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Abstract 21 

Recent adverse weather events have questioned the stability of crop production systems. Here, 22 

we assessed the vulnerability of eleven major crops in France between 1959 and 2018 as a 23 

function of climate, crafting a novel hazard framework that combines exposure and sensitivity 24 

to weather-related hazards. Exposure was defined as the frequency of hazardous climate 25 

conditions. Sensitivity of crops was estimated by the yield response to single and compound 26 

hazards, using observed yields available at département (county) level. Vulnerability was 27 

computed as the exposure-weighted average of crop sensitivities. Our results do not reveal any 28 

evidence for historically increased vulnerability of French crop production. Sensitivity to 29 

adverse weather events, and thus the overall vulnerability, has significantly decreased for six 30 

of the eleven crops between 1959 and 2018, and shown no significant decline or remained stable 31 

for the other five. Yet compound hazards can induce yield losses of 30% or more for several 32 

crops. Moreover, as heat-related hazards are projected to become more frequent with climate 33 

change, crop vulnerability may rise again in the future.  34 

  35 



 

3 
 

1. Introduction 36 

Recent adverse weather events have questioned the stability of crop production systems. Severe 37 

yield losses in France and Europe, for example in 2003, 2007, 2016 and 2018 (Beillouin et al., 38 

2020; Ben-Ari et al., 2018; Ciais et al., 2005), caused economic turmoil for farmers, states or 39 

insurances.  40 

There is a growing body of literature showing that severe yield losses can occur in Europe under 41 

adverse climate conditions (Beillouin et al., 2020; Ben-Ari et al., 2018; Ceglar et al., 2016; 42 

Ciais et al., 2005; Gouache et al., 2015). Both the frequency of crop exposure to adverse weather 43 

conditions and the sensitivity of crop yields to these can change over time, due to shifting 44 

climate or management regimes. The intensity and frequency of heat and drought waves are 45 

impacted by climate change (Field et al., 2012; Klein Tank and Können, 2003; Rahmstorf and 46 

Coumou, 2011; Samaniego et al., 2018; Sheffield and Wood, 2008; Stott, 2016; Trnka et al., 47 

2011). Moreover, Europe shows faster rates of warming than the global average (Bhend and 48 

Whetton, 2013) – for example, during summer 2018, temperatures 3°C warmer than usual 49 

prevailed in most places of the continent (Copernicus, 2020). Next to exposure, yield sensitivity 50 

to climate may also change over time. This sensitivity depends on several factors such as crop 51 

species, cultivars, and crop management practices like sowing dates, irrigation or fertilization, 52 

which may evolve temporally (Iizumi et al., 2014; Perronne et al., 2017). It is therefore 53 

necessary to simultaneously analyze the temporal evolution of crop exposure to climatic 54 

hazards and the sensitivity of yields to these hazards in order to understand the evolution of 55 

crop vulnerability.   56 

In addition to its strategic importance for European crop production, contributing 20% of the 57 

European Union agricultural grain production, France has the advantage of having long yield 58 

time series over more than 60 years. This makes it possible to analyze the frequency of climatic 59 

events that can have a negative impact on crop yields. Therefore, we were able to assess the 60 
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vulnerability of French agricultural crop production to climatic hazards for eleven staple crops 61 

(spring barley, maize, spring and winter oats, potatoes, spring and winter rapeseed, sugarbeet, 62 

sunflower, spring and winter soft wheat) over the last six decades. Our study is performed at 63 

département level (administrative division on level 3 of the unified NUTS territory 64 

classification, NUTS3; henceforth: department). Specifically, we address four research 65 

questions. First, have crop yield losses changed in frequency? Second, which weather hazards 66 

are mainly responsible for observed losses? Third, how sensitive is crop production to these 67 

hazards? Fourth, has the vulnerability of crop yields changed over time? 68 

  69 
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2. Material and methods 70 

 71 

2.1 Workflow 72 

We applied five steps, separately for each crop (Figure 1). First, we merged crop yield and 73 

weather data during the growing season into one combined data base (section 2.2). Second, we 74 

calculated trends in yields and defined loss events as harvests substantially below trend-75 

expected values (section 2.3). Third, we applied two machine learning methods to find loss-76 

defining weather variables (section 2.4). Fourth, we derived weather-related hazards based on 77 

these variables and observed losses. We calculated the frequency of these hazards and their 78 

trends over time (section 2.5). Fifth, we calculated the impact of hazards on yield levels (section 79 

2.6). This last step was performed for three different time frames, 1959-2018, 1959-1988 and 80 

1989-2018 to analyze changes over time.  81 

 82 

Figure 1: Workflow of the analysis in five steps. Ellipses are inputs and outputs, rounded rectangles denote operations 83 
and parallelograms the time frames for which analyses were carried out. 84 

 85 
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2.2 Input data 86 

2.2.1 Yield data 87 

Yield data from 1900 to 2016 are as described in Schauberger et al. (2018) and were extended 88 

by the data for 2017 and 2018. We inspect eleven crops: spring barley, grain maize, oats (spring 89 

and winter cultivars separately), potatoes, rapeseed (spring and winter), sugar beet, sunflower 90 

and soft wheat (spring and winter). Yields were available on French département level (counties 91 

or NUTS3 regions). Some values in the statistical yearbooks had to be considered as outliers or 92 

reporting errors; these were filtered before further calculations as described in SI Text 1. 93 

For all analyses related to weather hazards, we focus on the period 1959-2018 since SAFRAN 94 

weather data are not available before. For studying the frequency of yield loss events, we use 95 

yield data since 1900 to illustrate the development over a longer time. 96 

 97 

 98 

 99 

2.2.2 Growing seasons 100 

Sowing and harvesting months were extracted from MIRCA2000 (Portmann et al., 2010) at 101 

five arc-minute resolution (around 8 km) and re-mapped to departments. Seasons were assumed 102 

as fixed over the full time series and homogeneous across France (Table 1). One season was 103 

considered for barley (spring type), maize, potatoes, sugarbeet and sunflower and two seasons 104 

for oats, rapeseed and wheat (winter and spring types). Sowing was assumed on the first day of 105 

the sowing month and harvest on the last day of the harvesting month, respectively. Double 106 

cropping within this set of crops does not occur in France. For potatoes there are several possible 107 

varieties (short, middle and long maturation) which were all merged here, as the long-term data 108 

of relative shares per department were not available. 109 

 110 
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 111 

Table 1: Growing seasons, data count and harvested areas 112 

Crop Sowing 
month 

Harvesting 
month 

Yield data 
points a 

Departments 
(out of 76 b) 

Harvested 
area (kha)c 

Spring barley May September 3,648 65 523.0 
Maize April September 3,048 53 1,408.2 
Spring oats March July 3,421 60 41.3 
Winter oats October July 3,020 54 58.7 
Potatoes April September 3,746 66 128.0 
Spring rapeseed May October 501 10 1.7 
Winter rapeseed October July 2,984 57 1,225.8 
Sugar beet April October 1,545 28 391.8 
Sunflower May September 753 15 370.6 
Soft spring wheat March July 1,838 34 12.6 
Soft winter wheat October July 3,776 66 4,624.0 

a After filtering, SI Text 1 113 
b There are 76 departments in Köppen-Geiger climate zone Cfb; SI Figure 1 114 
c Average 2000-2010 115 
 116 

2.2.3 Weather data 117 

We used the SAFRAN mesoscale atmospheric analysis running from August 1958 to December 118 

2018 and produced by Météo France (Quintana-Seguí et al., 2008). SAFRAN provides weather 119 

variables at 8 km spatial and hourly temporal resolution. These were aggregated and spatially 120 

averaged to monthly variables for each department. Thirteen weather indices with agronomic 121 

importance (Barnabas et al., 2008; Ben-Ari et al., 2016; Brisson et al., 2010; Gouache et al., 122 

2015; Luo, 2011) were computed, belonging to three distinct categories: temperature, radiation 123 

and water (Table 2). SAFRAN precipitation and temperature are obtained by interpolation from 124 

a large sample of weather stations. Solar radiation at surface was calculated using a radiative 125 

transfer scheme and the vertical profiles (temperature, humidity, and cloudiness) analysed by 126 

the SAFRAN algorithm. We computed potential evapotranspiration (ETP) based on the 127 

