

The Functional Independence of Patients With Stroke Sequelae: How Important Is the Speed, Oxygen Consumption, and Energy Cost of Walking?

Maxence Compagnat, Stéphane Mandigout, Anaick Perrochon, Justine Lacroix, Nicolas Vuillerme, Jean Yves Salle, Jean Christophe Daviet

▶ To cite this version:

Maxence Compagnat, Stéphane Mandigout, Anaick Perrochon, Justine Lacroix, Nicolas Vuillerme, et al.. The Functional Independence of Patients With Stroke Sequelae: How Important Is the Speed, Oxygen Consumption, and Energy Cost of Walking?. Archives of Physical Medicine and Rehabilitation, 2021, 10.1016/j.apmr.2021.01.085. hal-03226603

HAL Id: hal-03226603 https://hal.science/hal-03226603

Submitted on 22 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Title: The functional independence of patients with stroke sequelae: How important is the speed, oxygen consumption and energy cost of walking?

Authors: Maxence COMPAGNAT^{1,2}, Stéphane MANDIGOUT¹, Anaick PERROCHON¹, Justine LACROIX¹, Nicolas VUILLERME³, Jean Yves SALLE^{1,2}, Jean Christophe DAVIET^{1,2}

HAVAE EA6310 (Handicap, Aging, Autonomy, Environment), IFRH, University of Limoges,
 87042 Limoges, France

² Department of Physical Medicine and Rehabilitation in the University Hospital Center of Limoges, 87042 Limoges, France

³ AGEIS, University Grenoble Alpes, , Grenoble, 38 041 Grenoble CEDEX 9, France, France

Corresponding Author: Maxence Compagnat M.D

Department of Physical Medicine and Rehabiliation in the University Hospital Center of Limoges in France, 2 Avenue Martin Luther King, 87000 Limoges Telephone (+33)5 55 05 55 55 FAX:(+33)5 55 05 65 13 E-mail: maxence.compagnat@unilim.fr

Running Head: the oxygen cost of walking in stroke

Number of words in the abstract: 243

Number of words in the text: 3229

Disclosure: The authors have no conflicts of interest or perceived conflicts of interest to declare.

Acknowledgments: We thank our partners Autonom'Lab and European Network of Living Labs (ENoLL) and the region of Nouvelle-Aquitaine for their support throughout our work.

Financial Support: This work was supported by the region of Nouvelle-Aquitaine and the laboratory of clinical research HAVAE (Handicap, Aging, Autonomy, Environment).

This manuscript has never previously been presented in any scientific meeting or publication.

1 The functional independence of patients with stroke sequelae:

2	TT	A A Al	1	· · · · · · · · · · · · · · · · · · ·		f
1.	HOW IMPOR	tant is the s	sneen. oxvgen	consumption and	energy cost	οτ waiking?
-	LLOW Mupper			constitute and	0.000	of manual stress

3 Abstract

4	Objective: To evaluate the association between walking speed at self-selected comfort pace (S_{free}),
5	oxygen consumption at S_{free} (VO _{2free}), the oxygen cost of walking at S_{free} (Cw), and mobility
6	independence and independence for activities of daily living in post-stroke individuals.
7	Design: cross sectional study
8	Setting: hospital
9	Participants: All individuals with stroke who were able to walk without human assistance were
10	included.
11	Intervention: N/A
12	Main outcome measures: Cw was captured during walking from measurements of S_{free} and
13	VO _{2free} . Mobility independence was assessed based on the Modified Functional Ambulatory
14	Classification (mFAC) and independence in activities of daily living by the Barthel Index (BI).
15	Multiple linear regression analyses were performed to evaluate the independence of Cw, VO_{2free} and
16	S_{free} on the determination of BI and mFAC among the various characteristics of the population (age,
17	stroke delay, body mass index, motor function, and spasticity).
18	Results: We included 90 individuals (age=63.5 \pm 14.0 years). We reported Cw = 0.36mL.kg ⁻¹ .m ⁻¹ ;
19	IQR=0.28 mL.kg ⁻¹ .m ⁻¹ , $S_{\text{free}} = 0.60 \pm 0.32 \text{ m.s}^{-1}$, $VO_{2\text{free}} = 11.2 \text{ mL.kg}^{-1}$.min ⁻¹ ; IQR = 1.8 mL.kg ⁻¹ .min ⁻¹ .
20	The multiple linear regression analyses showed that Cw and S_{free} were independently associated with
21	the BI (p < 0.01) and the mFAC (p < 0.01) scores. VO_{2free} was not found to be an explanatory variable
22	of functional independence (p>0.05).

Conclusion: Cw was independently associated with functional independence. This association
 appears to be primarily determined by S_{free} and not VO_{2free}, underscoring the importance of evaluating
 and acting on S_{free} to improve the functional independence of individuals with stroke.
 Keywords: stroke, disability, independence score, oxygen cost, walking efficiency

Full recovery is achieved in only a small proportion of stroke survivors¹. Activity limitations manifest themselves as a reduced ability to perform daily tasks. Forty percent of stroke survivors report difficulties with basic self-care (e.g., getting dressed, eating) at 6 months after stroke. More than 30% of stroke survivors report participation restrictions (e.g., difficulty with autonomy, engagement, or fulfilling societal roles) even at 4 years after stroke ².

