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Abstract 

Many applications in risk analysis, especially in environmental sciences, require the  

estimation of the dependence among multivariate maxima. A way to do this is by 
inferring  the Pickands dependence function  of the  underlying extreme -value copula. 

A nonparametric estimator is constructed as the sample equivalent of a multivariate  
extension of the madogram. Shape constraints on the family of Pickands dependence  

functions are taken into account by means of a representation in terms of a specific type 
of Bernstein polynomials.  The large-sample theory of the estimator is developed and 

its finite-sample performance is evaluated with a simulation study.  The approach is 

illustrated by analyzing clusters consisting of seven weather stations that have recorded 
weekly maxima of hourly rainfall in France from 1993 to 2011. 

 
Keywords: Bernstein polynomials, Extremal dependence, Extreme -value copula, Heavy 

rainfall, Nonparametric estimation, Multivariate max-stable distribution, Pickands de- 
pendence function. 

 
1 Introduction and background 

In recent years, inference methods for assessing the extremal dependence have been in in- 
creasing demand. This is especially due to growing requests for multivariate analyses of  
extreme values in the fields of environmental and economic sciences. The dimension of the  
random vector under study is often greater than two. For example, Figure 1 displays a map 
of clusters containing seven weather stations in France each; see Bernard, Naveau, Vrac, 
and Mestre (2013) for details on the construction of the clusters. The data consist of weekly 
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Figure 1: Analysis of French weekly precipitation maxima in the period 1993 –2011. Clusters 
of 49 weather stations and their estimated extremal coefficients in dimension d = 7 obtained 
with the projected version of the madogram estimator, see Section 5 for details. 

 
maxima of hourly rainfall recorded at each station1. It would be of interest to hydrologists to 
infer the dependence within each of the seven-dimensional vectors of component-wise max- 
ima and to compare the dependence structures among clusters. Such an endeavor represents 
the main motivation of this work. 

Let X = (X1, . . . , Xd) be a d-dimensional random vector of maxima that follows a 
multivariate max-stable distribution G; for more background on univariate and multivariate  
extreme-value theory, see for instance Beirlant et al. (2004), de Haan and Ferreira (2006), 
or Falk, Hüsler, and Reiss (2010).  The margins of G, denoted by Fi(x) = P  Xi      x  , for all 
x  R and i = 1, . . . , d, are univariate max-stable distributions. The joint distribution takes  
the form 

G(x) = C  F1(x1), . . . , Fd(xd)  , x ∈ Rd, (1.1) 

where C is an extreme-value copula: 

C(u1, . . . , ud) = exp  −l(− log u1, . . . , − log ud)  , u ∈ (0, 1]d, (1.2) 

with l : [0, )d [0, ) the so-called stable tail dependence function. The latter function is  

homogeneous of order one and is therefore determined by its restriction on the unit simplex, 
the restriction itself being called the Pickands dependence function, denoted here by A. 
Formally, we have 

  l(z) = (z1 + · · · + zd) A(w), z ∈ [0, ∞)d, (1.3) 

1Data  provided  by  Mét́eo–France  and  published  within  the  R package  ClusterMax,  freely  available  from 
the homepage of Philippe Naveau, http://www.lsce.ipsl.fr/Pisp/philippe.naveau/. 
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where wi = zi/(z1 + · · · + zd) for i = 1, . . . , d − 1 and wd = 1 − w1 − · · · − wd−1. We view A 

as a function defined on the (d − 1)-dimensional unit simplex 

Sd−1 := 

(

(w1, . . . , wd−1) ∈ [0, 1]d−1 : 
d−1 

 
i=1 

wi ≤ 1

)

 
 
. (1.4) 

Let A be the family of functions A : Sd−1 → [1/d, 1] that satisfy the following conditions: 

(C1) A(w) is convex, i.e., A(aw1 + (1 − a)w2) ≤ aA(w1) + (1 − a)A(w2), for a ∈ [0, 1] and 

w1, w2 ∈ Sd−1; 

(C2) A(w) has lower and upper bounds 

1/d ≤ max (w1, . . . , wd−1, wd) ≤ A(w) ≤ 1, 

for any w = (w1, . . . , wd−1) ∈ Sd−1 with wd = 1 − w1 − . . . − wd−1; 

Any Pickands dependence function belongs to the class      (Falk, Hüsler, and Reiss, 2010, Ch. 
4). The converse is not true, however; see Beirlant et al. (2004, p. 257) for a counterexample. 
A characterization of the class of stable tail dependence functions has been given in Ressel 
(2013). In condition (C2), the lower and upper bounds represent the cases of complete  
dependence and independence, respectively. 

Many parametric models have been introduced for modelling the extremal dependence 

for a variety of applications, with summaries to be found in Kotz and Nadarajah (2000) and 
Padoan (2013). However, such finite-dimensional parametric models can never cover the full 
class of Pickands dependence functions. For this reason, several nonparametric estimators 
of the Pickands dependence function have been proposed: see for instance Pickands (1981), 
Capéraà  et  al.   (1997),  Hall  and  Tajvidi  (2000),  Zhang  et  al.   (2008),  Genest  and  Segers 
(2009), Bücher et al.  (2011), Gudendorf and Segers (2011, 2012), and Berghaus et al.  (2013). 
All of these estimators require further adjustments to ensure they are genuine Pickands 
dependence functions. 

Given an independent random sample from a multivariate distribution with continuous 

margins and whose copula is an extreme-value copula, we propose a nonparametric estimator 
for its Pickands dependence function. In the bivariate case, a fast-to-compute and easy-to- 
interpret estimator based on a type of madogram was introduced by Naveau et al. (2009). 
It has two drawbacks, however: it was only defined for the bivariate case and it is not 
necessarily a Pickands dependence function itself. Our first contribution is to propose a new 
type of madogram in the multivariate setting, see also Fonseca et al. (2015). A second 
contribution is to regularise the estimator by projecting it onto the space , imposing the 
necessary constraints (C1)–(C2). To do so, we make use of Bernstein polynomials. We 
admit that the resulting estimator still need not be a Pickands dependence function. Still, 

simulation results show that imposing (C1)–(C2) already greatly improves the estimation 
accuracy. 

Many regularization strategies have already been considered in the literature.  In the 
bivariate case, Pickands (1981) suggested the use of the greatest convex minorant. Smith 
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a.s. 

A ⊆ A 

ǁ ǁ | | −→ ⇒ 

S 

with n-dimensional Lebesgue measure; the L2-norm is denoted by ǁf ǁ2 = ( f 2(x) dx)1/2. 

L2(X ) denote the Hilbert space of square-integrable functions f : X → R, w∫ith X equipped 

et al.   (1990) proposed to modify a pilote estimator using kernel methods, while Hall and 
Tajvidi (2000) advocated constrained smoothing splines. However, as discussed in Fils- 
Villetard et al. (2008), the impact of these adjustments on the asymptotic properties of 
the estimator changes from one case to another, while a general result is unknown. The 
projection estimator approach developed in Fils-Villetard et al. (2008) and Gudendorf and 
Segers (2012) provides a general framework based on projections of a pilote estimate onto 
an increasing sequence of finite-dimensional subsets k . The approximation space they 
proposed consists of piecewise linear functions, yielding computational challenges in higher 
dimensions. 

To bypass these computational hurdles, our strategy is to replace piecewise linear func- 
tions by Bernstein polynomials (Lorentz, 1986; Sauer, 1991). In virtue of their optimal shape 
restriction properties (Carnicer and Peña, 1993), Bernstein polynomials are suitable for non- 
parametric curve estimation (e.g. Petrone 1999; Chang et al. 2005) and shape-preserving 
regression (Wang and Ghosh 2012). We provide the asymptotic theory for our estimator and 

we demonstrate its practical use in dimension seven, which seems to be higher than what 
has been possible hitherto with nonparametric methods. The estimation uncertainty can be 
assessed through a resampling procedure. 

