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Abstract

Quadriwave lateral shearing interferometry (QLSI) is a quantitative phase imaging technique
based on the use of a diffraction grating placed in front of a camera. This grating creates a
wire-mesh-like image, called an interferogram, that is postprocessed to retrieve both the
intensity and phase profiles of an incoming light beam. Invented in the 90s, QLSI has been used
in numerous applications, e.g. laser beam characterization, lens metrology, topography
measurements, adaptive optics, and gas jet metrology. More recently, the technique has been
implemented in optical microscopes to characterize micro and nano-objects for bioimaging and
nanophotonics applications. However, not much effort has been placed on disseminating this
powerful technology so far, while it is yet a particularly simple technique. In this article, we
intend to popularize this technique by describing all its facets in the framework of optical
microscopy, namely the working principle, its implementation on a microscope and the theory
of image formation, using simple pictures. We also provide and comment on an algorithm for
interferogram processing, written in Matlab. Then, following the new extension of the technique
for microscopy and nanophotonics applications, and the deviation from what the technique was
initially invented for, we propose to revisit the description of the technique, in particular, by
discussing the terminology, insisting more on a grating-shadow description rather than a
quadriwave process, and proposing an alternative appellation, namely ‘grating shadow phase
microscopy’ or ‘grating-assisted phase microscopy’.
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1. Imaging the phase of light

The wave nature of light gives a special importance to the
concept of phase in optics. In the scalar approximation, a
static, monochromatic light field can be represented by a com-
plex field E(r) = E(r) exp(i¢(r)), where E(r) € R is the elec-
tric field amplitude and ¢(r) € R is its phase, at the position
r. When probing a light field, the easily accessible physical
quantity is the intensity I(r) oc |E(r)|>. However, this quant-
ity only provides partial information. Accessing the phase
of a light field is also possible but less direct, and usu-
ally requires more sophisticated techniques involving inter-
ferences, as a means to convert the phase information into
measurable intensity modulations. The techniques capable of
mapping the phase of a light field are coined quantitative phase
imaging (QPI) techniques.

This article focuses on one particular QPI, that is named
quadriwave lateral shearing interferometry (QLSI). This tech-
nique is far from being the most popular, although it gathers
many advantages. The aim of this article is to favor the dis-
semination of the technique. We first describe its principle.
Then, we discuss the terminology used in QLSI introduced 20
years ago, and propose to revisit it, in order to make it sim-
pler, more understandable and consistent; in particular, for the
rising applications in optical microscopy and nanophotonics.
Finally, we provide and describe a Matlab code, 20 lines long,
suited to retrieve the intensity and phase images from a raw
image camera.

2. Principle of QLSI microscopy

QLSTIis a QPI technique, capable of measuring both the intens-
ity and the phase of a light beam, with high spatial resolu-
tion, and high sensitivity, in a particularly simple manner. This
technology, imagined in the 90s by Primot [1, 2], and paten-
ted in 2000, has been mainly utilized by the community using
commercialized devices sold by only one company worldwide
so far (Phasics S.A.). Originally designed for precise laser
beam characterization [3], the scope of applications extended
in the 2000s to lens metrology, x-ray imaging [4—6], adapt-
ive optics and surface characterization. In 2009 [7], QLSI was
proven powerful when used in an optical microscope, widen-
ing the range of QLSI applications to the study of small objects
in biology [7-10] and very recently in micro-/nanophotonics
[11-16].

QLSI is based on the use of a so-called wavefront ana-
lyzer that consists of the association of two simple elements: a
regular camera and a two-dimensional (2D) diffraction grat-
ing, separated by a couple of millimeters from each other
(figure 1(a)) [18]. The grating affects both the phase and
the intensity of light: Opaque horizontal and vertical lines
block the light, and define transmitting square areas imprint-
ing phase shifts of 0 and 7 on the transmitted light, accord-
ing to a chessboard pattern (figure 1(b)) [18]. Upon illu-
mination, the diffraction grating creates an image, called an
interferogram (figure 1(d)), on the camera sensor that can be
processed to retrieve both the intensity (figure 1(e)) and the

wavefront profile W(x, y) (figure 1(f)) of a light beam. When
the wavefront distortion W originates from an imaged object
(figure 1(c)), the mapping of W can be used to optically char-
acterize the object. In this case, instead of wavefront profile,
one rather speaks about the optical path difference (OPD), or
equivalently the optical thickness (OT) of the object 6¢ = W,
defined as

5(x7y) = (nfn())h(xvy)v (D

where n is the refractive index of the object and ng the refract-
ive index of the surrounding medium (figure 1(c)). When the
object is not uniform, this more general expression applies:

h(x,y)
5(x,) = /0 (n(x,y.2) — no)dz. @)

One also sometimes refers to the phase of the light p(x,y),
which can be calculated from W provided the illumination
wavelength ) is known:

=W 3

Thus, calling QLSI a phase imaging technique is somewhat
inconsistent, as it primarily measures a wavefront profile.
Strictly speaking, it is more a wavefront sensing technique
than a QPI. Retrieving the phase requires prior knowledge (the
wavelength), and the phase may not be accurately defined in
the case of a broadband illumination. All these physical quant-
ities, phase, OPD, OT and wavefront profile, are equivalent,
interchangeable, and all used in the literature.

