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2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

paolo.viappiani@lip6.fr

Abstract. The Monty hall problem is a classic puzzle that, in addition
to intriguing the general public, has stimulated research into the founda-
tions of reasoning about uncertainty. A key insight to understanding the
Monty Hall problem is to realize that the specification of the behavior of
the host (i.e. Monty) of the game is fundamental. Here we go one step
further and reason, in Bayesian way, in terms of epistemic uncertainty
about the behavior of host, assuming subjective probabilities.
We also consider several generalizations of the classic Monty hall problem
considering different priors for the doors, several doors instead of three,
and different ways the host can choose which door to open when several
are possible. We show that in these generalized versions, the player faces
a sequential decision problem, since the choice of the first door is key.
We provide a general solution for the most general case using decision
trees and determine the optimal policy.

1 Introduction

The Monty hall problem [12–14] is a classic puzzle that, in addition to intriguing
the general public, has stimulated research [1, 2] into the foundations of reasoning
about uncertainty. It is stated as follows:

Suppose you’re on a game show, and you’re given the choice of three
doors: Behind one door is a car; behind the others, goats. You pick
a door, say No. 1, and the host, who knows what’s behind the doors,
opens another door, say No. 3, which has a goat. He then says to you,
“Do you want to pick door No. 2?” Is it to your advantage to switch
your choice?

The commonly accepted answer is that it is best to switch. Indeed, assuming
that the prize is placed behind a door according to a uniform distribution, by
choosing to switch the player obtains probability 2

3 of getting the prize.
This is true however under a particular assumption about the behavior of

the host: the host always opens a door; this door is different than the one that
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the player has chosen and from the one with the prize behind it. Indeed, several
authors have argued [10, 1, 2] that the answer to the puzzle crucially depends on
the behavior of the host.

In this paper we go one step further and consider uncertainty over which
protocol Monty might be following. We reason about Monty’s behavior using
subjective probabilities about the possible protocols; therefore we move from
representing uncertainty over the placement of the doors, to representing our
epistemic uncertainty over the behavior of the host. Moreover, we consider some
generalizations of the Monty Hall problem supposing that the position of the
car might be not distributed uniformly. When considering these generalized set-
tings, we realize that the solution to the problem is a policy dictating which
door should we choose at each step of the game. While the Monty Hall problem
has been extensively studied before in the computer science and applied math-
ematics literature [1, 5, 7, 6, 10, 11, 15], we do not know any works that consider
the generalized settings that we address here.

2 Epistemic Uncertainty over Monty’s Protocol
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R

Fig. 1. A Bayesian network formalizing
the Monty Hall problem with uncertainty
over the host’s protocol.

T

O

Fig. 2. Simplified Bayesian network for
the Monty Hall problem. The uncertainty
over Monty’s protocol is now integrated
in the conditional probability P (O|T ).

In this Section we consider the Monty Hall Problem (MHP) with 3 doors
and we explicitly reason in terms of epistemic uncertainty about the host’s (i.e.
Monty’s) behavior. We assume for the moment that the car is equally likely to
be behind any of the doors. Different assumptions about the host’s protocol can
be made:

– AO (always open): this is the “classic” Monty’s behavior. The host always
opens a door that has a goat behind it and hasn’t been picked by the player
(if the player initially picked the door with the car, then he randomly chooses
one of the two other doors);

– RO (open at random): Monty randomly chooses a door and, if there is no
car behind it and it has not been picked by the player, then open it, while
no door is opened if the randomly chosen door hides the car;
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– SO (selective open): the choice of opening a door depends on specific condi-
tions (whether the player picked the door with the prize). In particular we
consider “benevolent” Monty (opens a door whenever the player is pointing
at a door with a goat, and not when the player picked the door with the car;
this behavior is dubbed SO+) and “adversarial” Monty (opens a door only
when the player is pointing at the car; SO−)

While under the AO protocol the player has an advantage to switch, under
RO, switching gives no advantage, as it has been noticed several times (see, for
instance, exercise 3.9 in the book of MacKay [8] on page 57 and its solution on
page 61). Obviously under SO+ it is always beneficial to switch and under SO−
one should never switch (see also Halpern’s book [2] on pages 216-217).