Throughout the paper we use the following notation. Given X ⊂ Rn and n ∈ N, let 

l∞(X ) denote the spaces of bounded real-valued functions on X .   For f   : X → R, let 
f ∞ = supx∈X f (x) . The arrows “ ”, “ ”, and “~” denote almost sure convergence,  
convergence in distribution of random vectors (see van der Vaart 2000, Ch. 2) and weak 

convergence of functions in l∞(X ) (see van der Vaart 2000, Ch. 18–19), respectively. Let 
 

For analytical reasons, we view the unit simplex    d−1 as a subset of Rd−1, see 
X

(1.4), although 
geometrically, it is perhaps more natural to consider it as a subset of Rd. A similar convention 
applies to our use of the multi-index α in Section 3. 

The paper is organised as follows. In Section 2, we introduce our multivariate nonpara- 
metric madogram estimator and we discuss its properties. In Section 3, we describe the 
projection method based on the Bernstein polynomials. In Section 4, we investigate the finite-
sample performance of our estimation method by means of Monte Carlo simulations. Finally, 
we apply our approach to French weekly maxima of hourly rainfall in Section 5. All proofs are 
deferred to the appendices. 

 
2 Madogram  estimator 

Let X be a random vector with continuous marginal distribution functions F1, . . . , Fd and 

whose copula C is an extreme-value copula with stable tail dependence function l and 
Pickands dependence function A; see above.  Our estimator is based on the sample ver - 
sion of the multivariate madogram, extending Naveau et al. (2009), see also Fonseca et al. 
(2015). 
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Definition 2.1. For w    d−1, the multivariate w-madogram, denoted by ν(w), is defined 
as the expected distance between the componentwise maximum and the componentwise mean 
of the variables F 1/w1 (X1), . . . , F 1/wd (Xd), that is, 

1 
 

 

ν(w) = E 

d 
 

d 
 
 

i=1 

,
F 1/wi (Xi)

, 
− 

 
d 

 

d 
i=1 

F 1/wi  (Xi)

#

 

 
 

. (2.1) 

 

For wi = 0 and 0 < u < 1, we put u1/wi = 0 by convention. 

Proposition 2.2. If the random vector X has continuous margins and extreme-value copula 

with Pickands dependence function A, then, for all w ∈ Sd−1, 

A(w) 

 
where c(w) = d−1 

Σd
 

ν(w)  = 

 
A(w)  = 

 
wi/(1 + wi). 

1 + A(w) 
− c(w), 

ν(w) + c(w) 
, (2.2) 

1 − ν(w) − c(w) 

 

The madogram can be interpreted as the L1 distance between the maximum and the 
average of the random variables F 1/w1 (X1), . . . , F 1/wd (Xd). If w1 = . . . = wd = 1/d, then 

1 d 

the L1 distance is zero if and only if all components Fi(Xi) are equal with probability one, 
that is, in case of complete dependence. 

In the bivariate case, Definition 2.1 is slightly different from the one proposed by Naveau 
et al. (2009). Here, we use the vector   F 1/w1  (X1) , F 1/w2  (X2) instead of Fw 1 (X1), Fw 2 (X2) . 
This new version has the advantage that the sample equivalent of (2.2) will automatically 
satisfy condition (C2). 

Assume first that the marginal distributions F1, . . . , Fd are known; below, we will estimate 
them by the empirical distribution functions. Equation (2.1) suggests the statistic 

 
νn(w) = 

 
n 

 

n 
m=1 

 
d 

 
 

i=1 

,
F 1/wi  (Xm,i)

, 
− 

 
d 

 

d 
i=1 

F 1/wi (Xm,i)

!

 

 

. (2.3) 

 

The Pickands dependence function can then be estimated through 
 

AMD(w) = 
   νn(w) + c(w) 

, w ∈ S
 

 

 

 

 
. (2.4) 

1 − νn (w) − c(w) 
d−1 

Next, we estimate the unknown marginal distributions F1, . . . , Fd by the empirical distribu- 
tion functions 

Fn,i 

n 

(x) =  1(X 
n 

m=1 

 
m,i ≤ x), i = 1, . . . , d, (2.5) 

n 
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^MD ^n 

d 

n −→ 

n 

Σ1 

√ 
MD 

n 

A (w) = . 

The next theorem summarizes the asymptotic properties related to AMD  and ÂMD.  The 

∂u 
i 

^ 

n d 

n n 

i=1 

where 1(E) is the indicator function of the event E. Replacing Fi by Fn,i in Equation (2.3) 

yields  our  nonparametric  estimators  ν̂n  and  ÂMD   of  the  multivariate  madogram  and  of  the 
 
 

Pickands dependence function, respectively: 

ν 
1 Σ  

_d    ,
 1/wi 

, 1 Σ 
1/wi 

!

 
^n(w) = 

n
 m=1 i=1 Fn,i    (Xm,i) — 

d
 

i=1 

Fn,i    (Xm,i) , 
   ν (w) + c(w)  
1 − ν̂n(w) − c(w) 

Other estimators of the margins could be inserted as well. However, the use of the empirical 
distribution functions requires minimal assumptions and yields an estimator for A which is 
invariant under monotone transformations. 

 

asymptotic normality requires a smoothness condition on the extreme-value copula C, see 

Example 5.3 in Segers (2012). 

Condition 2.3. For every i ∈ {1, . . . , d}, the partial derivative of C with respect to ui exists 
and is continuous on the set {u ∈ [0, 1]d : 0 < ui < 1}. 

Let D be a C-Brownian bridge, that is, a zero-mean Gaussian process on [0, 1]d with 

continuous sample paths and with covariance function given by 

Cov(D(u), D(v)) = C(u ∧ v) − C(u) C(v), u, v ∈ [0, 1]d, (2.6) 

where the minimum is considered componentwise. Further, provided Condition 2.3 is satis- 
fied, define the Gaussian process D̂ on [0, 1]d  by 

D̂(u) = D(u) − 
Σ ∂C 

(u) D(1, . . . , 1, u , 1, . . . , 1), u ∈ [0, 1]d. (2.7) 

Theorem 2.4. Let X1,  . . . , Xn  be  independent  and  identically  distributed  random  vec - 
tors whose common distribution has continuous margins and extreme-value copula C with 

Pickands dependence function A. Then: 

a) ǁAMD − Aǁ∞ 
a.s. 

0 as n → ∞ and in l∞(S d−1 ), as n → ∞, 
√

n(AMD − A) ~ 
 

(1 + A(w))2 

MD a.s. 

d 
 

d 
i=1 

∫ 1 
 

 
 

D(1, . . . , 1, xw i, 1, . . . , 1) − D(xw1 , . . . , xwd ) dx

!

 
 

 
w∈S 

 
; 

d−1 

b) ǁÂn − Aǁ∞   −→  0  as  n  →  ∞.  Moreover,  if  Condition  2.3  is  satisfied,  then,  in 
 

 

l∞(Sd−1), as n → ∞, 
n(Ân − A) ~ 

−(1 + A(w)) 
1 

D(xw1 , . . . , xwd ) dx 
0 

. 
w∈Sd− 1 

The  two  conditions  (C1)–(C2)  are  not  necessarily  satisfied  by  ÂMD. To  ensure  both 

conditions, we propose a projection method based on Bernstein polynomials. 

0 

2 

∫ 

i 

n 
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α 

Σ 

( 
Σ 

) 

α α1! . . . αd! 1 d 

In matrix notation, we have 
vector. 

α∈Γk  
βα bα(w; k) = bk(w) β, where β is viewed as a column 

k 

α 

3 Estimation based on Bernstein polynomials 

3.1 Bernstein polynomials on the simplex 

Multivariate Bernstein polynomials, defined on a cube or on a simplex, have been widely  

discussed in mathematics and statistics, see for example Ditzian (1986) and Petrone (2004). 
Here our focus is on approximating a bounded function f on the simplex d−1. In the 
univariate case, the shape features of the original function are preserved by its Bernstein  
approximation. For higher dimensions, shape properties like convexity may no longer be re- 
tained.  The Bernstein–Bézier polynomials (Sauer 1991) solve this issue and preserve various 
shape properties (Li 2011, Lai 1993). 