The advantages of QLSI over other existing QPI techniques
are many-fold. (i) An interesting advantage is the achromati-
city. Counterintuitively, although based on the use of a grating,
not only the technique can be used with broadband illumina-
tion, but also the knowledge of the illumination wavelengths is
not necessary to calculate the intensity and wavefront images
from the interferogram (the reason is explained later on). This
feature makes QLSI particularly robust. (ii) The noise stand-
ard deviation in OPD measurements is typically 0.6 A Hz 72,
i.e. ~ 107*\g Hz~"2 corresponding to around 1 mrad Hz !
of phase delay in the visible range. The identified sources of
noise in reconstructed phase images are inhomogeneities, shot
noise, and non-linearities of the camera [1]. (iii) It provides
an evaluation of the noise from the measurement itself (see
[1, 6] and discussion in section 5.2). (iv) The spatial (i.e. lat-
eral) resolution reaches the diffraction limit, unlike other pop-
ular wavefront sensors such as Shack—Hartmann. (v) It is easy
to use, as it just consists in using a camera-like device. No
modification of the microscope is required. (vi) QLSI benefits
from the high sensitivity of interferometric methods but do not
suffer from their usual drawbacks: it neither requires a refer-
ence beam, nor a complex alignment that might be sensitive to
external perturbations. The relative positioning of the grating
with respect to the camera is done once and for all, and is not
sensitive to, e.g. temperature variation, mechanical drift or air
flow.
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Figure 1. (a) Schematic of a QLSI wavefront analyzer, composed of a regular camera equipped with a chessboard diffraction grating.

(b) Representation of a typical QLSI chessboard diffraction grating. (c) Schematic showing the wavefront distortion d(x, y) experienced by a
collimated light beam due to the presence of a metasurface. (d) Example of a raw QLSI image, called an interferogram, corresponding to a
2 pm dielectric (polystyrene) bead. (d), (e) Intensity and optical thickness images retrieved from the interferogram (d). (g) Image of the
intrinsic noise in an OT image, with 3 s exposure time, characterized by a standard deviation of o = 0.039 nm (Zyla camera (Andor) and
Sid4Element reimaging system (Phasics)). (h) Examples transmittance and OT images of micro- and nano-objects acquired by QLSI,
namely a living cell [7], a wavefront distortion created by a local micrometric induced temperature in water [11], a molybdenum disulfide
flake [13], a gold nanoparticle [14] and a metasurface [17]. (h - MoS2 layer) is reprinted with permission from [13]. Copyright (2017)

American Chemical Society.

Note that the implementation of a diffraction grating around
1 mm from the sensor of a camera is not always possible, due to
the frequent presence of a vacuum, or atmosphere-controlled,
chamber in front on the sensor. This caution is used to avoid
the presence of water and crystallization upon cooling down
the camera sensor. In that case, the diffraction grating has to
re-imaged using a relay lens, consisting of a 4 — f optical sys-
tem (figure 2). The use of a reimaging system introduces chro-
maticity, because it makes the effective distance between the
grating and the sensor wavelength-dependent. This depend-
ence has to be characterized to achieve quantitative measure-
ments (see discussion on the « factor in equation (8)).

Albeit conceived in the 90s, the idea of plugging a QLSI
device on a microscope was only introduced in 2009 [7], in
the context of using QLSI as a quantitative phase microscopy
technique for biological cell imaging (figure 1(h)). Following
this pioneering work, QLSI has been applied in bioimaging for
tissue retardance imaging [19], imaging of various organelles
[20], dry biomass measurements [9, 21], microtubule visualiz-
ation [8], neurite growth quantification [22], nanolocalization
[23], and superresolution microscopy [24, 25].

In parallel, QLSI has also been used in the field of
nanophotonics, to image the temperature distribution around
metal nanoparticles under illumination [10, 11], to optically
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camera

Figure 2. Relay-lens configuration to remotely position the
chessboard grating (CBG) in front of the camera sensor. f is the
common focal length of the two lenses.

characterize 2D-materials [13], single nanoparticles [14, 16],
non-linear coherent Raman signals on microparticles [15, 16],
and metasurfaces [17] (figure 1(h)).

All the above-mentioned studies, albeit diverse, have been
conducted by only a limited number of research groups.
The current cost of commercial QLSI devices and the long-
standing myth that QLSI is sophisticated presumably explains
the reluctance of the community to buy the technology, or to
set it up. Moreover, the complexity of the name ‘quadriwave
lateral shearing interferometry’ may be reluctant and help per-
petuate the myth of an inaccessible technique. The aim of this
article is to favor the dissemination of the technique, make
it more accessible, and contribute to provide QLSI with the
attention it deserves, in particular by breaking this myth.

3. Interferogram formation

All the magic of QLSI happens between the grating and the
camera, over a couple of millimeters. What is happening in
there can be understood in two ways. The first picture deals
with the interference between four diffraction orders of the
grating, hence the name of the technique. The second pic-
ture, less popular albeit simpler, refers to a shadowing effect of
the grating, very similar to the working principle of a Shack—
Hartman wavefront sensor. Both of them are as important.
Depending on the community or the application under consid-
eration, one picture could be more appropriate than the other.
In this section, focus in put on the understanding of the work-
ing principle of QLSI, using simple pictures.

3.1. The grating shadow (GS) picture

The 0— 7 chessboard-pattern of the grating, depicted in
figure 1(b), is the key feature to make QLSI work. This phase
shift arrangement makes the diffraction grating diffraction-
less [18], as strange as it may seem. Figure 3 explains this
behavior by showing calculations of the light propagation
between the grating and the camera, for different grating prop-
erties, from simple to complex. Calculations have been per-

formed for a single unit cell of the grating (such as ), with
periodic conditions. Figure 3(a) starts with a grating without

0 — 7 alternation (unit cell: ). The transmitted light fea-
tures complex and contrasted interferences, as expected for a
grating. A periodicity of the pattern in the z direction can be
observed, a property coming from the Talbot effect, stating that
the grating is re-imaged at periodic distances separated by