We now assume now that Monty’s behavior is a situation of epistemic uncer-
tainty: the player does not know exactly which protocol Monty has adopted and
this uncertainty is represented by a probability distribution. This means that,
from the point of view of the player, Monty is behaving according to a mixture
of the protocols above. This mixture is given by the parameters θ = (θAO, θRO,
θSO+

, θSO−), where θAO is the probability of adopting the AO protocol, and so
on; in other words θ is the subjective probability distribution of Monty’s behav-
ior. Actually, our model allows for the possibility that Monty itself is behaving
according to a mixture of the protocols, but the player has no access to the true
mixture parameters and makes use of subjective probabilities instead.3

We formalize the Monty hall problem using the Bayesian network depicted
in Figure 1 with three nodes: T , R, and O. Node T represents the event “the
player has pointed to the door with the car behind”, R takes value in R =
{AO,RO, SO+, SO−}, that is the set of possible protocols.O is the event “Monty
opened a door”.

Assuming that the car is uniformly distributed between the three positions,
we write the values of the Conditional Probability Tables (CPTs) for the nodes
of the Bayesian network. For node T we have:

P (T ) =
1

3
P (¬T ) =

2

3

and for R:

P (R) = θR ∀R ∈ {AO,RO, SO+, SO−}.

We now write the probability of the event O (the host opens a door) conditioned
on T (the player has pointed at door with the car) and on the protocol. These
are the CPT values associated with the node O in Figure 1.

P (O|T,AO) = 1 P (O|¬T,AO) = 1

P (O|T,RO) = 0.66 P (O|¬T,RO) = 0.33

P (O|T, SO+) = 0 P (O|¬T, SO+) = 1

P (O|T, SO−) = 1 P (O|¬T, SO−) = 0

3 A possible extension of this work could investigate the use of Bayesian hierarchical
models, adopting prior distributions on the mixture’s parameters.
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From the belief θ we can determine the probability of the host opening a door
(event O) given the initially chosen door conceals the car (T ) or the goat (¬T ):

P (O|T ) =
∑
r∈R

θrP (O|T, r) = θAO +
2

3
θRO + θSO− (1)

P (O|¬T ) =
∑
r∈R

θrP (O|¬T, r) = θAO +
1

3
θRO + θSO+

(2)

The above equations allow us to reduce our problem to the simplified Bayesian
network given in Figure 2 (where θ can be seen as a vector of parameters).

Using basic probability calculus and Bayes theorem, we can derive a condition
on θ for when switching is advantageous. We compute the probability (from the
point of view of the player) that the car is behind the initially picked door
conditioned to observing that the host has opened another door, using Bayes
theorem:

P (T |O)=
P (O|T )P (T )

P (O)
=

P (O|T )P (T )

P (O|T )P (T )+P (O|¬T )P (¬T )
=

P (O|T )

P (O|T ) + 2P (O|¬T )

If the player sticks to his initial guess, then P (T |O) is the probability of get-
ting the car. If the player switches, the car is found with probability P (¬T |O) =
1− P (T |O). Switching is then advantageous when

P (¬T |O) > P (T |O) ⇐⇒ P (O|¬T )P (¬T ) > P (O|T )P (T ) (3)

⇐⇒ P (O|¬T ) >
1

2
P (O|T ). (4)

Since we want to know under what condition with respect to θ switching is
advantageous, we now expand the expression above using Equations (1) and (2):

2

3
(θAO +

1

3
θRO + θSO+) >

1

3
(θAO +

2

3
θRO + θSO−) (5)

⇐⇒ 1

3
θAO +

2

3
θSO+ − 1

3
θSO− > 0 (6)

We note that in the computation just above, we were only interested in
determining when switching is beneficial4; that is, we did not considered the
situations in which no door is opened, and no choice if offered. Considering a
game episode starting with the initial door selection, we are now interested in
computing the total expected payoff of the two policies “switch” (switch door
when possible) and “keep”, where we define payoff as 1 if the player gets the car
at the end of the game, and 0 otherwise. Note that the two policies imply the
same outcome when Monty does not open a door (and therefore does not offer
the possibility to switch choice).

