The effect of riparian restoration on channel complexity and soil nutrients
Résumé
Restoration of riparian vegetation may reduce nutrient and sediment contamination of waterways while potentially enhancing stream channel complexity. Accordingly, the present study used a paired-site approach to investigate the effects of mature regrowth riparian vegetation on river channel morphology and soil nutrients (i.e. nitrogen and phosphorus), comparing four sites of degraded (pasture) and reforested reaches. A revised rapid assessment of riparian condition (RARC) was used to validate the site pairings. Riparian soil nutrient and elemental geochemistry were compared between paired sites, along with two parameters of channel width complexity and two for channel slope complexity. The RARC analysis confirmed the validity of the paired site design. The elemental geochemistry results indicated that underlying geology may affect the paired site analyses. Reaches with mature regrowth vegetation had greater channel width complexity but no difference in their riverbed slope complexity. In addition, degraded reaches had higher soil nutrient (i.e. nitrogen and phosphorus) concentrations, potentially indicative of the greater nutrient retention of pasture grass sites compared with mature regrowth forested reaches with less ground cover. Overall, the present study indicates that restoring mature regrowth riparian vegetation may increase river channel width complexity, although it may require canopy management to optimise the nutrient retention potential necessary to maximise the effect of riparian restoration strategies on freshwater environments.