Zr =20%/ N, )

where A is the grating period. Interestingly, when the 0 — 7
[0]

phase shift alternation B is restored (figure 3(b)), then
the interferences fully disappear, and the transmitted light
becomes invariant by translation along (Oz), propagating like
a normal shadow behind an opaque object. This peculiar
behavior comes from the cancellation of the zero diffraction
order by forward destructive interferences, so that only the
four 1st orders of the transmitted light remain. The trans-
mitted light pattern is thus equivalent to the interferences
observed after a Fresnel biprism, in two dimensions. These two
introductory cases (figures 3(a) and (b)) do not exactly match
commonly used QLSI gratings, since the grating periodicity
in these calculations was very small (A =1.325 pm). QLSI
wavefront sensors rather feature a periodicity corresponding
to six to eight times the periodicity of the camera sensor
(i.e. typically 6 x 6.5=39 pm) in order to resolve the inter-
ferogram modulation. For A =39 um, the shadowing effect
depicted previously remains if a O — 7 chessboard pattern is
applied (figure 3(d)), but the beam exhibits some inner struc-
turation. Interestingly, these structurations disappear once a
polychromatic beam is used. Each wavelength creates its own
structuration, and they all cancel one another out after a given
distance that reads [4, 5]

- IH(V()) A2
ZP_ - 271_2 AA()’ (5)

where A)g is the spectral width of the illumination and V|
the tolerated blurring of the interference pattern (0 < Vy < 1).
For an arbitrary value of V= 1/e (corresponding to 30% of
contrast), one gets the simple expression:

1 A2
Z0=——
P N YNV (6)

This effect, depicted by Primot ef al in 2000 [4-6, 26], was
coined the panchromatic Talbot effect, and Zp the panchro-
matic distance. This shadowing effect and invariance by z-
translation makes the grating-camera distance not so crit-
ical. The separation distance can be continuously varied over
a few millimeters. It is not necessary to place the grating
above the panchromatic distance Z[?. Below Z,?, the high
frequencies observed in figure 3(f) cannot be resolved by
the camera anyway, in most cases. Increasing the distance
between the camera and the grating has the advantage to
make the technique more sensitive. However, it also makes it
less suited to image phase gradients that exhibit high spatial
frequencies.

Figure 4 gives an overview of the general working principle
of QLSI. The size of the diffraction grating has been reduced
to 6 X 6 =36 unit cells for the sake of clarity. In practice, it is
rather composed of more than 300 x 300 unit cells, to cover
the size of the camera sensor. The camera (here, positioned at
1 mm from the grating) collects a shadow-like image of the
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Figure 3. Modeling of the light propagation (from left to right) after various diffraction grating geometry. (a) Grating period:

A =2.65/2 pm, Ao =550 nm, no chessboard phase pattern. (b) A =2.65 um, Ao =550 nm, 0 — 7 chessboard phase pattern.

(¢) A=39/2 um, Ao = 550 nm, no chessboard phase. (d) A =39 pm, A =550 nm, 0 — 7 chessboard phase pattern. (¢) A =39/2 um,
Ao = [450, 650] nm, no chessboard phase. (f) A =39 pum, A\g =[450, 650] nm, 0 — 7 chessboard phase pattern.

Chessboard grating

incident
light

-

Shadow / Interferogram

4 diffraction oders

100 um

Figure 4. Overview of the working principle of QLSI. The size of the diffraction grating has been reduced to 6 x 6 unit cells for the sake of
clarity. The incident optical wavefront is decomposed in four wavefronts propagating along the four 1st diffraction orders of the grating.
These diffraction orders interfere to create a fringe pattern, that perfectly mimics the geometrical shadow of the grating. In this 3D scheme,
the camera-grating distance was 1 mm. The displayed interferogram is a numerical calculation considering a camera-grating distance of

1 mm, a wavelength range of 450—-650 nm and a grating period of 39 pm.

grating, composed of periodic dots arising from the interfer-
ences between four diffraction orders, two along the x direc-
tion and two others along the y direction, the zero order being
cancelled by destructive interferences created by the 0 — 7
chessboard pattern. Also, the 2/3 ratio of the squares depicted
in figure 1(b) optimizes the dimming of higher orders of dif-
fraction [27]. This splitting in four directions of propagation
creates four images on the camera sensor, only slightly shif-
ted with each other typically by an angle of & =0.5°, follow-
ing Bragg’s law, 2Asiné = Ao, where A =39 um is the grating
period.

Let us focus now on the effect of a wavefront deviation from
a planar shape on the interferogram, which is what primar-
ily matters. Figure 5 presents numerical simulations of light
propagation between the grating and the camera sensor for flat,
tilted, and curved optical wavefronts. For the sake of simpli-
city, numerical simulations were conducted for a grating made
of 4 x 4 unit cells. A titled wavefront shifts the interferogram,
while a curved wavefront dilates or shrinks it (figures 5(c) and
(d)). Of course, with areal grating composed of 10 000 s of unit
cells, these deformations occur locally, enabling the mapping
of complex 2D wavefront profiles, with high spatial resolution.
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Figure 5. The QLSI principle understood as a shadowing effect. (a) Calculation of the transmitted light intensity after a 0 — 7 chessboard
grating, for a planar incoming light wavefront at normal incidence. For the sake of simplicity, the square grating contains 4 X 4 unit cells.

A diffraction-less shadowing effect is observed. (b) Same calculation when the wavefront is tilted by an angle of 1°, producing a lateral shift
of the shadow according to this same angle. (c) Simulation of transmitted light when the wavefront is convex, producing a spreading of the
shadow. (d) Simulation of transmitted light when the wavefront is concave, producing a shrinking of the shadow.

Thus, the information regarding the wavefront gradient is con-
tained in the displacement of the dots of the interferogram,
in the exact same manner as in a Shack-Hartmann wave-
front sensor. The advantage of QLSI is that the density of
dots is much higher, optimized, does not require the fabric-
ation of an array of microlenses, and enables the processing
of a wavefront image with as many pixels as the camera
sensor!.

The shadowing picture depicted above provides a simple
explanation of the working principle of the technique, but has
limitations. Figure 6 shows what happens when one hole of the
grating is blocked. As expected, no light is transmitted out-
side this hole, following the shadow picture, but after a few
100 s of microns, the light beam is recovered. This effect is
usually called ‘beam self-healing’ in optics. Thus, this simple
shadow picture should be used with caution. It can be used
to popularize the principle making it understandable by the
layman, simply explain why the technique is achromatic (see
next section), etc, but not to properly investigate the underly-
ing physics and advance science. The light propagation after
the grating remains a diffraction process and to carry out fun-
damental research in grating-assisted phase microscopy, the
multiwave picture has to be considered.

