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Mixed Sobolev-like Inequalities in Lebesgue
spaces of variable exponents and in Orlicz

spaces
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Abstract

In this short article we show a particular version of the Hedberg inequality which can be used to

derive, in a very simple manner, functional inequalities involving Sobolev and Besov spaces in the

general setting of Lebesgue spaces of variable exponents and in the framework of Orlicz spaces.
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1 Introduction and presentation of the results

We study in this article simple proofs for a family of Sobolev-like inequalities using as base
spaces the Lebesgue spaces of variable exponent and the Orlicz spaces.

Let us start recalling that, for a smooth function f : Rn −→ R with n ≥ 1 and for a positive
parameter s > 0, we can define the action of the fractional power of the Laplace operator
(−∆)

s
2 over the function f in the Fourier level by the expression

̂(−∆)
s
2 (f)(ξ) := |ξ|sf̂(ξ), (1.1)

and this definition can be extended to tempered distributions f ∈ S ′(Rn) by standard pro-
cedures (see [13, Chapter 6]). For 0 < s < +∞ and 1 < p < +∞, we can consider
the Sobolev homogeneous space Ẇ s,p(Rn) as the subset of S ′(Rn) such that the quantity
‖f‖Ẇ s,p(Rn) := ‖(−∆)

s
2 (f)‖Lp(Rn) is finite (a more precise definition of these spaces is given

in Section 2 below).

∗Laboratoire de Mathématiques et Modélisation d’Evry (LaMME) - UMR 8071. Université d’Evry Val
d’Essonne, 23 Boulevard de France, 91037 Evry Cedex, France. email: diego.chamorro@univ-evry.fr
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Now, if 1 < p < +∞ and 0 < s < n/p we have the following classical Sobolev inequality

‖f‖Lq(Rn) ≤ C‖f‖Ẇ s,p(Rn), (1.2)

where the parameter q is linked to the parameters s, p and to the dimension n by the relationship

q =
np

n− sp
(which can be rewritten as 1

q
= 1

p
− s

n
). (1.3)

Remark 1.1 The condition (1.3) above can be easily deduced from inequality (1.2) by homo-
geneity with respect to dilations: indeed consider the function fλ(x) = f(λx) with λ > 0, by a
change of variables one obtains ‖fλ‖Lq(Rn) = λ−

n
q ‖f‖Lq(Rn) and ‖fλ‖Ẇ s,p(Rn) = λs−

n
p ‖f‖Ẇ s,p(Rn).

Thus, in order to obtain the estimate (1.2) for all λ > 0, we must have the restriction
−n
q

= s− n
p
, which is exactly (1.3).

Many proofs of this inequality (1.2) are available in the litterature and this type of inequalities
has been studied in many different settings and admits several generalizations (see e.g. [4], [12]).

It is classical to link the previous estimate to the Hardy-Littlewood-Sobolev inequality: for
1 < p < +∞, 0 < s < n/p and if the parameter q is given by the relationship (1.3) above, then
we have

‖Is(f)‖Lq(Rn) ≤ C‖f‖Lp(Rn), (1.4)

where the operator Is is the Riesz potential defined in the Fourier level by the formula

Îs(f)(ξ) := |ξ|−sf̂(ξ), (1.5)

which is valid for all s > 0 such that 0 < s < n. See [13, Chapter 6] for more details.

Remark 1.2 Let us note that the Fourier representation of the fractional powers of the Laplace
operator (−∆)

s
2 given in (1.1) and of the Riesz potential Is given in (1.5) provides the following

semi-group property for 0 < s0, s1 and for 0 < s2, s3 < n such that s2 + s3 < n:

(−∆)
s0
2 [(−∆)

s1
2 (f)] = (−∆)

s0+s1
2 (f) and Is2 [Is3(f)] = Is2+s3(f). (1.6)

Moreover we have the identities

Is0 [(−∆)
s0
2 (f)] = (−∆)

s0
2 [Is0(f)] = f, for 0 < s0 < n, (1.7)

and

(−∆)
s0
2 [Is1(f)] = (−∆)

s0−s1
2 (f), for 0 < s1 < s0 < n. (1.8)

All these formulas must be taken in the sense of tempered distributions. See also [13, Exercice
6.1.1].
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With this remark at hand, the relationship between the Hardy-Littlewood-Sobolev inequal-
ity and the classical Sobolev inequality is straightforward: it is enough to consider the function
g = (−∆)

s
2 (f) in the previous estimate (1.4) and to use the definition of the operators (−∆)

s
2

and Is given in (1.1) and (1.5), as well as the identities (1.6)-(1.8) in order to obtain the in-
equality (1.2).

We recall now that the Riesz potentials Is with 0 < s < n can also be defined in the real
variable by the following expression

Is(f)(x) = C(n, s)

∫
Rn

f(y)

|x− y|n−s
dy = Ks ∗ f(x),

where the convolution kernel Ks is given by the locally integrable function Ks(x) := 1
|x|n−s (see

the book [13] for more details on the Riesz potential). It is worth noting there that, once we
have this characterization of the Riesz potential Is, we can display two easy and straightforward
proofs for the Hardy-Littlewood-Sobolev inequality (1.4), indeed, assume that 1 < p < +∞
and 0 < s < n/p:

• the first proof relies in the fact that the locally integrable function Ks(x) = 1
|x|n−s belongs

to the Lorentz space Lr,∞(Rn) with

r =
n

n− s
, (1.9)

(see Section 1.1.1. of the book [13]) and thus by the Young-O’Neil convolution inequalities
(see Theorem 1.4.24 of [13]) if we define the parameter q by the relationship

1 +
1

q
=

1

r
+

1

p
, (1.10)

we can write

‖Is(f)‖Lq(Rn) = ‖Ks ∗ f‖Lq(Rn) ≤ ‖Ks‖Lr,∞(Rn)‖f‖Lp(Rn) (1.11)

≤ C‖f‖Lp(Rn),

which is the Hardy-Littlewood-Sobolev inequality (1.4). Note that with the definition of
the parameter r given in (1.9) and with the relationship (1.10) above, we readily obtain
the condition (1.3) between the indexes p, q, s and the dimension n.