– The policy “keep” obviously achieves expected payoff 1
3 .

4 Indeed the original statement of the MHP concerns the specific decision of what to
do when offered the possibility of switching.
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– The policy “switch” achieves expected payoff

P (T,¬O) + P (¬T,O) = P (T )P (¬O|T ) + P (¬T )P (O|¬T )

since the car is won if the player initially picked the right door and the host
does not open any door (there is no option to switch, and therefore the car is
obtained), or if the initial guess is wrong but the host does open a door thus
offering the chance to switch (the offer is then accepted, since we’re following
the “switch” policy, and the car is obtained). Therefore, since P (T ) = 1

3 , the
payoff of the “switch” policy is 1

3 −
1
3P (O|T ) + 2

3P (O|¬T ) or, equivalently,
1
3 + 1

3θAO −
1
3θSO− + 2

3θSO+ .

We observe that in the 3-doors setting, with Monty uniformly random when
the player chooses the door with the car in the first round, there are really just
two parameters: P (O|T ) and P (O|¬T ). Given these two values, the distribution
over the protocol R is identified according to Equations (1) and (2); note however
that different θ may project to the same P (O|T ) and P (O|¬T ) values.

The following proposition summarizes our analysis:

Proposition 1. The payoffs of the two policies “keep” and “switch” are:

V (keep) =
1

3

V (switch) =
1

3
− 1

3
P (O|T ) +

2

3
P (O|¬T ) =

1

3
+

1

3
θAO −

1

3
θSO− +

2

3
θSO+

Switching is advantageous when P (O|T ) < 2P (O|¬T ), or equivalently, when
1
3θAO + 2

3θSO+ − 1
3θSO− > 0.

Example 1. Assume the player is not given any information about the host’s be-
havior. The player reasons that the host might be following one of the four pro-
tocols AO, RO, SO+ and SO−. In absence of any prior information, a reasonable
way for the player to proceed is to consider a uniform prior on the host’s proto-
col: with θ = (0.25, 0.25, 0.25, 0.25), thus we have that 1

3θAO+ 2
3θSO+− 1

3θSO− =
1
6 > 0, so switching is advantageous according to Proposition 1.

Another reasonable uninformative prior is to suppose P (O|T ) = P (O|¬T ) =
0.5; this also means that switching is advantageous.

Example 2. Assume now that the player has access to the history of past behav-
iors of the host in n previous games. The player can use Laplace’s rule (equivalent
to assuming a Beta prior) to estimate the probability of opening a door. Let nT
the number of episodes where the initially picked door hid the car; n = nT +n¬T .
Let oT be the number of observations consisting in the host opening a door
when the initially picked one is correct. The player estimates the probabilities:
p̂O|T = oT+1

nT+2 and p̂O|¬T = o¬T+1
n¬T+2 . Equation 4 is then used with these estimations

to decide whether to switch or not.
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3 Different priors for doors

We now consider the situation where each door is associated with a prior prob-
ability pi of concealing the prize (for short we will use the term probability of a
door). We still consider that there are three doors and delay the extension to an
arbitrary number of doors to Section 4.

Unlike the original statement of the puzzle, the choice of the first door is
critical (since doors cannot anymore treated as indistinguishable). The behavior
of the player is fully specified by a decision policy; with 3 doors a policy is a
pair (i, a), where i is the index of a door and a is either “switch” or “keep” (in
case Monty offers such possibility). We still assume that the host is not biased,
in the sense that, if the player initially picks the door with car, the host, if he
decides to open a door, is just as likely to open any of the two remaining doors.