Penman–Monteith equation.  128 
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Variables were checked for sufficient variation and cross-correlation (SI Figure 2). Since days 129 

below -17°C and above 34°C did not show reasonable variation due to limited occurrence, these 130 

two variables were removed. Moreover, monthly minimum and maximum temperatures were 131 

highly correlated with mean temperatures such that only the latter were kept for all analyses. 132 

The monthly water balance of precipitation minus potential evapotranspiration was highly 133 

correlated with precipitation such that we did not include this composite variable. For each 134 

crop, only the weather variables during its growing season were considered. This resulted in a 135 

maximum of 80 weather variables per crop: e.g. for winter wheat there is a 10-month growing 136 

season with 8 monthly variables. 137 

Since the year 1958 is incomplete in SAFRAN data, our hazard analysis only starts in 1959. 138 

 139 

Table 2: Weather variables, on monthly basis; discarded variables due to low variation or high correlation with others 140 

are written in italic font. 141 

Variable 
group 

Variable Unit Value range Used? Symbol 
(x=month) 

Temperature 

Number of days with Tmin 
below -17°C 

Days/ 
month 

0 ... 6.5 No  

Number of days with Tmin 
below 0°C 

Days/ 
month 

0 ... 31 Yes D0
x 

Number of days with Tmax 
between 0°C and 10°C 

Days/ 
month 

0 ... 31 Yes D0..10
x 

Minimum temperature °C -10.3 ... 22.2 No  
Mean temperature °C -7.9 ... 26.4 Yes Tm

x 
Number of days with Tmax 
above 30°C 

Days/ 
month 

0 ... 27.0 Yes D30
x 

Number of days with Tmax 
above 34°C 

Days/ 
month 

0 ... 15.9 No  

Maximum temperature °C -6.0 ... 33.7 No  

Radiation 

Shortwave surface incoming 
radiation 

W/m2 14 ... 339 Yes Rx 

Potential Evapotranspirationa 
(ETP; Penman-Monteith) 

mm/day 0.2 ... 7.1 Yes ETPx 

Precipitation amount mm/day 0 ... 19.1 Yes Prx 
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Water 
availability 

Fraction of days per month 
with precipitation > 0.1 mm  

None 0..1 Yes DPr
x 

Precipitation – 
Evapotranspiration 

mm/day -6.9..18.3 No  

a ETP is also strongly influenced by temperature, so classification is subjective  142 

 143 

2.3 Detecting yield trends and loss events 144 

Absolute yields in tonnes per hectare (t/ha) were de-trended to obtain deviations from a 145 

temporal trend (i.e. yield anomalies). For each department, a time trend was fitted by local 146 

regression (LOESS) with a span width of 0.66, in line with Ben-Ari et al. (2018). A yield loss 147 

was defined as a yield anomaly at least 10% lower than expected, with ‘expected’ being the 148 

LOESS-interpolated trends calculated separately for each crop and department. Yield loss 149 

events constituted 17-28% of the data, depending on the crop. 150 

 151 

2.4 Selecting important weather variables 152 

A selection of crop-specific important weather variables was performed by applying two 153 

variable filters (SI Text 2). Afterwards, two inference methods were applied to select important 154 

variables among the remaining ones: a binomial logit Lasso regression (Least Absolute 155 

Shrinkage and Selection Operator) with cross-validated choice of λ and Random Forests (RF; 156 

Breiman (2001)). In-sample and out-of-sample (OOS) validation were applied, omitting each 157 

year in turn from the training data, which provides a robust estimate of model performance for 158 

predicting occurrence of yield loss using independent data. Performance was measured with the 159 

AUC (Area Under the Receiver-Operator-Curve) as an established measure for dichotomous 160 

outcomes (Makowski et al., 2009). An AUC of 1 is tantamount to a perfect classification while 161 

a value of 0.5 denotes a performance equal to flipping a coin, that is, no better than pure chance. 162 

For each crop species, the method (Lasso or RF) with the higher out-of-sample AUC was 163 
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chosen for variable selection; in case of ties Lasso was preferred. Important variables were 164 

derived as described in SI Text 3. 165 

This multi-step selection of variables ensured that only those climatic variables were selected 166 

that provided robust evidence of a statistical association with crop yield losses in major 167 

agricultural areas of France. The models (Lasso or RF) were only used to select important 168 

variables; all further calculations  were based on non-parametric, model-independent methods 169 

(next sections) and observed data to avoid model assumptions. Lasso and RF were implemented 170 

in R 3.3.2 (R Core Team, 2016), using packages glmnet and randomForest. 171 

The yield data have an underlying spatio-temporal structure, i.e. yields may be correlated across 172 

space and time. Temporal auto-correlation in regression analysis usually requires the correction 173 

of confidence intervals, if predictions are made or when coefficients are interpreted. Yet, in our 174 

study, we use the Lasso and RF models only to select variables for further consideration in the 175 

hazards concept, thus nullifying the need for robust standard errors. Our cross-validated choice 176 

of the regularization parameter lambda in Lasso, where each year was omitted in turn, 177 

additionally reduced temporal correlations. Regarding spatial correlation, we explicitly aim for 178 

identifying variables and hazards relevant for major production areas in France, such that a 179 

putative bias in selection is not considered to undermine our results. Nonetheless, to test the 180 

robustness of variable selection, we applied it also to selected ‘representative’ departments(SI 181 

Text 4). 182 

 183 

2.5 Deriving the exposure of crops to climate hazards 184 

In this study, we define vulnerability by separately assessing exposure to climatic hazards and 185 

yield sensitivity (i.e. crop reponse) when these hazards occur. Though vulnerability may 186 

encompass social dimensions like the adaptive capacity (Krishnamurthy et al., 2014), we focus 187 



 

11 
 

only on physiological dimensions and assume the adaptive capacity as constant within the study 188 

time frame (see discussion). 189 

Yield-reducing hazards were defined as events where the value of one weather variable falls 190 

within a harmful range, characterized by increased odds of observing yield loss (Figure 2). 191 

These ranges were derived as follows. First, the values of each selected weather variable, e.g. 192 

the number of days above 30°C in July, were discretized into 50 equi-spaced bins (between the 193 

min and max observed values) and the fractions of crop loss events observed in these bins were 194 

calculated. Second, the 50 calculated loss fractions were interpolated by a spline curve, 195 

weighted by observation counts. A function relating odds of yield loss (O) to each considered 196 

weather variable was then derived from the smoothed curve (equation 1 in Table 3), following 197 

the definition of odds in statistics; see also Ben-Ari et al. (2018). We calculated the analogous 198 

loss odds for the prior share of losses in the database (i.e. the total frequency of losses during 199 

the whole time period considered) as reference case (equation 2). Third, loss-inducing ranges 200 

were defined as those ranges of observed weather variables where yield loss odd ratios (LOR, 201 

equation 3) were larger than 2, indicating an at least doubled chance to suffer from losses. 202 

Fourth, hazards (H) were defined as weather conditions associated with these loss-inducing 203 

ranges (equation 4). In the example (Figure 2), since a LOR > 2 is associated with more than 204 

7.4 days of Tmax above 30°C in July, the event “at least 7.4 days of Tmax above 30°C in July” 205 

defines one hazard H. A specific exposure E was then calculated for each hazard H as the 206 

frequency of H in all data (equation 5). Equations 1-5 are calculated separately for each crop 207 

and weather variable, but across departments and time. 208 

Table 3: Equations 1-5 209 

Nr Equation Description 

1 𝑂𝑂𝑙𝑙𝑤𝑤 =
𝑓𝑓𝑙𝑙(𝑤𝑤)

1 − 𝑓𝑓𝑙𝑙(𝑤𝑤)
 

𝑂𝑂𝑙𝑙𝑤𝑤 = loss odds and 𝑓𝑓𝑙𝑙(𝑤𝑤) = smoothed fraction of observed 
losses for w = value of a weather variable 

