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Partial regularity for the optimal p-compliance problem with length penalization

. The key feature is that the C 1,α regularity of minimizers for some free boundary type problem is investigated with a free boundary set of codimension N -1. We prove that every optimal set cannot contain closed loops, and it is C 1,α regular at H 1 -a.e. point for every p ∈ (N -1, +∞).

Introduction

A spatial dimension N ≥ 2 and an exponent p ∈ (1, +∞) are given. Let Ω be an open bounded set in R N and let f belong to L q0 (Ω) with

q 0 = (p * ) if 1 < p < N, q 0 > 1 if p = N, q 0 = 1 if p > N, ( 1.1) 
where p * = N p/(N -p) and (1/p * ) + (1/(p * ) ) = 1. We define the energy functional E f,Ω over W 1,p 0 (Ω) as follows

E f,Ω (u) = 1 p Ω |∇u| p dx - Ω f u dx.
Thanks to the Sobolev embeddings (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.10]), E f,Ω is finite on W1,p 0 (Ω). It is well known that for any closed proper subset Σ of Ω the functional E f,Ω admits a unique minimizer u f,Ω,Σ over in dimension 2 this result was partially generalized in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF] for all exponents p ∈ (1, +∞), namely, it was proved that every solution to Problem 1.1 cannot contain closed loops, is Ahlfors regular if contains at least two points (up to the boundary for a Lipschitz domain Ω), and is C 1,α regular at H 1 -a.e. point inside Ω for every p ∈ (1, +∞). The main tool that was used in [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF] to prove the ε-regularity theorem (if Σ is close enough, in a ball B r (x 0 ) such that B r (x 0 ) ⊂ Ω, and in the Hausdorff distance, to a diameter of B r (x 0 ), then Σ ∩ B r/10 (x 0 ) is a C 1,α arc) is a so-called monotonicity formula that was inspired by Bonnet on the Mumford-Shah functional (see [START_REF] Bonnet | On the regularity of edges in image segmentation[END_REF]). This monotonicity formula was also a key tool in the classification of blow-up limits (in the case when N = p = 2), because it implies that for any point x 0 ∈ Σ there exists the limit lim

r→0+ 1 r Br(x0)
|∇u Σ | 2 dx = e(x 0 ) ∈ [0, +∞).

According to [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF], all blow-up limits at any x 0 ∈ Σ ∩ Ω are of the same type: either e(x 0 ) > 0 and all blow-up limits at x 0 must be a half-line, or e(x 0 ) = 0. In the latter case, either there is a blow-up at x 0 which is a line, and then all other blow-ups at x 0 must also be a line, or there is no line, and then all blow-ups at x 0 are propellers (i.e., a union of three half-lines emanating from x 0 and making 120 • angles). More precisely, given any point x 0 ∈ Σ ∩ Ω we only have one of the following three possibilities:

(i) x 0 belongs to the interior of a single smooth arc; in this case x 0 is called a regular (or flat) point.

(ii) x 0 is a common endpoint of three distinct arcs which form at x 0 three equal angles of 120 • ; in this case x 0 is called a triple point.

(iii) x 0 is the endpoint of one and only one arc; in this case x 0 is called a crack-tip.

However, the approach in [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF] does not work for the cases when p = 2. The main obstruction to a full generalization of the result established in [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF] is the lack of a good monotonicity formula, when the Dirichlet energy is not quadratic (p = 2).

Notice that in two dimensions and for p = 2 some monotonicity formula can still be established for the p-energy. Indeed, assume for simplicity that f ∈ L ∞ (Ω), N = 2, p ∈ (1, +∞), Σ is a closed proper subset of Ω, x 0 ∈ Ω, 0 ≤ r 0 < r 1 ≤ 1, (Σ ∪ ∂Ω) ∩ ∂B r (x 0 ) = ∅ for all r ∈ (r 0 , r 1 ) and γ ∈ [γ Σ (x 0 , r 0 , r 1 ), 2π]\{0}, where γ Σ (x 0 , r 0 , r 1 ) = sup H 1 (S) r : r ∈ (r 0 , r 1 ), S is a connected component of ∂B r (x 0 )\(Σ ∪ ∂Ω) .

Assume also that 2 > λ p /γ, where λ p denotes the L p version of the Poincaré-Wirtinger constant and is defined by λ p = min g L p (0,1) g L p (0,1) : g ∈ W 1,p 0 (0, 1)\{0} .

The value of λ p was computed explicitly, for example, in [START_REF] Dacorogna | Sur une généralisation de l'inégalité de Wirtinger[END_REF]Corollary 2.7] and [START_REF] Talenti | Best constant in Sobolev inequality[END_REF]Inequality (7a)], where the following equality was established

λ p = 2 1 p
not large enough and this formula cannot be used to prove C 1,α estimates as in the case N = p = 2. On the other hand, we do not know if there is a similar monotonicity formula for the p-energy in dimension N ≥ 3, but we guess that there is no. Thus, a great tool has been missed that would allow us to establish a classification of blow-up limits, and that is why, as in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF], we also prove only C 1,α regularity at H 1 -a.e. point. Although we guess that any minimizer of Problem 1.1 with at least two points is a finite union of C 1,α curves.

In this paper, we establish a partial regularity result for minimizers of Problem 1.1 in any spatial dimension N ≥ 2 and for every p ∈ (N -1, +∞), thus generalizing some of the results obtained in [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF][START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF]. In particular, we prove that a minimizer cannot contain closed loops (Theorem 4.1), and we establish some C 1,α regularity properties. Several of our results will hold under some integrability condition on the source term f . We define

q 1 = N p N p -N + 1 if 2 ≤ p < +∞, q 1 = 2p 3p -3 if 1 < p < 2. (1.4)
It is worth noting that q 1 ≥ q 0 . The condition f ∈ L q1 (Ω) for p ∈ [2, +∞) is natural, since q 1 in this case seems to be the right exponent which implies an estimate of the type Br(x0) |∇u| p dx ≤ Cr for the solution u to the Dirichlet problem

-∆ p v = f in B r (x 0 ), v ∈ W 1,p 0 (B r (x 0 )),
this kind of estimate we are looking for to establish regularity properties on a minimizer Σ of Problem 1.1.

The main regularity result established in this paper is the following.

Theorem 1.2. Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4). Then there exists a constant α ∈ (0, 1) such that the following holds. Let Σ be a solution to Problem 1.1. Then for H 1 -a.e. point x ∈ Σ ∩Ω one can find a radius r 0 > 0 depending on x such that Σ ∩B r0 (x) is a C 1,α regular curve.

It is one of the first times that the regularity of minimizers for some free boundary type problem is investigated with a free boundary set of codimension N -1. Notice that in Theorem 1.2, when we say that a solution Σ to Problem 1.1 is C 1,α regular at H 1 -a.e. point x ∈ Σ ∩ Ω, we mean that the set of points Σ ∩ Ω around which Σ is not a C 1,α regular curve has zero H 1 -measure. Thus, Theorem 1.2 is interesting only in the case when diam(Σ) > 0, which happens to be true at least for some small enough values of λ (see Proposition 2.23). Furthermore, it was proved in [START_REF] Bulanyi | On the importance of the connectedness assumption in the statement of the optimal p-compliance problem[END_REF] that the connectedness assumption in the statement of Problem 1.1 is necessary for the existence of solutions.

After all, when we are talking about one dimensional sets, it is not so obvious how horrible they can be. Incidentally, in codimension 2 it seems like a good idea to understand whether the minimizer contains knots, since our story of loops suggests the question.

Our approach differs from that used in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF], although we use some of the techniques developed in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF]. The approach in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF] is based on the fact that only in dimension 2 the "free boundary" Σ is of codimension 1, thus many standard arguments and competitors are available. Let us emphasize the most important places where the approach used in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF] does not extend in a trivial manner to higher dimensions. Firstly, in the proof of Ahlfors regularity in the "internal case" in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF] (see [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF]Theorem 3.3]), the set (Σ\B r (x))∪∂B r (x) was used as a competitor for a minimizer Σ of Problem 1.1, which contains at least two points. But in dimension N ≥ 3 we cannot effectively use such a competitor, because ∂B r (x) has infinite H 1 -measure. Secondly, in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF], a reflection technique was used to estimate a p-harmonic function in (B 1 \[a 1 , a 2 ]) ⊂ R 2 that vanishes on [a 1 , a 2 ] ∩ B 1 , where [a 1 , a 2 ] is a diameter of B 1 , which is no more available if N ≥ 3 for a p-harmonic function in (B 1 \[a 1 , a 2 ]) ⊂ R N which still vanishes on [a 1 , a 2 ] ∩ B 1 , where [a 1 , a 2 ] is a diameter of B 1 . Thirdly, in the density estimate in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF], when the minimizer Σ is εr-close, in a ball B r (x) and in the Hausdorff distance, to a diameter [a, b] of B r (x), the set Σ = (Σ\B r (x)) ∪ [a, b] ∪ W was used as a competitor for Σ, where W = ∂B r (x) ∩ {y : dist(y, [a, b]) ≤ εr} (see [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF]Proposition 6.8]). However, in dimension N ≥ 3 we cannot effectively use the above competitor Σ , because it has infinite H 1 -measure.

Let us now explain how we prove the partial C 1,α regularity of the minimizers of Problem 1.1 and indicate the main difficulties arising in the proof. Comments about the proof of partial regularity. First, we need to establish a decay behavior of the p-energy r → Br(x0) |∇u Σ | p dx under flatness control on Σ at x 0 . For this we use the following strategy consisting of four steps, which is a generalization of the one used in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF]. In this paper, we use some barrier in order to estimate a nonnegative p-subharmonic function vanishing on a 1-dimensional plane (an affine line). Let us say more precisely.

Step 1. We prove that there exist α, δ ∈ (0, 1) and C > 0, depending only on N and p, such that for any weak solution u to the p-Laplace equation in B 1 \({0} N -1 ×(-1, 1)) vanishing p-q.e. on {0} N -1 ×(-1, 1), the estimate

Br |∇u| p dx ≤ Cr 1+α B1 |∇u| p dx holds for all r ∈ (0, δ].
Step 2. Arguing by contradiction and compactness, we establish a similar estimate as in Step 1 for a weak solution to the p-Laplace equation in B r (x 0 )\Σ that vanishes on Σ ∩ B r (x 0 ) in the case when Σ ∩ B r (x 0 ) is fairly close in the Hausdorff distance to a diameter of B r (x 0 ). Recall that the Hausdorff distance for any two nonempty sets A, B ⊂ R N is defined by

d H (A, B) = max sup x∈A dist(x, B), sup y∈B dist(y, A) .

For each nonempty set

A ⊂ R N , we immediately agree to define d H (∅, A) = d H (A, ∅) = +∞ and d H (∅, ∅) = 0. Let α, δ, C be as in Step 1.
We prove that for each ∈ (0, δ] there exists ε 0 ∈ (0, ) such that if u is a weak solution to the p-Laplace equation in B r (x 0 )\ Σ vanishing p-q.e. on Σ ∩B r (x 0 ), where Σ is a closed set such that (Σ ∩ B r (x 0 )) ∪ ∂B r (x 0 ) is connected and

1 r d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 )) ≤ ε 0
for some affine line L ⊂ R N passing through x 0 , then the following estimate holds

B r (x0) |∇u| p dx ≤ (C ) 1+α Br(x0)
|∇u| p dx.

Step 3. Recall that we want to establish a decay estimate for a weak solution u Σ to the p-Poisson equation -∆ p u = f in Ω\Σ, u ∈ W 1,p 0 (Ω\Σ) in a ball B r (x 0 ) ⊂ Ω whenever x 0 is a flat point, i.e., when Σ is sufficiently close, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ). For that purpose, we first control the difference between u Σ and its p-Dirichlet replacement in B r (x 0 )\Σ, where by the p-Dirichlet replacement of u Σ in B r (x 0 )\Σ we mean the solution w ∈ W 1,p 

(B r (x 0 )) to the Dirichlet problem -∆ p u = 0 in B r (x 0 )\Σ, u -u Σ ∈ W 1,p 0 (B r (x 0 )\Σ).
Then, for some sufficiently small a = a(N, p) ∈ (0, 1), using the estimate for the local energy Bar(x0) |∇w| p dx coming from Step 2 and also the estimate for the difference between u Σ and w in B r (x 0 )\Σ, we arrive at the following decay estimate for u Σ : ,p,q) , where γ(N, p, q) ∈ (0, 1) provided that q > q 1 (for the definition of q 1 see (1.4)).

1 ar Bar(x0) |∇u Σ | p dx ≤ 1 2 1 r Br(x0) |∇u Σ | p dx + Cr γ(N
Step 4. Finally, by iterating the result of Step 3 in a sequence of balls {B a l r1 (x 0 )} l , we obtain the desired decay behavior of the p-energy r → Br(x0) |∇u Σ | p dx under flatness control on Σ at x 0 . Namely, there exist b ∈ (0, 1) and C > 0 such that if Σ ∩ B r (x 0 ) remains fairly flat for all r in [r 0 , r 1 ], B r1 (x 0 ) ⊂ Ω and r 1 is sufficiently small, then the following estimate holds

Br(x0) |∇u Σ | p dx ≤ C r r 1 1+b Br 1 (x0) |∇u Σ | p dx + Cr 1+b for all r ∈ [r 0 , r 1 ].
Thus, if x 0 ∈ Σ ∩ Ω and Σ ∩ B r (x 0 ) remains fairly flat for all sufficiently small r > 0, then the energy r → 1 r Br(x0) |∇u Σ | p dx converges to zero no slower than Cr b for some b ∈ (0, 1) and C > 0. This will be used to prove the desired C 1,α result, and the same kind of estimate will also be used to prove the absence of closed loops. Now let us briefly explain how we use the above decay estimate to prove the partial C 1,α regularity of the minimizers inside Ω. The idea is to show that every minimizer Σ of Problem 1.1 with diam(Σ) > 0 is an almost minimizer for the length at any flat point inside Ω. More precisely, we need to prove that there exists β ∈ (0, 1) such that for any competitor Σ being τ r-close, in a ball B r (x 0 ) ⊂ Ω and in the Hausdorff distance, to a diameter of B r (x 0 ) for some small τ ∈ (0, 1) and satisfying Σ ∆Σ ⊂ B r (x 0 ), it holds

H 1 (Σ ∩ B r (x 0 )) ≤ H 1 (Σ ∩ B r (x 0 )) + Cr 1+β
whenever x 0 ∈ Σ ∩ Ω is a flat point. In our framework, the term Cr 1+β may only come from the p-compliance part of the functional F λ,f,Ω . Thus, we need to prove that

C f,Ω (Σ ) -C f,Ω (Σ) ≤ Cr 1+β whenever x 0 ∈ Σ ∩ Ω is a flat point, Σ ∈ K(Ω) is τ r-close, in B r (x 0 )
⊂ Ω and in the Hausdorff distance, to a diameter of B r (x 0 ) for some small τ ∈ (0, 1) and Σ ∆Σ ⊂ B r (x 0 ). Hereinafter in this section, C denotes a positive constant that can only depend on N, p, q 0 , q, f q , |Ω| (q 0 is defined in (1.1), q ≥ q 0 , f ∈ L q (Ω)) and can be different from line to line. Notice that one of the difficulties in obtaining the above estimate is a nonlocal behavior of the p-compliance functional. Namely, changing Σ locally in Ω, we change u Σ in the whole Ω. This can be overcome, using a cut-off argument. Actually, we have shown that if Σ is a competitor for Σ and Σ ∆Σ ⊂ B r (x 0 ), then

C f,Ω (Σ ) -C f,Ω (Σ) ≤ C B2r(x0) |∇u Σ | p dx + Cr N +p -N p q .
However, the right-hand side in the above estimate depends on the competitor Σ , which pushes us to introduce the quantity

w τ Σ (x 0 , r) = sup Σ ∈K(Ω), Σ ∆ Σ⊂Br(x0), H 1 (Σ )≤100H 1 (Σ), β Σ (x0,r)≤τ 1 r Br(x0) |∇u Σ | p dx,
where β Σ (x 0 , r) is the flatness defined by

β Σ (x 0 , r) = inf L x0 1 r d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 )),
where the infimum is taken over the set of all affine lines (1-dimensional planes) L in R N passing through x 0 . The quantity w τ Σ (x 0 , r) is a variant of the one introduced in [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF] and already used in [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF]. Also notice that the assumption

H 1 (Σ ) ≤ 100H 1 (Σ) in the definition of w τ Σ (x 0 , r) is rather optional, however, it guarantees that if Σ is a maximizer in this definition, then it is arcwise connected. Thus, if Σ ∈ K(Ω), Σ ∆Σ ⊂ B r (x 0 ), H 1 (Σ ) ≤ 100H 1 (Σ) and β Σ (x 0 , 2r) ≤ τ , we arrive at the estimate C f,Ω (Σ ) -C f,Ω (Σ) ≤ Crw τ Σ (x 0 , 2r) + Cr N +p -N p q .
Next, applying the decay estimate established in Step 4 above to the function u Σ , where Σ is a maximizer in the definition of w τ Σ (x 0 , 2r), we obtain the following control

w τ Σ (x 0 , 2r) ≤ C r r 1 b w τ Σ (x 0 , r 1 ) + Cr b ,
provided that β Σ (x 0 , ) remains fairly small for all ∈ [2r, r 1 ], r 1 > 0 is small enough, B r1 (x 0 ) ⊂ Ω and r > 0 is sufficiently small with respect to r 1 . Using also that b < N -1 + p -N p /q, altogether we get

