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Introduction

In [START_REF] Chouikha | Functions related to Jacobi Theta Functions and applications[END_REF] one gave the following representation for the Jacobi theta function

θ j (v, τ ) = θ j (0, τ )f j (v, τ )f j (v + 1, τ ), j = 3, 4; θ 1 (v, τ ) = (π sin(πv) θ 1 (0, τ )f 1 (v, τ )f 1 (v + 1, τ ); θ 2 (v, τ ) = cos(πv) θ 2 (0, τ ) f 2 (v, τ ) f 2 (v + 1, τ ).
One derived their expansions as innite products, their Fourier series expansions, as well as for log(f j (v, τ )) and for f j fj (v, τ ).

Let q = e iπτ , | q |< 1, one derived in particular ([2,Cor 2-5]) the functions θ 1 , θ 4 may be expressed as innite products θ 1 (v, τ ) = (π sin πv) θ 1 (0, τ ) Moreover, we carried out

θ 4 (v, τ ) θ 4 (0, τ ) = f 4 (v, τ ) f 4 (-v, τ ) = f 4 (v, τ ) f 4 (v + 1, τ )
where

f 4 (v, τ ) = k≥0 1 - sin πv sin(k + 1 2 )πτ
.

In this paper we are interested in trigonometric expressions of the Weierstrass function ℘(z) with primitive periods (2, 2τ ). We produce another one derived from the innite product of the theta function θ 4 (v, τ ) ℘(z + τ ) = -η(τ ) + π 2 k≥0 1 -cos πz cos(2k + 1)πτ [cos(2k + 1)πτ -cos πz]

2 .

Such expression also has been provided in H.A. Schwarz [7, p.10], but the proof we give here is dierent.

As a corollary one deduces some identities as

℘(z + τ + 1 2
, τ + 1) + η(τ + 1) = ℘(z + τ, τ ) + η(τ ).

On the other hand we are also interested in expansion as innite product for the Weierstrass functions and its derivative. We prove in particular

℘(z) = e 1 + (cot πz 2 ) 2 4 k =0 cot(kπτ -πz 2 ) cot kπτ 2 ,
where e 1 = ℘(1), v = z 2 and Imv < Imτ .

℘ (z) = - sin 2πv (sin πv) 4 k =0
sin(kπτ -2πv)(sin(kπτ )) 3 [sin(kπτ -πv)] 4 .

Moreover, in this way we nd again many known formulas and provide the following identity

℘ (z) ℘(z) -e 1 = - π sin πz -π k =0
1 sin(2kπτ -πz) .

In the last part we interested in transformations of order n odd integer for the Weierstrass function expanded as product. One provides some formulas ℘(z, nτ ) = e i (nτ ) + 4 n-1 (cot kπτ ) n cot(knπτ )

4 n-1 m=0 ℘( z + m n , τ ) -e i (τ ) ,
as well as for its derivative

℘ (nz, nτ ) = 2 n-1 (cot kπτ ) 2n (cot kπ τ ) n (cot(knπτ )) 2 cot( knπ τ ) 2 n-1 m=0 ℘ (z + m n , τ ).
As a corollary we nd again a n-decomposition of the sigma function

σ j (z, nτ ) σ(z, nτ ) = 2 n-1 (cot kπτ ) n cot(knπτ ) 2 n-1 m=0 σ j (z + m n , τ ) σ(z + m n , τ ) , j = 1, 2, σ 3 (z, nτ ) σ(z, nτ ) = 2 n-1 (cot kπ τ ) n cot( knπ τ ) 2 n-1 m=0 σ 3 (z + m n , τ ) σ(z + m n , τ ) .

Trigonometric expansions of ℘(z)

In this section some representations for the elliptic Weierstrass function ℘(z) will be described. Some of them are analogous to that known for the Jacobi θ function.

Recall that ℘(z) which has primitive periods 2ω and 2ω relative to g 2 and g 3 , may be written as ( [START_REF] Appell | Fonctions elliptiques et applications Gauthiers-Villard[END_REF][START_REF] Enneper | Elliptische Functionen: Theorie und Geschichte[END_REF][START_REF] Lang | Elliptic functions Addison-Wesley[END_REF] 

℘(z) = ℘(z; g 2 , g 3 ) = ℘(z, τ ) = 1 z 2 + m,n 1 (z -2mω -2nω ) 2 - 1 (2mω + 2nω ) 2 ,
where τ = ω ω .

A direct consequence of the preceding denition is that the Weierstrass elliptic function is an even function ℘(-z; ω, ω ) = ℘(z; ω, ω ). Moreover, this function veries the following homogeneity condition

℘(λz; λω, λω ) = λ -2 ℘(z; ω, ω ).
For this reason and for the sake of simplicity we will only consider in the sequel ℘(z) with primitive periods (2, 2τ ), simply denoted by

℘(z; 2, 2τ ) = ℘(z, τ ).
The original constructions of elliptic functions are due to Weierstrass and Jacobi [START_REF] Appell | Fonctions elliptiques et applications Gauthiers-Villard[END_REF][START_REF] Tannery | Elements de la theorie des Fonctions Elliptiques[END_REF]. Nice approaches on the subject of elliptic functions are the classic book by Watson and Whittaker [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF] or the excellent full compilation of Tannery and Molk [START_REF] Schwarz | Formeln und Lehrsatze zum Gebrauche der elliptischen functionen[END_REF]. Useful reference handbooks with many details on transcendental functions including those used in this paper are provided by Bateman and Erdelyi, [START_REF] Erdelyi | Higher transcendental functions[END_REF].