Fix the dimension d ≥ 2. For positive integer k, let Γk be the set of multi-indices 

α = (α1, . . . , αd−1) ∈ {0, 1, . . . , k}d−1  such that α1 + · · · + αd−1 ≤ k. The cardinality of Γk 
is equal to the number of multi-indices α ∈ {0, 1, . . . , k}d such that α1  + · · · + αd = k; just 
set αd = k    α1 αd−1. Replacing each αj by αj + 1, we find that the number of such 
multi-indices is also equal to the number of compositions of the integer k + d into d positive 

integer parts. The number of such compositions is equal to 

p   = 
k + d − 1   

, (3.1) 

d − 1 

and so is the cardinality of Γk.   Define the Bernstein basis polynomial bα(   ; k) on d−1 of 

degree k by 
 
 
 

where 

b  (w; k) = 

   
k  

  

wα, w ∈ S 
 
d−1 

 

(3.2) 

  
k 

    

=
 k! 

, wα = wα1 · · · wαd. 
 

The k-th degree Bernstein polynomial associated to A is defined as 

BA(w; k) = A(α/k)bα(w; k), w ∈ Sd−1. (3.3) 
α∈Γk 

Proposition 3.1. For every A ∈ A and every k = 1, 2, . . ., 
d 

sup 
w∈Sd− 1 

|BA(w; k) − A(w)| ≤ 
2
√

k
.
 

The family of Bernstein–Bézier polynomials of degree k  is defined as the set 
 

Bk = βα bα( · ; k) : β ∈ [0, 1]pk . 
α∈Γk 

For w ∈ Sd−1, let bk(w) be thΣe row vector (bα(w ; k), α ∈ {0, 1, . . . , k}d  : α1 + · · · + αd = k). 
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∆ 

3.2 Shape-preserving estimator 

In this section, we describe how to use Bernstein–Bézier polynomials to obtain a projection 

estimator (Fils-Villetard et al. 2008) that satisfies (C1)–(C2). Given a pilot estimator, say 
An, the idea is to seek approximate solutions to the constrained optimization problem 

An = arg min An A 2. 
A∈A 

There is no closed-form solution to the above equation, and so an approximation based on 

the sieves method is explored. Consider a sequence Ak ⊆ A of constrained multivariate 

Bernstein–Bézier polynomial families on Sd−1  given by 

Ak = {w ›→ B(w; k) = bk(w)βk  : βk  ∈ [0, 1]pk    such that Rkβk  ≥ rk} . (3.4) 

Here, Rk = [R(1), R(2), R(3)]T and rk = [r(1), r(2), r(3)]T are a (q × pk) full row rank matrix 
and a (q × 1) vector respectively such that the constraint Rkβk   ≥ rk on the coefficient 
vector βk ensures that each member of satisfies (C1)–(C2). Details for deriving the block 
matrices and vectors of constraints are provided below. 

R1)  A sufficient condition to guarantee that the function w    B(w; k) on    d−1  is convex 
is that its Hessian matrix be positive semi-definite. In order to enforce the latter, we 

resort by applying Theorem 1 in Lai (1993).  First, for s =/   r ∈ {0, . . . , d − 1} and two 
vectors vr and v s, where vr = 0 if r = 0 and vr = er  if r > 0 with er the canonical 
unit vector (same for vs), the directional derivative of B with respect to the direction 
−v−

r
→vs  is 

Dvs−vr B(w; k) = k 
α∈Γk−1 

∆s,rβαbα(w; k − 1), w ∈ Sd−1 

where ∆s,rβα = (βα+v βα+v ). Second, the second directional derivative of B with 

respect to the directions −v−
r
→vs  and −v−

r
→vt  is 

 

Dv
J 

s−vr,vt−v r 
B(w ; k) = k(k − 1) 

α∈Γk−2 

∆t,r∆s,rβα bα(w; k − 2), w ∈ Sd−1. 

 

Then, the Hessian matrix of B(w ; k), w d−1, is HB  = [Dv
J 

s,vt 
B(w ; k)]s,t∈{1,...,d−1},r=0 , 

and it can be written as 
 

HB = k(k − 1) 
α∈Γk−2 

Σα bα(w; k − 2), w ∈ Sd−1, 

 

where, for all α ∈ Γk−2, Σα is a symmetric (d − 1) × (d − 1) matrix given by 
1,0βα ∆1,0∆2,0βα ························································· ∆1,0∆d−1,0βα  
2 

 Σ =  

2 2,0 

βα ∆2,0∆3,0βα · · · ∆2,0∆d−1,0βα  
.
 

α  
. . . 

∆2 βα 
d−1,0 
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 0 2 3      1 0 1 1 0 0      0    

 0 0 0      0 2 1 0 3 1      1    
0 

{ ∀ − } × 

 

 1 

 

 

 

i j 

∈ { − } / 

— − − · · · − 

(3) (3) 

k k k k 

R
(1) 

=  0 2     −1   0 0     −3 1 0 1     0  , r
(1) 

= 0  . 

k k k k 

 

 

 

0 

0 

By the weak diagonal dominance criterion (Lai 1993) in order to guarantee that Σα is 
positive semi-definite, it is sufficient to check, for all α     Γk−2 and i     1, . . . , d     1 , 
the conditions 

2 
i,0 

βα − 
Σ 

|∆i,0∆j,0βα| ≥ 0. 
j  i 

Such conditions produce constraints that are more severe than necessary. The above 

conditions can be synthesized in matrix form as R(1)β   ≥ r where R is a (pk−2(d− 

1) 2d−2 × pk) matrix and r(1) is the corresponding null vector. For example, with d = 3 
and k = 3,  

 
0 1 0     0 1 1 0 1 0     0 0 
2 1 0     0 3 1 0 1 0     0 0 
0 1 1     0 1 1 0 0 0     0 0 
2 3 1     0 1 1 0 0 0     0 0 

 0 0 1     0 0     −1     −1 0 1     0     

 
3 0 0     −1     1 0 1     −1 0 0     0 

— − 

0 0 0     0 0 1 0     −1   −1   1 
— − 

0 0 0     0 0     −1 1 1     −1   0 
0 0 0     0 2     −3 1     −1 1     0 

3 0  
0  

 

A consequence of this approach is that 

R2) B satisfies the upper bound condition in (C2) if βα = 1 for the set of coefficients 
βα : α = 0 or α = k ei, i = 1, . . . , d 1 . Thus, the (2d pk) matrix and 2d-dimensional 

vector of restrictions are equal to 
 

 

 
 

(2) 

1     0     · · · 0     · · · 0     · · ·     0 
−1   0     · · · 0     · · · 0     · · ·     0 

0     0     · · · 1     · · · 0     · · ·     0 

 
        

1 
−1 

(2) 
  

Rk = 0     0     · · ·     −1   · · · 0     · · ·     0 
 , rk =  −1  .   .    

 

R3) B satisfies the lower bound condition in (C2) if the restrictions R1)-R2) hold and the 
following constraints are fulfilled.  Specifically, for all (i, j) 0, . . . , d 1  2, i = j, 

the  first  directional  derivatives  with  respect  to  −v−
i
→vj ,  evaluated  at  the  vertices  of  the 

simplex,  are compared with the first directional derivatives of the planes z0  = 1, 
z1  = w1, z2  = w2, . . ., zd  = 1     w1     w2 wd−1, with respect to the same 
directions. So, it is sufficient to check the conditions 

Dv −v  B(vj ; k) ≥ −1, ∀ (i, j) ∈ {0, . . . , d − 1}2, i =/ j. 

As a consequence, it is sufficient to check the conditions βα > 1 − 1/k for the set of 
coefficients {βα : α = ei  or α = (k − 1)ei  or α = (k − 1)ei +ej ,  ∀j i = 1, . . . , d − 1}. 

This can be synthesized in matrix form as R(3)β   ≥ r where R is a (d(d − 1) × pk) 

. . . . . . . . 

∆ 

0 

0     0     · · · 0     · · · 1     · · ·     0 
0     0     · · · 0     · · ·     −1   · · ·     0 

1 
−1 
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k − 

    

    

^ 

n 

ẽstimator is denoted by A . 
˜ 

^ 

˜  ̂

q 

^ 

3 0     0     0     0     0     0     0     1     0     0 
0     0     0     0     0     0     1     0     0     0 
0     0     0     0     0     0     0     0     1     0 

3 1 − 1/k 
1 − 1/k 
1 − 1/k 

matrix and r(3) is the corresponding vector of 1 1/k vaules. For example, when d = 3 
and k = 3, the constraint matrix is the following: 

0     1     0     0     0     0     0     0     0     0 

0     0     0     0     1     0     0     0     0     0 

1 − 1/k 

1 − 1/k 

R(3)  =  0    0     1     0     0     0     0     0     0     0  , r(3) = 1 − 1/k  . 

