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Reduction of monsoon rainfall in response to past and future
land use and land cover changes

Benjamin Quesada’ (*), Narayanappa Devaraju?, Nathalie de Noblet-Ducoudré?, and Almut Arneth’

"Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology,
Garmisch-Partenkirchen, Germany, 2Laboratoire des Sciences du Climat et de I'Environnement LSCE/IPSL, Unité mixte CEA-
CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France

Abstract Land use and land cover changes (LULCC) can have significant biophysical impacts on regional
precipitation, including monsoon rainfall. Using global simulations with and without LULCC from five
general circulation models, under the Representative Concentration Pathway 8.5 scenario, we find that
future LULCC significantly reduce monsoon precipitation in at least four (out of eight) monsoon regions.
While monsoon rainfalls are likely to intensify under future global warming, we estimate that biophysical
effects of LULCC substantially weaken future projections of monsoons’ rainfall by 9% (Indian region), 12%
(East Asian), 32% (South African), and 41% (North African), with an average of ~30% for projections across
the global monsoon region. A similar strong contribution is found for biophysical effects of past LULCC to
monsoon rainfall changes since the preindustrial period. Rather than remote effects, local land-atmosphere
interactions, implying a decrease in evapotranspiration, soil moisture, and clouds along with more
anticyclonic conditions, could explain this reduction in monsoon rainfall.

1. Introduction

Land use and land cover changes (LULCC) alter surface energy, momentum, heat, water, and biogeochemical
balances (e.g., CO, emissions). Several modeling experiments [Gupta et al., 2005; Abiodun et al., 2008; Takata
et al.,, 2009; Devaraju et al., 2015; Halder et al., 2015] and observational studies [Webb et al., 2005; Pielke et al.,
2007; Lee et al., 2009; Kishtawal et al., 2010; Niyogi et al., 2010] analyzed the links between LULCC and monsoon
perturbations, especially in Asia [Pielke et al., 2011]. For instance, with remote sensing satellite observations,
Niyogi et al. [2010] could partly attribute a significant decline in Indian summer monsoon rainfall in the past
decades to an agricultural intensification in this region. Takata et al. [2009] argued that local LULCC during
a preindustrial period (1700-1850) was the major anthropogenic disturbance that weakened the Asian sum-
mer monsoon. In response to idealized deforestation scenarios, monsoon rainfall decreased in Africa and the
northern parts of India but increased in southern India [Gupta et al., 2005]. Devaraju et al. [2015] simulated a
decline in Northern Hemisphere monsoon rainfall particularly in South Asia (—11% and—12% for annual and
boreal summer precipitation, respectively) and an increase in Southern Hemisphere monsoon rainfall in
response to a global-scale deforestation experiment. But when deforestation was restricted to tropical lati-
tudes (20°S-20°N), they found only small effects on monsoon rainfall. In a regional analysis, Halder et al.
[2015] found that observed LULCC over India during recent decades has contributed to a decline in Indian
summer monsoon rainfall through changes in large-scale circulations and decrease in moisture convergence.

However, a common feature is shared by all these modeling studies: they are based on the use of only one
global or regional climate model and/or they apply different idealized deforestation/afforestation scenarios
(e.g., 100% or 50% of forests replaced by crops or grasslands, and vice versa). Thus, review studies have called
for climate model intercomparisons to validate the LULCC impacts on monsoon rainfall since results are over-
all inconclusive [Pielke et al., 2011; Mahmood et al., 2014; Lawrence and Vandecar, 2015; Xue and Dirmeyer,
2015]. To our knowledge, only Pitman et al. [2009] and Brovkin et al. [2013] have investigated past and future
LULCC impacts in a multimodel framework, and they did not find statistically significant changes in global
mean precipitation. Therefore, interactions between LULCC and monsoon are often not robustly simulated,
and a quantification of the hydrological cycle sensitivity to LULCC is still missing [Pielke et al., 2011; Xue
and Dirmeyer, 2015].