2 𝑂𝑂𝑝𝑝 =
𝑓𝑓𝑝𝑝

(1 − 𝑓𝑓𝑝𝑝)
 𝑓𝑓𝑝𝑝 = #𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

#𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
, i.e. the prior share of losses 
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3 𝐿𝐿𝐿𝐿𝑅𝑅𝑤𝑤 =
𝑂𝑂𝑙𝑙𝑤𝑤

𝑂𝑂𝑝𝑝
 

𝑂𝑂𝑙𝑙𝑤𝑤 are loss odds from eq. 1 and 𝑂𝑂𝑝𝑝 prior odds from eq. 2; 
LOR is then the loss odds ratio 

4 𝐻𝐻𝑤𝑤 ≔ {𝑤𝑤 | 𝐿𝐿𝐿𝐿𝑅𝑅𝑤𝑤 ≥ 2} 𝐻𝐻𝑤𝑤 as loss-inducing hazards and w = value of a weather 
variable 

5 𝐸𝐸𝐻𝐻𝑤𝑤 ≔
#𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐻𝐻𝑤𝑤

#𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
 

𝐸𝐸𝐻𝐻𝑤𝑤 as exposure to hazards and #Data = the number of data 
rows (in the numerator only those where weather is 
‘hazardous’ according to eq. 4 are counted) 

 210 

 211 

 212 

 213 

Figure 2: Definition of yield hazards, illustrated with the example of days with Tmax above 30°C in July for spring wheat. 214 

Red circles denote observed loss fractions (loss count over total observations) per discretized x value; circle size is log-215 

proportional to observation count. The red curve is a spline interpolation of these loss fractions, with fractions weighted 216 

by data count. The solid brown line denotes the odds ratio of losses (LOR, eq.3, right y axis); the dashed horizontal 217 

brown line is the hazard definition threshold of odds ratio >= 2. The blue rug at the bottom denotes data density. The 218 

dashed vertical grey lines indicate the range of values of the considered weather variable defining the hazard; here: if 219 

there are more than 7.4 days above 30°C in July, this is detrimental for spring wheat, as the loss odds increase 220 

substantially. The loss fractions in the right margin frequently assume extreme values (0 or 1) due to data scarcity in 221 

this high temperature range – which justifies the weighting of the spline interpolation by observation count. 222 

 223 
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2.6 Calculating hazard impacts: sensitivity and vulnerability 224 

For each hazard H, yield sensitivity (S) was estimated as the observed yield reduction in the 225 

case the hazard occurs. Yield reduction was defined as the difference between the median yields 226 

(as ratios to trend-expected yields) without and with the hazard event (equation 6). To estimate 227 

the uncertainty of S we used a bootstrapping approach which accounts for the spatial correlation 228 

between departments (SI Text 4). 229 

 230 

𝑆𝑆𝐻𝐻𝑤𝑤 ∶= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌𝐻𝐻𝑤𝑤) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛 𝐻𝐻𝑤𝑤)  (eq. 6) 231 

with 𝑆𝑆𝐻𝐻𝑤𝑤 the sensitivity of yields, 𝑌𝑌 =  𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌

, i.e. the attained yield percentage, where 232 

𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛 𝐻𝐻𝑤𝑤 refers to yield cases without ‘hazardous’ weather conditions, while 𝑌𝑌𝐻𝐻𝑤𝑤 refers to yield 233 

cases with weather hazards. S < 0, therefore, denotes a loss due to hazards. 234 

 235 

Vulnerability (V) to hazards was calculated as the accumulated impact of all hazards as 236 

exposure-weighted mean yield losses (equation 7). V can be interpreted as the expected (i.e. 237 

annual average) yield loss due to all weather hazards across the considered time period. 238 

Uncertainty of V was estimated with bootstrapping analogously to S. 239 

 240 

 𝑉𝑉 = ∑ 𝐸𝐸𝐻𝐻𝑤𝑤  ∗ 𝑆𝑆𝐻𝐻𝑤𝑤𝐻𝐻𝑤𝑤

∑ 𝐸𝐸𝐻𝐻𝑤𝑤𝐻𝐻𝑤𝑤
    (eq. 7), with V as vulnerability, 𝐸𝐸𝐻𝐻𝑤𝑤 the exposure 241 

to hazardous weather from eq. 5 and 𝑆𝑆𝐻𝐻𝑤𝑤 the sensitivity to hazards from eq. 6 242 

 243 

E, S and V were calculated independently over 1959-2018 and two sub-periods 1959-1988 and 244 

1989-2018. Interactions of hazards were studied by calculating E and S for all pairs of jointly 245 

occurring hazards. A change in frequency of interactive hazards between the two successive 246 

periods was also assessed. 247 

 248 
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  249 
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3. Results 250 

 251 

3.1 Yield losses declined in frequency and magnitude since 1920 252 

The frequency of loss events (defined as at least 10% below trend-expected yields) has changed 253 

over time (Figure 3a). The decade 1940-49 shows a high frequency of loss events for maize, 254 

potatoes, sugarbeet, sunflower and winter rape. There was a downward trend of losses since 255 

1920 (data for season-specific crops start in 1943), halving the number of departments affected 256 

by losses from approximately 40% in the 1920’s-40’s to less than 20% around 1990. Recent 257 

decades since 1990 have, however, seen no further decline in crop yield losses. For several 258 

crops, loss frequency has rather increased since then. Notwithstanding, the average magnitude 259 

of losses in relation to expected yields (i.e., the expected loss percentage in case a loss of at 260 

least 10% occurs) has continuously decreased over time (Figure 3b), and has become similar 261 

across crops in recent years (approximately -18% in the 2010s). Although 2016 was a 262 

remarkably bad year for winter wheat (Ben-Ari et al., 2018), we did not observe a clear signal 263 

in loss fractions in the 2010s since the other years of the decade were statistically compensating 264 

and because the severe yield losses observed in 2016 were limited to certain regions and crop 265 

species. 266 

Losses tended to co-occur across crops and departments (SI Figure 3). Between crops, those 267 

with the same seasonality (e.g. spring oats and barley) show losses in the same year and 268 

department in approximately half of all cases. Simultaneous losses were also frequently 269 

observed for the two different season types of the same crop (e.g. spring and winter oats). For 270 

all eleven crops, losses mostly occurred in small clusters encompassing few French 271 

departments, but some events affected more than 50% of departments, indicating substantial 272 

losses in a larger region (SI Figure 3b).  273 

 274 
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 275 

(a)  276 

 277 

(b) 278 

Figure 3: Evolution of yield losses over time, defined as yields at least 10% below trend-expected yields. (a) Frequency 279 

of yield losses per decade, relative to all harvest events in that decade. (b) Expected shortfall, i.e. the attained percentage 280 

of trend-expected yields if a loss event occurs. For (a) and (b), the grey dashed line is the spline interpolation between 281 

the means across crops, and the brown dotted vertical line denotes the start of our hazard analysis with SAFRAN 282 

climate data. In (b), the black horizontal dotted line indicates the threshold for defining an observed yield percentage 283 

as “loss” compared to trend-expected yields. In both panels, the points for individual crops are slightly staggered along 284 

the x axis to avoid overlaps within a decade. 285 

 286 
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3.2 Weather is involved in the majority of yield loss events 287 

The performance (AUC) of the two machine learning methods to separate losses from non-288 

losses is shown in Table 4. For spring barley, maize, spring oats, potatoes and sunflower, 289 

Random Forests (RF) produced more accurate out-of-sample estimates than Lasso. Thus, 290 

important variables were selected based on RF in these cases. For the other six crops the Lasso-291 

based variable selection was chosen. RF in-sample performance is consistently equal to one, 292 

suggesting a perfect model fit. Yet the substantially lower OOS performance shows that this 293 

pattern may be due to overfitting. An ancillaryestimate for maize, where the Lasso model was 294 

trained on all years except 1976 and 2003 (where substantial weather-induced yield losses 295 

occurred), produced no substantial difference in model performance (AUC = 0.79, AUC-OOS 296 

= 0.73) compared to Lasso with all years, and the selected variables were the same, except for 297 

