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UPPER BOUNDS ON THE HEIGHTS OF POLYNOMIALS

AND RATIONAL FRACTIONS FROM THEIR VALUES

JEAN KIEFFER

Abstract. Let F be a univariate polynomial or rational fraction of
degree d defined over a number field. We give bounds from above on
the absolute logarithmic Weil height of F in terms of the heights of its
values at small integers: we review well-known bounds obtained from
interpolation algorithms given values at d+ 1 (resp. 2d+ 1) points, and
obtain tighter results when considering a larger number of evaluation
points.

1. Introduction

Let F be a univariate rational fraction of degree d defined over Q. The

height of F , denoted by h(F ), measures the size of the coefficients of F .

To define it, write F = P/Q where P,Q ∈ Z[X ] are coprime; then h(F ) is

the maximum value of log |c|, where c runs through the nonzero coefficients

of P and Q. In particular, if x = p/q is a rational number in irreducible

form, then h(x) = logmax{|p| , |q|}.

Heights can be generalized to arbitrary number fields, and are a basic

tool in diophantine geometry [5, Part B]. They are also meaningful from

an algorithmic point of view: the amount of memory needed to store F in

a computer is in general O(d h(F )), and the cost of manipulating F grows

with the size of its coefficients.

In this paper, we are interested in the relation between the height of F

and the heights of evaluations F (x), where x is an integer. One direction is

easy: by [5, Prop. B.7.1], we have

(1) h(F (x)) ≤ d h(x) + h(F ) + log(d+ 1).

In the other direction, when we want to bound h(F ) from the heights of its

values, matters are more complicated.

An easy case is when F ∈ Z[X ] is a polynomial with integer coefficients

of degree at most d ≥ 1. Then, looking at the archimedean absolute value

of the coefficients of F is sufficient to bound h(F ). Moreover, given height

bounds on d + 1 values of F , the Lagrange interpolation formula allows us
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to bound h(F ) in a satisfactory way. For instance, assuming that

h(F (i)) ≤ H for every 0 ≤ i ≤ d,

we easily obtain

h(F ) ≤ H + d log(2d) + log(d+ 1).

This result can be refined and adapted to other sets of intepolation points

[2, Lem. 20], [9, Lem. 4.1]; in any case the bound on h(F ) is roughly H up

to additional terms in O(d log d). This is consistent with inequality (1).

When F is a rational fraction or even a polynomial with rational coeffi-

cients, this result breaks down, and surprisingly little information appears

in the literature despite the simplicity of the question.

1.1. Polynomials. Let us first consider the case where F is a polynomial

in Q[X ], of degree at most d ≥ 1. Then F is determined by its values

at d + 1 distinct points. Let x1, . . . , xd+1 be distinct integers, let H ≥ 1,

and assume that h(F (xi)) ≤ H for every i. This time, the Lagrange in-

terpolation formula yields a bound on h(F ) which is roughly O(dH) (see

Proposition 3.2). This is intuitive enough: in general, computing F from

its values F (xi) involves reducing the rational numbers F (xi) to the same

denominator, thus multiplying the heights of the input by the number of

evaluation points. But then, inequality (1) is very pessimistic at each of

the evaluation points xi: massive cancellations occur with the denominator

of F , and the height of F (xi) is just a fraction 1/d of the expected value.

However, if we consider more than d+1 evaluation points x1 . . . , xN such

that h(F (xi)) ≤ H , we will likely find an evaluation point where inequal-

ity (1) is accurate, and hence obtain a bound on h(F ) of the form O(H)

rather than O(dH). We prove the following result in this direction.

Theorem 1.1. Let L be a number field, and let JA,BK be an interval in Z.

Write D = B−A and M = max{|A| , |B|}. Let F ∈ L[X ] be a polynomial of

degree at most d ≥ 1, let N ≥ d+1, and let x1, . . . , xN be distinct elements

of JA,BK. Assume that h(F (xi)) ≤ H for every 1 ≤ i ≤ N . Then we have

h(F ) ≤
N

N − d
H +D log(D) + d log(2M) + log(d+ 1).

For instance, we obtain a bound on h(F ) which is linear in H when con-

sidering N = 2d evaluation points. See also Theorem 3.4 for local versions

of this result.
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1.2. Rational fractions. Second, consider the case where F ∈ Q(X) is

a rational fraction of degree at most d ≥ 1. Then F is determined by its

values at 2d + 1 points. If x1, . . . , x2d+1 are distinct integers which are not

poles of F , and if h(F (xi)) ≤ H for every i, then a direct analysis of the

interpolation algorithm yields a bound on h(F ) which is roughly O(d2H)

(see Proposition 5.2). As above, we can ask for a bound which is linear in H

when more evaluation points are given.

In this case we could imagine cases where F = P/Q has a very large

height, but massive cancellations happen in many quotients P (xi)/Q(xi).

This makes the result more intricate.

Theorem 1.2. Let L be a number field of degree dL over Q and discrim-

inant ∆L. Let JA,BK be an interval in Z, and write D = B − A and

M = max{|A| , |B|}. Let F ∈ L(X) be a univariate rational fraction of de-

gree at most d ≥ 1. Let S be a subset of JA,BK which contains no poles

of F , let η ≥ 1, and let H ≥ max{4, log(2M)}. Assume that

(1) h(F (x)) ≤ H for every x ∈ S.

(2) S contains at least D/η elements.

(3) D ≥ max{ηd3H, 4ηddL}.

Then we have

h(F ) ≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1),

where CL is a constant depending only on dL and ∆L. We can take CQ = 960.

We can give a general explicit expression for the constant CL in terms

of dL and ∆L (see §7). The number of evaluation points needed in this

result is quite large, and depends on H . Still, Theorem 1.2 is strong enough

to imply the following result.