3.2. Influence of the wavelength

Interestingly, the shifts of the dots represented in figure 5 do
not depend on the wavelength, only on the wavefront gradient,
as they mimic simple shadowing effects. This is the reason

I Note that some algorithms reduce the number of pixels in the phase image
by a factor of 9 or 16 to accelerate image processing.
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Figure 6. Calculation of the transmitted light intensity aftera O — 7
chessboard grating, for a planar incoming light wavefront at normal
incidence, where one hole of the grating is blocked. A self-healing
of the beam is evidenced, showing the limitation of the shadowing
picture.

why QLSI is achromatic, although it is based on a diffraction
grating. The knowledge of the wavelength is not even neces-
sary to reconstruct the wavefront image from the interfero-
gram. Only the grating-camera distance matters.

However, it does not mean that the wavelength has no effect
on the interferogram quality, and that a given QLSI wave-
front sensor can be used for any wavelength without prob-
lem. To imprint the 7 phase shifts in the chessboard grating,
the transparent substrate is locally etched to remove a thick-
ness & such that m = %\—’g(nS — 1)h. For glass, one has ng =~ 1.5,
which gives h = )\g. Thus, a diffraction grating is made for a
specific wavelength a priori. If used for another wavelength,
the phase shifts deviate from 7. The principle depicted in
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figure 5 still applies, but the contrast of the interferogram will
be reduced. In other words, the measures are still quantitat-
ive, but the signal to noise ratio is poorer and the sensitiv-
ity reduced. However, this limitation is not dramatic. Typical
QLSI wavefront sensors suited for visible wavelengths can
be used in the 450-750 nm range without much problem. In
the Fourier space discussed in the next section, an unadapted
wavelength produces additional diffraction spots, that can still
be removed numerically, if need be.

4. Discussion of the terminology

4.1. QLSIvs GS

How come a simple grating in front of a camera can be coined
quadriwave lateral shearing interferometry? This question is
often raised by the layman and the answer is not trivial, as
detailed in the previous section. Our experience is that this ter-
minology may even be reluctant and give a negative prejudice
regarding the complexity of the method, especially for the new
communities starting using this QPI technique (namely optical
(bio)microscopy and nanophotonics): the complexity of the
name does not reflect the simplicity of the technique, experi-
mentally speaking. The reason of the name QLSI is historical:
The technique resembles a previous QPI technique named lat-
eral shearing interferometry (LSI), based on the interferences
of two light beams, tilted with each other using a prism. But
LSI does not involve a grating and is very different experi-
mentally speaking from QLSI. We believe that, at some point,
one should detach from historical considerations and focus on
scientific considerations, to reach a better description. Other-
wise, descriptions are made at the expense of the simplicity
and clarity.

This chessboard grating is the central (and even the only)
part of the QLSI technique. The 2D grating is what makes this
technique unique, different from all the other phase imaging
and wavefront sensing techniques. For this reason, the use of
the word ‘grating’ within the name of the technique would be
justified and natural. ‘QLSI’ neither tells what the technique
is (a grating in front of a camera), nor what it does (wavefront
sensing or a phase imaging).

For these reasons, names such as ‘grating-shadow phase
microscopy’, ‘grating-shadow wavefront sensing’ or ‘grating-
assisted phase microscopy’ would certainly ease the dissem-
ination of the technique, its reference, its explanation, and
would contribute to break the myth of a sophisticated and out-
of-reach technique. Changing the name of a 20 year old sci-
entific field, device, technique or concept is difficult, albeit not
impossible. Many examples exist. It usually takes time and
gives rise to some reluctance from the initial community, fol-
lowing the famous Planck’s principle.

4.2. Grating vs mask

Until here, in this article, we have been using the name ‘grat-
ing’ to define the diffraction element, which seems natural.
Yet, the community usually prefers the name ‘modified Hart-
mann mask’ [28, 29]. We also propose here to revisit this

appellation to favor a better understanding. First, the grating
has little to do with a Hartmann mask. Originally, a Hartman
mask is not even a grating. A Hartman mask consists of an
opaque screen pierced by several holes (originally three, some-
times more), to help adjust the focus of a telescope. Second,
the main aim of the chessboard grating is not to mask part
of the incoming beam. On the contrary, it is to engineer the
transmitted light. Thus, it makes more sense to call it a grating
rather than a mask. Again, the reason of the ‘mask’ appellation
is more historical than scientific, making it difficult to under-
stand.

Born and Wolf, in their seminal book [30], defined a grat-
ing as ‘any arrangement which imposes on an incident wave
a periodic variation of amplitude or phase, or both’, which is
exactly what the chessboard grating does. Interestingly, they
also noted that the common analysis of a one-dimensional
grating ‘may easily be extended to two- and three-dimensional
periodic arrangements of diffracting bodies’, but they stated
that, unlike 1D or 3D gratings, ‘2D gratings (called cross-
gratings) found no practical applications’. It seems time has
changed. Note that a 1D diffraction grating can also be used
in a similar optical configuration as a QPI. This technique is
called ’diffraction phase microscopy’ [31], but does not bene-
fit from the interest of measuring both wavefront gradients to
achieve better wavefront reconstruction.

Interestingly, the use of a grating is not even necessary. It
certainly contributes to optimize the interferogram quality, but
non-periodic, and even random, optical elements have been
shown efficient. A particularly simple and cheap approach
consists in replacing the grating with a thin diffuser, creating
a speckle pattern on the camera sensor, instead of the well-
defined, periodic arrangement of dots. Then, the principle
just consists in monitoring the distortion of the speckle pat-
tern to retrieve the wavefront profile. This technique has been
recently pioneered for optical microscopy developments [32],
but was proposed long ago for more general applications [28].