• the second proof uses two ingredients: first, the boundedness of the Hardy-Littlewood
maximal function M on Lebesgue spaces. Indeed, we recall here that for a locally in-
tegrable function f : Rn −→ R, the Hardy-Littlewood maximal function of f is given
by

M(f)(x) = sup
B3x

1

|B|

∫
B

|f(y)|dy, where B is an open ball of Rn, (1.12)

and then, for 1 < p ≤ +∞, we have the following boundedness property

‖M(f)‖Lp(Rn) ≤ C‖f‖Lp(Rn). (1.13)
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The second ingredient is given by the Hedberg inequality [14] which reads as follows (for
0 < s < n/p):

|Is(f)(x)| ≤ CM(f)(x)1−
sp
n ‖f‖

sp
n

Lp(Rn). (1.14)

Thus, taking the Lq-norm on the both sides of this estimate, we obtain

‖Is(f)‖Lq(Rn) ≤ C‖M(f)1−
sp
n ‖Lq(Rn)‖f‖

sp
n

Lp(Rn),

since we have
‖M(f)1−

sp
n ‖Lq(Rn) = ‖M(f)‖1−

sp
n

Lq(1−
sp
n )(Rn)

,

and noting that by the condition (1.3) we have the identity q(1− sp
n

) = p, then we obtain

‖Is(f)‖Lq(Rn) ≤ C‖M(f)‖1−
sp
n

Lp(Rn)‖f‖
sp
n

Lp(Rn),

thus, using the boundedness of the maximal function (1.13) in the Lebesgue spaces we
finally obtain

‖Is(f)‖Lq(Rn) ≤ C‖M(f)‖1−
sp
n

Lp(Rn)‖f‖
sp
n

Lp(Rn) ≤ C ′‖f‖1−
sp
n

Lp(Rn)‖f‖
sp
n

Lp(Rn)

≤ C ′‖f‖Lp(Rn),

which is the Hardy-Littlewood-Sobolev inequality (1.4).

Each one of these proofs has interesting applications and corollaries, and the aim of this article
is to develop a variant of the Hedberg inequality (1.14) in order to study particular versions of
the Sobolev inequalities in two different frameworks: the Lebesgue spaces of variable exponent
and the Orlicz spaces.

The framework of Lebesgue spaces of variable exponent

We are interested here to study some functional inequalities in the setting of the Lebesgue
spaces of variable exponents Lp(·)(Rn) which are defined as follows: first consider a function
p : Rn −→ [1,+∞], we will say that p ∈ P(Rn) if p(·) is a measurable function and we define

p− = inf ess
x∈Rn

{p(x)} and p+ = sup ess
x∈Rn

{p(x)}.

In order to distinguish between variable and constant exponents, we will always denote exponent
functions by p(·), moreover, for the sake of simplicity and to avoid technicalities, we will always
assume here that we have

1 < p− ≤ p+ < +∞.
Then, for f : Rn −→ R a measurable function we consider the modular function %p(·) associated
with p ∈ P(Rn) by the expression

%p(·)(f) =

∫
Rn
|f(x)|p(x)dx.
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Of course, if the function p(·) is constant we obtain the classical Lebesgue spaces and we can
derive from the modular function %p a norm defined by

‖f‖Lp(Rn) =

(∫
Rn
|f(x)|pdx

) 1
p

.

As we can easily guess from the fact that p(·) is a function, we cannot simply replace in the
previous formula the constant exponent 1

p
outside the integral by 1

p(·) and in order to overcome
this issue we consider the Luxemburg norm given by the expression

‖f‖Lp(·)(Rn) = inf{λ > 0 : %p(·)(f/λ) ≤ 1}, (1.15)

and we will define the spaces Lp(·)(Rn) as the set of measurable functions such that the quantity
‖ · ‖Lp(·)(Rn) is finite.

Although the spaces Lp(·)(Rn) have some nice structural properties (derived from the fact
that they are normed spaces, see the books [8], [10] for more details), some of the usual tools
between these spaces are delicate to use and thus, if we want to study Sobolev or Hardy-
Littlewood-Sobolev inequalities in this framework, some slightly different ideas must be used.

For example, the approach based in convolution given in (1.11) seems hard to display as
the Young inequalities for convolution are not available in general, indeed, if p ∈ P(Rn), it is
known that the estimate

‖f ∗ g‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn)‖g‖L1(Rn),

holds true for all f ∈ Lp(·)(Rn) and all g ∈ L1(Rn) if and only if p(·) is constant. See Corollary
3.6.4 of [10], see also Theorem 5.19 and Example 5.21 of the book [8] for a proof of this fact.
However, let us mention for the sake of completeness that some weak versions of this convolu-
tion inequality are available: see Proposition 5.20 of [8], or Theorem 3.6.5 of [10].

On the other hand, a direct adaptation of the Hedberg inequality (1.14) to this framework
will inevitably introduce some variable exponents which have to be studied carefully and make
the proof much harder. Moreover, some extra assumptions on the function p(·) are needed
to obtain the boundedness of the Hardy-Littlewood maximal operator M (which is the key
argument of this approach). Indeed, we will say that a measurable function p ∈ P(Rn) belongs
to the class P log(Rn) if we have∣∣∣∣ 1

p(x)
− 1

p(y)

∣∣∣∣ ≤ C

log(e+ 1/|x− y|)
for all x, y ∈ Rn,

and if ∣∣∣∣ 1

p(x)
− 1

p∞

∣∣∣∣ ≤ C

log(e+ |x|)
for all x ∈ Rn,
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where 1
p∞

= lim
|x|→+∞

1
p(x)

. See Definition 4.1.1 and Definition 4.1.4 of [10].

Thus the condition p ∈ P log(Rn) ensures the fact that the Hardy-Littlewood maximal
function is bounded in the Lebesgue spaces of variable exponents:

‖M(f)‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn), p ∈ P log(Rn).

See Theorem 4.3.8 of [10] for a proof of this estimate.