The oxygen cost of walking (Cw) is the oxygen consumption per unit of distance travelled. Cw is calculated by dividing the oxygen consumption of the individual at the metabolic plateau during walking at a self-selected speed (VO_{2free}) by the self-selected walking speed (S_{free}) ³. At S_{free}, post stroke individuals have Cw 2 to 3 times higher than healthy individuals ³. In addition, Cw varies greatly from one stroke individual to another. ⁴

38 VO_{2free} and S_{free} are profoundly impacted by the sequelae of stroke. Compagnat et al. reported that the VO_{2free} of 35 individuals with stroke was 12.8 mL.kg⁻¹.min⁻¹±2.86 mL.kg⁻¹.min⁻¹ compared to 7 39 mL.kg⁻¹.min⁻¹ \pm 1.9 mL.kg⁻¹.min⁻¹ for healthy individuals at equivalent speeds ⁵. The reasons for the 40 41 increase in VO₂ during walking are not well known. Some authors incriminate an increase in muscle 42 activity related to spasticity and compensatory motor strategies⁶. The increase in Cw is also explained 43 by the decrease in S_{free} due to various factors. It has been shown that motor impairment, balance disorders, and cognitive disorders, which are common sequelae of stroke, have a negative impact on 44 S_{free} ⁷. The increase in VO_{2free} and the decrease in S_{free} are therefore the components of the increase in 45 46 Cw. It may thus reflect both metabolic (i.e. VO_{2free}) and biomechanical (i.e. S_{free}) factors that can have 47 a strong impact on the functional independence of stroke individuals.

Functional independence is the ability to carry out activities of daily living in a safe and autonomous manner. There are several scales to assess functional independence. Among these, the Modified Functional Ambulation Classification (mFAC) and the Barthel Index (BI) are two scales recommended by scientific societies ^{8,9}. The mFAC is a scale that was devised to assess the independence of individuals in terms of their mobility ¹⁰, while the BI is a broader scale that is used to assess independence in terms of activities of daily living (e.g., mobility, washing, dressing, eating, and bowel management)¹¹. These scales have been validated for individuals with stroke ^{10,11} and they have 55 been used extensively in the literature. The mFAC and the BI are predictive of social participation ^{1,10,12,13}. It is, therefore, essential to explore the factors that determine these scores. Motor impairment 56 and age are major determinants of functional independence ^{14,15}. Balance disorders, cognitive 57 58 impairments, and sensory impairments are also prognostic factors for the functional abilities of individuals with stroke sequelae ¹⁶⁻¹⁸. The association between Cw and functional independence has 59 not been reported to date in the literature. However, it is highly likely that this association is 60 61 significant because the two components of Cw (S_{free} and VO_{2free}) appear to be associated with the functional independence of individuals with stroke ^{19,20}. Indeed, S_{free} is strongly correlated with the 62 functional recovery of the lower limbs, which is also associated with functional independence^{21,22}. The 63 metabolic function is also associated with the walking function²³, however its implications for 64 functional independence have never been demonstrated in the stroke population ¹⁹. 65

66 Thus, the objective of our work was to evaluate the association between Cw and functional 67 independence and to assess whether Cw is an independent determinant of functional independence 68 scores (mFAC and BI) in individuals with stroke. The secondary objective was to evaluate which 69 parameter among VO_{2free} and S_{free} that make up Cw are associated with the functional independence 70 scores.

71 Methods

72 Population

73 Participant selection:

The participants were recruited in a physical and rehabilitation medicine department. The inclusion criteria were the following: a single stroke confirmed by brain imaging, and the ability to walk continuously for 6 minutes with or without mobility aids. The exclusion criteria were the following: acute cardiac or respiratory pathologies or decompensated chronic pathologies. Cardiac disorders were identified using the complementary examinations that were usually carried out in poststroke assessment, i.e., electrocardiogram and cardiac ultrasound. We did not perform a stress testbefore the study.

81 The healthcare professional responsible for the protocol informed the patients of the details of the 82 protocol before registering their verbal consent. This consent was transcribed in the database. The 83 research protocol was accepted by a French ethics committee, notice number: xxxxxx

84 Stroke individual evaluation

Mobility independence was assessed using the Modified Functional Ambulation Classification (mFAC) ¹⁰. Independence in terms of activities of daily living (ADL) was evaluated using the Barthel Index (BI) ¹¹. Motor function was assessed using the Demeurisse Motricity Index ^{24,25}. Spasticity was evaluated using the modified Ashworth scale (MAS) ²⁶ (see the description of the evaluation of mFAC and Barthel Index and Demeurisse Motricity Index in the appendix).

This evaluation was carried out because motor function is one of the main functions associated
with Cw and independence scores^{27,28}. All of these assessments were performed by the same examiner
for all of the participants.

