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S U M M A R Y
Knowledge of the thermal state of steep alpine rock faces is crucial to assess potential geo-
hazards associated with the degradation of permafrost. Temperature measurements at the rock
surface or in boreholes are however expensive, invasive, and provide spatially limited infor-
mation. Electrical conductivity and induced polarization tomography can detect permafrost.
We test here a recently developed petrophysical model based on the use of an exponential
freezing curve applied to both electrical conductivity and normalized chargeability to infer the
distribution of temperature below the freezing temperature. We then apply this approach to
obtain the temperature distribution from electrical conductivity and normalized chargeability
field data obtained across a profile extending from the SE to NW faces of the lower Cosmiques
ridge (Mont Blanc massif, Western European Alps, 3613 m a.s.l., France). The geophysical
data sets were acquired both in 2016 and 2019. The results indicate that only the NW face
of the rock ridge is frozen. To evaluate our results, we model the bedrock temperature across
this rock ridge using CryoGRID2, a 1-D MATLAB diffusive transient thermal model and
surface temperature time-series. The modelled temperature profile confirms the presence of
permafrost in a way that is consistent with that obtained from the geophysical data. Our study
offers a promising low-cost approach to monitor temperature distribution in Alpine rock walls
and ridges in response to climate change.

Key words: Electrical properties; Hydrogeophysics; Electrical resistivity tomography (ERT).

1 I N T RO D U C T I O N

According to IPA (International Permafrost Association), per-
mafrost is defined as ‘ground (soil or rock and included ice or
organic material) that remains at or below 0 ◦C for at least two
consecutive years’ (Dobinski 2011). Permafrost in mid-latitude
mountain areas is currently strongly affected by climate change
(e.g. Biskaborn et al. 2019; PERMOS 2019). In turn, permafrost
degradation (warming and thawing of the ice content) is known
to have serious consequences on the mechanical properties of the
rock slopes (Gruber & Haeberli 2007; Krautblatter et al. 2013),
resulting in an increasing rockfall frequency and magnitude that
affects high mountain rock walls (Haeberli & Beniston 1998;
Ravanel & Deline 2011; Ravanel et al. 2017). A precise knowledge
of the thermal state of permafrost in rock walls and rock ridges is
therefore crucial for assessing the safety and reliability of mountain
infrastructures (Haeberli et al. 2010; Krautblatter et al. 2012), and
to prevent or limit their damages or disturbances (Duvillard et al.
2019).

Rock wall temperature can be directly determined and monitored
by the means of temperature sensors installed at the rock surface or
in boreholes (e.g. Magnin et al. 2015a). Since these data are local
(point or line measurements), they are commonly used to fit sta-
tistical models explaining the rock surface temperature (RST, e.g.
Boeckli et al. 2012). They can be also used to parameterize or vali-
date physics-based models (i.e. based on solving the heat equation)
to infer the spatial distribution and evolution of rock wall permafrost
and temperature when direct measurements are missing (e.g.
Gruber et al. 2004; Magnin et al. 2017a; Magnin et al. 2019).
However, the accuracy of the models is limited because of (i) a
lack of consideration of important parameters driving the energy
balance at the rock surface (e.g. variability in solar radiation or
snow deposit), (ii) the rock material characteristics (e.g. the thermal
conductivity, porosity, specific heat storage coefficient) are gener-
ally defined upon standard values, considered as homogenous and
isotropic, and finally because (iii) complex heat transfer processes
such as heat advection in bedrock fractures resulting from air cir-
culation or water infiltration are neglected. That said, simplified
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thermal models have been shown to be reliable to estimate the per-
mafrost characteristics at a given time period at depth > 8 m, and
to estimate its changes over pluriannual timescales (Magnin et al.
2017).

To overcome some of the limits of direct temperature measure-
ments and numerical modelling, electrical conductivity and induced
polarization tomography can provide an alternative and comple-
mentary way to estimate the extent of permafrost and temperature
distribution below the freezing temperature. In the past, electrical
conductivity tomography has been broadly used to detect and mon-
itor mountain permafrost (e.g. Hauck 2002; Hauck et al. 2003;
Kneisel 2006; Krautblatter & Hauck 2007; Fortier et al. 2008;
Hauck et al. 2011; Supper et al. 2014; Mollaret et al. 2019) in-
cluding in steep rock walls (Magnin et al. 2015b; Keuschnig et al.
2017). Indeed, the electrical conductivity of frozen rocks is much
lower with respect to unfrozen materials (see, for instance, Scott
et al. 1990; Maurer & Hauck 2007; Kneisel et al. 2008). The ad-
vantages of these geophysical methods are their low cost, their
non-invasive character, and the fact that they provide 2-D or 3-D
tomograms/images of the subsurface. That being said, electrical re-
sistivity tomography (ERT) yields only qualitative information on
the thermal state of materials because electrical conductivity de-
pends on many parameters including water content, salinity, cation
exchange capacity, and temperature. In addition, it is not sure that
neglecting the effect of surface conduction (occurring at the liq-
uid water/ice or solid interface) in the expression of the effective
electrical conductivity of the mixture is a correct assumption. This
assumption is however widely used in the literature without any crit-
ical analysis or corroboration through petrophysical investigations.
For instance, Hauck et al. (2011) developed a model that com-
bines ERT and seismic P-wave velocity and uses the parameters in
the classical Archie’s (1942) law and an extended Timur’s (1968)
equation to gain insight into the porosity distribution. Petrophysical
joint inversion honoring both data sets and petrophysical relations
during parameter estimation have been developed and tested for
porous sites in Switezerland (Wagner et al. 2019, Mollaret et al.
2020).

Magnin et al. (2015b) used laboratory experiments to distinguish
frozen from unfrozen rocks based on their electrical conductivity.
Krautblatter et al. (2010) documented relative changes in resis-
tivity during a period of about half a year and gave temperature
changes associated with these resistivity changes. Currently, there
is however a marked absence of a rigorous protocol to infer the
temperature distribution from electrical conductivity tomography
including the effect of surface conduction and the salt segrega-
tion in the liquid water phase. Abusing Archie’s law without ac-
counting for the salt segregation (see discussion in Duvillard et al.
2018; Herring et al. 2019) has been generally the rule with few
exceptions. To our knowledge, these limitations are due to the
lack of a precise petrophysical-based methodology to infer tem-
perature fields from electrical conductivity tomograms. The con-
version of electrical conductivity into temperature distribution has
however been successfully accomplished for other geological con-
texts than permafrost such as, for instance, active volcanoes (Revil
et al. 2018) or around heat exchangers (Coperey et al. 2019b). A
similar strategy is followed in the present work following the re-
cent developments in Duvillard et al. (2018) and Coperey et al.
(2019a,b).

