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Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials
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Many applications in risk analysis, especially in environmental sciences, require the estimation of the dependence among multivariate maxima. A way to do this is by inferring the Pickands dependence function of the underlying extreme -value copula. A nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of a specific type of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated by analyzing clusters consisting of seven weather stations that have recorded weekly maxima of hourly rainfall in France from 1993 to 2011.

Introduction and background

In recent years, inference methods for assessing the extremal dependence have been in increasing demand. This is especially due to growing requests for multivariate analyses of extreme values in the fields of environmental and economic sciences. The dimension of the random vector under study is often greater than two. For example, Figure 1 displays a map of clusters containing seven weather stations in France each; see [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] for details on the construction of the clusters. The data consist of weekly
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Longitudes Let X = (X 1 , . . . , X d ) be a d-dimensional random vector of maxima that follows a multivariate max-stable distribution G; for more background on univariate and multivariate extreme-value theory, see for instance [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF], de [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF], [START_REF] Falk | Laws of Small Numbers: Extremes and Rare Events[END_REF]. The margins of G, denoted by F i (x) = P X i

x , for all x R and i = 1, . . . , d, are univariate max-stable distributions. The joint distribution takes the form G(x) = C F 1 (x 1 ), . . . , F d (x d ) , x ∈ R d , (1.1) where C is an extreme-value copula:

C(u 1 , . . . , u d ) = exp -l(-log u 1 , . . . , -log u d ) , u ∈ (0, 1] d , (1.2)
with l : [0, ) d [0, ) the so-called stable tail dependence function. The latter function is homogeneous of order one and is therefore determined by its restriction on the unit simplex, the restriction itself being called the Pickands dependence function, denoted here by A.

Formally, we have

l(z) = (z 1 + • • • + z d ) A(w), z ∈ [0, ∞) d , (1.3)
1 Data provided by Météo-France and published within the R package ClusterMax, freely available from the homepage of Philippe Naveau, http://www.lsce.ipsl.fr/Pisp/philippe.naveau/.
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3.53 3.63 3.85 3.86 4.01 4.06 4.56 Any Pickands dependence function belongs to the class (Falk, Hu ¨sler, and Reiss, 2010, Ch. 4). The converse is not true, however; see Beirlant et al. (2004, p. 257) for a counterexample. A characterization of the class of stable tail dependence functions has been given in [START_REF] Ressel | Homogeneous distributions -and a spectral representation of classical mean values and stable tail dependence functions[END_REF]. In condition (C2), the lower and upper bounds represent the cases of complete dependence and independence, respectively.
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Many parametric models have been introduced for modelling the extremal dependence for a variety of applications, with summaries to be found in [START_REF] Kotz | Extreme value distributions theory and applications[END_REF] and [START_REF] Padoan | Extreme value analysis[END_REF]. However, such finite-dimensional parametric models can never cover the full class of Pickands dependence functions. For this reason, several nonparametric estimators of the Pickands dependence function have been proposed: see for instance [START_REF] Pickands | Multivariate extreme value distributions[END_REF], [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF], [START_REF] Hall | Distribution and dependence-function estimation for bivariate extreme-value distributions[END_REF], [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF], Genest andSegers (2009), Bu ¨cher et al. (2011), Gudendorf andSegers (2011, 2012), and [START_REF] Berghaus | Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence[END_REF]. All of these estimators require further adjustments to ensure they are genuine Pickands dependence functions.

Given an independent random sample from a multivariate distribution with continuous margins and whose copula is an extreme-value copula, we propose a nonparametric estimator for its Pickands dependence function. In the bivariate case, a fast-to-compute and easy-tointerpret estimator based on a type of madogram was introduced by [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF]. It has two drawbacks, however: it was only defined for the bivariate case and it is not necessarily a Pickands dependence function itself. Our first contribution is to propose a new type of madogram in the multivariate setting, see also [START_REF] Fonseca | Generalized madogram and pairwise dependence of maxima over two regions of a random field[END_REF]. A second contribution is to regularise the estimator by projecting it onto the space , imposing the necessary constraints (C1)-(C2). To do so, we make use of Bernstein polynomials. We admit that the resulting estimator still need not be a Pickands dependence functi on. Still, simulation results show that imposing (C1)-(C2) already greatly improves the estimation accuracy.

Many regularization strategies have already been considered in the literature. In the bivariate case, [START_REF] Pickands | Multivariate extreme value distributions[END_REF] suggested the use of the greatest convex minorant. Smith a.s.

A ⊆ A ǁ ǁ | | -→ ⇒ S with n-dimensional Lebesgue measure; the L 2 -norm is denoted by ǁf ǁ 2 = ( f 2 (x) dx) 1/2 .
L 2 (X ) denote the Hilbert space of square-integrable functions f : et al. (1990) proposed to modify a pilote estimator using kernel methods, while [START_REF] Hall | Distribution and dependence-function estimation for bivariate extreme-value distributions[END_REF] advocated constrained smoothing splines. However, as discussed in [START_REF] Fils-Villetard | Projection estimators of Pickands dependence functions[END_REF], the impact of these adjustments on the asymptotic properties of the estimator changes from one case to another, while a general result is unknown. The projection estimator approach developed in [START_REF] Fils-Villetard | Projection estimators of Pickands dependence functions[END_REF] and [START_REF] Gudendorf | Nonparametric estimation of multivariate extremevalue copulas[END_REF] provides a general framework based on projections of a pilote estimate onto an increasing sequence of finite-dimensional subsets k . The approximation space they proposed consists of piecewise linear functions, yielding computational challenges in higher dimensions.

X → R, w ∫ ith X equipped
To bypass these computational hurdles, our strategy is to replace piecewise linear functions by Bernstein polynomials [START_REF] Lorentz | Bernstein Polynominals[END_REF][START_REF] Sauer | Multivariate Bernstein polynomials and convexity[END_REF]. In virtue of their optimal shape restriction properties [START_REF] Carnicer | Shape preserving representations and optimality of the Bernstein basis[END_REF], Bernstein polynomials are suitable for nonparametric curve estimation (e.g. [START_REF] Petrone | Random Bernstein polynomials[END_REF][START_REF] Chang | Bayesian survival analysis using Bernstein polynomials[END_REF]) and shape-preserving regression [START_REF] Wang | Shape restricted nonparametric regression with Bernstein polynomials[END_REF]. We provide the asymptotic theory for our estimator and we demonstrate its practical use in dimension seven, which seems to be higher than what has been possible hitherto with nonparametric methods. The estimation uncertainty can be assessed through a resampling procedure.

