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Abstract—Backward projection is one of the most
time-consuming steps in method-based iterative re-
construction computed tomography. The 3D back-
projection memory access pattern is potentially enough
regular to exploit efficiently the computation power of
acceleration boards based on GPU or FPGA. This paper
proposes an OpenCL acceleration of the voxel-driven 3D
back-projection algorithm on an Arria 10 FPGA. This
design flow is based initially on an offline memory access
analysis, then iteratively on a performance analysis of
each new implementation represented on a Berkeley
Roofline model.

By taking advantage of the FPGAs local memory
architecture, we have succeeded to design an efficient
pipeline reaching maximum bandwidth with stall-free
access underlining this platform’s interest for memory
optimization. Our design flow allowed for a significant
improvement of our initial algorithm’s computational
intensity, resulting in better performance on FPGA.
It reaches comparable performance to an embedded
GPU implementation and other computed tomography
algorithms on FPGAs.

Index Terms—FPGA, HLS, memory access analysis,
roofline model, tomography reconstruction

I. Introduction

X-ray computed tomography(CT) is an imaging tech-
nique that initially found its application in the medi-
cal field. It has been extended to industrial applications
such as non-invasive human body investigation and non-
destructive testing of industrial materials. Model-Based
Iterative Reconstruction (MBIR) algorithms are proved
to produce better image quality at the cost of expensive
computational time. To reduce the reconstruction time
of CT algorithms, hardware accelerators are required.
For the past few years, GPUs have been the preferred
architecture due to their massively parallel computing
pattern. However, FPGAs can be re-considered thanks
to their low latency, power efficiency, and accessibility
through High-Level Synthesis (HLS) tools provided by
leading manufacturers like Intel or Xilinx.

Field programmable gate arrays (FPGAs) based on
HLS tools are experiencing great consideration as an
acceleration platform for many applications such as high-
performance computing [1], [2], [3], deep neural networks
[4], [5]. The maturity of their architectures and many

built-in floating-point units (DSPs) in the latest FPGAs
explain this interest. These floating-point units provide
high design flexibility and are optimized to support high-
performance DSP applications in IEEE 754 compliant
floating-point single precision. For instance, Intel Stratix
10 [6] and Intel Agilex [7] devices can achieve up to
9 TFLOPS and 20 TFLOPS respectively. Unlike CPUs
and GPUs, FPGAs can express spatial and temporal
(fine/coarse-grained) parallelism, making them suitable
for algorithms with sequential patterns and high data
dependency. In the past, these various parallelisms are
extracted for tomography through the HDL languages
requiring a basic knowledge of hardware [8], [9], [10], [11].
This level of abstraction can be heavy and time-consuming
development based on the complexity of specific algo-
rithms. Hence, the emergence of tools with a high level
of abstraction allows a broader audience to use FPGAs
through software programming languages like C, C++, or
OpenCL. FPGAs with HLS have recently been subject
of evaluation in computed tomography algorithms such
as Maximum Likelihood Expectation Maximization [12],
[13], 3D back-projection [14], [15] or CT data alignment
in memory [16]. These work focus on FPGA specific
optimization for computed tomography in algorithm ar-
chitecture co-design purpose. However, other works have
based their optimization on the algorithm itself. Choi et
al. [17] proposed a Ray-driven voxel-tile parallel approach
hence take advantage of FPGA BRAM blocks and the data
reuse rate. Zhang et al. [18] also proposed a parallel beam-
based reconstruction on FPGA to exploit on-chip BRAM
intensively.

In this paper, we propose an OpenCL acceleration
of the voxel-driven 3D back-projection algorithm on an
Arria 10 FPGA. This design flow is initially based on
an offline memory access analysis then iteratively on a
performance analysis represented on a Berkeley Roofline
[19]. Our implementation is based on blocks of voxels
reconstruction taking into account the date reuse rate, and
exploiting the local memory on FPGA using Intel FPGA
SDK for OpenCL. We compare the results with others
FPGA implementations in terms of throughput, execution
time, and design efficiency. The remainder of this paper



is organized as follows: in section II we present the 3D
back-projection, the acceleration platform and the offline
memory analysis. We introduce in section III our OpenCL
architecture of the 3D back-projector. The optimisation
guided by the roofline model and experimental results are
provided in section IV.