D30
9 which was additionally selected in the model without 1976 and 2003. 298 

 299 

For all crops, the most influential variables were related to temperature and precipitation (SI 300 

Figure 5). Radiation-related variables were less frequently selected, mostly in the form of ETP. 301 

Temperature extremes (high or low) were found important in almost all crops for determining 302 

whether yield losses occur. Specifically, the variables most often selected were D30
6 (all 11 crop 303 

types), DPr
5 (10 crops), Tm

6 (9 crops), DPr
7 (7 crops), Pr5, Pr7, D30

5, D30
7, Tm

5 and Tm
9 (for 6 304 

crops each). Other variables were selected for five or fewer crops. Interaction variables between 305 

temperature and precipitation (tested across all months) were never selected. Bootstrapped 306 

variable selection results are portrayed in SI Figure 6, mostly showing good correspondence to 307 

those variables selected with the full data set. 308 

 309 

 310 
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Table 4: Method performance (Area Under the Curve, AUC) for simulating yield losses. Full: full data used in 311 

estimation, OOS: out-of-sample with each year omitted in turn. The chosen method for selecting important variables 312 

is indicated in the last column. 313 

Crop LASSO Random Forest Chosen method 
 Full OOS Full OOS  
Barley, spring 0.67 0.50 1.00 0.57 Random Forest 
Maize 0.80 0.72 1.00 0.76 Random Forest 
Oats, spring 0.67 0.52 1.00 0.65 Random Forest 
Oats, winter 0.73 0.60 1.00 0.60 Lasso 
Potatoes 0.65 0.60 1.00 0.63 Random Forest 
Rapeseed, 
spring 

0.72 0.58 1.00 0.57 Lasso 

Rapeseed, 
winter 

0.74 0.60 1.00 0.58 Lasso 

Sugar beet 0.80 0.69 1.00 0.68 Lasso 
Sunflower 0.81 0.72 1.00 0.74 Random Forest 
Wheat, spring 0.72 0.66 1.00 0.64 Lasso 
Wheat, winter 0.81 0.71 1.00 0.64 Lasso 

 314 

3.3 Weather hazards are often related to low precipitation and high 315 

temperature   316 

Hazards defined from the selected yield-influencing weather variables form a unique set for 317 

each crop, but with some overlaps (Table 5 for maize and winter wheat; SI Table 1 for other 318 

crops). Across crops, the most frequent hazards are related to the number of days above 30°C 319 

in June (11 times, i.e. all crops) or July (5 times), high mean temperature in June (9 times), 320 

number of rainy days > 0.1 mm or absolute precipitation in May (4 and 6 times) and high mean 321 

temperature in April (4 times). Other hazards were selected three or fewer times. 322 

In a comparative estimate for maize, the sets of hazards derived independently for the two time 323 

periods 1959-1988 and 1989-2018 (instead of the full time frame as above) were not identical: 324 

20 hazards were identified for the first period, but only 11 hazards for the second. Before 1989, 325 

low and high precipitation in May increased the odds of yield loss, but after 1989 only excess 326 

May precipitation showed detrimental effect on yields. Low July precipitation remained 327 
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problematic in both periods, with similar thresholds. Low precipitation levels in June or August 328 

were identified as yield-reducing only before 1989. Both high and low mean temperatures in 329 

June had negative effects before 1989, but only high temperatures remained hazardous 330 

afterwards, indicating that cold-related yield losses were reduced. Hazards related to September 331 

mean temperatures were only selected before 1989. For D30
6, D30

7 and D30
8, the critical 332 

thresholds increased after 1989. Low evapotranspiration in May or high levels in July and 333 

August remained equally noxious over time, with similar thresholds. 334 

 335 

Table 5: Yield-reducing hazards for maize and winter wheat; hazards for the other nine crops are provided in SI 336 

Table 1 337 

Weather variable Maize Winter wheat 
Days above 30°C D30

6 > 5.4; D30
7 > 8.7;  

D30
8 > 14.2 

D30
6 > 6.6 

Days between 0 and 10°C D0..10
10 > 15.4 D0..10

1 < 11.2 
ETP ETP5 < 1.9; ETP7 > 4.8;  

ETP8 > 4.2 
ETP10 < 0.6; ETP2 < 0.4; ETP3 < 
0.8 

Precipitation Pr5 > 6.2; Pr7 < 0.9;  
Pr8 < 0.6 

Pr11 > 7.8; Pr2 > 7.0 

Days with precipitation DPr
5 > 0.9; DPr

6 < 0.2; 
DPr

7 < 0.3; DPr
8 < 0.3 

DPr
10 < 0.2; DPr

3 < 0.2 

Radiation  R11 < 28; R4 < 118; 
R6 < 147; R6 > 292 

Mean temperature Tm
6 > 20.1; Tm

9 > 19.0 Tm
10 < 6.7; Tm

4 > 12.2; Tm
6 > 20 

 338 

 339 

3.4 The exposure to weather hazards has changed over time 340 

The climate during the growing season has changed between 1959 and 2018 for many yield-341 

influencing variables (Figure 4, SI Figure 7). Trends towards higher temperatures are 342 

particularly apparent: there are more heat days above 30°C in June and July, and mean 343 

temperatures in all months have increased (Figure 4 for April and June). Accordingly, 344 

hazardous upper temperature thresholds were more often exceeded in recent decades than in 345 
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the beginning of our study period, while low-temperature hazards occurred less frequently. 346 

Shifts in atmospheric evaporative demand, precipitation or solar radiation cannot be detected 347 

for all months. Still, hazardous conditions due to high radiation in June – tantamount to low 348 

cloudiness or precipitation – have become more frequent for several crops. Some evidence for 349 

optimal growth envelopes was identified: an example is radiation in June for winter wheat, 350 

where both too low and too high values were found to reduce yields (Table 5; Figure 5b). The 351 

years 1976, 2003, 2005 and 2017 were saliently hot in June and 1976 additionally dry in May, 352 

with associated hefty yield losses in many crops. Compound hazards, defined as two hazards 353 

during the same season, have changed in frequency but not with a clear pattern (SI Figure 11).  354 

Overall, the exposure to yield-reducing hazards has changed over time along with trends in 355 

climate. Exposure to hazardous high temperatures has increased during the recent period, while 356 

exposure to cold-related hazards has decreased. Exposure to hazards related to radiation or 357 

precipitation shows no clear trend. 358 

 359 

 360 

                 (a) Days above 30°C in June                               (b) Mean temperature in June 361 

 362 
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               (c) Rainy days (fraction) in May                             (d) Days above 30°C in July 363 

 364 

                     (e) Precipitation in May                                   (f) Mean temperature in April 365 

 366 

Figure 4: Trends in yield-related weather variables and associated hazard thresholds for different crops. Here, only the 367 

four major-area crops and six most frequent hazards are shown; all crops and further hazards are provided in SI Figure 368 

7.  For each panel, light grey lines denote the trajectories for individual departments. Darker shades of grey indicate 369 

the 5%, 50% and 95% quantiles. The solid bold black line is the smoothed trend in annual medians across departments. 370 

Coloured horizontal lines indicate hazardous thresholds for single crops, if defined (legend at the bottom). Whether 371 

hazards occur for too high or too low values can visually be deduced from the line position – if at the lower margin of 372 

observed values, a hazard is related to too low values, and vice versa. For some crops there are two thresholds (lower 373 

and upper margin) for the same variable, indicating that an optimal climate envelope is required for growth; an example 374 

is May precipitation for spring barley. 375 

 376 

 377 

3.5 Yields are sensitive to climatic hazards   378 

Weather-related hazards reduced crop yields by up to more than 25% (Figure 5; SI Figure 8). 379 

Yet, despite substantial average yield reductions, the occurrence of a hazard does not always 380 

induce a severe loss, as the bootstrapped uncertainty bars (Figure 5) and the existence of non-381 

losses even under hazard occurrence in our data base show. For example, too few precipitation 382 

days in March increase the risk for loss (loss odds ratio > 2), but on average they are not harmful 383 

to winter wheat (Figure 5b). Uncertainty of losses is higher for those hazards that occur less 384 
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frequently; for example, a clear loss signal cannot be detected for high precipitation in 385 

