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Abstract. Much of our knowledge about future changes in
precipitation relies on global (GCMs) and/or regional cli-
mate models (RCMs) that have resolutions which are much
coarser than typical spatial scales of precipitation, particu-
larly extremes. The major problems with these projections
are both climate model biases and the gap between grid-
box and point scale. Wong et al. (2014) developed a model
to jointly bias correct and downscale precipitation at daily
scales. This approach, however, relied on pairwise corre-
spondence between predictor and predictand for calibration,
and, thus, on nudged simulations which are rarely available.
Here we present an extension of this approach that sepa-
rates the downscaling from the bias correction and in prin-
ciple is applicable to free-running GCMs/RCMs. In a first
step, we bias correct RCM-simulated precipitation against
gridded observations at the same scale using a parametric
quantile mapping (QMgrig) approach. In a second step, we
bridge the scale gap: we predict local variance employing a
regression-based model with coarse-scale precipitation as a
predictor. The regression model is calibrated between grid-
ded and point-scale (station) observations. For this concept
we present one specific implementation, although the opti-
mal model may differ for each studied location. To correct
the whole distribution including extreme tails we apply a
mixture distribution of a gamma distribution for the precipi-
tation mass and a generalized Pareto distribution for the ex-
treme tail in the first step. For the second step a vector gen-
eralized linear gamma model is employed. For evaluation we
adopt the perfect predictor experimental setup of VALUE.
We also compare our method to the classical QM as it is usu-

ally applied, i.e., between RCM and point scale (QMpoint).
Precipitation is in most cases improved by (parts of) our
method across different European climates. The method gen-
erally performs better in summer than in winter and in winter
best in the Mediterranean region, with a mild winter climate,
and worst for continental winter climate in Mid- and east-
ern Europe or Scandinavia. While QMpoine performs simi-
larly (better for continental winter) to our combined method
in reducing the bias and representing heavy precipitation, it is
not capable of correctly modeling point-scale spatial depen-
dence of summer precipitation. A strength of this two-step
method is that the best combination of bias correction and
downscaling methods can be selected. This implies that the
concept can be extended to a wide range of method combi-
nations.

1 Introduction

To assess the impacts of hydrometeorological extremes in a
changing climate, high-quality precipitation projections on
the point scale are often demanded. Much of our knowl-
edge about future changes in precipitation is based on
global (GCMs) and/or regional climate models (RCMs).
These have resolutions which are much coarser than typ-
ical spatial scales of processes relevant for precipitation.
This concerns particularly extreme precipitation, which is
far more sensitive to resolution than mean precipitation
(Volosciuk et al., 2015). Although horizontal resolution of
GCMs has successively increased since the first assessment
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report of the Intergovernmental Panel on Climate Change
(IPCC, 1990), resolving all important spatial and temporal
scales remains beyond current computational capabilities for
transient global climate change simulations (Le Treut et al.,
2007). The simulation of precipitation depends heavily on
processes that are parameterized in current GCMs, and also
in most RCMs (Flato et al., 2013). Biases related to param-
eterization schemes and unresolved processes thus remain in
addition to systematic biases related to the large-scale circu-
lation (e.g., Flato et al., 2013; Kotlarski et al., 2014).

Different approaches have been employed to downscale
and/or reduce biases of simulated precipitation, particularly
extremes: (a) high-resolution GCMs, (b) dynamical down-
scaling using RCMs that are nested in the GCMs (Rum-
mukainen, 2010), and (c) statistical downscaling including
post-processing with bias-correction methods (Maraun et al.,
2010). But even though high-resolution GCMs and RCMs
improve the representation of extreme precipitation by better
resolving mesoscale atmospheric processes, biases remain
and there is still a scale gap between the simulated gridbox
values of precipitation and point-scale data (i.e., rain gauges).
Hence, statistical bias-correction methods are also applied to
such high-resolution simulations. These so-called model out-
put statistics (MOS) approaches employ a correction func-
tion derived in present-day simulations to future simulations
of the same model (Maraun et al., 2010).

Quantile mapping (Piani et al., 2009), one example MOS
approach, is widely applied to statistically post-process sim-
ulated precipitation. While this might be a reasonable ap-
proach for correcting biases on the same spatial scale, vari-
ability on local scales is not fully determined by grid-scale
variability, e.g., the exact location, size, or intensity of a thun-
derstorm. This is part of the representativeness problem be-
tween gridbox and point values (Zwiers et al., 2013). Quan-
tile mapping is a deterministic approach that cannot add ran-
dom variability. It simply inflates the variance leading to an
overestimation of spatial extremes, and too smooth a vari-
ance in space and also in time (von Storch, 1999; Maraun,
2013a). Gridbox precipitation, e.g., is the area average of
sub-grid precipitation. The aggregation averages local vari-
ations in time such that gridbox time series are smoother in
time than local time series. Quantile mapping can not over-
come this mismatch in temporal structure (apart from cor-
recting the drizzle effect). This temporal effect is more dif-
ficult to trace than the spatial effect (Maraun, 2013a). Stan-
dard downscaling approaches in turn have a limited ability
to correct systematic biases. Wong et al. (2014) developed
a model that jointly bias corrects and downscales precipita-
tion at daily scales. However, this approach relies on pairwise
correspondence between predictor and predictand for cali-
bration that is only provided by nudged GCM/RCM simula-
tions, and is not able to post-process standard, free-running
GCM simulations (Eden et al., 2014).

Here we present a modification of the Wong et al.
(2014) approach that is designed to also work in princi-
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ple for free-running GCM/RCMs, such as those available
from ENSEMBLES (van der Linden and Mitchell, 2009) or
CORDEX (e.g., Jacob et al., 2013). With the aim of combin-
ing their respective advantages we combine a statistical bias
correction and a stochastic downscaling method. Thereby
we separate bias correction from downscaling by inserting
a gridded observational dataset as a reference between these
two steps. In particular, as a first step we apply a paramet-
ric quantile mapping approach between an RCM and a grid-
ded observational dataset. In a second step we bridge the
scale gap between gridded and point scale by employing a
stochastic regression-based model that is calibrated between
gridded and station observations and then applied to the bias-
corrected precipitation from the first step.

In Sect. 2 the general concept is introduced; the data used
are described in Sect. 3. In Sect. 4 we present the bias cor-
rection and the stochastic downscaling model. Results of the
evaluation of our model for example stations across Europe
are provided in Sect. 5 and, finally, Sect. 6 contains the con-
clusion.

2 General concept

We separate bias correction from downscaling into two steps
to overcome the shortcomings of each method and to com-
bine their respective strengths. Our concept is illustrated
schematically in Fig. 1. In the first step, we use the advan-
tage of distribution-wise bias correction (i.e., the correction
function is calibrated on long-term distributions) to eliminate
systematic biases in the RCM. While this distribution-wise
setting may correct systematic RCM biases, it cannot bridge
the gap between gridbox and point scale for two reasons.
First, a considerable portion of subgrid variability is random
for precipitation and has to be modeled as stochastic noise.
However, distribution-wise MOS methods are deterministic
and do thus not add unexplained random variability. Sec-
ond, distribution-wise methods cannot separate local vari-
ability into systematic explained variability and small-scale
unexplained variability. Moreover, when simulated short-
term variability is inflated to match local variability, long-
term trends are also inflated (Maraun, 2013a). Therefore, we
only apply this distribution-wise method to correct biases on
the same spatial scale; i.e., as a reference we use gridded ob-
servations on the same grid as the RCM. In the second step,
we employ a stochastic regression-based model to overcome
the representativeness problem. This regression model cor-
rects systematic local effects (e.g., whether a rain gauge is
positioned on the lee or windward side of a mountain). It also
adds random (unexplained) small-scale variability, in con-
trast to approaches of combined methods that employ spa-
tial interpolation for downscaling (Wood and Maurer, 2002;
Wood et al., 2004; Payne et al., 2004) or rescale the grid-scale
precipitation with a factor to match the observations (Ahmed
et al., 2013). We calibrate the probabilistic regression model
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Figure 1. Schematic of (black) our combined statistical bias correction and stochastic downscaling model, and (grey) the Wong et al. (2014)

model.

between gridded and point-scale observations and then apply
it to the corrected grid-scale time series in the validation pe-
riod. This corresponds to a perfect prog (PP) setting for the
regression, while the bias is corrected in the first step. This
combined approach is an extension of the model by Wong
et al. (2014) that jointly bias corrects and downscales precip-
itation (see Fig. 1). They employ a probabilistic regression
model that is calibrated between RCM and point-scale ob-
servations (MOS approach). It requires nudged RCM simu-
lations for calibration since temporal correspondence is es-
sential.

