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Abstract

Background. Single-cell RNA-seq datasets are characterized by large ambient dimensionality,
and their analyses can be affected by various manifestations of the dimensionality curse. One
of these manifestations is the hubness phenomenon, i.e. existence of data points with surpris-
ingly large incoming connectivity degree in the neighbourhood graph. Conventional approach
to dampen the unwanted effects of high dimension consists in applying drastic dimensionality
reduction. It remains unexplored if this step can be avoided thus retaining more information
than contained in the low-dimensional projections, by correcting directly hubness.
Results. We investigate the phenomenon of hubness in scRNA-seq data in spaces of increasing
dimensionality. We also link increased hubness to increased levels of dropout in sequencing data.
We show that hub cells do not represent any visible technical or biological bias. The effect of var-
ious hubness reduction methods is investigated with respect to the visualization, clustering and
trajectory inference tasks in scRNA-seq datasets. We show that hubness reduction generates
neighbourhood graphs with properties more suitable for applying machine learning methods;
and that it outperforms other state-of-the-art methods for improving neighbourhood graphs. As
a consequence, clustering, trajectory inference and visualisation perform better, especially for
datasets characterized by large intrinsic dimensionality.
Conclusion. Hubness is an important phenomenon in sequencing data. Reducing hubness can
be beneficial for the analysis of scRNA-seq data with large intrinsic dimensionality in which case
it can be an alternative to drastic dimensionality reduction.

Introduction

The technology of single-cell omics profiling revolu-
tionized many fields of modern molecular biology, pro-
viding more direct ways to study such biological phe-
nomena as differentiation,1 development,2 heterogene-
ity of cancer cell populations and related resistance
to treatment.3,4 However, the analysis of single-cell
datasets remains challenging, amplifying the difficul-
ties already encountered in the analysis of bulk omics
measurements as well as introducing new ones, spe-
cific to single-cell technologies.5,6
From the geometrical point of view, a set of single-cell
measurements can be represented as a cloud of data
points, where each point represents a cell. This cloud
is embedded in a space with overwhelmingly large di-
mensionality: thus, tackling only the case of scRNA-
seq, a typical single-cell dataset provides information
about measurable variability of up to twenty thou-
sand gene expressions. Hence, the formal (or ambi-
ent) dimension of the data space is close to 104 by
order of magnitude. Due to the underlying biologi-
cal mechanisms, the expression profiles of individual
genes are coupled through complex network of linear

and non-linear dependencies. This makes the effec-
tive or intrinsic dimensionality (ID) of the data point
cloud much lower than the ambient one, even if the
number of cells greatly exceeds 104. For example, if
all genes were perfectly linearly correlated to one com-
mon latent factor, then all cells would be located on a
single line segment embedded in the multi-dimensional
space, and the value of intrinsic dimensionality would
be one, independently of the ambient dimensionality.
Real gene expression datasets are influenced by more
than one latent factor, and, intuitively, the number
of distinct latent factors corresponds to the global in-
trinsic dimensionality of the data.7 The estimates of
the intrinsic dimensionality of single-cell datasets can
vary from 3-4 to hundreds.8,9, 4
The difficulties of dealing with many dimensions in
the data analysis are broadly referred to as the "curse
of dimensionality".10 Talking about the curse be-
comes relevant when the logarithm of the number of
data points is less than the intrinsic dimensionality of
the data.11 In practice, it means that certain man-
ifestations of the dimensionality curse might appear
starting with an intrinsic dimensionality as low as 10.
These manifestations are various: among the most
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known is the concentration of distances quantified as
the contrast between "close" and "far" distances in a
dataset. Several approaches were proposed to com-
pensate for the undesirable effect of distance concen-
tration.10,12,13 However, in practice, it was demon-
strated that it can not be avoided by global modifica-
tions of data space metrics.14 Another manifestation
of the high-dimensional geometry is almost perfect lin-
ear separability of the data point cloud.15
In most of the presently used analysis workflows,
single-cell datasets are subjected to drastic dimension-
ality reduction before applying many unsupervised
machine learning methods.16,17 After applying such
dimensionality reduction, the ambient dimensionality
is mechanistically truncated even if the intrinsic di-
mensionality of the data was higher (in this case, it
is truncated as well). Indeed, this common practice
aims at reducing possible manifestations of the curse
of dimensionality such as distance concentration, at
the cost of neglecting signals that are potentially con-
tained in higher dimensions. Typical reduced dimen-
sionality used to construct the k-NN graphs equals to
20-30. Moreover, for trajectory inference, the dimen-
sionality of single-cell data is frequently reduced to 2
or 3.8,18 This is in striking contrast with the observa-
tion that in a typical scRNA-seq dataset, first few tens
of principal components explain only a small fraction
of total variance (5-10%), unlike in case of bulk tran-
scriptomic. The question of whether this is a mere
consequence of the dropout in single-cell measure-
ments or of an indeed intrinsically high-dimensionality
of scRNA-seq data, has been poorly studied so far.
Also, it remains unclear if the practice of reducing the
dimension of single-cell data could eliminate useful in-
formation, and whether it is the only way to fight the
dimensionality curse.
Yet another manifestation of the curse of dimension-
ality, much less known and discussed, is the hubness
phenomenon. It has been described that in high-
dimensional settings some points might be surpris-
ingly popular among the k-Nearest Neighbors (k-NN)
of other points. This observation was formalized in,19
coining the term "hub" to describe those points. In a
more formal manner, hubness of a data point is the in-
degree of the corresponding node in the k-NN graph
which reflects the number of times it appears among
all the k-NN lists of other points. When looking at the
distribution of hubness score as a function of the di-
mension of the data, Radovanovic et al. observed that
part of the distribution can shift to the right when the
dimension increases, forming a fat tail (Supplementary
Figure 1A). The points in this tail have larger hubness
scores compared to the rest of the distribution: they
are designated as hubs. The tail of the distribution fre-
quently follows a power law of Lévy, typical of many
scale-free networks (Supplementary Figure 1B).
Dealing with the hubness phenomenon is crucial when
computing and exploiting k-NN graphs, which is the
most important ingredient of most of the currently
used computational approaches for single-cell data
analysis.16,20 Simple or modified k-NN graphs are
used for the tasks of clustering, non-linear dimen-

sionality reduction, trajectory inference in single-cell
datasets. Presence of hubs in the k-NN graph impacts
their expected, from low-dimensional intuition, prop-
erties: for example, it can greatly impact the struc-
ture of geodesic distances along the graph between
individual cells. Hubs (and antihubs, i.e. data points
which are not nearest neighbours of any other point)
make the structure of k-NN graphs heterogeneous in
terms of connectivity which can violate the underlying
assumptions for meaningful application of, for exam-
ple, graph-based clustering algorithms. It is surpris-
ing that the hubness properties of the neighbourhood
graphs produced from single-cell data and the impact
of hubness on downstream analyses has never been
studied so far.
Of note, in the popular non-linear dimensionality re-
duction approach Uniform Manifold Approximation
and Projection (UMAP), weights of the neighbour-
hood graph edges, being transformations of the multi-
dimensional distances, are introduced such that for
each local neighbourhood, they would be character-
ized by sufficient contrast.21 As a consequence, the
neighbourhood graph exploited by UMAP, is expected
to have more regular properties (e.g. more uniform
connectivity) than the standard k-NN graph, when
computed in data spaces characterized by large in-
trinsic dimensionality. Due to this feature, UMAP
method does not require the preliminary dimensional-
ity reduction step, unlike many other methods, in its
applications to single-cell data. However, it remains
unclear if this way of constructing the k-NN graphs is
the only one and how much it can be improved.
Hubness reduction methods aim at explicitly reduc-
ing the hubness of the k-NN graph, usually through
specific transformations of the distance matrix.22 In-
terestingly, hubness reduction can be used instead of
dimensionality reduction, in order to compensate for
certain manifestations of the dimensionality curse. In
this study we hypothesized that application of hubness
reduction methods can be beneficial whenever per-
forming single-cell data analyses using k-NN or other
neighbourhood graphs or distance matrices as an es-
sential ingredient. We explicitly and systematically
evaluate the effect of hubness reduction on cluster-
ing, trajectory inference and visualisation in single-
cell datasets, using previously established benchmark
data. Finally, we specify the conditions in which hub-
ness reduction is expected to be beneficial.

Results

RNA-seq data is prone to hubness

In order to evaluate the magnitude of the hub phe-
nomenon in sequencing data, we started with bulk
RNA-seq, as we wanted to document the effect of the
dropout on hubness and intrinsic dimensionality of the
data. We used three bulk datasets from The Cancer
Genome Atlas (TCGA) and ARCHS4 repositories and
added zeros in order to simulate the dropout effect, ei-
ther in a simple manner, distributing the excess zeros
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uniformly in the expression matrix, or using Splat-
ter23 (see Methods). We used previously developed
tools to quantify the magnitude of the hubness phe-
nomenon,24,25 and we also evaluated the asymmetry
of the k-NN graph, which we show to be an informa-
tive measure of hubness (see Methods). We worked on
the PCA-transformed data, changing the number of
Principal Components (PCs) to increase or decrease
the data dimensionality. The skewness of the in-degree
distribution of the k-NN graph (k-skewness) and the
asymmetry estimators tend to increase with the di-
mension before reaching a plateau, for all datasets
(Figure 1A). The same increase is seen for the estima-
tors retrieving the number of hubs (2k-estimator) and
antihubs (antihub estimator) but without plateauing.
Regarding the 2k-estimator, it peaks at intermediate
dimensions before decreasing: this is due to the fact
that the distribution is strongly skewed, with such a
large number of antihubs, that this estimator becomes
irrelevant at high dimensions. We tested two other
hub estimators, the maximum in-degree and the num-
ber of hubs retrieved as the number of cells with an
in-degree outside their bell-shaped distribution (see
Methods). They behave similarly with respect to the
dimension (Supplementary Figure 2A,B). From those
observations, we concluded that there are hubs in
RNA-seq data, which appear already at intermediate
dimensions, namely 10 PCs.
Concerning the effect of the dropout, it is negligible
when the hub phenomenon is well established at the
highest dimension, but it does lead to strong increase
of hubness at intermediate dimensions (Figure 1A).
This observation is reproducible across the two differ-
ent methods used to generate dropout (Supplemen-
tary Figure 2C,D for the Splatter-simulated dropout).
As the magnitude of the hub phenomenon reaches a
plateau, we conclude that dropout drives the hubness
up to this plateau.
To further investigate the link between sparsity and
hubness, we studied their respective correlation with
the global intrinsic dimension (GID, defined in Meth-
ods). Since an increase in data matrix sparsity ex-
pectedly involves a higher GID (R=0.93, p<0.0001,
Spearman correlation) and a higher GID causes an
increased hubness, defined with the asymmetry es-
timator, at k=10 and considering 100 dimensions
(R=0.81, p<0.0001, Spearman correlation), we can
assume that the effect of sparsity on hubness is at
least partially due to the increased GID (Supplemen-
tary Figure 3A). This observation confirms also the
intuition that hubness is a dimensional-related effect.
We analyzed a diverse collection of scRNA-Seq
datasets26 to measure the hub phenomenon. We used
the same estimators as in Figure 1A and reproduced
their evolution over increasing dimensionality (Figure
1B). We concluded that scRNA-seq data is prone to
hubness as well, starting already from around 10 prin-
cipal dimensions.
We also investigated the link between sparsity and
hubness in scRNA-seq datasets, taking into account
the GID value. In the case of single-cell data, we
observed that sparsity is not enough to explain the