 
 

The use of the third restriction is justified by the following result. 

Proposition 3.2. Let BA be the polynomial (3.3). Assume that BA is convex on the simplex 

and BA(vj; k) = 1 for all j ∈ {0, . . . , d − 1}. Then, for all w ∈ Sd−1 

BA(w ; k) ≥ max(w1, . . . , wd) ⇐⇒ Dvi−vj BA(vj ; k) ≥ −1, 

for all (i, j) ∈ {0, . . . , d − 1}2, i /= j. 

Recall that the approximate projection estimator of A based on a pilot estimator An is 
given by the solution to the optimization problem 

Ãn,k  = arg minǁÂn  − Bǁ2. (3.5) 

In  case  the  pilot  estimator  is  the  madogram  estimator  ÂMD,  the  corresponding  projection 
MD 
n,k 

In practice, the estimator An,k is evaluated on a finite set of points {wq : q = 1, . . . , Q}, 
with Q ∈ N and wq ∈ Sd−1. The discretized version of the above solution is given by 

An,k(wq)  = bk(wq)βk, wq ∈ Sd−1, q = 1, . . . , Q, (3.6) 

where βk is the minimizer of the constrained least-squares problem 
Q 

β̂k = arg min 1 Σ 
b

 (wq)βk — Ân (w )
 2

. 
βk ∈[0,1]pk :Rkβk ≥rk Q 

q=1 

This is a quadratic programming problem, whose solution is 

β̂k  = β J
k  − (bT

k bk)−1rT
k  γ, (3.7) 

where  γ  is  a  vector  of  Lagrange  multipliers  and  β J
k   =  (bk

Tb)−1bTÂn   is  the  unconstrained 

least squares estimator. The vectors βk and γ can be efficiently computed with an iterative 
quadratic programming algorithm (e.g.  Goldfarb and Idnani 1983).  A high resolution of 
(3.6) is obtained with increasing values of Q. Numerical experiments showed that a close  
approximation of the true Pickands dependence function is already reached with moderate  
values of Q. However, Q should not be seen as an additional parameter of the projection es- 
timator. The solution (3.6) provides better approximations of the true Pickands dependence 
function for increasing sample sizes n and polynomial degrees k. 

In order to state the asymptotic distribution of the projection estimator, the following  
result is required. 

B∈Ak 

k 
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A A ∈ A 

Σ 

n 
^ 

→ ∞ → ∞ 

√ 
MD 

— ǁ − ǁ → ∞ 

∗(r) ˜ 

n 

∗(r) ^ 

n,k n,k 

α∈Γk α∈Γk 

Proposition  3.3. k, k = 1, 2, . . . is a nested sequence in .  Furthermore, if A 
satisfies the condition 

 

2 
i,0 A(α/k) − |∆i,0∆j,0A(α/k)| ≥ 0, ∀ k, α ∈ Γk−2, i ∈ {1, . . . , d − 1}, (3.8) 

j/=i 
 

then there exist polynomials Ak ∈ Ak such that limk→∞ supw∈Sd−1 
|Ak(w) − A(w)| = 0. 

The asymptotic distribution of the Bernstein projection estimator based on our multi- 
variate madogram estimator AMD is established in the following proposition. 

Proposition 3.4. Assume that the polynomial’s degree, kn, increases with the sample size 
n in such a way that kn/n as n . If the Pickands dependence function A satisfies 
the condition (3.8), then, for some Gaussian process Z, 

 

n(Ãn,kn 
A) ~ arg min   ZJ Z  2, n , 

Z′∈TA(A) 
 

in L2(Sd−1), where TA(A) is the tangent cone of A at A, given by the set of limits of all the 
sequences an(An − A), an ≥ 0 and An ∈ A. 

It remains an open problem to establish the asymptotic behaviour of the projection esti- 
mator without condition (3.8). Moreover, if the Pickands dependence function is sufficiently 
smooth, we conjecture that the approximation rate in Proposition 3.1 can be improved, 
leading a slower growth rate needed for the degree of the Bernstein polynomial in Proposi- 
tion 3.4. The simulation results in Section 4 confirm that polynomial degrees k much lower 
than n are already sufficient to achieve good results. 

Finally, note that Proposition 3.4 and, in fact, everything else in this section applies 
to any estimator of the Pickands dependence function which satisfies a suitable functional  
central limit theorem. We are grateful to an anonymous Referee for having pointed this out. 

 

3.3 Confidence bands 

We construct confidence bands using a resampling method.  For w ∈ Sd−1 and 0 < α̃ < 1, the 
bootstrap (1 − α̃) pointwise confidence band, based on the estimates An,k  (w), r = 1, 2, . . ., 
obtained from the bootstrapped sample X(r) = (X(r), . . . , X(r)), has the drawback that the 

n 1 d 

lower and upper limits of the band are rarely convex and continuous. To bypass this hurdle, 
we followed the strategy to work with the estimated Bernstein polynomials’ coefficients 

themselves.  Specifically, let βk be the Bernstein polynomials’ coefficient estimator based 

on  the  bootstrap  sample  X (r),  r  =  1, 2, . . .,  we  define  a  bootstrap  simultaneous  (1 − α̃) 
confidence band specifying the lower ÃL    (w) and upper ÃU    (w) limits as 

" 
Σ 

β̂α
∗[r(α̃/2)|bα(w ; k);   

Σ 
β̂α
∗[r(1−α̃/2)|bα(w ; k)

# 

, w ∈ Sd−1, (3.9) 

∆ 
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^  ̂

n 
^ 

where βα∗[r(α̃/2)|  and βα∗[r(1−α̃/2)|, for all α ∈ Γk, correspond to the [r(α̃/2)| and [r(1 − α̃/2)| 
ordered statistics respectively and bα(w; k) is the Bernstein basis polynomial of degree k, 
see (3.2). Although this approach does not guarantee convex confidence bands, it works very 
well in our simulations, where we find that the convexity is violated only when dependence  
is weak. Another possibility, that can be considered, is to bootstrap bands for unconstrained 
estimators and then apply projection to the lower and upper bound, as pointed out by an  
anonymous Referee. Our specific simulations results indicate that our method performs  
slightly better than this valuable alternative. 

 
4 Simulations 

To  visually  illustrate  the  gain  in  implementing  our  Bernstein-Bézier  projection  approach, 
Figure 2 compares the madogram (MD) estimator AMD defined by (2.4) with its Bernstein- 
Bézier-projection (BP) version defined by (3.6) for the special case of the symmetric logistic 
model (SL, Tawn 1990) with d = 3 and αJ = 0.3. For all sample sizes (n = 20, 50, 100), 
an improvement can be observed by comparing the estimated contour lines (dotted) in the  
top and bottom panels. This is particularly true for a small sample size like n = 20, the 
corrected version providing smoother and more realistic contour lines. 

n = 20 n = 50 n = 100 
 
 
 

MD 
 
 
 
 
 
 
 
 
 

BP-MD 
 
 
 
 
 

0.0 0.2 0.4 0.6 0.8 1.0 
 

0.0 0.2 0.4 0.6 0.8 1.0 
 

0.0 0.2 0.4 0.6 0.8 1.0 

 

Figure 2: Estimates (dashed lines) of the Pickands dependence function obtained with the  
MD estimator (top row) and its BP version (bottom row) with polynomial degree k = 14. 
The solid line is the true Pickands dependence function. Each column represents a different  
sample size. 
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To  guarantee  a  good  approximation  of  A  with  Ãn,k,  Proposition  3.4  suggested  to  set 
a large polynomial degree k for large sample sizes, see also Fils-Villetard et al.   (2008), 
Gudendorf and Segers (2011), Gudendorf and Segers (2012). But computational time limits  
restrict the choice of k. Figure 3 explores this issue for the logistic model with αJ = 0.3 
and n = 100. As expected from the theory, the choice of k is not anecdotical. A shift in 
the contour lines appears for the small value k = 5, see the left panel of Figure 3. This 
undesirable feature disappears for a moderate value of k, see the right panel with k = 14. 

k = 5 k = 11 k = 14 
 
 
 

BP-MD 
 
 
 
 
 

0.0 0.2 0.4 0.6 0.8 1.0 
 

0.0 0.2 0.4 0.6 0.8 1.0 
 

0.0 0.2 0.4 0.6 0.8 1.0 

 

Figure 3: Same as Figure 2 but with n = 100 and three different values of the polynomial 
degree. 