With this boundedness property, it is possible to generalize the Hedberg inequality in the
setting of the Lebesgue spaces of variable exponents. This strategy to obtain Hardy-Littlewood-
Sobolev inequalities was (to the best of our knowledge) first displayed in [5]: if 0 < s < n/p+

is a parameter and if p ∈ P log(Rn) is a measurable function such that 1 < p− ≤ p+ < +∞ then
we have the inequality

‖Is(f)‖Lq(·)(Rn) ≤ C‖f‖Lp(·)(Rn), (1.16)

where the function q(·) is given pointwise by the relationship

1

q(x)
=

1

p(x)
− s

n
, (1.17)

and we can see that this previous condition is the “variable exponent” version of the relationship
(1.3) stated before. Of course, from this estimate and using standard arguments we can derive
the usual Sobolev inequality in the setting of Lebesgue spaces of variable exponents:

‖f‖Lq(·)(Rn) ≤ C‖f‖Ẇ s,p(·)(Rn),

where we have ‖f‖Ẇ s,p(·)(Rn) := ‖(−∆)
s
2 (f)‖Lp(·)(Rn).

Let us remark that in order to obtain (1.16), the authors of [5] develop a very interesting
theory related to fractional maximal functions. In particular, they use some local1 Hedberg-like
inequalities for this type of operators (see the details in Proposition 3.3 of [5]) since unbounded
versions of these arguments introduce some problems as mentioned in Example 3.4 of the cited
article.

To circumvene these problems, another proof of the Hardy-Littlewood-Sobolev inequalities
was given in the book [10] and it relies in a different version of the Hedberg estimate. Indeed,
under the condition (1.17) above for the functions p(·), q(·) and with p ∈ P log(Rn), the following
inequality (see [10, Lemma 6.1.8.]) is obtained for functions such that ‖f‖Lp(·) ≤ 1:

|Is(f)(x)|q(x) ≤ CM(f)(x)p(x) + h(x), x ∈ Rn, (1.18)

where q(·) satisfies (1.17) and h ∈ L1 ∩ L∞(Rn) is of the following form

h(x) 'M
(
(e+ |x|)−n

)
(x)p

−
+ (e+ |x|)−m, with m > n.

1i.e. in bounded domains.
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As we can see, this version (1.18) of the Hedberg inequality in the setting of Lebesgue spaces
of variable exponents is slightly different from (1.14) as a function h appears in the right-hand
side. However, and despite of this extra term, with the pointwise inequality (1.18) the estimate
(1.16) can be easily deduced (see [10, Theorem 6.1.9.]).

In this article we will present a simpler version of the Hedberg inequality that will lead us
to a mixed variable-constant Sobolev inequality.

Presentation of our results

Our main result gives an alternative version of the Hedberg inequality (1.14) which is, to our
belief, more natural than (1.18) in view to obtain generalized Sobolev embeddings:

Theorem 1 (Modified Hedberg Inequality) Consider two positive parameters s, s1 such
that 0 < s1 < s < n and consider a smooth measurable function f : Rn −→ R that belongs to
the Besov space Ḃ−β,∞∞ (Rn) for some β > 0. Then we have the following version of the Hedberg
inequality

|(−∆)
s1
2 (f)(x)|

1
1−θ ≤ CM

(
(−∆)

s
2 (f)

)
(x)‖f‖

θ
1−θ

Ḃ−β,∞∞ (Rn)
, (1.19)

where the parameter 0 < θ < 1 is given by the relationship

s− s1
β + s

= θ.

Let us note that, contrary to the usual Hedberg inequality (1.14) or to the version (1.18) with
variable exponents given above, all the exponents here depend only on the parameters s, s1 and
β which are constants. Note also that the Lebesgue norm ‖ · ‖Lp(Rn) in (1.14) is now replaced
by a Besov norm ‖ · ‖Ḃ−β,∞∞

which will allows us to perform simpler computations. See formula
(2.28) below for a precise definition of this Besov space.

This inequality will lead us, via simple arguments, to the following estimate.

Theorem 2 (Sobolev-like inequalities) Let p ∈ P log(Rn) with 1 < p− ≤ p+ < +∞ and
let 0 < s < n/p+. Consider f : Rn −→ R a measurable function such that f ∈ Ẇ s,p(·)(Rn)
and f ∈ Ḃ−β,∞∞ (Rn) for some β > 0. For any fixed s1 ≥ 0 such that 0 ≤ s1 < s we define

θ = s−s1
β+s

< 1 and q(·) = p(·)
1−θ . Then we have f ∈ Ẇ s1,q(·)(Rn) and the following inequality holds

‖f‖Ẇ s1,q(·)(Rn) ≤ C‖f‖1−θ
Ẇ s,p(·)(Rn)‖f‖

θ

Ḃ−β,∞∞ (Rn).

This type of inequalities are quite useful in the field of PDEs and can be inserted in the global
family of Gagliardo-Nirenberg estimates. In the classical setting of constant coefficients, these
estimates are more precise and robust than the usual Sobolev inequalities and they are often
known as improved Sobolev inequalities or refined Sobolev inequalites, see [2], [16], [12] and the
references there in for some applications of these estimates.
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In the setting of Lebesgue spaces of variable exponents, we will give two different proofs of
this inequality: the first proof will use the modified Hedgberg inequality (1.19) above while the
second proof will use the Littlewood-Paley theory and it will be given in the Appendix A.

To the best of our knowledge these results are new in the setting of Lebesgue spaces of
variable exponents (and in the setting of Orlicz spaces that will be studied in Section 6 below)
and we will see that we can derive from these estimates some inequalities that may have their
own interest.

Indeed, if p ∈ P log(Rn) is a variable exponent with 1 < p− ≤ p+ < +∞ and 1 < p < +∞
is a constant, we consider the intersection space Lp(·)p (Rn) := Lp(·)(Rn) ∩ Lp(Rn), that can be
normed by quantity

‖ · ‖Lp(·)p (Rn) = max{‖ · ‖Lp(·)(Rn), ‖ · ‖Lp(Rn)}, (1.20)

of course, if p(·) = p, we have Lp(·)p (Rn) = Lp(Rn).