Recall some known facts on Weierstrass elliptic function. Its values at the halfperiods: 1, 1 + τ, τ are e 1 (τ ) = ℘(1, τ ), e 2 (τ ) = ℘(1 + τ, τ ), e 3 (τ ) = ℘(τ, τ ). (

These e i obey the relations

) 1 
This function veries another homogeneity relation

℘(z; g 2 , g 3 ) = µ 2 ℘(µz; g 2 µ 4 , g 3 µ 6 ). (2) 
Finally, when two of the roots e 1 , e 2 and e 3 coincide, the Weierstrass elliptic function degenerates to a simply periodic function.

On the other hand, the Weierstrass function ℘(z, τ ) is related to the theta func-

tions θ i (v) where v = z 2 : ℘(z) = ( 1 2 ) 2 [-4η - d 2 logθ 1 (v) dv 2 ] η = η(τ ) = - 1 12 θ 1 (0) θ 1 (0) = π 2 2 [ 1 6 + n≥1 1 (sin nπτ ) 2 ].
We have also

℘(z + τ ) = ( 1 2 ) 2 [-4η - d 2 logθ 4 (v) dv 2 ].
Moreover, Weierstrass's function ℘(z, τ ) may be expressed in dierent ways (see [START_REF] Lang | Elliptic functions Addison-Wesley[END_REF], [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF]). In particular, we obtain the Fourier expansions

℘(z + 1, τ ) = -η + π 2   1 4(cos πz) 2 -2 k≥1 k(-1) k q 2k 1 -q 2k cos kπz   ℘(z + 1 + τ, τ ) = -η -2π 2 k≥1 k(-1) k q 2k 1 -q 2k cos kπz ℘(z + τ, τ ) = -η -2π 2 k≥1
kq 2k 1 -q 2k cos kπz.

A trigonometric expansion called by [START_REF] Lang | Elliptic functions Addison-Wesley[END_REF] a rst q-expansion where q = e iπτ :

1 4π 2 ℘(z, τ ) = - 1 12 - 1 sin 2 πz - m,n≥1 nq mn 2 (cos nπz -1).
This series is dened in the band

| q |< e iπz < 1 |q| , Imτ > 0.
This expansion is also described in [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF] (see exercise 35, p.460).

S. Lang [START_REF] Lang | Elliptic functions Addison-Wesley[END_REF] also dened a second q-expansion :

1 4π 2 ℘(z, τ ) = - 1 12 + 2 n≥1 q 2n (1 -q 2n ) 2 -2 n≥1 (-1) n nq n 1 -q 2n cos nπz .
Notice that the last expression yields an isomorphism between the multiplicative group of complex numbers and the complex points of the Tate curve parametrized by (℘(z, τ ), ℘ (z, τ )).

An alternative trigonometric expansion of ℘(z) is given by Theorem 2-1

The Weierstrass's elliptic function ℘(z) = ℘(z, τ ) with primitive periods 2 and 2τ and Imz < 1 2 Imτ can be expressed under the forms

℘(z) = -η(τ ) + π 2 k≥0 1 -cos πz cos(2kπτ ) [cos(2kπτ ) -cos πz] 2 = -η(τ ) + +∞ -∞ π 2 2 sin[ π 2 (z + 2kτ )] 2 ,
where η(τ ) = -1 12 θ 1 (0)

θ 1 (0) .
Moreover, this function can be written

℘(z) = ℘ 1 (z) + ℘ 1 (-z), ℘ 1 (z) + η(τ ) 2 = π 2 4 k≥0 1 -sin( πz 2 ) sin(kπτ ) sin( πz 2 ) -sin(kπτ ) 2 = d 2 logf 4 (v) dv 2 .
By the same way we have

℘(z + τ ) = -η + π 2 k≥0 1 -(cos πz cos ((2k + 1)πτ )) [cos(2k + 1)πτ -cos πz] 2 = ℘ 1 (z + τ ) + ℘ 1 (-z + τ ) = -η + π 2 k≥0 1 -sin(π z 2 ) sin(k + 1 2 )πτ 4(sin(π z 2 ) -sin(k + 1 2 )πτ ) 2 + π 2 k≥0 1 + sin(π z 2 ) sin(k + 1 2 )πτ 4(sin(π z 2 ) + sin(k + 1 2 )πτ ) 2 = 1 4 d 2 logf 4 (v) dv 2 + 1 4 
d 2 logf 4 (-v) dv 2 .
Proof of Theorem 2-1 Start from the following where 2v = z and ω = 1

℘(z + τ ) = ( 1 2ω ) 2 [-4ηω - d 2 logθ 4 (v) dv 2 ] = ℘ 1 (z) + ℘ 1 (-z) = ( 1 2ω ) 2 [-4ηω - d 2 log f 4 (v) dv 2 + d 2 log f 4 (-v) dv 2 ], ℘ 1 (z) = ( 1 2ω ) 2 [-2ηω - d 2 log f 4 (v) dv 2 ].
By Corollary 3-5 of [START_REF] Chouikha | Functions related to Jacobi Theta Functions and applications[END_REF], deriving

1 θ 4 ∂θ 4 ∂v (v, τ ) = 1 f 4 ∂f 4 ∂v (v, τ ) + 1 f 4 ∂f 4 ∂v (-v, τ ) = -π k≥0 cos πv sin(k + 1 2 )πτ -sin πv + π k≥0 cos πv sin(k + 1 2 )πτ + sin πv = -π k≥0 sin 2πv sin(k + 1 2 )πτ 2 -(sin πv) 2 .
We then obtain (using Maple for example)