Corollary 1.3. Let c ≥ 1, and let F ∈ Q(X) be a rational fraction of degree

at most d ≥ 1. Let V ⊂ Z be a finite set such that F has no poles in Z\V .

Assume that for every x ∈ Z\V , we have

h(F (x)) ≤ cmax{1, d log d+ d h(x)}.

Then there exists a constant C = C(c,#V ) such that

h(F ) ≤ Cd log(4d).

Explicitly, we can take C = (4c+ 1923)(12 + logmax{1,#V }+ 2 log(c)).

It would be interesting to know whether we can obtain an efficient bound

on h(F ) using only O(d) evaluation points, as was the case for polynomials,

instead of O(d3H). The constants in Theorem 1.2 and Corollary 1.3 are not
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optimal; smaller constants can be obtained following the same proofs, at

the cost of lengthier expressions.

The author has applied these results to obtain tight asymptotic height

bounds for modular equations on PEL Shimura varieties [6], for instance

modular equations of Siegel and Hilbert type for abelian surfaces, general-

izing existing works in the case of classical modular polynomials [9]. These

modular equations are examples of rational fractions whose evaluations can

be shown to have small height.

Organization of the paper. In Section 2, we recall the definition of

heights over a number field that we use in the whole paper. In Section 3,

we prove Theorem 1.1 about the heights of polynomials. To prepare for the

case of rational fractions, we study the relations between heights and norms

of integers in number fields in Section 4. We prove height bounds for ratio-

nal fractions using the minimal number of evaluation points in Section 5.

Finally, Sections 6 and 7 are devoted to the proof of Theorem 1.2.

Acknowledgements. Thanks are due to the anonymous referee for point-

ing out several errors in an earlier version of this paper. This work is part

of the author’s PhD dissertation at the University of Bordeaux (France),

and he warmly thanks Damien Robert and Aurel Page for their advice and

encouragement.

2. Heights over number fields

Let L be a number field of degree dL over Q. Write V0
L (resp. V∞

L )

for the set of all nonarchimedean (resp. archimedean) places of L, and

write VL = V0
L ⊔ V∞

L . Let PQ (resp. PL) be the set of primes in Z (resp. prime

ideals in the ring of integers ZL of L).

For each place v of L, the local degree of L/Q at v is dv = [Lv : Qv],

where subscripts denote completion. Denote by |·|v the normalized absolute

value associated with v: when v ∈ V0
L, and p ∈ PQ is the prime below v, we

have |p|v = 1/p. When v is archimedean, |·|v is the usual real or complex

absolute value.

The absolute logarithmic Weil height of projective tuples, affine tuples,

polynomials and rational fractions over L is defined as follows [5, §B.2 and

§B.7].

Definition 2.1. Let n ≥ 1, and let a0, . . . , an ∈ L.
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(1) If the ai are not all zero, the projective height of (a0 : · · · : an) ∈ Pn
L

is

hproj(a0 : . . . : an) =
∑

v∈VL

dv
dL

log
(
max
0≤i≤n

|ai|v

)
.

(2) The affine height of (a1, . . . , an) ∈ Ln is the projective height of the

tuple (1 : a1 : · · · : an):

h(a1, . . . , an) =
∑

v∈VL

dv
dL

log
(
max{1, max

1≤i≤n
|ai|v}

)
.

In particular, for a ∈ L, we have

h(a) = hproj(1 : a) =
∑

v∈VL

dv
dL

log
(
max{1, |a|v}

)
.

(3) Let P =
∑n

i=0 aiX
i ∈ L[X ]. For every place v ∈ VL, we write

|P |v = max
i

|ai|v .

The height of P is defined as the affine height of (a0, . . . , an). In

other words

h(P ) =
∑

v∈VL

dv
dL

log
(
max{1, |P |v}

)
.

If p ∈ PL is a prime ideal, we also define the p-adic valuation of P

as

vp(P ) = min
0≤i≤n

vp(ai).

(4) Finally, if F ∈ L(X) is a rational fraction, and F = P/Q where

P,Q ∈ L[X ] are coprime, we define h(F ) as the height of the pro-

jective tuple formed by all the coefficients of P and Q.

If L = Q, then Definition 2.1 coincides with the naive definition of heights

given in the introduction. By the product formula, heights are independent

of the ambient field [5, Lem. B.2.1(c)]. Recall that

(2)
∑

v∈V∞

L

dv
dL

= 1,

a fact we will use many times when computing archimedean parts of heights.

Moreover, if x, y, z ∈ L with z 6= 0, then we have

(3) h(xy) ≤ h(x) + h(y) and h(1/z) = h(z).

As Definition 2.1 suggests, in order to obtain height bounds for poly-

nomials and rational fractions, we will try to bound their coefficients from

above in the absolute values associated with all the places of L.
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3. Heights of polynomials from their values

In this section, we estimate the height of a polynomial F ∈ L[X ] of

degree at most d ≥ 1 in terms of the heights of evaluations of F . We choose

our evaluation points to be integers in an interval JA,BK ⊂ Z, and we

write D = B − A and M = max{|A| , |B|} (here |·| = |·|∞ is the archi-

medean absolute value). Our tool is the Lagrange interpolation formula: if

x1, . . . , xd+1 ∈ JA,BK are distinct, then

(4) F =
1

D!

d+1∑

i=1

F (xi)Qi where Qi = D!

∏
j 6=i(X − xj)∏
j 6=i(xi − xj)

∈ Z[X ].

Lemma 3.1. In the notation of equality (4), we have |Qi|∞ ≤ D! (2M)d

for all 1 ≤ i ≤ d+ 1.