Moreover, while scientists widely agree on robust local climate effects and remote biogeochemical effects
through changes in atmospheric CO, concentration [see Pielke et al., 2011; Mahmood et al., 2014; Lawrence
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and Vandecar, 2015, and references therein], remote biophysical effects (i.e., teleconnections through large-
scale variations of the atmosphere’s water and energy budget) are still debated [Chase et al., 2000; Werth and
Avissar, 2002; Avissar and Werth, 2005; Findell et al., 2006, 2009; Pitman et al., 2009; Snyder, 2010; Pielke et al.,
2011; Mahmood et al., 2014]. For instance, whether or not significant effects on rainfall also arise outside the
deforested areas has not yet been consistently shown [Pitman et al., 2009; Pielke et al., 2011; Brovkin et al.,
2013; Mahmood et al., 2014; Lawrence and Vandecar, 2015]. Thus, local and/or remote effects of LULCC could
contribute to modulate monsoon rainfall.

For the first time here, using several global coupled simulations and realistic global LULCC scenarios, we quan-
tify the likely impacts of past and future LULCC on rainfall in all the world’s monsoon regions in which more
than 70% of world’s population reside (section 3.1). Finally, we investigate the underlying physical mechan-
isms (remote versus local land-atmosphere interactions) between LULCC and monsoon (section 3.2) which
are still not consensual.

2. Methods
2.1. Monsoon Regions

Eight (8) regions are defined as regional monsoon precipitation domains. Those are regions where (i) the
annual range of precipitation rates exceeds 2 mm/d (or 300 mm per season) and (ii) the local summer preci-
pitation exceeds 55% of the total annual rainfall [see Yim et al., 2014, Figure 1]. Then the associated rectan-
gular domains of regional monsoons with their names, initials, and geographical definition—terminology
and domains are from Yim et al. [2014]—are the following: Indian IN (10°N-30°N, 70°E-105°E), Western
North Pacific WNP (12.5°N-22.5°N, 110°E-150°E), East Asia EA (22.5°N-45°N, 110°E-135°E), North America
NAM (7.5°N-22.5°N, 110°W-80°W), Northern Africa NAF (5°N-15°N, 30°W-30°E), South America SAM
(5°S-25°S, 70°W-40°W), Southern Africa SAF (7.5°S-25°S, 25°E-70°E), and Australia AUS (5°S-20°S,
110°E-150°E) (see eight regions in supporting information, Figures ST and S2). Similar domains have
already been used in other studies [Wang and Ding, 2006, 2008; Kitoh et al., 2013]. Figure S2 shows the
local projected annual range of precipitation rates, as defined in Yim et al. [2014], only when local summer
precipitation exceeds 55% of the total annual rainfall. We confirm that climate models simulate correctly
the above mentioned regions that encompass most monsoon rainfall. The “global monsoon region”
[Trenberth et al., 2000; Wang and Ding, 2008] refers in our study to a virtual domain aggregating these
eight monsoonal domains. The robustness of our results to other different monsoon domains is tested in
section 3.2.

2.2. Intertropical Convergence Zone Shifts

Shifts in the Intertropical Convergence Zone (ITCZ) are diagnosed using the “precipitation centroid” metric
[Donohoe et al., 2014; Devaraju et al., 2015] that allows to calculate the latitudinal location of the ITCZ preci-
pitation maximum. The precipitation centroid is then defined as the median of the zonally averaged precipi-
tation between 20°S and 20°N. This zonal mean precipitation is interpolated to 0.01° resolution which allows
the precipitation centroid to vary at increments smaller than the grid spacing of the model simulations (~2°
longitude x 2° latitude) [Donohoe et al., 2014; McGee et al., 2014; Devaraju et al., 2015; Adam et al., 2016]. ITCZ
shifts are thus defined as meridional shifts (in °N) of the precipitation centroid location.

2.3. Models and Experiments

The Land Use and Climate, Identification of Robust Impacts (LUCID) is a major international intercomparison
exercise that intends to diagnose the robust biophysical impacts of LULCC using as many climate models as
possible forced with same LULCC (http://www.lucidproject.org.au/).