d 2 logf 4 (v) dv 2 = - π 2 sin (k + 1 2 )πτ sin (π v) -1 -2 + cos (k + 1 2 )πτ 2 + 2 sin (k + 1 2 )πτ sin (π v) + (cos (π v)) 2 = π 2 k≥0 1 -sin(πv) sin(k + 1 2 )πτ (sin(πv) -sin(k + 1 2 )πτ ) 2 d 2 logf 4 (-v) dv 2 = π 2 sin (k + 1 2 )πτ sin (π v) + 1 -2 sin (k + 1 2 )πτ sin (π v) -2 + cos (k + 1 2 )πτ 2 + (cos (π v)) 2 = π 2 k≥0 1 + sin(πv) sin(k + 1 2 )πτ (sin(πv) + sin(k + 1 2 )πτ ) 2 . d 2 logθ 4 (v) dv 2 = 4π 2 -(cos (π v)) 2 -cos (k + 1 2 )πτ 2 + 2 cos (k + 1 2 )πτ 2 (cos (π v)) 2 cos (k + 1 2 )πτ 4 -2 cos (k + 1 2 )πτ 2 (cos (π v)) 2 + (cos (π v)) 4 . Since -2 (cos (π v)) 2 -2 cos (k + 1 2 )πτ 2 + 4 cos (k + 1 2 )πτ 2 (cos (π v)) 2 = -1 + cos (2 π v) cos ((2 k + 1) π τ ) therefore d 2 logθ 4 (v) dv 2 = k≥0 4 π 2 (cos (2 π v) cos ((2k + 1)π τ ) -1) (cos ((2k + 1)π τ )) 2 -2 cos (2 π v) cos ((2k + 1)π τ ) + (cos (2 π v)) 2 = 4π 2 k≥0 (cos (2 π v) cos ((2k + 1)τ ) -1) [cos(2k + 1)πτ -cos 2πv] 2 Then ℘(z+τ )+η = -π 2 k≥0 (cos (2 π v) cos ((2k + 1)πτ ) -1) [cos(2k + 1)πτ -cos 2πv] 2 = π 2 k≥0 1 -(cos πz cos ((2k + 1)πτ )) [cos(2k + 1)πτ -cos πz] 2 .
On the other hand one has ℘(z + τ ) = ℘ 1 (-z) + ℘ 1 (z) and the following equality hold

4 k≥0 1 -(cos (π z) cos ((2k + 1)πτ )) [cos(2k + 1)πτ -cos πz] 2 = k≥0 1 -sin(π z 2 ) sin(k + 1 2 )πτ (sin(π z 2 ) -sin(k + 1 2 )πτ ) 2 + k≥0 1 + sin(π z 2 ) sin(k + 1 2 )πτ (sin(π z 2 ) + sin(k + 1 2 )πτ ) 2 .
(3) Or equivalently replacing z by z + 1 and τ by τ + 1

4 k≥0 1 -(cos (π z) cos ((2k + 1)πτ )) [cos(2k + 1)πτ -cos πz] 2 = k≥0 1 -(-1) k cos(π z 2 ) cos(k + 1 2 )πτ (cos(π z 2 ) -(-1) k cos(k + 1 2 )πτ ) 2 + k≥0 1 + (-1) k cos(π z 2 ) cos(k + 1 2 )πτ (cos(π z 2 ) + (-1) k cos(k + 1 2 )πτ ) 2 = k≥0 1 -cos(π z 2 ) cos(k + 1 2 )πτ (cos(π z 2 ) -cos(k + 1 2 )πτ ) 2 + k≥0 1 + cos(π z 2 ) cos(k + 1 2 )πτ (cos(π z 2 ) + cos(k + 1 2 )πτ ) 2 .
On the other hand an elementary trigonometry calculus yields

1 + cos (2 π v) cos (2 (2 k + 1) π τ ) (cos (2 (2 k + 1) π τ ) + cos (2 π v)) 2 = 1 (2 cos (π (v -(2 k + 1) τ ))) 2 + 1 (2 cos (π (v + (2 k + 1) τ ))) 2 , 1 -cos (2 π v) cos (2 (2 k + 1) π τ ) (cos (2 (2 k + 1) π τ ) -cos (2 π v)) 2 = 1 (2 sin (π (v -(2 k + 1) τ ))) 2 + 1 (2 sin (π (v + (2 k + 1) τ ))) 2 .
6

We then have equivalently

4 (sin (2 π (v -(2 k + 1) τ ))) 2 + 4 (sin (2 π (v + (2 k + 1) τ ))) 2 = 1 (cos (π (v -(2 k + 1) τ ))) 2 + 1 (cos (π (v + (2 k + 1) τ ))) 2 + 1 (sin (π (v -(2 k + 1) τ ))) 2 + 1 (sin (π (v + (2 k + 1) τ ))) 2 .
Now replacing τ by τ + 1 2 one also obtains the identity

4 k≥1 1 -(cos (π z) cos (2kπτ )) [cos 2kπτ -cos πz] 2 = k≥1 1 -cos(π z 2 ) cos kπτ (cos(π z 2 ) -cos kπτ ) 2 + k≥1 1 + cos(π z 2 ) cos kπτ (cos(π z 2 ) + cos kπτ ) 2 ,
(4) or equivalently

1 -cos (2 π v) cos (4 kπ τ ) (cos (4 kπ τ ) -cos (2 π v)) 2 = 1 (2 sin (-π v + 2 kπ τ )) 2 + 1 (2 sin (π v + 2 kπ τ )) 2 , 1 (sin (-π v + 2 kπ τ )) 2 + 1 (sin (π v + 2 kπ τ )) 2 + 1 (cos (-π v + 2 kπ τ )) 2 + 1 (cos (π v + 2 kπ τ )) 2 = 4 1 (sin (-2 π v + 4 kπ τ )) 2 + 4 1 (sin (2 π v + 4 kπ τ )) 2 .
We have also