We now compute the expected payoff V of the strategy (i, switch) using the
observation that the car is obtained in two cases i) if the door i conceals the car
and the host does not open a door (and so he does not offer to switch) and ii) if
the door i does not conceal the car and the host does offer to switch; hence:

V (i, switch) = P (¬O, T ) + P (O,¬T )

= P (¬O|T )pi + P (O|¬T )(1− pi)
= (1− αT )pi + α¬T (1− pi)
= (1− αT − α¬T )pi + α¬T

where we let αT := P (O|T ) and α¬T := P (O|¬T ). On the other hand, the payoff
of strategy (i, keep) is obviously pi :

V (i, keep) = pi.

The following inequality gives the condition that makes switching beneficial.

V (i, switch) > V (i, keep) ⇐⇒ (1− αT − α¬T )pi + α¬T > pi (7)

⇐⇒ pi <
α¬T

αT + α¬T
(8)

Equation (8) provides a condition to check to determine whether (i, keep) or
(i, switch) is best. However, in order to identify the best policy, we need to
account as well the choice of i, i.e. the first door. There are 6 possible policies,
but in fact some are dominated: among the “keep” policies, the best one is to
pick the door i+ associated with highest prior p+ = maxi∈{1,2,3} pi. On the other
hand, if we switch, it is not so obvious if the initial choice should be a door with
high or with low prior probability. We therefore consider several different cases.

– If αT + α¬T > 1 then the payoff V (i, switch) decreases when pi increases;
hence among all policies that switch door in the second step, the best one is
to pick, in the first round, the door with lowest prior probability.
Therefore to determine the optimal policy we compare p+ (the payoff of
selecting the door with highest p and then keeping this choice) and (1 −
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αT − α¬T )p− + α¬T , the value of the payoff obtained by picking door i− =
arg mini pi and then switching. The condition to check is

(1− αT − α¬T )p− + α¬T > p+.

In other words: we pick i− and switch in the case p++(αT+α¬T−1)p−−αT <
0; otherwise we pick i+ and keep the same choice.

– If αT + α¬T = 1 then, assuming that we switch, it does not matter which
door we select initially: the payoff V (i, switch) will be always α¬T for any
i = 1, 2, 3. Hence, if p+ > α¬T we select the door with highest prior and
keep this choice, and otherwise choose any door and switch.

– If αT + α¬T < 1 then the payoff V (i, switch) increases when pi increases.
We therefore initially pick i+, the door with highest prior, and we compare
the payoff of either switching or keeping. Hence, if p+ > αT

αT+α¬T
then the

optimal policy is (i+, keep) otherwise it is (i+, switch).

Proposition 2. The payoff of the policies are as follows:

V (i, keep) = pi

V (i, switch) = (1− αT − α¬T )pi + α¬T

Obviously this model generalizes that of the previous section. Indeed, if we
substitute pi = 1

3 in Equation (8) we determine the condition αT

α¬T
< 2 for

switching being advantageous, as shown in the previous section in Equation (4).
We now consider, as examples, two particular cases.

Example 3. Assume three doors with prior probability p1, p2, p3 and that the
host behaves according to the AO protocol of Section 2 (the player may know
this having observed previous games), that means αT = α¬T = 1 . Now, if you
pick door i initially, switching gives 1− pi; keeping the same choice gives you pi.
The best policy is to pick the door with least value of the prior probability, wait
for the host action and then switch door; the optimal payoff is:

V ∗ = 1−min
i
pi.

This value is strictly higher than the value of the policy of picking the door with
highest pi and not switching, unless maxi pi = 1.

Example 4. We now consider, as special case of the scenario studied in this
section, that the host does not allow to switch with probability q, regardless of
whether the player points at the right door or not; the host opens a door allowing
to switch with probability 1− q. In other words αT = α¬T = 1− q. The payoff
of (i, switch), the policy “pick door i and switch when offered”, is then:

V (i, switch) = qpi + (1− q)(1− pi) = (2q − 1)pi + 1− q.