In addition to electrical conductivity tomography, another geo-
physical method called induced polarization is sometimes used to
infer the presence of permafrost (e.g. Doetsch et al. 2015, Grimm
& Stillman 2015, Duvillard et al. 2018; Abdulsamad et al. 2019;

Mudler et al. 2019). Induced polarization refers to the reversible
storage of electrical charges in a porous material under a low-
frequency varying (applied) electrical field (e.g. Seigel 1959;
Kemna et al. 2012; Weller et al. 2013). In absence of metallic
particles and in presence of moisture in a porous or fractured rock,
induced polarization is related to the properties of the electrical dou-
ble layer coating the surface of the grains (Revil 2012, 2013; Leroy
et al. 2017). Recently, the dynamic Stern layer concepts developed
by Revil (2012, 2013) have been extended to freezing conditions
(Duvillard et al. 2018; Abdulsamad et al. 2019; Revil et al. 2019a;
Coperey et al. 2019b). One of the advantages of induced polariza-
tion is that it can be measured with the same equipment as that
used for electrical conductivity data acquisition (e.g. Kemna et al.
2012).

The recent establishment of a unified petrophysical model de-
scribing both electrical conductivity and induced polarization (nor-
malized chargeability) of rocks in freezing conditions provides the
opportunity to convert electrical conductivity to temperature in areas
affected by permafrost. Our study proposes to investigate the poten-
tial of these geophysical measurements and petrophysical models
tested on rock samples from outcrops to assess the temperature field
patterns of a high-Alpine rock ridge. We apply our approach to elec-
trical conductivity and induced polarization data measured across
the permafrost-affected lower Cosmiques ridge (3613 m a.s.l.), in
the Mont Blanc massif (Western European Alps, France), below
a refuge damaged by a 600-m3 rockfall in 1998 August (Ravanel
et al. 2013). To evaluate the results from the geophysical data, we
use the RST time-series collected on each side of the ridge (from
2016 July to 2019 September on the north face and from 2016 July
to 2020 April on the south face) to force a nonlinear 1-D heat con-
duction model simulating the temperature across a profile crossing
the ridge. This modelling exercise is performed to see if the frozen
portion of the ridge is consistent with the temperature prediction
from the geophysical and petrophysical data.

2 P E T RO P H Y S I C S

2.1 Electrical conductivity–temperature relationship

Above the freezing temperature, the change in the electrical con-
ductivity of a rock with temperature is controlled by the temperature
dependence of the ionic mobilities, which is in turn controlled by
the temperature dependence of the dynamic viscosity of the pore
water. In these conditions, the temperature dependence of the elec-
trical conductivity σ (T ) at temperature T (in S m−1) is given by
Revil et al. (2018):

σ (T ) = σ (T0) [1 + αT (T − T0)] , (1)

where αT = 0.021 ◦C−1 (i.e. the temperature dependence of the
conductivity is roughly 2 per cent per degree Celsius, indepen-
dent of the water content of the rock), the reference temperature
is T0 = 25 ◦C, and σ (T0) denotes the conductivity of the rock
at the reference temperature. The conductivity of a rock repre-
sents the ability of the rock to conduct an electrical current un-
der the application of an electrical field. It comprises two con-
tributions: a bulk contribution associated with conduction in the
bulk pore space and a surface conductivity associated with con-
duction in the electrical double layer coating the surface of the
grains. Usually, in a shallow temperature field above freezing con-
ditions, the spatial variability associated with the effect of temper-
ature (2 per cent change per degree Celsius) is much smaller than
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the variability associated with the variations in spatial magnitude
of the porosity, texture and surface conductivity. It follows that
above the freezing temperature, a single snapshot of the electrical
conductivity distribution cannot be used to infer the temperature
distribution.

In freezing conditions, part of the liquid pore water of a rock is
progressively transformed into ice so there is also an additional ef-
fect associated with the change of the water content itself. Since the
salt remains segregated in the liquid pore water, the salinity of the
liquid pore water increases with the decrease of temperature. These
effects imply a strong impact of the temperature on the electrical
conductivity, an impact that is much stronger than above the freezing
temperature. To quantitatively assess these effects, few ingredients
are however required. The most important is the expression of a
freezing curve describing the relationship, for a given porous ma-
terial, between the liquid water content θ (dimensionless) and the
temperature T (in ◦C). In Duvillard et al. (2018) and Coperey et al.
(2019b), the following exponential freezing curve was proposed and
validated:

θ (T ) =
{

(φ − θr ) exp
(
− T −TF

TC

)
+ θr , T ≤ TF

φ, T > TF

, (2)

where θr (dimensionless) denotes the residual water content when
T << TF , TF denotes the liquidus or freezing point/temperature,
TC denotes a characteristic temperature controlling the transition
between the unfrozen and the frozen states, φ (dimensionless) de-
notes the (connected) porosity and φ − θr denotes the maximum
volumetric ice content at low temperatures. While the choice of
eq. (2) is somehow empirical in nature, all the parameters entering
this equation have a physical meaning. For instance, the tempera-
ture TC is somehow associated with the broadness of the pore size
distribution. Eq. (2) is somehow equivalent to the capillary pressure
curve in drainage and imbibition studies (see discussions Kurylyk
& Watanabe 2013, Pellet et al. 2016). A future analysis, which
is outside the scope of this paper, will need to connect explicitly
eq. (2) to the characteristics of the pore size distribution from first
principles.

In freezing conditions, the value of αT in eq. (1) remains valid
(see discussion in Coperey et al. 2019b). The conductivity of the
rock is given by Duvillard et al. (2018, see discussion in Appendix
A):

σ (T ) ≈ θm−1 σ (T0)

φ
[1 + αT (T − T0)] , (3)

where m (dimensionless) denotes the cementation (porosity) ex-
ponent entering into Archie’s (1942) law between the formation
factor F and the porosity φ, that is, F = φ−m . An expression
of the conductivity at the reference temperature σ (T0) is given
in Appendix A. A typical value of m is close to 2 and a typi-
cal range is between 1.5 and 2.5 (e.g. Coperey et al. 2019b, and
references therein). Archie’s law is also valid for fractured me-
dia (e.g. Cai et al. 2017). In eq. (3), we do not have to make
any assumption regarding the importance of surface conductiv-
ity associated with the cation exchange capacity of the rock (see
Duvillard et al. 2018; Coperey et al. 2019b, for details regarding
this contribution). The effect of temperature below freezing con-
ditions upon the electrical conductivity is therefore very strong,
much stronger than changes associated with porosity and surface
conductivity spatial changes in a given lithology (Coperey et al.
2019b).