In the same spirit, with p(·) and p as above and for 0 < s < +∞ we define the mixed-

norm Sobolev space Ṡs,p(·)p (Rn) := Ẇ s,p(·)(Rn) ∩ Ẇ s,p(Rn), which can be characterized by the
functional

‖ · ‖Ṡs,p(·)p (Rn) = max{‖ · ‖Ẇ s,p(·)(Rn), ‖ · ‖Ẇ s,p(Rn)}. (1.21)

With this notation, a simple corollary of the previous theorem is the following one:

Theorem 3 (Mixed Sobolev inequalities) Consider a constant exponent 1 < p < +∞
and a variable exponent p ∈ P log(Rn) such that 1 < p− ≤ p+ < +∞ and fix a parameter

0 < s < min{n/p+, n/p}. Assume that f ∈ Ṡs,p(·)p (Rn), then we have the inequality

‖f‖Lσ(·)(Rn) ≤ C‖f‖Ṡs,p(·)p (Rn),

where θ = sp
n

and where the function σ(·) satisfies the following condition

σ(·) =
np(·)
n− sp

. (1.22)

Another corollary of Theorem 2 is the following:

Theorem 4 (Mixed Hardy-Littlewood-Sobolev inequalities) Consider a constant expo-
nent 1 < p < +∞ and a variable exponent p ∈ P log(Rn) such that 1 < p− ≤ p+ < +∞ and fix

a parameter 0 < s < min{n/p+, n/p}. Assume that f ∈ Lp(·)p (Rn), then we have the inequality

‖Is(f)‖Lσ(·)(Rn) ≤ C‖f‖Lp(·)p (Rn), (1.23)

where θ = sp
n

and the function σ(·) satisfies the same condition (1.22).
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Let us remark that if we set p(·) = p we recover the classical Sobolev inequalities (1.2) in the
framework of usual Lebesgue spaces. We note also that, since no simple description seems to be
available in unbounded domains of the intersection of a classical Lebesgue space with a variable
exponent one (here p needs not to be related to p− or p+), we believe that these mixed-norm
results can be useful in some applications.

Outline of the article

The plan of the article is the following: in Section 2 we introduce the Lebesgue spaces of variable
exponents and their main properties, in Section 3 we give a proof for Theorem 1. In Section 4
we give the proofs of Theorem 2 and in Section 5 we give the proofs of Theorem 3 and 4. In
Section 6 we study these results in the framework of Orlicz spaces and finally in Section 7 we
will give some possible extensions of our work.

2 Functional spaces of variable exponents

We give in this section the precise definition of all the functional spaces involved in our theorems.

• Lebesgue spaces of variable exponents. We have already seen in the introduction
that for a measurable function p ∈ P(Rn) we can define the Lebesgue space Lp(·)(Rn) as
the set of measurable such that the Luxemburg norm ‖ · ‖Lp(·)(Rn) given in (1.15) is finite.
Here are some useful properties of these spaces:

(i) As the quantity ‖ · ‖Lp(·)(Rn) is a norm, for all constant λ ∈ R we obviously have the
identity

‖λf‖Lp(·)(Rn) = |λ| ‖f‖Lp(·)(Rn). (2.24)

(ii) The Luxemburg norm is order preserving: if f, g ∈ Lp(·)(Rn) are such that |f | ≤ |g|
a.e., then we have

‖f‖Lp(·)(Rn) ≤ ‖g‖Lp(·)(Rn), (2.25)

see [8, Proposition 2.7].

(iii) Another particular feature of the Luxemburg norm for Lebesgue spaces of variable
exponent is the following: for all real parameter α > 0 such that 1

p−
≤ α < +∞, we

have the identity
‖|f |α‖Lp(·)(Rn) = ‖f‖αLαp(·)(Rn). (2.26)

See [8, Proposition 2.18] for a proof of this fact.

For a more detailed study of these spaces see the books [8] and [10].

• Sobolev spaces. For a measurable function p ∈ P(Rn) such that 1 < p− ≤ p+ < +∞
and for a positive index 0 < s < n/p+, we define the Sobolev spaces Ẇ s,p(·)(Rn) as the
closure of smooth functions with respect to the functional ‖ · ‖Ẇ s,p(·) which is given by:

‖f‖Ẇ s,p(·)(Rn) = ‖(−∆)
s
2 (f)‖Lp(·)(Rn). (2.27)
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Now, if k is an integer and if we have n
p+

+ k < s < n
p+

+ k + 1, then we shall define

the homogeneous Sobolev space Ẇ s,p(·)(Rn) as the set of tempered distributions, modulo
polynomials of degree k, such that quantity (2.27) is finite.

This precaution in the definition of the homogeneous Sobolev spaces is necessary because
the functional (2.27) is only a semi-norm. Remark in particular that we always have the
condition 0 < s < n/p+ in our results. Of course this definition remains the same for
Sobolev spaces of constant exponents.

• Besov spaces. There are many different (and equivalent) ways to define these spaces and
we will use the following thermic characterization. Indeed, we will define the Besov spaces
of indices (−β,∞,∞) that appear in the previous inequalities as the set of tempered
distributions such that the quantity

‖f‖Ḃ−β,∞∞ (Rn) = sup
t>0

t
β
2 ‖ht ∗ f‖L∞(Rn), (2.28)

if finite. In the previous formula ht is the heat (or gaussian) kernel. See [13], [19] or [21]
for more details and equivalent characterization of Besov spaces. Among many properties
of the functional ‖ · ‖Ḃ−β,∞∞

defined above, we will use the following property which is valid
for any s > 0:

‖(−∆)
s
2 (f)‖Ḃ−β−s,∞∞ (Rn) ' ‖f‖Ḃ−β,∞∞ (Rn). (2.29)

3 Proof of Theorem 1

Recall that we have 0 < s1 < s. We start using the Riemann-Liouville characterization of the
positive powers of the Laplacian: for any integer k > s/2 > s1/2 > 0 we can write

(−∆)
s1
2 (f)(x) =

1

Γ(k − s1/2)

∫ +∞

0

tk−
s1
2
−1(−∆)k(ht ∗ f)(x)dt,

where ht(x) = 1

(4πt)
n
2
e−
|x|2
4t with t > 0 is the usual gaussian kernel. Now, by introducing a

cut-off parameter T that will be defined below we have

|(−∆)
s1
2 (f)(x)| ≤ 1

Γ(k − s1/2)

(∫ T

0

tk−
s1
2
−1|(−∆)k(ht ∗ f)(x)|dt

+

∫ +∞

T

tk−
s1
2
−1|(−∆)k(ht ∗ f)(x)|dt

)
. (3.30)

We will study these two integral separately and first we will use the following classical result:

Lemma 3.1 Let f ∈ L1
loc(Rn) and ϕ ∈ S(Rn). We denote by Mϕ(f) the maximal function of

f (with respect to ϕ) which is given by the expression

Mϕ(f)(x) = sup
t>0
{|f ∗ ϕt(x)|}, with ϕt(x) = t−n/2ϕ(t−1/2x).
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If the function ϕ is such that |ϕ(x)| ≤ C(1+ |x|)−n−ε for some ε > 0, then we have the following
pointwise inequality

Mϕ(f)(x) ≤ CM(f)(x),

where M(f) is the Hardy-Littlewood maximal function defined by (1.12).