Throughout the paper we use the following notation. Given X ⊂ R n and n ∈ N, let l ∞ (X ) denote the spaces of bounded real-valued functions on X . For f : X → R, let f ∞ = sup x ∈X f (x) . The arrows " ", " ", and "~" denote almost sure convergence, convergence in distribution of random vectors (see van der Vaart 2000, Ch. 2) and weak convergence of functions in l ∞ (X ) (see van der Vaart 2000, Ch. 18-19), respectively. Let For analytical reasons, we view the unit simplex d-1 as a subset of R d -1 , see

X

(1.4), although geometrically, it is perhaps more natural to consider it as a subset of R d . A similar convention applies to our use of the multi-index α in Section 3.

The paper is organised as follows. In Section 2, we introduce our multivariate nonparametric madogram estimator and we discuss its properties. In Section 3, we describe the projection method based on the Bernstein polynomials. In Section 4, we investigate the finitesample performance of our estimation method by means of Monte Carlo simulations. Finally, we apply our approach to French weekly maxima of hourly rainfall in Section 5. All proofs are deferred to the appendices.

Madogram estimator

Let X be a random vector with continuous marginal distribution functions F 1 , . . . , F d and whose copula C is an extreme-value copula with stable tail dependence function l and Pickands dependence function A; see above. Our estimator is based on the sample version of the multivariate madogram, extending [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF], see also [START_REF] Fonseca | Generalized madogram and pairwise dependence of maxima over two regions of a random field[END_REF].
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Definition 2.1. For w d -1 , the multivariate w-madogram, denoted by ν(w), is defined as the expected distance between the componentwise maximum and the componentwise mean of the variables F 1/w1 (X 1 ), . . . , F 1/wd (X d ), that is,

1 ν(w) = E d d i=1 , F 1/wi (X i ) , - d d i=1 F 1/wi (X i ) # .
(2.1)

For w i = 0 and 0 < u < 1, we put u 1/w i = 0 by convention.

Proposition 2.2. If the random vector X has continuous margins and extreme-value copula with Pickands dependence function A, then, for all w ∈ S d-1 ,

A(w)
where c(w

) = d -1 Σ d ν(w) = A(w) = w i /(1 + w i ). 1 + A(w) -c(w), ν(w) + c(w) , (2.2) 1 -ν(w) -c(w)
The madogram can be interpreted as the L 1 distance between the maximum and the average of the random variables F 1/w1 (X 1 ), . . . , F 1/wd (X d ). If w 1 = . . . = w d = 1/d, then

1 d
the L 1 distance is zero if and only if all components F i (X i ) are equal with probability one, that is, in case of complete dependence.

In the bivariate case, Definition 2.1 is slightly different from the one proposed by [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF]. Here, we use the vector F 1/w1 (X 1 ) , F 1/w2 (X 2 ) instead of F w 1 (X 1 ), F w 2 (X 2 ) . This new version has the advantage that the sample equivalent of (2.2) will automatically satisfy condition (C2).

Assume first that the marginal distributions F 1 , . . . , F d are known; below, we will estimate them by the empirical distribution functions. Equation (2.1) suggests the statistic

ν n (w) = n n m=1 d i=1 , F 1/wi (X m,i ) , - d d i=1 F 1/w i (X m,i ) ! . (2.
3)

The Pickands dependence function can then be estimated through

A MD (w) = ν n (w) + c(w) , w ∈ S . (2.4) 1 -ν n (w) -c(w) d-1
Next, we estimate the unknown marginal distributions F 1 , . . . , F d by the empirical distribution functions

F n,i n (x) = 1(X n m=1 m,i ≤ x), i = 1, . . . , d, (2.5) n n ^MD ^n d n -→ n Σ 1 √ MD n A (w) = .
The next theorem summarizes the asymptotic properties related to A MD and A ^MD . The

∂u i ^ n d n n i=1
where 1(E) is the indicator function of the event E. Replacing F i by F n,i in Equation (2.3) yields our nonparametric estimators ν ^n and A ^MD of the multivariate madogram and of the Pickands dependence function, respectively:

ν 1 Σ _ d , 1/w i , 1 Σ 1/w i ! ^n(w) = n m=1 i=1 F n,i (X m,i ) -d i=1 F n,i (X m,i ) , ν (w) + c(w) 1 -ν ^n(w) -c(w)
Other estimators of the margins could be inserted as well. However, the use of the empirical distribution functions requires minimal assumptions and yields an estimator for A which is invariant under monotone transformations. asymptotic normality requires a smoothness condition on the extreme-value copula C, see Example 5.3 in [START_REF] Segers | Asymptotics of empirical copula processes under non-restrictive smoothness assumptions[END_REF].

Condition 2.3. For every i ∈ {1, . . . , d}, the partial derivative of C with respect to u i exists and is continuous on the set {u ∈ [0, 1] d : 0 < u i < 1}.

Let D be a C-Brownian bridge, that is, a zero-mean Gaussian process on [0, 1] d with continuous sample paths and with covariance function given by

Cov(D(u), D(v)) = C(u ∧ v) -C(u) C(v), u, v ∈ [0, 1] d , (2.6) where the minimum is considered componentwise. Further, provided Condition 2.3 is satis- fied, define the Gaussian process D ^ on [0, 1] d by D ^(u) = D(u) - Σ ∂C (u) D(1, . . . , 1, u , 1, . . . , 1), u ∈ [0, 1] d .
(2.7)

Theorem 2.4. Let X 1 , . . . , X n be independent and identically distributed random vectors whose common distribution has continuous margins and extreme -value copula C with Pickands dependence function A. Then:

a) ǁA MD -Aǁ∞ a.s. 0 as n → ∞ and in l ∞ (S d-1 ), as n → ∞, √ n(A MD -A) ~ (1 + A(w)) 2 MD a.s. d d i=1 ∫ 1 D(1, . . . , 1, x w i , 1, . . . , 1) -D(x w1 , . . . , x w d ) dx ! w∈S ; d-1 b) ǁA ^n -Aǁ∞ -→ 0 as n → ∞. Moreover, if Condition 2.3 is satisfied, then, in l ∞ (S d-1 ), as n → ∞, n(A ^n -A) ~ -(1 + A(w)) 1 D(x w1 , . . . , x w d ) dx 0 . w∈S d -1
The two conditions (C1)-(C2) are not necessarily satisfied by A ^MD . To ensure both conditions, we propose a projection method based on Bernstein polynomials.