Assuming that the cementation exponent m is close to 2, an
explicit relationship is obtained between the measured conductivity

below the freezing point, σ (T ), and temperature, T:

σ (T ) ≈
[

(φ − θr ) exp

(
− T − TF

TC

)
+ θr

]
σ (T0)

φ
[1 + αT (T − T0)] .

(4)

It is easy to show that we recover eq. (1) at and above the
freezing temperature from eq. (4). Eq. (4) will be used to con-
nect electrical conductivity to temperature in field conditions. Be-
low the freezing temperature, temperature spatial variations are ex-
pected to be mimicked, to some level, by the electrical conductivity
distribution.

2.2 Normalized chargeability–temperature relationship

In this paper, induced polarization is characterized by a single pa-
rameter called the normalized chargeability, which can be either
obtained from the frequency dispersion of the conductivity data
(for instance measured at two distinct frequencies, the so-called
frequency effect) or from time-domain induced polarization by
looking at the decay of the secondary voltage after the shutdown
of the primary current (Kemna et al. 2012). Above the freezing
temperature, the change in the normalized chargeability Mn (in
S m−1) of a rock with temperature is controlled by the tempera-
ture dependence of the ionic mobilities, which is in turn controlled
by the temperature dependence of the dynamic viscosity of the
pore water. Like for the electrical conductivity, we have therefore
(see Revil 2012 for a detailed description of the rationale behind
eq. 5):

Mn(T ) = Mn(T0) [1 + αT (T − T0)] , (5)

where αT = 0.021◦C−1, the reference temperature is T0 = 25 ◦C
and Mn(T0) denotes the normalized chargeability of the rock at
the reference temperature. An explicit expression of this param-
eter will be given below. Using the model developed in Duvil-
lard et al. (2018) and Coperey et al. (2019b), the dependence
of the normalized chargeability in freezing conditions is given
by:

Mn(T ) ≈
[

(φ − θr ) exp

(
− T − TF

TC

)
+ θr

]
Mn(T0)

φ
[1 + αT (T − T0)] . (6)

Therefore, in freezing conditions, the temperature dependence
of the normalized chargeability and the temperature dependence of
the electrical conductivity are strictly the same. This is because of
the specific dependence of the conductivity with the water content
in freezing conditions is related to the segregation of salt in the
liquid water phase. Thus, in contrast to what can be done in hy-
drothermal systems (Revil et al. 2019b), we cannot combine the
normalized chargeability and electrical conductivity tomography to
obtain independently the liquid water content except if we do the lo-
cal gradient in salinity associated with freezing has totally diffused
over time.

It should be remembered however that ice behaves as a dirty pro-
tonic semiconductor and therefore has its own polarization mech-
anism. In our work, we assume that the polarization in freezing
conditions is essentially due to the decay of the double layer polar-
ization at the solid–liquid interface. Assuming no addition response
from the ice itself, the ratio of the normalized chargeability to the
conductivity is independent of temperature since the dependence of
B(T) and λ(T) are the same as well as the dependence with the water
content. Therefore, we have

Mn(T )

σ (T )
≈ Mn(T0)

σ (T0)
. (7)
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According to the dynamic Stern layer model developed by Revil
(2012) and for conditions implying that the salt remains entirely seg-
regated into the liquid pore water, the normalized chargeability and
the conductivity are related to the water content θ (dimensionless)
by

Mn(T0) ≈ φρgλ(T0)CEC, (8)

σ (T0) ≈ φ2σw(T0) + φρg B(T0)CEC, (9)

respectively. In eqs (8) and (9), ρg denotes the density of the grains
(typically 2650–2900 kg m−3), σw denotes the pore water con-
ductivity (in S m−1), CEC denotes the cation exchange capac-
ity of the material (expressed in C kg−1 or in meq/100 g with
1 meq/100 g = 963.20 C kg−1), B (in m2s−1V−1) denotes the
apparent mobility of the counterions for surface conduction and
λ (in m2s−1V−1) denotes the apparent mobility of the counteri-
ons for the polarization associated with the quadrature conductiv-
ity, B(Na+, 25◦ C) = 3.1 ± 0.3 × 10−9 m−2s−1V−1 and λ(Na+,
25◦ C) = 3.0 ± 0.7 × 10−10 m−2s−1V−1, and m is the cementa-
tion exponent entering Archie’s law. From eqs (8) and (9), the ratio
between the normalized chargeability and the conductivity is given
by

Mn(T )

σ (T )
≈ ρgλCEC

φσw + ρg BCEC
. (10)

When the conductivity of the rock is dominated by surface con-
ductivity along the surface of the grains (i.e. φσw << ρg BCEC),
this ratio is R = λ/B, which is in the range 0.08–0.12, independent
of the water content, frequency and temperature (Duvillard et al.
2018 obtained R = 0.08; Coperey et al. 2019b, obtained R = 0.09).
When we have Mn(T )/σ (T ) < R, this means that the bulk contribu-
tion of electrical conductivity (related to the pore water conduction
σw) cannot be neglected.

3 T E S T S I T E

The lower Cosmiques ridge is located at 600–1000 m SSW of the
Aiguille du Midi (3842 m a.s.l.), on the northwestern side of the
Mont Blanc massif (Fig. 1a), which spreads between France, Italy
and Switzerland, and belongs to the Alpine external crystalline
massifs. The ridge develops horizontally, on the French side of
the massif, over a length of 400 m (Figs 1b and c) in the Mont
Blanc granite from the Hercynian metamorphic series (Bussy &
von Raumer 1994). The extension of the SE face is 50-m-high and
stands above the Glacier du Géant. It makes an angle of only 15◦ with
the vertical and has a rather smooth surface. This face is sometimes
partially covered by snow. The NW face is about 350-m-high, 35◦

with the vertical, and is highly rugged, allowing heterogeneous snow
accumulation during a part of the year. The Mean Annual Rock
Surface Temperature (MARST), modelled for the steep slopes of the
Mont Blanc massif for the period 1961–1990 (Magnin et al. 2015c),
is around −4 ◦C on the NW face, and −1 ◦C in the SE face of the
lower Cosmiques ridge. A refuge was built during the period 1989–
1991 on the top of the ridge (3613 m a.s.l.). It represents a popular
location (hosting about 7000 people a year) since it is located along
one of the main climbing route to reach the summit of the Mont
Blanc. In 1998 August, a 600 m3 rockfall occurred right below
the refuge and partly destabilized the infrastructure, which was
closed for 8 months for reinforcement work (Fig. 1d; Ravanel et al.
2013).