For a proof of this lemma see [13, Theorem 2.1.10].

With this lemma in mind we will study the terms inside the first integral of (3.30). Indeed,
since k > s/2, we remark that we have the identity

(−∆)k(ht ∗ f) = (−∆)k−
s
2 (ht) ∗ (−∆)

s
2 (f).

Now, by homogeneity we obtain the identity

(−∆)k−
s
2 (ht)(x) = t−k+

s
2

(
(−∆)k−

s
2ht
)
(x),

and if we denote the function ϕt by

ϕt(x) =
(
(−∆)k−

s
2ht
)
(x),

we have that ϕt(x) = t−n/2ϕ(t−1/2x), moreover, since the heat kernel ht is a smooth function,
with the previous notation we obtain the estimate |ϕ(x)| ≤ C(1 + |x|)−n−ε. Then we can write

(−∆)k(ht ∗ f)(x) = t−k+
s
2ϕt ∗ (−∆)

s
2 (f)(x),

and applying the Lemma 3.1 we have the following pointwise inequality

|(−∆)k(ht ∗ f)(x)| = t−k+
s
2 |ϕt ∗ (−∆)

s
2 (f)(x)|

≤ t−k+
s
2 sup
t>0
{|ϕt ∗ (−∆)

s
2 (f)(x)|} = t−k+

s
2Mϕ(f)(x)

≤ Ct−k+
s
2M

(
(−∆)

s
2 (f)

)
(x). (3.31)

Next, we study the terms inside the second integral of (3.30) and we simply use the fact that

|(−∆)k(ht ∗ f)(x)| = |ht ∗ (−∆)k(f)(x)| ≤ Ct
−β−2k

2 ‖(−∆)k(f)‖Ḃ−β−2k,∞
∞ (Rn),

which is a consequence of the definition (2.28) of the Besov spaces Ḃ−β−2k,∞∞ (Rn). Then we use
the equivalence (2.29) to obtain

|(−∆)k(ht ∗ f)(x)| ≤ Ct
−β−2k

2 ‖f‖Ḃ−β,∞∞ (Rn). (3.32)

With these two inequalities (3.31) and (3.32) at hand, we apply them in (3.30) and one has

|(−∆)
s1
2 (f)(x)| ≤ C

Γ(k − s1/2)

(∫ T

0

tk−
s1
2
−1t−k+

s
2M

(
(−∆)

s
2 (f)

)
(x)dt

+

∫ +∞

T

tk−
s1
2
−1t

−β−2k
2 ‖f‖Ḃ−β,∞∞ (Rn)dt

)
≤ C

Γ(k − s1/2)

(
T
s−s1

2 M
(
(−∆)

s
2 (f)

)
(x) + T

−β−s1
2 ‖f‖Ḃ−β,∞∞ (Rn)

)
.
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We fix now the parameter T by the condition

T =

(
‖f‖Ḃ−β,∞∞ (Rn)

M
(
(−∆)

s
2 (f)

)
(x)

) 2
β+s

,

and we obtain the following inequality

|(−∆)
s1
2 (f)(x)| ≤ C

Γ(k − s1/2)
M
(
(−∆)

s
2 (f)

)1− s−s1
β+s (x)‖f‖

s−s1
β+s

Ḃ−β,∞∞ (Rn)
.

Since s−s1
β+s

= θ we have

|(−∆)
s1
2 (f)(x)| ≤ C

Γ(k − s1/2)
M
(
(−∆)

s
2 (f)

)1−θ
(x)‖f‖θ

Ḃ−β,∞∞ (Rn),

from which we deduce

|(−∆)
s1
2 (f)(x)|

1
1−θ ≤ CM

(
(−∆)

s
2 (f)

)
(x)‖f‖

θ
1−θ

Ḃ−β,∞∞ (Rn)
.

�

4 Proof of Theorem 2

The starting point of our proof is given by the modified Hedberg inequality (1.19) given in
Theorem 1:

|(−∆)
s1
2 (f)(x)|

1
1−θ ≤ CM

(
(−∆)

s
2 (f)

)
(x)‖f‖

θ
1−θ

Ḃ−β,∞∞ (Rn)
.

Now we apply the norm ‖ · ‖Lp(·) on both sides of the previous inequality to obtain∥∥∥|(−∆)
s1
2 (f)(x)|

1
1−θ

∥∥∥
Lp(·)(Rn)

≤ C‖f‖
θ

1−θ

Ḃ−β,∞∞ (Rn)
‖M

(
(−∆)

s
2 (f)

)
‖Lp(·)(Rn).