variation of GID. We uncovered in fact three param-
eters that influence GID: the sparsity, the cardinality
of the dataset, which corresponds to the number of
observations, and the signal-to-noise ratio (SNR) (see
Methods). The SNR and the cardinality are two de-
pendent parameters (R=0.87, p=0.0026, Spearman
correlation) (Supplementary Figure 3B), so we com-
puted the correlation between GID and the composite
parameter ratio of Sparsity to SNR, which appeared
to be significant (R=0.77, p=0.015, Spearman cor-
relation). Using the real single-cell datasets, we see
that there is a weak correlation between the composite
parameter Sparsity/SNR and the hubness (R=0.57,
p=0.12, Spearman correlation), as well as between
GID and hubness (R=0.29, p=0.45, Spearman corre-
lation), using the asymmetry estimator with k=10 and
100 PCs to quantify hubness (Supplementary Figure
3C). Therefore, it seems that a higher Sparsity/SNR
ratio is a partial explanation for a higher magnitude of
the hub phenomenon, probably through its influence
on GID.

Identifying hubs in scRNA-seq data

Usual methods to retrieve hubs use a threshold on the
hubness score, above which data points are defined
as hubs. For example, the 2k-estimator counts those
data points having their in-degree in the k-NN graph
larger than 2k. In the case of single-cell transcrip-
tomic datasets, large proportion of cells are antihubs,
while the variance of the distribution of in-degree ex-
plodes: we mentioned that the tail follows a power
law of Lévy, which means that whenever its slope in
the log-log plot is smaller than -3, the variance di-
verges (Supplementary Figure 1B). As a consequence,
the distribution of in-degrees is strongly skewed and
the threshold-based methods fail, explaining the shape
of the curve for the 2k- and the mean-estimators which
do not reach a plateau (Figure 1A,B and Supplemen-
tary Figure 3A,B,D).
Instead, we suggest to directly use the neighborhood
size in order to define the hub points. Considering
the N cells with the highest in-degrees, one can cal-
culate the proportion of total cells that have the lat-
ter N cells in their neighborhood lists, that we call
"reverse-covered" cells. This quantity increases with
N, reaching a plateau. We defined as hubs the N cells
needed to hit the plateau, and called this method of
hub identification "reverse coverage" (Supplementary
Figure 4). In further sections, we use this method to
retrieve hubs from scRNA-seq data.

Hubs are not artefact cells

We assessed whether hubs have different properties
compared to non-hub cells by looking at classical qual-
ity control (QC) metrics: number of genes, total num-
ber of features, dropout rate, entropy27 (see Methods),
position in low-dimensional projections. We retrieved
hubs using our reverse-coverage method.There was no
clear difference in the distributions of the latter qual-
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ity metrics between hubs, antihubs and other (normal)
cells (Figure 1D and Supplementary Figure 5A). In
some datasets, hubs and antihubs had more often a
higher dropout rate, a higher number of unique genes
detected or a lower number of total features com-
pared to normal cells but this observation was not
reproducible across all datasets; and there is no ob-
servable trend at all for the entropy. Regarding their
position, the hubs and antihubs are scattered across
the whole projection in the two-dimensional UMAP
and PCA embeddings, in the sense that they do not
form a distinct cluster or a set of outliers, although
hubs seem to be located in denser regions (Figure 1C
and Supplementary Figure 5B). In order to empiri-
cally rationalize the position of hubs we looked at the
following model distributions in various dimensions:
Gaussian and uniformly sampled hypercube. It was
observed that for the Gaussian data, the distance to
the data center decreased when the node degree in-
creased except for the smallest dimensions which were
less sensitive to hubness as expected. For the uni-
formly sampled hypercube data, in small dimensions
the hubs were far from the origin (which was observed
before25), nevertheless for high enough dimensions,
hubs concentrated again near the data space origin
(Supplementary Figure 6). Since the hubness phe-
nomenon is specific to high dimensional data, we can
conclude that hubs tend to concentrate near the clus-
ter centers.
We also looked at the stability of hubs upon resam-
pling of 90% of the cells and proved their poor stabil-
ity: there is in most cases less than 25% of hubs in
common between the original data and the resampled
one, whatever the dimension and the metric used to
compute the k-NN graph are (Figure 1E). It proves
that being a hub is not an intrinsic property of the
cells.
Lastly, we studied the hubness of the data after re-
moving the hubs identified by the reverse-coverage
approach, and observed that the k-NN graph remains
asymmetrical, meaning that new hubs appeared in
the data (Figure 1F). It also serves as a proof that
hubness can not be reduced by merely removing hubs:
more elaborated techniques are needed to correct the
skewed k-NN graph.
Taken together, these observations suggest that hub
or antihub cells do not form a distinct group in the
data space: they are not explained by biological cell
properties or technical artefacts. Hubs in single-cell
datasets appear due to the effects of high-dimensional
geometry and strongly impact the properties of cell
neighbourhood graphs.

Hubness reduction improves clustering
accuracy

In order to study the effect of hubness reduction on
the clustering of scRNA-seq data, we used quality-
controlled datasets collected from previous clustering

benchmark studies. We used those datasets which
were specified to be of either gold- or silver-standard
(see Methods, Supplementary Figure 7, Supplemen-
tary Table 1). For silver-standard datasets, one has
to consider that label type and quality is a common
limitation of studies assessing clustering accuracy. In
particular, annotation of clusters with marker genes
can differ as public marker databases (e.g. PanglaoDB
and CellMarker) sometimes provide different indica-
tions.28 To compare these datasets in a uniform man-
ner, we processed them using the Scanpy package16
according to standard steps with several combina-
tions of parameters: quality control, normalization,
log-transformation, gene selection, dimensionality re-
duction, scaling (Figure 2A).
Hubness reduction was applied last, as a way to gener-
ate an alternative k-NN graph prior to clustering. We
compared them with the uncorrected k-NN graph as
well as with the k-NN graphs provided by two meth-
ods from the Scanpy package, based on UMAP and
Gaussian kernel21,29). Of note, the DSL hubness re-
duction is not compatible with the cosine dissimilarity.
The clustering itself was performed using Leiden algo-
rithm,30 which is widely used for single-cell data anal-
ysis as state-of-the-art clustering method. We also
tested the Louvain algorithm31 which yielded similar
results (corresponding figures are available on our Zen-
odo repository, DOI 10.5281/zenodo.4597151). Num-
ber of nearest-neighbors was set to the square root of
the dataset cardinality (see Methods).
We followed previous studies and evaluated cluster-
ing accuracy with respect to ground truth labels using
the Adjusted Rand Index (ARI) and the homogeneity
scores.32,33 Unlike the ARI, the homogeneity score
does not penalize members of a class being split into
several clusters and as such is complementary to the
ARI. Since the Leiden method uses a resolution pa-
rameter rather than the desired number of clusters,
and different number of clusters affect the clustering
evaluation with ARI, we searched consistently for the
resolution parameter yielding the same or closest pos-
sible number of clusters compared to ground truth la-
bels34 (see Methods).
Our results show that GID and hubness are impor-
tant parameters to consider when performing unsu-
pervised clustering of single-cell datasets. We noticed
that datasets with higher GID, i.e. above 25, had
generally lower clustering scores evaluated with the
ARI, whereas low and high scores were possible for
lower GID (Figure 2E). The two exceptions of high-
ID datasets with high clustering scores correspond to
two simulated datasets included in our benchmark.26
These high-ID datasets are also the ones prone to hub-
ness in the Euclidean space: indeed the mean local ID
(LID) correlates with k-skewness. Although there is
no direct correlation between k-skewness and ARI, it
is therefore clear that hubness, as well as GID, need
to be taken into account when performing clustering
(Figure 2F).
Subsequently, hubness reduction was most useful for
high-ID datasets (Figure 2C, Supplementary Fig-
ure 8), where clustering using hubness-reduced k-NN
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Figure 1: Hubness in sequencing data. We quantify hubness with 4 different estimators: percentage of hubs in
the data defined as cells with an in-degree above 2k, using the same value for k as the one chosen to build the
k-NN graph (first column), percentage of antihubs (second column), asymmetry of the k-NN graph (third column),
skewness of the in-degree distribution (forth column). The quantification is shown as a function of the dimension
after PCA reduction (A,B). Hubness quantification methods are applied to 3 bulk datasets, with various rates
of simulated dropout (A), or to single-cell datasets (B). (C) Position of antihubs and reverse-coverage hubs in
the PCA and UMAP projections; example with the Zhengmix4eq single-cell dataset. (D) Quality control metrics
measured on antihubs, normal cells and hubs defined by reverse-coverage: dropout rate distribution (first column),
number of total features counted (second column), number of unique genes detected (third column), single-cell
entropy (scEntropy) distribution (forth column); example with the Zhengmix4eq single-cell dataset. (E) We count
the proportion of reverse-coverage hubs that are in common between the original data and resampled data upon
random removal of 10% of the cells, using scRNA-seq datasets.26 (F) Asymmetry of the k-NN graph over di-
mension upon removing of reverse-coverage hubs, with scRNA-seq datasets,26 in order to evaluate the resulting
magnitude of the hubness phenomenon.