93 Experimental design:

94 All of the subjects performed the entire test under the same conditions. We performed the VO₂ 95 measurement according to the same protocol for each patient. First, we left the patient resting on a 96 chair in order to obtain a stable metabolic resting plateau. This period was applied to avoid starting the 97 test with residual oxygen consumption from a previous activity. The patient was then asked to walk 98 for 6 minutes in a 40 m loop, with no obstacles or U-turns. This 6-minute duration was chosen because 99 approximately 4 minutes are required to achieve metabolic stability in subjects affected with chronic pathologies ^{29,30}. Several studies focusing on the oxygen cost of walking in post-stroke hemiparetic 100 subjects have used a similar duration to obtain a stable metabolic plateau ^{6,27,31}. The main instruction 101 102 for each patient was to maintain their Sfree for the duration of the test. The VO2 measurement was 103 performed with the MetaMax3b (see specifications and calibration protocol in the appendix).

104 Calculation of Cw:

105 Cw was calculated from the patient's VO_{2free} , defined by a variation of VO_2 of less than 2 106 mL.kg⁻¹.min⁻¹, as described in previous studies related to the oxygen cost of walking for post-stroke 107 subjects ²⁷. In order to estimate Cw, we divided the VO_{2free} value by the S_{free} measured over the 6 108 minutes of walking. Cw was, therefore, expressed in mL of $O_2.kg^{-1}.m^{-1}$.

109 Statistical analysis:

110 We reported the mean and the standard deviation for the quantitative variables with normal

111 distributions, and the median and interquartile range (IQR) for the quantitative variables with non-

112 normal distributions. The normality of the variables was assessed using the Shapiro-Wilk test.

113 We performed a Spearman-type correlation analysis to assess the association between Cw and

114 mFAC and BI. The rule of thumb for interpreting the size of a correlation coefficient was the

following: .90 to 1.00, a very high correlation; .70 to .90, a high correlation; .50 to .70, a moderate

116 correlation; .30 to .50, a low correlation; .00 to .30, a negligible correlation 32 .

117 Secondly, we assessed whether Cw was an independent explanatory variable of functional 118 independence scores among the other population characteristics that were collected (motor function, 119 spasticity, age, Body Mass Index, and stroke delay). For this, we performed a stepwise multiple linear 120 regression between BI and mFAC and these characteristics. We chose this type of analysis because it 121 has been used in many similar studies such as the work by Patterson et al. on the relationship between walking function and the characteristics of the stroke population ²³. The stepwise procedure also 122 123 enabled us to take into account auto-correlations between the variables³³. In addition, Peck et al. 124 described statistical models to allow the use of multiple regression analysis despite variables not following a normal distribution³⁴. Thus, our first type of multiple linear regression analysis model 125 126 (model 1) included the mFAC scores and BI as the dependent variables. The variables Cw, the 127 Demeurisse Motricity Index, MAS, stroke delay, age, and Body Mass Index were the explanatory 128 variables.

To improve our understanding of the determinants of a possible association between Cw and functional independence, we performed a similar statistical analysis by integrating the components of Cw i.e. S_{free} and VO_{2free} . For this purpose, we defined a second model (model 2). Thus, for this model, the mFAC scores and BI were the dependent variables. The variables S_{free} , VO2, the Demeurisse Motricity Index, MAS, stroke delay, age, and Body Mass Index were the explanatory variables. In addition, a correlation analysis between VO_{2free} and S_{free} was performed in order to understand how these 2 variables were related to each other.

The statistical significance threshold was 0.05 for all of the tests. All of the statistical analyses
were performed using RealStats 2016 software (Real Statistics Using Excel© 2012 - 2019, Charles
Zaiontz).

139 Results

We included 90 individuals during the period from November 2015 to September 2018. The participants were primarily individuals in follow-up at the Physical and Rehabilitation Medicine Unit (inpatient or outpatient) following their stroke, with a median post-stroke time of 60 days; IQR=150 days. Their levels of impairment and functional independence were moderate and representative of the stroke patients who were able to walk in our unit. The median Cw was at 0.34 mL.kg⁻¹.m⁻¹, IQR=0.28 mL.kg⁻¹.m⁻¹. (Table1)

146 Insert table 1

147 For our main objective, the Spearman correlation analysis revealed that Cw, Sfree and VO2free were

significantly correlated with BI (respectively r=-0.51, p < 0.01; r=0.50, p < 0.01, r= 0.35, p < 0.01) and

149 mFAC (respectively r=-0.56; p < 0.01; r=0.55, p < 0.01; r=0.33, p < 0.01). (Table 2)

150 Insert table 2

151 For model 1, we showed that Cw was significantly associated with the BI (coeff =-8.31; p < 0.01;

152 Intercept=98.03) and the mFAC (coeff = -0.73; p < 0.01; Intercept=8.63) scores. The Demeurisse

153 Motricity Index of the upper limb was also identified as an independent factor for BI (coeff=0.11;

- 154 p=0.03) and the Demeurisse Motricity Index of the lower limb for mFAC (coeff=0.02; p=0.01). The
- level of determination for the multiple linear regression was $R^2=0.32$ (p < 0.01) for mFAC and
- 156 $R^2=0.29 (p < 0.01)$ for BI. (additional figure 1 and 2)
- 157 For model 2, S_{free} was the parameter most associated with mFAC (coeff = 2.98; intercept = 3.72;
- 158 p<0.01) and BI (coeff = 26.85; intercept = 76.13; p<0.01), while VO_{2free} was not found as an
- 159 independent explanatory variable (see table 3 and 4).
- 160 Correlation analysis between S_{free} and $VO_{2\text{free}}$ showed a significant correlation (r=0.56, p<0.001).