2.3.1. LUCID-CMIP5 (Effects of Future LULCC)

The LUCID-Coupled Model Intercomparison Project (CMIP5) simulations analyzed here are the same as those
described in Brovkin et al. [2013] and Boysen et al. [2014]. Focusing on the impacts of future changes of LULCC,
several modeling groups from the fifth Phase of the Coupled Model Intercomparison Project (CMIP5) per-
formed LUCID-CMIP5 simulations without anthropogenic land use changes from 2006 to 2100. Here we
use outputs from the five LUCID-CMIP5 and CMIP5 models (CanESM2, HadGEM2-ES, IPSL-CM5A-LR, MPI-
ESM-LR, and MIROC-ESM) on the last 30years period of each experiment (2071-2100). Representative
Concentration Pathway 8.5 (RCP8.5) simulations are the CMIP5 runs with all forcings including the future
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anthropogenic land use and land cover change forcing based on RCP8.5 scenario. L2A85 simulations are the
same runs as RCP85 but without the anthropogenic land use and land cover change forcing (after year 2005),
with atmospheric CO, concentration prescribed from the RCP8.5 scenario. In other means, the difference
between RCP8.5 and L2A85 simulations (i.e.,, RCP8.5-L2A85) corresponds to the pure biophysical effects
of future anthropogenic land use and land cover changes. Note that the RCP8.5 scenario includes spatially expli-
cit future LULCC characterized by an expansion of croplands and pastures driven by the food demands of an
increasing population and corresponds to a radiative forcing of more than 85Wm~2 in 2100 [Hurtt et al,
2011] (CO, concentration ~936 ppm in 2100). Future changes in tree cover between RCP8.5 and L2A85 simu-
lations are about 4 x 10°km? by 2100 (i.e,, approximately one tenth of the total idealized deforestation sce-
narios [Ward et al,, 2014]). Harmonization and implementation of future LULCC scenario into these five CMIP5
models are fully detailed in Hurtt et al. [2011] and Brovkin et al. [2013] papers (see their sections 2a and 2b).

For the analysis of the changes in surface energy components and land-atmosphere variables (CMIP5 stan-
dard abbreviation in parenthesis), we used the sensible and latent heat fluxes (hfss and hfls), incoming short-
wave and longwave radiation at the surface (rsds and rlds), total cloud fraction (clt), moisture in the upper
portion of the soil column (mrsos), geopotential height, and vertical pressure velocity at 500 hPa (zg and
wap) from RCP8.5 and L2A85 simulations averaged over the 2071-2100 period (Figure 3). Only wap variable
for HADGEM2-ES model was not available.

2.3.2. LUCID (Effects of Past LULCC)

To investigate the impacts of LULCC since the preindustrial period, we also analyze LUCID simulations. Those
have been used in previous studies: among others Pitman et al. [2009], de Noblet-Ducoudré et al. [2012], and
Boisier et al.[2012]. In the standard present-day simulations (experiment PD) all greenhouse gases, land cover,
and sea surface temperatures (SSTs) are prescribed at their present-day values. The land cover is prescribed
using a map reflecting 1992 conditions (with vegetation distribution of Ramankutty and Foley [1999] for crops
and Goldewijk [2001] for pastures) as being representative for the simulation period 1972-2002. The simula-
tions were run by seven general circulation models (GCMs): ARPEGE, CCAM, CCSM, EC-EARTH, ECHAMS5, IPSL,
and SPEEDY. Similar simulations as PD but with a land cover map reflecting 1870 conditions were performed
(experiment PDv). The difference between PD and PDv corresponds to the biophysical impacts of past LULCC.
We also used the preindustrial simulations carried out in LUCID project (experiment PI). In Pl, all greenhouse
gases, land cover, and sea surface temperatures (SSTs) are prescribed at their preindustrial values (~1870).
The land cover is prescribed using a map reflecting 1870, and the period 1870-1900 is simulated (same
references than above for the vegetation distributions). The difference between PD and PI corresponds to
the changes due to all forcings. Harmonization and implementation of past LULCC scenario into these seven
climate models are fully detailed in methodology sections of Pitman et al. [2009] and de Noblet-Ducoudré
et al. [2012].

For each set of simulations (Pl, PD, and PDv), five independent realizations were run by each climate model
and the average among these ensembles corresponds to the response of each model. For these sets, only
land values were available, preventing ITCZ location calculation for this data set.

