhoods of their fixed points such as in the ping-pong Lemma for {α, β} or
{α, β−1}. Given γ an isometry of (X, d) and x ∈ X, let us define the Dirichlet domain
of γ at x as

Dγ(x) := {y ∈ X | min
k∈Z

d(y, γkx) = d(y, x)},

and
U±γ (x) := ∪k∈N∗Dγ±k(x). (16)

We choose an axis cβ of β. We can show that, up to a change of orientation of α,
there is a point x on cβ which is roughly a projection of α+ onto cβ such that for every
p, q ∈ (Z∗ × Z∗) \ (Z− × Z−),

d(αpx, βqx) > max{d(x, αpx), d(x, βqx)}+ 2δ. (17)

We skip the proof of (17) and refer to [BCGS20b], Proposition 4.9, for the details. Now,
we set U±α := U±α (x) and U±β := U±β (x) and prove that the hypotheses of the Ping-Pong
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lemma 10.1 are satisfied. By definition we have x /∈ U+
α ∪U+

β and αkx ∈ U+
α , βkx ∈ U+

β

for every k ∈ N∗. Let y ∈ U+
β ∪ U

−
β . We first observe that, by definition, there exists

k ∈ Z∗ such that y ∈ Dβ(βkx) hence

d(y, βkx) ≤ d(y, x). (18)

Let us recall the quadrangle property of δ-hyperbolic metric spaces (see Section 2.1) for
the points y, αpx, x and βkx with k, p ∈ Z∗,

d(y, x) + d(αpx, βkx) ≤ max{d(y, βkx) + d(x, αpx) ; d(y, αpx) + d(x, βkx)}+ 2δ. (19)

By (17) and (19), we deduce

d(y, x) < max{d(y, βkx) ; d(y, αpx)}, (20)

and since d(y, x) ≥ d(y, βkx), we get that d(y, x) < d(x, αpx), for every p ∈ Z∗, which
means that

y ∈ Dα(x) = X \ (U+
α ∪ U−α ) .

Thus, U+
β ∪ U

−
β ⊂ X \ (U+

α ∪ U−α ). We similarly verify the same hypothesis with the
roles of α and β reversed. This proves that the hypotheses of the Ping-Pong lemma are
satisfied and concludes the proof of Theorem 10.1.

10.2 Entropy of a δ-hyperbolic space with a group action

So far, we have investigated properties of groups Γ acting by isometries on a δ-hyperbolic
metric space (X, d) such that Ent(X, d) ≤ H and diam(X/Γ). In the other way round,
we have the

Theorem 10.8. Let (X, d) be a non elementary δ-hyperbolic metric space and Γ a group
acting properly by isometries on (X, d) such that diamX/Γ ≤ D. Then

Ent(X, d) ≥ log 2

27δ + 10D
,

We skip the proof of this Theorem and refer to [BCGS20b], Proposition 5.10.
Coming back to the groups, let us consider a finitely generated group (Γ, S) which is
δ-hyperbolic with respect to the distance dS . As a direct Corollary of Theorem 10.8, we
get

Ent(Γ, S) ≥ log 2

27δ + 10
.

Example 10.9. Let us consider the regular tree of valence 4 which we see as the Cayley
graph X := G(F(α, β),S(α, β)) of the non abelian free group on two generators Γ :=
F(α, β) with respect to the generating set {α±1, β±1}. Given a > 0 and b > 0, we
define the distance da,b on X by setting the length of each edge (γ, α±1γ) equal to a and
each edge (γ, β±1γ) equal to b. For every a > 0, b > 0, the metric space (X, da,b) is
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δ-hyperbolic with δ = 0 and the group Γ = F(α, β) acts isometrically on (X, da,b). Notice
that

diam
(

(X, da,b)/Γ
)

=
a+ b

2
.

a
b

α
β

α−1

β−1

(X, da,b)

X/Γ

Figure 10.2: Example

Theorem 10.8 implies

Ent(X, da,b) ≥
log 2

5(a+ b)
.

We leave to the reader to verify that, when b = 1 is fixed, then

lim
a→0

Ent(X, da,b) = +∞,

and
lim
a→∞

Ent(X, da,b) = 0.
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France (SMF), Paris, 2015.

[EMO05] A. Eskin, S. Mozes, and H. Oh. On uniform exponential growth for linear
groups. Invent. Math., 160(1):1–30, 2005.

[Fer94] S. Ferry. Topological finiteness theorems for manifolds in Gromov-Hausdorff
space. Duke Math. Journ., 74:95–106, 1994.

[Gal83a] S. Gallot. A Sobolev Inequality and some applications, Proceedings du
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