4.3. Talbot vs Bessel

The translational invariance of the transmitted light after a
chessboard grating (provided a polychromatic light is used, see
figure 3(f)) has been coined the ‘panchromatic Talbot effect’.
However, a Talbot effect is rather a phenomenon of image
replication at periodic distances, not an invariance by transla-
tion. What happens between the grating and the sensor rather
belongs to the family of propagation-invariant optical waves,
the most famous members of this family being the Bessel
beams. The nature of the optical wave could thus be referred
as a Bessel-like wave, produced when a polychromatic light is
used. Once again, the reason for the reference to a Talbot effect
is historical, because it has been discovered upon studying the
Talbot effect.

5. Image retrieval algorithm

The section is aimed to show that numerically retrieving the
phase (or equivalently the wavefront profile) of light in GS
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Figure 7. Summary schematic of the full intensity and wavefront retrieval algorithm, illustrated with the image of a 2 um dielectic bead.

microscopy is simple. A description of this procedure can be
found in [4, 5] (in French). The image displayed in figure 1(d)
is called the interferogram. The raw data is acquired by the
camera sensor, and resembles the intensity image (figure 1(e)),
on top of which the shadow of the grating looks printed.
When the incoming wavefront is perfectly planar, the fringes
of the grating’s shadow are perfectly parallel. When the incom-
ing wavefront is nonuniform, an imperceptible distortion of
these fringes appears, which creates deviations from a perfect
spatial periodicity that can be extracted by a demodulation
algorithm involving Fourier analysis. This is the basic prin-
ciple of the retrieval algorithm that we shall explain in this
section. The overall numerical procedure is schematized in
figure 7, with the example of the image of a 2 um dielectric
(polystyrene) bead (see figure 1(d)). Let us break it down to
explain the different steps, and illustrate them using Matlab
codes.

5.1. Fourier transform

Let 7 be the interferogram image. The first step consists in cal-
culating the Fourier transform of the interferogram:

1= FlI] @)

> % Matlab code
> I = imread('interferogram.tif');
> That = fftshift(fft2(I));

Figure 8 displays the discrete Fourier transform (DFT) of the
interferogram. In addition to the central spot, four main peri-
pheral Fourier spots are visible. They correspond to the fringes
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Fourier space 1

Interferogram

Figure 8. (left) Raw interferogram [ acquired by the camera and
(right) representation of its discrete Fourier transform (DFT) /.

of the interferogram, and contain the information on the wave-
front profile of the light beam. The positions of these spots
define two directions (x”) and (y’). These directions are tilted
by an angle  compared with the original (Oxy) frame because
the grating is tilted by this angle. All the diffraction spots have
a four-branch star shape, with branches along the x and y direc-
tions. Without tilt, the branches of the zero order could overlap
1st diffraction orders, which would create artefacts, hence the
tilt. In this image, the distance between the central spot and a
peripheral spot is 1/3 of the size of the image. This is because
the fringe periodicity (A/2, half the grating period) equals three
times the pixel size. This configuration optimizes the spatial
resolution of the processed phase and intensity images.

5.2. Demodulation

The second step consists in isolating the 1st order diffraction
spots. This is where the information related to the wavefront
profile is contained. There are four spots, i.e. four options a
priori. However, diametrically opposed spots are redundant.
They contain exactly the same information since they are exact
complex conjugate. This symmetry in the Fourier space comes
from the fact that the original image / is real. Thus, only two
spots can be considered, without loss of information, any of
them provided they are 90° apart.

For both spots, the process is the same. The spot is cropped
by a disc of radius R (or a square) (or a square). This disc
should be small enough, to avoid gathering information from
neighboring spots, but not too small to avoid too much removal
of high spatial frequencies of the image, and a blurring of
the final wavefront image. R typically equals one sixth of the
image. If the image is not square, then the cropped area is an
ellipse. Then, the cropped spot is centered in the Fourier space
(figure 9).

%% Demodulation of a diffraction spot
% Crop of the diffraction spot
[Ny,Nx] = size(Ihat);
[xx,yy] = meshgrid(1:Nx,1:Ny);

vV V VYV

> dx = 127; dy = 210; 7% position of
the first order spot to be cropped
R2C = (xx-Nx/2-1-dx)."2/Rc2 +
(yy-Ny/2-1-dy).”2/Rc"2;
circle = (R2C < 1); % mask circle
Thatc = Ihat.*circle;

% Recentering of the cropped spot
H1 = circshift(Thatc, [-dy -dx]);

\%

V V VYV

This procedure is to be repeated for the second spot, lead-
ing to two images that we name H; and H;, corresponding
respectively to the spots along x” and y'.

This crop procedure in the Fourier space yields a reduction
of the spatial frequencies in the image, by a factor of around
three (half the grating pitch A/2 equals three times the camera
pixel size). Consequently, the spatial resolution of the intensity
and phase images in QLSI is reduced by a factor of three com-
pared with the image that the camera would measure without
grating. Thus, to reach the diffraction limit in phase and intens-
ity in QLSI, the image has to be oversampled compared with
the diffraction limit by at least of factor of three. Note that
some commercial QLSI cameras use of factor of four, which
decreases the spatial resolution.

Note that not only diffraction spots along the x’ and y’ are
observed, but also along x’ +y’ and x” — y’. These other dif-
fraction spots could be used to retrieve the wavefront profile
as well, and could even be used for this reason to get more sig-
nal and improve the signal-to-noise ratio. Interestingly, this
redundancy could also be used to estimate the error of the
measurement, as explained in [1, 6].