II. Background and motivation

A. 3D back-projection algorithm
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Fig. 1: X-RAY CT Projection

3D Computed Tomography (CT) aims to acquire the
internal density d of 3D objects from external measure-
ments SCT called sinogram. An object (3D volume) is
placed between an X-ray source and a detector plane as
illustrated Fig. 1. The 3D back-projection used in iterative
reconstruction and described in detail in [8] algorithm is
given by:

d(c) =
∫
SCT (u(ϕ, c), v(ϕ, c), ϕ).w(ϕ, c)2dϕ (1)

where c = (x, y, z) are the voxel coordinates, (u, v) are
the cone beam coordinates, ϕ is the angular trajectory of
the detector and w is the distance weight.

u(ϕ, c) = x ∗ cos(ϕ) + y ∗ sin(ϕ) (2)

v(ϕ, c) = x ∗ sin(sinϕ)− y ∗ cos(ϕ) + z (3)

For each voxel (x, y, z), the projection of its contribution
is located at a position (u(x, y, ϕ), v(x, y, z, ϕ)) on the
detector. The contribution on the detector is computed
by bi-linear interpolation. In our design, the interpolation
is replaced by the nearest neighbor method to reduce
resource consumption and computation overhead.

B. Acceleration platform
OpenCL is an open-source parallel programming API

for heterogeneous processing platform (CPU, GPU,
FPGA...). Based on the C99 standard, OpenCL supports
both data and task-parallel programming models (Sin-
gle Work-Item Kernel and NDRange Kernel) [20]. An
OpenCL application is composed of two programs: a host
application and the kernel compiled separately using Just
In Time (JIT). The JIT compilation is not supported due
to the long-time place and route step for bitstream genera-
tion on FPGAs. Therefore the OpenCL kernel is compiled

offline using a vendor-specific compiler since FPGA does
not support JIT compilation due to the place and route
step in the synthesis flow. The Board Support Package
(BSP) as shown in Fig. 2, provided by the board manu-
facturers, allows programmers to run the kernel executable
on the target FPGA. It packages features such as IP Cores,
DDR controller, PCIe controller, and DMA drivers to
establish communication between the host and the FPGA
device. Many Intel FPGA manufacturers provide FPGA
with their BSP to quickly design and run Intel devices
applications using Intel FPGA SDK for OpenCL. Intel
FPGA SDK also provides, besides OpenCL directives,
many FPGA-specific optimizations to fully harness the
device potential.

These compilers implement different optimization based
on their particular intermediate representation (IR), such
as pipelining or expressing data-level parallelism. How-
ever, they suffer from a lack of support for many other
unexploited FPGA-specific optimizations for arithmetic
operations [21] for instance. Hence, harnessing FPGAs’ full
potential via HLS tools requires knowledge of their archi-
tecture and a significant effort to adapt the application
because it is not performance-portable. This leads to the
evaluation of OpenCL optimization techniques on FPGA
by various works [2], [15], [22], [1].
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Fig. 2: Intel FPGA SDK for OpenCL platform

C. Offline Memory Access Analysis

The global memory access on Intel FPGA, despite its
high latency, can be efficient for contiguous and repeti-
tive memory accesses thanks to automatic embedded on-
chip cache implementations in Load-Store Units (LSUs).
For non-sequential and random accesses, these automatic
caches, inferred by the Intel compiler, will be much less
relevant to speed up the application on FPGAs efficiently.
Their inference will be counterproductive and waste valu-
able BRAM resources with a high risk of memory stalling.
Such behavior is confirmed in the 3D back-projection
algorithm by [14], and many CT algorithms, so their
acceleration on FPGAs remains a big concern. An offline
study of the algorithm memory access pattern is required
to make it regular or prefetching sinogram data to the on-
chip BRAM before performing voxel reconstruction.