 
To go beyond these visual checks, we also compute a Monte-Carlo approximation of the 

mean integrated squared error 

MISE(Ân , A) = E 

(∫

 

 

 
Sd−1 

 
Ân

 

(w) − A(w)
 2 

dw

) 

, 

 

for a variety of setups. The approximate MISE is obtained by repeating 1000 times a given  
inference method for three different sample sizes n = 50, 100, 200. Different dependence 
strength of the logistic model has been explored setting the parameter αJ between 0.3 (strong 
dependence) and 1 (independence). Table 1 compares four non-parametric estimators intro- 
duced in Section 2: the madogram estimator (MD), the Pickands (1981) estimator (P), the 
multivariate version of the Hall and Tajvidi (2000) estimator (HT), and finally the multi- 
variate  extension  of  the  Capéraà,  Fougères,  and  Genest  (1997)  estimator.   For  comparison 
purposes we have also considered the weighted and endpoint-corrected versions of the P and 
CFG estimators as discussed in Gudendorf and Segers (2012), denoted by Pw and CFGw re- 
spectively. We can see that the MD estimator provided the best results if compared with the 
other classical non-parametric estimators. Taking into account also the weighted versions,  
it turns out that the CFGw estimator performs the best, especially for small sample sizes 
(n = 50). With a medium dependence (αJ = 0.5, 0.7) the estimators provide similar results. 
With a weak dependence or in the independence case (αJ = 0.9, 1), the MD estimator still 
provides the best results, especially for small and moderate sample sizes (n = 50, 100). 
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Pw 1.45 × 10−4 5.13 × 10−4 1.26 × 10−3 2.53 × 10−3 2.81 × 10−3 

CFG 2.36 × 10−4 6.92 × 10−4 1.87 × 10−3 4.07 × 10−3 5.02 × 10−3 

CFGw 9.17 × 10−5 4.45 × 10−4 1.24 × 10−3 2.66 × 10−3 3.07 × 10−3 

HT 2.64 × 10−4 8.54 × 10−4 2.59 × 10−3 5.13 × 10−3 5.65 × 10−3 

MD 1.80 × 10−4 8.66 × 10−4 1.91 × 10−3 3.02 × 10−3 2.87 × 10−3 

100 P 1.53 × 10−4 3.16 × 10−4 6.98 × 10−4 1.20 × 10−3 1.39 × 10−3 
Pw 6.36 × 10−5 2.38 × 10−4 6.51 × 10−4 1.25 × 10−3 1.51 × 10−3 

CFG 9.54 × 10−5 3.27 × 10−4 8.66 × 10−4 1.78 × 10−3 2.15 × 10−3 

CFGw 4.32 × 10−5 2.21 × 10−4 6.35 × 10−4 1.24 × 10−3 1.39 × 10−3 

HT 2.61 × 10−4 7.66 × 10−4 2.16 × 10−3 4.24 × 10−3 5.27 × 10−3 

MD 7.02 × 10−5 3.18 × 10−4 7.91 × 10−4 1.19 × 10−3 1.09 × 10−3 

200 P 5.87 × 10−5 1.54 × 10−4 3.40 × 10−4 6.25 × 10−4 7.24 × 10−4 

Pw 3.01 × 10−5 1.31 × 10−4 3.28 × 10−4 6.60 × 10−4 7.59 × 10−4 

CFG 3.87 × 10−5 1.58 × 10−4 4.00 × 10−4 8.31 × 10−4 8.52 × 10−4 

CFGw 2.12 × 10−5 1.23 × 10−4 3.24 × 10−4 6.36 × 10−4 5.90 × 10−4 
HT 2.55 × 10−4 7.31 × 10−4 2.05 × 10−3 3.82 × 10−3 5.85 × 10−3 

MD 3.17 × 10−5 1.58 × 10−4 3.70 × 10−4 5.81 × 10−4 4.91 × 10−4 

Table 1: MISE of four estimators of the Pickands dependence function, and some weighted 
version, based on a trivariate symmetric logistic dependence model for different parameter 

values and sample sizes. 
 

 
Table 2 shows how an initial estimate of the Pickands dependence function improves 

using the projection method. The improvement is computed by 

MISEN − MISEP 

MISEN 
× 100, 

and is reported in columns 3–6, where MISEN and MISEP  are the MISE obtained with 
a non-parametric estimator and its projection respectively.  As before, MISE provides a 
Monte-Carlo approximation of MISE(An, A) obtained with 1000 random samples. The true  
dependence structure is still the symmetric logistic model. αJ denotes the model parameter, 
and n and k are the sample size and the polynomial degree respectively. Estimates obtained 
with the initial non-parametric are regularized using the BP method.  The order of the 
polynomial exploited is an “optimal” value of k, that is the k  value chosen in a such way 
that the MISE does not decrease significantly for larger values of k. It turns out that with 
a weak dependence a small value of k is enough, conversely with a strong dependence a 
large value of k is needed. This makes sense if we view a dependence structure as an added  
complexity, especially with respect to the independence case, the simplest possible model. In 
such a framework, the polynomial degree has to be higher to capture this extra information. 

The improvements obtained with the classical estimators, sorted from largest to smallest,  
are: MD, CFG, P and HT. As expected,  with Pw and CFGw the improvements are the 

Sample size n Estimator   Parameter α′  

  0.3 0.5 0.7 0.9 1 

50 P 4.25 × 10−4 8.06 × 10−4 1.47 × 10−3 2.45 × 10−3 2.50 × 10−3 
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− 

 

Projection method 
Bernstein-Bézier Discrete spectral measure 

% Improvement 
 

n 
 

 50 0.3 23  18.11 13.34 76.84 18.97 51.53 8.50  2.14 0.82  
 0.5 20  8.19 5.44 13.98 1.46 12.52 2.22  5.51 1.17  

 0.7 16  15.60 11.01 4.43 2.10 9.05 6.48  11.03 3.17  

 0.9 6  44.70 25.92 3.98 6.51 16.93 48.72  22.39 4.37  

 1 3  69.95 34.53 4.92 9.04 34.68 93.60  29.07 4.89  

100 0.3 23  16.59 13.36 59.75 13.43 45.45 7.41  1.27 0.40  
 0.5 20  5.85 3.83 7.59 0.63 9.78 1.23  3.52 0.84  

 0.7 16  9.89 8.15 2.21 0.95 6.42 2.74  7.51 1.37  

 0.9 6  34.95 23.98 3.48 6.50 8.33 26.72  23.13 4.07  

 1 3  68.00 39.35 5.93 11.50 19.22 87.46  36.10 8.11  

200 0.3 23  15.16 10.63 37.73 5.66 44.72 5.05  0.60 0  
  0.5 20  3.06 2.51 3.80 0.41 9.06 0.13  2.10 0  

  0.7 16  5.70 5.22 0.90 0 5.60 0.76  4.85 0.88  

  0.9 6  25.22 20.48 3.43 6.07 5.53 13.39  18.52 3.28  

  1 3  69.17 46.32 8.63 16.06 10.88 81.99  40.99 11.89  
 

Table 2: Percentage improvement of the MISE gained with the projection method. 
 

 
smallest. For each estimator, the improvements sorted from largest to smallest, are obtained 
with: independence (αJ = 1), strong dependence (αJ  = 0.3), weak dependence (αJ  = 0.9) 
and medium dependence (αJ = 0.5, 0.7). These results are compared with those provided in 
Gudendorf and Segers (2012) that are obtained with the discrete spectral measure projection 
method proposed by the same authors (see columns 7,8). We can conclude that overall the  
BP method provides a better percentage improvement. 