With this concept in place, basically in the first step any
reasonable distribution-wise MOS approach, and in the sec-
ond step any adequate stochastic model, can be employed.
A strength of this concept is its flexibility; i.e., the best suit-
able combination of statistical models for a given location
and season can be determined. In this study, we employ a
quantile mapping (QMgiq) approach based on the mixture
distribution of a gamma and generalized Pareto distribution
(Vrac and Naveau, 2007) in the first step. The model used in
the second step consists of a logistic regression for wet day
probabilities and a vector generalized linear model predicting
the parameters of a gamma probability distribution (VGLM
gamma) for precipitation intensities. Note that this combina-
tion of methods may not be optimal in all studied locations.
However, the aim of this study is to introduce and evaluate
the concept of this combined approach rather than to find the
optimal specific implementation for all studied locations.

To evaluate and illustrate our method, we adopt the perfect
predictor experimental setup of the VALUE framework (Ma-
raun et al., 2015). Employing the same evaluation framework
as VALUE allows for comparison of our method to all mod-
els participating in the VALUE experiment. In this context,
a reanalysis-driven RCM is used which allows us to evaluate
the ability of the method to correct RCM biases, before eval-
uating GCM-driven simulations where biases of both GCMs
and RCMs need to be corrected. We note that although this
is a pairwise setup where simulated and observed weather
states are in principle synchronized (with the exception of
the internal variability generated within the RCM), we only
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use the simulated and observed distributions for the bias cor-
rection. Thus, as explained above, the approach can be trans-
ferred to any simulation setup, e.g., GCM-driven RCM simu-
lations or GCM simulations. For comparison we also applied
the classical QM approach, i.e., directly between RCM and
point scale (QMpoint)-

The method is evaluated by 5-fold cross-validation for
the time period 1979-2008; i.e., five 6-year long periods
are predicted by the model that was fitted to the remaining
24 years. Artificial predictive skill is thus not present as the
predicted period is not part of the training period. The model
is fitted and evaluated for each season separately; 86 sta-
tions across Europe are studied (as selected for the VALUE
experiment; see Fig. 2) representing different climates. In
the evaluation of our model we compare eight European
subdomains (dashed lines in Fig. 2): the British Isles (BI),
the Iberian Peninsula (IP), France (FR), Mid-Europe (ME),
Scandinavia (SC), the Alps (AL), the Mediterranean (MD),
and eastern Europe (EA). These domains have been de-
fined within the PRUDENCE project (Christensen and Chris-
tensen, 2007) and are often used for RCM evaluation (e.g.,
Kotlarski et al., 2014). Although climatic differences within
these subdomains remain, they summarize European climate
zones and intercomparison amongst them allows for study of
large-scale gradients (e.g., from maritime (west) to continen-
tal (east) or from cold (north) to mild (south) winters). We
slightly extended the PRUDENCE regions SC, AL, and MD
such that all studied rain gauges are included in the analysis.

3 Data and gridbox selection

As prescribed by the perfect predictor experiment within the
VALUE framework, we use the RACMO2 RCM from the
KNMI (van Meijgaard et al., 2012) to test our method for the
time period from 1979 to 2008. The RCM has been driven
with ERA-Interim reanalysis (Dee et al., 2011) within the
EURO-CORDEX framework (Jacob et al., 2013). The simu-
lation has been carried out at a horizontal resolution of 0.44°
(~ 50km) over a rotated grid. Note that the resolution we em-
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Figure 2. Location and IDs of used rain gauges from ECA&D. IDs of red marked stations from left to right: 244, 243, 4002, 58, and 13. Sta-
tions for detailed analysis are marked in blue. Dashed lines represent European subdomains for analysis as defined by the PRUDENCE project
(Christensen and Christensen, 2007): the British Isles (BI), the Iberian Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia (SC),
the Alps (AL, dashed red line), the Mediterranean (MD), and eastern Europe (EA).

ploy (0.44°) differs from the resolution used in the VALUE
experiment (0.11°).

As the gridded observational dataset, E-OBS version 10
(Haylock et al., 2008) is used, also at 0.44° resolution. The
reason for choosing the 0.44° horizontal resolution for both
RCM and E-OBS is that the actual resolution of E-OBS
might in some regions be lower than the nominal 0.22° due to
sparse rain gauge density included in the dataset!. Gridding
very few rain gauges to a high resolution might in particular
result in overly smooth extremes (Haylock et al., 2008; Hof-
stra et al., 2009a, b; Maraun et al., 2011a). Hence, too high
a resolution of a gridded dataset may be an unreliable refer-
ence for bias correction, at least for summer extreme events.
Moreover, this could cause artificial smoothing of extremes
by bias correction. In some regions where station density is
very sparse, this might even hold true for the chosen resolu-
tion. Although E-OBS is probably not an appropriate refer-
ence in some regions, it is the best available gridded dataset
covering the whole EURO-CORDEX domain.

The E-OBS reference gridbox for both steps (bias correc-
tion and downscaling) is generally the closest gridbox to the
respective station. If the closest gridbox is an ocean gridbox
(i.e., for coastal and island stations) and only contains miss-
ing values, we select the gridbox with the highest correlation
in winter between daily precipitation at the given station and
the five closest E-OBS gridboxes. In winter the spatial decor-
relation length of precipitation is generally large, implying

IFor station density of actual E-OBS versions, refer to the
ECA&D website: http://www.ecad.eu/dailydata/datadictionary.php.
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that several gridboxes are often affected by the same weather
system, and, thus, the gridbox with the most similar climate
can be reliably identified.

The RCM gridbox that is bias-corrected and downscaled
is generally chosen as the closest gridbox to the E-OBS ref-
erence gridbox — also for coastal and island stations where
the chosen RCM gridbox might thus differ from the clos-
est RCM gridbox to the final reference (i.e., rain gauge). For
locations in the rain shadows we choose the RCM gridbox
which best represents the climate at the given location to cor-
rect overly low precipitation values caused by not enough
windward air masses crossing the mountain range (“location
bias”, Maraun and Widmann, 2015). To this end, the high-
est correlation between the winter seasonal mean of RCM
and gridded observations within 250 km around the closest
gridbox to the observations is determined. Note that when
transferring this approach to free-running RCM simulations
this gridbox selection step needs to be carried out employing
a reanalysis-driven simulation of the same RCM to ensure
temporal correspondence.

For local-scale observations we used 86 stations across
Europe from ECA&D (Klein Tank et al., 2002) selected by
the VALUE experimental framework (Maraun et al., 2015).
The locations and ids of these stations are illustrated in Fig. 2.
A detailed analysis is carried out for some example stations
representing different climates (highlighted in blue in Fig. 2).

www.hydrol-earth-syst-sci.net/21/1693/2017/
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4 Statistical model
4.1 Step 1: bias correction

In our model we correct several biases. In a first step, the
“location bias” is corrected by gridbox selection (see Sect. 3
for details). In the second step, the “drizzle” effect is cor-
rected by increasing the wet day threshold for the RCM
such that the number of wet days (closely) matches the
gridded observations, with a threshold of 0.1 mm day~'. Fi-
nally, we correct precipitation intensities of wet days (i.e.,
exceeding the corrected wet day threshold) using a quan-
tile mapping (QM) approach which is described in the fol-
lowing. The correction function y = f(x) between the simu-
lated (x) and corrected (y) values of daily precipitation inten-
sities such that the corrected values match the observations
is based on the cumulative distribution functions (cdfs) as
cdfops (f(x)) = cdfrem(x) (Piani et al., 2009). To allow for
extrapolation in a future climate to unobserved precipitation
intensities and to avoid deterioration of future extremes that
might occur with an approach that relies on empirical cdfs,
we chose a parametric QM approach.

To model precipitation intensities the gamma distribution
is commonly used (Katz, 1977). While the bulk of precipita-
tion is generally well represented, the tail of the gamma dis-
tribution is usually too light to capture high and extreme rain-
fall intensities (e.g., Vrac and Naveau, 2007; Maraun et al.,
2010). Thus, an extreme value distribution, such as the gen-
eralized Pareto (GP) distribution (Coles, 2001), might be re-
quired to model the extremes of the precipitation distribution.
To correct the whole precipitation distribution, including ex-
treme tails, we apply the mixture distribution of Vrac and
Naveau (2007) which consists of a gamma distribution for
the precipitation mass and a GP distribution for the extreme
tail. This model is a variant of Frigessi et al. (2002). The
distribution /4 (x) of observed precipitation x on wet days is
modeled as

lp () = c(@) ({[1 = wm,« (O] oy )} + [win,r (X) ge.0 (¥)]) .
¢=0,y.§,0,m,1), (1
where fj , is the probability density function (pdf) of the

gamma distribution with the rate parameter A and the shape
parameter y,

AV
C(y)

and g , is the pdf of the GP distribution:

xyflef)\x

fry(x) = .+ Ay >0, (@)

_1_
gs,o(x)=l[1+m] : for x > u, 3)
o o

with the scale parameter o > 0 and the shape parameter &
which determines the tail behavior of the GP distribution as
follows: £ < 0: bounded tail; £ — 0: exponential distribution

www.hydrol-earth-syst-sci.net/21/1693/2017/

(light tailed); and & > O: infinite heavy tail. Here, we con-
strain £ > 0 to ensure that our model can be applied to a fu-
ture climate that may experience higher values than those ob-
served during the present-day training period for the model.
The function wy,  is a weight function that determines the
transition between the gamma and GP pdfs as

1 1 (x —m )
Wy, 7 (x) = = + —arctan , m,T>0, 4)
' 2w T
with the location parameter m denoting the location of the
center of this transition and the transition rate t influencing
the rapidity of the transition between the two distributions. To
finally obtain the mixture pdf, the mixture function (Eq. 1)
must be normalized, which is carried out here by multiply-
ing the mixture function by a constant c(¢). In the mixture
pdf (Eq. 1) the threshold u in the GP distribution (Eq. 3) is
set to zero, as the location parameter m of the weight func-
tion (Eq. 4) fulfills the purpose of a threshold in Eq. (1).
Moreover, setting the threshold to zero and applying a weight
function instead also solves the problem of threshold selec-
tion with unsupervised estimation and avoids discontinuity
in the mixture pdf [y (x) (Eq. 1) (Vrac and Naveau, 2007).
The parameters for /4 (x) are estimated using maximum like-
lihood estimation (MLE). For technical details on the imple-
mentation of this model, please refer to Appendix Al.