4 M E T H O D S

4.1 Geophysical measurements

4.1.1 Field investigations

The geophysical field surveys were performed both in 2016 October
and 2019 September. A summary of these investigations is provided
in Table 1. They extended from the foot of the SE face to the upper
64 m on the NW face, running below the refuge anchors and build-
ing (Fig. 2). Two 64-m-long cables (126-m-long profile) and a total
of 64 electrodes (2-m-spacing) were connected to a resistivity meter
(ABEM Terrameter SAS-4000 in 2016 and ABEM LS2 in 2019).
We used 10-mm-diameter and 120-mm-long stainless steel elec-
trodes for both surveys. The choice of the electrode is justified by
the study of Labrecque & Daily (2008). Warm salty water, conduc-
tive metallic grease and bentonite were used to improve the electri-
cal contacts between the electrodes and the ground (Krautblatter &
Hauck 2007; Magnin et al. 2015b). The Wenner configuration was
used because of its best signal-to-noise ratio thanks to its particular
electrode configuration since the voltage electrodes MN are located
in-between the current electrodes AB (e.g. Dahlin & Zhou 2004;
Kneisel 2006). During the surveys, only two electrodes had to be
excluded due to their high contact resistances (higher than 10 k�).
Topography along the profile was extracted from a terrestrial laser
scanning point cloud acquired in 2016 for the SE face and from
a photogrammetric model acquired with a drone in 2019 on both
faces of the ridge. Examples of the secondary voltage decay curves
(expressed here in terms of the apparent chargeability integrated
over time windows of 0.02 s) are shown in Fig. 3. The induced po-
larization data exhibit a very good overall quality. We use 1 s for the
period for the current injection. The secondary voltage is measured
over a total time window of 0.22 s. In this time window, the partial
chargeabilities were sampled using 10 windows of 20 ms. A dead
time of 20 ms was used after the shutdown of the primary current.
We performed up to four stacks for the resistivity measurements
and two stacks for the induced polarization measurements to avoid
accumulating polarization in the ground.

The data were inverted with the RES2DINV-3.54.44 software
using a smoothness-constrained least-squares method and the stan-
dard Gauss–Newton method (see Loke & Barker 1996, for details).
The inversion was stopped at the third iteration when the conver-
gence criterion was reached (i.e. default a value of 5 per cent in
the relative change in the percentage root mean square (rms) error
is used). The high rms error for the inversion results from some
noise present in the data set because of the high contact resistance
between the ground and the electrodes. That said, in presence of
random noise in the data, a high rms error is not necessarily the
criterion to say that the tomogram is not correct as discussed in
Revil et al. (2008).

4.1.2 Laboratory experiments

In order to test the petrophysical model discussed in Section 2, we
performed an electrical conductivity experiment on a rock sample
collected in the field from an outcrop. The granite cubic core sample
(labelled PAS1 below) was immersed in a temperature-controlled
bath following the same protocol as in Duvillard et al. (2018) in-
cluding for the sample preparation, temperature steps and complex
conductivity measurements. Sample PAS1 was cut to get a 5-cm
large cube. Sample PAS1 was characterized by a porosity φ =
0.028, a cation exchange capacity CEC = 0.80 meq/100 g, and a
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Figure 1. The Cosmiques refuge on the lower Cosmiques rock ridge (Mont Blanc massif, Western European Alps, France). (a) The Mont Blanc massif (here,
the French side) is largely affected by the permafrost (Magnin et al. 2015a). (b) The lower Cosmiques ridge close to the Aiguille du Midi (3842 m a.s.l.).
(c) South-east face of the lower Cosmiques ridge seen from the glacier du Géant (2016 September). The red dashed line underlines the scar of the 1998 rock
fall while the yellow line indicates the position of the geophysical profile. (d) The Cosmiques rock fall of 1998 August (∼600 m3).

Table 1. Information regarding the electrical resistivity and induced polarization surveys. ER and
IP stand for electrical resistivity and induced polarization, respectively.

Profile ER2016 ER2019 IP2019

Date of survey October 5 September 19 September 19
Electrode array type Wenner 64XL Wenner 64 Wenner 64
Excluded electrodes 3 and 12 1 and 2 1 and 2
Number of data points 593 447 443
Number of inverted points 588 439 226
Rms error 29.5 19.2 14.2

formation factor F = 499 (for more details, see sample labelled
COS in Coperey et al. 2019b). Before performing the laboratory
measurements, the sample was dried during 24 hr then saturated
under vacuum with degassed water from melted snow taken in the
field. The sample was left several weeks in the solution to reach
chemical equilibrium before performing the laboratory measure-
ments. The water conductivity at 25 ◦C and at equilibrium was
0.0257 S m−1.

In addition, we used the laboratory data determined by Magnin
et al. (2015b). This second sample (labelled G1 below) was collected
in the same geological unit and saturated with tap water. Four non-
polarizing stainless steel electrodes were placed on the sample: two

current electrodes (A and B) on the end-faces of the sample. Two
voltage electrodes (M and N, separated by a distance of 8 cm) were
placed on the external side of the core sample.

The sample holder was installed in a heat-resistant insulat-
ing bag immersed in a thermostat bath (KISS K6 from Huber;
210 × 400 × 546 mm; bath volume: 4.5 l). The temperature of
this bath was controlled with a precision of 0.1 ◦C. Glycol was used
as heat carrying fluid and the complex conductivity measurements
were carried out with the impedancemeter. The (in-phase) conduc-
tivity measurements shown here are at a frequency of 1 Hz but
they were obtained in the frequency range 10 mHz–45 kHz. The
experimental data together with a fit of the data with eq. (1) (for
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1212 P.-A. Duvillard et al.