0 2 ∫ i n S - -• • • - • S α Σ ( Σ ) α α 1 ! . . . α d ! 1 d
In matrix notation, we have vector. 

α∈Γ k β α b α (w; k) = b k (w) β,

Bernstein polynomials on the simplex

Multivariate Bernstein polynomials, defined on a cube or on a simplex, have been widely discussed in mathematics and statistics, see for example [START_REF] Ditzian | Inverse theorems for multidimensional Bernstein operators[END_REF] and [START_REF] Petrone | On the role of mixtures in Bayesian nonparametrics[END_REF].

Here our focus is on approximating a bounded function f on the simplex d -1. In the univariate case, the shape features of the original function are preserved by its Bernstein approximation. For higher dimensions, shape properties like convexity may no longer be retained. The Bernstein-Bézier polynomials [START_REF] Sauer | Multivariate Bernstein polynomials and convexity[END_REF]) solve this issue and preserve various shape properties [START_REF] Li | Interpolation and convergence of Bernstein-Bézier coefficients[END_REF][START_REF] Lai | Some sufficient conditions for convexity of multivariate Bernstein-Bézier polynomials and box spline surfaces[END_REF].

Fix the dimension d ≥ 2. For positive integer k, let Γ k be the set of multi-indices α = (α 1 , . . . , α d -1 ) ∈ {0, 1, . . . , k} d -1 such that α 1 + • • • + α d -1 ≤ k. The cardinality of Γ k is equal to the number of multi-indices α ∈ {0, 1, . . . , k} d such that α 1 + • • • + α d = k; just set α d = k α 1 α d-1 .
Replacing each α j by α j + 1, we find that the number of such multi-indices is also equal to the number of compositions of the integer k + d into d positive integer parts. The number of such compositions is equal to

p = k + d -1 , (3.1) d -1 and so is the cardinality of Γ k . Define the Bernstein basis polynomial b α ( ; k) on d-1 of degree k by where b (w; k) = k w α , w ∈ S d-1 (3.2) k = k! , w α = w α1 • • • w αd .
The k-th degree Bernstein polynomial associated to A is defined as

B A (w; k) = A(α/k)b α (w; k), w ∈ S d-1 . (3.3) α∈Γ k Proposition 3.1. For every A ∈ A and every k = 1, 2, . . ., d sup w∈S d -1 |B A (w; k) -A(w)| ≤ 2 √ k .
The family of Bernstein-Bézier polynomials of degree k is defined as the set

B k = β α b α ( • ; k) : β ∈ [0, 1] p k . α∈Γ k For w ∈ S d-1 , let b k (w) be th Σ e row vector (b α (w; k), α ∈ {0, 1, . . . , k} d : α 1 + • • • + α d = k). ˜ ǁ - ǁ ^ A ›→ S Σ -s r Σ ∈ S Σ ∆ k k k k k k ∆

Shape-preserving estimator

In this section, we describe how to use Bernstein-Bézier polynomials to obtain a projection estimator [START_REF] Fils-Villetard | Projection estimators of Pickands dependence functions[END_REF]) that satisfies (C1)-(C2). Given a pilot estimator, say A n , the idea is to seek approximate solutions to the constrained optimization problem

A n = arg min A n A 2 .
A∈A There is no closed-form solution to the above equation, and so an approximation based on the sieves method is explored. Consider a sequence A k ⊆ A of constrained multivariate Bernstein-Bézier polynomial families on S d-1 given by ) , r (2) , r (3) ] T are a (q × p k ) full row rank matrix and a (q × 1) vector respectively such that the constraint R k β k ≥ r k on the coefficient vector β k ensures that each member of satisfies (C1)-(C2). Details for deriving the block matrices and vectors of constraints are provided below.

A k = {w ›→ B(w; k) = b k (w)β k : β k ∈ [0, 1] p k such that R k β k ≥ r k } . (3.4) Here, R k = [R (1) , R (2) , R (3) ] T and r k = [r (1
R1) A sufficient condition to guarantee that the function w B(w; k) on d-1 is convex is that its Hessian matrix be positive semi-definite. In order to enforce the latter, we resort by applying Theorem 1 in [START_REF] Lai | Some sufficient conditions for convexity of multivariate Bernstein-Bézier polynomials and box spline surfaces[END_REF]. First, for s = / r ∈ {0, . . . , d -1} and two vectors v r and v s , where v r = 0 if r = 0 and v r = e r if r > 0 with e r the canonical unit vector (same for v s ), the directional derivative of B with respect to the direction

-v - r → v s is D v s-vr B(w; k) = k α∈Γ k -1 ∆ s,r β α b α (w; k -1), w ∈ S d-1
where ∆ s,r β α = (β α+v β α+v ). Second, the second directional derivative of B with respect to the directionsv -

r → v s and -v - r → v t is D v J s -v r ,v t -v r B(w; k) = k(k -1) α∈Γ k -2 ∆ t,r ∆ s,r β α b α (w; k -2), w ∈ S d-1 .
Then, the Hessian matrix of

B(w; k), w d-1 , is H B = [D v J s ,v t B(w; k)] s,t∈{1,...,d -1 },r=0
, and it can be written as

H B = k(k -1) α∈Γ k -2 Σ α b α (w; k -2), w ∈ S d-1 ,
where, for all α

∈ Γ k-2 , Σ α is a symmetric (d -1) × (d -1) matrix given by 1,0 β α ∆ 1,0 ∆ 2,0 β α ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ∆ 1,0 ∆ d-1,0 β α 2 Σ = 2 2,0 β α ∆ 2,0 ∆ 3,0 β α • • • ∆ 2,0 ∆ d-1,0 β α . α . . . ∆ 2 β α d-1,0 ∈ ∈ { -} (1) (1) k - - - - - - - - 0 0 2 3 1 0 1 1 0 0 0 0 0 0 0 2 1 0 3 1 1 0 { ∀ -} × 1 i j ∈ { -} / - - -• • • - (3) (3) k k k k R (1) = 0 2 -1 0 0 -3 1 0 1 0 , r (1) = 0 . k k k k 0 0
By the weak diagonal dominance criterion [START_REF] Lai | Some sufficient conditions for convexity of multivariate Bernstein-Bézier polynomials and box spline surfaces[END_REF]) in order to guarantee that Σ α is positive semi-definite, it is sufficient to check, for all α Γ k-2 and i 1, . . . , d 1 , the conditions