1 (cos (2 v + 2 τ )) 2 + 1 (cos (-2 v + 2 τ )) 2 + cos (4 v + 4 τ ) (cos (2 v + 2 τ )) 2 (sin (2 v + 2 τ )) 2 + cos (-4 v + 4 τ ) (cos (-2 v + 2 τ )) 2 (sin (-2 v + 2 τ )) 2 .
Remarks 2-2 (i) -Expansion of ℘(z) given by Theorem 2-1 seems to be known at least since the beginning of twenty century (see [11, p.434]). However, Eisenstein work on the series alludes to this type of development without however explicitly mentioning it. More precisely, Eisenstein [5, p.252-256] or [8, p.94-116] used a method of summation (according to his notation) for s ≥ 1

(s, x) = ∞ m,k=-∞ 1 (x + m + kτ ) s , (s * , 0) = ∞ m,k=-∞ 1 (x + m + kτ ) s ,
the prime symbol means that the term corresponding to m = k = 0 is to be excluded. These sums are called later by A. Weil as Eisenstein series. Eisenstein observed that by periodicity and after term-by-term dierentiation

(s, x + 1) = (s, x), d dx (s, x) = -s(s + 1, x). Since ∞ m=-∞ 1 (y+m) = π cot πy we then deduce ∞ m=-∞ 1 (x + m + kτ ) 2 = -π d dx cot(π(x + kτ )) = π 2 [sin(π(x + kτ ))] 2 .
Thus, (2, x + τ ) = (2, x) and

(2, x) = ∞ m,k=-∞ 1 (x + m + kτ ) 2 = k π 2 [sin(π(x + kτ ))] 2
is a double periodic function. Note in addition that Eisenstein also pointed out all the important properties of his function (2, x) -(2 * , 0), called later ℘(x) of Weierstrass.

(ii) -We may nd again that expression by another manner (see for example [START_REF] Schwarz | Formeln und Lehrsatze zum Gebrauche der elliptischen functionen[END_REF], p.10, (3.) or [START_REF] Tannery | Elements de la theorie des Fonctions Elliptiques[END_REF], p.184, (X 3 )). Indeed, starting from innite product of the sigma function

σ(z) = 2 πθ 1 (0) e η 1 z 2 2 θ 1 ( 2z π ) = 2 π e η 1 z 2 2 sin( πz 2 ) n≥1 1 -q 2n cos(πz) + q 4n (1 -q 2n ) 2 one gets σ(z) = 2 πθ 1 (0) e η 1 z 2 2 sin( πz 2 ) n≥1 1 - sin 2 ( πz 2 ) sin(nπτ ) . Since ζ(z) = σ (z) σ(z) and ℘(z) = -ζ(z) then one derives ζ(z) = η 1 (τ )z + π 2 ∞ n=-∞ cot( πz 2 -nπτ ).
Thus, in deriving one obtains

℘(z) = -η(τ ) + +∞ -∞ π 2 4 sin( πz 2 -nπτ ) 2 .
Corollary 2-3 Consider the function

φ(z, τ ) = - 1 4π 2 d 2 logθ 4 (v, τ ) dv 2 = k≥0 1 -(cos (2π z) cos ((2k + 1)πτ )) [cos(2k + 1)πτ -cos(2πz)] 2 = k≥0 1 -sin πz sin π((k + 1 2 )τ ) 2 sin[π (z -( k + 1 2 )τ )] 2 - 1 + sin πz sin π((k + 1 2 )τ ) 2 sin[π (z + ( k + 1 2 )τ )]
2 dened for Imτ > 0, and Imz < Imτ 2 . Then φ veries the following functional equation :

4φ(2z, 2τ ) = φ(z, τ ) + φ(z + 1 2 , τ ) = φ(z, τ ) + φ(z, τ + 1).
and θ veries the following identities

(i) 4 d 2 logθ 4 (2v, 2τ ) dv 2 = d 2 logθ 4 (v, τ ) dv 2 + d 2 logθ 4 (v + 1 2 , τ ) dv 2 = d 2 logθ 4 (v, τ ) dv 2 + d 2 logθ 4 (v, τ + 1) dv 2 (ii) d 2 logθ 4 (v, τ ) dv 2 = d 2 logθ 4 (v + 1 2 , τ + 1) dv 2 .
Proof Indeed, notice that by ([2,Cor 2-5]) θ 4 and θ 3 may be expressed as innite products

θ 4 (v, τ ) = θ 4 (0, τ ) k≥0 1 - sin πv sin(k + 1 2 )πτ 2 θ 3 (v, τ ) = θ 3 (0, τ ) k≥0 1 - sin πv cos(k + 1 2 )πτ 2 .
We then deduce

θ 4 (v, τ ) θ 4 (0, τ ) θ 3 (v, τ ) θ 3 (0, τ ) = k≥0 1 - sin πv sin(k + 1 2 )πτ 2 1 - sin πv cos(k + 1 2 )πτ 2 .
However, Thus we derive the well known identity ( [START_REF] Enneper | Elliptische Functionen: Theorie und Geschichte[END_REF][START_REF] Lang | Elliptic functions Addison-Wesley[END_REF][START_REF] Lawden | Elliptic functions and applications[END_REF])

1 - sin πv sin(k + 1 2 )πτ 2 1 - sin πv cos(k + 1 2 )πτ 2 = 1- sin πv sin(k + 1 2 )πτ 2 - sin πv cos(k + 1 2 )πτ 2 + sin πv sin(k + 1 2 )πτ 2 sin πv cos(k + 1 2 )πτ 2 = 1 - sin πv sin(k + 1 2 )πτ 2 - sin πv cos(k +
θ 4 (2v, 2τ ) θ 4 (0, 2τ ) = θ 3 (v, τ ) θ 3 (0, τ ) θ 4 (v, τ ) θ 4 (0, τ ) = k≥0 1 - sin 2πv sin(2k + 1)πτ 2 .
Corollary 2-3 may also be deduced from the Landen transformation by logarithmic dierentiation of this identity. Or equivalently,