Figure 2. Location of the temperature sensors and the ERT profile below the Cosmiques refuge. The labels COS-NW and COS-SE denote the position of the
temperature sensors. The yellow line shows the position of the geophysical profile while the red dashed line underlines the position of the 1998 rockfall scar.
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Figure 3. Apparent chargeability (in mV V−1) as a function of the elapse
time (in s) after the shutdown of the primary current for four selected
quadripoles ABMN. The plain lines denote exponential decay fits applied
to the field data. The (A, B, M, N)-positions for the quadripoles are the
following (expressed in metres) Quadripole1 (4, 16, 8, 12), Quadripole2
(78, 96, 84, 90), Quadripole3 (90, 120, 100, 110) and Quadripole4 (56, 86,
66, 76).

temperatures above the freezing temperature) and with eq. (4) (for
temperatures below the freezing temperature) are shown in Fig. 4.
We see that the model proposed in Section 2 is able to fit the data
above and below the freezing temperature and provides therefore a
bridge to connect electrical conductivity to temperature. The differ-
ence in the fitting parameters shows a bias due to the heterogeneity
of the rock. That said, even with a high number of samples, the sam-
pling may contain sampling bias that avoid a complete application
of the optimized laboratory parameters to the field data. There may

be also scaling issues. That said the laboratory experiments can be
used to test the underlying physics and in the future we target a
complete joint inversion of the conductivity and temperature fields
to compensate for such bias.

Induced polarization measurements were done in the time do-
main with the sample core I.P. tester from GDD Inc. and using
sample PAS1. We used the four electrodes approach, that is, current
electrodes A and B are attached on the end faces of the cylindri-
cal core while the potential electrodes M and N are fixed on the
external side of the sample. We use four non-polarizing Ag–AgCl2

electrodes with a spacing of 5 cm. In order to avoid drying and short
circuits at the electrodes, the sample was covered with insulating ad-
hesive tape except at the position of the electrodes. Then, the sample
was brought to different temperatures using a thermally controlled
bath (Kiss K6 from Huber; see fig. 5 in Coperey et al. 2019b).
The periods of the primary current injection were 1.0, 2.0 and
4.0 s. The decay curve was recorded using 20 windows distributed
in a ‘Cole–Cole’ configuration. More details about time-domain
induced polarization measurements can be found in Kemna et al.
(2012) and Revil et al. (2018). The results are shown in Fig. 5 and
are fitted by eqs (5) and (6). We see that the model is able to fit the
data very well.

From Figs 4 and 5, we have Mn(T0) = 5.9 × 10−7 S m−1 and
σ (T0) ≈ 9 × 10−5 S m−1. This yields Mn(T )/σ (T ) = 0.007 << R,
which means in turn that surface conduction is not the dominating
conduction mechanisms controlling the electrical conductivity of
these rocks. Unaltered granite rock samples are usually character-
ized by a low specific surface areas and CEC, which could explain
this observation.

4.2 Rock surface temperature measurement and
temperature modelling

RST measurements allow to documenting the presence of per-
mafrost by continuously measuring temperature for at least one
full year (Gruber et al. 2004; Magnin et al. 2015a). Three RST
sensors Geoprecision PT1000 with M-Log5W loggers (resolution:
0.01 ◦C, accuracy ± 0,1 ◦C with temperature recorded every 3 hr)
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Temperature of a permafrost-affected rock ridge 1213

Figure 4. In-phase electrical conductivity data versus temperature for two granite core samples from the Cosmiques rock ridge and fit of the data with the
model from Duvillard et al. (2018). (a) Granite sample G1 between −1 to + 5 ◦C (TF = 0◦C). The value of model parameters used to fit the measured data
are TC = −0.41 ◦C, φ = 0.028, θr = 0.006 and σ (T0) = 8.8 × 10−5 S m−1. (b) Granite sample PAS1 between −15 to +20 ◦C (TF = −2◦C). The value of the
model parameters are TC = −2.9 ◦C, φ = 0.028, θr = 0.002, and σ (T0) = 8.0 × 10−5 S m−1. In both cases, the symbols denote the experimental data (red
above the freezing temperature and blue below the freezing temperature), while the plain lines correspond to the fit of the model.

Figure 5. Normalized chargeability data versus temperature for the granite
core sample PAS1 between −15 to +20 ◦C (TF = −2◦C). The value of the
model parameters are TC = −5.4 ± 0.7 ◦C, φ = 0.028, θr = 0.001, Mn(T0)
= 2.9 × 10−7 S m−1. We also obtained αT = 0.028 ± 0.0007 ◦C−1 above
the freezing temperature. The symbols denote the experimental data (red
above the freezing temperature and blue below the freezing temperature),
while the plain lines correspond to the fit of the model.

were installed at a depth of 10 cm in 2016 July in the SE and NW
faces and near the refuge foundation. The latter is not used in this
study. The SE face sensor was installed 15 m below the refuge (at
3595 m a.s.l.), in the scar from the 1998 rock fall, and the NW
face sensor was installed below the terrace of the refuge (at 3603 m
a.s.l.) in a massive slab (Fig. 2). The NW face sensor was installed
in a snow-free location, but the one on the SE face was installed
on a rock wall on which snow accumulates in winter, covering the
sensor. These sensors recorded RST at an hourly time step until
2018 September yielding time-series > 2 yr. The MARSTs allow
a first approximation of the presence/absence of permafrost, nega-
tive values indicating the very likely presence of permafrost while

values up to 3 ◦C might also indicate possible permafrost presence
(Hasler et al. 2011). Such data can also be used to simulate per-
mafrost evolution at depth by forcing a heat conduction model (e.g.
Hipp et al. 2014).

To evaluate the occurrence of permafrost obtained from field
electrical conductivity measurements, we simulate the bedrock tem-
perature evolution during the years prior to measurements in order
to assess the thermal state at the day of geophysical investiga-
tions in 2016 and 2019. To do so, we first reconstruct a time-
series of the daily RST (1993 January to 2016 July) at the SE
and NW loggers locations by fitting a linear regression model be-
tween the measured RST and local air temperature records (data
from Météo France). We tested the model fit with air temperature
records from Chamonix (1042 m a.s.l.) and the Aiguille du Midi
(3842 m a.s.l.). The best correlation between daily RST and daily
air temperature was obtained with the Chamonix time-series for
the NW sensor (0.88) and with the Aiguille du Midi time-series
for the SE sensor (0.77 against 0.63 for the Chamonix time-series).
Lower correlation between air temperature and RST on at the SE
sensor is due to the presence of the snow cover in winter and the
stronger variability in incoming solar radiation than at the NW
sensor.

We then used air temperature time-series best correlated with
the RST to reconstruct the RST prior to and after RST mea-
surements by using the fitted regression model coefficients. Since
the Aiguille du Midi weather records only start in 2007 February
and because they are affected by several gaps during the period
2007–2019, data from the Chamonix time-series, which are con-
tinuous over time, were used to fill the gaps when reconstruct-
ing the RST time-series on the SE face. Two RST time-series
are thus created for the NW and SE logger locations, starting in
1993 January (beginning of the continuous air temperature mea-
surements by Météo France in Chamonix) and ending in 2019
September, with the measured values between 2016 July and 2018
September and the reconstructed values before and after. These
time-series were used to force a MATLAB diffusive transient ther-
mal model, the so-called CryoGRID2 model (Westerman et al.
2013).
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1214 P.-A. Duvillard et al.