2 i,0 β α - Σ |∆ i,0 ∆ j,0 β α | ≥ 0. j i
Such conditions produce constraints that are more severe than necessary. The above conditions can be synthesized in matrix form as R (1) β ≥ r where R is a (p k-2 (d-1) 2 d -2 × p k ) matrix and r (1) is the corresponding null vector. For example, with d = 3 and k = 3,

0 1 0 0 1 1 0 1 0 0 0 2 1 0 0 3 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 2 3 1 0 1 1 0 0 0 0 0 0 0 1 0 0 -1 -1 0 1 0 3 0 0 -1 1 0 1 -1 0 0 0 - - 0 0 0 0 0 1 0 -1 -1 1 - - 0 0 0 0 0 -1 1 1 -1 0 0 0 0 0 2 -3 1 -1 1 0 3 0 0 A consequence of this approach is that R2) B satisfies the upper bound condition in (C2) if β α = 1 for the set of coefficients β α : α = 0 or α = k e i , i = 1, . . . , d 1 .
Thus, the (2d p k ) matrix and 2d-dimensional vector of restrictions are equal to

(2)

1 0 • • • 0 • • • 0 • • • 0 -1 0 • • • 0 • • • 0 • • • 0 0 0 • • • 1 • • • 0 • • • 0 1 -1 (2) R k = 0 0 • • • -1 • • • 0 • • • 0 , r k = -1 . . R3
) B satisfies the lower bound condition in (C2) if the restrictions R1)-R2) hold and the following constraints are fulfilled. Specifically, for all (i, j) 0, . . . , d 1 2 , i = j, the first directional derivatives with respect tovi → v j , evaluated at the vertices of the simplex, are compared with the first directional derivatives of the planes z 0 = 1,

z 1 = w 1 , z 2 = w 2 , . . ., z d = 1 w 1 w 2 w d -1
, with respect to the same directions. So, it is sufficient to check the conditions

D v -v B(v j ; k) ≥ -1, ∀ (i, j) ∈ {0, . . . , d -1} 2 , i = / j.
As a consequence, it is sufficient to check the conditions β α > 1 -1/k for the set of coefficients {β α : α = e i or α = (k -1)e i or α = (k -1)e i +e j , ∀j i = 1, . . . , d -1}. This can be synthesized in matrix form as R (3) 

β ≥ r where R is a (d(d -1) × p k ) . . . . . . . . ∆ 0 0 0 • • • 0 • • • 1 • • • 0 0 0 • • • 0 • • • -1 • • • 0 1 -1 k - ^ n ẽstimator is denoted by A . ˜ ^ ˜ ^ q ^
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

3 1 -1/k 1 -1/k 1 -1/k
matrix and r (3) is the corresponding vector of 1 1/k vaules. For example, when d = 3 and k = 3, the constraint matrix is the following: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 -1/k 1 -1/k R (3) = 0 0 1 0 0 0 0 0 0 0 , r (3) = 1 -1/k .
The use of the third restriction is justified by the following result.

Proposition 3.2. Let B A be the polynomial (3.3). Assume that B A is convex on the simplex and B A (v j ; k) = 1 for all j ∈ {0, . . . , d -1}. Then, for all w ∈ S d-1

B A (w; k) ≥ max(w 1 , . . . , w d ) ⇐⇒ D v i-v j B A (v j ; k) ≥ -1, for all (i, j) ∈ {0, . . . , d -1} 2 , i /= j.
Recall that the approximate projection estimator of A based on a pilot estimator A n is given by the solution to the optimization problem A ˜n,k = arg minǁA ^n -Bǁ 2 .

(3.5)

In case the pilot estimator is the madogram estimator A ^MD , the corresponding projection

MD n,k
In practice, the estimator A n,k is evaluated on a finite set of points {w q : q = 1, . . . , Q}, with Q ∈ N and w q ∈ S d-1 . The discretized version of the above solution is given by

A n,k (w q ) = b k (w q )β k , w q ∈ S d-1 , q = 1, . . . , Q, (3.6)
where β k is the minimizer of the constrained least-squares problem

Q β ^k = arg min 1 Σ b (w q )β k -A ^n (w ) 2 . β k ∈[0,1] pk :R k β k ≥r k Q q=1 This is a quadratic programming problem, whose solution is β ^k = β J k -(b T k b k ) -1 r T k γ, (3.7)
where γ is a vector of Lagrange multipliers and

β J k = (b k T b) -1 b T A
^n is the unconstrained least squares estimator. The vectors β k and γ can be efficiently computed with an iterative quadratic programming algorithm (e.g. [START_REF] Goldfarb | A numerically stable dual method for solving strictly convex quadratic programs[END_REF]. A high resolution of (3.6) is obtained with increasing values of Q. Numerical experiments showed that a close approximation of the true Pickands dependence function is already reached with moderate values of Q. However, Q should not be seen as an additional parameter of the projection estimator. The solution (3.6) provides better approximations of the true Pickands dependence function for increasing sample sizes n and polynomial degrees k.

In order to state the asymptotic distribution of the projection estimator, the following result is required.

B∈A k k A A ∈ A Σ n ^ → ∞ → ∞ √ MD - ǁ -ǁ → ∞ * (r) ˜ n * (r) ^ n,k n,k α∈Γ k α∈Γ k Proposition 3.3. k , k = 1, 2, . . . is a nested sequence in . Furthermore, if A satisfies the condition 2 i,0 A(α/k) - |∆ i,0 ∆ j,0 A(α/k)| ≥ 0, ∀ k, α ∈ Γ k-2 , i ∈ {1, . . . , d -1}, (3.8) j/=i then there exist polynomials A k ∈ A k such that lim k→∞ sup w∈S d-1 |A k (w) -A(w)| = 0.
The asymptotic distribution of the Bernstein projection estimator based on our multivariate madogram estimator A MD is established in the following proposition.