H 1 (Σ ∩ B r (x 0 )) ≤ H 1 (Σ ∩ B r (x 0 )) + Cr r r 1 b w τ Σ (x 0 , r 1 ) + Cr 1+b
whenever Σ is a minimizer of Problem 1.1, β Σ (x 0 , ) remains fairly small for all ∈ [r, r 1 ], r 1 > 0 is small enough, B r1 (x 0 ) ⊂ Ω, r > 0 is sufficiently small with respect to r 1 , Σ ∈ K(Ω) is τ r-close, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ), Σ ∆Σ ⊂ B r (x 0 ) and H 1 (Σ ) ≤ 100H 1 (Σ). The next step is to find a nice competitor Σ for a minimizer Σ. More precisely, assume that x 0 ∈ Σ, B r (x 0 ) ⊂ Ω, r is sufficiently small, β Σ (x 0 , r) is small enough and remains fairly small on a large scale. The task is to find a competitor Σ such that Σ ∆Σ ⊂ B r (x 0 ), Σ is τ r-close, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ) for some small τ ∈ (0, 1) and, in addition, the length (i.e., H 1 -measure) of Σ ∩ B r (x 0 ) is fairly close to the length of a diameter of B r (x 0 ). Recall that in two dimensions we can take

Σ = (Σ\B r (x 0 )) ∪ (∂B r (x 0 ) ∩ {x : dist(x, L) ≤ β Σ (x 0 , r)r}) ∪ (L ∩ B r (x 0 )) provided β Σ (x 0 , r) = d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 ))/r. But in dimension N ≥ 3 such a competitor is not admissible, since it has Hausdorff dimension N -1 ≥ 2.
Notice that the main difficulty arising in the construction of a nice competitor in dimension N ≥ 3 is that we do not know whether the quantity H 0 (Σ ∩ ∂B (x 0 )) is uniformly bounded from above for x 0 ∈ Σ and > 0. However, according to the coarea inequality (see, for instance, [26, Theorem 2.1]), we know that for all > 0,

H 1 (Σ ∩ B (x 0 )) ≥ 0 H 0 (Σ ∩ ∂B t (x 0 )) dt.
If, moreover, < diam(Σ)/2, then Σ ∩ ∂B t (x 0 ) = ∅ for all t ∈ (0, ], since x 0 ∈ Σ and Σ is arcwise connected (see Remark 2.15). Thus, assuming that < diam(Σ)/2 and κ ∈ (0, 1/4], for any s ∈ [κ , 2κ ] we deduce the following

H 1 (Σ ∩ B (x 0 )) ≥ 0 H 0 (Σ ∩ ∂B t (x 0 )) dt > (1+κ)s s H 0 (Σ ∩ ∂B t (x 0 )) dt.
The latter inequality implies that there exists t ∈ [s, (1 + κ)s] for which

H 0 (Σ ∩ ∂B t (x 0 )) ≤ 1 κ 2 θ Σ (x 0 , ), where θ Σ (x 0 , ) = 1 H 1 (Σ ∩ B (x 0 )).
So if κ ∈ (0, 1/4], x 0 ∈ Σ, r > 0 is sufficiently small and B r (x 0 ) ⊂ Ω, then for all s ∈ [κr, 2κr] we can construct the following competitor

Σ = (Σ\B t (x 0 )) ∪ H 0 (Σ∩∂Bt(x0)) i=1 [z i , z i ] ∪ (L ∩ B t (x 0 )), where t ∈ [s, (1 + κ)s] is such that H 0 (Σ ∩ ∂B t (x 0 )) ≤ θ Σ (x 0 , r)/κ 2 , L is an affine line realizing the infimum in the definition of β Σ (x 0 , t), z i ∈ Σ ∩ ∂B t (x 0 ) and z i denotes the projection of z i to L ∩ B t (x 0 ).
The flatness β Σ (x 0 , t) is less than or equal to β Σ (x 0 , t) by construction. Assuming in addition that β Σ (x 0 , r) is fairly small and θ Σ (x 0 , r) is also small enough, for the competitor Σ constructed above it holds: β Σ (x 0 , t) is sufficiently small, since β Σ (x 0 , t) ≤ β Σ (x 0 , t) and β Σ (x 0 , ) remains small for all in (0, r) which are not too far from r; the length of Σ ∩ B t (x 0 ) is fairly close to the length of a diameter of B t (x 0 ); the following estimate holds

H 1 (Σ ∩ B s (x 0 )) ≤ H 1 (Σ ∩ B t (x 0 )) ≤ H 1 (Σ ∩ B t (x 0 )) + Ct t r b w τ Σ (x 0 , r) + Ct 1+b .
This allows us to prove the following fact: there exist ε, κ ∈ (0, 1/100) such that if Σ is a minimizer of Problem 1.1, x 0 ∈ Σ, r > 0 is sufficiently small, B r (x 0 ) ⊂ Ω and the following condition holds

β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε, θ Σ (x 0 , r) ≤ 10µ (C)
with µ being a unique positive solution to the equation µ = 5 + µ 1-1 N (we shall explain a bit later why we take this particular bound), then there exists s ∈ [κr, 2κr] for which H 0 (Σ ∩ ∂B s (x 0 )) = 2, the two points {ξ 1 , ξ 2 } of Σ ∩ ∂B s (x 0 ) belong to two different connected components of

∂B s (x 0 ) ∩ {x : dist(x, L) ≤ β Σ (x 0 , s)s},
where L is an affine line realizing the infimum in the definition of β Σ (x 0 , s). Moreover, (Σ\B s (x 0 ))∪[ξ 1 , ξ 2 ] is a nice competitor for Σ. Using this result together with the decay behavior of the local energy w τ Σ , we prove that there exists a constant a ∈ (0, 1/100) such that if x 0 ∈ Σ, r > 0 is small enough, B r (x 0 ) ⊂ Ω and the condition (C) holds with some sufficiently small ε > 0, then

β Σ (x 0 , ar) ≤ C(w τ Σ (x 0 , r)) 1 2 + Cr b 2 and w τ Σ (x 0 , ar) ≤ 1 2 w τ Σ (x 0 , r) + C(ar) b .
Next, we need to control the density θ Σ from above on a smaller scale by its value on a larger scale. Notice that in this paper we do not prove the Ahlfors regularity for a minimizer of Problem 1.1 in the spatial dimension N ≥ 3 (for a proof in dimension 2, see [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF]Theorem 3.3]), namely, that there exist constants 0 < c 1 < c 2 and a radius r 0 > 0 such that if Σ is a minimizer of Problem 1.1 with at least two points, then for all x ∈ Σ and r ∈ (0, r 0 ), it holds

c 1 ≤ θ Σ (x, r) ≤ c 2 .
In dimension N ≥ 3 this problem seems very difficult and interesting. However, adapting some of the approaches of Stepanov and Paolini in [START_REF] Paolini | Qualitative properties of maximum distance minimizers and average distance minimizers in R N[END_REF], we prove the following fact: for each a ∈ (0, 1/20] there exists ε ∈ (0, 1/100) such that if

x 0 ∈ Σ, B r (x 0 ) ⊂ Ω, r > 0 is sufficiently small and β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε, then θ Σ (x 0 , ar) ≤ 5 + θ Σ (x 0 , r) 1-1 N .
Notice that if θ Σ (x 0 , r) ≤ 10µ, then, using the above estimate, we get

θ Σ (x 0 , ar) ≤ 5 + (10µ) 1-1 N ≤ 10(5 + µ 1-1 N ) = 10µ.
The factor 10 in the estimate θ Σ (x 0 , r) ≤ 10µ is rather important, it appears in the proof of Corollary 5.13. Altogether we prove that there exist constants a, ε ∈ (0, 1/100), b ∈ (0, 1) such that if x 0 ∈ Σ, r > 0 is sufficiently small, B r (x 0 ) ⊂ Ω and the condition (C) holds with ε, then for all n ∈ N,

β Σ (x 0 , a n+1 r) ≤ C(w τ Σ (x 0 , a n r)) 1 2 + C(a n r) b 2 and w τ Σ (x 0 , a n+1 r) ≤ 1 2 w τ Σ (x 0 , a n r) + C(a n+1 r) b .
This, in particular, implies that β Σ (x 0 , ) ≤ C α for some α ∈ (0, 1), C = C(N, p, q 0 , q, f q , |Ω|, r) > 0 and for all sufficiently small > 0 with respect to r. Finally, we arrive to the so-called "ε-regularity" theorem, which says the following: there exist constants τ, a, ε, α, r 0 ∈ (0, 1) such that whenever x ∈ Σ, 0 < r < r 0 , B r (x) ⊂ Ω,

β Σ (x, r) + w τ Σ (x, r) ≤ ε and θ Σ (x, r) ≤ µ,
then for some C = C(N, p, q 0 , q, f q , |Ω|, r) > 0, β Σ (y, ) ≤ C α for any point y ∈ Σ ∩ B ar (x) and any radius ∈ (0, ar). In particular, there exists t ∈ (0, 1) such that Σ ∩ B t (x) is a C At the end, observing that for each N ≥ 2, the unique positive solution µ to the equation µ = 5 + µ 1-1 N is strictly greater than 5, we bootstrap all the estimates and prove that every minimizer Σ of Problem 1.1 is C 1,α regular at H 1 -a.e. point x ∈ Σ ∩ Ω.

Preliminaries

In this paper, B r (x), B r (x) and ∂B r (x) will denote, respectively, the open ball, the closed ball and the N -sphere with center x and radius r. If the center is at the origin, we write B r , B r and ∂B r the corresponding balls and the N -sphere. For each set A ⊂ R N , the set A c will denote its complement in R N , that is, A c = R N \A. We shall sometimes write points of R N as x = (x , x N ) with x ∈ R N -1 and x N ∈ R. We use the standard notation for Sobolev spaces. For an open set U ⊂ R N , denote by W 1,p 0 (U ) the closure of C ∞ 0 (U ) in the Sobolev space W 1,p (U ), where C ∞ 0 (U ) is the space of functions in C ∞ (U ) with compact support in U . Recall that W 1,p loc (U ) is the space of functions u such that u ∈ W 1,p (V ) for all V ⊂⊂ U . We shall denote by H d (A) the d-dimensional Hausdorff measure of A. In this paper, we say that a value is positive if it is strictly greater than zero, and a value is nonnegative if it is greater than or equal to zero.

We begin by defining weak solutions to the p-Laplace equation,

∆ p u = div(|∇u| p-2 ∇u) = 0.
Definition 2.1. Let U ⊂ R N be open and bounded, p ∈ (1, +∞). We say that u is a weak subsolution (supersolution) to the p-Laplace equation in U provided u ∈ W 1,p loc (U ) and

U |∇u| p-2 ∇u∇ϕ dx ≤ (≥)0, whenever ϕ ∈ C ∞ 0 (U ) is nonnegative.
A function u is a weak solution to the p-Laplace equation if it is both a subsolution and a supersolution. If u is an upper (lower) semicontinuous weak subsolution (supersolution) to the p-Laplace equation in U , then we say that u is p-subharmonic (p-superharmonic) in U . If u is a continuous weak solution to the p-Laplace equation in U , then we say that u is p-harmonic in U .

The following basic result for weak solutions holds (see [START_REF] Lindqvist | Notes on the stationary p-Laplace equation[END_REF]Theorem 2.7]).

Theorem 2.2. Let U be a bounded open set in R N and let u ∈ W 1,p (U ). The following two assertions are equivalent.

(i) u is minimizing:

U |∇u| p dx ≤ U |∇v| p dx, when v -u ∈ W 1,p 0 (U ).
(ii) the first variation vanishes:

U |∇u| p-2 ∇u∇ζ dx = 0, when ζ ∈ W 1,p 0 (U ).
Now we introduce the notion of the Bessel capacity (see e.g. [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF], [START_REF] Ziemer | Weakly differentiable functions[END_REF]).

Definition 2.3. For p ∈ (1, +∞), the Bessel (1, p)-capacity of a set E ⊂ R N is defined as Cap p (E) = inf f p L p (R N ) : g * f ≥ 1 on E, f ∈ L p (R N ), f ≥ 0 ,
where the Bessel kernel g is defined as that function whose Fourier transform is

ĝ(ξ) = (2π) -N 2 (1 + |ξ| 2 ) -1 2 .
We say that a property holds p-quasi everywhere (abbreviated as p-q.e.) if it holds except on a set A where Cap p (A) = 0. It is worth mentioning that by [1, Corollary 2.6.8], for every p ∈ (1, +∞), the notion of the Bessel capacity Cap p is equivalent to the following

Cap p (E) = inf u∈W 1,p (R N ) R N |∇u| p dx + R N
|u| p dx : u ≥ 1 on some neighborhood of E in the sense that there exists C = C(N, p) > 0 such that for any set

E ⊂ R N , 1 C Cap p (E) ≤ Cap p (E) ≤ C Cap p (E).
The notion of capacity is crucial in the investigation of the pointwise behavior of Sobolev functions.

For convenience, we recall the next theorems and propositions.

Theorem 2.4. Let E ⊂ R N and p ∈ (1, N ]. Then Cap p (E) = 0 if H N -p (E) < +∞. Conversely, if Cap p (E) = 0, then H N -p+ε (E) = 0 for every ε > 0.
Proof. For a proof of the fact that Cap p (E) = 0 if H N -p (E) < +∞, we refer to [ Recall that for all E ⊂ R N the number

dim H (E) = sup{s ∈ [0, +∞) : H s (E) = +∞} = inf{t ∈ [0, +∞) : H t (E) = 0} is called the Hausdorff dimension of E. Corollary 2.6. Let E ⊂ R N , dim H (E) = 1 and H 1 (E) < +∞. Then Cap p (E) > 0 if and only if p ∈ (N -1, +∞).
Proof of Corollary 2.6. If p > N , then by Remark 2.5, Cap p (E) > 0. Assume by contradiction that Cap p (E) = 0 for some p ∈ (N -1, N ]. Taking ε = (p -N + 1)/2 so that 0 < N -p + ε < 1, by Theorem 2.4 we get, H N -p+ε (E) = 0, but this leads to a contradiction with the fact that dim H (E) = 1.

On the other hand, if p ∈ (1, N -1], then H N -p (E) < +∞ and by Theorem 2.4, Cap p (E) = 0. This completes the proof of Corollary 2.6.

Proposition 2.7. Let Σ ⊂ R N , x 0 ∈ R N , 0 ≤ r 0 < r 1 and p ∈ (1, N ]. Assume that Σ ∩ ∂B r (x 0 ) = ∅ for all r ∈ (r 0 , r 1 ).
Then there exists a constant C > 0, possibly depending only on N and p, such that

Cap p ({0} N -1 × [0, r 1 -r 0 ]) ≤ CCap p (Σ ∩ B r1 (x 0 )). Proof. The proof is straightforward if p ∈ (1, N -1], since in this case Cap p ({0} N -1 × [0, r 1 -r 0 ]) = 0 according to Corollary 2.6. Assume that p ∈ (N -1, N ]. Let A(x 0 , r 0 ) = B r0 (x 0 ) if r 0 > 0 and A(x 0 , r 0 ) = {x 0 } if r 0 = 0. For each x ∈ Σ ∩ (B r1 (x 0 )\A(x 0 , r 0 )), we define Φ(x) = ({0} N -1 , |x -x 0 |). Since Φ is 1-Lipschitz, by [1, Theorem 5.2.1], there exists C = C(N, p) > 0 such that Cap p ({0} N -1 × (r 0 , r 1 )) = Cap p (Φ(Σ ∩ (B r1 (x 0 )\A(x 0 , r 0 )))) ≤ CCap p (Σ ∩ (B r1 (x 0 )\A(x 0 , r 0 ))). Notice that Cap p ({0} N -1 ×[r 0 , r 1 ]) ≤ Cap p ({0} N -1 ×(r 0 , r 1 )), since Cap p (•) is a subadditive set function (see, for instance, [1, Proposition 2.3.6]) and Cap p ({0} N -1 × {r i }) = 0 for i = 0, 1 by Theorem 2.4. So Cap p ({0} N -1 × [r 0 , r 1 ]) ≤ CCap p (Σ ∩ (B r1 (x 0 )\A(x 0 , r 0 ))) for some C = C(N, p) > 0.
Then, using the fact that the Bessel capacity is nondecreasing with respect to set inclusion and, if necessary, the fact that it is an invariant under translations, we recover the desired estimate. This completes the proof of Proposition 2.7.

Corollary 2.8. Let Σ ⊂ R N , x 0 ∈ R N , 0 ≤ r 0 < r 1 and p ∈ (1, N ]. Assume that Σ ∩ B r0 (x 0 ) = ∅ if r 0 > 0 and x 0 ∈ Σ if r 0 = 0. Assume also that (Σ ∩ B r1 (x 0 )) ∪ ∂B r1 (x 0 ) is connected.
Then there exists a constant C > 0, possibly depending only on N and p, such that

Cap p ({0} N -1 × [0, r 1 -r 0 ]) ≤ CCap p (Σ ∩ B r1 (x 0 )).
Proof of Corollary 2.8. According to the conditions of Corollary 2.8, Σ ∩ ∂B r (x 0 ) = ∅ for all r ∈ (r 0 , r 1 ).

Then it only remains to use Proposition 2.7. This completes the proof of Corollary 2.8.

Proposition 2.9. Let r ∈ (0, 1] and

A r = {0} N -1 × [0, r].
The following assertions hold.

(i) If p ∈ (N -1, N ), then there exists a constant C = C(N, p) > 0 such that r N -p ≤ CCap p (A r ). (ii) If p = N , then there exists a constant C = C(N ) > 0 such that log C r 1-p ≤ CCap p (A r ).
Proof. Since diam(A r ) ≤ 1, (i) and (ii) follows from [1, Corollary 5.1.14].

Corollary 2.10.

Let p ∈ (N -1, N ] and Σ = ({0} N -1 × (-1, 1)) ∪ ∂B 1 . Then there exist r 0 , C 0 > 0 such that Cap p (Σ ∩ B r (x 0 )) Cap p (B r (x 0 )) ≥ C 0 (2.1)
whenever 0 < r < r 0 and x 0 ∈ Σ.