161 Insert table 3 and table 4

162 Discussion

163 This work involving a population of 90 stroke individuals showed a significant correlation 164 between Cw and functional independence scores for ADLs and mobility. In addition, the multiple 165 regression analysis showed that Cw was an independent factor of mFAC and BI when other 166 population characteristics were integrated such as motor function, spasticity, and age. After 167 decomposing Cw into S_{free} and VO_{2free} , the multiple regression analysis reported that S_{free} was the 168 parameter most associated with independence in ADLs and movement.

169 We observed a negative correlation between Cw and mFAC (r=-0.56, p < 0.01) and BI (-0.51,

170 p<0.01). To our knowledge, this is the first time this result has been described in the literature. These

171 results suggest that the individuals who exhibit the most unfavorable Cw are those who have the

172 highest level of dependence. Other works in the literature point in this direction. In particular,

173 Franceschini et al. reported that Cw was associated with social participation as assessed by the

- 174 Walking Handicap Scale³⁵. In this work, which measured the Cw of individuals with various
- 175 neurological pathologies (stroke, spinal cord injury, multiple sclerosis), the authors showed that a Cw
- 176 greater than 0.52mL.kg⁻¹.m⁻¹ for individuals with stroke was predictive of a restriction of in
- 177 community ambulation. Since social participation is closely related to functional independence³⁶, our
- 178 results are consistent with those of Franceschini et al.

179 To improve our understanding of the mechanisms explaining these results, we performed a 180 stepwise multiple regression analysis between population characteristics and functional independence 181 scores. Our results suggest that Cw was thus identified as an independent factor from independence in 182 regard to mobility and ADLs. This is an important result because Cw was not confused with motor function, as could have been assumed ²⁷. It is hence possible that Cw is much more than a direct result 183 184 of the individual's deficiencies. Our view is that Cw also represents impairments and the 185 compensations engaged by the individual, which is not explored by the impairment scales but taken into account by the functional independence scales such as mFAC and BI. We believe that this is what 186 explains the independence between Cw and the Demeurisse Motricity Index for the determination of 187 mFAC and BI. 188

189 The linear multiple regression analysis for mFAC and BI highlighted two other independent 190 factors: age and motor function. This result is consistent with the literature as the lower limb motor 191 function has been reported to be one of the functions most correlated with walking ability⁷. The 192 identification of the motricity function of the upper limb and age as independent factors of BI is 193 consistent with the literature and our clinical experience because independence for ADLs is closely related to the function of the upper limbs, especially in regard to all dressing and grooming activities 194 ^{18,37}. On the other hand, we observed that age was an independent factor of mFAC and BI. This 195 element has been reported several times in the scientific reference work for this population ^{9,38}. It has 196 197 been shown that function recovery and strategies to compensate for impairments are lower in older individuals, which impacts the level of disability after a stroke ^{14,39}. 198

In our work, spasticity was not associated with the independence scores. This result is reason for further debate regarding the actual impact of spasticity on functional independence. The literature reports that spasticity is correlated with stroke severity and motor impairment severity ⁹. In our situation, the individuals were able to walk and had a moderate level of severity with low MAS scores. It is possible that the lack of a correlation with the independence scores is related to the low median MAS score. Such an association would probably have been significant in individuals with more severe stroke sequelae. 206 To deepen the reflection on the association between Cw and functional independence, we then 207 dissociated Cw into Sfree and VO2free and performed the same statistical analysis (model 2). We found 208 that Sfree was independently associated with mFAC and BI. In contrast, VO_{2free} was not found as an 209 independent explanatory variable for mFAC and BI. In addition, VO_{2free} and S_{free} were significantly positively correlated (r=0.56, p<0.001), meaning that the lower the S_{free} of an individual with stroke, 210 211 the lower the VO_{2free}. These results provide insight into the complex associations between VO_{2free}, S_{free}, 212 Cw and functional independence. Thus, we highlight that functional independence scores are strongly associated with Sfree. This is in agreement with previous knowledge. Indeed, Brun et al. reported that 213 214 the various levels of this scale were strongly associated with maximum and comfortable walking speeds (p < 0.001)¹⁰. This is also what is reported by Potter et al. between S_{free} and BI ⁴⁰. The 215 216 association between VO_{2free} and functional independence scores is less explored in the literature. Ivey 217 et al. reported in their review of the literature that cardiovascular function in individuals with stroke may be a major determinant of functional independence¹⁹. Indeed, in this work, the authors point out 218 219 the very significant degradation of the cardio respiratory capacities of stroke individuals who present a 220 VO₂ peak between 26 and 87% lower than that of a healthy individual of the same age⁴¹. In addition to 221 this cardiorespiratory deconditioning, individuals with strokes have a higher oxygen consumption to 222 achieve ADLs⁵. Walking, like other ADLs, causes stroke patients to experience levels of metabolic demand close to intense effort, leading to fatigue and intolerance to activity⁴². Our results do not 223 224 contradict these results because VO_{2free} is not a direct assessment of cardiorespiratory capacity. Indeed, 225 the exploration of the cardiorespiratory capacity should go through the VO_{2peak/max} or the expression of VO_{2free} as a percentage of VO_{2peak/max}. Ivey et al. showed that individuals with stroke had a VO_{2free} 226 equivalent to 66%-75% of their VO2_{peak/max} when healthy individuals of the same age had a VO_{2free} 227 equivalent to 27% of their VO_{2peak/max}¹⁹. In addition, the literature has shown that walking speed 228 229 determines VO₂ when walking because increased walking speed increases muscle recruitment and thus oxygen consumption⁴³. By this mechanism, an adaptation strategy on the part of individuals with 230 stroke should be seen. Indeed, authors such as Schrack et al.⁴⁴ and Patterson et al.²³ have described 231 that the decrease in walking speed was associated with an individual's decreased cardiorespiratory 232 233 capacity. The lack of an independent association between functional independence scores and VO_{2free}