Table 2. Parameters used for the numerical simulation of the ridge tem-
perature according to the model Legay et al. (submitted). The value of
these petrophysical parameters have been fitted using the temperature data
measured in three shallow wells.

Parameter Value

Thermal conductivity 3.3 W m−1 K−1

Porosity 0.01
Volumetric heat capacity 2.106 J m−3 K−1

We solve a 1-D nonlinear diffusion equation over time by taking
into account rock properties, air content, water/ice content and re-
lated thawing/freezing processes through latent heat consumption
and release. Our goal is to determine the temperature distribution
along a quasi-horizontal profile crossing the ridge with a length
of 32.75 m. In the original approach by Westerman et al. (2013),
CryoGRID2 is used to model the temperature distribution in a ver-
tical section in which only the upper surface has been exposed to
air. Therefore, an RST time-series is used to impose the bound-
ary condition at the top of the column (corresponding therefore to
a Dirichlet boundary condition) and a thermal flux at the bottom
(corresponding to a Neumann boundary condition).

Our model is however different from the modelling used in West-
erman et al. (2013) since we model the temperature distribution
across a ridge and we need to apply two RST time-series (the SE
and NW temperature time-series) at both ends of the profile. In
other words, in our case, we apply a Dirichlet boundary condition at
each end of the 1-D profile to estimate the temperature distribution
by solving the heat equation with CryoGRID2.

The equations are solved with a spatial resolution of 10 cm near
the two end-points (i.e. from 0 to 1 m and from 31.75 to 32.75 m).
We use a discretization of 20 cm in the remaining part of the profile
(i.e. from 1 to 31.75 m). The simulation is performed between 1993
January 1 and 2019 September 18. Physical rock parameters were
fitted using temperature time-series in three 10-m-depth boreholes
at the Aiguille du Midi (Magnin et al. 2015a). They are reported in
Table 2 and provide reasonable estimates for granites.

Legay et al. (submitted) have calculated a model uncertainty
(standard deviation) of 0.55 ◦C according to the error distribution
(difference between the modelled and measured temperature values
in the boreholes). In addition, uncertainties in the inputs of the
model must be considered; the loggers give an uncertainty of
	95 per cent = 1.1 ◦C for the measured temperatures time-series (NW
and SE series).

5 R E S U LT S

5.1 Electrical conductivity and normalized chargeability
tomograms

Electrical conductivity tomograms acquired in 2016 and 2019 show
a vertical distribution of the conductivities with rather low conduc-
tivity values (< 10−4 S m−1) below the NW face and higher values
below the SE face (> 10−4 S m−1). The chargeability tomogram ac-
quired in 2019 shows a similar vertical distribution between the NW
face and SE face. The two colour scales are adjusted with respect
to the 0 ◦ value to the conductivity values (between 10−4 and 10−5

S m1) or normalized chargeability values (between 10−6 and 10−7

S m1) observed during the laboratory experiments (Figs 4 and 5).
This suggests that permafrost presence is restricted to the NW face
with a vertical permafrost limit below the hut and the absence of
permafrost below the SE face (Figs 6 and 7). A temperature versus

depth profile is shown in Fig. 8 indicating a freezing temperature
around 0 ◦C. At this stage, only a semi-quantitative interpretation of
the profiles is possible, as previously carried out in previous studies
analysing electrical conductivity tomograms in rock walls (Kraut-
blatter & Hauck 2007; Magnin et al. 2015b; Keuschnig et al. 2017).
Thus, at the current stage, it is not possible to assess how close to
the thawing point the permafrost is.

5.2 Petrophysical modelled temperature distribution in the
ridge

In order to convert the electrical conductivity distribution into tem-
perature fields, we consider the following values of the model pa-
rameters entering equations (4): TC= −0.41 ◦C, φ = 0.028 and
θr = 0.006 based on the experimental data (Fig. 4). In addition,
we consider TF = 0◦C based on borehole data (Fig. 8). The ex-
perimental data with a lower freezing temperature may be due an
incomplete equilibrium reached in the core sample between each
temperature drop. Based on our experimental data, the value of the
characteristic temperature TC entering eq. (4) should be taken in the
range−2.9◦C ≤ TC ≤ −0.4◦C. This range is likely due to the het-
erogeneity of the rock. The last step is to determine the value of the
conductivity of the rock at the reference temperature, that is, σ (T0).
We first determine the value of σ (TF = 0◦C) from the electrical
conductivity distribution resulting from the electrical conductivity
tomogram. This value is obtained as follows.

Note that there is a strong drop in the gradients of the fits to
the log(conductivity) versus temperature data above and below the
freezing temperature. Above the freezing temperature, the gradi-
ent is small, thus, for uniform temperature sampling, there will be
more values in any conductivity range. Below the freezing tem-
perature, the gradient is much steeper, thus in the same size con-
ductivity range there will be fewer values. As below the freezing
temperature, the curve starts to decrease in gradient with decreas-
ing temperature there subsequently starts to be an increase in the
number of uniformly distributed temperature points in a given con-
ductivity range. Hence, we get a minimum in the histogram. The
same is expected for the field data if the temperature sampling is
uniform enough. What do we mean by ‘uniform enough’ for the
field data? In the field, the temperature field is smooth because act-
ing as a solution of a diffusion equation with a small variance in
the thermal diffusion coefficient. The electrical conductivity distri-
bution resulting from the least-squares inversion of the field data
with a Laplacian as regularizer is also a smooth field. It is there-
fore quite legitimate to expect also a minimum in the conductivity
distribution.

The notch in the conductivity distribution is clearly identified in
Figs 9 and 10 for both laboratory and field data, acquired in 2016 and
2019. This yields σ (TF = 0◦C)= 5 × 10−5 S m−1 for the field data.
Then, this value is converted to the reference temperature of 25 ◦C to
be used in eq. (4). Using eq. (1), we obtain σ (T0) = 8 × 10−5 S m−1,
therefore in agreement with the values determined independently
from the curve fitting shown in Fig. 4 (σ (T0) = 8.8 × 10−5 S .m−1

for sample G1 and σ (T0) = 8.0 × 10−5 S m−1 for sample PAS1).
With these values, two temperature distributions are shown in

Fig. 11 for TC = −2.2 and − 0.4◦C, respectively. These results
show a relative increase of the lowest temperature between 2016 and
2019, according to the two sample (sample G1, −1.7 ◦C in 2016,
then −1 ◦C in 2019; sample PAS1, −10 ◦C in 2016, then −6 ◦C
in 2019), suggesting permafrost degradation (warming) within this
3 yr period.
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Temperature of a permafrost-affected rock ridge 1215

Figure 6. Electrical conductivity tomography (in S m−1) of the rock ridge below the Cosmiques refuge in 2016 and 2019. We use cold colours for the low
conductivity values presumed to correspond to the rock mass undergoing freezing conditions. The warm colours corresponds to the rock mass above freezing
conditions.