Note that by the identity (2.26) we have ‖|f |α‖Lp(·)(Rn) = ‖f‖α
Lαp(·)(Rn) with 1

p−
≤ α, thus since

1
p−
≤ 1

1−θ (recall that 0 < θ < 1 and 1 < p−), we can write∥∥∥(−∆)
s1
2 (f)

∥∥∥ 1
1−θ

Lp(·)/(1−θ)(Rn)
≤ C‖f‖

θ
1−θ

Ḃ−β,∞∞ (Rn)
‖M

(
(−∆)

s
2 (f)

)
‖Lp(·)(Rn),

and since by hypothesis we have q(·) = p(·)/(1− θ), we obtain∥∥∥(−∆)
s1
2 (f)

∥∥∥ 1
1−θ

Lq(·)(Rn)
≤ C‖f‖

θ
1−θ

Ḃ−β,∞∞ (Rn)
‖M

(
(−∆)

s
2 (f)

)
‖Lp(·)(Rn),

but since p ∈ P log(Rn), then the maximal function M is bounded in Lp(·)(Rn), and taking the
(1− θ)-power of the previous inequality, we have∥∥∥(−∆)

s1
2 (f)

∥∥∥
Lq(·)(Rn)

≤ C ′‖f‖θ
Ḃ−β,∞∞ (Rn)‖(−∆)

s
2 (f)‖1−θ

Lp(·)(Rn),

which is the desired estimate. �
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5 Proofs of the Theorems 3 and 4

The proof of this theorem is based on the conclusion of Theorem 2 and on several embeddings
between spaces of variable exponents. Indeed, since by hypothesis we have f ∈ Ṡs,p(·)p (Rn)
(which is defined in (1.21)) then, in one hand, we have f ∈ Ẇ s,p(Rn) with 0 < s < n/p, and
due to the usual Sobolev embeddings we get

Ẇ s,p(Rn) ⊂ Lr(Rn) with
n

r
=
n

p
− s,

moreover, we also have the space inclusion

Lr(Rn) ⊂ Ḃ−β,∞∞ (Rn) with β =
n

r
,

(see [21] for a proof of this fact, see also [2, Chapter 2] for more details), from which we obviously
get

Ẇ s,p(Rn) ⊂ Ḃ−β,∞∞ (Rn),

where β = n
p
− s and thus we have f ∈ Ḃ−β,∞∞ (Rn).

Now, in the other hand, since we have f ∈ Ẇ s,p(·)(Rn) where 0 < s < n/p+ and where
p ∈ P log(Rn) with 1 < p− ≤ p+ < +∞, we can apply Theorem 2 with s1 = 0, β = n

p
− s and

θ = s
β+s

= sp
n

, to the function f ∈ Ẇ s,p(·)(Rn) ∩ Ḃ−β,∞∞ (Rn) to obtain

‖f‖Lp(·)/(1−θ)(Rn) ≤ C‖f‖1−θ
Ẇ s,p(·)(Rn)‖f‖

θ

Ḃ−β,∞∞ (Rn)

≤ C‖f‖1−θ
Ẇ s,p(·)(Rn)‖f‖

θ
Ẇ s,p(Rn), (5.33)

where in the last line we used the embedding Ẇ s,p(Rn) ⊂ Ḃ−β,∞∞ (Rn) obtained previously.

We define now σ(·) = p(·)
1−θ but since 1 − θ = n−sp

n
, we have σ(·) = np(·)

n−sp and recalling the

definition of the quantity ‖ · ‖Ṡs,p(·)p (Rn) given in (1.21) and we easily obtain

‖f‖Lσ(·)(Rn) ≤ C‖f‖Ṡs,p(·)p (Rn),

which ends the proof of Theorem 3. �

Proof of Theorem 4. From the estimate (5.33), the Theorem 4 follows easily: indeed,
replacing formally f by Is(f) we have

‖Is(f)‖Lσ(·)(Rn) ≤ C‖f‖1−θ
Lp(·)(Rn)‖f‖

θ
Lp(Rn), (5.34)

and by the definition of the quantity ‖ · ‖Lp(·)p (Rn) given in (1.20) we obtain the wished estimate

(1.23) and Theorem 4 is proven. �

Remark 5.1 Observe that the previous estimate (5.34) can also be obtained by interpolation.
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Indeed, from the hypotheses of Theorem 4, i.e. f ∈ Lp(·)(Rn) and f ∈ Lp(Rn) we can deduce
from the usual Hardy-Littlewood inequalities (1.16) and (1.4) that

‖Is(f)‖Lq(·)(Rn) ≤ C‖f‖Lp(·)(Rn) and ‖Is(f)‖Lq(Rn) ≤ C‖f‖Lp(Rn),

where q(·) = np(·)
n−sp(·) and q = np

n−sp , thus, applying the complex interpolation theory (see Theorem

3.47 of [8]) we can recover the space Lσ(·)(Rn) and the estimate (5.34) above.

6 Orlicz spaces

We consider here another generalization of the usual Lebesgue spaces where Sobolev inequali-
ties have been studied. Indeed, in the framework of Orlicz spaces, some variants of the Sobolev
inequalities (1.2) and the Hardy-Littlewood-Sobolev inequalities (1.4) are available (see e.g. [7],
[17] and [9]) and their proofs also rely in suitable versions of the Hedberg inequality (1.14).

Let us recall that if a : [0,+∞[−→ [0,+∞[ is a left-continuous non decreasing function with

a(0) = 0, we can consider the corresponding Young function A(t) =

∫ t

0

a(σ)dσ and then the

Orlicz space LA(Rn) associated to the function A is defined as the set of measurable functions
f : Rn −→ R such that the Luxemburg norm

‖f‖LA(Rn) = inf

{
λ > 0 :

∫
Rn
A(|f(x)|/λ)dx ≤ 1

}
,

is finite. The previous expression is of course very similar to (1.15) and as we can easily see
here that if A(t) = tp for 1 ≤ p < +∞, we recover the classical Lebesgue spaces. Since the
quantity ‖ · ‖LA(Rn) is a norm, we can expect some usual properties: for exemple, just as in
(2.24), for a constant λ ∈ R we have

‖λf‖LA(Rn) = |λ| ‖f‖LA(Rn),

and if f, g are two measurable functions such that |f | ≤ |g| a.e., then we have the same order-
reserving property given in (2.25)

‖f‖LA(Rn) ≤ ‖g‖LA(Rn).

However, the property (2.26) for the Lebesgue spaces of variable exponent should be handled
more carefully and for this we will use the following rescaling property as defined in Section 3
of [18]: for any real σ > 0, we define the space LAσ (Rn) by the condition

LAσ (Rn) = {f : Rn −→ R : ‖f‖LAσ (Rn) < +∞},

where

‖f‖LAσ (Rn) = inf

{
λ > 0 :

∫
Rn
Aσ(|f(x)|/λ)dx ≤ 1

}
, (6.35)
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with Aσ(t) = A(tσ). With this definition of the functional ‖ · ‖LAσ (Rn) we have the following
property:

‖|f |σ‖LA(Rn) = ‖f‖σLAσ (Rn). (6.36)

See Lemma 3.2 of [18] for a proof of this fact.