We analyze the different cases:

– If q < 0.5 and p+ ≥ (2q − 1)p− + 1− q then (i+, keep) is an optimal policy
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– If q < 0.5 and p+ ≤ (2q− 1)p−+ 1− q then (i−, switch) is an optimal policy

– If q = 0.5 and p+ ≤ 0.5 then (i, switch), for all i ∈ {1, 2, 3}, are optimal
policies

– If q = 0.5 and p+ ≥ 0.5 then (i+, keep) is an optimal policy

– If q > 0.5 and p+ ≥ 0.5 then (i+, keep) is an optimal policy

– If q > 0.5 and p+ ≤ 0.5 then (i+, switch) is an optimal policy

For the last two cases, notice that when q > 0.5, the condition V (i+, keep) ≥
V (i+, switch) simplifies to p+ ≥ 0.5.

4 General setting: n doors and general response model

In this section we analyze the general formulation of the MHP and develop a
model based on sequential decision making. We consider the general situations
with n doors and arbitrary prior probabilities pi. Monty may decide not to open
any door. Moreover, in this section we allow for Monty to be biased with respect
to which door to open when he can choose among several unopened doors. Note
that the models discussed in the previous Sections can be seen as special cases
of this general model.

The problem is solved with a decision tree; an excerpt of the general tree is
shown in Figure 3. Note that we use a different notation from previous Sections,
since the generalized problem does not enjoy the symmetries that simplified the
treatment of the former models. Each node of the tree is labeled with the variable
(either a decision or a random variable) that it represents.

The decision node S represents the initial door choice, with possible choices
in {S1, . . . , Sn}. For each Sj , there is a chance node O, with outcomes in {O∅}∪
{Oi}i 6=j representing whether and which door the host opens; in our notation
O∅ is the event no door is opened, and Oi means that the door i is opened; then:

– In case no door is opened, O = O∅, the position of the car is revealed to be
at a position k in a chance node T, with outcomes in {T1, . . . , Tn}. In the
leaf nodes, utility is 1 if j = k, and 0 otherwise.

– If, instead, the event Oi happens, we face the decision node F , with possible
choices in {Fl}l 6=i, representing the final door choice5, with the choice that
must be different from i. Then, the chance node T, with outcomes in {T}k 6=i,
reveals the car’s position; utility is 1 if the choice for node F is the same as
the outcome of T .

Let αi,j,k := P (Oi|Sj , Tk) to be the probability of Monty opening door i given
player’s selection of door j and car in door k. The vector

(αi,j,k)i,j,k∈{1,...,n}

5 In this generalized model, switching occurs when the choice at node F is a different
door from the one chosen at the root S.
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S

O

door 1

O
door 2

...

door 3

O

door n

...

T

do not open

1

0

T1

T2, . . . , Tn

F
open 2

T
choose 1

1

0

T1

T3, . . . , Tn

T

choose 3

...

1

0

T3

T1, T4, . . . , Tn

F

open 3

T
choose 1

1

0

T1

T2, . . . , Tn

T

choose 2

1

0

T2

T1, T4, . . . , Tn

...

...

...

Fig. 3. The decision tree corresponding to the generalized Monty Hall problem. The
root, the decision node S, is displayed on the left. In a chance node, the information
available up to that point is used to condition the distribution; for example, if the
player selected door 1 initially, the variable O is distributed according to P (O|S1),
that can be computed using Equation 9. Similarly, if the player chooses door i and the
host does not open any door, the probability of Ti is given by P (Ti|Si, O∅).
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fully describes Monty’s behavior from the point of view of the player. Note that
because Monty never opens the door chosen by the player, we have αi,i,k = 0,
and because Monty never opens the door with the car, we have αk,j,k = 0

Note that, in this decision tree, the probabilities associated to chance nodes
represent the epistemic uncertainty of the player about the behavior of Monty
and as well the position of the car.