Proof. Since the denominator
∏

j 6=i(xi − xj) divides D!, we have

Qi = Ni

∏

j 6=i

(X − xj)

for some Ni ∈ Z dividing D!. Therefore, for every 0 ≤ k ≤ d, if ck denotes

the coefficient of Xd−k in Qi, we have

|ck|∞ ≤ |Ni|∞

(
d

k

)
Mk ≤ D! 2dMd. �

A straightforward application of the Lagrange formula on d+1 evaluation

points yields the following result.

Proposition 3.2. Let F ∈ L[X ] be a univariate polynomial of degree

at most d ≥ 1, and let x1, . . . , xd+1 be distinct integers in JA,BK. Write

D = B − A and M = max{|A| , |B|}.

(1) For every v ∈ V0
L, we have

|F |v ≤

∣∣∣∣
1

D!

∣∣∣∣
v

max{|F (x1)|v , . . . , |F (xd+1)|v},

and for every v ∈ V∞
L , we have

|F |v ≤ (d+ 1)(2M)dmax{|F (x1)|v , . . . , |F (xd+1)|v}.

(2) Assume that h(F (xi)) ≤ H for every 1 ≤ i ≤ d+ 1. Then

h(F ) ≤ (d+ 1)H +D log(D) + d log(2M) + log(d+ 1).

Proof. Part 1 is an immediate consequence of the interpolation formula (4),

and Lemma 3.1 for archimedean places. For part 2, let v be a place of L.

By part 1, we have

max{1, |F |v} ≤ Cv

d+1∏

i=1

max{1, |F (xi)|v}
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where Cv = |1/D!|v if v is nonarchimedean, and Cv = (d + 1)(2M)d if v is

archimedean. Taking logarithms and summing, we obtain

h(F ) ≤ h(1/D!) +
(
d log(2M) + log(d+ 1)

) ∑

v∈V∞

L

dv
dL

+

d+1∑

i=1

h(F (xi)).

By eq. (3), we have h(1/D!) = h(D!) = log(D!) ≤ D log(D). The result

follows then from eq. (2). �

It is interesting to compare Proposition 3.2 with [5, Cor. B.2.6], using the

evaluation maps at xi as linear maps from L[X ] to L: under the hypotheses

of the proposition, the height of the tuple (F (x1), . . . , F (xd+1)) can be as

large as (d+ 1)H .

Remark 3.3. The result of Proposition 3.2 takes a particularly nice form

because the evaluation points xi are integers taken in a fixed interval. If

we only assume the xi to be distinct algebraic integers of bounded height,

then providing an upper bound on the height of a common multiple of all

products of the form
∏

j 6=i(xi−xj) seems more complicated. A similar issue

arises when the xi are only assumed to be distinct points in Q of bounded

height. However, if the evaluation points xi are chosen to be rational num-

bers with the same denominator, then one can still apply Proposition 3.2 to

a rescaled polynomial. In the rest of this paper, we will continue to consider

(almost) consecutive integers as evaluation points.

Better upper bounds on h(F ) can be obtained given height bounds on

more than d + 1 values of F : this is the content of Theorem 1.1, which we

recall here with additional local statements.

Theorem 3.4. Let L be a number field, and let JA,BK be an interval in Z.

Write D = B−A and M = max{|A| , |B|}. Let F ∈ L[X ] be a polynomial of

degree at most d ≥ 1, let N ≥ d+1, and let x1, . . . , xN be distinct elements

of JA,BK. Assume that h(F (xi)) ≤ H for every 1 ≤ i ≤ N . Then we have

h(F ) ≤
N

N − d
H +D log(D) + d log(2M) + log(d+ 1).

More precisely, for every v ∈ VL, we have

logmax{1, |F |v} ≤ Cv +
1

N − d

N∑

i=1

logmax{1, |F (xi)|v}

where Cv = log |1/D!|v if v ∈ V0
L, and Cv = d log(2M)+log(d+1) if v ∈ V∞

L .

We will need the following lemma.
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Lemma 3.5. Keep the notation from Theorem 3.4, and let v ∈ V0
L (resp.

v ∈ V∞
L ). Then the number of elements x ∈ JA,BK satisfying the inequality

|F (x)|v < |D!F |v

(
resp. |F (x)|v <

|F |v
(2M)d(d+ 1)

)

is at most d.

Proof of Lemma 3.5. We argue by contradiction, using part 1 of Proposi-

tion 3.2. �

Proof of Theorem 3.4. It is enough to prove the local statements: after that,

the global statement results from summing all the local contributions. Let v

be a place of L. If v ∈ V0
L, then by Lemma 3.5, we have |F (xi)|v ≥ |D!F |v

for at least N − d values of i. Therefore,

N∏

i=1

max{1, |F (xi)|v} ≥ |D!F |N−d
v

and

logmax{1, |F |v} ≤ log

∣∣∣∣
1

D!

∣∣∣∣
v

+
1

N − d

N∑

i=1

logmax{1, |F (xi)|v}.

Similarly, if v ∈ V∞
L , then at least N − d of the F (xi) satisfy the inequality

|F (xi)|v ≥ |F |v /(2M)d(d+ 1), so

logmax{1, |F |v} ≤ d log(2M) + log(d+ 1)

+
1

N − d

N∑

i=1

logmax{1, |F (xi)|v}. �

4. Heights and norms of integers

Let L be a number field, let ZL be its ring of integers, and let ∆L be

its discriminant. In this section, we study the relation between the height

of elements of ZL and their norms. We denote the norm of elements and

fractional ideals in L by NL/Q.

Definition 4.1. Let x ∈ L\{0}. Then we define

h̃(x) =
1

dL
log

∣∣NL/Q(x)
∣∣ =

∑

v∈V∞

L

dv
dL

log |x|v .