Proof of Corollary 2.10. Since Σ is arcwise connected and diam(Σ) = 1, setting r 0 = 1/2, we observe that Σ ∩ ∂B r (x 0 ) = ∅ whenever 0 < r < r 0 and x 0 ∈ Σ. Then Proposition 2.7 says that for some

C = C(N, p) > 0, Cap p ({0} N -1 × [0, r]) ≤ CCap p (Σ ∩ B r (x 0 ))
whenever 0 < r < r 0 and x 0 ∈ Σ. However, this, together with Proposition 2.9, [1, Proposition 5. Proof. We refer the reader, for instance, to the proof of [9, Theorem 2.8], which actually applies for the general spatial dimension N ≥ 2.

Remark 2.13. A Sobolev function u ∈ W 1,p (R N ) belongs to W 1,p 0 (Y ) if and only if its p-quasi continuous representative u vanishes p-q.e. on Y c (see [START_REF] Bagby | Quasi topologies and rational approximation[END_REF]Theorem 4] and [START_REF] Hedberg | Non-linear potentials and approximation in the mean by analytic functions[END_REF]Lemma 4]). Thus, if Y is an open subset of Y and u ∈ W 1,p 0 (Y ) such that u = 0 p-q.e. on Y \Y , then the restriction of u to Y belongs to W 1,p 0 (Y ) and conversely, if we extend a function u

∈ W 1,p 0 (Y ) by zero in Y \Y , then u ∈ W 1,p 0 (Y ). It is worth mentioning that if Σ ⊂ Y and Cap p (Σ) = 0, then W 1,p 0 (Y ) = W 1,p 0 (Y \ Σ). Indeed, u ∈ W 1,p 0 (Y ) if and only if u ∈ W 1,p (R N ) and u = 0 p-q.e. on Y c that is equivalent to say u ∈ W 1,p (R N ) and u = 0 p-q.e. on Y c ∪ Σ (since Cap p (Σ) = 0 and Cap p (•) is a subadditive set function, see [1, Proposition 2.3.6]) or u ∈ W 1,p 0 (Y \ Σ).
In the sequel we shall always identify u ∈ W 1,p (Y ) with its p-quasi continuous representative u.

Proposition 2.14. Let D ⊂ R N be a bounded extension domain and let

u ∈ W 1,p (D). Consider E = D ∩ {x : u(x) = 0}. If Cap p (E) > 0, then there exists a constant C = C(N, p, D) > 0 such that D |u| p dx ≤ C(Cap p (E)) -1 D |∇u| p dx.
Proof. For a proof, see, for instance, [START_REF] Ziemer | Weakly differentiable functions[END_REF]Corollary 4.5.3,p. 195].

It is also worth recalling the following fact, which will be used several times in this paper.

Remark 2.15. Every closed and connected set Σ ⊂ R N satisfying H 1 (Σ) < +∞ is arcwise connected (see, for instance, [14, Corollary 30.2, p. 186]).

Poincaré inequality

Proposition 2.16. Let Σ ⊂ R N , ξ ∈ R N and r > 0 be such that Σ ∩ ∂B s (ξ) = ∅ for every s ∈ [r, 2r]. Let p ∈ (N -1, +∞) and u ∈ W 1,p (B 2r (ξ)) satisfying u = 0 p-q.e. on Σ ∩ B 2r (ξ). Then there exists a constant C = C(N, p) > 0 such that B2r(ξ) |u| p dx ≤ Cr p B2r(ξ) |∇u| p dx.
Proof. We refer the reader to the proof of [9, Corollary 2.12], which also applies for the present geometric assumptions.

Estimate for

E f,Ω (u Σ ) -E f,Ω (u Σ )
We begin by proving the following "localization lemma". Lemma 2.17. Let Ω ⊂ R N be open and bounded, p ∈ (1, +∞) and f ∈ L q0 (Ω) with q 0 defined in (1.1). Let Σ and Σ be closed proper subsets of Ω and x 0 ∈ R N . Assume that 0 < r 0 < r 1 and Σ ∆ Σ ⊂ B r0 (x 0 ). Then there exists

C = C(p) > 0 such that for any ϕ ∈ Lip(R N ) satisfying ϕ = 1 over B c r1 (x 0 ), ϕ = 0 over B r0 (x 0 ) and ϕ ∞ ≤ 1 on R N , one has E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C Br 1 (x0) |∇u Σ | p dx + C Br 1 (x0) |u Σ | p |∇ϕ| p dx + Br 1 (x0) f u Σ (1 -ϕ) dx.
Proof. We refer the reader to the proof of [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF]Lemma 4.1], that actually applies for the general spatial dimension N ≥ 2.

Lemma 2.18.

Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞) and f ∈ L q (Ω) with q ≥ q 0 , where q 0 is defined in (1.1). Assume that Σ is a closed arcwise connected proper subset of Ω such that for some

x 0 ∈ R N and 0 < 2r 0 ≤ r 1 ≤ 1 it holds Σ ∩B r0 (x 0 ) = ∅, Σ \B r1 (x 0 ) = ∅.
(2.2)

Then for any r ∈ [r 0 , r 1 /2], for any ϕ ∈ Lip(R N ) such that ϕ ∞ ≤ 1, ϕ = 1 over B c 2r (x 0 ), ϕ = 0 over B r (x 0 ) and ∇ϕ ∞ ≤ 1/r, the following assertions hold. (i) There exists C = C(N, p) > 0 such that B2r(x0) |u Σ | p |∇ϕ| p dx ≤ C B2r(x0) |∇u Σ | p dx. ( 2 

.3)

(ii) There exists C = C(N, p, q 0 , q, f q ) > 0 such that

B2r(x0) f u Σ (1 -ϕ) dx ≤ C B2r(x0) |∇u Σ | p dx + Cr N +p -N p q . (2.4) Proof. Thanks to (2.2), Σ ∩ ∂B s (x 0 ) = ∅ for all s ∈ [r, 2r].
Then, since u Σ = 0 p-q.e. on Σ and u Σ ∈ W 1,p (B 2r (x 0 )), we can use Proposition 2.16, which says that there exists C = C(N, p) > 0 such that

B2r(x0) |u Σ | p dx ≤ Cr p B2r(x0) |∇u Σ | p dx. (2.5)
Therefore,

B2r(x0) |u Σ | p |∇ϕ| p dx ≤ 1 r p B2r(x0) |u Σ | p dx ≤ C B2r(x0) |∇u Σ | p dx.
This proves (2.3).

Let us now prove (2.4). First, notice that thanks to (2.5) and the fact that 2r ≤ 1, there exists

C 0 = C 0 (N, p) > 0 such that u Σ W 1,p (B2r(x0)) ≤ C 0 ∇u Σ L p (B2r(x0)) .
(2.6)

Next, using the Sobolev embeddings (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.26]) together with (2.6) and the fact that u Σ = 0 p-q.e. on Σ, we deduce that there exists C = C(N, p, q 0 ) > 0 such that

u Σ L q 0 (B2r(x0)) ≤ Cr β ∇u Σ L p (B2r(x0)) , (2.7) 
where

β = 0 if N -1 < p < N, β = N q 0 if p = N, β = 1 - N p if N < p < +∞.
Thus, using the fact that 

|f u Σ (1 -ϕ)| ≤ |f u Σ |,
f u Σ (1 -ϕ) dx ≤ f L q 0 (B2r(x0)) u Σ L q 0 (B2r(x0)) ≤ |B 2r (x 0 )| 1 q 0 -1 q f L q (Ω) u Σ L q 0 (B2r(x0)) ≤ Cr N ( 1 q 0 -1 q )+β ∇u Σ L p (B2r(x0)) = Cr N p +1-N q ∇u Σ L p (B2r(x0)) ≤ Cr N +p -N p q + C ∇u Σ p L p (B2r(x0)) ,
where C = C(N, p, q 0 , q, f q ) > 0. This concludes the proof of Lemma 2.18.

The following corollary follows directly from Lemma 2.17 and Lemma 2.18, thus, we omit the proof.

Corollary 2.19.

Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞) and f ∈ L q (Ω) with q ≥ q 0 , where q 0 is defined in (1.1). Let Σ and Σ be closed arcwise connected proper subsets of Ω and let

x 0 ∈ R N . Suppose that 0 < 2r 0 ≤ r 1 ≤ 1, Σ ∆ Σ ⊂ B r0 (x 0 ) and Σ ∩ B r0 (x 0 ) = ∅, Σ \B r1 (x 0 ) = ∅.
Then for every r

∈ [r 0 , r 1 /2], E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C B2r(x0) |∇u Σ | p dx + Cr N +p -N p q , (2.8)
where C = C(N, p, q 0 , q, f q ) > 0.

Uniform boundedness of u f,Ω,Σ with respect to Σ

In this subsection, we prove a uniform bound, with respect to Σ, for a unique solution u f,Ω,Σ to the Dirichlet problem -∆ p u = f in Ω\Σ, u ∈ W 1,p 0 (Ω\Σ). It is worth mentioning that the estimate (2.11) will never be used in the sequel, however, we find it interesting enough to keep it in the present paper. Also notice that we can extend u f,Ω,Σ by zero outside Ω\Σ to an element of W 1,p (R N ), we shall use the same notation for this extension as for u f,Ω,Σ . Proposition 2.20. Let Ω ⊂ R N be open and bounded, Σ be a closed proper subset of Ω, p ∈ (1, +∞) and f ∈ L q0 (Ω) with q 0 defined in (1.1). Then there exists a constant C > 0, possibly depending only on N, p and q 0 , such that

Ω |∇u f,Ω,Σ | p dx ≤ C| Ω | α f β L q 0 (Ω) , (2.9)
where

(α, β) = (0, p ) if 1 < p < N, (α, β) = N q 0 , N if p = N, (α, β) = p -N N (p -1) , p if p > N. (2.10) Moreover, if f ∈ L q (Ω) with q > N p if p ∈ (1, N ] and q = 1 if p > N , then there exists a constant C = C(N, p, q, f q , | Ω |) > 0 such that u f,Ω,Σ L ∞ (R N ) ≤ C. (2.

11)

Proof. To establish the estimate (2.11), we use [9, Lemma A.2] with U = Ω\Σ, which provides a constant 

C = C(N, p, q, f q , |U |) > 0 such that u f,Ω,Σ L ∞ (R N ) ≤ C,
Ω |∇u f,Ω,Σ | p dx = Ω f u f,Ω,Σ dx ≤ f L q 0 (Ω) u f,Ω,Σ L q 0 (Ω) , (2.12)
where the above estimate comes by using Hölder's inequality. Next, recalling that by the Sobolev inequalities (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.10]) there is

C = C(N, p) > 0 such that u f,Ω,Σ L q 0 (Ω) ≤ C|Ω| γ ∇u f,Ω,Σ L p (Ω) , where γ = 0 if 1 < p < N, γ = 1 N - 1 p if p > N,
and using (2.12), we recover (2.9) in the case when p = N . If p = N and 1 < q 0 ≤ N , then for ε ∈ (0, N -1] such that 1

q 0 = 1 N -ε -1 N , we get u f,Ω,Σ L q 0 (Ω) ≤ C ∇u f,Ω,Σ L N -ε (Ω) (by the Sobolev inequality) ≤ C| Ω | 1 q 0 ∇u f,Ω,Σ L N (Ω)
(by Hölder's inequality).

The latter estimate together with (2.12) yields (2.9) in the case when p = N and 1 < q 0 ≤ N . Assume now that p = N and q 0 > N . Then q 0 < N ≤ N . Using Hölder's inequality and the fact that

u f,Ω,Σ L N (Ω) ≤ C| Ω | 1 N ∇u f,Ω,Σ L N (Ω) ,
which was proved above, we obtain that

u f,Ω,Σ L q 0 (Ω) ≤ |Ω| 1 q 0 -1 N u f,Ω,Σ L N (Ω) ≤ C|Ω| 1 q 0 ∇u f,Ω,Σ L N (Ω) .
This, together with (2.12), yields (2.9) in the case when p = N and q 0 > N , and completes the proof of Proposition 2.20.

Existence

Theorem 2.21.

Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞), f ∈ L q0 (Ω) with q 0 defined in (1.1). Let (Σ n ) n ⊂ K(Ω) be a sequence converging to Σ ∈ K(Ω) in the Hausdorff distance. Then u Σn -→ n→+∞ u Σ strongly in W 1,p (Ω).
Proof. For a proof, see [START_REF] Šverák | On optimal shape design[END_REF] for the case N = p = 2 and [START_REF] Bucur | Shape optimisation problems governed by nonlinear state equations[END_REF] for the general case.

Proposition 2.22. Problem 1.1 admits a minimizer.

Proof. Let (Σ n ) n ⊂ K(Ω) be a minimizing sequence for Problem 1.1. We can assume that Σ n = ∅ and

C f,Ω (Σ n )+λH 1 (Σ n ) ≤ C f,Ω (∅)
at least for a subsequence still denoted by n, because otherwise the empty set would be a minimizer. Then, by Blaschke's theorem (see [2, Theorem 6.1]), there exists Σ ∈ K(Ω) such that, up to a subsequence still denoted by the same index, Σ n converges to Σ in the Hausdorff distance as n → +∞. Furthermore, by Theorem 2.21, u Σn converges to u Σ strongly in W 1,p 0 (Ω) and hence C f,Ω (Σ n ) → C f,Ω (Σ) as n → +∞. Then, using the fact that H 1 -measure is lower semicontinuous with respect to the topology generated by the Hausdorff distance, we deduce that Σ is a minimizer of Problem 1.1.

The next proposition says that, at least for some range of values of λ > 0, solutions to Problem 1.1 are nontrivial. Proposition 2.23. Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞), f ∈ L q0 (Ω), f = 0 and q 0 is defined in (1.1). Then there exists a number λ 0 = λ 0 (N, p, f, Ω) > 0 such that if Problem 1.1 is defined for λ ∈ (0, λ 0 ], then every solution to this problem has positive H 1 -measure. Moreover, if p > N , then the empty set will not be a solution to Problem 1.1.

Proof. For a proof in the case when N = 2, we refer the reader to [9, Proposition 2.17], the proof for the general case is similar.

Decay of the p-energy under flatness control

In this section we establish the desired decay behavior of the p-energy r → Br(x0) |∇u Σ | p dx by controlling the flatness of Σ at x 0 .

We begin by establishing a control for the functional r → Br |∇u| p dx, where u is a weak solution to the p-Laplace equation in B 1 \({0} N -1 × (-1, 1)) vanishing p-q.e. on {0} N -1 × (-1, 1). In [START_REF] Lundström | Phragmén-Lindelöf theorems and p-harmonic measures for sets near lowdimensional hyperplanes[END_REF] it was shown that if u is a positive p-harmonic function in B 1 \({0} N -1 × (-1, 1)), continuous in B 1 with u = 0 on {0} N -1 × (-1, 1), then there exists δ = δ(N, p) ∈ (0, 1) such that u ∈ C 0,β (B δ ), where β = (p -N + 1)/(p -1) and C 0,β (U ) denotes the space of Hölder continuous functions in the open set U . Furthermore, β is the optimal Hölder exponent for u. In fact, comparing the function u with the p-superharmonic and p-subharmonic functions constructed in [21, Lemma 3.4], [START_REF] Lundström | Estimates for p-harmonic functions vanishing on a flat[END_REF]Lemma 3.7], it was shown that there exists C = C(N, p) > 0 and δ = δ(N, p) ∈ (0, 1) such that

C -1 dist(x, {0} N -1 × (-1, 1)) β ≤ u(x) u(A 1/2 ) ≤ C dist(x, {0} N -1 × (-1, 1)) β (3.1) whenever x ∈ B δ , where A 1/2 is a point in {|x | = 1/2} ∩ ∂B 1/2 . The upper bound in (3.1) implies that u ∈ C 0,β (B δ ) (see [21, Corollary 3.7]
), and the lower bound proves that β is optimal. However, for the purposes of this paper, the optimal regularity for a p-harmonic function vanishing on a 1-dimensional plane is not necessary. It so happened that for every p ∈ (N -1, +∞) we also constructed a nice barrier in order to estimate a nonnegative p-subharmonic function vanishing on a 1-dimensional plane. More precisely, for any fixed γ ∈ (0, β) and some δ = δ(N, p, γ) ∈ (0, 1), we constructed a psuperharmonic function in Lemma A.1, comparing with which a nonnegative p-subharmonic function u in B 1 \({0} N -1 × (-1, 1)), continuous in B 1 and with u = 0 on {0} N -1 × (-1, 1), we obtain the following control

u(x) ≤ Cu(A 1/2 ) dist(x, {0} N -1 × (-1, 1)) γ ,
where x ∈ B δ and C = C(N, p, γ) > 0. If γ is close enough to β, using the above control, we deduce the estimate (3.2) which is sufficient to obtain the desired decay behavior of the p-energy under flatness control. Finally, since our barrier is slightly simpler than those in [21, Lemma 3.4] and [START_REF] Lundström | Estimates for p-harmonic functions vanishing on a flat[END_REF]Lemma 3.7] and in order to make the presentation self-contained, we shall use it in the proof of Lemma 3.1. 

C = C(N, p) > 0 such that if u is a nonnegative p-harmonic function in B 1 \({0} N -1 × (-1, 1)), continuous in B 1 and satisfying u = 0 on {0} N -1 × (-1, 1), then max x∈Bε u(x) ≤ Cu(A ε ),
where

A ε denotes a point such that dist(A ε , {0} N -1 × R) = ε and A ε ∈ ∂B ε .
Proof of Lemma 3.1. To lighten the notation, we denote {0} N -1 × (-1, 1) by S.