Since the mixture model is a complex model with six free
parameters, a thorough statistical model selection is neces-
sary. We select between the mixture model and the sim-
pler gamma-only model separately for the observed (Fops)
and RCM-simulated (Frcym) distributions. For the selection,
we apply the Akaike information criterion (AIC, Akaike,
1973), which asymptotically selects the model that mini-
mizes the mean squared error between prediction and obser-
vation (Shao, 1997). The AIC is defined as —2log(L) + 2k
with the likelihood L corresponding to the maximum likeli-
hood estimate of the k£ model parameters. The AIC is dom-
inated by the most densely populated region of the distri-
bution. Hence, a good fit for the bulk of the distribution
(and thus a low AIC) might nevertheless come with large
biases in the extremes (see Appendix A2 for an example).
To avoid a model choice with unreasonably high extremes,
we therefore introduce a criterion based on a comparison
between the 100 season return levels estimated by the mix-
ture model (Eq. 1) and by the GP distribution (Eq. 3) before
the AIC-based model selection is applied. For technical de-
tails on these model selection procedures, please refer to Ap-
pendix A2.

To strictly avoid bias correction deteriorating the predic-
tor and introducing biases, both the complete cross-validated
corrected time series and the raw RCM output are compared
to gridded observations as a reference using the Cramér—von
Mises (CvM) criterion. The CvM is a measure of the dis-
tance between two empirical cdfs (cdf bias hereafter; Dar-
ling, 1957) and has been used to evaluate cdf-based cor-
rection models before (e.g., Michelangeli et al., 2009; Vrac

Hydrol. Earth Syst. Sci., 21, 1693-1719, 2017
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et al., 2012). If cdfi.(x) is the empirical cdf of observations
as a reference (i.e., the perfect bias correction would match
this reference) and cdf.qrr(x) is the empirical cdf of the bias-
corrected time series, the CvM statistics is defined as the in-
tegrated squared difference between cdfy.r and cdfc; as fol-
lows:

00
CvM = / |cdfcorr (x) — Cdfref(x)|2dx- )

—00

Here, the CvM is computed for both the corrected daily pre-
cipitation time series and the uncorrected RCM-simulated
precipitation time series with E-OBS as a reference. The pre-
dictor for downscaling is selected based on the lower CvM.
In other words, the bias-corrected time series is only used as
a predictor for the downscaling step if it improves the predic-
tor compared to the raw uncorrected RCM.

4.2 Step 2: stochastic downscaling

To bridge the scale gap we apply the regression model de-
veloped by Wong et al. (2014) as follows. We determine the
statistical relationship between gridded and station observa-
tions. This statistical relationship is then applied to coarse-
scale precipitation as a predictor which is selected in the
first step, i.e., QMgig-bias corrected or uncorrected RCM-
simulated precipitation. To be able to estimate the distribu-
tion of precipitation as a function of a given predictor, a sta-
tionary distribution is not sufficient. The family of general-
ized linear models (GLMs) extends linear regression to such
purposes (e.g., Dobson, 2001). In this framework the time-
dependent expectation of a random variable is linked via a
monotonic link function to a linear combination of predic-
tors. The logistic regression model belongs to the class of
GLMs and is often used to model the changing probability of
rainfall occurrence (Chandler and Wheater, 2002). We model
the probability p; of a day i being wet (i.e., greater than the
threshold selected earlier at 0.1 mmday~') as a function of
coarse-scale precipitation x; as

h(pi) =log (”—) = axi + 5. (©)
1 —pi

where h(-) is the logit link function and the parameters o

and B are estimated by MLE. The logit link function gives

the logarithm of the odds.

Subsequently, precipitation intensity on wet days is mod-
eled using a vector generalized linear model (VGLM) as a
regression model (Yee and Wild, 1996; Yee and Stephen-
son, 2007). VGLMs are an extension of GLMs. While GLMs
describe the conditional mean of a wide range of distribu-
tions, VGLMs allow for prediction of a vector of parame-
ters from the same set of predictors, which is useful if one
is also interested in the variance or the extremes of a dis-
tribution. Wong et al. (2014) implemented a mixture model
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version (see Eq. 1) and a gamma model version (see Eq. 2)
employing a VGLM. Here we apply the VGLM gamma ver-
sion since the calibration and model selection procedure for
the VGLM mixture model is computationally rather expen-
sive. The simpler gamma model might be sufficient here
as in the downscaling step a predictor is employed that al-
ready explains a large portion of the variance. The quality of
downscaled precipitation does not only depend on the chosen
model, but also on the quality of the predictor. Employing the
mixture model for the bias-correction step is thus meaningful
to ensure a good representation of higher quantiles and ex-
tremes in the predictor, although downscaling is performed
with a simpler gamma model. The scale 6 (the inverse of A
in Eq. 2) and the shape y parameters depend linearly on the
predictor (coarse-scale precipitation) x;. The model has the
form

0; = 6o + Yo xi,
Vi =Yo+Vyxi, (N

where the regression parameters v/, and y,, are estimated by
MLE.

Combining the probability of wet day occurrence and the
gamma model distribution defining the precipitation intensi-
ties, we get the probability that observed precipitation on a
given day (R;) is less than or equal to a particular precipita-
tion intensity (7):

Prg, (R <7) =Ty, (R <r|W) pi + (1 = pi), ®)

ability of that given day being wet.

where I'g ), (R; <r|W) is the gamma cdf and p; is the prob-

4.3 Evaluation metrics

We evaluate our combined model based on the following
metrics.

— Mean bias: absolute difference between seasonal means
as (model — reference).

— cdf bias: CvM criterion which represents the mean
squared error of a cdf compared to a reference cdf (for
details see Sect. 4.1).

— %sim > perc954ps: percentage of simulated wet days
exceeding the observed 95th percentile.

— QQ plots: the quantiles (i.e., sorted time series) of mod-
eled precipitation are plotted against the quantiles of the
reference. For the evaluation of the second step (down-
scaling) standardized QQ plots are used which are ex-
plained in Sect. 5.2.2.

— Spatial autocorrelation: correlation of a variable with
itself in geographical space. The correlogram is esti-
mated by centered Mantel statistics using R package ncf
(Bjornstad, 2015). The correlation for a set of distances

www.hydrol-earth-syst-sci.net/21/1693/2017/
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Figure 3. Mean bias. (a, b) Uncorrected RCM, (¢, d) QMpoim—corrected RCM to the point scale, and (e, f) combined model selected predictor
(RCM or QMg;ig-corrected RCM) and VGLM. Reference is station data.

at discrete distance classes is calculated. Significance
is assessed by 1000 random permutations. The correl-
ogram is estimated for daily values and then averaged.
For the VGLM the correlogram is computed for 100 re-
alizations of the stochastic model and then averaged.
The correlogram is centered on zero; i.e., zero repre-
sents similarity across the region. Crossing the zero line
implies thus that the pair of distances is not more simi-
lar than what would be expected by chance alone across
the region.

5 Results

We first evaluate the mean bias of our combined model (se-
lected predictor and VGLM) against station observations and
compare it to the raw uncorrected RCM and to classical
QMyyoint (between RCM and point scale). Then the perfor-
mance of the two steps (bias correction and downscaling) is
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assessed individually and in combination. Finally, all ana-
lyzed models are compared. The evaluation is carried out for
the time period 1979-2008 by analyzing the cross-validated
(5-fold) time series. The first step (bias correction) is eval-
vated against the gridded E-OBS dataset, although E-OBS
might underrepresent the extremes in some regions where
station density is sparse. The second step (downscaling) and
the combined model (steps 1 and 2) are evaluated against sta-
tion observations.