graphs performed better than using the base k-NN
graph or the k-NN graphs from Scanpy (Figure 2B,E,
Supplementary Figure 9). We also note that the use of
cosine dissimilarity to build the k-NN graph resulted
both in lower hubness and higher clustering accuracy
than the Euclidean distance, as expected from pre-
vious literature35 (Figure 2D). Cosine dissimilarity’s
sensitivity to hubness was also stable with regard to

the number of PCs retained (Figure 2D). Interestingly,
the highest average ARI and homogeneity scores were
achieved using hubness reduction and 500 PCs. This
provides a rationale to consider cosine dissimilarity
and related metrics (e.g. the angular distance) as
more robust and appropriate metrics to use for un-
supervised clustering of single-cell data. It also indi-
cates that a less stringent dimension reduction yield
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better clustering performance, which gives support to
the hypothesis that drastic dimension reduction might
lead to loosing useful information. For the case of low-
ID datasets, the benefit of doing hubness reduction is
not obvious anymore and should be tested on a per-
dataset basis (Supplementary Figure 10).
To reflect the importance of taking into account
how the ground truth was defined in these different
datasets, we also looked at the power of hubness reduc-
tion considering only gold-standard datasets. Even if
the improvement in ARI and homogeneity scores is
less strong than if we consider only high-ID datasets,
hubness reduction remains a useful step to perform,
especially for the Euclidean distances, and consider-
ing a number of PCs above 25 (Supplementary Figure
11).
Dimension reduction and hubness reduction both mit-
igate negative effects of high GID on downstream anal-
ysis. Our study suggests that these two procedures
have complementary effects, hubness reduction allow-
ing to reduce the dimension less stringently. We also
observe from Figure 3 that the improvement in clus-
tering performance is accompanied by a more homo-
geneous density and a reduced skewness of the k-NN
graph, while the k-NN graph constructed with the
popular UMAP approach corrects only density inho-
mogeneity but not high skewness.
To clarify this observation, we evaluated the strength
of the density correction in a model high-dimensional
Gaussian distribution which has been inhomoge-
neously sampled. Briefly, we take a Gaussian ball in 10
dimensions and remove 98% of the points in one of the
half hyperball (Supplementary Figure 12A). As a mere
consequence, the mean density of each half hyperball
is different. We show that the density evaluated from
the unweighted k-NN graph is more uniform after hub
correction (Supplementary Figure 12C,D; see Meth-
ods). The local neighborhood relations are also better
represented after the hubness reduction, in the sense
that close points fall back in the same neighborhood
(Supplementary Figure 12B).
As another evidence that hubness reduction improves
clustering quality, we also tested this hypothesis using
bulk RNA-seq datasets. We considered a collection of
datasets from the ARCHS4 repository, constructed the
k-NN graphs with or without hubness reduction, then
ran Louvain algorithm and calculated the modularity
of the resulting clustering. As one can see, hubness re-
duction improved modularity in the absolute majority
of the datasets (Supplementary Figure 13). This anal-
ysis confirms that hubness reduction can be a useful
step in many clustering pipelines.

Hubness reduction improves trajectory
inference in scRNA-seq datasets

In order to evaluate the effect of hubness reduction
on the performance of trajectory inference (TI) in

scRNA-seq data, we generated various k-NN graphs
as input for the TI task, with or without hubness re-
duction. We used the Partition-based Graph Abstrac-
tion (PAGA)36 method for this purpose since it was
ranked as the best TI tool.37 It is also very appropri-
ate in our study since it is applied directly on k-NN
graphs. We took the same parameters and preprocess-
ing steps as for the clustering study described above
(Figure 2A) except for the scaling step that we per-
formed systematically in this experiment, to produce
different trajectories that were then compared across
the classical or hubness-reduced k-NN graphs using
several quality metrics previously introduced.37 The
following quality scores have been utilized: correlation
to evaluate the relative position of cells along the tra-
jectory, F1_branches to compare branch assignment
and featureimp_wcor to measure the respective im-
portance of differentially expressed features while con-
structing the trajectory (see Methods). We also cal-
culate an overall score to average these three metrics.
We tested our pipeline on the datasets from Sun et al.
and the Cytotrace study,38,9 first considering the ex-
pression matrices characterized by large values of GID
(Supplementary Table 1).
We observed that the inferred trajectories were closer
to the ground truth in most cases when TI was per-
formed on a hub-reduced k-NN graph rather than us-
ing the base or the Scanpy k-NN graphs, in terms of
the overall summary score and regardless of the com-
bination of preprocessing parameters (Figure 4B). Ex-
ceptions were some combinations of preprocessing pa-
rameters used with 25 PCs (namely the Duo recipe
with the cosine dissimilarity). Some combinations
used with 100 PCs were not improved with hubness
reduction either (namely the cosine dissimilarity with
the Duo recipe and Leiden algorithm) (Supplementary
Figures 16, 17). In total, only 9 out of 32 combina-
tions of preprocessing parameters failed to yield better
overall performance with hubness reduction. Out of
these 9 combinations, 4 were computed with 25 PCs.
When hub reduction is applied on the datasets em-
bedded in lower dimensional spaces, e.g. 25 PCs, it
is actually not surprising that hubness reduction has
a weaker effect since the magnitude of hubness itself
is smaller. Also, 8 combinations were computed with
the cosine dissimilarity, which we know from previous
experiments exhibit less initial hubness compared to
the Euclidean metric (Figure 2D). To conclude, we no-
ticed that the benefit of hubness reduction was much
higher when using a reasonably high number of PCs
and the Euclidean metric, which is coherent with the
observations of the clustering task.
We display one example of preprocessing parameters
combination (with the Seurat recipe, the Euclidean
metric and the Leiden algorithm) in Figure 4A to show
the improvement of the various TI quality scores com-
pared to the base k-NN graph (Supplementary Figure
20). There are no clear patterns revealing that the in-
crease in the quality of TI would be due to a specific
increase in one of the three quality metrics: in fact, it
depends highly on the preprocessing (Supplementary
Figures 20, 21).
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Figure 2: Evaluation of hubness reduction effect on clustering performance. (A) Preprocessing workflow with
the different conditions used to construct various k-NN graphs upstream of the clustering task. (B) ARI scores
for high-ID datasets, as a function of the metric, dimension and k-NN graph production method used; example
with the Seurat recipe, scaling, and the Leiden algorithm. (C) Measure of the global ID (GID) of all datasets,
used to define the high-ID datasets. (D) k-skewness of high-ID datasets, as a function of the metric, dimension
and k-NN graph production method used; example with the Seurat recipe and scaling. (E) Relationship between
global ID, ARI, and improvement in the clustering score using the hubness reduction algorithm DSL. (F) Pearson
correlation coefficients distribution (p-value in parentheses) between k-skewness, ARI and mean local ID (LID)
for all datasets, calculated with the base k-NN graph, using the Seurat recipe, scaling and the Leiden algorithm.

Briefly, we also noticed a slight partial improvement in
the TI performance if we consider the low dimensional
datasets from Sun et al.38 This is again especially true
for the Euclidean metric, except for the preprocessing

done with the Duo recipe and the Leiden algorithm
(Supplementary Figures 14, 15, 18, 19). This is in-
teresting compared to the clustering task, for which
the dimensionality of the datasets was an important
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Figure 3: A selected example of Leiden clustering on a scRNA-seq dataset with FACS-labelled mouse blood den-
dritic cells (GSE60783), using Euclidean distance, 50 PCs and 15-NN graph. Clustering with the usual k-NN graph
(base) or the UMAP k-NN graph (scanpy_umap) results in lower ARI while Local Scaling (ls) and DisSimLocal
(dsl) k-NN graphs yield better accuracy. Both hubness-reduced and UMAP k-NN graphs produce more uniform
Gaussian kernel density estimates. However, unlike hubness reduction, UMAP k-NN graph does not reduce the
skewness of the in-degree distribution. The modularity is improved for the UMAP and hubness-reduced graphs
compared to the base one, although the UMAP graph looks more intricate by eye. Point size is proportional to
the in-degree in the respective k-NN graph.

parameter to decide whether hubness reduction would
be beneficial or not.
If we consider all the different preprocessing combi-
nations and all datasets together, we can study the
respective efficacy of each hubness reduction method.
For the TI task and considering the highest dimensions
where the magnitude of the hubness phenomenon is
the strongest, we observed that the quality of the TI
done after applying the two LS-based hubness reduc-
tion methods is the highest, shortly followed by DSL
then MP. Going back to the datasets characterized by
a low GID, it is not clear anymore what is the best
hubness reduction method in order to improve TI. As
a consequence, we suggest that one should test differ-

ent hubness reductions, depending on their data, to
reach the best performance, with a slight preference
for the LS methods, especially when considering high
dimensional datasets (Figure 4B).
Since it was mentioned37 that PAGA can be unsta-
ble, we followed their methodology to evaluate PAGA
stability, using the base k-NN graph or the hubness-
reduced ones. Again, we observed that the perfor-
mance of PAGA, in terms of stability, increased in
most cases whenever computed using the hubness-
reduced graphs (Figure 4C). The benefit of using
hubness reduction to improve stability depends on
the method used. Surprisingly, while hubness reduc-
tion was most useful for the Euclidean distance when
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studying the mere performance, it turns out as most
favorable to improve stability for the cosine dissimi-
larity. Furthermore, it is interesting to note that the
efficacy of the different methods differs as well from
the use case of pure TI performance. In the latter sit-
uation, MP was poorly performing, while it is quite
efficient to improve PAGA stability.

Low-dimensional embeddings upon hub
reduction

To evaluate the impact of hubs and hubness reduc-
tion on the visualisation task, we designed two tests.
Firstly, we used two distributions, the n-cube and
the n-sphere, to evaluate the impact of hubness phe-
nomenon on the goodness-of-fit between the projec-
tion and the original data. The second test comprises
scRNAseq data to quantify the quality of the projec-
tion before or after hubness reduction, in the same vein
as what we did for the clustering and TI tasks. Here,
we evaluated two visualisation algorithms, namely t-
SNE39 and UMAP,21 that are widely used within the
single-cell community.
We used randomly sampled n-cubes and n-spheres (see
Supplementary Figure 22A), assuming that the n-cube
exhibits hubs, while the n-sphere does not, or to a
lesser extent (see Supplementary Figure 22B).25 Thus,
we can estimate whether the presence of hubs impedes
projecting the data onto a smaller (e.g. 2-dimensional)
space. We quantify the goodness-of-fit by looking at
the respective cost functions of the visualisation algo-
rithms: Kullback-Leibler (KL) divergence and cross-
entropy (CE) (see Methods), as well as at two metrics
measuring correlation: the Quality of Distance Map-
ping (QDM) and the Quality of point Neighborhood
Preservation (QNP; see Methods).40 The projection
is the best possible whenever it minimizes the cost
function and maximizes correlation. Our hypothesis
is that the projection for a n-sphere will be of better
quality than the one for a n-cube, because hubs dis-
tort the pairwise distance matrix used to compute t-
SNE or UMAP. Regarding the cost functions, we note
that they are designed to point towards the direction
of the gradient descent for a given aim, but not as
an absolute reference of the goodness-of-fit. We ob-
served that QNP and QDM correlation metrics were
always higher for the n-sphere than for the n-cube,
both for t-SNE and UMAP, and irrespective of the
number of dimensions or neighbors tested (see Figure
5A and Supplementary Figure 23). For the cost func-
tions, and keeping in mind the fact that they focus on
specific structures, we see that the KL divergence and
the CE are smaller for the n-sphere than the n-cube,
except for the CE computed after UMAP (see Figure
5B). We explain it by the fact that CE attributes a
high importance to hubs and antihubs and thus the
existence of these specific points accelerates the mini-
mization of CE while performing the gradient descent.
We reinforce this explanation with Figure 3, where we
observe that the UMAP k-NN graph keeps the hubs

at the center and the antihubs at the border, as in the
base projection. Consequently, the k-NN graph struc-
ture with hubs is easier to preserve in the sense of the
CE, even if the projection is overall of worse quality.
Then we switched to single-cell datasets, using the
same set of high-ID data as for the TI task, and tested
the various k-NN graphs (the two Scanpy graphs and
the four hub-reduced ones), but excluding the base
one, that were projected in the UMAP, UMAP initial-
ized with PAGA (PAGA+UMAP), or t-SNE spaces.
This time, we evaluate the fit only with QNP and
QDM metrics. To reduce the computation time, we
evaluated less preprocessing combinations, using only
the Seurat recipe, the Leiden clustering algorithm,
scaling and 25, 50, 100 or 500 PCs. Looking at QDM
and QNP in the different projected spaces, we see a
reasonable improvement of the visualisation task per-
formed after hub reduction, for at least one hub re-
duction method, especially when using the Euclidean
metric (see Figure 5C). There was only one use case
for which the hubness reduction was not beneficial:
when we projected the data with UMAP after PAGA
initialization and with the cosine dissimilarity. For
low-ID datasets, the benefit of using hubness reduc-
tion is not proven with our data (See Supplementary
Figure 24).