Proposition 3.4. Assume that the polynomial's degree, k n , increases with the sample size n in such a way that k n /n as n . If the Pickands dependence function A satisfies the condition (3.8), then, for some Gaussian process Z,

n(A ˜n,k n A) ~ arg min Z J Z 2 , n , Z ′ ∈TA (A)
in L 2 (S d-1 ), where TA(A) is the tangent cone of A at A, given by the set of limits of all the sequences a n (A n -A), a n ≥ 0 and A n ∈ A.

It remains an open problem to establish the asymptotic behaviour of the projection estimator without condition (3.8). Moreover, if the Pickands dependence function is sufficiently smooth, we conjecture that the approximation rate in Proposition 3.1 can be improved, leading a slower growth rate needed for the degree of the Bernstein polynomial in Proposition 3.4. The simulation results in Section 4 confirm that polynomial degrees k much lower than n are already sufficient to achieve good results.

Finally, note that Proposition 3.4 and, in fact, everything else in this section applies to any estimator of the Pickands dependence function which satisfies a suitable functional central limit theorem. We are grateful to an anonymous Referee for having pointed this out.

Confidence bands

We construct confidence bands using a resampling method. For w ∈ S d-1 and 0 < α ˜ < 1, the bootstrap (1α ˜) pointwise confidence band, based on the estimates A n,k (w), r = 1, 2, . . ., obtained from the bootstrapped sample X (r) = (X (r) , . . . , X (r) ), has the drawback that the lower and upper limits of the band are rarely convex and continuous. To bypass this hurdle, we followed the strategy to work with the estimated Bernstein polynomials' coefficients themselves. Specifically, let β k be the Bernstein polynomials' coefficient estimator based on the bootstrap sample X (r) , r = 1, 2, . . ., we define a bootstrap simultaneous (1α ˜) confidence band specifying the lower A ˜L (w) and upper A ˜U (w) limits as

" Σ β ^α * [r(α ˜/2)| b α (w; k); Σ β ^α * [r(1-α ˜/2)| b α (w; k) # , w ∈ S d-1 , (3.9) ∆ ^ ^ n ^
where

β α * [ r(α ˜/2) | and β α * [ r(1 -α ˜/2) | , for all α ∈ Γ k , correspond to the [r(α ˜/2)| and [r(1 -α ˜/2)|
ordered statistics respectively and b α (w; k) is the Bernstein basis polynomial of degree k, see (3.2). Although this approach does not guarantee convex confidence bands, it works very well in our simulations, where we find that the convexity is violated only when dependence is weak. Another possibility, that can be considered, is to bootstrap bands for unconstrained estimators and then apply projection to the lower and upper bound, as pointed out by an anonymous Referee. Our specific simulations results indicate that our method performs slightly better than this valuable alternative.

Simulations

To visually illustrate the gain in implementing our Bernstein-Bézier projection approach, Figure 2 To guarantee a good approximation of A with A ˜n,k , Proposition 3.4 suggested to set a large polynomial degree k for large sample sizes, see also [START_REF] Fils-Villetard | Projection estimators of Pickands dependence functions[END_REF], [START_REF] Gudendorf | Nonparametric estimation of an extreme-value copula in arbitrary dimensions[END_REF], [START_REF] Gudendorf | Nonparametric estimation of multivariate extremevalue copulas[END_REF]. But computational time limits restrict the choice of k. To go beyond these visual checks, we also compute a Monte-Carlo approximation of the mean integrated squared error

MISE(A ^n , A) = E ( ∫ S d-1 A ^n (w) -A(w) 2 dw ) ,
for a variety of setups. The approximate MISE is obtained by repeating 1000 times a given inference method for three different sample sizes n = 50, 100, 200. Different dependence strength of the logistic model has been explored setting the parameter α J between 0.3 (strong dependence) and 1 (independence). Table 1 compares four non-parametric estimators introduced in Section 2: the madogram estimator (MD), the [START_REF] Pickands | Multivariate extreme value distributions[END_REF] estimator (P), the multivariate version of the [START_REF] Hall | Distribution and dependence-function estimation for bivariate extreme-value distributions[END_REF] estimator (HT), and finally the multivariate extension of the [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF] estimator. For comparison purposes we have also considered the weighted and endpoint-corrected versions of the P and CFG estimators as discussed in [START_REF] Gudendorf | Nonparametric estimation of multivariate extremevalue copulas[END_REF], denoted by Pw and CFGw respectively. We can see that the MD estimator provided the best results if compared with the other classical non-parametric estimators. Taking into account also the weighted versions, it turns out that the CFGw estimator performs the best, especially for small sample sizes (n = 50). With a medium dependence (α J = 0.5, 0.7) the estimators provide similar results. With a weak dependence or in the independence case (α J = 0.9, 1), the MD estimator still provides the best results, especially for small and moderate sample sizes (n = 50, 100). ^ Pw 1.45 × 10 -4 5.13 × 10 -4 1.26 × 10 -3 2.53 × 10 -3 2.81 × 10 -3 CFG 2.36 × 10 -4 6.92 × 10 -4 1.87 × 10 -3 4.07 × 10 -3 5.02 × 10 -3 CFGw 9.17 × 10 -5 4.45 × 10 -4 1.24 × 10 -3 2.66 × 10 -3 3.07 × 10 -3 HT 2.64 × 10 -4 8.54 × 10 -4 2.59 × 10 -3 5.13 × 10 -3 5.65 × 10 -3 MD 1.80 × 10 -4 8.66 × 10 -4 1.91 × 10 -3 3.02 × 10 -3 2.87 × 10 -3 100 P 1.53 × 10 -4 3.16 × 10 -4 6.98 × 10 -4 1.20 × 10 -3 1.39 × 10 -3 Pw 6.36 × 10 -5 2.38 × 10 -4 6.51 × 10 -4 1.25 × 10 -3 1.51 × 10 -3 CFG 9.54 × 10 -5 3.27 × 10 -4 8.66 × 10 -4 1.78 × 10 -3 2.15 × 10 -3 CFGw 4.32 × 10 -5 2.21 × 10 -4 6.35 × 10 -4 1.24 × 10 -3 1.39 × 10 -3 HT 2.61 × 10 -4 7.66 × 10 -4 2.16 × 10 -3 4.24 × 10 -3 5.27 × 10 -3 MD 7.02 × 10 -5 3.18 × 10 -4 7.91 × 10 -4 1.19 × 10 -3 1.09 × 10 -3 200 P 5.87 × 10 -5 1.54 × 10 -4 3.40 × 10 -4 6.25 × 10 -4 7.24 × 10 -4 Pw 3.01 × 10 -5 1.31 × 10 -4 3.28 × 10 -4 6.60 × 10 -4 7.59 × 10 -4 CFG 3.87 × 10 -5 1.58 × 10 -4 4.00 × 10 -4 8.31 × 10 -4 8.52 × 10 -4 CFGw 2.12 × 10 -5 1.23 × 10 -4 3.24 × 10 -4 6.36 × 10 -4 5.90 × 10 -4 HT 2.55 × 10 -4 7.31 × 10 -4 2.05 × 10 -3 3.82 × 10 -3 5.85 × 10 -3 MD 3.17 × 10 -5 1.58 × 10 -4 3.70 × 10 -4 5.81 × 10 -4 4.91 × 10 -4 Table 2 shows how an initial estimate of the Pickands dependence function improves using the projection method. The improvement is computed by