To explore the validity of our procedure to derive a bootstrap pointwise and simultaneous 
(1     α̃) confidence band described in Section 3.3, Table 3 displays 95% coverage probabilities 
from 1000 independent samples and r = 500 bootstrap resampling. The parametric setup is  
identical to the one used in Table 2 but with fixed sample size equal to n = 100. Overall, 
excluded the independence case, the simultaneous method (3.9) outperforms the pointwise 
method, since the coverage probabilities are always larger. 

To close this small simulation study2, we extend the class of parametric families to the  
asymmetric logistic (AL, Tawn 1990) with θ = 0.6, φ = 0.3, ψ = 0, the Hüsler–Reiss model 
(HR, Hüsler and Reiss 1989) with three cases (γ1 = 0.8, γ2 = 0.3, γ3 = 0.7), (γ1 = 0.49, γ2 = 
0.51, γ3  = 0.03), (γ1   = 0.24, γ2  = 0.23, γ3  = 0.11) and the extremal skew-t (EST, Padoan 

2011) with three setups (α∗ = 7, −10, 1, ν = 3, ω = 0.9), (α∗ = −2, 9, −15, ν = 2, ω = 0.9), 
2The case d = 2 has also been considered. The results have been omitted for brevity, since they arrive at  

the same conclusion. Tables like Table 1, 2 and 3 are available upon request for the HR and EST families 
and brings the same overall message. 

 Estimator    Estimator 

α′ k P Pw CFG CFGw HT MD Pw CFGw 
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Estimator Confident bands’ type Parameter α′ 
 0.3 0.5 0.7 0.9 1 

BP-P Pointwise 41.53 35.92 50.66 72.23 83.05 

 Simultaneous 73.34 69.13 68.79 75.11 84.82 

BP-CFG Pointwise 26.89 42.65 42.60 57.68 57.30 
 Simultaneous 62.24 61.92 60.67 66.54 57.32 

BP-HT Pointwise 29.33 28.92 49.38 65.20 10.42 
 Simultaneous 51.26 54.22 60.91 81.33 10.68 

BP-MD Pointwise 54.63 70.15 66.13 73.43 94.63 
 Simultaneous 76.40 80.48 80.26 81.36 94.65 

Table 3: 95% coverage probabilities of the BP method with four non-parametric estimators 

for the symmetric logistic model. 
 
 
 

Figure 4: Estimates of Pickands dependence function for d = 3 (light grey shade) and 
bootstrap variability bands (dark grey shade) for the SL, AL, HR, EST (left-right) models 
with strong, mild and weak dependence (top-bottom) 
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≤ ≤ 

n,k 

 ̂≤ 

(α∗  =    0.5,   0.5,   0.5,  ν  = 3,  ω  = 0.9).   Figure 4 shows that,  for all these cases,  the 
lower and upper limits of the variability bands are always convex functions and they always  
contain the true Pickands dependence function. The variability bands of weaker dependence 
structures are typically wider than those of stronger dependence structures.  The same is 
true for asymmetric versus symmetric dependence structures. 

 
5 Weekly maxima of hourly rainfall in France 

Coming back to Figure 1 introduced in Section 1, our goal here is to measure the depen- 
dence within each cluster of size d = 7. The clusters were obtained by running the algorithm 
proposed by Bernard et al. (2013) on weekly maxima of hourly rainfall recorded in the 
Fall season from 1993 to 2011, i.e., n = 228 for each station. In the first place, the aim 
of clustering was to describe the dependence of locations, with homogeneous climatology  
characteristics within a cluster and heterogeneous characteristics between clusters. Climato- 
logically, extreme precipitation that affects the Mediterranean coast in the fall is caused by  
the  interaction  of  southern  and  mountains  winds  coming  from  the  Pyrénées,  Cévennes  and 
Alps regions. In the north of France, heavy rainfall is often produced by mid-latitude per- 
turbations in Brittany or in the north of France and Paris. It can be checked that extremes  
within clusters are indeed strongly dependent. 

For each cluster, we compute our Bernstein projection estimator based on the mado- 
gram and fixed the polynomial’s order k equal to 7. To summarize this seven-dimensional 
dependence structure, we take advantage of the extremal coefficient (Smith 1990) defined by 

θ = d A(1/d, . . . , 1/d). 

It satisfies the condition 1 θ d, where the lower and upper bounds represent the cases of 
complete dependence and independence among the extremes, respectively. In each cluster, 
the extremal coefficient is estimated using the equation θ̂   =   7 ÃMD(1/7, . . . , 1/7), so that θ̂  
always belongs to the interval [1, 7]. The range of the estimated coefficients is between 3.5, 
indicating strong dependence, and 4.6, indicating medium dependence. 

As climatologically expected, we can detect in Figure 1 a latitudinal gradient in the 
estimated extremal coefficients. They are smaller in the northern regions and higher in the  

south. This can be explained by westerly fronts above 46◦ latitude that affect large regions, 
whereas extreme precipitation in the south is more likely to be driven by localised convective 
storms with weak spatial dependence structures. Finally, in the center of the country, away  
from the coasts, there is the highest degree of dependence among extremes, as they are the 
result of the meeting between different densities of air masses. 

For all possible pairs of locations we have estimated the bivariate Pickands dependence 
function using the madogram estimator and its Bernstein projection. The left-hand panel 
of Figure 5 shows the pairwise extremal coefficients versus the Euclidean distance between 
sites, computed through the estimated Pickands dependence functions. We have θ     1.5 for 

the locations that are less than 200 km far apart, meaning that the extremes are strongly 
or  at  least  mildly  dependent,  while  for  sites  more  than  200  km  far  apart,  we  have  θ̂  > 1.5, 
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Figure 5: French precipitation data. Left: pairwise extremal coefficients as a function of dis - 

tance between weather stations. Right: estimates of Pickands dependence functions for four 
pairs of stations at decreasing distances (black: raw madogram estimator; gray: Bernstein  
projection madogram estimator). 

 
meaning that the extremes at most mildly dependent up to independent. The graph also 
shows the benefits of the projection method: after projection, the extremal coefficients fall 
within the admissible range [1, 2], whereas they can be larger than 2 without the projection 
method. 

The right-hand plot of Figure 5 shows four examples of estimated Pickands dependence 
functions obtained with pairs of sites whose distances are 979.8, 505.9, 390.1 and 158.1 km, 
respectively (top-left to bottom-right panels). The madogram estimator provides estimates 
(black lines) that are not convex functions and hence are not Pickands dependence functions 
themselves. Contrarily, the estimates (gray lines) obtained with the projection estimator are 
valid Pickands dependence functions. 

 

6 Computational Details 

Simulations and data analysis were performed using the R package ExtremalDep (https: 
//r-forge.r-project.org/R/?group_id=1998) 
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A   Proofs 

For w ∈ Sd−1, define the function νw : [0, 1]d → [0, 1] by 
 

d d 

ν   (u) = 
_

(u1/wi ) − 
1 Σ 

u1/wi , u ∈ [0, 1]d, (A.1) 

 

where, by convention, u1/w = 0 whenever w = 0 and u ∈ [0, 1]. 

Lemma A.1. For any cumulative distribution function H on [0, 1]d and for any w d−1, 

we have 

∫

[0,1]d 

 
νw(u) dH(u) = 

 

d 
 

d 
i=1 

 
1 

H(1, . . . , 1, xw i, 1, . . . , 1) dx 
0 

 
1 

H(xw1 , . . . , xwd ) dx. 
0 

 

Proof. Fix w ∈ Sd−1. For every u ∈ [0, 1]d we have 
 

 
 
 
 
 

and 

i

_

=1 

u1/w i   = 1 − 

= 1 − 

1 

1(∀i = 1, . . . , d : u1/wi   ≤ x)dx 
 

1 

1(∀i = 1, . . . , d : ui ≤ xwi )dx 
 

d 
 

d 
i=1 

u1/w i   = 1 − 

d 
 

d 
i=1 

1 

1(ui xwi )dx. 
0 

Subtracting both expressions and integrating over H yields 
∫

[0,1]d 

 
νw(u) dH(u) = 

 

d 
 

d 
i=1 

∫

[0,1]d 

 
1 

1(ui xwi ) dx dH(u) 
0 

— 

∫

[0,1]d 

1 

1(∀i = 1, . . . , d : ui ≤ xwi ) dx dH(u). 
 