To calculate the contribution of future LULCC to precipitation projections, we also use historical precipitation
data (HIST) from the five LUCID-CMIP5 models for 1976-2005 period. Projected changes in precipitation
found by a previous study analyzing 21 CMIP5 climate monsoon projections [Kitoh et al., 2013] are consistent
with the five LUCID-CMIP5 model (ENS-FUT) projections (Pearson correlation coefficient r=0.9) with only a
slight underestimation among the common monsoon regions (bias =0.14 & 0.25 mm/d, see Table S1).

Note that irrigation potential, landscape management practices, dust emissions from land use, and urbaniza-
tion are not taken into account here in the implementation of the past and future LULCC scenarios.

|n

Changes in “monsoon rainfall” depict here seasonal changes in precipitation: in December-January-February
(DJF) for Southern Hemisphere regions (SAM, SAF, and AUS) and June-July-August (JJA) for Northern
Hemisphere regions (IN, WNP, EA, NAM, and NAF). ENS-FUT refers to the ensemble mean from the five
LUCID-CMIP5 models and ENS-PAST refers to the ensemble mean from the seven LUCID models.

2.4. Robustness and Statistical Significance

Two measures are implemented to analyze the likely effects of LULCC and discuss statistical significance: (i)
model agreement on direction of change and (ii) statistical significance of simulated changes. A first
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significance test is passed when at least 80% (70%) of the LUCID-CMIP5 (LUCID) model simulations and the
multimodel mean ensemble ENS-FUT (ENS-PAST) display significant changes at 90th confidence level. For
spatial precipitation averages, an additional significance test is performed to check whether at least 80%
(70%) of the LUCID-CMIP5 (LUCID) model simulations show significant changes at 66th, 75th, or 80th confi-
dence level. For these significance tests, we use the Mann-Whitney-Wilcoxon test [Hollander and Wolfe,
1999] with two sets of 30 year future simulations (e.g., RCP8.5 and L2A85 simulations, on 2071-2100 period).
This test is widely used in many regional climate studies [Haensler et al., 2013; Jacob et al., 2014; Thober and
Samaniego, 2014; Pfeifer et al., 2015]. Moreover, the Mann-Whitney-Wilcoxon test does not presume the dis-
tribution shapes of the samples which make this test particularly suited for precipitation data (right-skewed
distributions) compared to, for example, a Student t test.

3. Results

Here we systematically investigate the effects of future LULCC on monsoon rainfall over eight monsoonal
regions under the RCP8.5 scenario, using global simulations of five GCMs from the intercomparison
projects CMIP5 and LUCID-CMIP5 (see section 2). The five GCMs mostly agree on the tropical deforestation
signal, while model spread at higher latitudes is larger due to the different implementation of a common
LULCC scenario among the models (dynamic versus nondynamic vegetation models) [Brovkin et al., 2013;
Boysen et al., 2014]. In particular, in the eight monsoonal regions, models simulate local deforestation,
except in eastern Asia (see Figure S1). The largest areas of deforestation are estimated to occur in southern
America, southern Africa, and northern Africa with ensemble mean changes in tree cover being up to
—25% by 2100.

3.1. LULCC-Induced Monsoon Rainfall Weakening

When considering only the effects of LULCC at the end of the 21st century, we find that biophysical effects of
future LULCC significantly reduce monsoon rainfall, as seen in the decline by about 1-2% in precipitation in
five monsoon regions (Figure 1; grey bars for Indian, South American, East Asian, Northern, and South African
regions with green tick marks and circles for significance). Ensemble mean future changes (ENS-FUT) in sea-
sonal precipitation vary from —0.14 mm/d (—2.6% in North America) to +0.06 mm/d (+0.7% in Western North
Pacific). Spatially, most grid points across monsoonal regions show reduced precipitation patterns, except for
Australia and Western North Pacific (Figure 2). In the Indian region, patterns are heterogeneous with declines
in monsoon rainfall up to —0.5 mm/d are found in the eastern part of India and Bangladesh, as well as in the
Arabian Sea and Bay of Bengal but some significant increases elsewhere. The eastern parts of South America,
South Africa, and East Asia (China) are also significantly depleted in precipitation during monsoon seasons
(Figure 2, black crosses for significance). Overall, in the global monsoon region (average among all eight mon-
soon regions), land-only changes are stronger than land + ocean changes, with a 1.9% reduction in monsoon
rainfall but reaching up to —3% (South Africa, Western North Pacific, and North Africa, see grey bars in Figure S3).
Although these precipitation changes appear small, they are significant and meaningful because they can
have profound impacts on monsoon regions’ economy [Gadgil and Gadgil, 2006], agricultural yields
[Auffhammer et al., 2012], and water resources [Tiwari and Joshi, 2013]. Note also that a robust 1-2% increase
in global mean precipitation is associated with a substantial global surface warming of ~1°K in response to
greenhouse gas forcing [Held and Soden, 2006; Trenberth, 2011].