MISE N -MISE P MISE N × 100,
and is reported in columns 3-6, where MIS E N and MIS E P are the MISE obtained with a non-parametric estimator and its projection respectively. As before, MISE provides a Monte-Carlo approximation of MISE(A n , A) obtained with 1000 random samples. The true dependence structure is still the symmetric logistic model. α J denotes the model parameter, and n and k are the sample size and the polynomial degree respectively. Estimates obtained with the initial non-parametric are regularized using the BP method. The order of the polynomial exploited is an "optimal" value of k, that is the k value chosen in a such way that the MISE does not decrease significantly for larger values of k. It turns out that with a weak dependence a small value of k is enough, conversely with a strong dependence a large value of k is needed. This makes sense if we view a dependence structure as an added complexity, especially with respect to the independence case, the simplest possible model. In such a framework, the polynomial degree has to be higher to capture this extra information.

The improvements obtained with the classical estimators, sorted from largest to smallest, are: MD, CFG, P and HT. As expected, with Pw and CFGw the improvements are the smallest. For each estimator, the improvements sorted from largest to smallest, are obtained with: independence (α J = 1), strong dependence (α J = 0.3), weak dependence (α J = 0.9) and medium dependence (α J = 0.5, 0.7). These results are compared with those provided in [START_REF] Gudendorf | Nonparametric estimation of multivariate extremevalue copulas[END_REF] that are obtained with the discrete spectral measure projection method proposed by the same authors (see columns 7,8). We can conclude that overall the BP method provides a better percentage improvement.

To explore the validity of our procedure to derive a bootstrap pointwise and simultaneous (1 α ˜) confidence band described in Section 3.3, Table 3 displays 95% coverage probabilities from 1000 independent samples and r = 500 bootstrap resampling. The parametric setup is identical to the one used in Table 2 but with fixed sample size equal to n = 100. Overall, excluded the independence case, the simultaneous method (3.9) outperforms the pointwise method, since the coverage probabilities are always larger.

To close this small simulation study 2 , we extend the class of parametric families to the asymmetric logistic (AL, [START_REF] Tawn | Modelling multivariate extreme value distributions[END_REF]) with θ = 0.6, φ = 0.3, ψ = 0, the Hu ¨sler-Reiss model (HR, Hu ¨sler and Reiss 1989) with three cases (γ 1 = 0.8, γ 2 = 0.3, γ 3 = 0.7), (γ 1 = 0.49, γ 2 = 0.51, γ 3 = 0.03), (γ 1 = 0.24, γ 2 = 0.23, γ 3 = 0.11) and the extremal skew-t (EST, Padoan 2011) with three setups (α * = 7, -10, 1, ν = 3, ω = 0.9), (α * = -2, 9, -15, ν = 2, ω = 0.9), 2 The case d = 2 has also been considered. The results have been omitted for brevity, since they arrive at the same conclusion. Tables like Table 1, 2 and 3 are available upon request for the HR and EST families and brings the same overall message. (α * = 0.5, 0.5, 0.5, ν = 3, ω = 0.9). Figure 4 shows that, for all these cases, the lower and upper limits of the variability bands are always convex functions and they always contain the true Pickands dependence function. The variability bands of weaker dependence structures are typically wider than those of stronger dependence structures. The same is true for asymmetric versus symmetric dependence structures.

Weekly maxima of hourly rainfall in France

Coming back to Figure 1 introduced in Section 1, our goal here is to measure the dependence within each cluster of size d = 7. The clusters were obtained by running the algorithm proposed by [START_REF] Bernard | Clustering of maxima: Spatial dependencies among heavy rainfall in France[END_REF] on weekly maxima of hourly rainfall recorded in the Fall season from 1993 to 2011, i.e., n = 228 for each station. In the first place, the aim of clustering was to describe the dependence of locations, with homogeneous climatology characteristics within a cluster and heterogeneous characteristics between clusters. Climatologically, extreme precipitation that affects the Mediterranean coast in the fall is caused by the interaction of southern and mountains winds coming from the Pyrénées, Cévennes and Alps regions. In the north of France, heavy rainfall is often produced by mid -latitude perturbations in Brittany or in the north of France and Paris. It can be checked that extremes within clusters are indeed strongly dependent.

For each cluster, we compute our Bernstein projection estimator based on the madogram and fixed the polynomial's order k equal to 7. To summarize this seven-dimensional dependence structure, we take advantage of the extremal coefficient [START_REF] Smith | Max-stable processes and spatial extremes[END_REF]) defined by θ = d A(1/d, . . . , 1/d).

It satisfies the condition 1 θ d, where the lower and upper bounds represent the cases of complete dependence and independence among the extremes, respectively. In each cluster, the extremal coefficient is estimated using the equation θ ^ = 7 A ˜MD (1/7, . . . , 1/7), so that θ ^ always belongs to the interval [1,7]. The range of the estimated coefficients is between 3.5, indicating strong dependence, and 4.6, indicating medium dependence.