Step 1. We prove the estimate (3.2) in the case when u is continuous and nonnegative in

B 1 with u = 0 on S. Let γ = 1 2 p-N +1 p + p-N +1 p-1
. By Lemma A.1, there exists

δ 0 = δ 0 (N, p) ∈ (0, 1) such that û(x) = |x | γ + x 2 N is p-superharmonic in {0 < |x | < δ 0 } ∩ {|x N | < 1}.
On the other hand, according to Lemma 3.2, there exists ε = ε(N, p) ∈ (0, 1) and

C = C(N, p) > 0 such that u ≤ Cu(A ε ) in B ε , where A ε denotes a point with dist(A ε , {0} N -1 × R) = ε and A ε ∈ ∂B ε .
Without loss of generality, we can assume that δ 0 ≤ ε. Hereinafter in this proof, C denotes a positive constant that can only depend on N, p and can be different from line to line. Using Harnack's inequality (see, for instance, [18, Theorem 6.2]), we deduce that u

(A ε ) ≤ Cu(A 1/2 ) and hence u ≤ Cu(A 1/2 ) in B δ0 for a point A 1/2 ∈ {|x | = 1/2} ∩ ∂B 1/2 . Next, since û(x) = δ 0 √ 2 γ + x 2 N ≥ δ 0 √ 2 γ if |x | = δ 0 √ 2 and û(x) = |x | γ + δ 2 0 2 ≥ δ 2 0 2 if |x N | = δ 0 √ 2 , the estimate u ≤ Cu(A 1/2 )û holds on ∂({|x | < δ 0 / √ 2} ∩ {|x N | < δ 0 / √ 2} 
); see Figure 3.1. Notice also that u(x) ≤ Cu(A 1/2 )û(x) if x ∈ S. Thus, using the comparison principle (see e.g. [18, Theorem 7.6]), we obtain

u ≤ Cu(A 1/2 )û in {|x | < δ 0 / √ 2} ∩ {|x N | < δ 0 / √ 2}. ( 3.3) 
Now we set δ := δ 0 /10. According to Lemma A.2, u is a p-subharmonic function in B 1 . Then, using Caccioppoli's inequality (see e.g. [19, Lemma 2.9] or [18, Lemma 3.27]), which is applicable to nonnegative p-subharmonic functions, and also using (3.3), for all r ∈ (0, δ], we deduce that

Br |∇u| p dx ≤ p p r -p B2r u p dx ≤ Cu p (A 1/2 )r -p B2r ûp dx ≤ Cu p (A 1/2 )r -p B2r (r γ + r 2 ) p dx ≤ Cu p (A 1/2 )r γp+N -p = Cu p (A 1/2 )r 1+α , ( 3.4) 
where α = γp-p+N -1 is positive, since γ > (p-N +1)/p. On the other hand, by Harnack's inequality, u(A 1/2 ) ≤ Cu(x) for all x ∈ B 1/4 (A 1/2 ) and then

u p (A 1/2 ) = 1 |B 1/4 | B 1/4 (A 1/2 ) u p (A 1/2 ) dx ≤ C B 1/4 (A 1/2 ) u p dx ≤ C B1 u p dx ≤ C B1 |∇u| p dx, ( 3.5) 
where we have used Proposition 2.16. Gathering together (3.4) and (3.5), we deduce (3.2).

Step 2. We prove (3.2) in the case when u ∈ W 1,p (B 1 ) and u = 0 p-q.e. on S. Let us fix a sequence

(ϕ n ) n∈N ⊂ C ∞ (B 1
) such that for each n ∈ N, ϕ n = 0 on S and, furthermore, ϕ n → u in W 

) n ⊂ C ∞ 0 (U \S) such that ϕ n → u in W 1,p (U ). It remains to note that ϕ n → u in W 1,p (B 1 ). Next, for each n ∈ N, let u n be a unique solution to the Dirichlet problem    -∆ p v = 0 in B 1 \S v = ϕ n on S ∪ ∂B 1 , which means that u n -ϕ n ∈ W
p ((S ∪ ∂B 1 ) ∩ B r (x)) Cap p (B r (x)) ≥ C 0 (3.6)
whenever 0 < r < r 0 and x ∈ S ∪∂B 1 . However, the estimate (3.6) in the case when p ∈ (N -1, N ] follows from Corollary 2.10; in the case when p > N , using Remark 2.5 and the fact that the Bessel capacity is an invariant under translations and is nondecreasing with respect to set inclusion, it is easy to see that the estimate (3.6) holds for C 0 = Cap p ({0})/Cap p (B 1 ) whenever x ∈ S ∪ ∂B 1 and 0 < r < 1. Thus, for each n ∈ N, u n is continuous in B 1 . Then, by Lemma A.2, u + n = max{u n , 0} and u - n = -min{u n , 0} are nonnegative p-subharmonic functions in B 1 such that u + n = u - n = 0 on S. Now let v n be a unique solution to the Dirichlet problem

   -∆ p v = 0 in B 1 \S v = u + n on S ∪ ∂B 1 .
As before, by [ 

+ n → u + , u - n → u -in W 1,p (B 1
). This, together with (3.7) and (3.8), implies that for all r ∈ (0, δ],

Br |∇u| p dx = Br |∇u + -∇u -| p dx ≤ 2 p-1 Br |∇u + | p dx + 2 p-1 Br |∇u -| p dx ≤ Cr 1+α B1 |∇u + | p dx + Cr 1+α B1 |∇u -| p dx ≤ Cr 1+α B1 |∇u| p dx.
This completes the proof of Lemma 3.1. Now we establish an estimate for a weak solution to the p-Laplace equation in B r (x 0 )\Σ that vanishes on Σ ∩ B r (x 0 ) in the case when Σ is close enough, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ). Proof. Since the p-Laplacian is an invariant under scalings, rotations and translations, we can assume that B r (x 0 ) = B 1 and L∩B r (x 0 ) = {0} N -1 ×[-1, 1]. To simplify the notation, we denote {0} N -1 ×[-1, 1] by S. By contradiction, suppose that for some ∈ (0, δ] there exist sequences (ε n ) n , (Σ n ) n and (u n ) n such that for each n ∈ N:

ε n ∈ (0, ), ε n ↓ 0 as n → +∞; Σ n is closed, (Σ n ∩B 1 ) ∪ ∂B 1 is connected, d H (Σ n ∩B 1 , S) ≤ ε n implying that d H (Σ n ∩ B 1 , S) → 0 as n → +∞; (3.9)
u n is a weak solution to the p-Laplace equation in B 1 \ Σ n , u n = 0 p-q.e. on Σ n ∩B 1 and

B |∇u n | p dx > (C ) 1+α B1 |∇u n | p dx. (3.10)
Next, for each n ∈ N, we define v n ∈ W 1,p (B 1 ) as

v n (•) = u n (•) B1 |∇u n | p dx 1 p . ( 3.11) 
Notice that v n = 0 p-q.e. on Σ n ∩B 1 and

B1 |∇v n | p dx = 1. (3.12)
On the other hand, for each n ∈ N, Σ n ∩ B δ = ∅. This, together with the fact that (Σ n ∩ B 1 ) ∪ ∂B 1 is connected, according to Corollary 2.8 and Proposition 2.9 in the case when p ∈ (N -1, N ], and according to Remark 2.5 in the case when p ∈ (N, +∞), implies that there exists a constant C > 0 (independent of n) such that for each n ∈ N,

Cap p (Σ n ∩ B 1 ) ≥ C.
Using the above estimate together with Proposition 2.14 and with (3.12), we conclude that the sequence (v n ) n is bounded in W 1,p (B 1 ). Hence, up to a subsequence still denoted by the same index, we have

v n v weakly in W 1,p (B 1 ) (3.13) v n → v strongly in L p (B 1 ), (3.14) 
for some v ∈ W 1,p (B 1 ). Let us now show that v = 0 p-q.e. on S ∩ B 1 . For each t ∈ (0, 1), we fix a function ψ ∈ C 1 0 (B 1 ) such that ψ = 1 on B t and 0 ≤ ψ ≤ 1. Since (Σ n ∩B 1 ) ∪ ∂B 1 is connected for each n ∈ N and d H (Σ n ∩B 1 , S) → 0 as n → +∞, it follows (see Section 6 in [START_REF] Bucur | Shape optimisation problems governed by nonlinear state equations[END_REF]) that the sequence of Sobolev spaces W 1,p 0 (B 1 \ Σ n ) converges in the sense of Mosco to W 1,p 0 (B 1 \S). Notice that for each n ∈ N, v n ψ ∈ W 1,p 0 (B 1 \Σ n ) and by (3.13), v n ψ vψ weakly in W 1,p (R N ). Then, using the definition of limit in the sense of Mosco, we deduce that vψ ∈ W 1,p 0 (B 1 \S). This implies that v = 0 p-q.e. on {0} N -1 ×[-t, t] (see Remark 2.13). As t ∈ (0, 1) was arbitrarily chosen, v = 0 p-q.e. on S ∩ B 1 .

We claim that v is a weak solution to the p-Laplace equation in B 1 \S, that is,

B1 |∇v| p-2 ∇v∇ϕ dx = 0 for all ϕ ∈ C ∞ 0 (B 1 \S). (3.15) 
In order to get the equality above, it suffices to show that

|∇v n | p-2 ∇v n |∇v| p-2 ∇v weakly in L p (B 1 ; R N ). In fact, if ϕ ∈ C ∞ 0 (B 1 \S), then {ϕ = 0} ⊂⊂ B 1
\S and thanks to (3.9), for all n large enough, {ϕ = 0} ⊂⊂ B 1 \Σ n , so we can write the following

B1 |∇v n | p-2 ∇v n ∇ϕ dx = 0.
Next, letting n tend to +∞ in the above equality and using that |∇v n | p-2 ∇v n |∇v| p-2 ∇v weakly in L p (B 1 ; R N ), we would obtain (3.15). We first prove that, at least for a subsequence, ∇v n → ∇v a.e. in B 1 . For each integer m ≥ 10, we define Ω m := {x ∈ B 1 : dist(x, S) > 1/m}. Notice that v n v weakly in W 1,p (Ω m ) and for all n large enough (with respect to m), v n is a weak solution in Ω m . Then, according to [4, Theorem 2.1], there exists a subsequence (v n(m,k) ) k∈N such that ∇v n(m,k) → ∇v a.e. in Ω m . For each m as above, let (v n(m+1,k) ) k∈N be a subsequence of (v n(m,k) ) k∈N satisfying ∇v n(m+1,k) → ∇v a.e. in Ω m+1 . Thus, for the diagonal subsequence (v n(m,m) ) m∈N , ∇v n(m,m) → ∇v a.e. in B 1 . So, at least for a subsequence, ∇v n ∇v weakly in L p (B 1 ; R N ) and ∇v n → ∇v a.e. in B 1 , but then, using Mazur's lemma, we deduce that |∇v n | p-2 ∇v n |∇v| p-2 ∇v weakly in L p (B 1 ; R N ). This proves the claim. We now want to prove the strong convergence of ∇v n to ∇v in L p (B δ ; R N ). Since ∇v n ∇v weakly in L p (B δ ; R N ), we only need to prove that ∇v n L p (B δ ;R N ) tends to ∇v L p (B δ ;R N ) . By the weak convergence, we already have that

B δ |∇v| p dx ≤ lim inf n→+∞ B δ |∇v n | p dx.
Thus, it remains to prove the reverse inequality with a limsup. For this, for an arbitrary ε ∈ (δ, 1), we fix

χ ε ∈ C ∞ 0 (B 1 ) such that 0 ≤ χ ε ≤ 1, χ ε = 1 on B δ , χ ε = 0 on B c ε and ∇χ ε ∞ ≤ 2/(ε -δ). Notice that v n χ ε ∈ W 1,p 0 (B 1 \Σ n ). Then, since v n ∈ W 1,p (B 1 ) is a weak solution in B 1 \Σ n and χ ε = 0 on B c ε , Bε χ ε |∇v n | p dx = - Bε v n |∇v n | p-2 ∇v n ∇χ ε dx.
On the other hand, from the fact that ∇χ ε ∞ ≤ 2/(ε -δ), (3.12), (3.14) and since

|∇v n | p-2 ∇v n weakly converges to |∇v| p-2 ∇v in L p (B ε ; R N ), it follows that lim n→+∞ - Bε v n |∇v n | p-2 ∇v n ∇χ ε dx = - Bε v|∇v| p-2 ∇v∇χ ε dx = Bε χ ε |∇v| p dx,
where to get the latter equality we have used that v ∈ W Now we want to establish an estimate for a weak solution to the p-Poisson equation in B r (x 0 )\Σ that vanishes on Σ ∩ B r (x 0 ) in the case when Σ is sufficiently close, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ). For that purpose, in the following lemma we control the difference between a weak solution to the p-Poisson equation and its p-Dirichlet replacement in a ball with a crack. Lemma 3.4. Let p ∈ (N -1, +∞) and f ∈ L q (B r1 (x 0 )) with q > q 0 , where q 0 is defined in (1.1). Let Σ be a closed arcwise connected set in R N and 0 < 2r 0 ≤ r 1 ≤ 1 satisfy Σ ∩B r0 (x 0 ) = ∅, Σ \B r1 (x 0 ) = ∅ and B r1 (x 0 )\Σ = ∅.

(3.17)

Let u ∈ W 1,p (B r1 (x 0 )) satisfying u = 0 p-q.e. on Σ ∩B r1 (x 0 ) be a unique solution to the Dirichlet problem

-∆ p v = f in B r1 (x 0 )\ Σ, which means that Br 1 (x0) |∇u| p-2 ∇u∇ϕ dx = Br 1 (x0)
f ϕ dx for all ϕ ∈ W 1,p 0 (B r1 (x 0 )\ Σ).

(3.18)

Let w ∈ W 1,p (B r1 (x 0 )) satisfying w = 0 p-q.e. on Σ ∩B r1 (x 0 ) be a unique solution to the Dirichlet problem

   -∆ p v = 0 in B r1 (x 0 )\ Σ v = u on (Σ ∩B r1 (x 0 )) ∪ ∂B r1 (x 0 ), which means that w -u ∈ W 1,p 0 (B r1 (x 0 )\ Σ) and Br 1 (x0) |∇w| p-2 ∇w∇ϕ dx = 0 for all ϕ ∈ W 1,p 0 (B r1 (x 0 )\ Σ). (3.19) If 2 ≤ p < +∞, then Br 1 (x0) |∇u -∇w| p dx ≤ Cr N +p -N p q 1 , (3.20) 
where C = C(N, p, q 0 , q, f q ) > 0.

If 1 < p < 2, then Br 1 (x0) |∇u -∇w| p dx ≤ C(I(u)) p (r p-1 1 ) 2+p -2p q , ( 3.21) 
where C = C(p, q 0 , q, f q ) > 0 and I(u) = 2 Remark 3.5. Observe that for any N ≥ 2 and any p ∈ (N -1, +∞), N + p -N p /q is positive if q > q 0 , where q 0 is defined in (1.1).

Proof. We provide a proof of the estimate (3.20), for a proof of the estimate (3.21) see [9, Lemma 4.9]. For convenience, we define z = u -w. Thanks to (3.17) and the fact that z = 0 p-q.e. on Σ ∩ B r1 (x 0 ), by Proposition 2.16, there exists C 0 = C 0 (N, p) > 0 such that

z L p (Br 1 (x0)) ≤ C 0 r 1 ∇z L p (Br 1 (x0)) .
Since r 1 ≤ 1, the above estimate leads to the following

z W 1,p (Br 1 (x0)) ≤ C ∇z L p (Br 1 (x0)) , (3.22) 
where C = C(N, p) > 0. Then, using the Sobolev embeddings (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.26]) together with (3.22) and in the case when N < p < +∞ using also that z(ξ) = 0 for some ξ

∈ Σ ∩ B r1 (x 0 ), yielding that |z(x)| = |z(x) -z(ξ)| ≤ C (2r 1 ) 1-N p z W 1,p (Br 1 (x0))
for some C = C (N, p) > 0, we deduce the following z

L q 0 (Br 1 (x0)) ≤ Cr α 1 ∇z L p (Br 1 (x0)) , (3.23) 
where C = C(N, p, q 0 ) > 0 and

α = 0 if 2 ≤ N -1 < p < N, α = N q 0 if p = N, α = 1 - N p if N < p < +∞.
Next, according to [13, Lemma 2.2], there exists c 0 = c 0 (p) > 0 such that, 

|∇z| p dx ≤ c 0 Br 1 (x0) |∇u| p-2 ∇u -|∇w| p-2 ∇w, ∇z dx = c 0 Br 1 (x0) f z dx.
Applying Hölder's inequality to the right-hand side of the above formula and using (3.23), we obtain

Br 1 (x0) |∇z| p dx ≤ c 0 f L q 0 (Br 1 (x0)) z L q 0 (Br 1 (x0)) ≤ c 0 |B r1 (x 0 )| 1 q 0 -1 q f L q (Br 1 (x0)) z L q 0 (Br 1 (x0)) ≤ Cr N ( 1 q 0 -1 q )+α 1 Br 1 (x0) |∇z| p dx 1 p
for some C = C(N, p, q 0 , q, f q ) > 0. Therefore,

Br 1 (x0) |∇z| p dx ≤ C p r N p ( 1 q 0 -1 q )+p α 1 = C p r N +p -N p q 1 .
This completes the proof of Lemma 3.4.

Using together Lemma 3.3 and Lemma 3.4, we obtain the following estimate for the solution u Σ to the Dirichlet problem -∆ p u = f in Ω\Σ, u ∈ W 1,p 0 (Ω\Σ). Notice that in the following statement the definition of γ(p, q) also depends on N , but we decided not to mention it explicitly to simplify the notation. Lemma 3.6. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 0 , where q 0 is defined in (1.1). Then there exist a ∈ (0, 1/2), ε 0 ∈ (0, a) and C = C(N, p, q 0 , q, f q , |Ω|) > 0 such that the following holds. Assume that Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r 0 ≤ r 1 ≤ 1, B r1 (x 0 ) ⊂ Ω, Σ ∩B r0 (x 0 ) = ∅ and Σ \B r1 (x 0 ) = ∅.