November for winter wheat. 386 

For maize, the strongest yield losses are observed for a high number of hot days above 30°C in 387 

June or August and lack of precipitation between May and July. Particularly June to August are 388 

decisive for maize growth, with most hazards occurring in these months. The divergent impacts 389 

of hazards on maize over time are illustrated in Figure 6 (an analogous plot for winter wheat is 390 

in SI Figure 9). Hazards due to hot days in June occur more frequently after 1989 but have less 391 

severe impacts. For maize, cold days-hazard D0..10
10 has become much less frequent after 1989, 392 

and even turned into a positive effect for yields then. For winter wheat, the strongest yield 393 

reductions are caused by many hot days or high average temperature in June, and hot conditions 394 

in April. Hazards for winter wheat have also changed in frequency and impacts over time (SI 395 

Figure 9 plus explanations there). For other crops, strong losses are frequently observed for hot 396 

days in June or non-optimal precipitation in May (Figure S7). 397 

Compound hazards may prove particularly detrimental for yields. This is obvious for several 398 

combinations of hazards (SI Figure 10). For maize, the joint occurrence of a hot and dry June 399 

leads, on average, to yield losses of 25% and has occurred in 1.3% of the department-year 400 

combinations in our database. Spring rape yields can go down by 56% if plants suffer from 401 

limited rainfall in June and hot conditions in July. For winter wheat, high irradiation and hot 402 

conditions in June reduced yields by 15% on average and occurred in 0.9% of cases. Similar 403 

detrimental compound effects can be identified for all crops (SI Figure 10). 404 

 405 

 406 
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 407 

(a) Maize 408 

 409 

(b) Winter wheat 410 

Figure 5: Loss odds ratios (LOR, equation 3) under hazards for (a) maize and (b) winter wheat along with their impacts 411 

on crop yields (sensitivity S, equation 6) estimated over the full time frame (1959-2018). For both crops, the upper half 412 

shows the loss odds ratios, i.e. the ratio of chances to observe a loss (at least 10% below expectation) in comparison to 413 

average conditions. A LOR of 2, for example, indicates a doubled chance that losses occur compared to the base case. 414 
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The bottom half shows the sensitivity of yields to hazards (observed yield loss in % when the hazard occurs). Black lines 415 

indicate uncertainty ranges based on bootstrapping (whiskers extend to 5% and 95% percentiles of 500 values). The 416 

direction of the hazard, too low or too high, is indicated with a [-] or [+] symbol, respectively. Weather variables can 417 

occur twice, e.g. radiation in June for winter wheat – only an optimal envelope of radiation does not induce yield losses. 418 

Numbers on top indicate the frequency a hazard occurs in the database (exposure 𝑬𝑬𝑯𝑯𝒘𝒘, equation 5). Plots for the other 419 

nine crops are provided in SI Figure 8. Impacts of compound hazards are shown in SI Figure 10. 420 

 421 

 422 

Figure 6: Loss odds ratios and sensitivity of maize yields to weather hazards, similar to Figure 5a, but here split into 423 

two time frames: 1959-1988 (left bars for each hazard; grey & red) and 1989-2018 (right bars; bronze & brown). Some 424 

bars extend beyond the margins and were clipped for display reasons; the numbers are given in the bars (“Inf” means 425 

infinity, i.e. there are no non-loss cases). Other elements are analogous to Figure 5. 426 

 427 

3.6 Crop vulnerability to weather hazards has not increased since 1959 428 

Exposure-weighted average loss – the vulnerability – of French crops to weather hazards in an 429 

average year has decreased for six crops and remained similar for the other five between 1959-430 

1988 and 1989-2018 (Figure 7). For maize and winter rape, impacts stayed virtually constant 431 

with only a non-significant decrease. For winter oats, sunflower and winter wheat, the average 432 
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impacts of hazards decreased slightly but remained similar in magnitude. For spring barley, 433 

oats, rape and wheat, potatoes and sugarbeet, vulnerability decreased significantly by 50% or 434 

more – in particular for potatoes and spring rape. This decrease is partly due to fewer hazards, 435 

often related to cold temperatures, and partly due to mitigated impacts.  436 

 437 

 438 

Figure 7: Vulnerability (exposure-weighted yield loss in % of expected yield, V from eq. 7) of weather hazards on crop 439 

production in an average year for three time frames: 1959-2018, 1959-1988 and 1989-2018. Black lines denote the 5% 440 

and 95% percentile range of 500 bootstrapped estimates. 441 

  442 
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4. Discussion 443 

We have presented an approach to estimate weather influences on observed crop losses in 444 

France, based on a vulnerability index combining exposure and yield sensitivity to weather-445 

related hazards. Weather emerges as a major cause of yield loss for the eleven staple crops 446 

studied. We found that the vulnerability to weather hazards has decreased for six crops  (spring 447 

barley, oats, rapeseed and wheat, as well as potatoes and sugarbeet) since 1959 and remained 448 

stable for winter oats, winter rapeseed and sunflower as well as the two major crops maize and 449 

winter wheat. This declining or stable vulnerability is observed despite an increase of crop 450 

exposure to some hazards, in particular high temperatures. Compound hazards can have 451 

particularly damaging effects on crops and require the attention of farmers and crop breeders. 452 

 453 

4.1 Input data 454 

The outlier filtering of the department-level crop yield data may mask some true extremes in 455 

particular at the lower end. With the current data set we see, however, no possibility to dissect 456 

a possible confounding of reporting errors with truly unusual values. The 1940’s serves as an 457 

egregious example: this decade was likely the driest in the 20th century (Bonnet et al., 2017; 458 

Bonnet et al., 2020; Hanel et al., 2018; Sanson and Pardé, 1950) which reduced crop yields, but 459 

may also have suffered from deteriorating agricultural practices to combat these droughts, or 460 

less accurate harvest reporting during and after World War 2 (Figure 3). The study of weather 461 

influences on yields only starts in 1959, though, so is not affected by this issue. Farm-specific 462 

management decisions or extreme losses are usually not visible at the department level, despite 463 

local economic relevance, but may balance out at the aggregated spatial and temporal scale 464 

considered here. There is no distinction between rainfed and irrigated agriculture, although 465 

increased water availability could drastically alter plant responses to heat or drought 466 

(Schauberger et al., 2017). Irrigation in France has increased, but is still rather marginal for 467 
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most crops except maize (maize: around 40%, wheat: 2.5% in 2010) and long-term data is not 468 

available on department level (Gammans et al., 2017; Hawkins et al., 2013), such that we 469 

decided to neglect irrigation fractions. For future yield prospects, irrigation may play a larger 470 

role (Trnka et al., 2019). Growing seasons were assumed as fixed over the 60-year time frame 471 

and all considered departments, based on a data set around the year 2000 (Portmann et al., 472 

2010). Both assumptions do not reflect variations of planting and harvesting dates at local level. 473 

But as we consider seasons on monthly time scale, and farmer response to shifting seasons 474 

seems slower than the observed changes (Menzel et al., 2006), there is sufficient flexibility to 475 

subsume individual variations. Finally, the omission of a tenth of departments per crop (those 476 

with the smallest cultivation areas) was performed to avoid spurious effects from marginal 477 

lands. This is not assumed as problematic, since, first, total omitted areas are small (less than 478 

2%) and, second, previous analyses (Schauberger et al., 2018) showed no sensitivity to such 479 

omission. 480 

 481 

The SAFRAN weather data provided by Meteo France are the best available long-term 482 

reanalysis data set for France on high resolution (originally 8 km and with daily values) 483 

(Quintana-Seguí et al., 2008; Vidal et al., 2010). Like many weather datasets, SAFRAN may 484 

suffer from artificial low-frequency temporal variations since input station data are generally 485 

not homogenized. Temperature and precipitation trends over France in SAFRAN are 486 

nonetheless acceptable (Vidal et al., 2010). SAFRAN uses a large amount of precipitation and 487 

temperature stations to properly represent regional climate variations, which makes this dataset 488 

suitable for analysing processes at the department level. The quality of the variables may vary, 489 

though: in particular, lower confidence can be given to solar radiation (and consequently ETP 490 

that ingests solar radiation) as it is based on a radiative transfer scheme. There is a climate 491 

gradient in France, from North to South, such that response equations derived for the whole 492 
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country may be inadequate. We accounted for this by considering only those departments in the 493 

same Köppen-Geiger climate zone (Cfb), but encourage further work on higher resolution. 494 