5.83. Inverse Fourier transform

The images H; and H, shall be inverse-Fourier transformed.
Back in the (x,y) space, the fringes are now gone, since the
spot was centered in the Fourier space. However, the recovered
image has no reason to be real anymore, since the crop and
translation in the Fourier space cancelled the Hermitian prop-
erty of the Fourier image. The values of the recovered images
are thus complex and, interestingly, the argument of these
complex values is proportional to the local wavefront gradient
VW(i,j). The proportionality constant depends on the period-
icity A of the chessboard grating, and on its distance d to the
sensor [4]:

A 0 . _1
Vo W= —arg (F'[H]) = aarg (F~'[H1]),

VW= % arg (F~'[Ho)) = aarg (F'[Ha]).  (8)
wd

In practice, the prefactor « is not calculated from the know-
ledge of A and d. A is precisely known, but d cannot really be
measured precisely as the space between the camera and the
grating is not easily accessible. The factor « is rather determ-
ined experimentally, using a reference sample of known OT
(e.g. grooves on a glass sample characterized by AFM).
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Figure 9. Schematic of the demodulation procedure in the Fourier space.

When using a relay-lens system (see figure 2), the distance
d between the image of the grating and the camera usually
depends on the wavelength due to unavoidable achromaticity
of the relay lens. For this reason, the calibration factor a(\) is
wavelength dependent and has to be determined over the full
wavelength range of interest.

Before integrating the vectorial gradient to get the wave-
front profile, one needs to rotate it by an angle —#@ to retrieve
gradients over the axes (x) and (y):

[gxg] _ {cos(@) —sin(ﬁ)] . {VX,

w
sin(f)  cos(9) vV, W|"
This is a requirement as any vectorial gradient integration
algorithm (see below) assumes gradients over x and y, i.e.
along the horizontal and vertical line of the image matrix.

®

> %% Inverse Fourier transform

> Ix = ifft2(ifftshift(H1));

> Iy = ifft2(ifftshift(H2));

> alpha = 0.00318;

> %k Wavefront gradient calculation

> DW1 = alphaxangle(Ix);

> DW2 = alphaxangle(Iy);

> %k Wavefront gradient rotation

> DWx = cos(theta)*DWl-sin(theta)
*DW2;

> DWy = sin(theta)*DWl+cos(theta)
*DW2;

This part of the algorithm is depicted in figure 10.

5.4. Wavefront gradient integration

The final step consists in a very fundamental mathematical
task: retrieving a 2D scalar field from its vectorial gradient
(figure 11). Several algorithms are freely available, some of
them written in Matlab. For instance, the Matlab package from
John D’Errico does a good job [33].

> %% Wavefront gradient integration using
the
John D'Errico algorithm
> DWx = DPhx-mean(DWx(:));
> DWy = DPhy-mean(DWy(:));
> W = p*intgrad2(DWx,DWy);

where p is the camera pixel size. The removal of the mean
values of V,Wand V, W prior to gradient integration are meant
to suppress the rather aleatory offset that yields an unphysic-
alramp on the integrated image.

Although this wavefront retrieval postprocessing works
perfectly fine in 99% of cases, it may not yield proper recon-
struction for three reasons: (i) the wavelength is far from the
nominal wavelength the grating has been designed for. Indeed,
the 7 phase shift of the grating are produced by local substrate
etching, the depth of which is equal to the wavelength to ensure
a phase shift of 7. The use of a different wavelength from the
nominal wavelength does not create any bias, since QLSI is
achromatic. However, the signal-to-noise ratio will decrease
until a point where the wavefront image will no longer be
nicely reconstructed. Typically, a single grating can work fine
from 480 to 750 nm. (ii) If the object under study is optically
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Figure 12. Schematic of the intensity image retrieval algorithm.

too thick and sharp, and creates a phase step in the image that
exceeds 7, then the wavefront gradients may not be properly
reconstructed. It comes from the fact that equation (8) involve
the argument of a complex number, which is defined mod-
ulo 2. However, it does not mean phase differences within
the image cannot exceed 7. For instance, the technique can
image living cells, a few microns (optically) thick without any
issue. (iii) If the wavefront distribution does not derive from

1

a gradient, then the algorithm naturally yields problems. In
principle, when imaging refractive objects, the OPD is simply
related to the thickness of the object, and the wavefront pro-
file derives from a gradient. However, when using unusual
samples (complicated phase plates or metasurfaces with vor-
tices for instance), or unusual sample illuminations (speckle,
vortex beam, etc); then, the phase profile may feature singu-
larities. Interestingly, Guillon et al recently fixed this issue by
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developing an algorithm capable of dealing with the presence
of phase vortices [34].

5.5. Intensity image retrieval

Not only can the phase (or equivalently the wavefront profile)
be retrieved from the interferogram, but the intensity image
can also be calculated using a similar procedure. This time,
the central spot (zero order) has to be cropped in the Fourier
space, by the same disc of radius R (figure 12).

> % Crop of the diffraction spot

> R2C = (xx-Nx/2-1).2/Rc™2 +
(yy-Ny/2-1)."2/Rc"2;

> circle = (R2C < 1); % mask circle

> HO = That.xcircle;

> T = ifft2(ifftshift(H0));

5.6. Dealing with the reference image

The way it is presented above, the procedure is slightly sim-
plified. Used this way, the procedure would give a wave-
front image tarnished by a lot of imperfections, coming from
microscope aberrations, pieces of dust on the optics, light
beam imperfection. All these static wavefront imperfections
can be, and must be, removed by acquiring another inter-
ferogram image, usually called the reference. In microscopy
experiments, the reference is usually acquired on a blank field
of view, free from any object of interest. If no blank area is
present in the sample (like in the case of cultured cells in con-
fluence for instance); then, the reference image can be acquired
upon moving the sample holder rapidly and randomly dur-
ing the exposure time. The whole algorithm detailed above
must be also applied to the reference to retrieve the intens-
ity reference Tis and, more importantly, the wavefront ref-
erence Wy. Tier can be used to calculate the transmittance
image t = T/Tet. Wyer must be calculated and subtracted to the
wavefront image retrieved from the above-detailed algorithm
in order to extract a proper wavefront profile W.