Discussion
We proved that transcriptomic data is sensitive to the
hubness phenomenon. Regarding the experiment with
bulk data, we observed that all datasets were prone
to hubness, but to various extent. We observed that
this sensitivity positively correlates to the sparsity at
least, most probably because the sparsity greatly in-
fluences the data GID. For the single-cell experiments,
we showed the positive correlation between sparsity
and the hubness phenomenon, even if this effect is
mitigated by the cardinality and the signal-to-noise
ratio. It would be very interesting to explore other
reasons accounting for the difference in sensitivity to
hubness.
In order to quantify the hubness phenomenon, we used
methods that were previously introduced in the lit-
erature.24,25 They aim at counting either hubs or
antihubs, or globally characterize the distribution of
hubness scores across all data points. We concluded
that for scRNA-seq data, methods of hubness quan-
tification using threshold-based hubs counting do not
perform adequately, since the hubness score distribu-
tion in high dimensions contains many values close to
zero. Therefore we designed a method based on the
size of the respective in-coming neighborhoods to re-
trieve hubs in a more robust way, that we called the
reverse-coverage approach, that we used throughout
our analyses.
We then studied the nature of these hubs, showing
that they are not artefact cells or cells with specific
biological properties. However, they have a topolog-
ical utility, in the sense that they tend to be located
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Figure 4: Trajectory inference (TI) improvement from application of hubness reduction. (A) Mean (left) and
differential (right) TI quality scores (taking as reference the base score) for the three TI quality metrics and the
summary score as a function of the dimension and the k-NN graph production method, calculated for the high-ID
datasets;38,9 example with the Seurat recipe, Euclidean metric and Leiden algorithm. (B) Overall detailed TI
quality score of all datasets, as a function of the dimension and the k-NN graph production method, calculated
for the high-ID datasets;38,9 example with the Seurat recipe and Leiden algorithm. (C) Overall detailed PAGA
stability score after subsampling 95% of the features and cells, as a function of the dimension and the hubness
reduction method, calculated for the high-ID datasets;38,9 example with the Seurat recipe and Leiden algorithm.

close to the cluster centers and can be used for ini-
tialization of the clustering as such.41 One of the ex-
periments to investigate the nature of hubs has been
to remove them in the datasets and observe the per-
sistence of the hubness phenomenon in the resampled
data. Since the resampled data k-NN graph remains
asymmetrical, it demonstrated that the simple hub
removal is not a good approach for correcting the in-
homogeneity of the k-NN graphs caused by high data
dimensionality. In order to ameliorate the k-NN graph
properties, we used instead existing techniques of hub-
ness reduction modifying the local metric in the data
space.42,24
Regarding the clustering task, we show that hubness
reduction can be beneficial, especially for the datasets
characterized by high intrinsic dimensionality. As a

matter of fact, clustering performs poorly on those
datasets analysed with classical pipelines, probably
because they suffer more from the unwanted hubness
effects. Upon hub reduction, we are able to improve
the clustering as seen with the increase of the stan-
dard clustering quality metrics ARI and homogeneity
scores. We also noticed that cosine dissimilarity pro-
duces k-NN graphs that are less prone to the hubness
phenomenon, compared to the more widely used Eu-
clidean distance. To conclude, our results suggest that
applying cosine dissimilarity and hub reduction can
be beneficial for the task of clustering, especially for
intrinsically high dimensional datasets. It indicates
also that hub reduction is complementary to dimen-
sion reduction, while allowing to retain more principal
components than is usually done. However, the avail-
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Figure 5: Effect of hubness reduction on the goodness-of-fit for t-SNE and UMAP. (A) QDM (top row) and QNP
(bottom row) correlation metrics calculated on the t-SNE (left column) and UMAP (right column) projections
of a 50-Cube and a 50-Sphere. The higher the correlation metric, the better the projection. (B) KL divergence
(top row) and CE (bottom row) calculated on the t-SNE (left column) and UMAP (right column) projections of
a 50-Cube and a 50-Sphere. The lower the cost function, the better the projection, in the sense of the quantity
minimized by the cost function. (C) QDM and QNP before or after hubness reduction, evaluated after various
visualisation algorithms, compared to the PCA with 500 PCs, for high-ID datasets. We project high-ID datasets
either with t-SNE (top row), UMAP (middle row) or PAGA+UMAP (bottom row) and evaluate QDM (left col-
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Euclidean metric, and using the two Scanpy k-NN graphs or the four hub-reduced graphs.

able hub reduction methods differ in efficacy, with MP
showing poor improvement in particular. We also ex-
tended this observation to bulk RNA-seq datasets. We

empirically demonstrated that hubness reduction cor-
rects for the presence of large density gradients and in-
degree connectivity distribution skewness in the k-NN
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graphs, outperforming other state-of-the-art methods
such as the widely utilized UMAP algorithm, which
might explain the better performances of the associ-
ated k-NN graphs for the clustering task.
Regarding the trajectory inference task, our results
show that hubness reduction can improve the result
of TI method application, as we exemplified using the
popular PAGA algorithm. It is interesting to note
that, while PAGA has already been shown as one of
the best TI tools, it was done using the Euclidean
metric and the UMAP or Gaussian approximate NN
searches.36 In our case we improve further its per-
formance with an alternative metric and NN search.
Since PAGA works by pre-clustering the scRNA-seq
data, we assume that the improvement in trajectory
inference upon hubness reduction is at least partly due
to the fact that the clustering task itself performs bet-
ter. An interesting perspective would be to investigate
thoroughly other leads of explanation for this improve-
ment, and especially the differences between the differ-
ent hub reduction methods. Our hypothesis to explain
the poor performance of Mutual Proximity (MP) hub-
ness reduction method for the clustering and TI tasks
compared to the three other methods is that MP uses
all pairwise distances to correct for hubness while we
know that they suffer from the measure concentration.
On the contrary, the other methods take advantage of
the local neighborhoods which may explain their bet-
ter efficiency. If we consider the impact of MP on
k-skewness and measure concentration, it seems that
its correction is the strongest out of the 4 methods,
probably leading to over-corrected data (Supplemen-
tary Figure 25). It appears also interesting to test
other TI approaches that rely on the construction of
k-NN graph or other types of graphs approximating
the data.43
Lastly, we showed that hubness reduction could im-
prove visualisation of scRNAseq datasets, as expected
looking at the previous literature.44 Again, it is es-
pecially true for high-ID datasets, as they suffer more
from the hub phenomenon, and with the Euclidean
metric which is more sensitive to the dimensionality.

Materials and Methods

Datasets used in benchmark

The bulk datasets were downloaded from the ARCHS4
and TCGA website. For the ARCHS4 expression ma-
trix, we sampled the first 2000 observations to reduce
the size of the dataset. We then filtered out man-
ually 330 samples that were single cell RNA-seq or
not RNA-seq samples (e.g. lncRNA, siRNA, etc), re-
taining a total of 1670 observations. For the TCGA
datasets, we took all observations for breast (BRCA)
and renal (KIRC) carcinomas.
To evaluate clustering and TI, we gathered single-
cell datasets with gold- and silver-standard labels
used in previous studies and benchmarks of super-
vised and unsupervised clustering and trajectory in-
ference.26,38,28,45,46,9, 37 Labels on gold-standard

datasets reflect ground truth information such as
physical time points, genetic perturbations, cell lines,
culture conditions, or FACS sorting. On the contrary,
silver-standard datasets were labelled using a combi-
nation of FACS and unsupervised clustering.

Hubness quantification
Hubness of simple model data distribution

We generated in Python Gaussian and uniformly sam-
pled from hypercube data distributions with 10,000
samples, in spaces of dimension 2, 10, 50 and 500.
Then we compute the 10-NN graph to retrieve the
in-degree of each point, and show the distribution of
in-degrees with 200 bins, averaged over 100 i.i.d. it-
erations for each dimensionality value and the data
distribution.

Hubness scores of individual data points

From the bulk or single-cell datasets, we performed
PCA using log-transformed data, while retaining only
the 10,000 most variable genes:

M′ = log10(M[H10k, ] + 1),

where H10k are the highly variable genes, M is the
original gene-by-cell matrix and M’ the input matrix
for the PCA.
Then the k-NN graph was computed using the RANN
R library, with the number of PCs used ranging from
2 to the number of cells minus 1. For the value of k,
we tested k ranging from 5 to 100, and displayed the
results for k=10. From the k-NN graph, the in-degree
or hubness score Xi is calculated for each cell i.

Hubness quantification for datasets

Let k be the value used to build the k-NN graph, X
the distribution of hubness scores for individual data
points, µ its mean and σ its standard deviation.
The 2k estimator counts the number of hubs, retrieved
as the cells that have a hub score above 2k.
The Mean estimator counts the number of hubs, re-
trieved as the cells that have a hub sore above µ+3σ.
The Antihub estimator is the number of cells having
zero hubness score.
The Asymmetry estimator counts the percentage of
unidirectional edges in the k-NN graph.
The Skewness estimator is calculated as follows:

Sk = E[(
X − µ
σ

)3],

The Maximum estimator is the maximum hubness
score observed in the distribution, divided by the car-
dinality of the dataset.

Dropout simulation

We simulated dropout in two different ways, using a
Bernoulli distribution to decide which counts to drop.
In the first setting, the dropout rate is a fixed con-
stant for all samples, and we consider only non-zero
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gene counts. In the second setting, we used the tool
from the R library Splatter to add dropout in a more
realistic way, in order to reproduce the distribution of
single-cell data.23 Briefly, the dropout rate of a given
gene depends on its expression level following a logistic
function.