 495 

4.2 Yield losses 496 

The frequency of yield losses has changed since 1900 with lowest loss frequencies observed 497 

around 1990. But there was a slight increase of loss propensities in the three recent decades for 498 

most crops. The latter could be a consequence of physiological yield limits being reached 499 

(leading to more pronounced negative than positive amplitudes), no further improvement of 500 

management to avoid losses, more adverse weather conditions or a combination of these factors. 501 

As discussed in Schauberger et al. (2018), the reaching of a physiological yield limit is unlikely 502 

for the crops considered here. Changes in management are difficult to assess since the required 503 

high-resolution and large-scale, long-term data are not available – but we deem it unlikely that 504 

loss aversion techniques have deteriorated rather than improved in the last 30 years. A related 505 

point is that the attained percentage of yields within loss events (Figure 3b) has increased, 506 

indicating that although losses have recently increased in frequency, they remained stable in 507 

average severity. Therefore, the remaining option is changes in climatic growing conditions. If 508 

crop-specific, optimal climatic envelopes for temperature or precipitation (Barnabas et al., 509 

2008; Porter and Gawith, 1999) are exceeded , the odds for losses may increase. Tigchelaar et 510 

al. (2018) point to a higher yield variation in warmer climates, even if climate variation itself 511 

has not changed. Moreover, yield losses do not need to be as extreme as in 1976, 2003 or 2016 512 

to cause economic turmoil. Our analysis aims to shed light on the causes for such sub-extreme 513 

losses, too. 514 

For selecting yield-related weather variables, yield loss was expressed as a dichotomous 515 

variable similarly to previous studies (Ben-Ari et al., 2018; Mathieu and Aires, 2018), with a 516 

critical threshold of 10% below expected yields. The aptitude of a unique threshold for all crops 517 
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is debatable, though, as this assumes that all losses have the same costs. But this could be 518 

inappropriate as for a farmer a 5% loss in winter wheat may be costlier than a 20% loss in spring 519 

rape. We limit the influence of our assumption by later inspecting continuous percentages of 520 

yield loss under hazards, using the fixed-percentage definition only for identifying hazards. 521 

Across crops in the same departments, loss events are only partly co-occurring (SI Figure 3a), 522 

indicating that, on department scale, losses in one crop can be compensated by normal or above-523 

normal harvests in others. Only few events affected large regions (SI Figure 3b), indicating a 524 

current robustness of the crop distribution across France.  525 

 526 

4.3 Variable selection and model quality 527 

Lasso regression and Random Forest are widely applied modelling strategies also in agronomy. 528 

We used the method with the better out-of-sample fit per crop to identify the variables with the 529 

strongest impacts on yields, but not to compute the exposure and yield sensitivity. With this 530 

approach, our main conclusions do not depend on model assumptions. We considered the 531 

temporal and spatial correlation of yield losses (SI Figures 3, 4) which could affect model 532 

predictions by altering confidence intervals, to be unproblematic for variable selection since 533 

our approach is descriptive, not predictive and does not rely on coefficient values. Moreover, a 534 

bootstrapped variable selection with reduced spatial correlation shows similar results as with 535 

the full data set (SI Text 4, SI Figure 6), indicating robustness of the selection process. 536 

We use the Area Under the Curve (AUC) as criterion for model selection, a standard measure 537 

for dichotomous target variables (Makowski et al., 2009). The high AUC values (> 0.7 can be 538 

considered as acceptable (Guimaraes Nobre et al., 2019)) for all crops and out-of-sample AUC 539 

values >= 0.6 for nine crops indicate that weather played a major role in yield losses. The 540 

additional consideration of out-of-sample performance is relevant, as the discrepancy to in-541 

sample performance in particular for Random Forests shows. Notably, non-parametric models 542 
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like Random Forests are not necessarily outperforming more constrained, linear approaches 543 

like Lasso (Das et al., 2018). The Lasso model was able to capture climatic drivers of yield 544 

losses even when severe loss events were omitted from the training database, indicating a 545 

reasonable model fit (tested for maize). 546 

More temperature-based than precipitation-based variables were selected (SI Figure 5), which 547 

could be due to a higher relevance of temperature, more accurate representation of temperature 548 

(compared to precipitation) when aggregated to department scale or a bias in the initial set of 549 

variables with four temperature, but only two precipitation variables. Interactions between 550 

temperature and precipitation were not selected by the models, in contrast to Ben-Ari et al. 551 

(2018), where the occurrence probability of extreme loss was linearly modelled for winter 552 

wheat in Northern and Central France. The ensuing analysis of compound hazards, though, 553 

underlines the relevance of noxious interactions (SI Figure 10). 554 

 555 

 556 

4.4 Hazard definition 557 

We defined hazards to crop growth as those value ranges of weather variables where reported 558 

crop yield losses on department level are substantially more frequent. We used a threshold of 559 

two for odds ratios, indicating a doubled chance of observing losses, instead of a suggested 560 

odds ratio of at least 3.2 (Kass and Raftery, 1995) for ‘substantial evidence’. We chose the more 561 

inclusive threshold for two reasons: first, to consider a larger number of observed hazards and, 562 

second, since we inspect the actual impacts of hazards in a separate step, allowing them to adjust 563 

to observational data. The consistently negative impact of hazards on crop yields (with few 564 

exceptions mostly for rarely observed hazards, SI Figure 8) indicates that hazards are 565 

reasonably defined. Yet, the non-parametric definition may suffer from three drawbacks. First, 566 

odds may be sensitive to the size of the segments used (Figure 2), though we assume 50 567 
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segments to be sufficiently flexible. Second, when studying single hazards, unconsidered 568 

interactive effects of simultaneous hazards may underestimate impacts. We argue that these 569 

compound impacts are contained in the single-hazard impacts (Figure 5) as implicit sub-cases 570 

for either hazard and are also explicitly addressed (SI Figure 10). Third, the building of hazards 571 

based on pre-selected variables may overlook some hazards based on non-selected variables, 572 

but we chose this two-step approach to estimate the overall contribution of weather to yield 573 

losses and to avoid spurious findings based on non-informative variables. The advantage of the 574 

non-parametric hazard definition is that subsequent analyses are not limited by model quality. 575 

A comparable two-step approach has been taken by Alipour et al. (2020) for estimating flood 576 

damage in the South Eastern US, identifying relevant variables first and then modelling impacts 577 

in a second step.  578 

The identified hazards and associated thresholds changed when defined for different time 579 

frames instead of the full 60-year window (tested for maize). The results support the same 580 

interpretation as observed in Figure 6: while heat-related hazards have often become more 581 

prevalent, cold-related hazards diminished. To have a consistent framework over time, we 582 

therefore used only hazards defined with the full data set. 583 

Several hazards are shared between crops (Table 5, Table S1), in particular the detrimental 584 

effect of too many heat days in June, where all plants undergo decisive development stages like 585 

anthesis or grain filling. The right amount and distribution of spring precipitation (March to 586 

May) is also decisive for all crops. Nonetheless, each crop portrays its idiosyncratic growth 587 

constraints and combination of hazards. This is advantageous for agricultural resilience when 588 

not all crops are equally affected by adverse weather conditions. 589 

For few crops, in particular potatoes, maize, and winter oats, a significant temporal 590 

autocorrelation of the yield anomalies was found in some departments. This correlation was 591 

partly considered in our statistical analysis (by annual cross-validation in the variable selection 592 

and by bootstrapping), but the effects of some of the selected climate hazards may have been 593 
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overestimated for these crops as the data in the cross-validation or bootstrapping were 594 

potentially not fully independent if autocorrelation occurred. 595 

 596 

4.5 Trends in hazard exposure 597 

The exposure of crops to weather hazards has changed since 1959. For all months in the growing 598 

season, mean temperatures and the number of days >30°C have increased, while cold days have 599 

decreased (Figure 6). The year 1976 stands out as uniquely hot and dry in June within its vicinity 600 