5.1 Evaluation of mean precipitation bias

Figure 3 shows the mean bias of precipitation (against station
observations) as modeled by (a, b) the RCM and (c, d) the
classical QMyoint approach applied directly between RCM
and station observations and (e, f) our combined model. The
RCM has a stronger bias in DJF than in JJA. In DJF it is
rather too wet, whereas in JJA many locations have a dry

Hydrol. Earth Syst. Sci., 21, 1693-1719, 2017
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Figure 4. Step 1: bias correction to grid scale. (a, b) CvM score for the selected cross-validated predictor against E-OBS. Threshold for
values under which the model cdf is not statistically significantly different at the 95 % level from the reference cdf: 0.461. (¢, d) Percentage
of wet days in the CvM-selected cross-validated predictor exceeding the 95th percentile of wet days in E-OBS (%sim > perc95,ps). Selected

model: circles: QMgig-corrected RCM; triangles: uncorrected RCM.

bias. In both seasons the bias is improved by QMpoint, With
a slight remaining wet bias. Our combined model also im-
proves the mean bias of the RCM in JJA. However, in DJF
wet biases remain and got even worse in some locations. This
raises the question why the results become worse when sta-
tistical post-processing is applied. However, the bias of the
seasonal mean does not give information on how the precip-
itation distribution is represented or the predictive power of
the model. These issues are evaluated in the following.

5.2 Evaluation of the combined model

First, both steps of the combined model are evaluated indi-
vidually. Second, the combination of both steps is evaluated.
In this combined model the predictor selected in the first step
is used for the regression model in the second step.

5.2.1 Evaluation of Step 1: bias correction vs. E-OBS

Figure 4 shows the cross-validated selected predictor (uncor-
rected RCM: triangles; QMg ig-corrected RCM: circles) that
is used in the second step for downscaling. For predictor se-
lection we apply the Cramér—von Mises score (CvM, Eq. 5,
Sect. 4.1) which represents the mean squared error of a cdf
compared to a reference cdf (cdf bias hereafter). The predic-
tor is selected based on the lowest CvM score of the cross-
validated QMgrig-corrected time series and the raw uncor-
rected RCM with gridded observations as a reference. Gen-
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erally our bias correction often improves precipitation. It is
selected 73 times in December—February (DJF) and 49 times
in June—August (JJA) out of 86 rain gauges.

The CvM values of the selected predictor (Fig. 4a and b)
indicate that the cdf bias is generally lower in JJA than in
DJF. In DJF the cdf bias is lowest in the Mediterranean re-
gion, with a mild winter climate. However, the CvM crite-
rion is quite sensitive to small deviations between the cdfs.
The highest selected CvM values are found for Graz (Aus-
tria) in JJA, and Leba (northern Poland), Siedlce (eastern
Poland), and Dresden (eastern Germany) in DJF. QQ plots
for these high CvM values (see Appendix B1) suggest that
the corrected time series are still usable and show improve-
ments compared to the raw RCM, although they are of course
not a perfect match of the observations. These remaining in-
accuracies of the QMgiq approach can be related to both a
time-varying correction function and the parametric correc-
tion function. Figure 5 summarizes Fig. 4 over the European
subdomains by boxplots. Spatial variability throughout the
subdomain is quantified by CvM variability represented by
the box. In DJF the boxplots confirm the lowest cdf bias in
the Mediterranean region (MD and IP) that is already vis-
ible on the map (Fig. 4a). The highest median is in ME.
However, although the median is slightly lower than in ME,
spatial variability is largest in EA, extending to the highest
CvM values. This indicates that there are problems with con-
tinental winter climate which persist after bias correction as

www.hydrol-earth-syst-sci.net/21/1693/2017/
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Figure 5. Step 1: bias correction to grid scale. Boxplots of (a, b) CvM score and (c, d) percentage of simulated wet days exceeding the
observed 95th percentile (%sim > perc95,yps) for the CvM-selected cross-validated predictor in European subdomains: British Isles (BI),
Iberian Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia (SC), Alps (AL), Mediterranean (MD), and eastern Europe (EA).

Outlier out of range in (b) AL and all: 12.95.

in ME and EA mostly the bias-corrected model is selected
(Fig. 4a). QQ plots of the two worst examples in EA (Leba
and Siedlce; Appendix B1) show that the complete precipi-
tation time series remains too wet, whereas in the worst ex-
ample of ME (Dresden; Appendix B1) the bias correction
performs well for most values and only fails in the highest
quantile. In JJA the CvM score, and hence the cdf bias, is
very low, and no pronounced differences between the subdo-
mains can be identified (Fig. 5a).

The representation of heavy precipitation by the selected
predictor is evaluated by the percentage of simulated values
that are higher than the 95th percentile of the observations
on wet days (%sim > perc95,ps, Figs. 4c, d and 5c, d). Thus,
in a “perfect” model this would be exactly 5% (yellow).
In many locations there are slightly too many “extremes’;
i.e., the occurrence of heavy precipitation (> perc95,ps) is
overestimated, particularly in DJF. Consistent with the CvM
score, the overestimation in heavy-precipitation occurrence
increases in DJF from west to east (FR — ME — EA) and is
again highest in EA, followed by ME and SC (Fig. 5c). In
JJA the occurrence of heavy precipitation is quite well repre-
sented in AL and BI (Fig. 5d); it is, however, underestimated
in some locations (Fig. 4d). In the other subregions the oc-
currence of heavy precipitation is also slightly overestimated
in JJA (Fig. 5d).
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5.2.2 Evaluation of Step 2: downscaling vs. station

Here we present some examples to illustrate the performance
of the VGLM gamma for different climates, calibrated be-
tween gridded (E-OBS) and point-scale (station) observa-
tions. All results that are shown for the evaluation of the
downscaling step (step 2, Figs. 67 and Appendix B2) are
calibrated over the complete time period and then predicted
by E-OBS as a predictor for the same time period. As we do
not use the cross-validated time series here, the best possi-
ble relationship is presented. This allows us to evaluate the
goodness-of-fit and is a necessary step before evaluating the
model in a cross-validation setup. For a detailed evaluation
of the VGLM gamma for the relationship between nudged
RCM/GCM simulations and station observations over the
British Isles, refer to Wong et al. (2014) and Eden et al.
(2014).

To evaluate the goodness-of-fit, we use residual QQ plots
(Fig. 6 for DJF and Appendix B2 for JJA). As a QQ plot
requires quantiles of an unconditional distribution, we stan-
dardized the day-to-day varying distribution to a stationary
gamma distribution? (Coles, 2001; Wong et al., 2014). This
stationary distribution no longer has the predictor-dependent

2Standardization is performed as (1) compute probabilities for
reference values (here: station observations) from an estimated non-
stationary gamma distribution (i.e., gamma parameters depend on
the predictor and, thus, vary from day to day); (2) compute quan-
tiles of a gamma distribution with stationary parameters for these
probabilities of a non-stationary distribution; (3) plot these quan-
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Figure 6. Step 2: downscaling. QQ plots for example stations in DJF. VGLM gamma standardized to the stationary gamma distribution
fitted to observed wet day intensities between gridded and point-scale precipitation observations (mm day~1). (a) Karasjok, (b) Stornoway,
(c) Brocken, (d) Dresden, (e) Sibiu, (f) Sonnblick, (g) Sion, (h) San Sebastian, and (i) Malaga.

day-to-day variations; i.e., the effect of the predictor is ap-
proximately removed. Due to this procedure the goodness-
of-fit of the regression model can be evaluated separately,
instead of evaluating only the combined effect of predictor
and regression model which is present in the time-varying
gamma parameters, and, thus, also in realizations drawn from
these varying distributions. Therefore, deficiencies that are
indicated by these standardized QQ plots are either due to
inappropriate model structure or ill-fitting parameters. Note
that the values of model and observation are shifted due to
the standardization, depending on the strength of the predic-
tor.

Improvements by the VGLM gamma compared to the pre-
dictor can be seen in most examples ranging from Scandi-
navia to the Mediterranean and from the Atlantic coast to
eastern Europe in both seasons. However, in some locations
the quantiles modeled by the VGLM gamma compare well to
station observations (at least in Malaga, better than the pre-
dictor) up to a certain quantile (e.g., Sibiu, ~ 12 mmday~!,
and Malaga, ~42mmday~!, in DJF), while there is a wet
bias for intensities of the higher quantiles. It has been verified
that precipitation at these locations is gamma-distributed (not

tiles against quantiles of stationary gamma distribution for theoret-
ical probabilities: (1:n)/(n + 1).
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shown). To understand this model behavior we analyze the
predictor—predictand relationship of both observations and
VGLM in Fig. 7 for DJF and Appendix B2 for JJA. Circles
are the observed gridded against point-scale precipitation in-
tensities, showing the spread of point-scale predictands for a
given grid-scale predictor. The lines represent the 10, 25, 50
(median), 75, 90, and 95 % quantiles of the VGLM gamma
model as a function of the predictor. This function of course
fits best in the range where most of the values used to es-
timate the relationship are. For instance, in Sibiu (Malaga)
for higher predictor values (Sibiu: > 15 mm day~!; Malaga:
>42mmday~!) the predictands are around or below the
25 % (50 %) quantile of the model, and, thus, simulated sys-
tematically too high by the VGLM. In both cases the bulk
of the distribution is well captured however. This problem
is also visible at other stations, e.g., Dresden or Karasjok.
In JJA it is even more pronounced (Appendix B2), partic-
ularly in Dresden and Sibiu, where the high predictor val-
ues are even below the modeled 10 % quantile. These exam-
ples indicate that the VGLM basically allows for three dif-
ferent generalized linear relationships between the predictor
and the parameters of the gamma distribution: concave (i.e.,
Brocken DJF), straight (i.e., San Sebastian DJF), or convex
(i.e., Malaga DJF). No changes from lower to higher quan-
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Figure 7. Step 2: downscaling. Estimated relation between gridded and point-scale precipitation observations for example stations in
DJF. VGLM gamma where both parameters depend on the predictor fitted to observed wet day intensities. The predictor is E-OBS. Cir-
cles: observed precipitation intensities (mm day_l); lines: 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95 modeled quantiles (mm day_l). (a) Karasjok,
(b) Stornoway, (c¢) Brocken, (d) Dresden, (e) Sibiu, (f) Sonnblick, (g) Sion, (h) San Sebastian, and (i) Malaga.