does not rule out incrimination as a metabolic limiting factor. In order to explore this hypothesis, the VO_{2max/peak} for individuals with stroke should have been included, but unfortunately this exploration was not conducted for practical reasons.

237 Limitations

238 The limitations of this work lie primarily with the lack of completeness in regard to the impairments 239 that were assessed. The choice of focusing mainly on motor impairment was made because motor 240 impairment has been reported to be the main impairment associated with both the variation of the Cw and functional independence ^{27,35}. However, cognitive functions, sensitivity, balance, and mood 241 242 disorders are strongly implicated in patient independence and were not evaluated in our work. This is certainly why the prediction values of our statistical models are moderate (<0.4). In the future, it will 243 244 be necessary to collect other impairments in order to evaluate their impact on the relationship between 245 Cw and functional independence scores.

246 Conclusions

This work involving a population of 90 individuals with stroke sequelae revealed a significant association between Cw and ADLs assessed using BI and mobility independence assessed using mFAC. These results indicate that Cw is an important independent factor for functional independence, as is age and motor function. However, this association appears to be primarily determined by S_{free} and not VO_{2free} , underscoring the importance of evaluating and acting on S_{free} to improve the functional independence of individuals with stroke.

253

254	References:
234	nejerences.

255	1. Gadidi V, Katz-Leurer M, Carmeli E, Bornstein NM. Long-term outcome poststroke:
256	predictors of activity limitation and participation restriction. Arch Phys Med Rehabil. 2011;92:1802-
257	8.

Lord SE, Rochester L. Measurement of Community Ambulation After Stroke: Current Status
 and Future Developments. Stroke. 2005;36:1457–61.

3. Kramer S, Johnson L, Bernhardt J, Cumming T. Energy Expenditure and Cost During
 Walking After Stroke: A Systematic Review. Archives of Physical Medicine and Rehabilitation.
 2016;97:619-632.e1.

4. Compagnat M, Mandigout S, Chaparro D, Salle JY, Daviet JC. Predicting the oxygen cost of
walking in hemiparetic stroke patients. Ann Phys Rehabil Med. 2018;61:309–14.

265 5. Compagnat M, Mandigout S, David R, Lacroix J, Daviet J, Salle J. Compendium of physical
266 activities strongly underestimates the oxygen cost during activities of daily living in stroke patients:
267 American Journal of Physical Medicine & Rehabilitation. 2018;1.

268 6. Detrembleur C, Dierick F, Stoquart G, Chantraine F, Lejeune T. Energy cost, mechanical
269 work, and efficiency of hemiparetic walking. Gait & Posture. 2003;18:47–55.

7. Nadeau S, Arsenault AB, Gravel D, Bourbonnais D. Analysis of the clinical factors
determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil.
1999;78:123–30.

 273
 8. Haute Autorité de Santé - Évaluation fonctionnelle de l'AVC et kinésithérapie [Internet].

Available from: http://www.has-sante.fr/portail/jcms/c_272517/fr/evaluation-fonctionnelle-de-l-avcet-kinesitherapie

9. Winstein Carolee J., Stein Joel, Arena Ross, Bates Barbara, Cherney Leora R., Cramer Steven
C., et al. Guidelines for Adult Stroke Rehabilitation and Recovery. Stroke. 2016;47:e98–169.