If a is a fractional ideal in L, we also write

h̃(a) =
1

dL
logNL/Q(a).
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If the reader is interested in the case L = Q, then the remainder of this

section can be safely skipped since h̃ and h are equal on Z. In general, they

are not equal: for instance, h̃ is invariant under multiplication by units.

This is not the case for h as soon as L admits a fundamental unit, by the

Northcott property [5, Thm. B.2.3].

Lemma 4.2. Let x ∈ ZL\{0}. Then we have

0 ≤ h̃(x) ≤ h(x).

Equality holds on the right if and only if |x|v ≥ 1 for every v ∈ V∞
L .

Proof. We have NL/Q(c) ∈ Z\{0}, hence
∣∣NL/Q(c)

∣∣ ≥ 1 and h̃(x) ≥ 0. The

rest is obvious. �

Proposition 4.3. There exists a constant C depending only on L such that

for every x ∈ ZL\{0}, there exists a unit ε ∈ Z×
L such that

h(εx) ≤ max{C, h̃(x)}.

We can take C = dL
∑

i∈I h(εi), where (εi)i∈I is any basis of units in ZL.

Proof. Let m = #V∞
L . In Rm, we define the hyperplane Hs for s ∈ R as

follows:

Hs = {(t1, . . . , tm) ∈ Rm : t1 + · · ·+ tm = s}.

We also define the convex cone ∆s as follows:

∆s =
{
(t1, . . . , tm) ∈ Rm : ∀i, ti ≥ −s

}
.

The image of Z×
L under the logarithmic embedding

Log =
( dv
dL

log | · |v

)
v∈V∞

L

is a full rank lattice Λ in H0. Let (εi)1≤i≤m−1 be a basis of units in ZL, and

let V be the following fundamental cell of Λ:

V =
{m−1∑

i=1

λi Log(εi) : λi ∈ [−1
2
, 1
2
] for all i

}
.

For each v ∈ V∞
L and each 1 ≤ i ≤ m− 1, we have

dv
dL

log |εi|v ≥ −
dv
dL

logmax{1, |1/εi|v} ≥ − h(1/εi) = −h(εi).

Therefore V is included in H0∩∆s for every s ≥ smin =
1
2

∑m−1
i=1 h(εi). From

this, we deduce:

(1) For every s ≥ msmin, the set Hs ∩ ∆0 contains a translate of V ;

indeed its translate by −s/m · (1, . . . , 1) is H0 ∩∆s/m.
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(2) For every s ≥ 0, the set Hs∩∆smin
contains a translate of V ; indeed

its translate by −s/m · (1, . . . , 1) is H0 ∩∆smin+s/m.

Let x ∈ ZL\{0}, and consider the point

Log(x) =
( dv
dL

log |x|v

)
v∈V∞

L

∈ Rm.

The sum of its coordinates is sx = h̃(x). If sx ≥ msmin, then by (1) there

exists a unit ε ∈ Z×
L such that Log(x)+Log(ε) belongs to ∆0. Then |εx|v ≥ 1

for every v ∈ V∞
L , so

h(εx) = h̃(εx) = h̃(x)

by Lemma 4.2.

On the other hand, if 0 ≤ sx < msmin, then by (2) we can still find a

unit ε such that Log(x) + Log(ε) ∈ ∆smin
, in other words

dv
dL

log |εx|v ≥ −smin

for all v ∈ V∞
L . Then

h(εx) =
∑

v∈V∞

L

dv
dL

logmax{1, |εx|v} ≤ h̃(εx) +
∑

v∈V∞

smin ≤ 2msmin.

This proves the proposition with C = 2msmin ≤ 2dLsmin. �

Remark 4.4. We can give an explicit upper bound for an acceptable con-

stant C in Proposition 4.3 in terms of the degree and discriminant of L

only. Let RL be the regulator of L. By [3, Lem. 1], L admits a basis of

units (εi)1≤i≤m−1 (where m = #V∞
L ) such that

h(εi) ≤
((m− 1)!)2

2m−1dm−1
L

(δ(L)
dL

)2−m

RL

for each 1 ≤ i ≤ m − 1; here δ(L) > 0 satisfies the property that all non-

roots of unity in L have height at least δ(L)/dL. It is known that we can

take δ(L) = log(2)/dL if dL ≤ 2, and

δ(dL) = max
{ 1

53dL log(6dL)
,
1

4

( log log dL
log dL

)3}

otherwise [3, §3]. (Lehmer’s conjecture asserts that δ(L) can be chosen uni-

formly for all number fields L). Moreover, the regulator of L is bounded

above in terms of dL and ∆L. To see this, we use the main theorem of [11]

and we note that

(1) the class number of ZL is at least one,

(2) L contains at most dL
(
2 + log(dL)/ log(2)

)
roots of unity.
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Therefore

RL < dL

(
2 +

log(dL)

log(2)

)( 4

dL − 1

)dL−1

|∆L|
1/2 (log |∆L|)

dL−1.

The final upper bound we obtain for the constant C in Proposition 4.3 grows

at least linearly in |∆L|
1/2 and exponentially in dL.

Corollary 4.5. Let C be as in Proposition 4.3. Then every principal ideal a

of ZL admits a generator a ∈ ZL such that

h(a) ≤ max{C, h̃(a)}.

Proof. Apply Proposition 4.3 with x an arbitrary generator of a. �

This corollary allows us to bound the height of a common denominator

of a given polynomial P ∈ L[X ].

Proposition 4.6. There exists a constant C ′ depending only on L such that

for every P ∈ L[X ], there exists an element a ∈ ZL such that aP ∈ ZL[X ]

and max{h(a), h(aP )} ≤ h(P ) + C ′. We can take

C ′ = max{C,max
c∈C

h̃(c)}

where C is a set of ideals in ZL that are representatives for the class group

of L, and C is the constant from Proposition 4.3.

