

New insights on homologous recombination in polyploids: the striking case of Brassica allotriploids

Alexandre Pelé¹, Matthieu Falque², Gwenn Trotoux¹, Frederique Eber¹, Sylvie Negre¹, Marie-Madeleine Gilet¹, Virginie Huteau¹, Maryse Lode¹, Thibaut Jousseaume³, Jérôme Morice¹, Olivier Coriton¹, Olivier C Martin², Mathieu Rousseau-Gueutin¹, Anne-Marie Chèvre¹

¹IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, Le Rheu, France ²GQE-LeMoulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France ³GDEC,INRA,Universite de Clermont-Ferrand, France

DynaGeV, 8th and 9th June 2017, Montpellier (France)

What is the interest of Meiotic Crossovers (COs)?

ESSENTIAL FOR PLANT BREEDING

Allow the generation of diversity

Selection in progeny

What is the interest of Meiotic Crossovers (COs)?

ESSENTIAL FOR PLANT BREEDING

Allow the generation of diversity

HOWEVER:

• Per pair of homologs, rarely more than 3 COs occur

Selection in progeny

(Mercier et al., 2015)

What is the interest of Meiotic Crossovers (COs)?

What is the interest of Meiotic Crossovers (COs)?

Why the rapeseed is a good model for studying meiotic recombination?

- Formed 7,500 years ago
- 1st oleaginous species in Europe and 3rd in the world (70 Mt)
- Use for: Oil production & Seed cake

B. rapa AA, 2*n*=20 (Wang *et al.,* 2011)

B. oleracea CC, 2n=18 (Liu *et al.,* 2014)

Χ

B. napus AACC, 2*n*=38 (Chalhoub *et al.,* 2014)

Why the rapeseed is a good model for studying meiotic recombination?

- Formed 7,500 years ago
- 1st oleaginous species in Europe and 3rd in the world (70 Mt)
- Use for: Oil production & Seed cake

Why the rapeseed is a good model for studying meiotic recombination?

- Formed 7,500 years ago
- 1st oleaginous species in Europe and 3rd in the world (70 Mt)
- Use for: Oil production & Seed cake

(Leflon et al., 2010)

Production of AA and AAC hybrids

- A_rA_r = *B. rapa* cv. C1.3
- A_r:A_r = *B. rapa* cv. Chiifu (Sequenced)
- $C_oC_o = B$. oleracea cv. RC34.

- A_nA_n = A genome of *B. napus* cv. Darmor extracted
- A_r, A_r = *B. rapa* cv. Chiifu (Sequenced)
- $A_n A_n C_n C_n = B.$ napus cv. Darmor.

Cytogenetic characterization of AA and AAC hybrids

Selection of polymorphic SNP markers covering the whole A genome

Detection of COs on progenies of AA and AAC

Detection of COs on progenies of AA and AAC

 $\mathbf{X} \mathbf{A}_{r'} \mathbf{A}_{r'}$

CO rates between the homologous A chromosomes in AA and AAC hybrids

CO rate: AA <<< AAC

Between all homologous A chromosomes, extending at the whole A genome the results of Leflon *et al.* (2010)

CO rates between the homologous A chromosomes in AA and AAC hybrids

COs distribution along the A chromosomes in AA and AAC hybrids

COs distribution along the A chromosomes in AA and AAC hybrids

✤ In AA hybrid, ~10% of the A genome is totally deprived of COs, especially close to the centromeres

COs distribution along the A chromosomes in AA and AAC hybrids

In AA hybrid

(2x)

Expected Recombination landscapes are

observed along each A chromosome

With:

- No CO in the vicinity of centromeres \checkmark
- Gradient for CO rates along chromosome arms \checkmark

What is going on in AAC hybrid?

COs distribution along the A chromosomes in AA and AAC hybrids

Solution Does CO rates increase proportionally along the A chromosomes compared to AA hybrid?

COs distribution along the A chromosomes in AA and AAC hybrids

✤ Does CO rates increase proportionally along the A chromosomes compared to AA hybrid? NO

COs distribution along the A chromosomes in AA and AAC hybrids

✤ In AAC hybrid, CO rates increase significantly in most intervals compared to AA hybrids

COs distribution along the A chromosomes in AA and AAC hybrids

* Even in intervals close or including the centromeres, where new recombining regions are formed

COs distribution along the A chromosomes in AA and AAC hybrids

In AAC hybrid

(2x)

Recombination landscapes along each of the A chromosomes are ≠ AA hybrid

- COs are formed all along the A genome, even in \checkmark the vicinity of the centromeres
- \checkmark No Gradient for CO rates along chromosome arms

In conclusion, the additional C genome allows to change:

	Ŷ		0 ⁷
	C genome from <i>B. oleracea</i>	C genome from <i>B. napus</i>	C genome from <i>B. napus</i>
COs number :	$A_r A_{r'} \ll A_r A_{r'} C_o$	$A_n A_{r'} \ll A_n A_{r'} C_n$	$A_n A_r$, <<< $A_n A_r$, C_n
COs distribution :	$A_r A_r$, \neq $A_r A_r$, C_o	A_nA_r , \neq A_nA_r , C_n	$A_n A_r$, $\neq A_n A_r C_n$

All these results were confirmed whatever:

- ✓ The C genome origin
- \checkmark The sex of meiosis

In conclusion, the additional C genome allows to change:

In conclusion, the additional C genome allows to change:

	Ŷ		0 [*]
	C genome from <i>B. oleracea</i>	C genome from <i>B. napus</i>	C genome from <i>B. napus</i>
COs number :	$A_r A_{r'} \ll A_r A_{r'} C_o$	$A_n A_{r'} \ll A_n A_{r'} C_n$	$A_n A_{r'} \ll A_n A_{r'} C_n$
COs distribution :	A_rA_r , \neq A_rA_r , C_o	$A_nA_{r'} \neq A_nA_{r'}C_n$	$A_n A_r$, \neq $A_n A_r$, C_n

ASTONISHINGLY:

Comparing genetic and cytogenetic data, we found that in male AAC hybrids, extra-COs formed compared to AA hybrids belong mainly or only to the Class I

(Leflon et al., 2010)

PLOS GENETICS

RESEARCH ARTICLE

Amplifying recombination genome-wide and reshaping crossover landscapes in *Brassicas*

Alexandre Pelé¹, Matthieu Falque², Gwenn Trotoux¹, Frédérique Eber¹, Sylvie Nègre¹, Marie Gilet¹, Virginie Huteau¹, Maryse Lodé¹, Thibaut Jousseaume¹, Sylvain Dechaumet¹, Jérôme Morice¹, Charles Poncet³, Olivier Coriton¹, Olivier C. Martin², Mathieu Rousseau-Gueutin¹, Anne-Marie Chèvre¹*

1 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France, 2 GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France, 3 GDEC, INRA, Université de Clermont-Ferrand, France

What about the regulation of homologous recombination in AAC hybrids?

Production of AA+C09 hybrids

- $A_r A_r = B. rapa cv. C1.3$
- A_r, A_r, = *B. rapa* cv. Chiifu (Sequenced)
- $C_oC_o = B$. oleracea cv. RC34.

- $A_n A_n = A$ genome of *B. napus* cv. Darmor
- A_r,A_r = *B. rapa* cv. Chiifu (Sequenced)
- $A_n A_n C_n C_n = B.$ napus cv. Darmor.

Cytogenetic characterization of AA+C09 hybrids

C09 chromosome or C genome from *B. oleracea*

C09 chromosome or C genome from *B. napus*

Detection of COs on progenies of AA+C09 hybrids

Effect of the *B. oleracea* C09 chromosome on CO rates between the homologous A chromosomes

Effect of the *B. oleracea* C09 chromosome on CO rates between the homologous A chromosomes

Effect of the *B. oleracea* C09 chromosome on CO distribution along the A chromosomes

Effect of the *B. oleracea* C09 chromosome on CO distribution along the A chromosomes

* The additional C09 chromosome from *B. oleracea* modify the COs distribution similarly to the C genome

Effect of the *B. oleracea* C09 chromosome on CO distribution along the A chromosomes

* The additional C09 chromosome from *B. oleracea* modify the COs distribution similarly to the C genome

The C09 chromosome from *B. oleracea* is responsible for the modification of COs distribution observed in AAC hybrids

What happens when it comes from *B. napus*?

Effect of the *B. napus* C09 chromosome on CO rates between the homologous A chromosomes

Effect of the *B. napus* C09 chromosome on CO rates between the homologous A chromosomes

Effect of the *B. napus* C09 chromosome on CO distribution along the A chromosomes

Effect of the *B. napus* C09 chromosome on CO distribution along the A chromosomes

✤ The additional C09 chromosome from *B. napus* DO NOT modify the COs distribution

Effect of the *B. napus* C09 chromosome on CO distribution along the A chromosomes

✤ The additional C09 chromosome from *B. napus* DO NOT modify the COs distribution

The C09 chromosome from *B. oleracea* and *B. napus* have a contrasted effect on homologous recombination

Probably due to the genome evolution in a polyploid context

CONCLUSIONS

✤ AAC vs AA hybrids, whatever genetic background and male/female meiosis:

- ✤ The additional C09 chromosome of *B. oleracea* explains:
 - ¹/₂ of CO rates variation
 - Change of COs distribution
- ✤ The additional C09 chromosome of *B. napus* DOSEN'T explain:
 - CO rates variation
 - Change of COs distribution

Prospect:

- Use in breeding programs
- □ What are the mechanisms responsible for modifications of CO rate and distribution? Epigenetics? (Melamed-Bessudo and Levy, 2012; Mirouze *et al.*, 2012; Yelina *et al.*, 2012)
- □ What is/are the gene(s) on the C09 chromosome of *B. oleracea* involved in the reshaping of homologous recombination in AAC hybrids

ribution Possibly due to genome evolution in a polyploid context

Suggesting a genetic control

AKNOWLEDGMENT

INRA LE RHEU :

ANNE-MARIE CHÈVRE MATHIEU ROUSSEAU-GUEUTIN **Gwenn TROTOUX** Maryse LODE Marie GILET Sylvie Nègre Jérôme MORICE **Gwenaëlle DENIOT Cyril FALENTIN Olivier CORITON** Virginie HUTEAU Joseph JAHIER **Denise DEFFAINS** Frédérique EBER Thibaut JOUSSEAUME **Benoît MOTAIS** Guillaume GLAIS Sofiane Azouz

GENTYANE :

Charles PONCET Amélie BERTIN

SCIENCE & IMPACT

...And thank you for your attention

INRA LE MOULON :

Matthieu FALQUE Olivier MARTIN

INRA VERSAILLES :

ERIC JENCZEWSKI CHRISTINE MÉZARD