Signal-to-Noise-Ratio (SNR) evaluation

To quantify the SNR, we assumed that the distribu-
tion of the eigenvalues from the cell-cell covariance
matrix follows a Marcenko-Pastur distribution, except
for a few eigenvalues that contain the signal of the
data. As a consequence, we derive that the fraction
of eigenvalues following the Marcenko-Pastur distribu-
tion is a good estimation of the noise magnitude, while
the fraction of eigenvalues outside this distribution is
a proxy for the signal magnitude. Since fitting the
Marcenko-Pastur is not obvious, we designed a more
simple proxy for SNR, that proved to be satisfactory
in our experiments:

SNR =
max(X)

median(X)
,

where X is the distribution of the eigenvalues of the
cell-cell covariance matrix.

Intrinsic dimensionality (ID) of datasets

We evaluated ID using PCA. Global ID is defined
as the number of eigenvalues of the covariance ma-
trix exceeding the first eigenvalue divided by 10 (so-
called conditional number-based PCA ID estimate).
We consider that datasets with a GID above 25 are
high dimensional (high-ID datasets). Mean local ID
is defined as the mean of ID values computed for the
100-nearest neighborhood of each point.

Reverse coverage method for identifying hubs

We suggest a novel definition of hubs based on the
size of the in-coming neighborhood. Given a number
N and taking the N cells with the highest hubness
scores, we can calculate the number of cells n that
have at least one of these N putative hubs in their
nearest neighbors. We call these n cells the reverse-
covered cells. Looking at the proportion of reverse-
covered cells as a function of N , it reaches a plateau,
meaning that the reverse coverage will increase only
by a small fraction after the plateau. We define as
hubs the N cells with the highest hubness scores, such
that N is the first value for which we closely approach
the plateau.

QC measurements

We used the Seurat library to compute the UMAP
and PCA projections, as well as the total number of
features and the number of unique genes. We com-
puted in R the sparsity rate as the percentage of zeros
in the expression matrix. To estimate the transcrip-
tomic single-cell entropy, we used the scEntropy tool
implemented in Python.27

To compute the stability of hub identity, we sampled
10 times 90% of the cells and looked at the mean per-
centage of hubs from the original data that were re-
covered in the resampled data to evaluate the intrinsic
nature of hubs.

Hub positions with respect to the center of
model data distributions

To evaluate hubs’ position, we generated in Python
Gaussian and uniformly sampled in hypercube distri-
butions with 105 points each, in different spaces of
dimension 2, 5, 8, 10 and 20. We used the scikit-
hubness library to construct the 10-NN graph and get
the hubness score. From those scores we computed the
average distance to the coordinate origin and its rank
for the data points with a hubness score above a given
threshold. To make the average computation more ro-
bust, we considered only the averages calculated over
more than 100 points. For the average distance Mt,
we normalize it by the dimension:

Mt =
1

n

∑
{i;si≥t}

√
ni
D
,

where t is the threshold on the hubness score, D the
dimension, si the hubness score of point i and ni its
norm.

Hubness reduction
Hubness reduction methods

We used the Python package scikit-hubness to mea-
sure skewness and to reduce hubness.22 This package
offers 4 methods for reducing hubness, that produce a
hub-corrected k-NN graph: Mutual Proximity (MP),
Local Scaling (LS) and its variant LS-NICDM (Non-
Iterative Contextual Dissimilarity Measure) and Dis-
SimLocal (DSL).42,24
Mutual Proximity models pairwise distances
di,j∈{1,...,n}\i of a set of n points with random variables
Xi that depict the distribution of distances between
xi and all other points, then:

MP(di,j) = 1− P (Xi > di,j ∩Xj > di,j),

where P is the joint probability density function.
Local Scaling is calculated using the pairwise distance
di,j and takes into account the local neighborhood:

LSk(di,j) = 1− exp(−di,j
rki

di,j
rkj

),

where k refers to the size of the local neighborhood,
and rki is the distance of point xi to its k-th neighbor.
The variant LS-NICDM uses the average distance to
the k neighbors instead of the mere distance to the
k-th neighbor:

NICDMk(di,j) =
di,j√
µki µ

k
j

,

where µki is the average distance of point xi to its k
nearest neighbors.
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DisSimLocal uses local centroids ck(•) to reduce hub-
ness:

DSLk(xi, xj) = ‖xi−xj‖22−‖xi−ck(xi)‖22−‖xj−ck(xj)‖22,

where the local centroid is estimated as the barycenter
of the k nearest neighbors of xi:

ck(xi) =
1

k

∑
xj∈kNN(xi)

xj

Hubness and measure concentration

To evaluate the impact of hubness reduction on k-
skewness and measure concentration in a general case,
we generated two types of distributions: one or two
Gaussian blobs in 10, 50 and 100 dimensions, with
5,000 points per blob, over 10 iterations. We used the
scikit-hubness Python package to reduce hubness and
measure k-skewness. For the measure concentration,
we evaluated it as:

Conc =
1

N

∑
i

Di
max −Di

min

Di
max

,

where Di
max and Di

min are the maximum, resp. the
minimum pairwise distances for point i.These dis-
tances were calculated either considering all points,
or only the 50 nearest neighbors.

Clustering

Dataset preprocessing

We processed the datasets used for the clustering task
using the Python package Scanpy.16 We combined
two recipes for the preprocessing (Duo or Seurat) with
two different metrics (Euclidean and cosine dissimi-
larity), scaling or not, and four values for the num-
ber of PCs to retain (25, 50, 100, and 500, that we
used to truncate the ambient data dimensionality in
order to reduce the computational time). The follow-
ing k-NN graphs were computed: simple (base) k-NN
graph, four hub-reduced graphs, using the hub reduc-
tion methods provided by the Python scikit-hubness
package, and two graphs provided by the Scanpy pack-
age with use of UMAP and Gaussian kernel meth-
ods21,29). For the TI task, we used the same prepro-
cessing pipeline, except for the scaling step, that we
systematically perform.
The Duo recipe consists in log-normalizing the data,
keeping the 5,000 most variable genes and normalizing
again.
The Seurat recipe log-normalize the data as well and
select the variable genes according to a set of thresh-
olds: variable genes with a mean above 0.0125 and
below 3, and a dispersion above 0.5. The data is nor-
malized again after the gene filtering step.
The clustering was done on the seven k-NN graphs
with the Leiden algorithm.30 The number of nearest-
neighbors was set to the square root of dataset cardi-
nality. Since the graph-based clustering methods do
not allow choosing the exact number of clusters, we

tuned the resolution parameter in order to get the
ground truth number of clusters. We started with a
resolution of 1.5 and limited the search of the reso-
lution to the interval [0, 3]. Then we performed the
clustering iteratively, with a maximal number of steps
set to 20 and a resolution which would increase or
decrease in a dichotomous manner:

Algorithm 1 Resolution tuning
step← 0
min← 0
max← 3
while step < maxstep do

resol← min+ max−min
2

Perform clustering with parameter resol
if cluster > truth then

max← resol
end if
if cluster < truth then

min← resol
end if
if cluster == truth then

return resol
end if
step← step+ 1

end while
return resol

Evaluation of clustering accuracy

We used the Adjusted Rand Index (ARI) and the ho-
mogeneity scores to evaluate the quality of cluster-
ing.33 The best score is 1 and the worse is 0 for both
measures.

ARI =

∑
i,j

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑
j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

) ,
h =

{
1 if H(P2) = 0

1− H(P2|P1)
H(P2)

else,

where

H(P2|P1) = −
|P1|∑
j=1

|P2|∑
i=1

nij
N

log(
nij∑|P2|
i=1 nij

),

H(P2) = −
|P2|∑
i=1

∑|P1|
j=1 nij

|P2|
log(

∑|P1|
j=1 nij

|P2|
),

where P1 and P2 are the two partitions, nij is the value
of the i-th row and j-th column in the contingency ta-
ble, and ai, resp. bj , is the sum of the values sitting
on the i-th row, resp. j-th column, of the contingency
table.

Model distribution simulating strongly hetero-
geneous data point density

We generated a 10-dimensional Gaussian distribution
containing 10,000 points. The data point cloud was
separated in two parts by a hyperplane of coordinates
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x=0, x being the first axis. From the right half hy-
perball, we pick randomly 100 points and discard the
others. We then constructed the k-NN graphs with the
scikit-hubness Python package, with or without hub-
ness reduction and used the k-NN graph to estimate
the density.47 Briefly, it is possible to evaluate the
following quantity from the unweighted k-NN graph:

D = log(p(Xtarget))− log(p(Xsource)),

where Xsource and Xtarget are two data points, and p
is the local density.
First, we determine the shortest path γ between
Xsource and Xtarget in the k-NN graph using the Dijk-
stra algorithm. Then for each intermediate point Xi

in the path, we get from the k-NN graph the quanti-
ties:

Leftγ(Xi) = |Out(Xi) ∩ In(Xi−1)|

Rightγ(Xi) = |Out(Xi) ∩ In(Xi+1)|,

where In(Xi) and Out(Xi) are the in- and out-
neighborhoods of Xi. From this point, the density
estimate along the path γ is:

D = C
∑
Xi∈γ

[Rightγ(Xi)− Leftγ(Xi)],

where C is a constant depending on k and the num-
ber of dimensions.48 In our case we fixed the source
at the center of the Gaussian hyperball and randomly
sampled 60 targets in each half hyperball, to be able
to compare the estimates from the two half hyperballs
by calculating the average of the density estimates for
both half hyperballs.

Clustering modularity evaluation in bulk
RNA-seq data

We took the mouse collection of datasets from the
ARCHS4 data repository, retaining only those con-
taining more than 300 samples. Without any other
filters, it represents a total of 148 datasets.
To compute the modularity for each dataset, the data
was log-transformed then projected or not in the PCA
space with 50 components. From that we compute
the k-NN graph with the cosine dissimilarity, with
or without hub reduction done with the LS and MP
methods only to reduce computation time. Finally we
applied Louvain clustering algorithm using different
k-NN graphs and computed the modularity Q using
the Python library igraph:

Q =
1

2m

∑
i,j

(Aij −
kikj
2m

)δ(ci − cj),

where m is the number of edges in the k-NN graph,
Aij is the element of the adjacency matrix on the i-th
row and j-th column, ki is the in-degree of point i, ci
its cluster identity and δ the Dirac function.

Trajectory inference
Using PAGA algorithm

We used the implementation of PAGA from the
Python package Scanpy. Same combinations of pre-
processing steps, metrics and clustering algorithms
have been used as described above in the clustering
section.