– but comparable levels of hot days have already been observed more often after 2000. For 601 

radiation, clear trends can only be identified for selected months: radiation has, for example, 602 

increased in April or August but not in June. There is no detectable trend for precipitation within 603 

our database. The scarcity of trends in radiation and precipitation may be due to the national 604 

averages considered here, as trends can be observed in some parts of France, particularly over 605 

the Mediterranean region (references below). 606 

While more hot days in June are detrimental for all crops, there are other cases where weather 607 

trends may conjointly affect crops negatively and positively. An example is April weather for 608 

winter wheat: while both radiation and temperature increase, the first is beneficial and the latter 609 

detrimental (Table 5).  610 

The apparent trends in weather occur in critical phases of plant growth, namely green-up (early 611 

spring for most crops), anthesis (late spring) or grain filling. Each of these steps in plant growth 612 

requires different crop-specific climatic envelopes, which may be crossed if precipitation 613 

patterns or temperatures change too strongly. In particular strong heat during anthesis or grain 614 

filling may severely depress yields (Barnabas et al., 2008). 615 

Past temperature trends in France are incompatible with internal variability alone (Ribes et al., 616 

2016), pointing to the role of external forcing (Terray and Boé, 2013). Greenhouse gases are 617 

likely not the only anthropogenic forcing to have impacted temperature trends in France, as 618 
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decreasing aerosol concentrations after the late 1970s explain 23% of the surface warming over 619 

Europe from 1980 to 2012 (Nabat et al., 2014). Phase transitions of the Atlantic Multidecadal 620 

Variability (AMV) in the mid-nineties may have contributed to accelerate the warming over 621 

France during the last decades (O’Reilly et al., 2017; Qasmi et al., 2017). 622 

Warming trends observed over France are expected to continue during the 21st century with 623 

unabated greenhouse gas emissions, causing warming up to 6°C in summer and 4°C in winter, 624 

compared to the early 20th century (Bador et al., 2017; Terray and Boé, 2013). As shown therein, 625 

observed trends in precipitation in France over the 20th century have been limited. The impact 626 

of anthropogenic forcing is projected to emerge progressively during the 21st century, with a 627 

strong decrease in summer (around -20%) and a moderate increase in winter precipitation with 628 

spatial or seasonal inhomogeneity. A large increase in surface solar radiation is projected in 629 

summer over western Europe including France (Boé, 2016; Gutiérrez et al., 2020). Combined 630 

with our identified hazards, these projected changes could severely threaten future agricultural 631 

production. 632 

 633 

4.6 Sensitivity to hazards and crop vulnerability 634 

French crops show a clear negative response to hazardous weather events. Naturally, this is a 635 

consequence of our definition of hazards – but nonetheless indicates major impacts of adverse 636 

growing conditions on crop productivity. The negative impacts identified here are in line with 637 

previous research. For cereals, Barnabas et al. (2008) highlighted the detrimental effects of heat 638 

and drought during anthesis or grain filling, which are represented by the D30
6 and D30

7 as well 639 

as Pr5 and DPr
5 hazards. Ben-Ari et al. (2016) found that simple climatic indicators can be 640 

predictive for yield variation, and in particular this holds for temperature or radiation in April 641 

and spring precipitation. Ceglar et al. (2016) study French maize and winter wheat between 642 

1989 and 2014, and we agree with their finding that summer weather is decisive for maize and 643 
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radiation budgets for winter wheat. Ben-Ari et al. (2018) identified causes for the strong loss in 644 

winter wheat yields in 2016, stating that late autumn and June temperature as well as November 645 

and spring precipitation are decisive – which agrees with our hazards (except November 646 

precipitation), though we found more drivers of yield loss. Reasons for differences lie in method 647 

and spatial coverage with more departments here. Webber et al. (2018), using ensembles of 648 

crop models, found that maize and winter wheat in France suffered substantially from drought 649 

and heat combined, but less so from heat alone. We identified, however, heat in June as a major 650 

cause of losses also at normal precipitation levels – which agrees with Hawkins et al. (2013). 651 

Gouache et al. (2015) provided a forecasting scheme for winter wheat in Northern France and 652 

identified that excess temperature during grain filling or too much moisture in winter are 653 

detrimental. A negative effect of too much precipitation in summer proposed therein is not 654 

picked up by our hazards on the national scale, possibly due to the monthly time scale 655 

considered here. Gammans et al. (2017) corroborate the detrimental impact of high 656 

temperatures during summer or cold after planting for winter wheat. Season-scale water dearth 657 

or excess in selected departments were identified as detrimental for winter wheat and sunflower 658 

by Kapsambelis et al. (2019), which corresponds with our results (Pr7 and Pr8 hazards for 659 

sunflower). Sugarbeet yields are forecasted by Guimaraes Nobre et al. (2019), using climate 660 

modes like ENSO. They identified heat and water stress in June as major drivers, which we did 661 

as well – next to ETP in September. 662 

 663 

Between 1959 and 2018, the yield sensitivity to single hazards has changed. Many – but not all 664 

– hazards became less impactful for crop yields, even when rising in frequency. Thus, the total 665 

vulnerability to climatic hazards has markedly decreased for several crops (Figure 7). This 666 

matches with a positive trend in crop yields (Schauberger et al., 2018): average yield increase 667 

between 1959-1988 and 1989-2018 across crops was 54% (even 74% for sugarbeet and 70% 668 

for maize). There were also fewer loss events in the latter period and a lower percentage of 669 
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yield reductions in loss events (Figure 3). Beillouin et al. (2020) showed that the European area 670 

share with extremely negative yield anomalies did not increase since 1991, additionally 671 

substantiating a non-increase in vulnerability. Yet it should be noted that particularly for maize 672 

and winter wheat, two key crops in France, vulnerability was stable across time (maize) or 673 

declined only insignificantly (winter wheat). The positive trend towards more stability is 674 

probably due to adapted management decisions such as shifting sowing or harvesting dates, 675 

irrigation (particularly for spring crops), breeding efforts towards more heat or dryness 676 

tolerance, or over-compensating effects from other weather conditions as exemplified above 677 

with the opposite effect of April weather trends on winter wheat and also the occurrence of non-678 

losses even in very hot Julys for spring wheat (Figure 2). Further reasons for an apparent 679 

decrease in vulnerability include more fertilizer use (Schauberger et al., 2018), increased use of 680 

pesticides or herbicides and a decrease of exposure to hazards that in the earlier period severely 681 

diminished crop yields. In particular compensation of single adverse weather events seems to 682 

play a major role, as the loss odds (number of losses vs. non-losses under a hazard) are in several 683 

cases around or smaller than 1, indicating that the occurrence of one hazard need not have strong 684 

impacts. Only for those hazards with odds ratios substantially larger than 2 (e.g. too many heat 685 

days in June for maize, spring rape or sugarbeet) compensation seems difficult. Hazard-686 

balancing effects may be more frequent in recent climate since slightly warmer conditions in 687 

temperate climate zones may initially be beneficial for crop growth. Yet particularly detrimental 688 

effects of compound hazards may change frequency and impacts under a future climate. 689 

Between crops, compensation effects can occur as hazards do not affect all crops uniformly. 690 

The relative areas and agronomic importance of crops need to be considered then, as, for 691 

example, a 20% gain in spring oats may not be enough to compensate a 5% reduction in maize. 692 