In addition, suppose that there exists an affine line L ⊂ R N passing through x 0 such that

d H (Σ ∩B r1 (x 0 ), L ∩ B r1 (x 0 )) ≤ ε 0 r 1 .
(3.24)

Then 1 ar 1 Bar 1 (x0) |∇u Σ | p dx ≤ 1 2 1 r 1 Br 1 (x0) |∇u Σ | p dx + Cr γ(p,q) 1 , ( 3.25) 
where

γ(p, q) = N -1 + p - N p q if 2 ≤ p < +∞, γ(p, q) = 3p -3 - 2p q if 1 < p < 2. (3.26)
Proof. Let w ∈ W 1,p (B r1 (x 0 )) be a unique solution to the Dirichlet problem

   -∆ p u = 0 in B r1 (x 0 )\ Σ u = u Σ on (Σ ∩B r1 (x 0 )) ∪ ∂B r1 (x 0 ),
which means that w -u Σ ∈ W 1,p 0 (B r1 (x 0 )\ Σ) and

Br 1 (x0)
|∇w| p-2 ∇w∇ϕ dx = 0 for all ϕ ∈ W 1,p 0 (B r1 (x 0 )\ Σ).

(3.27)

Let I(•) be as in Lemma 3.4. Using (2.9) and Hölder's inequality, it is easy to see that

I(u Σ ) ≤ C 1 (3.28)
for some C 1 = C 1 (N, p, q 0 , q, f q , |Ω|) > 0. Then, applying Lemma 3.4 and using (3.28), we get

Br 1 (x0) |∇u Σ -∇w| p dx ≤ Cr 1+γ(p,q) 1 , ( 3.29) 
where C = C(N, p, q 0 , q, f q , |Ω|) > 0 and γ(p, q) is defined in (3.26). Now let α, δ ∈ (0, 1) and C > 1, depending only on N and p, be as in Lemma 3.1, where C is such that the estimate (3.2) holds with C replaced by C. Define a = min δ, (2

-p C -1-α ) 1 α
. For each N ≥ 2 and p ∈ (N -1, +∞), the constant a is fixed. Applying Lemma 3.3 with r = r 1 and = a, we obtain some ε 0 ∈ (0, a) such that under the condition (3.24),

1 a Bar 1 (x0) |∇w| p dx ≤ C 1+α a α Br 1 (x0) |∇w| p dx ≤ 2 -p Br 1 (x0)
|∇w| p dx. (3.30) Hereinafter in this proof, C denotes a positive constant that can only depend on N, p, q 0 , q, f q , |Ω| and can be different from line to line. Since for any nonnegative numbers c and d, (c+d) p ≤ 2 p-1 (c p +d p ), we have

1 a Bar 1 (x0) |∇u Σ | p dx ≤ 2 p-1 a Bar 1 (x0) |∇w| p dx + 2 p-1 a Bar 1 (x0) |∇u Σ -∇w| p dx ≤ 1 2 Br 1 (x0) |∇w| p dx + 2 p-1 a Br 1 (x0) |∇u Σ -∇w| p dx ≤ 1 2 Br 1 (x0) |∇w| p dx + Cr 1+γ(p,q) 1 ≤ 1 2 Br 1 (x0) |∇u Σ | p dx + Cr 1+γ(p,q) 1
, where we have used (3.30), (3.29), and to obtain the last estimate, Theorem 2.2. The proof of Lemma 3.6 follows by dividing the resulting inequality by r 1 .

Finally, by iterating Lemma 3.6 in a sequence of balls {B a l r1 (x 0 )} l , we obtain the desired decay behavior of the p-energy r → Br(x0) |∇u Σ | p dx under flatness control on Σ at x 0 . Lemma 3.7. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4). Then there exist ε 0 , b, r ∈ (0, 1) and C = C(N, p, q 0 , q, f q , |Ω|) > 0 such that the following holds. Assume that Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r 0 ≤ r 1 ≤ r, B r1 (x 0 ) ⊂ Ω and that for each r ∈ [r 0 , r 1 ] there exists an affine line L = L(r) passing through

x 0 such that d H (Σ ∩B r (x 0 ), L ∩ B r (x 0 )) ≤ ε 0 r. Assume also that Σ \ B r1 (x 0 ) = ∅. Then for all r ∈ [r 0 , r 1 ], Br(x0) |∇u Σ | p dx ≤ C r r 1 1+b Br 1 (x0) |∇u Σ | p dx + Cr 1+b . (3.31)
Proof. Let a ∈ (0, 1/2), ε 0 ∈ (0, a) and C = C(N, p, q 0 , q, f q , |Ω|) > 0 be the constants given by Lemma 3.6. The definition of q 1 and the assumption q > q 1 have been made in order to guarantee that γ(p, q) > 0, where γ(p, q) is defined in (3. .

Notice that for all t ∈ (0, r],

1 2 t b + t γ(p,q) ≤ (at) b . (3.32)
Indeed, since 0 < 2b ≤ γ(p, q), b ≤ ln(3/4)/ ln(a) and a, r ∈ (0, 1), t γ(p,q) ≤ t 2b ≤ r b t b and 3/4 ≤ a b , so

1 2 t b + t γ(p,q) ≤ 1 2 t b + r b t b ≤ 3 4 t b ≤ (at) b .
Under the assumptions of Lemma 3.7, we can apply Lemma 3.6 in all the balls B a l r1 (x 0 ), l ∈ {0, ..., k},

where k ∈ N is such that a k+1 r 1 < r 0 ≤ a k r 1 . Next, we define Ψ(r) = 1 r Br(x0) |∇u Σ | p dx, r ∈ (0, r 1 ] and prove by induction that for each l ∈ {0, ..., k},

Ψ(a l r 1 ) ≤ 1 2 l Ψ(r 1 ) + C(a l r 1 ) b . (3.33)
It is clear that (3.33) holds for l = 0. Assume that (3.33) holds for some l ∈ {0, ..., k -1}. Then, applying Lemma 3.6 and using the induction hypothesis, we get

Ψ(a l+1 r 1 ) ≤ 1 2 Ψ(a l r 1 ) + C(a l r 1 ) γ(p,q) ≤ 1 2 1 2 l Ψ(r 1 ) + C(a l r 1 ) b + C(a l r 1 ) γ(p,q) .
Thanks to (3.32), we finally conclude that

Ψ a l+1 r 1 ≤ 1 2 l+1 Ψ(r 1 ) + C a l+1 r 1 b .
Thus (3.33) is proved. Now let r ∈ [r 0 , r 1 ] and l ∈ {0, ..., k} be such that a l+1 r 1 < r ≤ a l r 1 . Then

Ψ(r) ≤ 1 a Ψ(a l r 1 ) ≤ 1 a 1 2 l Ψ(r 1 ) + C a (a l r 1 ) b ≤ 2 a (a l+1 ) b Ψ(r 1 ) + C (a l+1 r 1 ) b ≤ C r r 1 b Ψ(r 1 ) + C r b ,
where C = C (a, N, p, q 0 , q, f q , |Ω|) > 0. Since a is fixed for each N ≥ 2 and p ∈ (N -1, +∞), we can assume that C depends only on N, p, q 0 , q, f q and |Ω|. This completes the proof of Lemma 3.7.

Absence of loops

Theorem 4.1. Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4). Then every solution Σ to Problem 1.1 cannot contain closed loops (i.e., homeomorphic images of a circumference S 1 ).

The next lemma will be used in the proof of Theorem 4.1.

Lemma 4.2. Let Σ be a closed connected set in R N with H 1 (Σ) < +∞. Then the following assertions hold.

• If Σ contains a simple closed curve Γ, then H 1 -a.e. point x ∈ Γ is a "noncut" point, namely, there exists a sequence of relatively open sets D n ⊂ Σ satisfying (i) x ∈ D n for all sufficiently large n;

(ii) Σ \D n are connected for all n;

(iii) diam D n 0 as n → +∞;

(iv) D n are connected for all n.

• "flatness" : for H 1 -a.e. point x ∈ Σ there exists the "tangent" line T x to Σ at x in the sense that x ∈ T x and

1 r d H (Σ ∩B r (x), T x ∩ B r (x)) → 0 r→0+ .
Proof. By [START_REF] Paolini | Existence and regularity results for the Steiner problem[END_REF]Lemma 5.6], H 1 -a.e. point x ∈ Γ is a noncut point for Σ (i.e., a point such that Σ \{x} is connected). Then, by [START_REF] Paolini | Qualitative properties of maximum distance minimizers and average distance minimizers in R N[END_REF]Lemma 5.3], it follows that for each noncut point there are connected neighborhoods D n that can be cut leaving the set connected and diam(D n ) → 0, so (i)-(iv) are satisfied for a suitable sequence D n . Let us now prove the second assertion of Lemma 4.2. First, notice that, there is a Lipschitz surjective mapping g : [0, L] → Σ, where L = H 1 (Σ) (see, for instance, [START_REF] David | Singular Sets of Minimizers for the Mumford-Shah Functional[END_REF]Proposition 30.1]). Furthermore, in [START_REF] Miranda | On one-dimensional continua uniformly approximating planar sets[END_REF]Proposition 3.4], it was proved that H 1 (Σ\Σ 0 ) = 0, where

Σ 0 = {x ∈ Σ : t ∈ (0, L), g (t) exists, |g (t)| = 1 whenever g(t) = x, g -1 (x) is finite and if g(t) = g(s) = x, then g (t) = ±g (s)},
and that for all x ∈ Σ 0 , 1 r max

y∈Σ∩Br(x) dist(y, T x ∩ B r (x)) → 0 r→0+ , ( 4.1) 
where

T x = x + Span(g (t)), x = g(t)
. In order to prove that 1 r max

y∈Tx∩Br(x) dist(y, Σ ∩ B r (x)) → 0 r→0+ , (4.2)
we shall follow the same approach as in [6, Proposition 2.2]. Observe that for each x ∈ Σ 0 there exists a mapping h → ξ(h) such that ξ(h) → 0 when h → 0 and g(t + h) = g(t) + hg (t) + hξ(h) when |h| > 0 is small enough, where g(t) = x. Next, let δ ∈ (0, 1) be given. We can choose a sufficiently small r 0 > 0 such that |ξ(h)| < δ/2 for all h ∈ (-r 0 , r 0 )\{0}. Then for each r ∈ (0, r 0 ) and each z ∈ T x ∩ B (1-δ/2)r (x), there exists λ ∈ [(δ/2-1)r, (1-δ/2)r] such that z = g(t)+λg (t). So, defining y = g(t+λ) and observing that g(t + λ) = g(t) + λg (t) + λξ(λ), we deduce that y ∈ Σ ∩ B r (x) and |z -y| < δr/2. This implies that max z∈Tx∩Br(x) dist(z, Σ ∩ B r (x)) < δr for all r ∈ (0, r 0 ) and, therefore, proves (4.2). Observing that (4.1) and (4.2) together prove the second assertion of Lemma 4.2, we complete the proof.

Proof of Theorem 4.1. For the sake of contradiction, assume that for some λ > 0 a minimizer Σ of F λ,f,Ω over K(Ω) contains a simple closed curve Γ ⊂ Σ. Notice that there is no a relatively open subset in Σ contained in both Γ and ∂Ω, because otherwise, according to Lemma 4.2, there would be a relatively open subset D ⊂ Σ such that D ⊂ ∂Ω and Σ\D would remain connected, but, observing that in this case u Σ\D = u Σ and H 1 (D) > 0, we would obtain a contradiction with the optimality of Σ. Thus, by Lemma 4.2, there is a point x 0 ∈ Γ ∩ Ω which is a noncut point for Σ and such that Σ is flat at x 0 . Therefore for x 0 there exist the sets D n ⊂ Σ and the tangent line T x0 to Σ at x 0 as in Lemma 4.2. Let ε 0 , b, r, C be the constants of Lemma 3.7 and let B t0 (x 0 ) ⊂ Ω with t 0 < r. We define r n := diam D n so that D n ⊂ Σ ∩B rn (x 0 ). The flatness of Σ at x 0 implies that for any given ε > 0 there is δ ∈ (0,

t 0 ] such that d H (Σ ∩B r (x 0 ), T x0 ∩ B r (x 0 )) ≤ εr for all r ∈ (0, δ].
For each n ∈ N, we define Σ n := Σ \D n , which, by Lemma 4.2, remains closed and connected. We fix ε = ε 0 /2 and r ∈ (0, δ]. Next, we want to apply Lemma 3.7 to Σ n , but we have to control the Hausdorff distance between Σ n ∩ B r (x 0 ) and a diameter of B r (x 0 ). We already know that Σ is εr-close, in B r (x 0 ) and in the Hausdorff distance, to

T x0 ∩ B r (x 0 ) for all r ∈ (0, δ]. Furthermore, if r n ≤ ε 0 r/2, then d H (Σ n ∩ B r (x 0 ), T x0 ∩ B r (x 0 )) ≤ d H (Σ n ∩ B r (x 0 ), Σ ∩B r (x 0 )) + d H (Σ ∩ B r (x 0 ), T x0 ∩ B r (x 0 )) ≤ r n + ε 0 r 2 ≤ ε 0 r 2 + ε 0 r 2 = ε 0 r.
Thus, if 2r n /ε 0 < δ/2, we can apply Lemma 3.7 to Σ n for the interval [2r n /ε 0 , δ], which says that

Br(x0) |∇u Σn | p dx ≤ C r δ 1+b B δ (x0) |∇u Σn | p dx + Cr 1+b for all r ∈ 2r n ε 0 , δ ,
where C = C(N, p, q 0 , q, f q , |Ω|) > 0. Hereinafter in this proof, C denotes a positive constant that does not depend on r n and can be different from line to line. Next, using the above estimate for r = 2r n /ε 0 and using also (2.9), we get

B 2rn ε 0 (x0) |∇u Σn | p dx ≤ Cr 1+b n for each n ∈ N such that 2r n /ε 0 < δ/2.
Recall that the exponent b given by Lemma 3.7 is positive provided q > q 1 , which is one of our assumptions. Now, since Σ is a minimizer of Problem 1.1 and Σ n is a competitor for Σ, we get the following

0 ≤ F λ,f,Ω (Σ n ) -F λ,f,Ω (Σ) ≤ E f,Ω (u Σ ) -E f,Ω (u Σn ) -λr n ≤ C B2r n (x0) |∇u Σn | p dx + Cr N +p -N p q n -λr n (by Corollary 2.19) ≤ C B 2rn ε 0 (x0) |∇u Σn | p dx + Cr N +p -N p q n -λr n ≤ Cr 1+b n + Cr N +p -N p q n -λr n .
Notice that N + p -N p /q > 1 if and only if q > N p/(N p -N + 1), which is always true under the assumption q > q 1 . Therefore, letting n tend to +∞, we arrive to a contradiction. This completes the proof of Theorem 4.1.

Proof of partial regularity

In this section, we prove that every solution Σ to Problem 1.1 is locally C 1,α regular at H 1 -a.e. point x ∈ Σ ∩ Ω. Throughout this section, Ω denotes an open bounded subset in R N . Recall that K(Ω) is the class of all closed connected proper subsets of Ω.

The factor λ in the statement of Problem 1.1 affects the shape of an optimal set minimizing the functional F λ,f,Ω over K(Ω), and, according to Proposition 2.23, we know that there exists a number λ 0 = λ 0 (N, p, f, Ω) > 0 such that if λ ∈ (0, λ 0 ], then each minimizer Σ of the functional F λ,f,Ω over K(Ω) has positive H 1 -measure. Throughout this section, we assume that λ = λ 0 = 1 for simplicity. This is not restrictive regarding to the regularity theory.

Control on defect of minimality

We begin with the definition of the flatness. Definition 5.1. For each closed set Σ ⊂ R N , each point x ∈ R N and radius r > 0, we define the flatness of Σ in B r (x) as follows

β Σ (x, r) = inf L x 1 r d H (Σ ∩B r (x), L ∩ B r (x)),
where the infimum is taken over the set of all affine lines (1-dimensional planes) L passing through x.

Notice that if β Σ (x, r) < +∞, then it is easy to prove that the infimum above is actually the minimum, and in this case

β Σ (x, r) ∈ [0, √ 2] and β Σ (x, r) = √ 2 if and only if Σ ∩ B r (x) is a point in ∂B r (x)
. Furthermore, it is worth noting that if κ ∈ (0, 1) and β Σ (x, κr) < +∞, then the following inequality holds

β Σ (x, κr) ≤ 2 κ β Σ (x, r) (5.1) 
(for a proof of the inequality (5.1), we refer the reader to the proof of [9, Proposition 6.1], which actually applies for the general spatial dimension N ≥ 2). Now we introduce the following notions of the local energy and the density, which will play a crucial role in the proof of partial regularity.

Definition 5.2. Let Σ ∈ K(Ω) and τ ∈ [0, √ 2].
For each x 0 ∈ Ω and r > 0, we define

w τ Σ (x 0 , r) = sup Σ ∈K(Ω), Σ ∆ Σ⊂Br(x0) H 1 (Σ )≤100H 1 (Σ), β Σ (x0,r)≤τ 1 r Br(x0) |∇u Σ | p dx. ( 5.2) 
The condition H 1 (Σ ) ≤ 100H 1 (Σ), together with the facts that H 1 (Σ) < +∞, Σ ∈ K(Ω) in the definition of w τ Σ above, guarantees that Σ is arcwise connected (see Remark 2.15).