In practice W and W, are not subtracted at the end of the
code. The subtraction can be done at the moment when the
wavefront gradients along (Ox’) and (Oy') are calculated:

> %% Wavefront gradient calculation
> DW1 = alphaxangle(Ix.xconj(Ix_ref));
> DW2 = alphaxangle(Iy.x*conj(Iy_ref)).

6. Summary

In light of recent applications in optical microscopy, in par-
ticular for biomiaging and nanophotonics, we propose here
to revisit the field of QLSI, with simple working principle
descriptions and some new terminology. In particular, we pro-
pose to use grating-shadow phase microscopy as a well-suited

name of the technique, which should favor its dissemination,
ease its description, and contribute to make it more popular
and accessible for these fields of applications. We explained
the working principle of GS phase microscopy and highlight
the main advances when implemented on an optical micro-
scope, in particular in bioimaging and nanophotonics for nan-
oparticle, 2D material and metasurface characterization. We
go more into detail about the working principle by describing
what occurs between the grating and the camera, the only two
elements involved in GS phase microscopy. In particular, we
explain that two complementary visions can be considered: a
four-image interference picture, and a grating-shadow picture.
Finally, we detail the image retrieval algorithm, and provide
related Matlab codes.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Acknowledgments

The author wishes to thank Daniel Andrén, Rodrigo Gutiérrez-
Cuevas and Miguel A Alonso for helpful discussions, and
Ljiljana Durdevic for providing the U20S cell image of
figure 1(h). This work has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 Research and Innovation Programme (Grant Agreement
No. 772725, project HiPhore).

ORCID iD

Guillaume Baffou
1362

https://orcid.org/0000-0003-0488-

References

[1] Primot J 1993 Three-wave lateral shearing interferometer
Appl. Optics 32 6242

[2] Primot J and Sogno L 1995 Achromatic three-wave (or more)
lateral shearing interferometer J. Opt. Soc. Am. A 12 2679

[3] Chanteloup J C, Druon F, Nantel M, Maksimchuk A and
Mourou G 1998 Single-shot wave-front measurements of
high-intensity ultrashort laser pulses with a three-wave
interferometer Opt. Lett. 23 621

[4] Rizzi J 2013 Imagerie de phase quantitative par
interférométriea décalage quadri-latéral. Application au
domaine des rayons x durs PhD Thesis Université Paris XI

[5] Montaux-Lambert A 2017 Conception d’un interférometre
large bande spectrale pour la métrologie et I’'imagerie de
phase sur sources synchrotron PhD Thesis Université
Paris-Saclay

[6] Rizzi J et al 2013 X-ray phase contrast imaging and noise
evaluation using a single phase grating interferometer Opt.
Express 21 17340

[7]1 Bon P, Maucort G, Wattellier B and Monneret S 2009
Quadriwave lateral shearing interferometry for quantitative
phase microscopy of living cells Opt Express 17 13080-94


https://orcid.org/0000-0003-0488-1362
https://orcid.org/0000-0003-0488-1362
https://orcid.org/0000-0003-0488-1362
https://doi.org/10.1364/AO.32.006242
https://doi.org/10.1364/AO.32.006242
https://doi.org/10.1364/JOSAA.12.002679
https://doi.org/10.1364/JOSAA.12.002679
https://doi.org/10.1364/OL.23.000621
https://doi.org/10.1364/OL.23.000621
https://doi.org/10.1364/OE.21.017340
https://doi.org/10.1364/OE.21.017340
https://doi.org/10.1364/OE.17.013080
https://doi.org/10.1364/OE.17.013080

J. Phys. D: Appl. Phys. 54 (2021) 294002

G Baffou

[8] Bon P, Lécart S, Fort E and Lévéque-Fort S 2014 Fast
label-free cytoskeletal network imaging in living
mammalian cells Biophys. J. 106 1588-95

[9] Aknoun S et al 2015 Living cell dry mass measurement using
quantitative phase imaging with quadriwave lateral shearing
interferometry: an accuracy and sensitivity discussion
J. Biomed. Opt. 20 126009

[10] Robert HM L et al 2018 Photothermal control of heat-shock
protein expression at the single cell level Small
14 1801910

[11] Baffou G et al 2012 Thermal imaging of nanostructures by
quantitative optical phase analysis ACS Nano
6 2452-8

[12] Berto P et al 2012 Quantitative absorption spectroscopy of
nano-objects Phys. Rev. B 86 165417

[13] Khadir S ef al 2017 Optical imaging and characterization of
graphene and other 2D materials using quantitative phase
microscopy ACS Photonics 4 3130-9

[14] Khadir S er al 2020 Full optical characterization of single
nanoparticles using quantitative phase imaging Optica
7 243-8

[15] Berto P et al 2013 Wide-field vibrational phase imaging in an
extremely folded box-cars geometry Opt. Lett. 38 709-11

[16] Berto P, Gachet D, Bon P, Monneret S and Rigneault H 2012
Wide-field vibrational phase imaging Phys. Rev. Lett.
109 093902

[17] Khadir S et al 2020 Metasurface optical characterization using
quadriwave lateral shearing interferometry ACS Photonics
8 603-13

[18] Primot J and Guérineau N 2000 Extended Hartmann test based
on the pseudoguiding property of a Hartmann mask
completed by a phase chessboard Appl. Opt.
39 571520

[19] Aknoun S, Aurrand-Lions M, Wattellier B and Monneret S
2018 Quantitative retardance imaging by means of
quadri-wave lateral shearing interferometry for label-free
fiber imaging in tissues Opt. Commun. 422 17-27

[20] Bon P, Savatier J, Merlin M, Wattellier B and Monneret S
2012 Optical detection and measurement of living cell
morphometric features with single-shot quantitative phase
microscopy J. Biomed. Opt. 17 076004