θ 4 (2v, 2τ ) = θ 3 (v, τ )θ 4 (v, τ ) θ 4 (0, 2τ ) = θ 4 (v + 1/2, τ )θ 4 (v, τ ) θ 4 (0, 2τ ) since (θ 4 (0, 2τ )) 2 = θ 3 (0, τ )θ 4 (0, τ ).
By the same way we may prove

1 - sin πv sin kπτ 2 1 - sin πv cos kπτ 2 = 1 - sin 2πv sin 2kπτ 2 . Since θ 4 (0, 2τ ) = θ 3 (0, τ )θ 2 (0, τ ) = θ 1 (0, τ )θ 2 (0, τ ) 2θ 1 (0, 2τ )
we then deduce

θ 1 (2v, 2τ ) θ 4 (0, 2τ ) = θ 1 (v, τ ) θ 3 (0, τ ) θ 2 (v, τ ) θ 4 (0, τ ) = (π sin πv) k≥0 1 - sin 2πv sin 2kπτ 2 .
Remarks 2-4 Starting from expansion given by Theorem 2-1

℘(z, τ ) = - π 2 12 - 1 2 +∞ 1 π 2 (sin kπτ ) 2 + +∞ -∞ π 2 2 sin[ π 2 (z + 2kτ )] 2
we may nd again many classical formulas. For example :

e 1 = ℘(1, τ ) = - π 2 12 - 1 2 +∞ 1 π 2 (sin kπτ ) 2 + +∞ -∞ π 2 (2 cos[π kτ ]) 2 , e 2 = ℘(1 + τ, τ ) = - π 2 12 - 1 2 +∞ 1 π 2 (sin kπτ ) 2 + +∞ -∞ π 2 2 cos[ π 2 (1 + 2k)τ ] 2 , e 3 = ℘(τ, τ ) = - π 2 12 - 1 2 +∞ 1 π 2 (sin kπτ ) 2 + +∞ -∞ π 2 2 sin[ π 2 (1 + 2k)τ ] 2 .
Notice that since then a simple calculation yields

e 1 +e 2 +e 3 = - π 2 4 - 3 2 +∞ 1 π 2 (sin kπτ ) 2 + +∞ -∞ π 2 (2 cos[π kτ ]) 2 + +∞ -∞ 4π 2 2 cos[ π 2 (1 + 2k)τ ] 2 = 0.
Corollary 2-5 Weierstrass's function ℘(z) = ℘(z, τ ) with primitive periods 2 and 2τ satises the following identities

(i) ℘(z + τ + 1, τ + 1) + η(τ + 1) = ℘(z + τ, τ ) + η(τ ), (ii) 4℘(z + τ, τ ) + 4η(τ ) = ℘( z + τ 2 , τ 2 ) + ℘( z + τ + 2 2 , τ 2 ) + 2η( τ 2 ) = ℘( z + τ 2 , τ 2 ) + ℘( z + τ 2 , τ 2 + 1) + η( τ 2 ) + η( τ 2 + 1).
Equivalently, replacing z + τ by z in (ii) one gets

℘(z + 1/2, τ + 1) + η(τ + 1) = ℘(z, τ ) + η(τ ), 4℘(z, τ ) + 4η(τ ) = ℘( z 2 , τ 2 ) + ℘( z + 2 2 , τ 2 ) + 2η( τ 2 ) = ℘( z 2 , τ 2 ) + ℘( z 2 , τ 2 + 1) + η( τ 2 ) + η( τ 2 + 1).
The following result is analogous to that of Corollary 2-3

Corollary 2-6 The Weierstrass function ℘(z) = ℘(z, τ ) with primitive periods 2 and 2τ veries the following identity

4℘(2z, 2τ ) + 4η(2τ ) = ℘(z, τ ) + ℘(z + 1, τ ) + 2η(τ ) = ℘(z, 2τ ) -e 1 (τ ) + 2η(τ ).
Indeed, notice that since [4, p. Therefore

℘(z, τ 2 ) = ℘(z, τ ) + ℘(z + τ, τ ) -e 3 (τ ).
By the same way we have

℘(z, τ + 1 2 ) = ℘(z, τ ) + ℘(z + τ + 1, τ ) -e 2 (τ ), ℘(z, 2τ ) = ℘(z, τ ) + ℘(z + 1, τ ) -e 1 (τ ).
Replacing the last equality in (ii) of Corollary 2-5 we obtain Corollary 2-6. Recall also the duplication formula

℘(2z, 2τ ) + ℘(z, 2τ ) = ℘ (z, 2τ ) 2℘(z, 2τ ) 2 .
Corollary 2-7

The derivative of the Weierstrass's function can be expressed under the form

℘ (z, τ ) = +∞ -∞ π 3 -cos π 2 (z + 2kτ ) 4 sin π 2 (z + 2kτ ) 3 .
Remarks 2-8 Following [11, p.447] who noticed that The function σ(z) may be compared with the function sin z dened by the product 

sin z = z +∞ -∞ (1 - z mπ )e z mπ
(sin πz) 2 is corresponding to -d 2 dz 2 log σ(z) = -d dz ζ(z) = ℘(z).
Recall that when two of the roots of ℘ (z) = 0, e 1 , e 2 and e 3 coincide, the Weierstrass's function degenerates to a simply periodic function. Indeed, ℘(z) is analogous to 1 sin 2 z given by

1 sin 2 z = - d 2 dz 2 log sin(z) = 1 z 2 + k 1 (z -kπ) 2 .
This may explain the reason that ℘ could be expressed as series of the function 1 (sin π(z+kτ )) 2 depending on z and τ .