Furthermore, when LULCC effects on the monsoon change between present day and future are considered
versus the effects of all forcings (RCP8.5-L2A85 versus RCP8.5-HIST, see section 2), the relative monsoon
response becomes much more prominent (blue bars in Figure 1). Under the RCP8.5 scenario, monsoonal rain-
fall is projected to significantly increase in most regions (Table S1) as reported by previous studies
[Intergovernmental Panel on Climate Change (IPCC), 2013; Kitoh et al., 2013]. Therefore, biophysical effects of
LULCC contribute to significantly weaken the projections of monsoon rainfall in at least four regions: by 9%
in the Indian region, 12% in the East Asian region, 32% in the South African region, and 41% in the North
African region (Figure 1, blue bars). In South America, a strong negative contribution of biophysical effects
of LULCC is found (~ —160%, Figure 1 blue bar) but not significant because South America is the only mon-
soon region where ENS-FUT monsoon rainfall projections are not significant (see Table S1, p > 0.1). Likewise,
when considering only land grid points in monsoonal regions, biophysical effects of LULCC significantly les-
sen future projections of monsoon rainfall by 39% in South Africa, 24% in Western North Pacific, and 31% in
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Figure 1. ENS-FUT changes in monsoon rainfall and their relative contribution to future projections (RCP8.5-HIST) in the
eight monsoonal regions. Results are shown in DJF for Southern Hemisphere regions and in JJA for Northern
Hemisphere regions averaged over 2071-2100 period. On the left axis, grey bars indicate monsoon rainfall anomaly
percentage ( BPE-LABS) dye to future LULCC. On the right axis, blue bars indicate the contribution of future LULCC
(RCP8.5-L2A85) relative to future projections with all forcings (RCP8.5-HIST). Both units are percent. Symbols are shown for
individual results of each LUCID-CMIP5 model. Note that simulated precipitations are first arithmetically averaged among
the five LUCID-CMIP5 models before the calculation of the rainfall anomaly percentage and the relative contribution.
Statistical significance is given by green tick marks and circles. One, two, and three green tick marks are displayed for the
regions where at least 80% of LUCID-CMIP5 models have regional changes significant at 66th, 75th, and 80th confidence
level, respectively (see section 2). Green circles are added when ENS-FUT regional values are also significant at 90th
confidence level.

North Africa, on average (red bars in Figure S3). On average, while global monsoon rainfall is simulated to
increase at the end of the 21st century (see Table S1), biophysical effects contribute to decrease by ~30%
these projected changes.

Interestingly, in our analysis, the two LUCID-CMIP5 models that are among the best CMIP5 models in simulat-
ing present-day monsoon precipitation [Lee and Wang, 2014] (CanESM2 and HadGEM2-ES) are also the
models that project the highest decreases in global monsoon rainfall due to LULCC (respectively, —0.10
and —0.16 mm/d, i.e, —1.4% and —2.4%). Moreover, here, they give larger LULCC contributions to monsoon
rainfall projections (—65% and —70% respectively) than the ensemble mean (—30%).

In addition, we find some evidence of shorter monsoon duration with significant changes in onset and retreat
dates in some regions (see Table S2, using the fixed threshold method [Wang and LinHo, 2002]). In the Indian,
Southern African, and Western North Pacific regions, most models simulate a decrease in the monsoon
period duration (—4.2, —2.6, and —0.7 days on average, respectively).