Definition 5.3. Let Σ ⊂ R N be H 1 -measurable. For each x 0 ∈ Σ and r > 0, we define

θ Σ (x 0 , r) = 1 r H 1 (Σ ∩ B r (x 0 )). Remark 5.4. Assume that Σ ∈ K(Ω), τ ∈ [0, √ 2], x 0 ∈ Ω and β Σ (x 0 , r) ≤ τ .
Then there exists a solution to problem (5.2). Indeed, Σ is a competitor in the definition of w τ Σ (x 0 , r). Thus, according to Proposition 2.20, w τ Σ (x 0 , r) ∈ [0, +∞). We can then conclude using the direct method in the Calculus of Variations, standard compactness results and the fact that H 1 -measure is lower semicontinuous with respect to the topology generated by the Hausdorff distance.

We shall use the following proposition in order to establish a decay behavior for w τ Σ (x 0 , r) whenever Σ is flat enough in all balls B r (x 0 ) with r ∈ [r 0 , r 1 ]. Proposition 5.5. Let Σ ⊂ Ω be closed and arcwise connected, x ∈ Ω, τ ∈ [0, 1/10] and let

β Σ (x, r 1 ) ≤ ε for some ε ∈ [0, τ ]. In addition, assume that 0 < r 0 < r 1 , β Σ (x, r) ≤ τ for all r ∈ [r 0 , r 1 ] and Σ\B r1 (x) = ∅. If r ∈ [r 0 , r 1 ], then for any closed arcwise connected set Σ ⊂ Ω such that Σ ∆ Σ ⊂ B r (x) and β Σ (x, r) ≤ τ we have that (i) β Σ (x, r 1 ) ≤ 5τ r r 1 + ε, (5.3) (ii) β Σ (x, s) ≤ 6τ for all s ∈ [r, r 1 ]. (5.4) 
Proof. Every ball in this proof is centered at x. Let L 1 , L and L realize the infimum, respectively, in the definitions of β Σ (x, r 1 ), β Σ (x, r) and β Σ (x, r). Notice that

d H (Σ ∩B r , L ∩ B r ) ≤ τ r. ( 5.5) 
On the other hand,

d H (Σ ∩ B r1 , L 1 ∩ B r1 ) ≤ d H (Σ ∩ B r1 , Σ ∩B r1 ) + d H (Σ ∩B r1 , L 1 ∩ B r1 ) ≤ d H (Σ ∩ B r , Σ ∩B r ) + εr 1 , (5.6) 
where the latter inequality comes because Σ ∆ Σ ⊂ B r and β Σ (x, r 1 ) ≤ ε. In addition,

d H (Σ ∩ B r , Σ ∩B r ) ≤ d H (Σ ∩ B r , L ∩ B r ) + d H (L ∩ B r , L ∩ B r ) + d H (Σ ∩B r , L ∩ B r ) ≤ 2τ r + d H (L ∩ B r , L ∩ B r ), (5.7) 
where we have used (5.5) and the assumption β Σ (x, r) ≤ τ . Notice that, since Σ ∩ B r = ∅, Σ\B r1 = ∅ and Σ is arcwise connected, there is a sequence (x n ) n ⊂ Σ\B r converging to some point y ∈ ∂B r . We conclude that y ∈ Σ ∩ Σ ∩ ∂B r because Σ ∆Σ ⊂ B r and Σ , Σ are closed. If y ∈ L ∩ L , then L = L . Assume that y ∈ L. Let Π be the 2-dimensional plane passing through L and y, and let ξ ∈ L ∩ ∂B r be such that |y -ξ| = dist(y, L ∩ ∂B r ). Denote by γ the geodesic in the circle Π ∩ ∂B r connecting y with ξ. Then

H 1 (γ) ≤ arcsin(β Σ (x, r))r ≤ arcsin(τ )r ≤ 3 2 τ r,
where we have used the assumption β Σ (x, r) ≤ τ and the fact that arcsin(t) ≤ 3t/2 for all t

∈ [0, 1/10]. Notice that if y ∈ L , then d H (L ∩ B r , L ∩ B r ) ≤ H 1 (γ), otherwise let ξ ∈ L ∩ ∂B r be such that |y -ξ | = dist(y, L ∩ ∂B r
) and let γ be the geodesic in the circle Π ∩ ∂B r connecting y and ξ , where Π is the 2-dimensional plane passing through L and y. Then, using the assumption β Σ (x, r) ≤ τ and proceeding as before, we get

H 1 (γ ) ≤ 3 2 τ r.
Finally, we can conclude that

d H (L ∩ B r , L ∩ B r ) ≤ H 1 (γ) + H 1 (γ ) ≤ 3τ r.
This, together with (5.7), gives the following

d H (Σ ∩ B r , Σ ∩ B r ) ≤ 5τ r. ( 5.8) 
Using (5.6) and (5.8), we get

d H (Σ ∩ B r1 , L 1 ∩ B r1 ) ≤ 5τ r + εr 1 .
Thus, we have proved (i). Now let s ∈ [r, r 1 ] and let L s be an affine line realizing the infimum in the definition of β Σ (x, s). As in the proof of (i), we get

d H (Σ ∩ B s , L s ∩ B s ≤ d H (Σ ∩ B s , Σ ∩B s ) + d H (Σ ∩B s , L s ∩ B s ) ≤ d H (Σ ∩ B r , Σ ∩B r ) + d H (Σ ∩B s , L s ∩ B s ).
This, together with (5.8) and the fact that β Σ (x, s) ≤ τ , implies

d H (Σ ∩ B s , L s ∩ B s ) ≤ 5τ r + τ s ≤ 6τ s,
concluding the proof of Proposition 5.5.

Hereinafter in this section, τ is a fixed constant such that τ ∈ (0, ε 0 /6], where ε 0 is the constant of Lemma 3.7. Notice that ε 0 is fairly small. Now we establish a decay behavior for w τ Σ (x, •), provided that β Σ (x, •) is small enough.

Proposition 5.6. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4). Let ε 0 , b, r ∈ (0, 1), C > 0 be the constants of Lemma 3.7. Assume that Σ ∈ K(Ω), H 1 (Σ) < +∞, 0 < r 0 ≤ r 1 /10 and B r1 (x 0 ) ⊂ Ω with r 1 ∈ (0, min{r, diam(Σ)/2}). Assume also that

β Σ (x 0 , r) ≤ τ /2 for all r ∈ [r 0 , r 1 ]. Then, for all r ∈ [r 0 , r 1 /10], w τ Σ (x 0 , r) ≤ C r r 1 b w τ Σ (x 0 , r 1 ) + Cr b .
(5.9)

Proof. According to Remark 2.15, Σ is arcwise connected. From Remark 5.4 it follows that there is Σ r ⊂ Ω realizing the supremum in the definition of w τ Σ (x 0 , r) which, by Remark 2.15, is arcwise connected. Furthermore, Proposition 5.5 says that β Σr (x 0 , r 1 ) ≤ τ and β Σr (x 0 , s) ≤ 6τ ≤ ε 0 for all s ∈ [r, r 1 ]. Thus, we can apply Lemma 3.7 to u Σr , which yields

w τ Σ (x 0 , r) = 1 r Br(x0) |∇u Σr | p dx ≤ C r r 1 b 1 r 1 B r 1 (x 0 ) |∇u Σr | p dx + Cr b ≤ C r r 1 b w τ Σ (x 0 , r 1 ) + Cr b .
Notice that to obtain the last estimate we have used the definition of w τ Σ (x 0 , r 1 ) and the fact that β Σr (x 0 , r 1 ) ≤ τ . Now we are in position to control a defect of minimality via w τ Σ .

Proposition 5.7. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4), and let ε 0 , b, r ∈ (0, 1) be the constants of Lemma 3.7. Assume that

Σ ∈ K(Ω), H 1 (Σ) < +∞, 0 < r 0 ≤ r 1 /10, B r1 (x 0 ) ⊂ Ω with r 1 ∈ (0, min{r, diam(Σ)/2}). Assume also that β Σ (x 0 , r) ≤ τ /2 for all r ∈ [r 0 , r 1 ].
Then there exists a constant C > 0, possibly depending only on N, p, q 0 , q, f q , |Ω|, such that if r [r 0 , r 1 /10], then for any 

Σ ∈ K(Ω) satisfying Σ ∆Σ ⊂ B r (x 0 ), H 1 (Σ ) ≤ 100H 1 (Σ) and β Σ (x 0 , r) ≤ τ , E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ Cr r r 1 b w τ Σ (x 0 , r 1 ) + Cr 1+b . ( 5 
E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C B2r(x0) |∇u Σ | p dx + Cr N +p -N p q , ( 5.11) 
where C = C(N, p, q 0 , q, f q ) > 0. On the other hand, by Proposition 5.5,

β Σ (x 0 , r 1 ) ≤ τ and β Σ (x 0 , s) ≤ ε 0 for all s ∈ [r, r 1 ].
Thus, applying Lemma 3.7 to u Σ , we obtain that

B2r(x0) |∇u Σ | p dx ≤ C 2r r 1 1+b Br 1 (x0) |∇u Σ | p dx + C(2r) 1+b , ( 5.12) 
where C = C(N, p, q 0 , q, f q , |Ω|) > 0. Hereinafter in this proof, C denotes a positive constant that can only depend on N, p, q 0 , q, f q , |Ω| and can be different from line to line. Using (5.11), (5.12) and the fact that r N +p -N p q < r 1+b (because r ∈ (0, 1) and 0 < b < N -1 + p -N p /q), we deduce the following chain of estimates

E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C r r 1 1+b B r 1 (x 0 ) |∇u Σ | p dx + Cr 1+b ≤ Cr r r 1 b 1 r 1 Br 1 (x0) |∇u Σ | p dx + Cr 1+b ≤ Cr r r 1 b w τ Σ (x 0 , r 1 ) + Cr 1+b ,
where the last estimate is obtained using the definition of w τ Σ (x 0 , r 1 ) and the fact that β Σ (x 0 , r 1 ) ≤ τ . This completes the proof of Proposition 5.7.

Density control

The following proposition says that there exists a constant κ ∈ (0, 1/100) such that if Σ is a solution to Problem 1.1, β Σ (x 0 , r), w τ Σ (x 0 , r) are fairly small provided that B r (x 0 ) ⊂ Ω with x 0 ∈ Σ, and if θ Σ (x 0 , r) is also small enough, then there exists t ∈ [κr, 2κr] such that H 0 (Σ ∩ ∂B t (x 0 )) = 2. This allows to construct a nice competitor for Σ and derive the estimate (5.16) leading to the regularity. Proposition 5.8. Let p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4). Then there exist δ, ε, κ ∈ (0, 1/100) and C = C(N, p, q 0 , q, f q , |Ω|) > 0, where q 0 is defined in (1.1), such that the following holds. Assume that Σ is a solution to Problem 1.1, x 0 ∈ Σ, 0 < r < min{δ, diam(Σ)/2}, B r (x 0 ) ⊂ Ω and β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε. (5.13) Assume also that θ Σ (x 0 , r) ≤ 10µ, (5.14) where µ is a unique positive solution to the equation µ = 5 + µ 1-1 N . Then the following assertions hold.

(i) There exists t ∈ [κr, 2κr] such that

H 0 (Σ ∩ ∂B t (x 0 )) = 2.
(5.15)

(ii) Let t ∈ [κr, 2κr] be such that H 0 (Σ ∩∂B t (x 0 )) = 2. Then (ii-1) the two points of Σ ∩∂B t (x 0 ) belong to two different connected components of

∂B t (x 0 ) ∩ {y : dist(y, L) ≤ β Σ (x 0 , t)t},
where L is an affine line realizing the infimum in the definition of β Σ (x 0 , t).

(ii-2) Σ ∩B t (x 0 ) is arcwise connected. (ii-3) If {z 1 , z 2 } = Σ ∩∂B t (x 0 ), then H 1 (Σ ∩B t (x 0 )) ≤ |z 2 -z 1 | + Ct t r b w τ Σ (x 0 , r) + Ct 1+b , ( 5.16) 
where b ∈ (0, 1) is the constant given by Lemma 3.7.

Remark 5.9. If the situation of item (ii-1) occurs, we say that the two points lie "on different sides".

Proof. Let ε 0 , b, r ∈ (0, 1) be the constants of Lemma 3.7 and let C = C(N, p, q 0 , q, f q , |Ω|) > 0 be the constant of Proposition 5.7. We define

ε = 1 µC τ 10 10 , k = τ 200 .
(5.17)

Fix δ ∈ (0, r) such that δ b ≤ ε and hence

w τ Σ (x 0 , r) + δ b ≤ 2ε.
(5.18)

Step 1. Let us first prove (i). Thanks to (5.1) and (5.13), for all s ∈ [κr, r], it holds

β Σ (x 0 , s) ≤ 2 κ β Σ (x 0 , r) ≤ 2ε κ . (5.19)
On the other hand, for all s ∈ [κr, r],

θ Σ (x 0 , s) ≤ r s θ Σ (x 0 , r) ≤ r κr θ Σ (x 0 , r) ≤ 10µ κ , ( 5.20) 
where the last estimate is due to (5.14). Fix an arbitrary s ∈ [κr, 2κr]. By the coarea inequality (see, for instance, [26, Theorem 2.1]),

H 1 (Σ ∩ B (1+κ)s (x 0 )) ≥ (1+κ)s 0 H 0 (Σ ∩ ∂B (x 0 )) d > (1+κ)s s H 0 (Σ ∩ ∂B (x 0 )) d , ( 5.21) 
where the latter estimate comes from the fact that H 0 (Σ ∩ ∂B (x 0 )) ≥ 1 for all ∈ (0, r], since x 0 ∈ Σ, Σ is arcwise connected and r < diam(Σ)/2. Then there exists ∈ [s, (1 + κ)s] such that

1 κs H 1 (Σ ∩ B (1+κ)s (x 0 )) ≥ H 0 (Σ ∩ ∂B (x 0 )).
This, together with (5.20) and the fact that s ∈ [κr, 2κr], implies that

H 0 (Σ ∩ ∂B (x 0 )) ≤ 1 + κ κ θ Σ (x 0 , (1 + κ)s) ≤ 10(1 + κ)µ κ 2 . (5.22)
Let L realize the infimum in the definition of β Σ (x 0 , ) and let {ξ 1 , ξ 2 } = ∂B (x 0 ) ∩ L. For each z i ∈ Σ ∩ ∂B (x 0 ), let z i denote the projection of z i to [ξ 1 , ξ 2 ]. Define W and Σ by

W := H 0 (Σ∩∂B (x0)) i=1 [z i , z i ], Σ := W ∪ [ξ 1 , ξ 2 ] ∪ (Σ\B (x 0 )).
Then Σ ∈ K(Ω), Σ ∆Σ ⊂ B (x 0 ) and from (5.19) it follows that β Σ (x 0 , ) ≤ 2ε/κ. Furthermore, using (5.20) and the facts that Σ is arcwise connected and r < diam(Σ)/2, it is easy to see that

H 1 (Σ ) ≤ 100H 1 (Σ). Since Σ is a competitor, H 1 (Σ) ≤ H 1 (Σ ) + E f,Ω (u Σ ) -E f,Ω (u Σ ),
and then, using Proposition 5.7, we get

H 1 (Σ ∩ B s (x 0 )) ≤ H 1 (Σ ∩ B (x 0 )) ≤ 2 + H 1 (W ) + C r b w τ Σ (x 0 , r) + C 1+b ≤ 2(1 + κ)s + 10(1 + κ) 2 µ κ 2 β Σ (x 0 , )s + C(1 + κ)s (1 + κ)s r b w τ Σ (x 0 , r) + C((1 + κ)s) 1+b , (5.23)
where we have used that H 1 (W ) ≤ (H 0 (Σ ∩ ∂B (x 0 )))β Σ (x 0 , ) , (5.22) and the fact that ≤ (1 + κ)s. Now we define the next three sets

E 1 := {t ∈ (0, 2κr] : H 0 (Σ ∩ ∂B t (x 0 )) = 1}, E 2 := {t ∈ (0, 2κr] : H 0 (Σ ∩ ∂B t (x 0 )) = 2}, E 3 := {t ∈ (0, 2κr] : H 0 (Σ ∩ ∂B t (x 0 )) ≥ 3}.
We claim that either E 1 = ∅ or E 1 ⊂ (0, κr/200). Assume by contradiction that there exists some t ∈ [κr/200, 2κr] such that H 0 (Σ ∩∂B t (x 0 )) = 1. Then the set Σ = Σ\B t (x 0 ) would be arcwise connected, Σ ∆ Σ ⊂ B t (x 0 ), H 1 (Σ ) < H 1 (Σ) and

β Σ (x 0 , r) ≤ 2κ + ε < τ. (5.24) Since Σ is a competitor, H 1 (Σ) ≤ H 1 (Σ ) + E f,Ω (u Σ ) -E f,Ω (u Σ ).
On the other hand, we observe that t ≤ H 1 (Σ ∩ B t (x 0 )), because t < diam(Σ)/2, x 0 ∈ Σ and Σ is arcwise connected. Thus

t ≤ H 1 (Σ ∩ B t (x 0 )) ≤ E f,Ω (u Σ ) -E f,Ω (u Σ ). (5.25)
Notice that, by assumption, the estimate (5.10) holds with C, but looking at the proof of Proposition 5.7, we observe that (2.8) in Corollary 2.19 also holds with C. Then, using (5.25), Corollary 2.19, the fact that t N +p -N p q < t 1+b (because t ∈ (0, 1) and 0 < b < N -1 + p -N p /q) and (5.24) together with the definition of w τ Σ (x 0 , r), we obtain the following chain of estimates

t ≤ H 1 (Σ ∩ B t (x 0 )) ≤ E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C B2t(x0) |∇u Σ | p dx + Ct N +p -N p q ≤ C Br(x0) |∇u Σ | p dx + Cr 1+b ≤ Crw τ Σ (x 0 , r) + Cr 1+b ,
leading to a contradiction with the fact that κr/200 ≤ t, since Crw τ Σ (x 0 , r) + Cr 1+b ≤ 2Crε < κr/200 by (5.18) and (5.17). Thus, either E 1 = ∅ or E 1 ⊂ (0, κr/200).