Again, and just as for the Lebesgue spaces of variable exponent considered before, most of
the usual tools and inequalities are harder to use in the setting of Orlicz spaces than in the
classical framework as they strongly depend on the properties of the Young function A.

In order to study Sobolev inequalities, the approach displaying some adapted versions of
the Hedberg inequality is commonly used and this requires two ingredients: the boundedness
of the maximal functions and some point-wise estimate. For the first ingredient, it is classical
to impose the following restrictions over the Young function A: a Young function A is said to
satisfy the ∇2-condition, denoted also by A ∈ ∇2, if

A(r) ≤ 1

2C
A(Cr), r ≥ 0,

for some C > 1, then if A ∈ ∇2 we have

‖M(f)‖LA(Rn) ≤ C‖f‖LA(Rn),

see [6] for a proof of this fact, see also [9, Theorem 2] and the reference there in for more details
on the boundedness of the maximal functions in this setting.

Once we have at our disposal this boundedness property for the maximal functions, the
Sobolev inequalities can be studied via suitable versions of the Hedberg inequality. Indeed, in
[7] the following pointwise Hedberg-type estimate is proven

Is(f)(x) ≤ C‖f‖LA(Rn)Hs

(
M(f)(x)

‖f‖LA(Rn)

)
, for 0 < s < n, (6.37)

where the function Hs is defined by the formula

Hs(τ) =

(∫ τ

0

(
r

A(r)

)
dr

)(n−s)/n

,

thus, setting As(τ) = A(Hs(τ)−1) for τ ≥ 0, the following version of the Hardy-Littlewood-
Sobolev inequalites are obtained:

‖Is(f)‖LAs (Rn) ≤ C‖f‖LA(Rn).

Another method to obtain Hedberg-type inequalities is displayed in Theorem 7.1 of [17], where
some inequalities involving fractional Riesz potentials are obtained.

Let us remark now that, contrary to the inequality (6.37), the modified Hedberg inequality
(1.19) proposed in this article does not require the presence of any suitable Young function
and this special structure allows us to obtain in a very straightforward manner the following
inequality:
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Theorem 5 (Sobolev-like inequalities for Orlicz spaces) Let A be a Young function such
that A ∈ ∇2. Consider f : Rn −→ R a measurable function such that (−∆)

s
2 (f) ∈ LA(Rn)

and f ∈ Ḃ−β,∞∞ (Rn) for some β > 0. Define θ = s−s1
β+s

< 1 for 0 ≤ s1 < s. Then we have

(−∆)
s1
2 (f) ∈ LA(1−θ)(Rn) where the space LA(1−θ)(Rn) is defined as in (6.35)-(6.36). Moreover,

the following inequality holds true

‖(−∆)
s1
2 (f)‖LA

(1−θ)(R
n) ≤ C‖(−∆)

s
2 (f)‖1−θ

LA(Rn)‖f‖
θ

Ḃ−β,∞∞ (Rn). (6.38)

Proof. The arguments follow very closely those given in Section 4 and we given them for the
sake of completeness: from inequality (1.19) we have

|(−∆)
s1
2 (f)(x)|

1
1−θ ≤ CM

(
(−∆)

s
2 (f)

)
(x)‖f‖

θ
1−θ

Ḃ−β,∞∞ (Rn)
,

and we apply the Luxemburg norm ‖ · ‖LA associated to the Young function A on both sides of
the inequality to get∥∥∥|(−∆)

s1
2 (f)|

1
1−θ

∥∥∥
LA(Rn)

≤ C‖f‖
θ

1−θ

Ḃ−β,∞∞ (Rn)
‖M

(
(−∆)

s
2 (f)

)
‖LA(Rn).

We use now the rescaling property (6.36) to obtain the identity

‖|(−∆)
s1
2 (f)|

1
1−θ ‖LA(Rn) = ‖(−∆)

s1
2 (f)‖

1
1−θ
LA
(1−θ)(R

n)
,

and since A ∈ ∇2, the Hardy-Littlewood maximal operator is bounded in the space LA(Rn),
we can write

‖(−∆)
s1
2 (f)‖

1
1−θ
LA
(1−θ)(R

n)
≤ C‖f‖

θ
1−θ

Ḃ−β,∞∞ (Rn)
‖(−∆)

s
2 (f)‖LA(Rn),

which is the desired estimate (6.38). �

Remark 6.1 Of course, if s1 = 0 we have the estimate

‖f‖LA
(1−θ)(R

n) ≤ C‖(−∆)
s
2 (f)‖1−θ

LA(Rn)‖f‖
θ

Ḃ−β,∞∞ (Rn),

which constitutes a new variant of the usual Sobolev inequalities in the framework of Orlicz
spaces.

To end this section, note that in Lemma 9 of [9] a variant of the inequality (6.37) for generalized
fractional integral operators is obtained where the function Hs is replaced by a suitable Orlicz-
Morrey space of the third kind (see Section 5-6 of [9]). This result is in some sense close to
ours (the function Hs is replaced by another functional space) but the technics displayed in the
mentioned article are very different from our approach.
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7 Some possible generalizations

The modified Hedberg inequality (1.19) and the subsequent Sobolev-like estimates can be ap-
plied in several settings. In this article we studied Lebesgue spaces with variable exponents
and Orlicz spaces over Rn but we also can consider the following frameworks:

• Instead of the usual base space Rn, it is possible to consider stratified Lie groups G such
as the Heisenberg group (see [20] for the details).

• As long as the boundedness of the maximal function is preserved, several type of weights
can be considered in the previous inequalities. See [10, Chapter 5] for a generalized
Muckenhoupt condition in the setting of Lebesgue spaces of variable exponents. See [15]
for a theory of weighted Orlicz spaces.

A Appendix

An alternative proof of Theorem 2 relies in the characterization of the Lebesgue and Sobolev
spaces of variable exponents using the Littlewood-Paley decomposition. In the classical set-
ting, the representation of these spaces using dyadic blocs is well known (see the books [2] and
[13]). For spaces of variable exponents, this theory is given in [1], see also Chapter 12 of the
book [10]. Let us point out that the identification of the spaces given by a Littlewood-Paley de-
composition with the spaces used here (in the non-homogeneous case) is done in the article [11].