tiles between these three types are possible. In some loca-
tions this appears to be not flexible enough to capture the true
relationship, which can be nonlinear. A more flexible rela-
tionship that allows for a changed model behavior for higher
values could improve the results but comes with the risk of
overfitting. Additionally, in eastern Europe the station den-
sity included in E-OBS is low>. Hence, in the E-OBS gridbox
closest to Sibiu, there may be only very few (one or two) sta-
tions included, implying most likely a misrepresentation of
gridbox precipitation. This problem affects the calibration of
the model where E-OBS is used as a reference as well as sim-
ulations employing E-OBS or precipitation that is corrected
to E-OBS as a predictor. We do not show results of the cross-
validation here as the described problems with the VGLM
in some locations are already present when repredicting the
calibration period where the skill should be higher than in
a cross-validation setup where a period is predicted that is
not part of the calibration period. This clearly highlights de-
ficiencies in the model for these locations.

In both DJF (Fig. 7) and JJA (Appendix B2) Sonnblick
and Brocken show a concave function, whereas the function

3For station density of actual E-OBS versions refer to the
ECA&D website: http://www.ecad.eu/dailydata/datadictionary.php.
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in the other example stations is generally convex. The rain
gauges at Sonnblick and Brocken are on top of the respec-
tive mountain. Although their climate is quite different as
Sonnblick is a high mountain in the Alps (altitude: 3106 m),
whereas the Brocken is the highest mountain in the northern
German Harz low mountain range (altitude: 1142 m), they
have an exposed position, along with high variability, in com-
mon. These results show that the VGLM gamma is capable
of modeling the scale relationship for such exposed places of
high variability quite well.

5.2.3 Evaluation of the combination of steps 1 and 2:
bias correction and downscaling vs. station

In the combined model the VGLM gamma, calibrated against
E-OBS, is applied to the predictor selected in Sect. 5.2.1
(Fig. 4). Here we evaluate precipitation simulated by the
combined model (predictor and VGLM) with station obser-
vations as a reference, and compare it to the uncorrected
RCM-simulated precipitation and to the QMg;q-corrected
precipitation. The cross-validated time series are evaluated.
For the VGLM the evaluation criteria were computed for
100 realizations and then averaged.

Hydrol. Earth Syst. Sci., 21, 1693-1719, 2017
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Figure 8. Steps 1 and 2: combined model. (a, b) CvM values for the selected cross-validated model. The threshold for values under which
the model cdf is not statistically significantly different at the 95 % level from reference cdf: 0.461. (¢, d) Percentage of cross-validated model
values exceeding the 95th percentile of station observations (%sim > perc95y) for the cross-validated CvM-selected model. For the VGLM
the criteria were computed for 100 realizations and then averaged. Selected model: squares: combined model (predictor and VGLM)); circles:
QMgyig-corrected RCM; triangles: uncorrected RCM. Note the different color scales than in Fig. 4.

To evaluate the predictor and VGLM combined model, we
apply the same criteria as for the first step (bias correction,
Sect. 5.2.1), but with station observations (i.e., point scale)
as a reference. The CvM scores (a, b) and the percentage
of simulated values that are higher than the 95th percentile
of the observations on wet days (%sim > perc95qps, c, d)
for the selected best model based on the CvM criterion are
shown in Fig. 8 and summarized by boxplots for the Euro-
pean subdomains in Fig. 9. QQ plots for example stations
are provided in Fig. 10 for DJF and in Appendix B3 for
JJA. Precipitation is improved in most cases by (parts of) our
method. The uncorrected RCM (Fig. 8, triangles) is only se-
lected at eight (seven) stations in DJF (JJA). However, even
if the RCM is selected, the other models do not necessarily
perform much worse, such as in Stornoway in DJF (Fig. 10)
or in Malaga in JJA (Appendix B3). The combined predictor
and VGLM model (plotted as squares) is selected by CvM
25 times (45 times) in DJF (JJA). The more frequent se-
lection of the VGLM in JJA compared to DJF is likely re-
lated to the dominant underlying mechanism; i.e., in summer
there are many small-scale convective precipitation events,
whereas in winter precipitation is mainly caused by large-
scale weather systems.

The CvM values of the selected model (Fig. 8a and b) in-
dicate that the cdf bias is again generally lower in JJA than
in DJF, and for DJF lowest in the Mediterranean region. In
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eastern Europe and Scandinavia in DJF the VGLM is only
rarely selected — in these regions the QMg iq-corrected time
series which is on grid scale is mostly selected, although the
reference cdf is on point scale (Fig. 8a). This might be due to
problems with the VGLM gamma as explained in Sect. 5.2.2.
The rather large cdf bias in ME, SC, and EA in DJF could
hence be related to the remaining scale gap as the QMgig-
corrected time series is not expected to correctly represent
the point scale. The QQ plot of Sibiu in DJF (Fig. 10) illus-
trates this problem. The higher QMg i4-corrected quantiles
are as expected too low and the VGLM fails at this station
in DJF (see also Sect. 5.2.2). Finding an adequate stochas-
tic model to bridge the scale gap might improve the repre-
sentation of precipitation in such cases. Also in JJA there
are examples where the VGLM has not been selected, but
a suitable VGLM would likely further improve the results
(Appendix B3, San Sebastian, Dresden, and Karasjok). For,
e.g., Brocken JJA and Sion DJF an improved VGLM may
likely even improve the result although the VGLM has been
selected. However, finding the optimal model for all 86 sta-
tions is beyond the scope of our study. The boxplots confirm
again the good performance for DJF in the Mediterranean re-
gion (MD and IP), and also in AL (Fig. 9a). The CvM score
and, thus, the cdf bias, are again very low in JJA, indicating
good performance of our method with no pronounced differ-
ence between the European subregions (Fig. 9b). However,

www.hydrol-earth-syst-sci.net/21/1693/2017/
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Figure 9. Steps 1 and 2: combined model. Boxplots of (a, b) CvM score and (¢, d) percentage of simulated wet days exceeding the ob-
served 95th percentile (%sim > perc95,y) for the cross-validated CvM-selected model. Regions: British Isles (BI), Iberian Peninsula (IP),
France (FR), Mid-Europe (ME), Scandinavia (SC), Alps (AL), Mediterranean (MD), and eastern Europe (EA). Note the different scales of
the y axes than in Fig. 5. Outliers out of range in (a) ME and all: 22.19; SC and all: 27.12 and 31.35.

the sensitivity of the CvM score is illustrated by Stornoway
in JJA (Appendix B3), as this example still yields suitable
results despite the relatively high CvM score.

The occurrence of heavy precipitation in the CvM-selected
model is slightly overestimated in most subregions in DJF
(Figs. 8c and 9c), though quite well represented in IP and FR
(Fig. 9¢). In JJA heavy precipitation occurrence is quite well
estimated (Figs. 8d and 9d). The median of most subregions
is very close to 5 % (the “perfect” model would have exactly
5 %). However, some stations, particularly in EA, underesti-
mate the occurrence of heavy precipitation. These are in most
cases stations where the VGLM has not been selected, likely
indicating problems with the VGLM and the remaining scale
gap (see the section before and Sect. 5.2.2).

Ideal performance of our combined model is illustrated in
the example QQ plot of Malaga in DJF (Fig. 10); i.e., QMgrid
corrects the RCM-simulated precipitation on the same scale
and the VGLM bridges the remaining scale gap, resulting in
a good match of the observations. Sonnblick in DJF (Fig. 10)
and JJA (Appendix B3) and Brocken in DJF (Fig. 10) are
also well-performing examples. The QQ plot of San Sebas-
tian in DJF (Fig. 10) shows the benefit of selecting the predic-
tor by CvM as in this case the RCM is used as a predictor for
the VGLM. Here using the QMg ig-corrected time series may
result in overly high extremes. Sion in JJA (Appendix B3)
is another good example of the benefit of model selection
where the RCM has been selected as a predictor. Here the
high VGLM-simulated quantiles are already overestimated
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in this setting and would likely be even higher should the
QMg;ig-corrected predictor be employed.