Proof. Let C and C be as above, and let P ∈ L[X ], which we may assume

to be nonzero. Let

a =
∏

p∈PL

pmax{0,−vp(P )}

be the denominator ideal of P . Then

h̃(a) =
∑

p∈PL

dp
dL

logmax{1, |P |p} ≤ h(P ).

Let c ∈ C be an ideal such that ca is principal. By Corollary 4.5, if C denotes

the constant from Proposition 4.3, we can find a generator a of ca such that

h(a) ≤ max{C, h̃(ca)} ≤ h̃(a) + C ′ ≤ h(P ) + C ′.

Then aP has integer coefficients, and we have

h(aP ) ≤
∑

v∈V∞

L

dv
dL

(
logmax{1, |P |v}+ logmax{1, |a|v}

)

= h(P ) + h(a)−
∑

v∈V0

L

dv
dL

logmax{1, |P |v}

= h(P ) + h(a)− h̃(a)

≤ h(P ) + C ′. �
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Remark 4.7. Minkowski’s bound [7, §V.4] implies that we can always

choose C in such a way that

max
c∈C

NL/Q(c) ≤ |∆L|
1/2

(4
π

)dL/2 dL!

ddLL
.

Combined with Remark 4.4, this gives an upper bound on an acceptable C ′

in Proposition 4.6 depending only on dL and ∆L. Under the generalized Rie-

mann hypothesis, a much sharper upper bound is available: we can choose C

in such a way that

max
c∈C

NL/Q(c) ≤ 12 log(|∆L|)
2

by [1, Thm. 3].

5. A naive height bound for fractions

Let L be a number field, and let F ∈ L(X)\{0} be a rational fraction of

degree at most d ≥ 1. Write F = P/Q where P and Q are coprime polyno-

mials in L[X ], and let dP and dQ be the degrees of P and Q respectively.

Let xi for 1 ≤ i ≤ dP +dQ+1 be distinct elements in an interval JA,BK ⊂ Z

that are not poles of F .

We recall the interpolation algorithm to reconstruct F given the pairs

(xi, F (xi)) [12, §5.7]. Define S ∈ L[X ] as the polynomial of degree at most

dP + dQ interpolating the points (xi, F (xi)). Let a ∈ ZL be a common de-

nominator for the coefficients of S, so that T = aS has coefficients in ZL.

We compute the dP -th subresultant [4, §3] of T and the polynomial

Z =

dP+dQ+1∏

i=1

(X − xi) ∈ Z[X ],

which is a polynomial R ∈ ZL[X ] of degree at most dP ; the usual resultant

is the 0-th subresultant. We obtain a Bézout relation [4, §3.2] of the form

UT + V Z = R

where U, V,R ∈ ZL[X ], and moreover deg(U) ≤ dQ and deg(R) ≤ dP . Then

F = R/aU .

In order to obtain a bound on h(F ), we first bound h(S) using Propo-

sition 3.2. Then, we use the following well-known fact about the size of

subresultants in ZL[X ].

Lemma 5.1. Let P,Q ∈ ZL[X ]\{0} be polynomials of degrees dP and dQ

respectively, and let 0 ≤ k ≤ min{dP , dQ}−1. Let R be the k-th subresultant
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of P and Q, and let U and V be the associated Bézout coefficients. Write

s = dP + dQ. Then we have

h(R) ≤ (dQ − k) h(P ) + (dP − k) h(Q) +
s− 2k

2
log(s− 2k),

h(U) ≤ (dQ − k − 1) h(P ) + (dP − k) h(Q)

+
1

2
(s− 2k − 1) log(s− 2k − 1), and

h(V ) ≤ (dQ − k) h(P ) + (dP − k − 1) h(Q)

+
1

2
(s− 2k − 1) log(s− 2k − 1).

For instance, Lemma 5.1 allows one to bound coefficient sizes in the

subresultant version of the Euclidean algorithm in Q(X) [12, §6.11].

Proof. Let v ∈ V∞
L . By definition, every coefficient r of R has an expression

as a determinant of size dP+dQ−2k ; its entries in the first dQ−k columns are

coefficients of P , and its entries in the last dP − k columns are coefficients

of Q. By Hadamard’s lemma [12, Thm. 16.6], we can bound |r|v by the

product of L2-norms of the columns of this determinant in the absolute

value v. Hence

|r|v ≤
(√

dP + dQ − 2k |P |v
)dQ−k(√

dP + dQ − 2k |Q|v
)dP−k

.

Taking logarithms and summing over v, we obtain the desired height bound

on R. Similarly, the coefficients of U (resp. V ) are determinants of size

dP + dQ − 2k − 1, where one column less contains coefficients of P (resp. Q).

�

Proposition 5.2. Let L be a number field, and let JA,BK ⊂ Z. Write

D = B − A and M = max{|A|, |B|}. Let F ∈ L(X)\{0} be a rational

fraction of degree d ≥ 1. Let dP and dQ be the degrees of its numerator

and denominator respectively. Let xi for 1 ≤ i ≤ dP + dQ + 1 be distinct

elements of JA,BK that are not poles of F , and assume that h(F (xi)) ≤ H

for every i. Then there exist polynomials P,Q ∈ ZL[X ] such that F = P/Q,

degP = dP , degQ = dQ, and

max{h(P ), h(Q)} ≤ (d+ 1)(2d+ 1)H + (d+ 1)D log(D)

+ (4d2 + 3d) log(2M)

+ (2d+ 2) log(2d+ 1) + (d+ 1)C,

where C is the constant from Proposition 4.6.