278 10. Brun V, Mousbeh Z, Jouet-Pastre B, Benaim C, Kunnert JE, Dhoms G, et al. Évaluation

279 clinique de la marche de l'hémiplégique vasculaire: proposition d'une modification de la functional

- ambulation classification [Internet]. In: Annales de réadaptation et de médecine physique. Elsevier;
- 281 2000 [cited 2016 Jul 4]. p. 14–20.Available from:
- 282 http://www.sciencedirect.com/science/article/pii/S0168605400879374
- 11. Mahoney FI, Barthel DW. FUNCTIONAL EVALUATION: THE BARTHEL INDEX. Md
 State Med J. 1965;14:61–5.
- 285 12. Yang S-Y, Kong KH. Level and predictors of participation in patients with stroke undergoing
 286 inpatient rehabilitation. Singapore Med J. 2013;54:564–8.
- 13. Mayo NE, Wood-Dauphinee S, Côté R, Durcan L, Carlton J. Activity, participation, and
 quality of life 6 months poststroke. Arch Phys Med Rehabil. 2002;83:1035–42.
- 289 14. Gianella MG, Gath CF, Bonamico L, Olmos LE, Russo MJ. Prediction of Gait without
- 290 Physical Assistance after Inpatient Rehabilitation in Severe Subacute Stroke Subjects. J Stroke
- 291 Cerebrovasc Dis. 2019;104367.
- 292 15. Craig LE, Wu O, Bernhardt J, Langhorne P. Predictors of poststroke mobility: systematic
 293 review. International Journal of Stroke. 2011;6:321–7.
- 294 16. Harvey RL. Predictors of Functional Outcome Following Stroke. Phys Med Rehabil Clin N
 295 Am. 2015;26:583–98.
- 296 17. Patel AT, Duncan PW, Lai SM, Studenski S. The relation between impairments and functional
 297 outcomes poststroke. Arch Phys Med Rehabil. 2000;81:1357–63.
- 18. Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? Int J
 Stroke. 2013;8:25–32.
- 300 19. Ivey FM, Macko RF, Ryan AS, Hafer-Macko CE. Cardiovascular Health and Fitness After
 301 Stroke. Topics in Stroke Rehabilitation. 2005;12:1–16.
- 20. Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of Walking Handicap in the Stroke
 Population. Stroke. 1995;26:982–9.
- 304 21. Reisman DS, Binder-MacLeod S, Farquhar WB. Changes in Metabolic Cost of Transport

305 Following Locomotor Training Post-Stroke. Top Stroke Rehabil. 2013;20:161–70.

306 22. Bohannon R. The relationship of knee muscle performance and gait in stroke patients. Disabil307 Rehabil. 1996;18:638.

308 23. Patterson SL, Forrester LW, Rodgers MM, Ryan AS, Ivey FM, Sorkin JD, et al. Determinants
309 of Walking Function After Stroke: Differences by Deficit Severity. Archives of Physical Medicine and
310 Rehabilitation. 2007;88:115–9.

311 24. Collin C, Wade D. Assessing motor impairment after stroke: a pilot reliability study. J Neurol
312 Neurosurg Psychiatry. 1990;53:576–9.

313 25. Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur. Neurol.
314 1980;19:382–9.

315 26. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle
316 spasticity. Phys Ther. 1987;67:206–7.

317 27. Reisman DS, Rudolph KS, Farquhar WB. Influence of Speed on Walking Economy

318 Poststroke. Neurorehabil Neural Repair. 2009;23:529–34.

319 28. Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a

320 systematic review of the literature. Arch Phys Med Rehabil. 2002;83:1629–37.

321 29. Wasserman K. Principles of Exercise Testing and Interpretation: Including Pathophysiology

and Clinical Applications. Lippincott Williams & Wilkins; 2005.

32.3 30. Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load
32.4 work. J Appl Physiol. 1972;33:351–6.

325 31. Zamparo P, Francescato MP, Luca G, Lovati L, Prampera PE. The energy cost of level

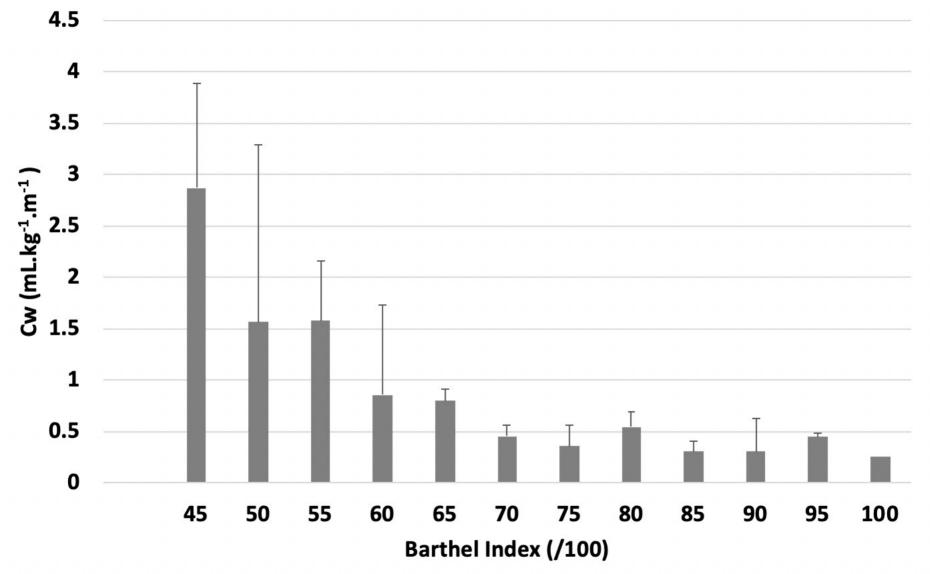
326 walking in patients with hemiplegia. Scandinavian journal of medicine & science in sports.