5.3 Intercomparison of all models

In this section an intercomparison of all models (not only the
selected best model from Sect. 5.2) for all subregions is pre-
sented and compared to the classical application of QMpoint.
Figure 11 shows boxplots for the CvM score. Generally the
cdf bias is lower in JJA than in DJF for all models, already
for the uncorrected RCM (apart from BI). In the Mediter-
ranean region (MD and IP) there is a very low cdf bias in all
models, indicating general good performance. The QM im-
proves the cdf bias in many regions, with QMg g and QMpoint
being similar in many cases. The effect of the VGLM de-
pends on region and season. The representation of precip-
itation is generally improved by the VGLM in BI, IP, AL,
and MD in both seasons. However, in FR, ME, SC, and
EA in DJF the VGLM introduces biases. The bias increases
from west to east (FR — ME — EA) with the largest spatial
variability in EA, extending to high CvM values. For conti-
nental winter climate the used VGLM gamma model thus
appears not to be the ideal model, which suggests that in
these regions it may be better to only correct the bias. This
raises the question why the results become worse when sta-
tistical post-processing is applied. One potential reason for
these problems with the VGLM in some regions is that the
VGLM gamma is not flexible enough to capture the true
predictor—predictand relationship if this relationship is non-
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Figure 10. QQ plots for example stations of different models (cross-validated) against station observations for DJF (mmday™ b (a) Karasjok,
(b) Stornoway, (c) Brocken, (d) Dresden, (e) Sibiu, (f) Sonnblick, (g) Sion, (h) San Sebastian, and (i) Malaga. For the VGLM the quantiles
(i.e., sorted time series) of 100 realizations are averaged. Predictor for VGLM as selected by the CvM criterion: (red circles) QMgriq bias-
corrected RCM; (brown triangles) uncorrected RCM. For examples to illustrate model performance and predictor selection (San Sebastian
and Malaga), the VGLM is plotted for both predictors. Selected predictor: San Sebastian: RCM; Malaga: QMgig-

linear as discussed in Sects. 5.2.2 and 5.2.3. The final down-
scaled marginal distribution may thus be wrong even though
it was properly adjusted by the bias-correction step. As the
predictor—predictand relationship is always estimated such
that it follows well the bulk of the distribution, this prob-
lem occurs for predictand values at the very low ends of the
VGLM conditional distribution. Furthermore, particularly in
EA and FR, E-OBS may be an inappropriate reference for
calibration in both QMg,iq and VGLM due to low station den-
sity. However, in SC stations in E-OBS are relatively dense
and, thus, the bias introduced by the VGLM is in that case
not attributable to E-OBS quality. In DJF SC has the high-
est RCM bias among all subregions. This suggests a detailed
evaluation of this high bias which is beyond the scope of our
study however.

To infer the performance of all studied models in es-
timating the occurrence of heavy precipitation, boxplots
for the percentage of simulated values that are higher
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than the 95th percentile of the observations on wet days
(Y%osim > perc95,ps) for all models are provided in Fig. 12.
Particularly in JJA the QMgig improves the occurrence of
heavy precipitation but remains slightly too dry, which is
expected due to the remaining scale gap. The estimated oc-
currence of heavy precipitation is improved by the VGLM
in many cases, although generally slightly overestimated.
The results of the VGLM and QMyin are generally simi-
lar, with the QMpoint often being slightly closer to the 5 %
line and the VGLM slightly too wet. In AL the VGLM con-
siderably improves the cdf bias (Fig. 11f) and the occurrence
of heavy precipitation (Fig. 12f) in both DJF and JJA com-
pared to the uncorrected and QMgig-corrected RCM. In SC
in DJF one should be careful, as although the occurrence of
heavy precipitation is considerably improved by the VGLM
(Fig. 12e), it introduces biases when the whole cdf is evalu-
ated (Fig. 11e), and is thus not recommended. Concerning
heavy precipitation occurrence our model shows a similar
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Figure 11. Intercomparison of all cross-validated models (not only the selected best model). Models: uncorrected RCM, QMgyig-corrected
RCM to grid scale, QMpoin¢-corrected RCM to point scale, and predictor and VGLM-downscaled RCM. Boxplots of the CvM score for all
models in different subregions: (a) British Isles (BI), (b) Iberian Peninsula (IP), (¢) France (FR), (d) Mid-Europe (ME), (e) Scandinavia (SC),
(f) Alps (AL), (g) Mediterranean (MD), (h) eastern Europe (EA), and (i) all locations. For the VGLM the CvM score was computed for
100 realizations and then averaged. Outlier out of range in (d, i) RCM DIJF: 54.19.

behavior for all subregions in JJA and for IP also in DJF
(Fig. 12). The QMg;ig bias correction improves the represen-
tation but remains too dry. The dry bias is then eliminated
by the VGLM though to slightly too many “extremes”. This
model behavior as exhibited in JJA is exactly what would
be expected due to the scale gap between gridded and point
scales. Due to more small-scale convective extremes this
scale gap has a larger impact in summer, whereas in winter
most extremes are caused by large-scale weather systems that
are generally better represented by the gridbox scale, also at

www.hydrol-earth-syst-sci.net/21/1693/2017/

coarser resolutions. While the cdf bias and the occurrence of
heavy precipitation reveal how well properties of the precip-
itation distribution are represented, they do not allow us to
draw conclusions about the predictive power of the model.
To infer whether our model has predictive power, we can-
not assess temporal correspondence compared to observa-
tions as in Wong et al. (2014) and Eden et al. (2014) be-
cause we use an RCM that is not nudged, and even though
driven with perfect boundary conditions (reanalysis) this is
not a clean pairwise setup. Instead, we evaluate spatial au-

Hydrol. Earth Syst. Sci., 21, 1693-1719, 2017



1708

(a) %sim > perc95 obs Bl

C. Volosciuk et al.: Combined bias correction and downscaling method

(b) %sim > perc95 obs IP

DJF i A

DJF i A

— o —
T — E —_— e ; = | 5 — = ? — % i
! = — = — :Ef —
0 - 4\; T T T ‘ 4\; T T T 0 B T 4\; T T ‘ T
RCM QMg QMp VGLM RCM QMg QMp VGLM RCM QMg QMp VGLM RCM QMg QMp VGLM
(c) %sim > perc95 obs FR (d) %sim > perc95 obs ME
307 DIF i JIA 307 DIF i 1A
25 ' 25 1 '
20 20 4
15 15 '
10 4 104 — —— — =
| é% —_—= || BELd== @ =
5 ﬁ == —_ 5 R | = =
04 — — 0 - . . '
T T T T T T T T T T T T T T
RCM QMg QMp VGLM RCM QMg QMp VGLM RCM QMg QMp VGLM RCM QMg QMp VGLM
(e) %sim > perc95 obs SC (f) %sim > perc95 obs AL
307 . DIF ! 1A 307 DIF i 1A

10—1gso‘
=gt

—_

°
—_

—_

. BQ u ‘ﬁi , u
— = - —_—
5 — g —
T ===

04 —_

T T T T T T T T
RCM QMg QMp VGLM RCM QMg QMp VGLM

T T T T T T T T
RCM QMg QMp VGLM RCM QMg QMp VGLM

(g) %sim > perc95 obs MD (h) %sim > perc95 obs EA
304 DIF : 1A 304 DIF : A
25 1 ' 25 '
20 1 20
154 T . 15 -
wd ™ — . S FT'J e
Hgss_ = los=T__==
0 B 4\; 4\; T T ‘% T T T 0 a T T T T ‘ T T T T
RCM QMg QMp VGLM RCM QMg QMp VGLM RCM QMg QMp VGLM RCM QMg QMp VGLM

(i) %sim > perc95 obs all

. DIF : A
8

15—*QL

10 4 .
5 EE}EE T T ==

= = +

T
RCM QMg QMp VGLM RCM QMg QMp VGLM

Figure 12. As in Fig. 11, but for percentage of simulated wet days exceeding the observed 95th percentile (%sim > perc95.pg). Outlier out

of range in (g, i) QMgriq DIF: 41.07 %.

tocorrelation, which is the correlation of a variable with it-
self in geographical space. This allows us to evaluate whether
the model correctly reproduces daily spatial autocorrelations
and, thus, the spatial extent of precipitation patterns, includ-
ing its variability in time compared to observed precipitation.
In Fig. 13 correlograms of the cross-validated time series
of all models (RCM, QMgid, QMpoint, 100 VGLM realiza-
tions) and station observations as a reference are provided.
The spatial autocorrelation of QM-bias-corrected precipita-
tion decays very similarly to uncorrected RCM precipitation
and thus shows only little improvement of spatial autocorre-
lation compared to point-scale observations. Differences be-
tween QMgrig and QMpoine are negligible. This confirms that

Hydrol. Earth Syst. Sci., 21, 1693-1719, 2017

the QM approach is not capable of modeling small-scale vari-
ability, and a stochastic model is thus needed to bridge the
scale gap. The spatial autocorrelation of VGLM-downscaled
precipitation decays more similarly to the station observa-
tions than the QM corrected or uncorrected RCM, particu-
larly in JJA. The spatial dependence is thus improved by the
stochastic downscaling step. The long decorrelation length in
DIJF is underestimated by our stochastic, single-site model,
which indicates a slightly too strong noise component. A
spatial model considering more than one station or includ-
ing more physically based predictors (i.e., sea level pressure)
might improve the predictive power of our model in DJF.
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Figure 13. Spatial autocorrelation (cross-validated). Correlogram (circles) and smoothed spline fitted to the correlogram (lines) for (a) DJF
and (b) JJA. The correlogram is estimated by the centered Mantel statistic using R package ncf (Bjornstad, 2015). For the VGLM 100 real-
izations of the stochastic model for each station were used to estimate the correlogram.