Weierstrass's function ℘(z) and infinite products

In the sequel we still consider the Weierstrass function ℘(z) with two primitive periods 2, 2τ one of them is real and the other imaginary. Notice that general case of two periods (2ω, 2ω ) (with τ = ω ω imaginary) may be easily deduced by the homogeneity relations for arbitrary t = 0 (see ( 2)):

℘(tz, tω, tω ) = t -2 ℘(z, ω, ω ), ℘ (tz, tω, tω ) = t -3 ℘ (z, ω, ω ).

Another expression of ℘(z).

There is connections between ℘(z) and the theta functions. The following appears to be interesting [4, 13.20.4, p.361] :

℘(z) = e i + 1 4 
θ i+1 (v) πθ i+1 (0) θ 1 (0) θ 1 (v) 2 , i = 1, 2, 3. 
These relations allows us to derive variant innite products expressing the Weierstrass's function Theorem 3-1 The Weierstrass's function ℘(z) = ℘(z, τ ) with primitive periods 2 and 2τ veries the following identities

℘(z) = e 1 + (cot πz 2 ) 2 4 k =0 cot(kπτ -πz 2 ) cot kπτ 2 ,
where e 1 = ℘(1), and Imz < 2 Imτ .

We obtain other alternative innite products by permuting the e i

℘(z) = e 3 + 1 sin πz 2 2 k≥1 sin((k -1 2 )πτ -π z 2 ) sin(kπτ -π z 2 ) 2 sin(kπτ ) sin((k -1 2 )πτ ) 2 , ℘(z) = e 2 + 1 sin πz 2 2 k≥1 cos((k -1 2 )πτ -π z 2 ) sin(kπτ -π z 2 ) 2 sin(kπτ ) cos((k -1 2 )πτ ) 2 .
Proof of Theorem 3-1 Starting from

℘(z) = e 1 + 1 4 θ 2 (v) πθ 2 (0) θ 1 (0) θ 1 (v) 2 ,
and by [2, Corollary 3-5] which asserts

πθ 1 (v, τ ) (sin πv) θ 1 (0, τ ) = 1 - sin πv sin kπτ 2 = k =0 sin(kπτ -πv) sin(kπτ ) , θ 2 (v, τ ) (cos πv) θ 2 (0, τ ) = 1 - sin πv cos kπτ 2 = k =0 cos(kπτ -πv) cos(kπτ ) .
Then,

θ 2 (v) πθ 2 (0) θ 1 (0) θ 1 (v) = cot πv k≥1 cos[kπτ + πv] cos[kπτ -πv](sin[kπτ ]) 2 sin[kπτ + πv] sin[kπτ -πv](cos[kπτ ]) 2 = cot πv k≥1 cot(kπτ + πv) cot(kπτ -πv) (cot kπτ ) 2 = cot πv k =0 cot(kπτ -πv) cot(kπτ ) .
Moreover, by the relations

℘(z) -e 1 = σ 1 z σz 2 , ℘(z) -e 2 = σ 2 z σz 2 , ℘(z) -e 3 = σ 3 z σz 2 we have for v = z 2 σ 1 z σz = (cot πv) 2 k =0 cot(kπτ -πv) cot(kπτ ) .
We then derive the expression

σ 1 z = e ηv 2 2 (cos πv) 2 k =0 cos(kπτ -πv) cos(kπτ ) since σz = e ηv 2 2 
(sin πv)

2 k =0
sin(kπτ -πv) sin(kπτ ) .

By permutation of the e i , i = 1, 2, 3 we also obtain the other expressions (see [9, p.36])

σ 2 z = e ηv 2 2 k cos((k -1 2 )πτ -πv) cos((k -1 2 )πτ ) , σ 3 z = e ηv 2 2 k sin((k -1 2 )πτ -πv) (sin((k -1 2 )πτ )
, and deduce analog innite products for ℘(z) -e 2 , ℘(z) -e 3 .

Remark 3-2 : (i) Allusive remarks of these relationships can be found in ancient texts. Indeed, starting from the innite product 

where v = z 2ω , η = π 2 2ω 1 6 + n≥0 1 (sin nπτ ) 2 .
(ii) We may write by Theorem (3-1)

℘(z + 1) = e 1 + (tan π z 2 ) 2 4 k≥1 tan(kπτ -π z 2 ) cot(kπτ ) 2 .
We then nd again Many other well known formulas may be derived from that theorem.

Corollary 3-3 Let K(s) = π/2 0 dφ √ 1-s 2 sin 2 φ , K = K(1 -s 2 )
and the elliptic function sn(u, s) of Jacobi may be expressed

sn(u, s) = 2K π sin( πu 2K ) k≥1 1 - sin 2 πu 2K sin 2 kiπK K ÷ 1 - sin 2 πu 2K sin 2 (2k-1)iπK K .
The period K may also be written

K = π 2 θ (0)θ 3 (0) θ 4 (0)θ 2 (0) .
This result which has been already proved by Jacobi (see also [8, p.66]) follows from Theorem 3-1 or [2, Corollary 3-5] and the relation

sn(u, s) = e 1 -e 3 ℘(z) -e 3 = θ 3 (0) θ 2 (0) θ 1 (v) θ 4 (v) .
Taking the logarithmic dierentiation in Theorem 3-1 we found the following Let ℘ (z) the derivative of the Weierstrass function relative to the 2 periods (2, 2τ ). We then have

℘ (z) ℘(z) -e 1 = - 2π sin πz -2π k =0 1 sin(2kπτ -πz) = ℘ (z + 1) ℘(z + 1) -e 1 .
Indeed, that result follows from Theorem 3-1 and the identity

d cot x dx 1 cot x = - 1 sin 2x . Then ℘ (z) ℘(z) -e 1 = - 4π 2 sin πz - 4π 2 k =0 1 sin(2kπτ -πz)
.