327 1995;5:348–52.

328 32. Hinkle DE, Wiersma W, Jurs SG. Applied Statistics for the Behavioral Sciences. 5 edition.
329 Boston: Houghton Mifflin; 2002.

- 330 33. Heinze G, Wallisch C, Dunkler D. Variable selection A review and recommendations for the
 practicing statistician. Biom J. 2018;60:431–49.
- 34. Peck R, Devore JL. Statistics: The Exploration & Analysis of Data. Cengage Learning; 2011. 332 333 35. Franceschini M, Rampello A, Agosti M, Massucci M, Bovolenta F, Sale P. Walking 334 Performance: Correlation between Energy Cost of Walking and Walking Participation. New Statistical Approach Concerning Outcome Measurement. PLOS ONE. 2013;8:e56669. 335 336 36. Cech DJ, Martin S "Tink." Chapter 5 - Evaluation of Function, Activity, and Participation [Internet]. In: Cech DJ, Martin S "Tink," editors. Functional Movement Development Across the Life 337 338 Span (Third Edition). Saint Louis: W.B. Saunders; 2012 [cited 2020 Dec 4]. p. 88–104. Available 339 from: http://www.sciencedirect.com/science/article/pii/B9781416049784000053 340 37. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after 341 stroke: facts and theories. Restor. Neurol. Neurosci. 2004;22:281-99. 342 38. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical Activity 343 and Exercise Recommendations for Stroke Survivors: A Statement for Healthcare Professionals From 344 the American Heart Association/American Stroke Association. Stroke. 2014;45:2532-53. 345 39. Jang MU, Kang J, Kim BJ, Hong JH, Yeo MJ, Han MK, et al. In-Hospital and Post-Discharge Recovery after Acute Ischemic Stroke: a Nationwide Multicenter Stroke Registry-base Study. J. 346 Korean Med. Sci. 2019;34:e240. 347 348 40. Potter JM, Evans AL, Duncan G. Gait Speed and Activities of Daily Living Function in 349 Geriatric Patients. 1995;76:3. 350 41. Smith AC, Saunders DH, Mead G. Cardiorespiratory fitness after stroke: a systematic review.
 - 42. Mol VJ, Baker CA. Activity Intolerance in the Geriatric Stroke Patient. Rehabilitation
 Nursing. 1991;16:337–43.

351


Int J Stroke. 2012;7:499-510.

43. McArdle WD, Katch FI, Katch VL. Exercise Physiology: Energy, Nutrition and Human

- 355 Performance. 4th Revised edition edition. Baltimore: Lippincott Williams and Wilkins; 1996.
- 356 44. Schrack JA, Simonsick EM, Ferrucci L. The Relationship of the Energetic Cost of Slow
- 357 Walking and Peak Energy Expenditure to Gait Speed in Mid-to-Late Life. Am J Phys Med Rehabil.
- 358 2013;92:28–35.
- 359
- 360

- 361 Table & Figure legends:
- 362 **Table 1:** Characteristics of the population.
- 363 **Table 2:** Correlation analysis between the characteristics of stroke individuals and independence
- 364 scores (Barthel Index, Modified Functional Ambulation Classification).
- 365 **Table 3:** Stepwise linear regression analysis of mFAC for stroke individuals (n=90).
- **Table 4:** Stepwise linear regression analysis of Barthel Index for stroke individuals (n=90).
- 367 Additional Figure 1: Distribution of the Modified Functional Ambulation Classification scores
- 368 depending on the oxygen cost of walking.
- 369 mFAC: Modified Functional Ambulation Classification; Cw: oxygen cost of walking
- 370 Additional Figure 2: Distribution of Barthel Index scores depending on the oxygen cost of walking.
- 371 Cw: oxygen cost of walking
- 372

373

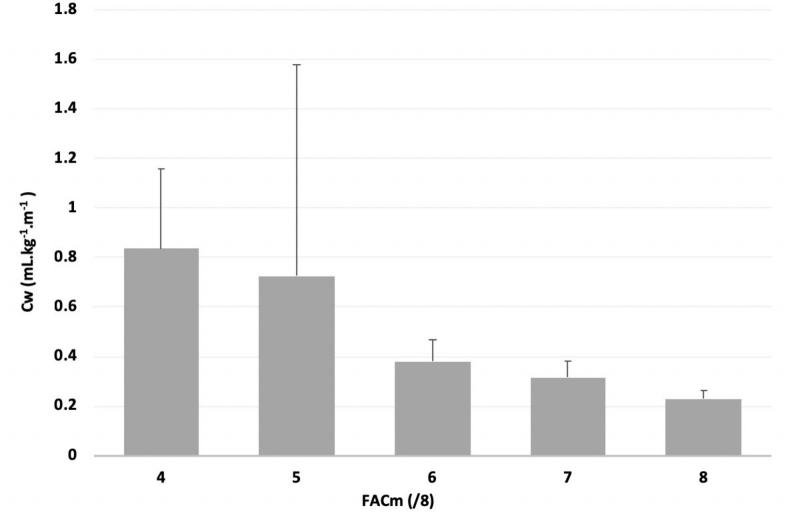


Table 1 : Characteristics of the population.