(5.26)

Next, by the coarea inequality,

H 1 (Σ ∩ B 2κr (x 0 )) ≥ 2κr 0 H 0 (Σ ∩ ∂B t (x 0 )) dt.
(5.27) Also, applying (5.23) with s = 2κr and using (5.17), (5.18) and the fact that β Σ (x 0 , ) ≤ 2ε/κ, we get the following estimate

H 1 (Σ ∩ B 2κr (x 0 )) ≤ 4κr + κr 200 .
(5.28)

Then, (5.26), (5.27) and (5.28) together imply

4κr + κr 200 ≥ H 1 (E 1 ) + 2H 1 (E 2 ) + 3H 1 (E 3 ) ≥ H 1 (E 1 ) + 2(2κr -H 1 (E 1 ) -H 1 (E 3 )) + 3H 1 (E 3 ) = 4κr -H 1 (E 1 ) + H 1 (E 3 ) > 4κr - κr 200 + H 1 (E 3 )
and hence H 1 (E 3 ) < κr 100 .

(5.29)

Notice that (5.26) and (5.29) yield the following estimate

H 1 (E 2 ∩ [κr, 2κr]) > κr 2 .
This completes the proof of (i).

Step 2. We prove (ii). Let t ∈ E 2 ∩[κr, 2κr]. Assume that (ii-1) does not hold for t. Let L be an affine line realizing the infimum in the definition of β Σ (x 0 , t), {P 1 , P 2 } = L ∩ ∂B t (x 0 ) and {z 1 , z 2 } = Σ ∩ ∂B t (x 0 ). Assume that dist(z i , {P 1 , P 2 }) = dist(z i , P 2 ), i = 1, 2. Then we can take as a competitor the set

Σ = (Σ \B t (x 0 )) ∪ γ z1,P2 ∪ γ z2,P2 ,
where γ zi,P2 is the geodesic in ∂B t (x 0 ) connecting z i and P 2 for i = 1, 2. So

H 1 (Σ ∩B t (x 0 )) ≤ H 1 (γ z1,P2 ) + H 1 (γ z2,P2 ) + E f,Ω (u Σ ) -E f,Ω (u Σ ).
Arguing as in the proof of the fact that E 1 ⊂ (0, κr/200) in Step 1, we obtain the estimate

E f,Ω (u Σ ) -E f,Ω (u Σ ) < κr 200 .
In addition, thanks to (5.19) and to the fact that arcsin(s) ≤ 2s for all s ∈ [0, 1/10],

H 1 (γ z1,P2 ) + H 1 (γ z2,P2 ) ≤ 2t arcsin(β Σ (x 0 , t)) ≤ 8εt κ .
But then H 1 (Σ ∩ B t (x 0 )) < κr 100 and this leads to a contradiction because H 1 (Σ ∩B t (x 0 )) ≥ t ≥ κr. Therefore (ii-1) holds. Next, assume that Σ ∩B t (x 0 ) is not arcwise connected. Then, from [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF]Lemma 5.13], it follows that Σ \B t (x 0 ) is arcwise connected. Thus, taking the set Σ \B t (x 0 ) as a competitor, by analogy with Step 1, we get

H 1 (Σ ∩ B t (x 0 )) < κr 200 ,
which, as before, leads to a contradiction. Thus (ii-2) holds. Since Σ ∩∂B t (x 0 ) = {z 1 , z 2 }, where z 1 , z 2 lie "on different sides", the set (Σ \B t (x 0 )) ∪ [z 1 , z 2 ] is a competitor for Σ, moreover, it fulfills the conditions of Proposition 5.7 and hence (5.16) holds. This proves (ii) and completes the proof of Proposition 5.8. Now our purpose is to control the density θ Σ from above on a smaller scale by its value on a larger scale, provided that on a larger scale β Σ and w τ Σ are small enough. Adapting some of the approaches of Stepanov and Paolini in [START_REF] Paolini | Qualitative properties of maximum distance minimizers and average distance minimizers in R N[END_REF], we prove the following proposition. Proposition 5.10. Let p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4). Then there exists δ ∈ (0, 1) and for each a ∈ (0, 1/20] there exists ε ∈ (0, 1) such that the following holds. Assume that Σ is a solution to Problem 1.1, x 0 ∈ Σ, r ∈ (0, min{δ, diam(Σ)/2}), B r (x 0 ) ⊂ Ω and β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε.

(5.30)

Then the following estimate holds

θ Σ (x 0 , ar) ≤ 5 + θ Σ (x 0 , r) 1-1 N .
(5.31)

Proof. Let ε 0 , b, r ∈ (0, 1) be the constants of Lemma 3.7 and let C > 0 be the constant of Proposition 5.7.

Recall that τ ∈ (0, ε 0 /6]. We define δ, ε ∈ (0, 1) as follows

δ = min r, 1 4C 1 b , ε = a 2 c 0 τ 10 7 , ( 5.32) 
where c 0 > 0 is a constant that will be fixed later for the proof to work. It is worth noting that, according to (5.1) and (5.30), for all s ∈ [ar, r], it holds

β Σ (x 0 , s) ≤ 2 a β Σ (x 0 , r) ≤ 2ε a . ( 5.33) 
Applying the coarea inequality (see, for instance, [26, Theorem 2.1]), we get

H 1 (Σ ∩ B r (x 0 )) ≥ r 0 H 0 (Σ ∩ ∂B (x 0 )) d > 2ar ar H 0 (Σ ∩ ∂B (x 0 )) d ,
where the latter inequality comes from the fact that for all ∈ (0, r], H 0 (Σ ∩ ∂B (x 0 )) ≥ 1, since Σ is arcwise connected (see Remark 2.15), x 0 ∈ Σ and r < diam(Σ)/2. Then there exists ∈ [ar, 2ar] such that H 0 (Σ ∩ ∂B (x 0 )) ≤ 1 a θ Σ (x 0 , r).

(5.34)

Next, we construct the competitor Σ for Σ such that Σ ∆Σ ⊂ B (x 0 ), H 1 (Σ ) ≤ 100H 1 (Σ) and β Σ (x 0 , ) ≤ β Σ (x 0 , ). Let L ⊂ R N be an affine line realizing the infimum in the definition of β Σ (x 0 , ). We denote by A 1 and A 2 the two points in ∂B (x 0 ) ∩ L and denote by G n the set of all points (x , x N ) in [-1, 1] N such that nx i ∈ Z for all i = 1, ..., N except for at most one (i.e., G n is a uniform 1-dimensional grid of step 1/n in [-1, 1] N ). Notice that G n is arcwise connected and

H 1 (G n ) ≤ 2 N N (n + 1) N -1 , dist(y, G n ) ≤ √ N 2n (5.35)
for all y ∈ [-1, 1] N . Let h : R N → R N be the rotation around the origin such that h(Re N ) = L -x 0 , where {e 1 , ..., e N } is the canonical basis for R N . Next, we define

Q i n := A i + β Σ (x 0 , ) h(G n ), i = 1, 2. In addition, we observe that Σ ∩ ∂B (x 0 ) ⊂ ∂B (x 0 ) ∩ x ∈ R N : dist(x, L) ≤ β Σ (x 0 , ) ⊂ 2 i=1 A i + β Σ (x 0 , ) h [-1, 1] N .
For each point z j ∈ Σ ∩ ∂B (x 0 ), we denote by z n j an arbitrary projection of z j to Q 1 n ∪ Q 2 n and by [z j , z n j ] the segment connecting these two points. Then the set

S n = Q 1 n ∪ Q 2 n ∪ H 0 (Σ∩∂B (x0)) j=1 [z j , z n j ]
contains all the points of Σ ∩ ∂B (x 0 ), S n ∪ (L ∩ B (x 0 )) is arcwise connected, and, using (5.35), we have that

H 1 (S n ) ≤ 2 N +1 N (n + 1) N -1 β Σ (x 0 , ) + √ N 2n H 0 (Σ ∩ ∂B (x 0 ))β Σ (x 0 , ) .
Let S n be the projection of S n to {x ∈ R N : dist(x, L) ≤ β Σ (x 0 , ) } ∩ B (x 0 ). Since the projection onto a nonempty closed convex set is a 1-Lipschitz mapping, it follows that

H 1 ( S n ) ≤ H 1 (S n ). Moreover, notice that S n ∪ (L ∩ B (x 0 )) is arcwise connected. Thus, defining Σ = (Σ\B (x 0 )) ∪ S n ∪ (L ∩ B (x 0 ))
and choosing n = (H 0 (Σ ∩ ∂B (x 0 )))

1 N , where • denotes the integer part, we observe that

H 1 ( S n ) ≤ M 0 (H 0 (Σ ∩ ∂B (x 0 ))) 1-1 N β Σ (x 0 , ) , (5.36) 
where M 0 = M 0 (N ) > 0. Now we can set

c 0 = (M 0 C) -1 .
(5.37)

Thanks to (5.34) and (5.36), we obtain

H 1 ( S n ) < M 0 1 a θ Σ (x 0 , r) 1-1 N β Σ (x 0 , ) .
This, together with (5.33), (5.32), (5.37) and the fact that 2 ≤ 4ar < diam(Σ) ≤ H 1 (Σ), implies the following

H 1 (Σ ) < 100H 1 (Σ). Also notice that Σ ⊂ Ω is closed, arcwise connected, Σ ∆Σ ⊂ B (x 0 ), β Σ (x 0 , ) ≤ β Σ (x 0 , ) ≤ 2ε a < τ
(see (5.33), (5.32)). So we can apply Proposition 5.7 to Σ and Σ . Thus, by the optimality of Σ and Proposition 5.7,

H 1 (Σ) ≤ E f,Ω (u Σ ) -E f,Ω (u Σ ) + H 1 (Σ ) ≤ C r b w τ Σ (x 0 , r) + C 1+b + H 1 (Σ ).
Altogether we have

H 1 (Σ ∩ B ar (x 0 )) ≤ H 1 (Σ ∩ B (x 0 )) ≤ C r b w τ Σ (x 0 , r) + C 1+b + 2 + M 0 1 a θ Σ (x 0 , r) 1-1 N β Σ (x 0 , ) .
Next, recalling that ∈ [ar, 2ar], r < δ, (2a) b < 1 and (5.33), we obtain

θ Σ (x 0 , ar) ≤ 2C w τ Σ (x 0 , r) + δ b + 4 + 4εM 0 a 1 a θ Σ (x 0 , r) 1-1 N .
However, this, together with (5.30), (5.32) and (5.37), yields the estimate

θ Σ (x 0 , ar) ≤ 5 + θ Σ (x 0 , r) 1-1 N
and completes the proof of Proposition 5.10.

Control of the flatness

The next proposition asserts that if β Σ (x, r) and w τ Σ (x, r) are pretty small and θ Σ (x, r) is controlled from above by 10µ, where µ is a unique positive solution to the equation µ = 5 + µ 1-1 N , then β Σ , w τ Σ stay small and θ Σ remains controlled from above by 10µ on smaller scales, and, in addition, in some sense w τ Σ controls the square of β Σ . Proposition 5.11. Let p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4). Then there exist constants a, r 0 ∈ (0, 1/100), b ∈ (0, 1), 0 < δ 1 < δ 2 < 1/100 and C = C(N, p, q 0 , q, f q , |Ω|) > 0 with q 0 defined in (1.1) such that the following holds. Assume that Σ is a solution to Problem 1.1, x ∈ Σ, 0 < r < min{r 0 , diam(Σ)/2}, B r (x) ⊂ Ω,

w τ Σ (x, r) ≤ δ 1 , β Σ (x, r) ≤ δ 2 and θ Σ (x, r) ≤ 10µ, (5.38)
where µ > 0 is a unique positive solution to the equation µ (5.43)

= 5 + µ 1-1 N . Then (i) β Σ (x, ar) ≤ C(w τ Σ (x, r)) 1 2 + Cr b 2 ; (5.39) (ii) w τ Σ (x, ar) ≤ 1 2 w τ Σ (x, r) + C(ar) b ; (5.40) (iii) w τ Σ (x, a n r) ≤ δ 1 , β Σ (x, a n r) ≤ δ 2 , θ Σ (x, a n r) ≤ 10µ for all n ∈ N. ( 5 
Step 1. Let us first prove (i). By Proposition 5.8, there exists t ∈ [κr, 2κr] such that Σ ∩∂B t (x) = {z 1 , z 2 }, z 1 and z 2 lie "on different sides" (see Remark 5.9). According to Proposition 5.8 (ii-3), we get

H 1 (Σ ∩B t (x)) ≤ |z 1 -z 2 | + C 1 t t r b w τ Σ (x, r) + C 1 t 1+b := |z 1 -z 2 | + M.
Recall that, by Proposition 5.8 (ii-2), Σ ∩ B t (x) is arcwise connected. Let Γ ⊂ Σ ∩B t (x) be an arc connecting z 1 with z 2 . Then, using Lemma A.3, we obtain

max y∈Γ dist(y, [z 1 , z 2 ]) ≤ (2t(H 1 (Γ) -|z 1 -z 2 |)) 1 2 ≤ (4κrM ) 1 2 . Since Σ ∩B t (x) is arcwise connected, Σ ∩ ∂B t (x) = {z 1 , z 2 } and H 1 (Γ) ≥ |z 1 -z 2 |, sup y∈(Σ ∩Bt(x))\(Γ∩Bt(x)) dist(y, Γ) ≤ H 1 (Σ ∩B t (x)\Γ) ≤ H 1 (Σ ∩B t (x)) -|z 1 -z 2 | ≤ M.
Thus max 

y∈Σ ∩Bt(x) dist(y, [z 1 , z 2 ]) ≤ (4κrM )
}) = dist(ξ i , z i ) for i = 1, 2, we get d H ([z 1 , z 2 ], L ∩ B t (x)) ≤ H 1 (γ z1,ξ1 ) = H 1 (γ z2,ξ2 ), (5.45) 
where γ zi,ξi is the geodesic in S connecting z i with ξ i . Since dist(x, [z 1 , z 2 ]) ≤ (4κrM )

1 2 + M (see (5.44)), H 1 (γ z1,ξ1 ) ≤ arcsin (4κrM ) 1 2 + M t t ≤ 2((4κrM ) 1 2 + M ), (5.46) 
where the latter estimate holds because ((4κrM ) 

d H (Σ ∩B t (x), L ∩ B t (x)) ≤ 3((4κrM ) 1 2 + M ) and hence β Σ (x, t) ≤ 3((4κrM ) 1 2 + M )/t. Next, since t ∈ [κr, 2κr
] and a ∈ (0, κ], if ar = λt for some λ ∈ (0, 1], then 2/λ ≤ 4κ/a and, thanks to (5.1),

β Σ (x, ar) = β Σ (x, λt) ≤ 4κ a β Σ (x, t) ≤ 12 ar ((4κrM ) 1 2 + M ).
(5.47)

On the other hand, since κ, w τ Σ (x, r), r ∈ (0, 1/100) and b ∈ (0, 1), we can conclude the following (4κrM )

1 2 ≤ C 1 r 2 w τ Σ (x, r) + C 1 r 2+b 1 2 ≤ C 1 r(w τ Σ (x, r)) 1 2 + C 1 r 1+ b 2 (5.48)
and, moreover, Next, observe that a < 1/100 and β Σ (x, s) is fairly small for all s ∈ [ar, r], so we can apply Proposition 5.6 with r 0 = ar and r 1 = r to get the following 0 , (5.38) and (5.43). We have proved the assertions (i), (ii) and that w τ Σ (x, ar) ≤ δ 1 , β Σ (x, ar) ≤ δ 2 .

M = C 1 t t r b w τ Σ (x, r) + C 1 t 1+b ≤ C 1 r(w τ Σ (x, r)) 1 2 + C 1 r 1+ b 2 . ( 5 
Step 2. We prove (iii). Recall that a, δ, ε ∈ (0, 1/100) are the constants of Proposition 5.10 and, by definition, δ 1 < δ 2 = aε/2. Then, according to (5.38), β Σ (x, r) + w τ Σ (x, r) ≤ ε.

Thus, applying Proposition 5.10 and using again (5.38), we get θ Σ (x, ar) ≤ 5 + θ Σ (x, r) 1-1 N ≤ 5 + (10µ) 1-1 N ≤ 10 5 + µ 1-1 N = 10µ.

At this point, we have shown that (5.38) holds with r replaced by ar. So, repeating the arguments above, we observe that (5.38) holds with r replaced by a 2 r. Therefore, iterating, we deduce (iii). This completes the proof of Proposition 5.11. Now we prove that there exist a critical threshold δ 0 ∈ (0, 1/100) and an exponent α ∈ (0, 1) such that if β Σ (x, r) + w τ Σ (x, r) falls below δ 0 and if θ Σ (x, r) is small enough for x ∈ Σ ∩Ω and fairly small r > 0, then β Σ (x, ) ≤ C α for all sufficiently small > 0, where C > 0 is a constant independent of x but depending on r. This leads to the C 1,α regularity. Proposition 5.12. Let p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (1.4). Let a ∈ (0, 1/100) be the constant of Proposition 5.11. Then there exist constants δ 0 , r 0 ∈ (0, 1/100) and α ∈ (0, 1) such that the following holds. Assume that Σ is a solution to Problem 1.1. If x ∈ Σ and 0 < r < min{r 0 , diam(Σ)/2} satisfy B r (x) ⊂ Ω, and for some constant C = C(N, p, q 0 , q, f q , |Ω|, r) > 0, where q 0 is defined in (1.1).

Proof. Let a, δ 1 , r 0 ∈ (0, 1/100), b ∈ (0, 1) and C > 0 be as in Proposition 5.11. We .