A solution to a decision tree is a strategy that specifies how the player should
act at the various decision nodes. The optimal strategy can be found by the
“averaging out and fold back” method (see, for instance, the book of Jensen
and Nielsen [4]). The probability of Monty opening one specific door i, when the
player has picked door j, can be determined by marginalization:

P (Oi|Sj) =

n∑
k=1

P (Oi|Sj , Tk)P (Tk) =

n∑
k=1

αi,j,kpk. (9)

This means that, from the point of view of the player (that does not know where
the car is located), Monty does not open any door with probability

βj := 1−
n∑
i=1

P (Oi|Sj) = 1−
n∑
k=1

n∑
i=1

αi,j,kpk

when the player chooses door j initially.
We now solve the decision tree starting the evaluation from the nodes at

the bottom. For the T nodes, we use Bayes in order to determine the posterior
probability of each door. We determine the value p′k := P (Tk|Oi, Sj), the pos-
terior probability of the car being placed behind door k after having observed
that Monty opened door i and after having initially picked door j:

p′k = P (Tk|Oi, Sj) =
P (Oi|Sj , Tk)P (Tk|Sj)

P (Oi|Sj)
=

αi,j,kpk∑n
k′=1 αi,j,k′pk′

where we used P (Tk|Sk) = P (Tk), since the selection of a door does not influence
where the car lies.

At each of the F nodes, we need to choose the door with highest posterior
p′k given our initial choice S and the host’s action. This means picking the door
giving maxk p

′
k = maxk P (Tk|Oi, Sj).

At the O nodes, the host is acting. He might not open any door (probability
βj) or open a door i with probability P (Oi|Sj).

– If the host is not opening any door, the player is successful only if the door
with the car is the one that he initially picked. The probability of this is

P (Tj |O∅, Sj) =
P (O∅|Sj , Tj)P (Tj)

P (O∅|Sj)
=

(1−
∑
i αi,j,j)pj
βj

and the contribution to the O node is P (Tj |O∅, Sj) times P (O∅|Sj).
– If, instead, the host opens door i, the contribution to the value of the node

is P (Oi|Sj) maxk P (Tk|OiSj).
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This gives the following value for a node of type O:

P (O∅|Sj)P (Tj |O∅, Sj) +

n∑
i=1

P (Oi|Sj) max
k

P (Tk|Oi, Sj) = (10)

βj
(1−

∑
i αi,j,j)pj
βj

+

n∑
i=1

P (Oi|Sj) max
k

αi,j,kpk
P (Oi|Sj)

= (11)

(
1−

n∑
i=1

αi,j,j

)
pj +

n∑
i=1

max
k

αi,j,kpk (12)

At the root, we have the decision node S where we take the door j that maxi-
mizes the value of Equation (12).

Proposition 3. The optimal policy achieves expected payoff:

V ∗ = max
j=1,...,n

[(
1−

n∑
i=1

αi,j,j

)
pj +

n∑
i=1

max
k

αi,j,kpk

]
.

Example 5. We now consider classic Monty with response bias, that is the sce-
nario with 3 doors and uniform priors, P (Ti) = 1

3 , the host always open one
door (AO protocol), but when the player chooses the door with the car behind
in the first step, then the host may not be following an uniform distribution in
deciding which door to open (see also [2], pages 216-217).

In the following description let i, j and k to be distinct; i.e. (i, j, k) is a
permutation of (1, 2, 3). We have αi,j,k = 1 and αi,j,j + αk,j,j = 1. Now, assume
that the player selects door j and the host opens door i. Observe that the total
probability of opening door i is P (Oi|Sj) = 1

3 (1 + αi,j,j). We then determine
the posterior probabilities for positions j and k (the car cannot be behind door
i since this door was opened): P (Tk|Sj , Oi) =

αi,j,kpk
αi,j,jpj+αi,j,kpk

= 1
αi,j,j+1 and

P (Tj |Sj , Oi) =
αi,j,jpj

αi,j,jpj+αi,j,kpk
=

αi,j,j

αi,j,j+1 . The best decision in the second stage

of the game consist in picking the door j or k associated with the higher posterior.
Now, consider the decision at the root. The payoff V (Sj) of selecting door j,
assuming that then choosing optimally in the second step, is:

V (Sj) =
∑
i 6=j

αi,j,j + 1

3
max{ 1

αi,j,j + 1
,

αi,j,j
αi,j,j + 1

} =
1

3

∑
i 6=j

max{1, αi,j,k} =
2

3

Since this value does not depend on j, the first door can be chosen in an arbitrary
way. It turns out that the best policy in this case is “pick any door randomly and
then, after that the host opens a door, switch choice to other unopened door”.
The optimal value of the optimal policy is V ∗ = 2

3 .

5 Discussion and Conclusions

The Monty Hall Problem (MHP) is a puzzle that has raised a lot of attention and
is frequently used as a didactic tool for explaining how to reason with subjective
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probabilities. Some interesting variations of the Monty Hall problem have been
analyzed by Lucas et al. [7, 6]; we refer the reader to the book of Rosenhouse
that provide an excellent review of materials on the Monty Hall problem [11].

In computer science, the Monty hall problem has stimulated a variety of re-
search activities, including works on epistemic logic [5] and reasoning about un-
certainty [2]; we also mention the interpretation given by Viappiani and Boutilier
(in the appendix of [16]) in terms of preferences and choice. On the other hand,
psycologhists have used the Monty Hall problem to study how human people
reason with probabilities [15].

In this paper we provided an analysis of the Monty hall problem and some
of its extensions emphasizing the role of dealing with epistemic uncertainty. We
have considered policies that determine which door to select in the first round,
and whether to keep the same choice or to switch in the second. We provided
the characterization of the optimal policy in several generalizations of the MHP:
considering different prior subjective probabilities for the position of the prize
behind the doors, considering uncertainty over the possible host’s behaviors and
considering n doors. We mention some interesting further extensions of the MHP
worth studying: considering the generalization m rounds, and the case where the
number of rounds is uncertain.

We now provide some brief comments on how the Monty Hall problem is
related to several areas of artificial intelligence. First of all, notice that the tools
we have used (Bayesian reasoning, Bayesian networks, and decision trees) are
typically used in AI. Moreover, some of the ideas behind our work are relevant
to research in multi-agent systems since agents often have to reason about other
agents’ behaviour. In some sense, the MHP can be seen as an emblematic case of
an agent reasoning about another agent’s behavior, a key aspect of multi agent
system research; we advocate that it often worth to consider a wide variety of
possible behaviors and not just a single one, and to consider mixture of such
possible behaviors (as we did in our treatment of the MHP). This could be of
relevance for opponent modeling in games, for instance.

The Monty hall problem has connections with the statistical areas of se-
lectively reported data and missing data; in particular the missing at random
hypothesis in machine learning [3]. In the case of recommender systems based
on collaborative filtering where users rate items such as movies, the missing at
random hypothesis imputes missing ratings as the result of a random process
that selects the items that are rated or not. This assumption might not be valid
[9], causing the system to underperform. Indeed it is possible that an item, let’s
say a movie, is watched and then rated for a variety of reasons:

– the movie is popular (and the user often watches popular movies; although
he might not necessarily like them),

– the movie is perceived by the user as similar to others seen in the past,

– the user thinks (based on his knowledge) that he might like the movie and
therefore decide to watch it,

– the movie was recommended to the user (perhaps by a competitor), etc.



A Bayesian Interpretation of the Monty Hall Problem 13

Therefore, instead of a simple probabilistic model, one could consider a richer
model accounting for a mixture of all such different “user protocols” and the as-
sociated uncertainties in terms of subjective probabilities (allowing to model the
interplay between the user habits, the popularity of movies, the beliefs of the user
about which movies he might like, etc). Of course, learning such a probabilistic
model would be challenging. We believe that the design of recommender systems
dealing with such “protocol uncertainty” is an important research direction.
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