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BAR INSTABILITIES IN GALAXIES

Jeans's gravitational instability works by trapping particles in a growing potential well which may be moving relative to fixed inertial axes. In galaxies, azimuthal gravitational instability works not by trapping the stars but rather by trapping azimuthally the lobes of orbital streams of stars in a growing potential well which may be rotating relative to fixed axes. Such instabilities can only occur if the orbital lobes cooperate by moving in the direction of the torques on them. Such cooperation occurs for m=2 modes in the central regions of barred galaxies. A simple model for the type of collective instabilities involved is presented.

Introduction

In galaxies, as in the solar system, weak forces can have large e↵ects when they resonate. If a particular star has an orbit with radial period 2⇡/ and an average period around the galaxy 2⇡/⌦, then when viewed from axes that rotate at the rate ⌦ /2 it will close in a figure not unlike a centred ellipse (it is said to describe an inner Lindblad orbit). If this whole orbit is populated by an orbital stream, it will look stationary in the rotating frame but will tumble over and over at the angular rate ⌦ /2 in the fixed frame. A galaxy may be considered as an assembly of many such tumbling orbital streams. Our aim here is to analyse the near-resonant interactions between such streams because these can produce major changes.

If two orbital streams tumble at the same rate, ⌦ `, but one has its lobes a little ahead of the other, then the gravitational interaction of the streams will produce a forwards torque on the hindmost stream and a backwards torque on the foremost stream. Because the two tumbling rates are equal (resonant), this torque will not reverse but will continue until it changes the orbits. If however the tumbling rates are significantly di↵erent, then the torques will reverse as the angle between the lobes changes so the e↵ects will cancel. Near-resonant orbits with a small di↵erence of tumbling rates may nevertheless bring about significant changes before the di↵erence can lead to any reversal of the torque.

How does a backwards torque a↵ect a tumbling orbit ? In most parts of galaxies orbits of lower angular momenta have higher frequencies ⌦, , ⌦ /2 = ⌦ `. On that basis, we may expect ⌦ `to increase when the orbit is torqued back to lower angular momentum. In such cases the orientations of the lobe of the orbits display "donkey" behaviour. These donkey orbits fail to cooperate, for if one pulls forwards the other goes back and vice versa. In 1979 Lynden-Bell gave the criterion for 'non-donkey', i.e.cooperative behaviour of the orbital orientations, (@⌦ `/@ h) J > 0, where h is the angular momentum of the orbital stream, and 4⇡ J is the circulation around the orbital streams which is adiabatically invariant in the limit of slow growth rate for the perturbation. In central pats of galaxies, especially in the rising parts of rotation curves, the lobes of two orbital streams would attract and cooperate, vibrating around exact alignment and so forming a deeper potential to trap further orbits into that orientation, to make a bar.On this theory, a bar is the result of a cooperative gravitational instability which leads to alignment of the orbital lobes; The corresponding criterion is given here for a simple model.

The Instability Model

The following toy model describes a mechanism which may be involved in the production of bars in galaxies. Many aspects of the complexity of what is a real galaxy will be disregarded, making several simplifying assumptions. Our purpose is to gain insight into the type of collective instabilities triggered by resonant interactions.

Let us consider a set of rotating centred ellipses, which represents quasi-resonant inner Lindblad orbits viewed from a rotating frame ⌦ p . All orbits will have similar characteristic (i.e. same geometry and same mass, but di↵erent precession rates). Each ellipse will therefore be entirely specified by the orientation ' of its semi-major axis with respect to that rotating frame, and its angular frequency ⌦ `. The relative interaction of these ellipses will be assumed to derive from an e↵ective alignment potential:

where G is the constant of gravitation, and ' 1 ' 2 measures the relative azimuthal orientation of the two orbital lobes. In this model, A 2 is taken to be a constant. The torque that ellipse "two" operates on ellipse "one" may then be written:

D h 1 /Dt = @ 12 /@' 1 .
(2)

The response in angular velocity to such a torque can be worked out through the e↵ective moment of inertia ↵ of the ellipse which we define to be the adiabatic moment of inertia of the orbit 1/ (@⌦ `/@ h) J represented by this ellipse.

Let F ⇤ (', ⌦ `, t)d' d⌦ `be the number of ellipses with orientation ' between ' and '+d' and angular frequency ⌦ `between ⌦ `and ⌦ `+d⌦ `. This distribution function satisfies a continuity equation in (', ⌦ `) space:

@F ⇤ @t + @ @' (⌦ `F ⇤ ) + @ @⌦ `✓ D⌦ Dt F ⇤ ◆ = 0. ( 3 
)
Let us now assume that ↵ is a constant which we shall take to be ±↵, depending on the cooperative or "donkey" behaviour of the orbits. Then D⌦ `/Dt becomes independent of ⌦ `, so F ⇤ satisfies a Boltzmann equation:

@F ⇤ @t + ⌦ `@F ⇤ @' + @F ⇤ @⌦ `✓↵ @ @t ◆ = 0. (4) 
The density of ellipses which have orientation ' is given by:

⇢ (', t) = Z F ⇤ (', ⌦ `, t) d⌦ `.
(5)

The interaction potential generated by the "two" ellipses may be obtained by multiplying Eq. ( 1) with F ⇤ 2 and integrating over them:

(', t) = G A 2 Z ⇢ (' 2 , t) cos 2 (' ' 2 ) d' 2 . (6) 
The stationary axisymmetric unperturbed state obeys F ⇤ = F ⇤ 0 (⌦ `) and ⇢ = ⇢ 0 = constant. is therefore identically zero and Eq. ( 4) and Eq. ( 6) are trivially satisfied.