As climatologically expected, we can detect in Figure 1 a latitudinal gradient in the estimated extremal coefficients. They are smaller in the northern regions and higher in the south. This can be explained by westerly fronts above 46 • latitude that affect large regions, whereas extreme precipitation in the south is more likely to be driven by localised convective storms with weak spatial dependence structures. Finally, in the center of the country, away from the coasts, there is the highest degree of dependence among extremes, as they are the result of the meeting between different densities of air masses.

For all possible pairs of locations we have estimated the bivariate Pickands dependence function using the madogram estimator and its Bernstein projection. The left-hand panel of Figure 5 shows the pairwise extremal coefficients versus the Euclidean distance between sites, computed through the estimated Pickands dependence functions. We have θ 1.5 for the locations that are less than 200 km far apart, meaning that the extremes are strongly or at least mildly dependent, while for sites more than 200 km far apart, we have θ ^ > 1.5, meaning that the extremes at most mildly dependent up to independent. The graph also shows the benefits of the projection method: after projection, the extremal coefficients fall within the admissible range [1, 2], whereas they can be larger than 2 without the projection method.
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The right-hand plot of Figure 5 shows four examples of estimated Pickands dependence functions obtained with pairs of sites whose distances are 979.8, 505.9, 390.1 and 158.1 km, respectively (top-left to bottom-right panels). The madogram estimator provides estimates (black lines) that are not convex functions and hence are not Pickands dependence functions themselves. Contrarily, the estimates (gray lines) obtained with the projection estimator are valid Pickands dependence functions.

Computational Details

Simulations and data analysis were performed using the R package ExtremalDep (https: //r-forge.r-project.org/R/?group_id=1998) Standard empirical process arguments yield uniform strong consistency of the empirical copula [START_REF] Deheuvels | On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions[END_REF]. We come to a similar inequality for ν n . Uniform strong consistency of A n and A n follows.

∈ S Σ 1 d i i Σ 1 i Σ 1 Σ 1 ∫ w i d i ≤ ≤ i=1 i=1
A T E X. ^ ^ ^ ^ Σ 1 ∫ ∫ ^ ^ ^ ^ ^ Σ 1 ^ ^ (φ(D ^))(w) = - D ^(
Next, consider the empirical processes given that D v i-v 0 B(v j ; k) ≥ D v j -v0 B(v j ; k) -1 and 1 -D v j -v0 B(v j ; k) ≥ 0.

D n = √ n(C n -C), D ^n = n(C ^n -C). √ n ν n (w) -ν(w) d = d i=1 1 D n (1, . . . ,
: l ∞ ([0, 1] d ) → l ∞ (S d-1 ) : f ›→ φ(f )
Proof of Proposition 3.3. Firstly, the polynomials in k are nested (e.g., [START_REF] Wang | Shape restricted nonparametric regression with Bernstein polynomials[END_REF][START_REF] Farin | Triangular Bernstein-Bézier patches[END_REF]. By the degree-raising property we have We need to show that the coefficients β ˜α satisfy the constraints R1)-R2)-R3). For the case R1) we need to check that 2 i,0 β ˜α -Σ |∆ i,0 ∆ j,0 β ˜α| ≥ 0, ∀α ∈ Γ (k+1)-2 , i = 1, . . . , d -1.

j = / i
This can be rewritten as 2 i,0 β ˜α -Σ (-1) I s,t ∆ i,0 ∆ j,0 β ˜α ≥ 0,

j i
where I s,t is the set of all the possible combinations with repetition of the set 1, 2 in sequences of d 2 terms, s = 1, . . . , d 2 and t = 1, . . . , 2 d -2 . Using the relation in (A.6) we have

β ˜ = Σ α h β = Σ α h β α d + β . h=1 h=1 Σ ∆ ∆ α-v h -1 α-e h h Σ - ( α Σ - ( α -1 i j - Σ h k + 1 d k + 1 β α n n 2
Then, we obtain and hence the result. For the case R2), using (A.6), it is immediate to verify for the set {β ˜α, α ∈ Γ k+1 : α = 0 or α = (k + 1) e i , ∀i = 1, . . . , d -1} that β ˜α = β α = 1. Finally, for the case R3) we need to check that 1 -1/(k + 1) < β ˜α, where {β ˜α, α ∈ Γ k+1 : α = e i or α = ke i or α l = ke i + e j , ∀j i = 1, . . . , d -1}. By definition we have

Σ ( Σ d-1 α α ) Σ I s,t ( Σ d-1 α α d ) - ( - 
β ˜e k = k + 1 β e i 1 + , k + 1 β ˜ke k = k + 1 β (k-1)e i 1 + , k + 1 β ˜ke +e k = k + 1 β (k-1)e i +e j 1 + . k + 1
Substituting β ˜α, with α = e i , α = ke i , α = ke i + e j , in the previous inequality we obtain 

β ˜α 1 ≥ 1 -k + 1 1 1 + kβ } ≥ 1 1 + k 1 - 1 k + 1 α-v i -1 k + 1 k 1 β α-v i-1 ≥ 1 -k for i =

Figure 1 :

 1 Figure 1: Analysis of French weekly precipitation maxima in the period 1993 -2011. Clusters of 49 weather stations and their estimated extremal coefficients in dimension d = 7 obtained with the projected version of the madogram estimator, see Section 5 for details.

  = z i /(z 1 + • • • + z d ) for i = 1, . . . , d -1 and w d = 1w 1 -• • •w d-1 . We view A as a function defined on the (d -1)-dimensional unit simplex S d-1 := ( (w 1 , . . . , w d-1 ) ∈ [0, 1] d -1 : the family of functions A : S d-1 → [1/d, 1] that satisfy the following conditions: (C1) A(w) is convex, i.e., A(aw 1 + (1a)w 2 ) ≤ aA(w 1 ) + (1a)A(w 2 ), for a ∈ [0, 1] and w 1 , w 2 ∈ S d-1 ; (C2) A(w) has lower and upper bounds 1/d ≤ max (w 1 , . . . , w d-1 , w d ) ≤ A(w) ≤ 1, for any w = (w 1 , . . . , w d-1 ) ∈ S d-1 with w d = 1w 1 -. . .w d-1 ;

3

  where β is viewed as a column k α Estimation based on Bernstein polynomials

Figure 2 :

 2 Figure 2: Estimates (dashed lines) of the Pickands dependence function obtained with the MD estimator (top row) and its BP version (bottom row) with polynomial degree k = 14. The solid line is the true Pickands dependence function. Each column represents a different sample size.