Let us briefly recall the Littlewood-Paley decomposition: consider ϕ ∈ S(Rn,R) such that
ϕ̂(ξ) = 1 if |ξ| ≤ 1/2 and ϕ̂(ξ) = 0 if |ξ| > 1 and for j ∈ Z define the function ϕj by
the expression ϕj(x) = 2−jnϕ(2−jx). Consider the function ψ which is given by the formula

ψ̂(ξ) = ϕ̂(ξ/2)− ϕ̂(ξ) and for all j ∈ Z we set ψ̂j(ξ) = ψ̂(2−jξ) = ϕ̂j+1(ξ)− ϕ̂j(ξ), we have then∑
j∈Z

ψ̂j(ξ) ≡ 1 for all ξ 6= 0.

Now, for all j ∈ Z, the dyadic-bloc operator ∆j is defined by the formula ∆j(f) = f ∗ ψj and
we have the formula

f =
∑
j∈Z

∆j(f),

where the convergence of the sum must be considered in S ′(Rn) modulo the polynomials C[X].

Now for p ∈ P(Rn) such that 1 < p− ≤ p+ < +∞ and for 0 < s < +∞, we have the
following characterizations of variable exponents spaces: for all f ∈ S ′/C[X] we have

‖f‖Lp(·)(Rn) '

∥∥∥∥∥∥∥
∑

j∈Z
|∆j(f)(x)|2

 1
2

∥∥∥∥∥∥∥
Lp(·)(Rn)

and ‖f‖Ẇs,p(·)(Rn) '

∥∥∥∥∥∥∥
∑

j∈Z
22sj |∆j(f)(x)|2

 1
2

∥∥∥∥∥∥∥
Lp(·)(Rn)

.
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Note that the spaces Ẇs,p(·)(Rn) given above are defined modulo the polynomials and thus they
are not equivalent to the spaces Ẇ s,p(·)(Rn) given in (2.27). However, in the framework of the
Theorem 2, we are considering functions that also belong to the Besov space Ḃ−β,∞∞ (Rn), which
can be characterized by the equivalent quantity

‖f‖Ḃ−β,∞∞ (Rn) ' sup
j∈Z

2−βj‖∆j(f)‖L∞(Rn), (A.1)

and this fact allows us to avoid this unpleasant issue related to the different definitions of ho-
mogeneous spaces as we have the equivalence of spaces2 Ẇ s,p(·) ∩ Ḃ−β,∞∞ ' Ẇs,p(·) ∩ Ḃ−β,∞∞ .

With this short introduction, we can proof Theorem 2 using the tools related to the
Littlewood-Paley decomposition. We start with the following interpolation result

Lemma A.1 Let (aj)j∈Z be a sequence and set s = (1− θ)s0 + θs1 with 0 < θ < 1 and s0 6= s1.
Then for all r, r1, r2 ∈ [1,+∞] we have the interpolation estimate:

‖2jsaj‖`r ≤ C‖2js0aj‖1−θ`r1 ‖2
js1aj‖θ`r2 .

See [3] for a proof of this interpolation inequality.

If we apply this lemma to the dyadic blocs ∆j(f) with s1 = (1−θ)s+θ(−β) and r = r1 = 2
and r2 = +∞, we obtain(∑

j∈Z

22s1j|∆j(f)(x)|2
) 1

2(1−θ)

≤ C

(∑
j∈Z

22sj|∆j(f)(x)|2
) 1

2 (
sup
j∈Z

2−βj|∆j(f)(x)|
) θ

1−θ

≤ C

(∑
j∈Z

22sj|∆j(f)(x)|2
) 1

2

‖f‖
θ

1−θ

Ḃ−β,∞∞ (Rn)
,

where in the last line we used the characterization of the Besov space Ḃ−β,∞∞ (Rn) in terms of
the dyadic blocs given in (A.1). Now, we take the Luxemburg Lp(·)-norm to get∥∥∥∥∥∥

(∑
j∈Z

22s1j|∆j(f)|2
) 1

2
1

1−θ
∥∥∥∥∥∥
Lp(·)(Rn)

≤ C

∥∥∥∥∥∥
(∑
j∈Z

22sj|∆j(f)|2
) 1

2

∥∥∥∥∥∥
Lp(·)(Rn)

‖f‖
θ

1−θ

Ḃ−β,∞∞ (Rn)
.

Then, using the property (2.26) we obtain∥∥∥∥∥∥
(∑
j∈Z

22s1j|∆j(f)|2
) 1

2

∥∥∥∥∥∥
1

1−θ

L
p(·)
1−θ (Rn)

≤ C

∥∥∥∥∥∥
(∑
j∈Z

22sj|∆j(f)|2
) 1

2

∥∥∥∥∥∥
Lp(·)(Rn)

‖f‖
θ

1−θ

Ḃ−β,∞∞ (Rn)
.

2Polynomials are excluded here and this fact can be easily seen from the characterization (2.28) of Besov
spaces.
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To finish, we recall that q(·) = p(·)
1−θ and using the characterization of Sobolev spaces via the

Littlewood-Paley theory we can write

‖f‖Ẇs1,q(·)(Rn) ≤ C‖f‖1−θẆs,p(·)(Rn)‖f‖
θ

Ḃ−β,∞∞ (Rn).

�

Remark A.1 Let us note here that this second proof of the Sobolev-like estimates relies in the
Littlewood-Paley theory which is available in the setting of Lebesgue spaces of variable exponent
over the euclidean space Rn. But this is not always the case if we consider general spaces over
other spaces than Rn. In this sense the first proof based in the modified Hedberg inequality
(1.19) seems more robust and simple to display.
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[13] L. Grafakos. Classical and Modern Fourier Analysis. Prentice Hall (2004).

19



[14] L. Hedberg. On certain convolution inequalities. Proc. Amer. Math. Soc. 36, 505–510
(1972).

[15] V. Kokilashvili and M. Krbec. Weighted Inequalities in Lorentz and Orlicz Spaces. World
Scientific (1991).
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