 

Applying Fubini’s theorem to both double integrals yields the stated formula. 

0 

0 

0 

∫ ∫ 

∫ 

∫ 

∫ 

∫ 

− 
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∫ 

∈ S 

Σ1 ∫ 

 ̂

Σ1 

Σ1 

Σ1 1 Σ 
^
 

Σ1 

= 

d 

Proof of Proposition 2.2. The marginal distribution functions being continuous, the copula 
C is the joint distribution function of the random vector ( F1(X1), . . . , Fd(Xd)).  For w     d−1, 
the multivariate w-madogram can thus be written as 

 

ν(w) = νw(u) dC(u). 
[0,1]d 

Next, apply Lemma A.1. Since C is an extreme-value copula with Pickands dependence 

function A, we find, after some elementary calculations using (1.2) and (1.3), 

C(xw1 , . . . , xwd ) = xA(w) 
 

for all x ∈ (0, 1). We obtain 

 
ν(w) = 

 

 

d 
 

d 
i=1 

1 Σ 
 

 

 

1 

C(1, . . . , 1, xw i, 1, . . . , 1) dx 
0 

∫ 1 ∫ 1 
 

   

 

1 

C(xw1 , . . . , xwd ) dx (A.2) 
0 

yielding the first formula stated in the proposition. Solve for A(w) to obtain (2.2). Since 
ν(w) + c(w) = A(w)/(1 + A(w)), necessarily ν(w) + c(w) < 1, so that the right-hand side 
of (2.2) is well-defined. 

Proof of Theorem 2.4. The proof proceeds by expressing the statistics and empirical w- 

madogram νn(w) and νn(w) in terms of the empirical distribution and empirical copula and 
exploiting known results thereon. For i = 1, . . . , d and j = 1, . . . , n, let 

U j = (Uj,1, . . . , Uj,d), Uj,i = Fi(Xj,i), 

Û j = (Ûj,1 , . . . , Ûj,d), Ûj,i 

 

= Fn,i 

 

(Xj,i 

n 

) = 1(X 
n 

m=1 

 
 

m,i ≤ Xj,i). 

Recall νw in (A.1). The statistics and empirical w-madogram are equal to 

 
νn(w) = 

n 
 

n 
m=1 

 
νw(U 

 
m) = 

∫

[0,1]d 

 
νw(u) dCn 

 
(u), ν̂n 

 
(w) = 

∫

[0,1]d 

 

νw(u) dĈn 

 
(u), 

respectively, where Cn  and Ĉn  are the empirical distribution and copula: 

 
n Cn(u) = 1(U m 

n 
m=1 

≤ u), Ĉn 
n (u) = 1(U 

n 
m=1 

m ≤ u), u ∈ [0, 1] , 

(component-wise inequalities). By Lemma A.1 we obtain 
 

 

νn(w) = 
d 

 

d 
i=1 

1 

Cn(1, . . . , 1, xw i, 1, . . . , 1) dx 
0 

1 

Cn(xw1 , . . . , xwd ) dx, (A.3) 
0 

xA(w) dx, xw i dx − 
0 

d 
i=1 

d 

∫ 

∫ ∫ 

0 

− 

− 



21 

 

 ̂
^ 

^  ̂

Σ1 
∫ ∫ 

 ̂

^ 

    

^ ^  ̂

Σ1 

^ 

^ 

(φ(D̂))(w) = − D̂(xw1 , . . . , xwd ) dx. 

√ 

0 

and a similar expression is attained for νn(w) but with Cn replaced by Cn. Comparing the 
latter equation with (A.2) yields 

ǁνn − νǁ∞ ≤ 2ǁCn − Cǁ∞. 

Standard empirical process arguments yield uniform strong consistency of the empirical 

copula (Deheuvels 1991). We come to a similar inequality for νn. Uniform strong consistency 
of An and An follows. 

Next, consider the empirical processes 

Dn = 
√

n(Cn − C), D̂n  = n(Ĉn  − C). 
 

 
 

√
n  νn(w) − ν(w) 

d 

= 
d 

i=1 

1 

Dn(1, . . . , 1, xwi, 1, . . . , 1)dx 
0 

1 

Dn(xw1 , . . . , xwd )dx 
0 

and clearly a similar expression is obtained for 
√

n νn(w) − ν(w)  but replacing Dn with 

Dn. Now, two related results: in the space l∞([0, 1]d) equipped with the supremum norm, 

Dn ~ D, as n → ∞, where D is a C-Brownian bridge, and if Condition 2.3 holds, then 

Dn ~ D, as n → ∞, where D is the Gaussian process defined in (2.7). The map 

φ : l∞([0, 1]d) → l∞(Sd−1) : f  ›→ φ(f ) 
 

defined by 

 
(φ(f ))(w) = 

 
 
 

d 

 

d 
i=1 

 
 
 

1 

f (1, . . . , 1, xw i, 1, . . . , 1) dx 
0 

 
 
 

1 

f (xw1 , . . . , xwd ) dx 
0 

is linear and bounded, and therefore continuous. The continuous mapping theorem then 
implies 

√
n(νn − ν) = φ(Dn) ~ φ(D), n(ν̂n − ν) = φ(D̂n) ~ φ(D̂), n → ∞, 

in l∞(Sd−1).  The Gaussian process D satisfies 

P{∀ i = 1, . . . , d : ∀ u ∈ [0, 1] : D(1, . . . , 1, u, 1, . . . , 1) = 0} = 1. 

This property follows from the continuity of its sample paths and by the form of the covari- 

ance function (2.6). We find, for w ∈ Sd−1, 
∫ 1 

 

Finally, apply the functional delta method (van der Vaart 2000, Ch. 20) to arrive at the 
conclusion. 

Combining Equations (A.2) and (A.3) we obtain 

∫ ∫ 

√ 

− 

− 
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− 

d 
i=1 E|Yk,i/k − wi|.  By the Cauchy–Schwarz inequality and the fact that the random vari- 

cΣess probabilities w1, . . . , wd.  Any function A ∈ A is Lipschitz-1, so that |BA(w ; k)−A(w)| ≤ 

i=1 i=1 

Proof  of  Proposition  3.1.  We  have  |BA(w ; k) − A(w)| ≤ E|A(Yk /k) − A(w)|,  where  Yk  = 
(Yk,i; i = 1, . . . , d) is a multinomial random vector with k trials, d possible outcomes, and suc- 

 

ables Yi,k  are binomially distributed, it follows that |BA(w; k) − A(w)| ≤ 
Σd

 (E(Yk,i/k  − 
 wi)

2) 1/2 ≤ d/(2
√

 k). 

i=1 

Proof of Proposition 3.2. On the one hand we have that if BA(w; k) ≥ max(w1, . . . , wd), 
then  Dvi −vj  BA(vj ; k) ≥ −1.  Indeed,  max(w1, . . . , wd)  is  the  intersection  of  the  planes  z0  = 
1 − w1 − w2 − · · · − wd−1, z1 = w1, . . ., zd−1 = wd−1, then by the assumption 

BA(vj; k) ≥ zj, j = 0, 1, . . . , d − 1. 

The directional derivatives of BA calculate for vj, j = 0, 1, . . . , d − 1, are equal to 
 

 
Dvi−vj B(vj ; k) = 

Dvi−v0 B(v0; k) if i /= 0 = j 
−Dvj −v0 B(vj ; k) if i = 0 =/ j 

 
(A.4) 

Dvi−v0 B(vj ; k) − Dvj −v0 B(vj ; k) if i 0 /= j, i /= j 
 

which are bounded from below by 1. Then, considering the directional derivatives on both 
sides of the above inequality we obtain 

Dvi−vj BA(vj ; k) ≥ −1, ∀ i, j = 0, 1, . . . , d − 1, i =/ j, 

and hence the result. 