We may expressed it otherwise (for example [7, p.161])

℘ (z) ℘(z) -e 1 = 2 σ 1 σ 1 (z) - σ 1 σ (z) = -2 σ 2 (z)σ 3 (z) σ(z)σ 1 (z) = - σ(2z) σ 2 (z) = 2ζ(z+1)-2ζ(z)-2η.
Corollary 3-5 The Weierstrass function relative to 2 periods (2, 2τ ) is solution of the following equation

6 ℘ 2 (z)- g 2 2 = (℘(z) -e 1 )   4 ∞ k=-∞ 1 sin(2kπτ + 2πz) 2 + ∞ k=-∞ 4π cos(2kπτ + 2πz) sin 2 (2kπτ + 2πz)   = (℘(z) -e 1 )
∞ k=-∞ 4π cos(2kπτ + 2πz) sin 2 (2kπτ + 2πz) + 4 (℘(z) -e 2 ) (℘(z) -e 3 ) .

Indeed, deriving twice in Corollary 3-3 one gets

℘ (z) ℘(z) -e 1 - ℘ (z) ℘(z) -e 1 2 = ∞ k=-∞ 4π cos(2kπτ + 2πz) sin 2 (2kπτ + 2πz) . Thus ℘ (z) ℘(z) -e 1 = 6 ℘ 2 (z) -g2 2 ℘(z) -e 1 = ∞ k=-∞ 4π cos(2kπτ + 2πz) sin 2 (2kπτ + 2πz) +4 ∞ k=-∞ 1 sin(2kπτ + 2πz) 2 and ℘ (z) ℘(z) -e 1 2 = 4 (℘(z) -e 2 ) (℘(z) -e 3 ) (℘(z) -e 1 )
.

On the other hand, by [9, p.13, (1.)] the Weierstrass function ℘(z, τ ), with primitive periods 2, 2τ and the sigma function are related

- σ(u + v)σ(u -v) σ 2 (u)σ 2 (v) = ℘(u) -℘(v).
Since σ(u) = 2 πθ 1 (0,τ ) e ηu 2 /2 θ 1 ( u 2 , τ ), then

℘(u) -℘(v) = (πθ 1 (0, τ )) 2 θ 1 ( u+v 2 , τ )θ 1 ( u-v 2 , τ ) θ 1 ( u 2 , τ )θ 1 ( v 2 , τ ) - k≥1 1 16 (cot kπτ ) 8 1 [℘(z) -e 1 ] 2 = - (e 1 -e 2 )(e 1 -e 3 ) ℘(z) -e 1 2 .
Corollary 3-9 Let Weierstrass elliptic function ℘(z, τ ) with primitive periods (2, 2τ ) then the following holds

℘(z + τ, τ ) -e 1 (τ ) = cot πz 2 4 4 ℘(z, τ ) -e 2 (τ ) ℘(z, τ ) -e 3 (τ ) ,
where e 1 (τ ) = ℘(1, τ ), and Imz < 2 Imτ .

This follows from Theorem 3-1 which implies

℘(z, τ ) -e 2 (τ ) ℘(z, τ ) -e 3 (τ ) = k≥1 cot((k -1 2 )πτ + πz 2 ) cot((k -1 2 )πτ -πz 2 ) (cot(k -1 2 )πτ ) 2 2 .

Transformation of Weierstrass's Function

The transformation theory of elliptic functions deals with the relations between elliptic functions belonging to dierent pairs of primitive periods : (2, 2τ ), (2, 2τ ). Since any elliptic functions of periods (2, 2τ ) may be expressed algebraically in terms of ℘(z, τ ), it is sucient to discuss relations between ℘-functions. We shall always assume

Im(τ ) > 0, Im(τ ) > 0.
The aim of this section is to transform the module τ into nτ for an integer n and to derive relations between ℘(z, nτ ) and ℘(z, τ ). Recall that the Weierstrass function is completely dened when the lattice of its primitive periods parallelogram is known. Observe [7, p.252] or [10, p.240] that any transformation of order n > 1 may be represented as a product of transformations of rst order and of transformations of higher order with matrix

M = 1 0 0 n
Moreover, any transformation τ = nτ can be separated into a product when n has prime factors. Therefore, we only study the case of transformation when n is a prime and limit our study for this type of matrix. As a corollary of Theorem 3-1 we will nd simple link between Weierstrass's function ℘(z, nτ ) with primitive periods (2, 2nτ ) and ℘(z, τ ) with primitive periods (2, 2τ ).

It is important to point out the work of Kiepert, who was the student of Weierstrass and was one of the pioneers to study the n-order transformation of elliptic functions alongside Jacobi and Abel, see for example [START_REF] Enneper | Elliptische Functionen: Theorie und Geschichte[END_REF] or [START_REF] Schwarz | Formeln und Lehrsatze zum Gebrauche der elliptischen functionen[END_REF]. These themselves contributed signicant insights and advances on this theory. Notice also that Kiepert used systematically innite products for the Weierstrass's function. σ(u, τ ).

We may also deduce the identity ℘(nz, nτ ) -e j (nτ ) = [℘(z, τ ) -e j (τ )] Turn out now to the elliptic Weierstrass function ℘(z, τ ) with (2, 2τ ) as periods. Since sn(x, s) and ℘(z, τ ) are related ℘(z) -e 3 = e 1 -e 3 sn 2 (u, s)

then from [START_REF] Lang | Elliptic functions Addison-Wesley[END_REF] we may deduce a relation between ℘(z, nτ ) and ℘(z, τ ). analogous to [START_REF] Erdelyi | Higher transcendental functions[END_REF]. It is the same from [START_REF] Lawden | Elliptic functions and applications[END_REF] we derive innite product formula for ℘(z, nτ ) analogous to that given in the preceding section.