5.3 Measured and modelled bedrock temperature

The MARST during the measurement period (from 2016 to 2018
August 15) was −3.7 ◦C on the NW face and + 2.4 ◦C on the SE
face. This is in agreement with suggestion from the petrophysical
models, which displays permafrost conditions below the NW face
but not below the SE face. Temperatures simulated at depth with
CryoGRID2 are presented in Fig. 12 for the period from 2009

January 1 to 2019 September 18. We use a 1-D approximation
accounting for the fact that the ridge can be approximated to be
infinite in the normal direction and that the top of the ridge is still far
from the line of interest. They show a depth of the permafrost in the
NW face around −15 m with temperature between −2/−3 ◦C during
the ERT and IP acquisition in 2016 October and 2019 September.
This simulation indicates warm permafrost in the NW face, probably
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1216 P.-A. Duvillard et al.

Figure 7. Normalized chargeability tomograms (in S m−1) of the rock ridge below the Cosmiques refuge in 2019. Tomogram is smaller in SE face due to the
lack of inverted data points. Note that some low values in the normalized chargeability close to the surface in the SE side of the ridge may due to the low water
content of the rock.
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Figure 8. Temperature as a function of depth for the borehole located on the NW face of the ridge in the Aiguille du Midi (3738 m a.s.l.). Note that the
transition zone defined the freezing temperature as being just below 0 ◦C.
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Temperature of a permafrost-affected rock ridge 1217

Figure 9. Distribution of the electrical conductivity. (a) Laboratory data
using all the measurements for the two core samples shown in Fig. 4. (b)
2016-field data from the electrical conductivity tomogram. The observed
minimum in the distribution is used to define the value of the electrical
conductivity of the material at the freezing temperature. In the field data,
we obtain σ (TF = 0◦C)= 5 × 10−5 S m−1 (obtained from the vertical plain
line associated with the minimum in the conductivity distribution). The
consistency of this value with the value obtained from the laboratory data
validates the approach.

in thawing phase with the zero degree isotherm appears to be moving
towards the NW face over the considered time period.

6 D I S C U S S I O N

6.1 Comparison between geophysics and numerical
modelling

When we compare the negative temperature converted from the
geophysics (petrophysical model only used under 0 ◦C) with tem-
perature simulated with the numerical model, we observe that the
NW face of the rock ridge is frozen with both methods, in 2016
and 2019. We recall that the geophysical data can only be used to

Figure 10. Distribution of the electrical conductivity for the 2019 field data.
We observe higher values for the conductivity with respect to the distribution
taken in 2016 (see Fig. 9).

assess the temperature in the frozen portion of the ridge; above the
freezing temperature, the effect of heterogeneity is stronger than
the effect of temperature regarding their effects on the conductivity
field. Fig. 11 confirms a good correlation between the frozen and
unfrozen parts of the ridge between the geophysical prediction and
the numerical modelling. The temperature distribution with Tc =
−2.2 ◦C (sample PAS1 saturated with snowmelt; Fig. 4a) suggests
that the bedrock temperature is between −2 and −4 ◦C in 2016 and
2019 at a depth of 10 m in the NW face while the temperatures
simulated with the numerical model is −2 ◦C. The determination of
the temperature distribution assuming Tc = −0.36 ◦C (Fig. 4b) sug-
gests a bedrock temperature of −0.5 ◦C at 10 m depth in 2016 and
2019 while the numerical simulation suggests −2 ◦C. Therefore,
the numerical modelling shows that the NW face of the rock ridge
is frozen (permafrost conditions) with a temperature around −2 ◦C;
which is very consistent with the interpretation of the geophysical
data from the sample PAS1 (with Tc = −2.9 ◦C, see Fig. 11).

6.2 Uncertainty

In the previous section, we made a qualitative comparison between
the prediction of the geophysical data using the petrophysical model
discussed in Section 2 and the 1-D numerical model. We avoided
a direct comparison because, in our opinion, both approaches con-
tain sources of uncertainties. For the numerical model, the main
sources of errors are associated with (1) uncertainties associated
with the dimensionality of the numerical model, (2) uncertainties in
the value of the petrophysical parameters used in the heat equation,
(3) uncertainties in the boundary conditions and (4) uncertainties in
the numerical modelling itself. For instance, CryoGRID2 assumes
that the material properties are uniform and does not account for
specific heat flows along the bedrock fractures (convection from air
ventilation and advection from snowmelt infiltration) nor variabil-
ity in water/ice content which affects freezing and thawing patterns
through latent heat fluxes. It also neglects the vertical component
of the ridge geometry but this is presumably of minor effect as the
main lateral heat flux (Noetzli et al. 2007; Magnin et al. 2017a)
between the SE and NW faces is accounted for.
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1218 P.-A. Duvillard et al.

Figure 11. Distribution of the temperature determined from the electrical conductivity distribution for the 2016 and 2019 tomograms. Distribution obtained
with the characteristic temperature TC = −0.4 and − 2.2◦C. Permafrost is inferred below the NW face of the rock ridge. We also show the pseudo-horizontal
section of length 32.75 m crossing the ridge and used for the numerical modelling of the temperature field. The blue portion of this profile denotes the frozen
section, while the red portion indicates the zone above the freezing temperature. Note the agreement between the geophysical prediction and the numerical
model.

Figure 12. Modelled daily rock temperature along a horizontal section of 32.75 m crossing the ridge (as shown in Fig. 11). The SE face of the rock ridge
corresponds to the top of the section, while the NW face corresponds to the bottom part of the section. The temperature distribution is modelled by applying
the observed thermal boundary conditions as explained in the main text. The two vertical lines correspond to the acquisition dates (in 2016 and 2019) of the
geophysical data (ERT stands for electrical resistivity tomography, while IP stands for induced polarization). We see that a large portion of the ridge is expected
to be frozen. Note that zero degree isotherm appears to be moving towards the NW face over the time period.