6 Conclusions

We introduced the concept of a combined statistical bias
correction and stochastic downscaling method for precipita-
tion. We thereby extend the stochastic model output statis-
tics (MOS) approach developed by Wong et al. (2014) be-
yond nudged simulations to free-running GCM/RCM simu-
lations. We applied our method to precipitation simulated by
the RCM KNMI-RACMO?2 driven with ERA-Interim bound-
ary conditions within the EURO-CORDEX framework. As
the RCM is driven with reanalysis we only correct RCM bi-
ases. Our method corrects the “drizzle effect” (i.e., too many
wet days), overly low precipitation values in the rain shad-
ows caused by not enough windward air masses crossing
the mountain range (“location bias”, Maraun and Widmann,
2015), and precipitation intensity. To correct the “drizzle ef-
fect” we increased the wet day threshold such that the num-
ber of wet days (closely) matches the gridded observations
with a threshold of 0.1 mm day_l (Maraun, 2016). To over-
come the “location bias” we selected the RCM gridbox that
best represents the climate in the respective gridbox of the
gridded observations (Maraun and Widmann, 2015). Note
that when transferring the approach to free-running simu-
lations this gridbox selection step has to be calibrated with
a reanalysis-driven simulation of the RCM to ensure tem-
poral correspondence. Consequently, only the location bias
caused by the RCM is corrected. How a potential location
bias of the driving GCM may affect the results should be ana-
lyzed in future work. Precipitation intensities were corrected
by a parametric quantile mapping (QM) approach between
RCM and gridded observations on the same spatial scale.
As precipitation is highly variable in space and time, not all
variability can be explained by the gridbox scale (Maraun,
2013a). To bridge the gap between gridbox and point scale
we applied a stochastic regression-based model. For eval-
uation we adopted the experimental framework of VALUE
(Maraun et al., 2015). In this context, we applied our method
to 86 example rain gauges across Europe representing differ-
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ent climates, and carried out a 5-fold cross-validation for the
time period 1979-2008. Both steps of the combined method
were evaluated individually and combined. A comparison to
classical QM between RCM and point scale is also provided.
The proposed parametric model structure appears not to
be the optimal choice for all considered stations. Yet given
that the aim of our study is a proof of concept, the identi-
fication of an optimal model for all individual cases would
be beyond the scope of this work. Nevertheless, where our
implementation is not adequate we provide suggestions for
improvements within the presented framework. Our specific
implementation for the QM bias correction (first step) of wet
day intensities employs the mixture distribution of a gamma
distribution for the precipitation mass and a generalized
Pareto (GP) distribution for the extreme tail (Frigessi et al.,
2002; Vrac and Naveau, 2007). The stochastic regression-
based model for downscaling (second step) was calibrated
between observations on gridded and point scales, and then
transferred to bias-corrected RCM-simulated precipitation.
This corresponds to a perfect prog (PP) approach. The regres-
sion model consists of a logistic regression to model wet day
probabilities and a vector generalized linear model (VGLM)
predicting the parameters of a gamma probability distribu-
tion for precipitation intensities. The QM-corrected time se-
ries (first step) was used as a predictor for downscaling (sec-
ond step) if it improves the representation of precipitation
compared to the uncorrected RCM. Thus, we selected the
predictor based on the lower cdf bias by applying the CvM
criterion with the gridded E-OBS dataset as a reference.
Precipitation was in most cases improved by (parts of)
our combined method across different European climates;
to what extent depends on region and season though. The
method generally performs better in JJA than in DJF and in
DIJF best in the Mediterranean region, with a mild winter cli-
mate, and worst for the continental winter climate in Mid-
and eastern Europe or Scandinavia. Seasonal and regional
differences depending on the underlying mechanism have al-
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ready been reported for resolution dependence of extreme
precipitation in GCMs (Volosciuk et al., 2015) and RCMs
(Prein et al., 2013; Meredith et al., 2015). Hence, for a good
representation of precipitation extremes, the complexity of
the model can be chosen at each step of the modeling cascade
based on the underlying mechanism in order to use compu-
tational resources efficiently.

Although our bias correction (first step) improved simu-
lated precipitation for many locations in both seasons, wet
biases may remain even after bias correction, particularly
for continental winter. In agreement with our results, large
improvements by bias correction over the Alps, Spain, and
France have been reported by Dosio and Paruolo (2011).
However, in contrast to our results these authors also obtain
good results for Mid- and eastern Europe, where we find per-
sisting biases even after bias correction. In the cases where
the quantile mapping approach does not improve RCM-
simulated precipitation, another transfer function might be
more suitable. Choosing between different parametric trans-
fer functions as proposed by Piani et al. (2010) could im-
prove the results. By employing a quantile mapping approach
we presumed both a stationary statistical relationship and
stationary cdfs that also apply in a changed future climate.
However, in a climate change context RCM-simulated trends
in the cdf are modified by applying such statistical post-
processing. For cases where the GCM/RCM simulates plau-
sible climate change trends the CDF-t concept suggested by
Michelangeli et al. (2009) and Vrac et al. (2012) might be
an appropriate framework. In their concept the correction
function explicitly accounts for future trends in the RCM-
simulated distribution. Thereby simulated trends in all mo-
ments are approximately preserved after bias correction. For
instance, regions where an increase in extreme precipitation
accompanied by a decrease in mean precipitation is projected
(e.g., in central European summer, Christensen and Chris-
tensen, 2003; Maraun, 2013b), these trends might be better
represented by employing a CDF-t method. However, in this
study we have not employed this variant as in our setting the
validation period is too short to achieve an appropriate fit of
the future mixture distribution. Quantifying the differences
between the quantile mapping approach we employed here
and a CDF-t approach is left for future work when our com-
bined method will be applied to climate change scenarios.

The stochastic downscaling (second step) improves the
estimated occurrence of heavy precipitation in many re-
gions, but introduces biases in continental winter climate.
Furthermore, spatial autocorrelation in JJA is improved by
the VGLM, showing the importance of randomization in the
framework of downscaling as already pointed out by, e.g.,
von Storch (1999) and Maraun (2013a). Moreover, when
downscaling climate change scenarios the randomization
component of the VGLM that adds small-scale unexplained
variability does not modify trends, in contrast to purely de-
terministic methods, e.g., QM (Maraun, 2013a). However,
the deterministic part of the VGLM that corrects system-
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atic local effects (e.g., lee/windward side of a mountain) al-
ters the pdf, and may thus also change trends. The stochas-
tic downscaling step is more important in JJA than in DJF
for both estimation of heavy precipitation occurrence and
spatial autocorrelation. This can be attributed to the differ-
ent underlying main mechanism for heavy precipitation. In
summer heavy precipitation is often caused by small-scale
convective events, whereas in winter large-scale weather sys-
tems dominate. Hence, there is less small-scale variability
unexplained by the gridbox in DJF. In DJF spatial autocor-
relation is slightly underestimated by the VGLM, which is
likely related to the long decorrelation length of precipita-
tion in winter that is not correctly represented in our single-
site model, indicating a slightly too strong noise component.
An extension of our method to a multi-site model and/or in-
cluding more physically based predictors (i.e., sea level pres-
sure) would likely improve this feature and can be the sub-
ject of future work. A possible extension to multi-variate or
full fields might be based on copulas (e.g., Ferraris et al.,
2003; Scholzel and Friederichs, 2008; Bardossy and Pegram,
2009) or random cascade models (Thober et al., 2014). A
good representation of the mild climate in the British Isles
is consistent with Wong et al. (2014) and Eden et al. (2014).
In France, Mid-Europe, eastern Europe, and Scandinavia in
DIJF the VGLM introduces biases, raising the question why
the results become worse when statistical post-processing is
applied. Particularly in France and eastern Europe the E-OBS
gridded observational dataset may be an unreliable reference
for model calibration for both the QM and the VGLM due to
low station density. The “true” resolution of E-OBS in these
regions might be coarser than the resolution it is gridded to.
This highlights the fact that the applicability of our method
is limited to regions where high-quality gridded datasets are
available. However, a detailed evaluation of the sensitivity
of our method to station density in the gridded dataset is
beyond the scope of this study. The bias introduced by the
VGLM generally increases from west to east, and, thus, from
maritime to continental winter climate. However, in Scan-
dinavia the VGLM also introduces biases even though sta-
tion density is high. This indicates that although the quality
of the E-OBS data may contribute to these problems, it can
not be identified as the main source of error. It is rather one
potential reason among others. For instance, in some cases
the generalized linear relationship between the predictor and
the parameters of the gamma distribution appears to be not
flexible enough to capture the true predictor—predictand rela-
tionship, which can be nonlinear, particularly in but not re-
stricted to continental winter climate. In these regions there
may be a more adequate parametric relationship than our spe-
cific implementation. Problems with the current implementa-
tion may be related to, e.g., the linear structure of the model
or the choice of the link function. For instance, another dis-
tribution in the VGLM (e.g., mixture model), splines as ap-
plied in Maraun et al. (2011b) or a vector generalized addi-
tive model (VGAM, Yee and Wild, 1996), are potential ap-
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proaches. However, employing a more complex model also
comes with the risk of overfitting. Finding the optimal model
for each of the analyzed stations is beyond the scope of this
study however.

