

Can a poor lonesome A genome of *Brassica napus* survive at diploid stage?

<u>Alexandre Pelé</u>¹, Gwenn Trotoux¹, Frédérique Eber¹, Sylvie Negre¹, Jérôme Morice¹, Maryse Lodé-Taburel¹, Marie-Madeleine Gilet¹, Cyril Falentin¹, Mathieu Rousseau-Gueutin¹, Anne-Marie Chèvre¹

¹IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, Le Rheu, France

14th International Rapeseed Conference, July 5-9, 2015, Saskatoon (Canada)

Divergence occurred between *B. napus* formation and cultivated *B. napus*

(U, 1935; Cheung et al., 2009)

How can we explain the stabilization of *B. napus*? 2 Ways

S0

S1

S2

. . .

Sx

Newly Formed Allopolyploids

Cultivated B. napus (AACC, 2n=38)

Cultivated B. napus (AACC, 2n=38)

How can we explain the stabilization of *B. napus*? 2 Ways

Newly Formed Allopolyploids

S0 Functional & Epigenetics Changes

(Lukens *et al.,* 2006; Albertin et al. 2006; Gaeta et al., 2007 ; Xu *et al.,* 2009)

S1 Burst of Genetic Changes

(Song *et al.,* 1995; Gaeta *et al.,* 2007 ; Szadkowski *et al.,* 2010;2011; Xiong *et al.,* 2011)

S2

Sx

Cultivated B. napus (AACC, 2n=38)

Cultivated B. napus (AACC, 2n=38)

Extracted A genome (AA, 2n=20)

Theoretical % of A Darmor in AAC hybrids

Cytogenetic characterization of the last three plants 2n=20

Stable meiosis for all 2n=20 Pollen Fertility decrease compare to Darmor (between 59 & 93%)

Strategy 2

	% Darmor	% Darmor
	theoretical	observed
AA Cycle 4	68%	57%
AA Cycle 5.1	76%	65%
AA Cycle 5.2	76%	68%

Extraction of Darmor is significantly lower than expected in the three last plants (χ² test, α<0.001)

Strategy 2

Structural changes?

With 4807 SNP only of C subgenome and mapped on B. napus

	C Subgenome SNP	% of C subgenome
	detected	introgressed
AA Cycle 4	41	<1%
AA Cycle 5.1	41	<1%
AA Cycle 5.2	30	<1%

Small telomeric genomic regions of C1 and C2

✤ 20 potential gene conversions

CONCLUSION

- Difficulty to extract A genome at diploid stage: Strategy 1 failed, Strategy 2 efficient but slower
- % of *B. napus* A genome extracted < % expected with retention of *B. rapa* SNP at homozygous stage (12 to ~25%)
- Introgressions of some C genomic regions from C1 and C2 (homoeologous of A01 and A02) and gene conversions

It will be difficult to get a pure A genome of *B. napus* at diploid stage

we will continue new cycles and molecular selection to try to increase level of Darmor A genome extracted

Some genomic regions probably evolved in a polyploid context

Structural and functional characterization of *B. rapa* homozygous
regions that could have the most diverged in a polyploid context

Biodiversity & Polyploidy Team : M. Rousseau-Gueutin M. Lodé G. Trotoux A. Pelé (PhD) A.M. Chèvre J. Morice M. Gilet G. Deniot C. Falentin S. Nègre V.Huteau **IGEPP** F. Eber O.Coriton