There are several reasons for differences between the absolute values and dynamics in 693 

vulnerability of the individual crops, which in combination explain the divergent impacts: 694 

agronomic importance and thus farmers’ investments or breeders’ efforts diverge, freezing 695 
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events after sowing (particularly damaging for spring crops, e.g. sugarbeet or spring wheat) 696 

have decreased, irrigation increases mainly for spring but not winter crops, different shares of 697 

organic vs. conventional areas, differential improvements in sowing conditions (soil 698 

temperature or moisture), a multitude of damaging hazards in the past that are less relevant in 699 

exposure or impacts recently (particularly for potatoes, spring oats and spring barley) or 700 

changes in pathogen or pest cycles and associated political regulations like pesticide bans. We 701 

consider these thoughts as hypotheses, due to lack of convincing evidential data, which merit 702 

further detailed investigation. 703 

 704 

For the US, maize yield increases have been associated with a higher sensitivity to drought due 705 

to increased planting densities (Lobell et al., 2014), with evidence based on growth trend 706 

differences between yield quintiles. For France, we observe the opposite: recent yield increases 707 

are not associated with increased drought sensitivity, as the negative impacts of low-708 

precipitation hazards in June and August on maize yields have decreased and for July they 709 

remained similar. Too many precipitation days in May, meanwhile, have become more 710 

detrimental over time – indicating that maize has become more drought but less logging 711 

tolerant. Our results are also contradicting other findings in the US (Ortiz-Bobea et al., 2018), 712 

where the authors claim increased climatic sensitivity of agricultural productivity in the 713 

Midwest since 1960. They suggest a higher susceptibility of crops as one reason. A similar 714 

econometric analysis of total factor productivity would be pertinent for France, to corroborate 715 

or contradict our results here. 716 

 717 

A change in CO2 concentration may decrease crop sensitivity towards heat or drought (Deryng 718 

et al., 2016; Long et al., 2006; Schauberger et al., 2017; Wang et al., 2012). We did not consider 719 

this effect in our historical analysis, although historical changes in CO2 (1959-1988 average is 720 

331 ppm, while for 1989-2018 it is 378 ppm; NOAA (2020)) could already have affected past 721 
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crop responses to heat or drought. A further important factor shaping plant response to climatic 722 

hazards is soil physics, which is not explicitly considered in our approach – though it is possibly 723 

partly accounted for by indirect effects of climate on soil processes, since the hazards are 724 

agnostic about the underlying physiological reasons. Adequate soil moisture is a key 725 

prerequisite for plant growth and is also only indirectly considered here. Indicators like the 726 

SP(E)I (Vicente-Serrano et al., 2010) that account for lagged effects in plant available water 727 

could be a natural extension. Finally, our approach only considers weather hazards, but no biotic 728 

stressors like pests or diseases. We argue, as for soil factors, that biotic stressors are – at least 729 

partly – affected by weather and thus indirectly considered in our approach. Yet we encourage 730 

an in-depth study of these relationships to identify additional or weather-linked pressures on 731 

crop production from biotic stressors. 732 

 733 

Our vulnerability definition follows the IPCC (Krishnamurthy et al., 2014) where exposure, 734 

sensitivity and adaptive capacity are considered as separate entities. This definition can be 735 

operationalized and has often been followed in the literature, mainly for tropical countries 736 

(Eggen et al., 2019; Kamali et al., 2018; Kerr et al., 2018; Mohmmed et al., 2018; Murthy et 737 

al., 2015; Parker et al., 2019; Sehgal and Dhakar, 2016; Shukla et al., 2018). Naylor et al. (2020) 738 

propose additional considerations of this vulnerability concept, framing it as dynamic process 739 

rather than static measure. An advantage of the single measure for vulnerability is the straight-740 

forward comparison across time and crops. Disadvantages of this definition may include a 741 

partly overlap of exposure and sensitivity. An example are shifting growing seasons: while 742 

there is a trend towards earlier season onsets due to warmer springs, farmers can also adapt their 743 

season management by choosing sowing dates or cultivars. Both changes affect exposure and 744 

sensitivity simultaneously. Also, co-variances between exposure and sensitivity – e.g. non-745 

linear strong increases of sensitivity with slight increases in exposure – are not considered here, 746 

although these occur in practice (Figure 2). Moreover, a single aggregate measure of 747 
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vulnerability may conceal changes over time that could affect future expectations. We address 748 

this by inspecting exposure frequency and crop sensitivity for individual hazards.  749 

 750 

Within our study we assumed adaptive capacity (AC) as constant over time and space. This 751 

may be justified by the use of similar practices and agroeconomic structures over France. Yet 752 

the assumption of constant AC may not be realistic for the future, since France is not uniformly 753 

impacted by climate change (see above) and agronomic structures like administrative capacity, 754 

water available for irrigation or access to improved seeds may change over time. Adaptation 755 

may change both exposure and sensitivity to climatic hazards, for example by shifting growing 756 

seasons, using more resistant crops or those with different maturity requirements, changing crop 757 

rotation, expanding irrigation, to name only some options. Therefore, we encourage a more 758 

thorough analysis of AC, possibly using one of the following measures as a proxy for AC: 759 

historical farmer-driven shifts in seasons, characteristics and speed in taking up new cultivars, 760 

changing rotation patterns, share of irrigated land, a shift towards different crops, a geographic 761 

(northward) shift of areas or increasing crop diversification. Social factors like increasing use 762 

of risk transfer mechanisms like insurances, more regular use of consultancy services or 763 

subsidies for e.g. irrigation can equally be indicative for AC. It should be noted that neither 764 

exposure nor sensitivity can fully be disentangled from AC since historical adaptation would 765 

implicitly be enmeshed in our long-term measures of E and S.  766 

We did not perform an out-of-sample validation of our hazards concept with a fully independent 767 

dataset. Therefore, the models and estimated impacts should not be used to predict the impact 768 

of future weather hazard on crop yields. The objective of our analysis was not to develop a tool 769 

to predict future yield anomalies but rather to devise an approach for describing the impacts of 770 

weather hazards that occurred in the past and are relevant for major parts of France. Using the 771 

same data set for selecting important variables and estimating the impact of hazards may have 772 

led to an upward bias in sensitivities. We argue, though, that the model-based pre-screening of 773 
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variables was helpful to focus on major hazards and that the observed hazards are too scarce to 774 

enable a robust splitting for these two tasks. 775 

 776 

 777 

5. Conclusion and practical implications 778 
 779 

We presented a two-step approach to identify major climatic hazards on French crop 780 

production, applying machine-learning models and non-parametric estimates of exposure and 781 

sensitivity to hazards. We found no evidence of increased crop vulnerability to climate hazards 782 

since 1959 – in line with strongly increasing absolute yields since this time. Yet our results 783 

suggest that adaptation strategies should be found to deal with increasingly occurring heat 784 

hazards, either by adapting crop management practices (increasing irrigation, preponed sowing 785 

dates, cultivar choice), breeding of more heat-tolerant cultivars, replacement of crop types by 786 

more heat-tolerant ones or relocation of growing areas to cooler regions. The particularly 787 

detrimental effects of compound hazards could be addressed by improved forecasting efforts, 788 

thus raising the stakes for preparing against further hazards if one was already observed during 789 

the current season. Single hazards could also be incorporated into agro-meteorological weather 790 

forecasts, allowing more lead time to prepare. Apart from farmers, insurance companies or 791 

political institutions might use hazard frequencies to adapt their financial or regional adaptation 792 

planning. The future vulnerability of crops could be studied by plugging weather indices, 793 

derived from climate projections, into our presented hazards (though this would require an 794 

amendment of our framework into a predictive one). The possible dampening effect of higher 795 

CO2 concentrations will have to be considered then. Finally, on farm and aggregate scale, cross-796 

crop compensation effects, for example between winter wheat, spring rape or sunflower that 797 
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react to different hazards, could be used to redistribute growing areas or cultivate a more diverse 798 

set of crops with differently affected suitability under climate change. 799 

Interestingly, cereal production in France was record high in 2019 (La France Agricole, 2020). 800 

But record yields or decreased dangers from weather hazards should not be taken as a safeguard 801 

for the future, as neither compensating beneficial climatic factors nor adaptation efforts may 802 

linearly be extrapolated under a stronger global warming (Tigchelaar et al., 2018). Moreover, 803 

vulnerability estimates based only on observed events may underestimate the true danger due 804 

to practical under-sampling of theoretical climate variability (Kent et al., 2017). The increasing 805 

absolute yield variation (Schauberger et al., 2018) and recent climate-induced losses as in 2003 806 

or 2016 raise the question whether below the surface of increasing and apparently less sensitive 807 

crop yields a higher vulnerability has already started to shape. 808 

 809 

  810 
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