Here is again another connection linking ℘(z, nτ ) and ℘(z, τ ) which seems to be ease to use. Then we deduce cot(nz) = (-1)

n-1 2

n-1 m=0 cot(z + mπ n ).

k≥1 1 - sin πv sin kπτ 2 θ 4 2 here θ 4

 2424 (v, τ ) = θ 4 (0, τ ) is dened in the band | Imv |< 1 2 Imτ, while θ 1 is dened for | Imv |< Imτ.

e 1 + 3 = -g 2 4 , e 1 e 2 e 3 = g 3 4

 1344 e 2 + e 3 = 0, e 1 e 2 + e 3 e 1 + e 2 e .

  372] ℘(z + τ, τ ) = e 3 + (e 3 -e 1 )(e 3 -e 2 ) ℘(z) -e 3 and ℘(z, τ 2 ) = ℘(z, τ ) + (e 3 -e 1 )(e 3 -e 2 ) ℘(z) -e 3 .

, 2 dz 2

 22 the relation d dz log sin z = cot z corresponding to d dz log σz = ζz. Thus we may add the relation d log sin πz = -π

(℘(z + 1 ) 1 16 (cot kπτ ) 8 = (e 1 -

 1181 -e 1 ) (℘(z) -e 1 ) = k≥1 e 2 )(e 1 -e 3 ).

2 ( 5 )

 25 ) -℘( m n + ω j ) ℘(z) -℘( m n )where j = 1, 2, 3, ω 1 = 1, ω 2 = 1 + τ, ω 3 = τ, this means e 1 = ℘(1), e 2 = ℘(1 + τ ), e 3 = ℘(τ ).

Theorem 4- 1 2 .

 12 Let n be an odd integer and consider Weierstrass's function ℘(nz, nτ ) with primitive periods 2 and 2nτ , then the following identity holds℘(nz, nτ ) = e 1 (nτ ) + 4 n-1 k≥1 (cot kπτ ) n cot(knπτ ) -e 1 (τ ) , ℘(nz, nτ ) = e 2 (nτ )+ k≥1 (sin kπτ ) n sin(n(k -1 2 )πτ ) (sin((k -1 2 )πτ ) n (sin nkπτ ) -e 2 (τ ) , ℘(nz, nτ ) = e 3 (nτ )+ k≥1 (sin kπτ ) n cos(n(k -1 2 )πτ ) (cos((k -1 2 )πτ ) n (sin nkπτ ) -e 3 (τ ) ,where e j (τ ) are the zeros of ℘ (z, τ ), i = 1, 2, 3 and Imz < 2 Imτ .Proof of Theorem 4-1 Prove at rst for i = 1. Notice by [3, Theorem 3-1]℘(nz, nτ ) = e 1 (nτ ) + (π cot πnv) 2 4 k≥1 cot(knπτ + nπv) cot(knπτ -nπv) (cot knπτ ) 2We Start from the classical trigonometric product formulas valid for n odd integer sin(nz) = 2 n-1 sin(z) sin(z+ π

2 ) sin π(kτ -u+v 2 ) sin π(kτ + u-v 2 ) sin π(kτ -u-v 2 ) sin π(kτ + u 2 ) sin π(kτ -u 2 ) sin π(kτ + v 2 ) sin π(kτ -v 2 )

2 .

In the limit case when v → u after dividing both sides by v -u, we nd

However, using again innite products of theta functions given by [START_REF] Chouikha | Functions related to Jacobi Theta Functions and applications[END_REF], Corollary 3-5 we may express ℘ (u) as innite product.

Theorem 3-7

The derivative of Weierstrass's function ℘ (u) = ℘ (u, τ ) with primitive periods 2 and 2τ veries the following

Proof of Theorem 3-7 Indeed, by [2, Corollary 3-5]

Thus sin(kπτ -2πv)(sin(kπτ )) 3 [sin(kπτ -πv)] 4 .

We may also prove Theorem 3-3 by another way. Indeed, using ℘ (u) expressed in terms of the sigma function, [10, p.189]

and starting from the expression

On the other hand, notice also by Theorem 3-2 we have

[sin π(kτ

[sin π(kτ

Moreover, write from Theorem 3-5

2 .

Then we may deduce the following (see also [9, p.14, (9.)] )

Other alternative results may be deduced from Theorem 3-7, for example (see also [11, p.444

])

Corollary 3-8 Let Weierstrass elliptic function ℘(z, τ ) with primitive periods (2, 2τ ) then the following holds

Indeed by Theorem 3-7

Thus we derive the expression

However, we may write for any integer

which means

Turn now to the other cases j = 2, 3, notice under the action of the modular group Γ 0 the permutation between the e j does not change the Weierstrass function ℘(z, τ ).

Indeed by changing τ into τ + 1 or into -1 τ it yields :

Therefore, by the same way and using again [3, Theorem 3-1] we nd the two other expansions of ℘(nz, nτ ) -e 2 (nτ ) and ℘(nz, nτ ) = e 3 (nτ ).

Since

then we may deduce a decomposition in simple elements of ℘ (nz, nτ )

Corollary 4-2 Let n be an odd integer, then the following identity holds

Since

then from [11, p.451] we may easily prove Among others interesting equalities we may derive from (5) the following identity

Therefore we may prove 20 Corollary 4-3 Let ℘(z, τ ) be the Weierstrass function relative to the periods (2, 2τ ), then the following identities hold

We then deduce by Theorem 4-1 the following formula which already has been proved in [10, p.236-238] ℘(nz, nτ ) -e j (nτ ) [℘(z, τ ) -e j (τ )]

To prove Corollary 4-3, notice that from

and the identity k≥1

Corollary 4-4 The sigma function σ(z, τ ) relative to the periods (2, 2τ ) veries the following identity for any integer n and j = 1, 2 The result follows using the same proof of Theorem 4-1.

The other cases (j = 2, 3) are dened by the same way.