Regarding the geophysical data, sources of errors are associated
with (1) uncertainties in the inversion of the geophysical data (choice
of the regularization term in the cost function), (2) uncertainties in
the geophysical data and (3) uncertainties in the parameters entering
in the petrophysical model. A complete analysis of the uncertainties

associated with the two approaches is out of the scope of this paper.
This being said, a future investigation will focus on a temperature
tomogram that will combine 2-D numerical modelling of the heat
equation with the geophysical data to get a balance in terms of
combining the two types of information.
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Figure 13. Normalized chargeability versus electrical conductivity. Com-
parison between the field and laboratory data (PAS1). The colour code is
blue for the cold values below the freezing temperature and red above the
freezing temperature. The plain line corresponds to the best fit of the field
data (with a slope of 0.016, r = 0.69, fit forced through the origin of the
coordinates). The small value of the slope (smaller than R = 0.08 indicates
that the electrical conduction process is mostly dominated by the pore water
contribution.

6.3 Influence of surface conductivity

In absence of metallic particles, the electrical conductivity of a
rock sample has two contributions: a bulk conductivity associated
with the pore water in the connected pore space and a surface (in-
terfacial) conductivity associated with conduction in the electrical
double-layer coating the surface of the grains. The third point we
want to discuss is the influence of this surface conductivity in the
overall electrical conductivity of the rock ridge. With the labora-
tory data, we already demonstrated that surface conduction is likely
not dominant in explaining the conductivity of the granite from
the ridge. What about the field data? Fig. 13 displays the field and
laboratory data in terms of normalized chargeability versus con-
ductivity. It clearly shows that the slope (0.016 << R = 0.10) is
such that the conductivity is dominated with the pore water con-
ductivity rather than by the surface conductivity. This is an impor-
tant point in interpreting electrical conductivity tomograms in field
conditions.

6.4 How useful is induced polarization?

In our model, somehow partially validated in this paper and both
in Duvillard et al. (2018) and Coperey et al. (2019b), the conduc-
tivity and the normalized chargeability have the same temperature
dependence above and below the freezing temperature. This is true
only if the conduction and polarization process are related to ionic
processes occurring in the liquid pore water phase and at the inter-
face between this phase and the solid phase. In this case, induced
polarization is only useful in assessing the contribution of surface
conductivity with respect to the total conductivity of the material.
However there is potentially another polarization process occurring

in the material as briefly mentioned in Duvillard et al. (2018). Ice is
a dirty protonic semi-conductor and as such, it could contribute to
the polarization of the material. This could potentially explain the
discrepancy in the trend below the freezing temperature between
the normalized chargeability (Fig. 5) and the conductivity (Fig. 4b)
for sample PAS1. Future works will be focused on elucidating the
polarization mechanism using the work done for semi-conductors
by Revil et al. (2015a,b). In addition, induced polarization could
be used to image the relaxation time, another key parameter of
porous media (see Revil et al. 2019a). We let this point for a future
investigation.

7 C O N C LU S I O N S

Assessing permafrost distribution in steep high-Alpine rock walls
and ridges is challenging due to the highly variable temperature
distribution, largely governed by the micro- to meso-topographical
settings and related topoclimatic controls. Point-scale temperature
measurements and temperature models are therefore limited. In this
study, we proposed to assess the 2-D temperature distribution of
a rock ridge by mean of electrical conductivity tomography and a
petrophysical model parametrized with a calibrated freezing curve
in the laboratory. Electrical conductivity normalized chargeability
measurements are performed on two rock samples from the test
site. The parametrized petrophysical model applied to electrical
conductivity data performed over the rock ridge provides realistic
temperature fields for the lower Cosmiques ridge. Warm permafrost
is inferred right below the NW face and the absence of permafrost is
inferred right below the SE face and below the refuge. The resulting
temperature extracted from geophysics, with sample saturated with
melted snow, advert temperature around −2 ◦C, which is consistent
with the numerically simulated temperature. This approach needs
to be tested on other areas to better assess the asset and limits of the
proposed method. An in-depth analysis of the relationship between
the conductivity and the normalized chargeability indicates that
the conductivity is dominated here by the bulk conductivity rather
than by the surface conductivity associated with conduction in the
electrical double later coating the grains. In the future, we propose to
develop a joint inversion framework using hard and soft temperature
data honoring the physics dictating the temperature distribution in
the rock ridge.
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A P P E N D I X A . C O N D U C T I V I T Y I N
F R E E Z I N G C O N D I T I O N S

Our goal here is to connect the models developed by Duvillard
et al. (2018) and Coperey et al. (2019b) to eq. (3) of the main
text in freezing conditions. The assumptions we use here are the
following (1) the mobility of the ions in the pore water and in the
electrical double layer obey the same linear law with temperature
below and above the freezing temperature (Coperey et al. 2019b),
(2) the porous material is water saturated above the freezing tem-
perature, (3) the cementation exponent and the saturation exponent
are roughly the same (see Revil 2013, their fig. 18) and (4) the salt
is entirely segregated in the liquid pore water. The conductivity at a
water content θ is (Revil 2013):

σ ≈ θmσw + θm−1ρg BCEC, (A1)

where the various parameters are introduced in the main text. As-
sumption (4) implies that the conductivity of the pore water should
scale as the inverse of the pore water sw leading to (see Coperey
et al. 2019b, their eq. 12)

σ (T ) ≈ θ (T )m
[
φσw(T ) + ρg B(T )CEC

]
. (A2)

The temperature dependence of the ionic mobilities entering the
conductivity of the pore water and the mobility B are the same
and related to the dependence of the viscosity of the pore water
with temperature.(∼1 + αT (T − T0) where T0 denotes a reference
temperature, e.g. 25 ◦C). This leads to:

σ (T ) ≈ θ (T )m
[
φσw(T0) + ρg B(T0)CEC

]
[1 + αT (T − T0)] . (A3)

We need now to simplify the writing of eq. (A3). We first write
the conductivity at the reference temperature T0 assuming that the
porous material is fully water saturated at this temperature (in this
case θ = θS = φ where θS is the water content at saturation and φ

the connected porosity), we obtain

σ (T0) ≈ φ2σw(T0) + φρg B(T0)CEC. (A4)

which is strictly valid for m = 2 and a very good approximation for
other values of m when inserted in eq. (A3). Combining eqs (A3)
and (A4) yields eq. (3) of the main text. The same derivation can be
applied to eq. (6) with Mn(T0) ≈ φρgλ(T0)CEC.
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