It is easy to check that for all t ∈ (0, r 0 ], 1 2 t γ + t b ≤ (at) γ .

(5.52) Indeed, since 0 < 2γ ≤ b, γ ≤ ln(3/4)/ ln(a) and a, r 0 ∈ (0, 1), t b ≤ t 2γ ≤ r γ 0 t γ and 3/4 ≤ a γ , so

1 2 t γ + t b ≤ 1 2 t γ + r γ 0 t γ ≤ 3 4 t γ ≤ (at) γ .
We prove by induction that for all n ∈ N, w τ Σ (x, a n r) ≤ 1 2 n w τ Σ (x, r) + C(a n+1 r) γ .

(5.53)

Clearly, (5.53) holds for n = 0. Suppose (5.53) holds for some n ∈ N. Then, applying (5.40) with r replaced by a n r and using the induction hypothesis, we get

w τ Σ (x, a n+1 r) ≤ 1 2 w τ Σ (x, a n r) + C(a n+1 r) b ≤ 1 2 n+1 w τ Σ (x, r) + C 2 (a n+1 r) γ + C(a n+1 r) b ≤ 1 2 n+1 w τ Σ (x, r) + C(a n+2 r) γ ,
where the last estimate comes by using (5.52). This proves (5.53). Now let ∈ (0, ar) and let l ≥ 1 be the integer such that a l+1 r < ≤ a l r. Then, using if necessary (5.1), we see that β Σ (x, ) ≤ 2β Σ (x, a l r)/a. Furthermore, Proposition 5.11 (i) says that β Σ (x, a l r) ≤ C(w τ Σ (x, a l-1 r))

1 2 + C(a l-1 r) b 2 .
On the other hand, using (5.53) and the fact that w τ Σ (x, r) < 1, we get w τ Σ (x, a l-1 r) ≤ for some C = C (N, p, q 0 , q, f q , |Ω|) > 0. So we can control β Σ (x, ) as follows β Σ (x, ) ≤ 2 a β Σ (x, a l r) ≤ 2C a (w τ Σ (x, a l-1 r))

1 2 + 2C a (a l-1 r) b 2 ≤ C r γ 2 + C γ 2 + C b 2 ≤ C γ 2 (γ ≤ b/2),
where C = C(N, p, q 0 , q, f q , |Ω|, r) > 0. Setting α = γ/2 and C := C, we complete the proof of Proposition 5.12.

Corollary 5.13. Let Σ be a solution to Problem 1.1 and a, α, δ 0 , r 0 , µ be the constants as in the statement of Proposition 5.12. Assume that x ∈ Σ, 0 < r < min{r 0 , diam(Σ)/2}, B r (x) ⊂ Ω, where C = C(N, p, q 0 , q, f q , |Ω|, r) > 0. In particular, there exists t 0 ∈ (0, 1) such that Σ ∩B t0 (x) is a C 1,α regular curve. On the other hand, θ Σ (y, r/10) ≤ 10θ Σ (x, r) ≤ 10µ. Then, according to Proposition 5.12, β Σ (y, ) ≤ C α for all ∈ (0, ar/10). Since the point y was arbitrarily chosen in Σ ∩B ar/10 (x), there exists t 0 ∈ (0, ar/10) such that Σ ∩B t0 (x) is a C 1,α regular curve (see, for instance, [15, Proposition 9.1]).

Proof of Theorem 1.2. Let ε 0 , b, r ∈ (0, 1), C > 0 be the constants of Lemma 3. in C o δ,1 . Since 0 < γ < β, γ 3 (γp -p -γ + N -1) < 0 and 3γ -4 < γ -2 < 0. Thus, analyzing (A.2), we deduce that there exists δ = δ(N, p, γ) ∈ (0, 1) such that ∆p û ≤ 0 in C o δ,1 . This completes the proof.

The next lemma is classical, however, we could not find a precise reference in the exact following form, thus we provide a proof for the reader's convenience. On the other hand, H 1 (Γ) ≥ 2|z -ξ 2 |. Then, using the Pythagorean theorem, we get

h 2 = |z -ξ 2 | 2 - |ξ 1 -ξ 2 | 2 4 = |z -ξ 2 | - |ξ 1 -ξ 2 | 2 |z -ξ 2 | + |ξ 1 -ξ 2 | 2 ≤ H 1 (Γ) 2 - |ξ 1 -ξ 2 | 2 (3r + r) = 2r(H 1 (Γ) -|ξ 1 -ξ 2 |).
This completes the proof of Lemma A.3.
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 121211212 Proposition 5.1.3] and[START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF] Proposition 5.1.4], proves that there exists a constant C 0 > 0 such that the desired estimate (2.1) holds for C 0 whenever 0 < r < r 0 and x 0 ∈ Σ. This completes the proof of Corollary 2.10. Let the function u be defined p-q.e. on R N or on some open subset. Then u is said to be p-quasi continuous if for every ε > 0 there is an open set A with Cap p (A) < ε such that the restriction of u to the complement of A is continuous in the induced topology. Let Y ⊂ R N be an open set and p ∈ (1, +∞). Then for each u ∈ W 1,p (Y ) there exists a p-quasi continuous function u ∈ W 1,p (Y ), which is uniquely defined up to a set of Cap p -capacity zero and u = u a.e. in Y .
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 3132 Figure 3.1: In the proof of Lemma 3.1 we estimate on ∂ |x | < δ0 √ 2 ∩ |x N | < δ0 √ 2
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 33 Let p ∈ (N -1, +∞) and let α, δ ∈ (0, 1), C > 1 be as in Lemma 3.1. Then for each ∈ (0, δ] there exists ε 0 ∈ (0, ) such that the following holds. Let Σ ⊂ R N be a closed set such that (Σ ∩B r (x 0 )) ∪ ∂B r (x 0 ) is connected and assume that for some affine line L passing through x 0 , d H (Σ ∩B r (x 0 ), L ∩ B r (x 0 )) ≤ ε 0 r. Then for any weak solution u ∈ W 1,p (B r (x 0 )) to the p-Laplace equation in B r (x 0 )\ Σ vanishing p-q.e. on Σ ∩B r (x 0 ), the following estimate holds B r (x0) |∇u| p dx ≤ (C ) 1+α Br(x0) |∇u| p dx.

Figure 3 . 2 :

 32 Figure 3.2: The geometry in Lemma 3.3.

2 p

 2 Br 1 (x0) |∇u| p dx 2-p p .

  26). Let us now define b = min γ(p, q)

1 2 + Cr b 2 , 1 2 + Cr b 2 0

 1212 .49) By (5.47)-(5.49), β Σ (x, ar) ≤ C(w τ Σ (x, r))with C = 24C 1 /a. Using (5.38), the above estimate, (5.42) and (5.43), we getβ Σ (x, ar) ≤ C(δ 1 ) < δ 2 .

2 + δ 1 2 = δ 1 , 1 b

 2211 w τ Σ (x, ar) ≤ C 0 a b w τ Σ (x, r) + C 0 (ar) b ≤ 1 2 w τ Σ (x, r) + C(ar) b ≤ δ 1where we have used that a≤ (1/2C 0 ) , C 0 (ar) b < C(ar) b < Cr b 2

β

  Σ (x, r) + w τ Σ (x, r) ≤ δ 0 and θ Σ (x, r) ≤ 10µ(5.50)with µ being a unique positive solution to the equation µ = 5 + µ 1-1 N , then β Σ (x, ) ≤ C α for all ∈ (0, ar) (5.51)

  δ 0 := δ 1 , γ := min b 2 , ln(3/4) ln(a), r 0 := min r 0 ,

1 2 l 4 l+1+

 24 -1 w τ Σ (x, r) + C(a l r) γ ≤ C 3 C (a l+1 r) γ ≤ C a γ(l+1) + C γ ≤ C r γ + C γ

β

  Σ (x, r) + w τ Σ (x, r) ≤ ε and θ Σ (x, r) ≤ µ with ε := δ 0 /200. Then for any point y ∈ Σ ∩B ar/10 (x) and radius ∈ (0, ar/10) the following estimate holds β Σ (y, ) ≤ C α ,

Proof of Corollary 5 . 13 .|∇u Σ | p dz ≤ 10 r 2 ,

 513102 Recall that a ∈ (0, 1/100). Let y ∈ Σ ∩B ar/10 (x) and L x realize the infimum in the definition of β Σ (x, r). Notice that d H (Σ ∩B r/10 (y), L x ∩ B r/10 (y)) ≤ 5εr. Let L be the affine line passing through y and collinear to L x . It is easy to see that d H (L x ∩ B r/10 (y), L ∩ B r/10 (y)) ≤ 5εr and henced H Σ ∩ B r 10 (y), L ∩ B r 10 (y) ≤ d H Σ ∩ B r 10 (y), L x ∩ B r 10 (y) + d H L x ∩ B r 10 (y), L ∩ B r 10 (y) ≤ 10εr.Thus β Σ (y, r/10) ≤ δ 0 /2. Next, let Σ realize the supremum in the definition of w τ Σ (y, r/10). Such Σ exists due to the condition β Σ (y, r/10) ≤ δ 0 /2 ≤ τ (seeRemark 5.4). Then we have that Br(x)|∇u Σ | p dz ≤ 10w τ Σ (x, r) < δ 0where we have used the facts that B r/10 (y) ⊂ B (1+a)r/10 (x), β Σ (y, r/10) and β Σ (x, r) are pretty small, namely, proceeding as in the proof of Proposition 5.5, we can show that β Σ (x, r) ≤ τ . Thus β

7 . 2 N

 72 Since closed connected sets with finite H 1 -measure are H 1 -rectifiable (see [14, Proposition 30.1, p. 186]), then (see Lemma 4.2) for H 1 -a.e. point x in Σ there exists the affine line T x passing through x such that 1 r d H (Σ ∩B r (x), T x ∩ B r (x)) the other hand, θ Σ (x, r) → r→0+ 2 (5.55) in C o δ,1 . This yields the following ∆p û = γ 3 (γp -p -γ + N -1)|x | 3γ-4 + 4γ(γ + N -3)|x | γ-2 x 2 N + 2γ 2 |x | 2γ-2 + (p -1)8x
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 22 Let N ≥ 2, p ∈ (1, +∞), Σ ⊂ R N be a closed set and u ∈ W 1,p (B 1 ) be a p-harmonic function in B 1 \Σ, continuous in B 1 with u = 0 on Σ ∩ B 1 . Then u + = max{u, 0} and u -= -min{u, 0} are p-subharmonic in B 1 .Proof. Since u -= (-u) + and (-u) is p-harmonic in B 1 \Σ, it is enough to prove that the function u + is p-subharmonic in B 1 . Let us fix an arbitrary nonnegative function ϕ ∈ C ∞ 0 (B 1 ) and for all ε, η ∈ (0, 1) defineϕ η,ε = ((η +(u-ε) + ) ε -η ε )ϕ. Since u ∈ W 1,p (B 1 ) is p-harmonic in B 1 \Σ and ϕ η,ε ∈ W 1,p 0 (B 1 \Σ), B1 |∇u| p-2 ∇u∇ϕ η,ε dx = 0.This implies thatB1 ((η + (u -ε) + ) ε -η ε )|∇u + | p-2 ∇u + ∇ϕ dx + ε B1∩{u>ε} |∇u + | p (η + (u -ε) + ) ε-1 ϕ dx = 0 and hence B1 ((η + (u -ε) + ) ε -η ε )|∇u + | p-2 ∇u + ∇ϕ dx ≤ 0. (A.3)Letting η and then ε tend to 0+ in (A.3), by Lebesgue's dominated convergence theorem, we getB1 |∇u + | p-2 ∇u + ∇ϕ dx ≤ 0,which concludes the proof.The next lemma is a refined version of[START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF] Lemma 5.14].Lemma A.3. Let N ≥ 2 and let γ : [0, 1] → R N be a curve such that Γ := γ([0, 1]) ⊂ B r (x 0 ). Assume that ξ 1 = γ(0) ∈ ∂B r (x 0 ) and ξ 2 = γ(1) ∈ ∂B r (x 0 ). Then max y∈Γ dist(y, [ξ 1 , ξ 2 ]) ≤ (2r(H 1 (Γ) -|ξ 2 -ξ 1 |)) 1 Proof. Let z ∈ argmax y∈Γ dist(y, [ξ 1 , ξ 2 ]). Assume that dist(z, [ξ 1 , ξ 2 ]) := h > 0 and |ξ 1 -ξ 2 | > 0,otherwise the proof follows. Let z ∈ R N be a point making (ξ 1 , z , ξ 2 ) an isosceles triangle such that dist(z , [ξ 1 , ξ 2 ]) = h. Notice that h ≤ 2r, |ξ 1 -ξ 2 |/2 ≤ r and hence |z -ξ 2 | ≤ h + |ξ 1 -ξ 2 | 2 ≤ 3r.

  Next, applying Caccioppoli's inequality to u + n , using the fact that u + n ≤ v n in B 1 and applying the result of Step 1 to v n , for all r ∈ (0, δ] we deduce that estimate comes from the fact that v n minimizes the functional v→ B1 |∇v| p dx among all v ∈ W 1,p (B 1 ) such that v -u + n ∈ W 1,p 0 (B 1 \S) (see Theorem 2.2) and u + n is a competitor. Arguing by the same way as for u + n , we deduce that for all r ∈ (0, δ],Next, since ϕ n → u in W 1,p (B 1 ) and u solves the Dirichlet problem -∆ p v = 0 in B 1 \S with its own trace on S ∪ ∂B 1 , by [7, Theorem 3.5], u n → u in W 1,p (B 1 ) and hence u

	|∇u + n | p dx ≤ p p r -p	u +p n	dx ≤ p p r -p		v p n dx ≤ Cr 1+α	|∇v n | p dx
	Br	B2r		B2r	B1
					≤ Cr 1+α	|∇u + n | p dx,	(3.7)
						B1
	where the last Br	|∇u -n | p dx ≤ Cr 1+α	B1	|∇u -n | p dx.	(3.8)

19, Theorem 2.19] and [18, Theorem 6.27], v n is continuous in B 1 and also v n = u + n on S ∪ ∂B 1 . Then, by the comparison principle, u + n ≤ v n in B 1 . Let δ = δ(N, p), α = α(N, p) ∈ (0, 1) be the constants from Step 1.

  .10) Proof. According to Remark 2.15, Σ and Σ are arcwise connected and by Corollary 2.19,

  .41) Proof. Let C 0 be the constant such that the estimate (3.31) holds with C 0 , and let C 1 be the constant such that the estimate (5.16) holds with C 1 . Without loss of generality, we can assume that C 0 < C 1 . Let b ∈ (0, 1) be the constant of Lemma 3.7, and let a, δ, ε, κ ∈ (0, 1/100) be such that δ, ε, κ are the constants of Proposition 5.8 and, at the same time, a, δ, ε are the constants of Proposition 5.10 with

								1	
			a = min κ,	1 2C 0	b	.
	Now we can set	δ 2 :=	aε 2	, δ 1 :=	aδ 2 50C 1	2	, C :=	24C 1 a	(5.42)
	and fix r 0 ∈ (0, δ) such that								
				Cr 0 ≤ b 2	δ 1 2	.		

  .47). So let L be the line passing through x and collinear to [z 1 , z 2 ]. Now observe that if Π is the 2-dimensional plane passing through L and [z 1 , z 2 ], then the intersection of Π with ∂B t (x) is the circle S on Π with center x and radius t. Then, denoting by ξ 1 and ξ 2 the two points in L ∩ ∂B t (x) in such a way that dist(ξ i , {z 1 , z 2

	1 2 + M
	but this yields the following estimate
	d

H (Σ ∩B t (x), [z 1 , z 2 ]) ≤ (4κrM )

1 2 + M, (5.44) because Σ ∩ B t (x) is arcwise connected and Σ escapes ∂B t (x) either through z 1 or through z 2 . Without loss of generality, assume that [z 1 , z 2 ] is not a diameter of B t (x), otherwise we can pass directly to the estimate (5

p 1 p 1 p
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for H 1 -a.e. x ∈ Σ, in view of Besicovitch-Marstrand-Mattila Theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.63]). Let x ∈ Σ ∩ Ω be such a point that (5.54) and (5.55) hold with x. According to (5.54),

(5.56)

We claim that w τ Σ (x, r) → 0 as r → 0+. Indeed, by (5.56), for any ε ∈ (0, ε 0 ) there is t ε ∈ (0, r) such that β Σ (x, r) ≤ ε for all r ∈ (0, t ε ].

(5.57)

We assume that B tε (x) ⊂ Ω, t ε < diam(Σ)/2 and ε < τ /2. Recall that τ ∈ (0, ε 0 /6]. Then, by Proposition 5.6, for all r ∈ (0, t ε /10],

On the other hand, by Remark 5.4 and Proposition 2.20, w τ Σ (x, t ε ) < +∞. Thus, letting r tend to 0+ in (5.58), we get

(5.59) By (5.56) and (5.59),

This, together with (5.55), Corollary 5.13 and the fact that for each integer N ≥ 2, the unique positive solution µ to the equation µ = 5 + µ 1-1 N is strictly greater than 5, completes the proof of Theorem 1.2.

A Auxiliary results

Recall that we write points of R N as x = (x , x N ) with x ∈ R N -1 and x N ∈ R.

Lemma A.1. Let N ≥ 2, p ∈ (N -1, +∞), β = (p -N + 1)/(p -1) and γ ∈ (0, β). There exists δ ∈ (0, 1), depending only on N, p and γ, such that û

Proof. To simplify the notation, we denote

We need to prove that there exists δ = δ(N, p, γ) ∈ (0, 1) such that

where ∆û = ∆ 2 û := 

Calculating the partial derivatives of û in C o δ,1 , we have: ûxi

, where i, j ∈ {1, ..., N -1} and δ i,j is the Kronecker delta;