Evaluation of trajectories

We used the R toolbox dynverse to compute three
quality metrics on each PAGA trajectory: correlation,
F1_branches and featureimp_wcor.37
Correlation is calculated from the geodesic distance
and quantifies the correlation between the relative dis-
tances of a given cell in the reference and the predicted
trajectories:

Correlation =
1

n

∑
i

corr(Xi, Yi),

where Xi is the distribution of relative geodesic dis-
tances to cell i in the reference trajectory and Yi the
distribution of relative geodesic distances to i in the
prediction.
F1_branches computes the similarity of branch mem-
bership between two trajectories, by mapping each cell
to its closest branch:

Jaccard(b, b′) = |b ∩ b
′

b ∪ b′
|,

Recovery =
1

|B|
∑
b∈B

maxb′∈B′Jaccard(b, b′),

Relevance =
1

|B′|
∑
b′∈B′

maxb∈BJaccard(b, b
′),

F1 =
2

1
Recovery + 1

Relevance

,

where B and B’ are the two branch partitions for the
reference and the predicted trajectories.
For the calculation of featureimp_wcor, the geodesic
distances of all cells to all milestones in the trajectory
are computed, then predicted with a Random Forest.
From the Random Forest, we retrieve the importance
of each gene for the prediction in the two trajectories
in order to compute a weighted Pearson correlation,
with the weights depending on the mean importance
in the reference trajectory:

mref =

∑
g (R

ref
g )2∑

g R
ref
g

,

mpred =

∑
g R

ref
g Rpredg∑
g R

ref
g

,

sref =

∑
g R

ref
g (Rrefg −mref )

2∑
g R

ref
g

,

spred =

∑
g R

ref
g (Rpredg −mpred)

2∑
g R

ref
g

,
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s =

∑
g R

ref
g (Rrefg −mref )(R

pred
g −mpred)∑

g R
ref
g

,

wcorfeat =
s

√
srefspred

,

where Rg is the importance of gene g in the predicted
or reference trajectory, m the weighted mean of the
reference or the prediction, s the weighted variance
and s the weighted covariance.
Each score was then normalized according to the
following procedure: the scores of each metric were
normalized and scaled such that σ = 1 and µ = 0 for
each dataset, then we apply the unit probability den-
sity function of the normal distribution, to shift scores
back in the [0,1] range. The calculation of a summary
value for each metric merging all datasets for each
preprocessing condition was performed by computing
the arithmetic mean for the datasets with the same
trajectory type and source, then the arithmetic mean
fixing only the trajectory, and finally the arithmetic
mean for all trajectory types. We also computed an
overall score of the three quality metrics which is the
arithmetic mean of the latter, either considering all
the datasets or directly the different preprocessing.37

Trajectory stability

We used the same methodology described in a previ-
ous benchmark37 to evaluate the stability of PAGA.
Briefly, we sample 95% of the cells and genes itera-
tively and evaluate the differences between two suc-
cessive trajectories, doing 10 iterations and using the
correlation and F1_branches metrics, but excluding
featureimp_wcor which is not stable on the identity.
To compare two successive iterations we compute both
metrics using the common cells and genes, on the n+1
iteration, using the n-th iteration as the reference. We
get a stability score for each metric. To compare the
stability across the different datasets and conditions,
we normalize the scores, such that the correlation
and F1_branches have the same magnitude for each
dataset. Briefly, for each dataset and each metric, we
transform the scores to get σ = 1 and µ = 1, then ap-
ply the unit probability density function of the normal
distribution. We then compute the arithmetic mean
of the two metrics. To speed the computation of the
stability, we just ran it on the Sun et al. datasets38
and we did not compute the two scanpy k-NN graphs.

Visualisation task

Generating n-cubes and n-spheres

We generated n-cubes and n-spheres in Python, using
the packages scikit-dimension and numpy. We gen-
erated 10 sets for each distribution, each containing
5,000 points, embedded in spaces of various dimen-
sions in the range [10, 50, 100].

Low dimension projections: t-SNE, UMAP,
PAGA+UMAP

We used the following Python libraries to compute
the projections: sklearn for t-SNE, umap for UMAP,
and scanpy for PAGA+UMAP. For t-SNE, we use
metric=’precomputed’ and perplexity=50.0 for
the single-cell experiment (and the default values for
the model experiment). For PAGA+UMAP, we set
init_pos=’paga’ when running scanpy.tl.umap.
For all projections, we set n_components=2.

Correlation metric QDM and QNP

Quality of Distance Mapping quantifies the correla-
tion of pairwise distances, only retaining a subset of
the latter. We compute first what is called "natural
PCA"40 on the reference: the pair of most distant
points (i1, j1) represents the first components. Then,
for the n+1 component (in+1, jn+1), it is such that
in+1 is the most distant to the set of previous com-
ponents Sn = {i1, . . . , in, j1, . . . , jn} and jn+1 is the
point of Sn closest to in+1. We used this set of pair
to compute the QDM:

QDM = corr(di,j d̂i,j),

where di,j is the distance in the reference space, d̂i,j in
the projection and we compute the correlation using
the set of components Sn from the natural PCA. We
took n=1000 for the tests with the hypercube and the
hypersphere, and n equals to the number of cells for
the tests with the single-cell datasets.
Quality of point Neighborhood Preservation computes
the intersection of the neighborhoods in the reference
and projection:

QNPk =
1

k

N∑
i=1

|Ski ∩ Ŝki |
N

,

where Ski , resp. Ŝki , is the neighborhood of point i
in the reference, resp. the projection, k is the size of
the neighborhood and N the number of points. For
the hypercube and hypersphere test, we took k in the
range [10, 50, 100] and for the single-cell data, k equals
the square root of the cardinality.

Cost function: Kullback-Leibler divergence
and cross-entropy

The KL divergence is the cost function used for the
t-SNE algorithm and is defined as:

DKL(P‖Q) =
∑
i,j

Pij log
Pij
Qij

,

Pj|i =
exp(−‖xi−xj‖2

2σi
)∑

k 6=i exp(−
‖xi−xk‖2

2σi
)
, Pij =

Pj|i + Pi|j

2N
,

Qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l (1 + ‖yk − yl‖2)−1)

,

where xi, resp. yi, is the vector of the i-th point in
the reference, resp. the projected, space, σi is a pa-
rameter that is entirely determined by the choice of
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the perplexity in the t-SNE algorithm and N is the
number of points.
The cross-entropy is the cost function in UMAP:

CE(P,Q) =
∑
i,j

[Pij log
Pij
Qij

+ (1− Pij) log
1− Pij
1−Qij

],

Qij =
1

1 + a‖yi − yj‖2b
,

where yi is the vector of the i-th point in the projected
space, a and b are two parameters entirely determined
by the choice of a min_dist in UMAP and Pij is the
membership strength of the 1-simplex between the i-
th and the j-th points.

Data and code availability
Data is available via Zenodo49 under DOI
10.5281/zenodo.4597151. Code has been uploaded
on GitHub on the schubness repository.
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Dataset name in 
benchmark study

Sequencing 
protocol

Number of 
cells

Number of 
features

Number of 
cluster labels Description Ref. Benchmark study Label type Used to evaluate

Koh SMARTer 531 48981 9 FACS purified H7 human embryonic stem cells in different differention stages GSE85066 Duo et al. PMC6134335 FACS Clustering
KohTCC SMARTer 531 811938 9 FACS purified H7 human embryonic stem cells in different differention stages GSE85066 Duo et al. PMC6134335 FACS Clustering
Kumar SMARTer 246 45159 3 Mouse embryonic stem cells, cultured with different inhibition factors GSE60749 Duo et al. PMC6134335 Culture conditions Clustering

KumarTCC SMARTer 263 803405 3 Mouse embryonic stem cells, cultured with different inhibition factors GSE60749 Duo et al. PMC6134335 Culture conditions Clustering
SimKumar4easy Synthetic dataset 500 43606 4 Simulation using different proportions of differentially expressed genes PMC6134335 Duo et al. PMC6134335 Simulated data Clustering
SimKumar4hard Synthetic dataset 499 43638 4 Simulation using different proportions of differentially expressed genes PMC6134335 Duo et al. PMC6134335 Simulated data Clustering
SimKumar8hard Synthetic dataset 499 43601 8 Simulation using different proportions of differentially expressed genes PMC6134335 Duo et al. PMC6134335 Simulated data Clustering

Trapnell SMARTer 222 41111 3 Human skeletal muscle myoblast cells, differention induced by low-serum 
medium GSE52529 Duo et al. PMC6134335 Culture conditions Clustering

TrapnellTCC SMARTer 227 684953 3 Human skeletal muscle myoblast cells, differention induced by low-serum 
medium GSE52529 Duo et al. PMC6134335 Culture conditions Clustering

Zhengmix4eq 10x 3994 15568 4 Mixtures of FACS purified peripheral blood mononuclear cells SRP073767 Duo et al. PMC6134335 FACS Clustering
Zhengmix4uneq 10x 6498 16443 4 Mixtures of FACS purified peripheral blood mononuclear cells SRP073767 Duo et al. PMC6134335 FACS Clustering
Zhengmix8eq 10x 3994 15716 8 Mixtures of FACS purified peripheral blood mononuclear cells SRP073767 Duo et al. PMC6134335 FACS Clustering

GSE59114 Smart-seq2 1622 7539 3 Mouse Blood Phenotypes Aging HSCs (Smart-seq2) GSE59114 Gulati et al. PMID: 31974247 FACS Clustering
GSE74767 SC3-seq 212 28796 7 Human (SC3-seq) GSE74767 Gulati et al. PMID: 31974247 Cell lines Clustering
GSE74767 SC3-seq 421 28796 13 Macaque Embryo Timepoints Blastocyst timepoints (SC3-seq) GSE74767 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE90860 C1 223 42832 3 Mouse Brain Timepoints Cortical interneurons (C1) GSE90860 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE95753 10x 6000 27933 14 Mouse Brain Phenotypes Dentate gyrus phenotypes (10x) GSE95753 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE95753 10x 6000 27933 8 Mouse Brain Timepoints Dentate gyrus timepoints (10x) GSE95753 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE67123 Tang et al. 143 24028 5 Mouse Embryo Timepoints Embryonic HSCs (Tang et al.) GSE67123 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE98451 CEL-seq 714 12479 5 Mouse Uterus Timepoints Endometrium (CEL-seq) GSE98451 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE99933 Smart-seq2 369 23420 4 Mouse Adrenal medulla Phenotypes Peripheral glia (Smart-seq2) GSE99933 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE94641 Plate-seq 225 33327 4 Mouse Brain Timepoints Medial ganglionic eminence (C1) GSE94641 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE60783 C1 248 15752 3 Mouse Blood Phenotypes Dendritic cells (C1) GSE60783 Gulati et al. PMID: 31974247 FACS Clustering/TI/Visualisation
GSE67602 C1 1422 25932 5 Mouse Skin Phenotypes Hair epidermis (C1) GSE67602 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering/TI/Visualisation
GSE70245 C1 394 23955 8 Mouse Blood Phenotypes HSPCs (C1) GSE70245 Gulati et al. PMID: 31974247 FACS Clustering/TI/Visualisation
GSE90047 Smart-seq2 447 40829 7 Mouse Liver Timepoints Hepatoblast (Smart-seq2) GSE90047 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE75748 C1 1018 19095 6 Human Embryo Phenotypes hESC in vitro (C1) GSE75748 Gulati et al. PMID: 31974247 FACS Clustering
GSE52529 C1 170 46077 3 Human Muscle Phenotypes HSMM (C1) GSE52529 Gulati et al. PMID: 31974247 Culture conditions Clustering/TI/Visualisation
GSE85066 C1 498 30670 9 Human Embryo Phenotypes Mesoderm (C1) GSE85066 Gulati et al. PMID: 31974247 FACS Clustering
GSE93421 10x 5000 16957 10 Human Blood Phenotypes Peripheral blood (10x) GSE93421 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE36552 Tang et al. 85 20012 6 Human Embryo Phenotypes Pre-implant human embryo (Tang et al.) GSE36552 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE86146 Smart-seq2 1844 24153 17 Human Embryo Timepoints Germ cells (Smart-seq2) GSE86146 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE98664 RamDA-seq 456 47515 5 Mouse Embryo Timepoints mESC in vitro (RamDA-seq) GSE98664 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE52583 C1 101 23093 4 Mouse Lung Timepoints Lung development (C1) GSE52583 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE97391 inDrop 2684 28205 4 Mouse Brain Phenotypes Direct in vitro neuron (inDrop) GSE97391 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE76408 CEL-seq 480 23460 6 Mouse Intestine Phenotypes Lgr5-CreER intestine (CEL-seq) GSE76408 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering

GSE109774 10x 3652 13526 11 Mouse Blood Phenotypes Bone marrow (10x) GSE109774 Gulati et al. PMID: 31974247 FACS (+clustering) Clustering
GSE109774 Smart-seq2 4897 17479 8 Mouse Blood Phenotypes Bone marrow (Smart-seq2) GSE109774 Gulati et al. PMID: 31974247 FACS (+clustering) Clustering
GSE92332 Smart-seq2 1522 20108 9 Mouse Intestine Phenotypes Intestine (Smart-seq2) GSE92332 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE97391 inDrop 2996 28205 7 Mouse Brain Phenotypes Standard in vitro neuron (inDrop) GSE97391 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE45719 Smart-seq2 286 22431 13 Mouse Embryo Phenotypes Pre-implant mouse embryo (Deng et al.) GSE45719 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE52583 C1 66 23093 3 Mouse Lung Phenotypes AT2/AT1 lineage (C1) GSE52583 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering/TI/Visualisation
GSE69761 C1 79 35016 5 Mouse Lung Phenotypes Lung fibroblast (C1) GSE69761 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering/TI/Visualisation
GSE92332 Drop-seq 4581 15971 15 Mouse Intestine Phenotypes Intestine (Drop-seq) GSE92332 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering

GSE107122 Drop-seq 5998 21201 3 Mouse Brain Timepoints Neural stem cells (Drop-seq) GSE107122 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE64447 C1 447 24480 4 Mouse Bone Phenotypes Skeletal stem cells (C1) GSE64447 Gulati et al. PMID: 31974247 FACS Clustering/TI/Visualisation

GSE102066 C1 781 13762 8 Human Brain Timepoints In vitro NPCs (C1) GSE102066 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE75330 C1 5050 23226 12 Mouse Brain Phenotypes Oligodendrocyte phenotypes (C1) GSE75330 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE75330 C1 5050 23226 23 Mouse Brain Timepoints Oligodendrocyte timepoints (C1) GSE75330 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE87375 Smart-seq2 338 40829 6 Mouse Pancreas Timepoints Pancreatic alpha cell (Smart-seq2) GSE87375 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE87375 Smart-seq2 575 40829 7 Mouse Pancreas Timepoints Pancreatic beta cell (Smart-seq2) GSE87375 Gulati et al. PMID: 31974247 Timepoints Clustering

GSE103633 Drop-seq 21612 28065 2 Planaria Organism Phenotypes Whole planaria (Drop-seq) GSE103633 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE107910 Drop-seq 9307 19530 8 Mouse Thymus Timepoints Thymus (Drop-seq) GSE107910 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE106587 Drop-seq 39505 23974 12 Zebrafish Organism Timepoints Early zebrafish (Drop-seq) GSE106587 Gulati et al. PMID: 31974247 Timepoints Clustering
FreytagGold 10x 925 58302 3 Human lung adenocarcinoma cell lines GSE111108 Freytag et al. PMC6124389, Sun et al. PMC6902413 FACS Clustering

PBMC3k 10x 3205 58302 11 Human SRP073767 Freytag et al. PMC6124389, Sun et al. PMC6902413 FACS Clustering
PBMC4k 10x 4292 58302 11 Human SRP073767 Freytag et al. PMC6124389, Sun et al. PMC6902413 FACS Clustering

Baron (Mouse) inDrop 1886 14861 13 Mouse pancreas GSE84133 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering
Baron (Human) inDrop 8569 17499 14 Human pancreas GSE84133 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering

Muraro CEL-Seq2 2122 18915 9 Human pancreas GSE85241 Abdelaal et al. PMC6734286 FACS (+clustering) Clustering
Segerstolpe SMART-Seq2 2133 22757 13 Human pancreas E-MTAB-5061 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering

Xin SMARTer 1449 33889 4 Human pancreas GSE81608 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering
CellBench1 10X chromium 3803 11778 5 Mixture of five human lung cancer cell lines GSE118767 Abdelaal et al. PMC6734286 Cell lines Clustering
CellBench2 CEL-Seq2 570 12627 5 Mixture of five human lung cancer cell lines GSE118767 Abdelaal et al. PMC6734286 Cell lines Clustering

TM SMART-Seq2 54865 19791 55 Whole Mus musculus GSE109774 Abdelaal et al. PMC6734286 FACS (+clustering) Clustering
AMB SMART-Seq v4 12832 42625 4/22/110 Primary mouse visual cortex GSE115746 Abdelaal et al. PMC6734286 FACS (+clustering) Clustering

Zheng sorted 10X CHROMIUM 20000 21952 10 FACS-sorted PBMC SRP073767 Abdelaal et al. PMC6734286 FACS Clustering
Zheng 68K 10X CHROMIUM 65943 20387 11 PBMC SRP073767 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering

Baron_m2016 inDrop 1886 14861 13 Mouse pancreas GSE84133 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Klein2015 inDrop 2712 24027 4 Embryonic stem cells GSE65525 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Zeisel2015 STRT-Seq UMI 3005 19972 9 Mouse cortex and hippocampus GSE60361 Krzak et al. PMC6918801 Markers (+clustering) Clustering

Darmanis2015 C1 466 21630 9 Human brain GSE67835 Krzak et al. PMC6918801 Markers (+clustering) Clustering

Deng2014_raw Smart-Seq, Smart-
Seq2 268 21297 6 Mouse embryo GSE45719 Krzak et al. PMC6918801 Timepoints Clustering

Goolam2016 Smart-Seq2 124 28147 4 Mouse embryo E-MTAB-3321 Krzak et al. PMC6918801 Timepoints Clustering
Kolodiejczyk2015 SMARTer 704 32225 3 Mouse embryonic stem cells E-MTAB-2600 Krzak et al. PMC6918801 Culture conditions Clustering

Li2017 SMARTer 561 43055 9 Human colorectal tumors GSE81861 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Romanov2016 C1 2881 21143 7 Mouse hypotalamus GSE74672 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Tasic2016_raw SMARTer 1679 21617 17 Mouse cortical cells GSE71585 Krzak et al. PMC6918801 FACS (+clustering) Clustering

Deng2014_rpkm Smart-Seq, Smart-
Seq2 268 22958 5 Mouse embryo GSE45719 Krzak et al. PMC6918801 Timepoints Clustering

Segerstolpe2016 Smart-Seq2 3514 25525 15 Human pancreatic islet cells E-MTAB-5061 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Tasic2016_rpkm SMARTer 1679 24057 17 Mouse cortical cells GSE71585 Krzak et al. PMC6918801 FACS (+clustering) Clustering

Yan2013 Tang et al. 90 20214 6 Human embryo GSE36552 Krzak et al. PMC6918801 Timepoints Clustering
Biase2014 SMARTer 56 25737 4 Mouse embryo GSE57249 Krzak et al. PMC6918801 Markers (+clustering) Clustering

Treutlein2014 SMARTer 80 23271 5 Mouse lung epithelium GSE52583 Krzak et al. PMC6918801 Markers (+clustering) Clustering
ChuBatch1 SMARTer 350 19097 5 Human GSE75748 Sun et al. PMC6902413 FACS Clustering/TI/Visualisation
ChuBatch2 SMARTer 425 19097 6 Human GSE75748 Sun et al. PMC6902413 FACS Clustering/TI/Visualisation

Schlitzer Fluidigm 238 4480 3 Mouse DCs from the BM GSE60783 Sun et al. PMC6902413 FACS TI/Visualisation

Petropoulos Smart-Seq2 1289 8772 5 Human embryo E-MTAB-3929 Sun et al. PMC6902413 Timepoints TI/Visualisation

LiM Smart-Seq2 649 4777 8 Male fetal gonads GSE86146 Sun et al. PMC6902413 Timepoints TI/Visualisation

LiF Smart-Seq2 666 5319 12 Female fetal gonads GSE86146 Sun et al. PMC6902413 Timepoints TI/Visualisation

ZhangBeta Smart-Seq2 562 6138 7 Mouse pancreatic beta cells GSE87375 Sun et al. PMC6902413 Timepoints TI/Visualisation

ZhangAlpha Smart-Seq2 322 6138 6 Mouse pancreatic alpha cells GSE87375 Sun et al. PMC6902413 Timepoints TI/Visualisation

GuoF Tang et. al. 100 8772 5 Human female primordial germ cells GSE63818 Sun et al. PMC6902413 Timepoints TI/Visualisation

GuoM Tang et. al. 166 8772 5 Human male primordial germ cells GSE63818 Sun et al. PMC6902413 Timepoints TI/Visualisation

KowalczykYoung Smart-Seq 493 2227 3 Mouse stem cells GSE59114 Sun et al. PMC6902413 FACS TI/Visualisation

KowalczykOld Smart-Seq 873 2815 3 Mouse stem cells GSE59114 Sun et al. PMC6902413 FACS TI/Visualisation

Hayashi RamDA-seq 414 23658 5 Mouse ES cells GSE98664 Sun et al. PMC6902413 Timepoints TI/Visualisation

ShalekLPS Smart-seq 504 4158 5 Mouse DCs GSE48968 Sun et al. PMC6902413 Timepoints TI/Visualisation

Trapnell SMARTer 290 8772 4 Human skeletal muscle myoblasts cells GSE52529 Sun et al. PMC6902413 Timepoints TI/Visualisation

Olsson SMARTer 316 3594 3 Mouse stem cells GSE70245 Sun et al. PMC6902413 FACS TI/Visualisation