We compare the changes in monsoon rainfall due to future LULCC with the ones due to past LULCC, using
outputs from the seven global climate models of the LUCID project (see section 2). This comparison sug-
gests that future LULCC have larger impacts on monsoon rainfall reduction than past LULCC (1992 minus
1870 vegetation maps, Figure S4). In most monsoon regions, we calculate that past LULCC reduce mon-
soon rainfall in at least six regions (grey bars in Figure S5), but simulated changes are significant only in
the Indian (—0.04 mm/d, i.e, —0.5% on average) and South American (—0.05mm/d, i.e,, —0.4%) regions.
Spatially, precipitation reductions due to past LULCC are significant in monsoon subregions of Northern
India, South America, East Asia, and Northern Australia, up to —0.5 mm/d (Figure S6). In the Indian and
South American regions, the relative contribution of past LULCC to past changes in precipitations is
—47% and —33%, respectively (orange bars in Figure S5). Note that across the global monsoon region,
the relative mean contribution of LULCC versus all forcings to past monsoon rainfall changes (PD-PDv
versus PD-PI, see section 2) is ~—33%, which is about equal to the relative contribution of future LULCC
(~—30%, as discussed earlier).
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Figure 2. Spatial patterns of ENS-FUT changes in monsoon rainfall in the eight monsoonal regions. Black crosses are shown when at least 80% of LUCID-CMIP5 mod-
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3.2. Remote Versus Local Land-Atmosphere Interactions

Numerous studies have suggested that remote biophysical effects of LULCC could affect regional precipita-
tion through a shift in major features of the climate system that modulates rainfall amount [Zheng and Eltahir,
1997; Medvigy et al., 2010; Swann et al., 2012; Devaraju et al., 2015; Smith et al., 2016]. For example, LULCC can
modulate the strength, timing, and location of the Hadley or Ferrel cell branches which further impact mon-
soon regimes [Zhang et al., 1996; Chase et al., 2000; Feddema et al., 2005; Snyder, 2010; Badger and Dirmeyer,
2015]. Here we find little significant changes in the zonal mean meridional mass stream function due to
future LULCC (Figure S7). In JJA, we find a small weakening in the rising branch of the Hadley cell but no sig-
nificant changes in Hadley and Ferrel cells during DJF and at annual scale in response to future LULCC. This
tends to indicate a nonsignificant and minor impact of changes in large-scale upper atmosphere circulations
on global monsoon rainfall. Besides, all eight monsoon regions are located near the position of the ITCZ, and
ITCZ shifts could therefore have strong impacts on the regional precipitation regime [Medvigy et al., 2010;
Devaraju et al., 2015]. However, in our analysis, models simulate on average a slight southward ITCZ shift
of 0.19° during JJA and almost no displacement during DJF and at annual scale (0.05° and 0.00° for
ENS-FUT, respectively; Table S3). The ITCZ anomalies we diagnose in response to future LULCC are thus very
small (i.e,, an order of magnitude less than the horizontal resolution of the GCMs) and are nonsignificant for
the ensemble mean. In consequence, teleconnections with regard to changes in cross-equatorial heat trans-
port or ITCZ shifts in response to future LULCC (RCP8.5 scenario) are not found to be significant contributors
to decreases in monsoon rainfall.

Nonetheless, local land-atmosphere interactions have also been suggested to have strong influence on mon-
soon rainfall patterns [Gupta et al., 2005; Pielke et al., 2007; Takata et al., 2009; Niyogi et al., 2010; Xue et al.,
2010; Halder et al., 2015]. Here we calculated the future biophysical changes in the land energy-balance com-
ponents (Figure 3a) and in land-atmosphere variables (Figure 3b). Although not significant for all variables in
all monsoon regions, a general pattern in the global monsoon system appears: future LULCC lead to a
decrease in evapotranspiration (Lg), an increase in sensible heat flux (Hs), an increase in incoming radiation
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Figure 3. ENS-FUT changes in (a) land energy-balance components and (b) land-atmosphere variables in the eight mon-
soonal regions. For Figure 3a, changes in sensible and latent heat flux (Hs and Lg), incoming shortwave and longwave
radiation at the surface (|SW and |LW) are displayed and units are W/m?. For Figure 3b, percentage changes in total cloud
fraction (Clouds), soil moisture, and vertical pressure velocity at 500 hPa (wsqo, negative values mean subsidence) are
shown and units are percent. Geopotential height at 500 hPa (ZGsqg) is shown on the same Y axis but with meter units.
Filled (hatched) bars depict ENS-FUT changes significant (nonsignificant) at 90th confidence level. Differences (RCP8.5-
L2A85) are calculated for DJF in Southern Hemisphere regions and for JJA in Northern Hemisphere regions on 2071-2100
period.