Figure 3 :

 3 Figure 3: Same as Figure 2 but with n = 100 and three different values of the polynomial degree.

Figure 4 :

 4 Figure 4: Estimates of Pickands dependence function for d = 3 (light grey shade) and bootstrap variability bands (dark grey shade) for the SL, AL, HR, EST (left-right) models with strong, mild and weak dependence (top-bottom)

Figure 5 :

 5 Figure 5: French precipitation data. Left: pairwise extremal coefficients as a function of distance between weather stations. Right: estimates of Pickands dependence functions for four pairs of stations at decreasing distances (black: raw madogram estimator; gray: Bernstein projection madogram estimator).

  . . . , 1, x w i , 1, . . . , 1) dx 0 1 f (x w1 , . . . , x w d ) dx 0 is linear and bounded, and therefore continuous. The continuous mapping theorem then implies√ n(ν nν) = φ(D n ) ~ φ(D), n(ν ^nν) = φ(D ^n) ~ φ(D ^), n → ∞, in l ∞ (S d-1). The Gaussian process D satisfiesP{∀ i = 1, . . . , d : ∀ u ∈ [0, 1] : D(1, . . . , 1, u, 1, . . . , 1) = 0} = 1.This property follows from the continuity of its sample paths and by the form of the covariance function (2.6). We find, for w ∈ S d-1 , ∫ 1Finally, apply the functional delta method(van der Vaart 2000, Ch. 20) to arrive at the conclusion. , . . . , d -1} we find for w ∈ S d-1 ,B A (w; k) ≥ 1 + (wv j ) T ∇B A (v j ; k) d-1 = 1 + (w j -1)D v j -v0 B(v j ; k) + w i D v i-v 0 B(v j ; k) i=1 i j ≥ 1 + (w j -1)D v j -v0 B(v j ; k) + (w j -1)D v j -v0 B(v j ; k) + (1w jw d ) D v j -v0 B(v j ; k) -1 = w j + w d 1 -D v j -v0 B(v j ; k) ≥ w j

B

  (w; k) = Σ β α b α (w; k) = Σ β ˜αb α (w; k + 1) = B ˜(w; k + 1

  1, . . . , d 1, and hence the result. Thus the first statement is proven. Secondly, let A be a Pickands dependence function and consider the Bernstein polynomialA k (w) = A(α/k) b α (w; k), α∈Γ k that is, A k = B A ( • ; k) as in (3.3). Constraint R1) holds by assumption (3.8). Since max(w 1 , . . . , w d ) ≤ A(w) ≤ 1 for all w ∈ S d -1, the constraints in R2) and R3) are satisfied too. Finally, we have uniform convergence A k → A by Proposition 3.1.Proof of Proposition 3.4. Consider the projection of the madogram estimator on the full space A (rather than on the subspace A k ):A ˜MD = arg minǁA ^MD -Bǁ 2 .

Table 1 :

 1 MISE of four estimators of the Pickands dependence function, and some weighted version, based on a trivariate symmetric logistic dependence model for different parameter values and sample sizes.

Table 2 :

 2 10 -4 8.06 × 10 -4 1.47 × 10 -3 2.45 × 10 -3 2.50 × 10 -3 -Percentage improvement of the MISE gained with the projection method.

	Sample size n Estimator			Parameter α ′
			0.3	0.5	0.7	0.9	1
	50	P	4.25 ×		

Table 3 :

 3 95% coverage probabilities of the BP method with four non-parametric estimators for the symmetric logistic model.
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  x w1 , . . . , x w d ) dx. expression is attained for ν n (w) but with C n replaced by C n . Comparing the latter equation with (A.2) yields ǁν n -νǁ∞ ≤ 2ǁC n -Cǁ∞.

	and a similar
	√
	0

  1, x w i , 1, . . . , 1)dx but replacing D n with D n . Now, two related results: in the space l ∞ ([0, 1] d ) equipped with the supremum norm, D n ~ D, as n → ∞, where D is a C-Brownian bridge, and if Condition 2.3 holds, then D n ~ D, as n → ∞, where D is the Gaussian process defined in (2.7). The map φ

		1
		D n (x w1 , . . . , x w d )dx
	0	0
	and clearly a similar expression is obtained for	√ n ν
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where, by convention, u 1/w = 0 whenever w = 0 and u ∈ [0, 1].

Lemma A.1. For any cumulative distribution function H on [0, 1] d and for any w

Subtracting both expressions and integrating over H yields

Applying Fubini's theorem to both double integrals yields the stated formula.

Proof of Proposition 2.2. The marginal distribution functions being continuous, the copula C is the joint distribution function of the random vector ( F 1 (X 1 ), . . . , F d (X d )). For w d-1 , the multivariate w-madogram can thus be written as

Next, apply Lemma A.1. Since C is an extreme-value copula with Pickands dependence function A, we find, after some elementary calculations using (1.2) and (1.3),

for all x ∈ (0, 1). We obtain

yielding the first formula stated in the proposition. Solve for A(w) to obtain (2.2). Since

Proof of Theorem 2.4. The proof proceeds by expressing the statistics and empirical wmadogram ν n (w) and ν n (w) in terms of the empirical distribution and empirical copula and exploiting known results thereon. For i = 1, . . . , d and j = 1, . . . , n, let

Recall ν w in (A.1). The statistics and empirical w-madogram are equal to

respectively, where C n and C ^n are the empirical distribution and copula:

(component-wise inequalities). By Lemma A.1 we obtain 

Proof of Proposition 3.2. On the one hand we have that if B A (w; k) ≥ max(w 1 , . . . , w d ), then

, then by the assumption

The directional derivatives of B A calculate for v j , j = 0, 1, . . . , d -1, are equal to

which are bounded from below by 1. Then, considering the directional derivatives on both sides of the above inequality we obtain

and hence the result.

On the other hand if D v i-v j B A (v j ; k) ≥ -1, j = 0, . . . , d-1 then B A (w; k) ≥ max(w 1 , . . . , w d ). Since B A lies above the tangent plane

by the convexity assumption, then evaluating this inequality for w J = v j for j ∈ {0, 1, . . . , d-1} we obtain the desired result B A (w; k) ≥ w j for all w ∈ S d-1 . Indeed, considering (A.5) at w J = v 0 we find, for w