Proof. Let S, a, T, Z,R, U, and V be as above; to choose a, we use Proposi-

tion 4.6, so that

max{h(a), h(T )} ≤ h(S) + C.
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By Proposition 3.2, we have

(5) h(S) ≤ (2d+ 1)H +D log(D) + 2d log(2M) + log(2d+ 1).

The archimedian absolute values of the coefficients of Z are bounded above

by (2M)2d+1, hence

h(Z) ≤ (2d+ 1) log(2M).

By Lemma 5.1, we have

h(R) ≤ (d+ 1) h(T ) + d(2d+ 1) log(2M) +
2d+ 1

2
log(2d+ 1), and

h(U) ≤ d h(T ) + d(2d+ 1) log(2M) + d log(2d+ 1).

Then F = R/aU , and

max{h(R), h(aU)} ≤ max{h(R), h(a) + h(U)}

≤ (d+ 1)(h(S) + C) + d(2d+ 1) log(2M)

+
2d+ 1

2
log(2d+ 1).

Using the upper bound (5) on h(S) ends the proof. �

The bound we obtain on h(F ) in Proposition 5.2 is roughly O(d2H).

This motivates a result like Theorem 1.2, where the dependency on H is

only linear.

6. Preparations for the proof of Theorem 1.2

In this section, we state preparatory lemmas for the proof of Theorem 1.2;

the reader might wish to skip them until their use in the proof becomes

apparent.

We keep the notation introduced at the beginning of §2, to which we add

the following. If p ∈ PL, we denote by vp the p-adic valuation on L, with

the convention that vp(0) = +∞. When considering p as a finite place of L,

we write |·|p for the associated absolute value. We denote by dp and ep the

local degree and ramification index of p in the extension L/Q. With our

normalizations, the following formula holds for every x ∈ L and p ∈ PL:

|x|p = NL/Q(p)
−vp(x)/dp .

Finally, for r ∈ R, we denote the upper integral part of r by ⌈r⌉.

Lemma 6.1. Let JA,BK ⊂ Z, let D = B − A, and let η ≥ 1; assume

that D ≥ 2η. Let S be a subset of JA,BK containing at least D/η elements,

and let 1 ≤ k ≤ D
2η

be an integer. Then there exists a subinterval of JA,BK

of length at most ⌈2ηk⌉ containing at least k + 1 elements of S.
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Proof. Let m ∈ Z such that m ≥ 1. Then for each n ≥ 1, the following

intervals of Z:

J0, mK , Jm+ 1, 2m+ 1K , . . . , J(n− 1)(m+ 1), n(m+ 1)− 1K

form a partition of J0, n(m+ 1)− 1K in n intervals of length m. Taking

m = ⌈2ηk⌉ and n = ⌈D/(2ηk)⌉, the right endpoint of the latter interval is

at least D. Therefore, by translating the above partition and intersecting it

with JA,BK, we obtain a partition of JA,BK in at most ⌈D/(2ηk)⌉ intervals

of length at most ⌈2ηk⌉. In the case that each of these intervals contains at

most k elements of S, we deduce that

D

η
≤ #S ≤ k

⌈
D

2ηk

⌉
<

D

2η
+ k.

This is absurd because k ≤ D
2η

. �

Lemma 6.2. Let R ∈ ZL\{0} be a non-unit. Then

∑

p∈PL, p|R
p|p∈PQ

ep log(NL/Q(p))

p− 1
≤ dL(2 log log

∣∣NL/Q(R)
∣∣+ 4).

Proof. First, we assume that L = Q, so that R ∈ Z and |R| ≥ 2. Let m

be the number of prime factors in R, and let (pi) be the sequence of prime

numbers in increasing order. It is enough to prove the claim for the inte-

ger R′ =
∏m

i=1 pi, which has both a greater left hand side, since log(p)/(p−1)

is a decreasing function of p, and a smaller right hand side, since R′ ≤ |R|.

We can assume that m ≥ 2. Then
m∑

i=1

log(pi)

pi − 1
=

m∑

i=1

log(pi)

pi
+

m∑

i=1

log(pi)

pi(pi − 1)
≤ log(pm) + 3

by Mertens’s first theorem [8], and because the sum of the second series is

less than 0.76. By [10], we have pm < m logm+m log logm if m ≥ 6; thus

the rough bound pm ≤ m2 holds. Since m ≤ log(R′)/ log(2), the result in

the case L = Q follows.

In the general case, if p|R lies above p, then p divides NL/Q(R), and∣∣NL/Q(R)
∣∣ ≥ 2. We apply Lemma 6.2 to NL/Q(R) ∈ Z: hence

∑

p|R

ep log(NL/Q(p))

p− 1
≤

∑

p|NL/Q(R)

∑
p|p ep log(NL/Q(p))

p− 1

= dL
∑

p|NL/Q(R)

log(p)

p− 1

≤ dL(2 log log
∣∣NL/Q(R)

∣∣+ 4). �
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Lemma 6.3. Let p ∈ PL be a prime ideal lying over p ∈ PQ, and let Lp be

the p-adic completion of L. Let Q ∈ Lp[X ] be a polynomial of degree d ≥ 0,

and assume that vp(Q) = 0. Let x1, . . . , xn be distinct values in JA,BK, and

write D = B −A; assume that D ≥ 1. Let β ∈ N. Then

(6)

n∑

i=1

min{β, vp(Q(xi))} ≤ d

(
β +

dp log(D)

logNL/Q(p)
+

epD

p− 1

)
.

Proof. We can assume that d ≥ 1. Let λ be the leading coefficient of Q,

and let α1, . . . , αd be the roots of Q in an algebraic closure of Lp, where we

extend |·|p and vp. Up to reindexation, we may assume that |αj |p ≤ 1 for

1 ≤ j ≤ t, and |αj |p > 1 for t+ 1 ≤ j ≤ d. For every i, we have

|Q(xi)|p = |λ|
p

d∏

i=1

|xi − αj|p =

(
|λ|

p

d∏

j=t+1

|αj |p

) t∏

j=1

|xi − αj|p .