The varying performance of our specific implementation
clearly shows that bias correction and downscaling methods
should be reevaluated when transferring them to locations
with different climatic conditions. In some regions a specific
implementation different from the one we used is required.
We recommend our model in summer for all studied regions.
However, in winter it should only be used for the British
Isles, the Alps, the Mediterranean region, and the Iberian
Peninsula, but not for continental winter climates (Scandi-
navia, Mid-Europe, and eastern Europe) and France. While
the stochastic downscaling step (VGLM) is very important
for representing spatial autocorrelation in summer, it is less
important in winter, where the application of solely the bias-
correction step might be sufficient. The concept can gener-
ally be extended to a wide range of method combinations.
Transferring this concept to other climate variables should
in principle be possible. Our specific implementation should
be applicable to any gamma-distributed variable. However,
our approach has so far only been evaluated for precipita-
tion. Thus, users need to evaluate the model for the particular
variable at the chosen location when transferring it.

We developed our model in the present-day climate. In a
climate change context the model does not explicitly mod-
ify climate trends on a physical basis. Our model is thus
only applicable where changes are correctly simulated by
the GCM/RCM. For instance, changes in the dynamics of
local extreme convective events in summer that need even
higher resolution up to convection-permitting simulations
(e.g., Kendon et al., 2014; Chan et al., 2014; Meredith et al.,
2015) will also not be represented after statistical post-
processing is applied. Bias correction and (dynamical and
statistical) downscaling of precipitation is only applicable if
the large-scale patterns and changes therein are simulated
reasonably by the driving GCM (Eden et al., 2012; Hall,
2014). Therefore, when transferring our method to a GCM
or GCM-driven RCM the relevant processes for precipitation
in the studied region need to be correctly simulated. For in-
stance, biases in simulated precipitation related to biases in
the storm track (Chang et al., 2012), El Nifio-Southern Os-
cillation (ENSO; Zhang and Sun, 2014), the monsoon (Has-
son et al., 2013), or persistent weather regimes (Petoukhov
et al., 2013; Palmer, 2013) cannot be statistically corrected
in a physically sensible way.
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The general concept of combining two methods and
thereby separating bias correction (MOS) and downscal-
ing (PP) into two steps is a powerful approach as it ben-
efits from the respective methodological advantages. Addi-
tionally, the strength of this two-step method is that the best
combination of methods can be selected. This implies that
the concept can be extended to a wide range of method com-
binations.

Data availability. The RCM output from the KNMI that was used
in this study is available within the CORDEX framework from
the Earth system grid federation (e.g., https://esgf-data.dkrz.de/
projects/esgf-dkrz/) upon registration. The E-OBS gridded dataset
is available at the ECA&D website (http://www.ecad.eu/download/
ensembles/download.php). The ECA&D station data are pro-
vided by the KNMI on the ECA&D website (http://www.ecad.eu/
dailydata/customquery.php). The specific selection for the VALUE
experiment can be downloaded from the VALUE website (http:
/I'www.value-cost.eu/data). Bias-corrected and downscaled data as
well as the source code from this study are available from the au-
thors upon request.
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Appendix A: Technical details for bias-correction
implementation and model selection

Al Technical details for model implementation

A non-zero wet day threshold assigns zero probability den-
sity to all intensities between zero and the threshold, resulting
in a misfit of the gamma distribution (Wong et al., 2014). To
avoid this we shift precipitation on all wet days by subtract-
ing the threshold for calibration. The estimated distribution
is subsequently shifted back by the threshold.

Numerical instabilities in the estimation of the mixture cdf
may in rare cases result in a discontinuous cdf (Fig. Ala). In
these cases we interpolate linearly between the continuous
probabilities surrounding the discontinuity. The example cdf
in Fig. Alaillustrates that this procedure is a reasonable esti-
mation for these quantiles. If the cdf does not “jump back” as
in Fig. Ala but continues as illustrated in Fig. A1b, the model
has to be sorted out as there is no straightforward possibil-
ity of handling this artifact caused by numerical instability.
However, the latter case only occurs extremely rarely.

A2 Technical details for model selection

The AIC performs best for the part of the distribution where
most of the values are. Hence, a good fit for the bulk of the
distribution might include large biases in the extremes and
still have the lowest AIC (example: Fig. Alc). To avoid such
a model choice with unreasonable high extremes, we intro-
duce a criterion based on the extremes to sort out mixture
model fits yielding overly high extremes before AIC-model
selection is applied. This criterion is based on a comparison
between the 100 season return level estimated by the mix-
ture model (RL100Smixture) and the 95 % confidence inter-
val of the RL100Sgp estimated by the GP distribution only.
The RL100Sgp and the corresponding 95 % confidence in-
terval are estimated according to Coles (2001). This crite-
rion is applied differently for Fops and Frem considering the
respective relevant quantity for the correction function. For
Fops this criterion is based on the return level itself, whereas
for Frcm the probability for the return level is considered.
In particular, for Fyps the RL100Spixwre must not exceed
the 95 % confidence interval of the RL100Sgp. For Frem
the mixture model probability (pmixwre) for the RL100Sgp
must not exceed pgp for the 95 % confidence interval of
RL100Sgp. Furthermore, pmixwre for the 95 % confidence
interval of the RL100Sgp must not be very close to 1 (i.e.,
> 1-1 x 10719) as a reasonable extrapolation to potentially
higher values under climate change would not be possible in
that case.
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Figure A1. Examples of problems with the mixture model. (a) Nu-
merical instability: discontinuous cdf; (b) numerical instability: cdf
that jumps to the upper bound of 1000 mm day_l and does not jump
back as in (a), and (c) problematic model selection: QQ plot of a
selected mixture model that fits well for most quantiles but corrects
the extremes to too wet.
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Appendix B: Additional results

B1 Step 1: bias correction
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Figure B1. Step 1: bias correction to grid scale. QQ plots of RCM-simulated and QMgig-corrected (cross-validated) precipitation

(mm day_l) against E-OBS for stations with a high CvM score. (a) Graz JJA, (b) Leba DJF, (¢) Siedlce DJF, and (d) Dresden DJF.
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B2 Step 2: downscaling
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Figure B2. Step 2: downscaling. QQ plots for example stations in JJA. VGLM gamma standardized to the stationary gamma distribution
fitted to observed wet day intensities between gridded and point-scale precipitation observations (mm day_l). (a) Karasjok, (b) Stornoway,
(¢) Brocken, (d) Dresden, (e) Sibiu, (f) Sonnblick, (g) Sion, (h) San Sebastian, and (i) Malaga.
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Figure B3. Step 2: downscaling. Estimated relation between gridded and point-scale precipitation observations for example stations in
JJA. VGLM gamma where both parameters depend on the predictor fitted to observed wet day intensities. The predictor is E-OBS. Cir-
cles: observed precipitation intensities (mm dayfl ); lines: 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95 modeled quantiles (mm dayfl ). (a) Karasjok,
(b) Stornoway, (c¢) Brocken, (d) Dresden, (e) Sibiu, (f) Sonnblick, (g) Sion, (h) San Sebastian, and (i) Malaga.
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B3 Combination of steps 1 and 2: bias correction and

downscaling
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Figure B4. QQ plots for example stations of different models (cross-validated) against station observations for JJA (mm day™ 1 ). (a) Karasjok,
(b) Stornoway, (c¢) Brocken, (d) Dresden, (e) Sibiu, (f) Sonnblick, (g) Sion, (h) San Sebastian, and (i) Malaga. For the VGLM the quantiles
(i.e., sorted time series) of 100 realizations are averaged. Predictor for VGLM as selected by the CvM criterion: (red circles) QMgyiq bias-

corrected RCM, (brown triangles) uncorrected RCM. Highest VGLM-modeled quantile in Dresden out of range: 3609 mm day~!.
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