	Median	IQR
Sex (M/W)	61/29	NA
Age (year) *	63.5	14.0
BMI (kg.m ⁻¹)	25.7	6.8
Stroke delay (days)	60	150
Demeurisse upper limb score (/100)	77	50
Demeurisse lower limb score (/100)	76	30
MAS (/4)	0	1
Sfree (m.s ⁻¹) *	0.60	0.32
VO _{2free} (mL.kg ⁻¹ .min ⁻¹)	11.2	1.8
Cw (mL.kg ⁻¹ .m ⁻¹)	0.34	0.28
Barthel Index (/100)	80	27
mFAC (/8)	6	3

*: Age and S_{free} were reported as mean and SD due to a normal distribution ; IQR : Q3-Q1 range ; BMI: Body Mass Index; MAS: modified Ashworth Scale; Sfree : self selected walking speed, VO2_{free} oxygen consupmption at metabolic plateau at self selected walking speed. mFAC: modified Functional Ambulation Classification; Cw : oxygen cost of walking at S_{free}

 Table 2 : correlation analysis between characteristics of stroke individuals and
 independence scores (Barthel Index, FACm).

	Barthel Index		FACm	
	r	p-value	r	p-value
Age (year)	-0.21	0.05	-0.19	0.07
Stroke delay (days)	0.07	0.51	0.05	0.63
BMI (kg.m ⁻¹)	-0.09	0.37	-0.26	0.02
Demeurisse upper limb score (/100)	0.30	<0.01	0.23	0.03
Demeurisse lower limb score (/100)	0.32	<0.01	0.35	<0.01
MAS (/4)	-0.26	0.05	-0.22	0.11
Sfree (m.s ⁻¹)	0.50	<0.01	0.55	<0.01
VO _{2free} (mL.kg ⁻¹ .min ⁻¹)	0.35	<0.01	0.33	<0.01
Cw (mL.kg ⁻¹ .m ⁻¹)	-0.51	<0.01	-0.56	<0.01

BMI: body mass index ; Cw : oxygen cost of walking ; MAS modified Ashworth Scale.

Table 3: stepwise linear regression analysis of FACm for stroke individuals (n=90).

Model 1 et 2 : Dependent Variable : FACm

Explanatory Variables for Model 1: Age, BMI, stroke delay, Demeurisse Lower Limb Score,

Demeurisse Upper Limb Score, MAS, Cw

Explanatory Variables for Model 2 : Age, BMI, stroke delay, Demeurisse Lower Limb Score, Demeurisse Upper Limb Score, MAS, Sfree, VO₂free

Model	Stepwise Analysis Model	Coeff	Std	p-value	R
					Squarre
Model 1	Intercept	8.63	1.19	<0.01	0.32
	Age	-0.04	0.01	<0.01	
	BMI	-0.08	0.03	0.01	
	Demeurisse lower Limb score	0.02	0.01	0.01	
	Cw	-0.73	0.21	<0.01	
Model 2	Intercept	3.72	0.28	<0.01	0.37
	Sfree	2.98	0.41	<0.01	

FACm : Functional Ambulation Classification modified, MAS: modified Ashworth scale, Cw : oxygen cost of walking ; Coeff : coefficient of the explanatory variable in the model ; Std : standard error ; Rsquarre : model determination coefficient ;; Cw : oxygen cost of walking. Table 4: stepwise linear regression analysis of Barthel Index for stroke individuals (n=90).

Model 1 et 2 : Dependent Variable : BI

Explanatory Variables for Model 1: Age, BMI, stroke delay, Demeurisse Lower Limb Score,

Demeurisse Upper Limb Score, MAS, Cw

Explanatory Variables for Model 2 : Age, BMI, stroke delay, Demeurisse Lower Limb Score, Demeurisse Upper Limb Score, MAS, Sfree, VO₂free

Model	Stepwise Analysis Model	Coeff	Std	p-value	R
					Squarre
Model 1	Intercept	98.03	7.75	<0.01	0.29
	Age	-0.35	0.11	<0.01	
	Demeurisse upper Limb score	0.11	0.05	0.03	
	Cw	-8.31	2.23	<0.01	
Model 2	Intercept	76.13	7.10	<0.01	0.34
	Sfree	26.85	4.28	<0.01	
	Age	-0.21	0.10	0.03	

BI : Barthel Index, MAS: modified Ashworth scale, Cw : oxygen cost of walking ; Coeff : coefficient of the explanatory variable in the model ; Std : standard error ; Rsquarre : model determination coefficient