On the other hand if Dvi−vj BA(vj ; k) ≥ −1, j = 0, . . . , d−1 then BA(w ; k) ≥ max(w1, . . . , wd). 
Since BA lies above the tangent plane 

BA(w; k) ≥ BA(wJ; k) + (wJ − w)T∇BA(wJ; k), ∀ w, wJ ∈ Sd−1. (A.5) 

by the convexity assumption, then evaluating this inequality for wJ = vj for j ∈ {0, 1, . . . , d− 
1} we obtain the desired result BA(w; k) ≥ wj for all w ∈ Sd−1. Indeed, considering (A.5) 

at wJ = v0 we find, for w ∈ Sd−1, 
 

d−1 d−1 

BA(w ; k) ≥ 1 + wT∇BA(v0; k) = 1 + 
Σ 

wi Dvi−v0 B(v0; k) ≥ 1 + 
Σ 

wi (−1) = wd 

where wd = 1 − w1 − · · · − wd−1, as required. Furthermore, considering (A.5) at wJ = vj for 
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Σ 

A 

— − 
{ } 

d d−1 

α k + 1 α−vh−1 

α k + 1 k + 1 k + 1 α 

h=1 

j ∈ {1, . . . , d − 1} we find for w ∈ Sd−1, 

BA(w; k)    ≥  1 + (w − vj)T∇BA(vj; k) 

 

 

d−1 

= 1 + (wj − 1)Dvj −v0 B(vj ; k) + wi Dvi−v0 B(vj ; k) 
i=1 
i  j 

≥   1 + (wj − 1)Dvj −v0 B(vj ; k) + 

d−1 

wi 
i=1 

Dvj −v0 B(vj ; k) − 1 

i  j 

= 1 + (wj − 1)Dvj −v0 B(vj ; k) + (1 − wj − wd) 

 

Dvj −v0 B(vj ; k) − 1

 

 

= wj + wd 

 

1 − Dvj −v0 B(vj ; k)

  

≥ wj 

given that Dvi−v0 B(vj ; k) ≥ Dvj −v0 B(vj ; k) − 1 and 1 − Dvj −v0 B(vj ; k) ≥ 0. 

Proof of Proposition 3.3. Firstly, the polynomials in k are nested (e.g., Wang and Ghosh, 
2012; Farin, 1986). By the degree-raising property we have 

B(w; k) = 
Σ 

βαbα(w; k) = 
Σ

 β̃αbα(w ; k + 1) = B̃(w ; k + 1) 

 

where 

α∈Γk α∈Γk+1 

 
d 

β̃   = 
Σ   αh    

β . (A.6) 

We  need  to  show  that  the  coefficients  β̃α  satisfy  the  constraints  R1)-R2)-R3).  For  the  case 
R1) we need to check that 

 
2 
i,0 β̃α  − 

Σ 
|∆i,0∆j,0β̃α | ≥ 0, ∀α ∈ Γ(k+1)−2,  i = 1, . . . , d − 1. 

j=/    i 

This can be rewritten as 

 
 
 

 
 

2 
i,0 β̃α  − 

Σ
(−1)Is,t ∆i,0∆j,0β̃α  ≥ 0, 

j  i 
 

where Is,t is the set of all the possible combinations with repetition of the set 1, 2 in 
sequences of d    2 terms, s = 1, . . . , d    2 and t = 1, . . . , 2d−2. Using the relation in (A.6) 
we have 

β̃   = 
Σ   αh    

β 
 

 

= 
Σ αh  

β
 

 

 

  αd  
+ β . 

h=1 h=1 

Σ 

∆ 

∆ 

α−vh−1 α−eh 
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h 

Σ−  
(
  α

  
Σ− 

(
α   

− 1 

i j 

− 

Σ 

h 

k + 1 
d 

k + 1 
βα 

n n 

2 

Then, we obtain 

Σ 

 
 

 
 

(
Σd−1  

  α 
 

 
 

  α  
)

 

Σ 
Is,t 

(
Σd−1  

  α 
   αd 

)
 

— (−1) 
j  i 

∆i,0∆j,0  
h=1 k + 1 

βα−eh  + 
k + 1 

βα
 

d  1 

= h 

k + 1 

 
2 
i,0 βα−eh — 

Σ
(−1)Is,t ∆ 

 
 

i,0 

 

∆j,0 
βα−eh 

)

 

h=1 

d   1 

+ d 

k + 1 

 
i,0βα 

j=/ 

— 
Σ 

i 

 

(−1)Is,t ∆ 

 
 
 
i,0 ∆j,0βα

)

 

 
≥ 0, 

h=1 j  i 

 

and hence  the  result. For  the case R2), using (A.6), it  is immediate to verify  for  the  set 

{β̃α, α ∈ Γk+1  : α = 0 or α = (k + 1) ei, ∀i = 1, . . . , d − 1} that  β̃α  = βα = 1.  Finally,  for 
the case R3) we need to check that 1 − 1/(k + 1) < β̃α, where {β̃α, α ∈ Γk+1 : α = ei  or α = 

kei  or αl = kei + ej ,  ∀j i = 1, . . . , d − 1}. By definition we have 

β̃e
 

k 
= 

k + 1 

 

βe i 

1 
+ , 

k + 1 
β̃ke 

k 
= 

k + 1 
β(k−1)ei 

1 
+ , 

k + 1 
β̃ke  +e 

k 
= 

k + 1 
β(k−1)ei+ej 

1 
+ . 

k + 1 

Substituting β̃α, with α = ei, α = kei, α = kei + ej , in the previous inequality we obtain 

β̃α 
   1  

≥ 1 − 
k + 1

 

   1 
1 + kβ 

} 
≥ 

1 
1 + k 

  

1 − 
1 
  

 

k + 1 α−vi−1 k + 1 k 
1 

βα−vi−1 ≥   1 − 
k

 

for i = 1, . . . , d     1, and hence the result. Thus the first statement is proven. 
Secondly, let A be a Pickands dependence function and consider the Bernstein polynomial 

 

Ak(w) = A(α/k) bα(w; k), 
α∈Γk 

that is, Ak = BA( · ; k) as in  (3.3).  Constraint  R1)  holds  by  assumption  (3.8).  Since 
max(w1, . . . , wd) ≤ A(w) ≤ 1 for all w ∈ Sd−1, the constraints in  R2)  and  R3)  are  sat- 
isfied too. Finally, we have uniform convergence Ak → A by Proposition 3.1. 

Proof of Proposition 3.4. Consider the projection of the madogram estimator on the full  

space A (rather than on the subspace Ak): 

ÃMD  = arg minǁÂMD  − Bǁ2. 

h=1 

∆ i,0 − ∆ = ∆ 

∆ 

∆ 

i i 

2 
i,0 

β̃α 

j i 

(−1)Is,t ∆ j,0 β̃α 2 
i,0 βα−eh + 

B∈A 
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n 

n 

^ − S → ∞ 

ǁ̃A n 

n n,kn 

n,kn n n n 

n n n 

Combine these relations to complete the proof. 

From Theorem 2.4 it follows that 
√

n(AMD A) ~ Z in L2(  d−1) as n where Z is a 
Gaussian process. Theorem 1 in Fils-Villetard et al. (2008) then implies that 

√
n(ÃMD  − A) ~ arg min ǁZJ − Zǁ2, n → ∞. 

Z′∈TA(A) 

It remains to show that we can replace ÃMD  by ÃMD  .  It suffices to show that 
 

MD 
n,kn — ÃMDǁ2 = op(n−1/2), n → ∞. 

 

By the first inequality in Lemma 1 in Fils-Villetard et al. (2008) with, in their notation, 

F = A and G = Ak, we find that 

ǁÃMD — ÃMDǁ2 ≤ [δk (2ǁÂMD  − ÃMDǁ2 + δk )]1/2, 

 

where δkn is bounded by the L2 Hausdorff distance between A and Akn . Proposition 3.1 yields 

δkn = O(kn
−1/2),  which  is  o(n−1/2)  by  the  assumption  on  kn.  Furthermore,  since  A ∈ A,  we 

find, by definition of the projection estimator, 

ǁÂMD  − ÃMDǁ2 ≤ ǁÂMD  − Aǁ2 = Op(n−1/2), n → ∞. 
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