Since vp(Q) = 0, we have

(
|λ|p

d∏

j=t+1

|αj|p

)
= 1.

Therefore, for each 1 ≤ i ≤ n,

vp(Q(xi)) =

t∑

j=1

vp(xi − αj).

Let k ∈ N be such that pk ≤ D < pk+1. Since the xi are all distinct

modulo pk+1, there exist at most d values of i such that vp(xi − αj) > kep

for some j. For these indices i, we bound min{β, vp(Q(xi))} from above

by β. This accounts for the term dβ in inequality (6).

For all other values of i (say i ∈ I), we have vp(xi − αj) ≤ kep for every

1 ≤ j ≤ t. For each 1 ≤ w ≤ kep and 1 ≤ j ≤ t, define

Sj,w = {i ∈ I : vp(xi − αj) ≥ w}.

For fixed j and w, all the values xi for i ∈ Sj,w coincide modulo p⌈w/ep⌉, so

#Sj,w ≤

⌈
D

p⌈w/ep⌉

⌉
.
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Note that for all i ∈ I and 1 ≤ j ≤ t, the number of values of w ∈ J1, kepK

such that i ∈ Sj,w is precisely vp(xi − αj). Therefore,

∑

i∈I

vp(Q(xi)) =
∑

i∈I

t∑

j=1

vp(xi − αj)

=
t∑

j=1

kep∑

w=1

#Sj,w

≤ d

kep∑

w=1

( D

p⌈w/ep⌉
+ 1

)

= dep

k∑

w=1

(D

pw
+ 1

)

≤ depk +
depD

p− 1
.

Since

k ≤
log(D)

log(p)
=

dp
ep

·
log(D)

logNL/Q(p)
,

this accounts for the two remaining terms in inequality (6). �

7. Heights of fractions from their values

This final section is devoted to the proof of Theorem 1.2 and its corollary.

We keep the notation from §6, and recall the main statement for the reader’s

convenience.

Theorem 7.1. Let L be a number field of degree dL over Q and discrim-

inant ∆L. Let JA,BK be an interval in Z, and write D = B − A and

M = max{|A| , |B|}. Let F ∈ L(X) be a univariate rational fraction of de-

gree at most d ≥ 1. Let S be a subset of JA,BK which contains no poles

of F , let η ≥ 1, and let H ≥ max{4, log(2M)}. Assume that

(1) h(F (x)) ≤ H for every x ∈ S.

(2) S contains at least D/η elements.

(3) D ≥ max{ηd3H, 4ηddL}.

Then we have

h(F ) ≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1),

where CL is a constant depending only on dL and ∆L. We can take CQ = 960.

Proof. We can assume that F 6= 0. We have D ≥ 4ηd, so by Lemma 6.1

with k = 2d, we can find a subinterval of JA,BK of length at most ⌈4ηd⌉

containing 2d+ 1 elements of S, denoted by x1, . . . , x2d+1. We use these xi
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as evaluation points to apply Proposition 5.2: we can write F = P/Q where

P,Q ∈ ZL[X ] are coprime in L[X ] and satisfy

max{h(P ), h(Q)} ≤ (d+ 1)(2d+ 1)H + 2d ⌈4ηd⌉ log(⌈4ηd⌉)

+ (4d2 + 3d) log(2M) + (2d+ 2) log(2d+ 1)

+ (d+ 1)C1

≤ (27 + C1)ηd
2H,

where C1 is the constant from Proposition 4.3. To simplify the right hand

side, we use the inequalities 1 ≤ d, 1 ≤ η, ⌈4ηd⌉ ≤ D ≤ 2M , ⌈4ηd⌉ ≤ 5ηd,

and log(2M) ≤ H.

Let x ∈ S. We define ideals sx, nx and dx of ZL as follows:

sx = gcd
(
(P (x)), (Q(x))

)
, (P (x)) = nxsx, (Q(x)) = dxsx.

Then (F (x)) = nxd
−1
x . The ideal sx encodes the simplifications that occur

when evaluating P/Q at x. The heart of the proof is to show that sx has

small norm for at least some values of x. Let r be the greatest common

divisor of all the coefficients of P and Q.

Claim 7.2. There exist at least 2ddL + 1 elements x of S such that

h̃(sx) ≤ h̃(r) + Cηd log(ηdH)

for some constant C depending only on L.

Let us explain how to finish the proof assuming that Claim 7.2 holds. By

Lemma 3.5, we can find an x ∈ S among these 2ddL + 1 values such that

for every v ∈ V∞
L , we have

|P (x)|v ≥
|P |v

(2M)d(d+ 1)
and |Q(x)|v ≥

|Q|v
(2M)d(d+ 1)

.

Then, by Definition 2.1, we have

h(F ) =
∑

v∈V∞

L

dv
dL

logmax{|P |v , |Q|v} − h̃(r)

≤
∑

v∈V∞

L

dv
dL

logmax{|P (x)|v , |Q(x)|v} − h̃(r)

+ d log(2M) + log(d+ 1)

≤
∑

v∈VL

dv
dL

logmax{|P (x)|v , |Q(x)|v}+ h̃(sx)− h̃(r)

+ d log(2M) + log(d+ 1)

≤ H + Cηd log(ηdH) + d log(2M) + log(d+ 1),

as claimed.
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In order to prove Claim 7.2, a crucial remark is that sx divides the

resultant R of P and Q. By Lemma 5.1, we have

h(R) ≤ d h(P ) + d h(Q) + d log(2d) ≤ (55 + 2C1)ηd
3H.