Let us now study the stability of such a state with respect to bisymmetrical instabilities. Let us write F ⇤ = F ⇤ 0 + f ⇤ , and linearize the equation with respect to the perturbation f ⇤ and . Eq. ( 4) becomes:

@f ⇤ @t + ⌦ `@f ⇤ @' + ↵ @F ⇤ 0 @⌦ `@ @' = 0 . ( 7 
)
Let us Fourier expand f ⇤ with respect to ':

f ⇤ = 1 X m= 1 e im' f ⇤ m (⌦ `, t) . ( 8 
)
Integrating this equation over ⌦ `gives:

⇢ = 1 X 1 e im' ⇢ m where ⇢ m = Z f ⇤ m d⌦ `. (9) 
Putting Eq. ( 9) into Eq. ( 6) leads to:

= ⇡G A 2 ⇢ 2 e 2i' + ⇢ 2 e 2i' . (10) 
When the perturbation has no |m| = 2 component, Eq. ( 7) becomes

@f ⇤ /@t + ⌦ `@f ⇤ /@' = 0 . ( 11 
)
The general solution is f ⇤ = g(' ⌦ `t) where g is an arbitrary function without an |m| = 2 component. As Eq. ( 7) is linear, its complete solution corresponds to a sum of such a solution (which propagates in(⌦, ') space) and a solution for the resonant modes |m| = 2. These modes are responsible for the gravitational instability. Let us look for growing modes, when f ⇤ m / e i!t , where ! has a negative imaginary part. From Eq. (10), Eq. ( 8), and Eq. ( 7), it follows that:

i (! + m⌦ `) f ⇤ m = i m ⇡ G ⇢ m A 2 ↵@F ⇤ 0 /@⌦ `for |m| = 2. ( 12 
)
Let us divide by i(! + m⌦ `)/A and integrate over all ⌦ `in order to build ⇢ m on the r.h.s. Calling ⌦ p = !/m (which corresponds to the angular frequency at which the perturbation is propagating), we find:

1 = ⇡ G Z ↵A 2 @F ⇤ 0 /@⌦ ⌦` ⌦ p d⌦ `. (13) 
Recall that ⌦ p has a positive imaginary part (for |m| = 2) corresponding to the growth rate of the instability.

Let us concentrate on marginal instability by letting ⌦ p 's imaginary part vanish. The integral may then be written as the sum of Cauchy principal part, and the residue corresponding to the pole at ⌦ `= ⌦ p :

1 = ⇡ G Z ↵A 2 @F ⇤ 0 /@⌦ ⌦` ⌦ p d⌦ ` i⇡ 2 G  ↵A 2 @F ⇤ 0 /@⌦ ⌦` ⌦ p , (14) 
where ⌦ p is now real. Identifying real and imaginary parts, it follows that:

1 = ⇡ G Z ↵A 2 @F ⇤ 0 /@⌦ ⌦` ⌦ p d ⌦ `, (15) 
and:

@F ⇤ 0 /@⌦ `= 0 for ⌦ `= ⌦ p . (16) 
This is the condition which fixes ⌦ p , the pattern speed of the bisymmetrical instability

Discussion

To the extrema for F ⇤ 0 correspond candidates for the angular frequency of the perturbation. Eq. ( 15) tells which (if any) is going to be dominant. The pattern speed of the perturbation as well as its global fate is therefore a characteristic of the unperturbed galaxy.

When ↵ is positive, we may rewrite Eq. ( 15) as

2 ⌦  1 2 G M↵ , (17) 
where 2 ⌦ measures the weighted dispersion of the distribution function in the neighbourhood of the resonance:

2 ⌦ = Z  A 2 ↵ @F ⇤ 0 /@⌦ ⌦p ⌦ ` d⌦ `/ Z A 2 ↵F ⇤ 0 d⌦ `. (18) 
Eq. ( 17) is in close analogy to the criterion for Jeans instability. It implies that the dispersion in ⌦ `around ⌦ p should be less than an e↵ective G.density, built out from the adiabatic moment of inertia ↵, and GA 2 , the amplitude of the e↵ective interaction potential. Note that ↵ scales like [Length 2 ] and A 2 like [Length 1 ]. 2 ⌦ represents the dispersion in angular velocity as viewed in the frame rotating at the frequency corresponding to the maximum of F ⇤ 0 . The criterion therefore implies that the lower the dispersion, the more e cient the instability.

The equivalent to the two stream instability in plasma physics corresponds here to a negative ↵ (i.e. repelling orbital streams) and a minimum of the distribution function @ 2 F ⇤ 0 /@⌦ 2 ` 0 i.e. two streams of repelling orbits passing through each other and triggering an instability at that minimum.

The above model has provided us with a picture of the basic types of instabilities which may occur at the resonnances in galactic discs.

= G A 2 cos 2 (' 1 ' 2 ) ,(1)

A more realistic description involving a detailled analysis of all possible resonnant interactions within the disc can be achieved using angle-action formalism.