(LSW + |LW), a decrease in total cloud fraction and in soil moisture, more anticyclonic conditions (ZGsqo), and
increased tropospheric subsidence anomalies (wsq0), in @ majority of monsoon areas (Figure 3). Future LULCC
cause a change in sensible and latent heat flux partitioning by about +0.4 W/m? and—0.7 W/m? on average,
respectively, significantly in South Africa and East Asia. Incoming radiation at the surface is amplified by
about 1.2W/m? (of which approximately three fourths is due to increased solar irradiance, |SW). Some
changes in tropospheric circulation are found during monsoon seasons: an increase of 1.5m in ZGsgg
and by 1.7% in subsidence anomalies (negative wsqo values in Figure 3). Clouds and soil moisture are
found to be reduced by 0.5% and 0.8% on average. South Africa is the region that most strongly exhibits
this pattern which is in line with the strongest and most significant continental precipitation decline
(Figure S3). Averaged over their regional domain, few significant changes in land energy-balance compo-
nents and atmospheric variables are found in Australia (only region showing an increase in continental
precipitation and a south-north dipole, Figure S3) and in Indian region (aggregation of two different land
and ocean responses, Figure 2 for Indian;;). A special focus on the Indian monsoon is performed to detail
its regional specificity. The use of other larger Indian domains found in the literature (Figure S8) leads to
more sensitive results with larger changes in absolute rainfall (between [—1.4%; —1.8%] versus —1% here)
and a larger contribution of LULCC to Indian monsoon rainfall projections ([—11; —14%)] versus —9% here)
than the ones presented here. In addition, significant and substantial changes in land-atmosphere
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interactions are found in the Eastern India/Bangladesh region (Figure S9) but few elsewhere within the
Indian domain.

Thus, a coherent local land-atmosphere feedback, comparable to the one proposed by Xu et al. [2015], is
found to be a significant contributor to reduction in monsoon rainfall: deforestation leads to reduce water
interception, infiltration capacity, and evapotranspiration flux; decreases the water vapor amount to form
clouds which in turn increases incoming radiation; and favors anticyclonic conditions and subsidence anoma-
lies that further prevent local precipitation recycling and enhance surface drying.

4, Conclusion

LULCC-biophysical impacts on rainfall in each monsoon region are now assessed as realistically as possible
given current knowledge and global coupled modeling capabilities. By using multimodel simulations, based
on common global and realistic LULCC scenarios, our attribution analysis reveals that biophysical effects of
LULCC have a substantial drying role in monsoon regions. We quantify that they could weaken past and future
changes in monsoon rainfall by about one third on average. As only approximately two thirds of global cli-
mate models account for LULCC [IPCC, 2013], the current average projections of monsoon rainfall could be
overestimated. The underlying physical mechanisms imply a modulation of land-atmosphere interactions
(less surface moisture flux, more anticyclonic conditions) and significant changes in the local surface
energy-balance components (less evapotranspiration, more incoming radiation). In consequence, a positive
local soil moisture/precipitation feedback is thought to be a predominant driving mechanism rather than
remote effects involving ITCZ shifts or large-scale changes in heat transport that have been put forward in
recent literature. As the LULCC-biophysical effects are almost immediate compared to biogeochemical effects
(e.g., progressive CO, release), taking into account LULCC accurately could improve the forecast skill of mon-
soon rainfall on interannual and multidecadal time scales [Wang et al., 2015]. Note that our study does not
include the simulation of the irrigation potential, land management, and urbanization. These land use
changes are also found to modulate the hydrological cycle [Pielke et al, 2011; Mahmood et al., 2014].
Moreover, our results are established using simulations of relatively coarse spatial resolution, and regional
modeling analysis could improve the representation of the hydrological cycle in monsoon regions [e.g., Xue
etal., 2016]. To increase confidence and robustness in monsoon projections and climate mitigation strategies,
we stress here the importance of considering carefully LULCC for future projections of the hydrological cycle.
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