Supplementary Table 1: Table of all benchmark datasets’ technical characteristics used in our study. Rows in gold
are gold-standard, the rest are silver-standard datasets.
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Supplementary 1 real (complementary hub parameters, splatter ID)
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Supplementary Figure 2: Hubness in sequencing data. We quantify hubness with 2 alternative different estimators:
maximum hubness score (first column), percentage of hubs as cells with an in-degree above µ+3σ (second column).
The quantification is shown as a function of the dimension after PCA reduction (A,B). Hubness quantification
methods are applied to 3 bulk datasets, with various rates of simulated dropout (A), or to single-cell datasets
from38 (B). (C) Classical hubness quantification methods applied to bulk datasets, with various rates of Splatter-
simulated dropout. (D) Alternative hubness quantification methods applied to bulk datasets, with various rates
of Splatter-simulated dropout.
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Supplementary 1bis real(dropout effect)
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Supplementary Figure 3: Emergence of hubness relates to sparsity, SNR and GID. (A) We investigate the link
between hubness and sparsity, by showing the Pearson correlation of sparsity to GID and of GID to hubness,
using the bulk datasets with various rates of simulated dropout. (B) In the first column, we show the correlation
between three parameters and GID: sparsity (first row), SNR (second row) and cardinality (third row). In the
second column, we test the independence of these three parameters: SNR and sparsity are independent (first row)
while SNR and cardinality are dependent (second row). (C) We investigate the link between hubness and the
ratio of sparsity to SNR, by showing the Pearson correlation of the ratio sparsity/SNR to GID and of GID to
hubness, using the 9 real single-cell datasets from.38
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Supplementary Figure 4: Reverse-coverage hub-retrieving method. (A) Size of the reverse coverage (or percentage
of reverse-covered data) as a function of the number of putative hubs, i.e. the number of cells with the highest
in-degrees, done with the single-cell datasets from.38 (B) Increment of the size of the reverse coverage, either as
a function of N random cells (left) or the N cells with the highest in-degrees, considered as putative hubs (right),
done on the same single-cell datasets.
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Supplementary 3 (QC revcov for all datasets)
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Supplementary Figure 5: Quality control metrics. (A) Quality control metrics distribution for hubs, antihubs
and normal cells on the 12 datasets from Duo et al. (38): dropout rate (first row), number of total features
(second row), number of unique genes (third row), single-cell entropy (last row). (B) PCA projections showing
the positions of hubs, antihubs and normal cells for the 12 Duo datasets.Supplementary hub position
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Supplementary Figure 6: Hubs positions. Position of hubs for uniform (A,B) and Gaussian (C,D) data distribu-
tion. (A,C) Average norm of points with an in-degree above the abscissa value. (B,D) Average ranking to the
origin of points with an in-degree above the abscissa value.

24



Dataset names

C
ar

di
na

lit
y

Supplementary Figure 7: Benchmark datasets collected from previous studies. Colors represent gold and silver
standards, stars mark high ID. Note that the figure contains less datasets than listed in the supplementary table
because there are overlaps between9 and other benchmark studies
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Supplementary Figure 8: GID (A) and mean LID (B) of datasets estimated with PCA, the Seurat preprocessing
and scaling.
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Supplementary Figure 9: clustering scores done with the Seurat (A,B,E,F) or Duo (C,D,G,H) preprocessing
with (A,C,E,G) or without (B,D,F,H) scaling, for high-ID datasets: ARI scores (A,B,C,D) and homogeneity
scores (E,F,G,H).
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Supplementary Figure 10: clustering scores done with the Seurat (A,B,E,F) or Duo (C,D,G,H) preprocessing
with (A,C,E,G) or without (B,D,F,H) scaling, for low-ID datasets: ARI scores (A,B,C,D) and homogeneity
scores (E,F,G,H).
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Supplementary Figure 11: clustering scores done with the Seurat (A,B,E,F) or Duo (C,D,G,H) preprocess-
ing with (A,C,E,G) or without (B,D,F,H) scaling, for gold-standards datasets: ARI scores (A,B,C,D) and
homogeneity scores (E,F,G,H).
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Supplementary 4 (density homogenisation)
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Supplementary Figure 12: Correcting heterogeneous densities with hubness reduction. (A) Gaussian ball in 10
dimensions, with 5000 points in the half hyperball left of the hyperplan x=0 and 100 points in the right half hyper-
ball, projected on the first two dimensions. (B) Proportion of points of each half hyperball in the neighborhood
of the right half hyperball. (C) Visualization of the density estimate calculated from the unweighted k-NN graph
before and after hubness reduction. The source of the density estimate is at the center of the Gaussian ball and
the targets are picked randomly in each half hyperball. Each line connect the source and a target and its color
represents the density estimate. The pale background colors represent the two half spaces: blue for the left one,
pink for the right one. (D) Difference in the density estimates between the left and right half hyperballs. Each
edge of a bar is the mean density estimate in one of the half hyperballs. If the rectangle is green, the lower border
is the estimate from the right half hyperball; if it is red, it is from the left one.
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Supplementary Figure 13: Modularity improvement upon hubness reduction. Per-dataset modularity of the Lou-
vain clustering with (left panel) or without PCA (right panel). Comparison between the modularity with or
without hubness reduction, performed with the LS (A) or the MP algorithm (B).
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Supplementary Figure 14: Averaged trajectory inference scores on low-ID datasets, using the Seurat recipe. (A)
Mean TI quality metrics with the cosine dissimilarity and the Leiden clustering. (B) Mean TI quality metrics
with the Euclidean metric and the Leiden clustering.
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Supplementary Figure 15: Averaged trajectory inference scores on low-ID datasets, using the Duo recipe. (A)
Mean TI quality metrics with the cosine dissimilarity and the Leiden clustering. (B) Mean TI quality metrics
with the Euclidean metric and the Leiden clustering.
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BSupplementary Figure 16: Averaged trajectory inference scores on high-ID datasets, using the Seurat recipe. (A)
Mean TI quality metrics with the cosine dissimilarity and the Leiden clustering. (B) Mean TI quality metrics
with the Euclidean metric and the Leiden clustering.
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Supplementary Figure 17: Averaged trajectory inference scores on high-ID datasets, using the Duo recipe. (A)
Mean TI quality metrics with the cosine dissimilarity and the Leiden clustering. (B) Mean TI quality metrics
with the Euclidean metric and the Leiden clustering.
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Supplementary Figure 18: Per-dataset trajectory inference scores on low-ID datasets, using the Seurat recipe
and Leiden clustering. (A) Detailed correlation scores. (B) Detailed F1_branches scores. (C) Detailed fea-
tureimp_wcor scores. (D) Detailed overall score.
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Supplementary Figure 19: Per-dataset trajectory inference scores on low-ID datasets, using the Duo recipe and Lei-
den clustering. (A) Detailed correlation scores. (B) Detailed F1_branches scores. (C) Detailed featureimp_wcor
scores. (D) Detailed overall score.
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Supplementary Figure 20: Per-dataset trajectory inference scores on high-ID datasets, using the Seurat recipe
and Leiden clustering. (A) Detailed correlation scores. (B) Detailed F1_branches scores. (C) Detailed fea-
tureimp_wcor scores. (D) Detailed overall score.
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Supplementary Figure 21: Per-dataset trajectory inference scores on high-ID datasets, using the Duo recipe
and Leiden clustering. (A) Detailed correlation scores. (B) Detailed F1_branches scores. (C) Detailed fea-
tureimp_wcor scores. (D) Detailed overall score.
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Supplementary Figure 22: n-Cube and n-Sphere. (A) 3D plot of a 3-Cube (left) and a 3-Sphere (right). (B)
5k-Skewness of a 50-Cube and a 50-Sphere, each containing 5,000 points, and k=50, computed 10 times.
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Supplementary Figure 23: Visualisation quality metrics of the n-Cube and the n-Sphere. We show the n-cube and
the n-sphere after t-SNE (A) or UMAP (B) projections, with different values for the size of the neighborhood k
and the number of dimensions n

35



cosine euclidean

50 500 50 500
−0.6

−0.3

0.0

0.3

−0.5

0.0

0.5

Dimension

Sc
or
e

Method_id
dsl

ls_nicdm

ls

mp_normal

gauss

umap

Supp low D embedding 2

cosine euclidean

50 500 50 500

0.0
0.1
0.2
0.3
0.4
0.5

0.00

0.25

0.50

0.75

1.00

Dimension

Sc
or
e

Method_id
dsl

ls_nicdm

ls

mp_normal

gauss

umap

cosine euclidean

50 500 50 500
0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.5

Dimension

Sc
or
e

Method_id
dsl

ls_nicdm

ls

mp_normal

gauss

umap

cosine euclidean

50 500 50 500

0.06

0.09

0.12

0.15

0.06

0.08

0.10

0.12

Dimension

Sc
or
e

Method_id
dsl

ls_nicdm

ls

mp_normal

gauss

umap

cosine euclidean

50 500 50 500

−0.2

0.0

0.2

0.4

0.6

0.0

0.5

Dimension

Sc
or
e

Method_id
dsl

ls_nicdm

ls

mp_normal

gauss

umap

cosine euclidean

50 500 50 500
0.050

0.075

0.100

0.125

0.150

0.175

0.050

0.075

0.100

0.125

0.150

Dimension

Sc
or
e

Method_id
dsl

ls_nicdm

ls

mp_normal

gauss

umap

Cosine Euclidean Cosine Euclidean

Cosine Euclidean Cosine Euclidean

Cosine Euclidean Cosine Euclidean

Q
D

M
Q

D
M

Q
D

M

Q
N

P
Q

N
P

Q
N

P

t-SNE projection

Dimension Dimension

UMAP projection

Dimension Dimension

PAGA + UMAP projection

Dimension Dimension

cosine euclidean

50 500 50 500

0.00

0.25

0.50

0.0

0.5

1.0

Dimension

Sc
or
e

Method_id
dsl

ls_nicdm

ls

mp_normal

gauss

umap

Hubness reduction 
method

DSL

LS_nicdm

LS

MP

Gauss

UMAP

Supplementary Figure 24: QDM and QNP before or after hubness reduction, evaluated after various visualisation
algorithms, compared to the PCA with 500 PCs, for low-ID datasets. We project low-ID datasets either with
t-SNE (top row), UMAP (middle row) or PAGA+UMAP (bottom row) and evaluate QDM (left column) and
QNP (right column). The different projections are computed either with the cosine dissimilarity or the Euclidean
metric, and using the two Scanpy k-NN graphs or the four hub-reduced graphs.
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Supplementary Figure 25: Evaluation of the impact of hubness correction on hubness and measure concentration.
We computed Gaussian distributions, either a single blob (A,B,C) or two distinct blobs (D,E,F). Skewness of the
data with or without hubness reduction (A,D). Global measure concentration with or without hubness reduction
(B,E). Measure concentration without hubness reduction, either considering all points, or the 50 nearest neighbors
(C,F)

37