Let p ∈ PL be a prime factor of R with valuation βp, and let I be a subset

of S with n elements. We claim:

(7)
∑

x∈I

vp(sx) ≤ n vp(r) + d

(
βp +

dp log(D)

logNL/Q(p)
+

epD

p− 1

)
.

To prove (7), we can work in the p-adic completion Lp of L. Let π be

a uniformizer of Lp, and let r = min{vp(P ), vp(Q)} be the p-adic valuation

of r. Write P1 = P/πr, Q1 = Q/πr. Then one of P1 and Q1 is not divisible

by π; for instance, assume that π does not divide Q1. Then, for every x ∈ S,

vp(sx) ≤ min
{
βp, vp(Q(x))} ≤ vp(r) + min

{
βp, vp(Q1(x))

}
.

Therefore inequality (7) follows from Lemma 6.3.

Inequality (7) gives an upper bound on the p-adic valuation of the ideal∏
x∈I sx. Taking the product over the prime factors p of R, we obtain an

upper bound on the norm of that ideal. We can assume that R is not a unit,

otherwise Claim 7.2 holds trivially. We obtain
∣∣∣∣∣
∏

x∈I

NL/Q(sx)

∣∣∣∣∣ ≤ NL/Q(r)
n
∣∣NL/Q(R)

∣∣d

· exp

( ∑

p∈PL, p|R
p|p∈PQ

(
ddp log(D) + dD

ep logNL/Q(p)

p− 1

))

≤ NL/Q(r)
n
∣∣NL/Q(R)

∣∣d

· exp
(
ddL log(D) log

∣∣NL/Q(R)
∣∣ / log(2)

+ ddLD(2 log log
∣∣NL/Q(R)

∣∣+ 4)
)
.

Indeed, R has at most log
∣∣NL/Q(R)

∣∣ / log(2) prime factors, and we can apply

Lemma 6.2. Since h̃(R) ≤ (55 + 2C1)ηd
3H , we obtain

∑

x∈I

h̃(sx) ≤ n h̃(r) + d h̃(R) + ddL
log(D)

log(2)
h̃(R)

+ dD(2 log log
∣∣NL/Q(R)

∣∣ + 4)

≤ n h̃(r) + C2

(
ηd4H log(D) + dD log(ηdH)

)

with

(8) C2 = max

{
3dL(55 + 2C1)

2 log(2)
, 10 + 2 log(dL) + 2 log(55 + 2C1)

}
.

Here we use that log(ηdH) ≥ 1, and log(D) ≥ 2 log 2.
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Now we put into play our assumptions about D and S being sufficiently

large. Since D ≥ ηd3H ≥ 4 > exp(1), and the function t/ log(t) is increasing

for t > exp(1), we have

D

log(D)
≥

ηd3H

3 log(ηdH)
.

Moreover,

#S − 2ddL ≥
D

η
−

D

2η
=

D

2η
.

Therefore,
∑

x∈I

h̃(sx) ≤ n h̃(r) + 4C2dD log(ηdH)

≤ n h̃(r) + 8C2ηd log(ηdH)(#S − 2ddL).

This shows that in every subset of #S−2ddL elements of S, at least one

satisfies the upper bound h̃(sx) ≤ h̃(r) + 8C2ηd log(ηdH). Hence Claim 7.2

holds with C = 8C2, so the theorem holds with CL = 8C2.

In general, C2 is defined in (8); in this equation, C1 is a constant such

that Proposition 4.6 holds. By Remarks 4.4 and 4.7, C1 can be bounded

above explicitly in terms of dL and ∆L only, so the same property holds

for CL. If L = Q, we have C1 = 0, so we can take C2 = 120. �

To conclude, we give the proof of Corollary 1.3.

Corollary 7.3. Let c ≥ 1, and let F ∈ Q(X) be a rational fraction of degree

at most d ≥ 1. Let V ⊂ Z be a finite set such that F has no poles in Z\V .

Assume that for every x ∈ Z\V , we have

h(F (x)) ≤ cmax{1, d log d+ d h(x)}.

Then there exists a constant C = C(c,#V ) such that

h(F ) ≤ Cd log(4d).

Explicitly, we can take C = (4c+ 1923)(12 + logmax{1,#V }+ 2 log(c)).

Proof. We want to apply Theorem 1.2 on an interval of the form J0, DK for

some integer D ≥ 4d, with η = 2 and S = J0, DK \V . The set S contains at

least D/η elements as soon as D ≥ 2#V .

For every x ∈ S, we have h(x) ≤ log(D), hence

h(F (x)) ≤ cmax{1, d log d+ d logD}.

Hence, if we let

H (D) = max{4, log(2D), c(d log d+ d logD)}
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we can apply Theorem 1.2 with H = H (D) as soon as the condition

D ≥ 2d3H (D)

holds. We check that we can choose

D = max{2#V,
⌈
4cd4 log(4cd4)

⌉
}.

Then, Theorem 1.2 yields

h(F ) ≤ H (D) + 1920d log(2dH (D)) + d log(2D) + log(d+ 1).

We have H (D) ≤ 4cd log(dD) and 2dH (D) ≤ D, hence

h(F ) ≤ 4cd log(dD) + 1920d log(D) + d log(2D) + log(d+ 1)

≤ (4c+ 1923)d log(dD)

≤ (4c+ 1923)d(log(2dmax{1,#V }) + log(5cd5 log(4cd4)))

To simplify this expression further, we write

log(5cd5 log(4cd4)) ≤ log(20c2d9) ≤ 3 + 2 log(c) + 9 log(d).

hence, after other simplifications,

h(F ) ≤ Cd log(4d)

with

C = (4c+ 1923)(12 + logmax{1,#V }+ 2 log(c)),

as claimed. �
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