[21] Zlotek—Zlotkiewicz E, Monnier S, Cappello G, Le Berre M
and Piel M 2017 Optical volume and mass measurements

show that mammalian cells swell during mitosis J. Cell
Biol. 211 765-74

[22] Pradeep S, Tasnmin T, Zhang H and Zangle T A 2021
Simultaneous measurement of neurite and neural body mass
accumulation via quantitative phase imaging Analyst
146 1361

[23] Bon P et al 2015 Three-dimensional nanometre localization of
nanoparticles to enhance super-resolution microscopy Nat.
Commun. 6 7764

[24] Bon P et al 2018 Self-interference 3D super-resolution
microscopy for deep tissue investigations Nat. Methods
15 449-54

[25] Linares-Loyez J et al 2019 Self-interference (SELFI)
microscopy for live super-resolution imaging and single
particle tracking in 3D Front. Phys. 7 68

[26] Guérineau N, Harchaoui B and Primot J 2000 Talbot
experiment re-examined: demonstration of an achromatic
and continuous self-imaging regime Opt. Commun.

180 199-203

[27] Chanteloup J C 2005 Multiple-wave lateral shearing
interferometry for wave-front sensing Appl. Opt.
44 1559-71

[28] Roddier F 1990 Variations on a hartmann theme Opt. Eng.
29 123942

[29] Primot J and Guérineau N 2000 Extended Hartmann test based
on the pseudoguiding property of a Hartmann mask
completed by a phase chessboard Appl. Opt. 39 5715-20

[30] Born M and Wolf E 1999 Principles of Optics:
Electromagnetic Theory of Propagation, Interference and
Diffraction of Light (Cambridge: Cambridge University
Press)

[31] Bhaduri B, Edwards C, Pham H, Zhou R, Nguyen T H,
Goddard L L and Popescu G 2014 Diffraction phase
microscopy: principles and applications in materials and
life science Adv. Opt. Photon. 6 57

[32] Berto P, Rigneault H and Guillon M 2017 Wavefront sensing
with a thin diffuser Opt. Lett. 42 5117-20

[33] D’Errico J 2006 Matlab Package (https://fr.mathworks.com/
matlabcentral/fileexchange/9734-inverse-integrated-
gradient)

[34] Wu T, Berto P and Guillon M 2021 Wavefront sensing of
optical vortices and complex wavefronts
(arXiv:2101.07114)


https://doi.org/10.1016/j.bpj.2014.02.023
https://doi.org/10.1016/j.bpj.2014.02.023
https://doi.org/10.1117/1.JBO.20.12.126009
https://doi.org/10.1117/1.JBO.20.12.126009
https://doi.org/10.1002/smll.201801910
https://doi.org/10.1002/smll.201801910
https://doi.org/10.1021/nn2047586
https://doi.org/10.1021/nn2047586
https://doi.org/10.1103/PhysRevB.86.165417
https://doi.org/10.1103/PhysRevB.86.165417
https://doi.org/10.1021/acsphotonics.7b00845
https://doi.org/10.1021/acsphotonics.7b00845
https://doi.org/10.1364/OPTICA.381729
https://doi.org/10.1364/OPTICA.381729
https://doi.org/10.1364/OL.38.000709
https://doi.org/10.1364/OL.38.000709
https://doi.org/10.1103/PhysRevLett.109.093902
https://doi.org/10.1103/PhysRevLett.109.093902
https://doi.org/10.1021/acsphotonics.0c01707
https://doi.org/10.1021/acsphotonics.0c01707
https://doi.org/10.1364/AO.39.005715
https://doi.org/10.1364/AO.39.005715
https://doi.org/10.1016/j.optcom.2018.02.061
https://doi.org/10.1016/j.optcom.2018.02.061
https://doi.org/10.1117/1.JBO.17.7.076004
https://doi.org/10.1117/1.JBO.17.7.076004
https://doi.org/10.1083/jcb.201505056
https://doi.org/10.1083/jcb.201505056
https://doi.org/10.1039/D0AN01961E
https://doi.org/10.1039/D0AN01961E
https://doi.org/10.1038/ncomms8764
https://doi.org/10.1038/ncomms8764
https://doi.org/10.1038/s41592-018-0005-3
https://doi.org/10.1038/s41592-018-0005-3
https://doi.org/10.3389/fphy.2019.00068
https://doi.org/10.3389/fphy.2019.00068
https://doi.org/10.1016/S0030-4018(00)00717-3
https://doi.org/10.1016/S0030-4018(00)00717-3
https://doi.org/10.1364/AO.44.001559
https://doi.org/10.1364/AO.44.001559
https://doi.org/10.1117/12.55721
https://doi.org/10.1117/12.55721
https://doi.org/10.1364/AO.39.005715
https://doi.org/10.1364/AO.39.005715
https://doi.org/10.1364/AOP.6.000057
https://doi.org/10.1364/AOP.6.000057
https://doi.org/10.1364/OL.42.005117
https://doi.org/10.1364/OL.42.005117
https://fr.mathworks.com/matlabcentral/fileexchange/9734-inverse-integrated-gradient
https://fr.mathworks.com/matlabcentral/fileexchange/9734-inverse-integrated-gradient
https://fr.mathworks.com/matlabcentral/fileexchange/9734-inverse-integrated-gradient
http://arxiv.org/abs/2101.07114

	Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): principle, terminology, algorithm and grating shadow description
	1. Imaging the phase of light
	2. Principle of QLSI microscopy
	3. Interferogram formation
	3.1. The grating shadow (GS) picture
	3.2. Influence of the wavelength

	4. Discussion of the terminology
	4.1. QLSI vs GS
	4.2. Grating vs mask
	4.3. Talbot vs Bessel

	5. Image retrieval algorithm
	5.1. Fourier transform
	5.2. Demodulation
	5.3. Inverse Fourier transform
	5.4. Wavefront gradient integration*2pt
	5.5. Intensity image retrieval
	5.6. Dealing with the reference image

	6. Summary
	Acknowledgments
	References