The projection data (sinogram) size is tremendous and
cannot fit in FPGA on-chip memory. The block of voxels
reconstruction will be wise to avoid global memory bot-
tleneck and achieve better performance. The projection
of a block (Bx, By, Bz) corresponds to a rectangle shape
(localu, localv) in the detector plane for a given projection
angle ϕi. A high data re-utilization exists and is even more
important for neighboring voxels. For each projection an-
gle, voxels in the same block will access the same sinogram
tile thanks to the CT system geometry. The main concern
is to capture the sinogram footprint without loss of in-
formation and calculate the coordinates of its boundary.
For each voxel (x, y, z), its reconstruction depends on its φ
angular projections, these projections are spatially distant
due to their storage in the sinogram following the order
(u, v, ϕ). To increase the spatial locality, reconstruction by
a group of voxels in the same block is beneficial compared
to voxel by voxel reconstruction.

The prefetched sinogram data depends on the shape of
the block of voxels. For a block (Bx, By, Bz), the 2D rect-
angle coordinates of the projection shape (localu, localv)
depend on Bx, By, and Bz such as: localv =

√
B2

x +B2
y as

pointed out in [15] and localv =
√

2 ∗ Bz. The data reuse
rate is computed by the following formula and illustrated
in Fig. 3.
Data reuse = Bx∗By∗Bz

#Memory access I/O where the
#Memory access I/O is obtained by a static analysis of
the CPU code.
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Fig. 3: Data reuse rate

The reuse rate is shown in Fig. 3 with different block
sizes, same markers match the same number of voxels in
the block, i.e. the same BRAM consumption. This allows
us to see the effect of block shape and size that provides
the best reuse rate. We notice that we have best trade-off
from Bz = 8 (filled dot in Fig. 3) in data reuse and BRAM
consumption.

III. Hardware implementation

The memory access pattern of the 3D back-projector
is non-contiguous which could result in catastrophic per-

formance on FPGA. The use of Intel automatic cache
became a lock when optimizations such as loop unrolling
were applied in the case of algorithm 1. Loop unrolling
consists of fully or partially replicating the loop body
and increasing the BRAM usage, thus preventing DSPs’
maximum use.

Algorithm 1 Kernel OpenCL for BP-cache
for all zn, yn, xn do

voxelsum ← 0
#pragma unroll 32
for all ϕ do

Compute(un, vn)
voxelsum+ = sinogram[un, vn, ϕ]

end for
volume[xn, yn, zn] = voxelsum

end for

Algorithm 2 Kernel OpenCL for BP-prefetch
for all blockz,y,x do

for all ϕ do
Compute(u0, v0)
P retching sinogram data
#pragma unroll 64
for all zn, yn, xn ∈ blockz,y,x do

Compute(un, vn)
block[zn, yn, xn]+ = sino local[un, vn]

end for
end for
volume[zn, yn, xn]← block

end for

In our new implementation (algorithm 2), the critical
path consists of reconstructing the block of voxels with the
innermost loop over the voxels. The loop body, considered
as processing element (PE), can be replicated for parallel
voxel intensity computation by loop unrolling. It is then
possible to have 64 PEs (see Fig. 4) in our architecture
without exceeding available resources. Each PE must have
free access to local memory, which requires a physical port
for each memory read. If there is not enough port, the
memory requests will be made with arbitration which will
cause a severe performance problem of the pipeline by
increasing the Initiation Interval (II) [23]. The architec-
ture’s input is the image projections in the detector plane
as in Fig. 4. For each projection angle ϕi, we prefetch
all contributions required (red rectangle) for the voxels
accumulation in the block. We load more memory data
than required to assure correct reconstruction and take
advantage of memory coalescence. After the accumulation
over all projections angle ϕi, the reconstructed block of
voxels (blue cube) is written back (in the volume) to the
global memory.

Our architecture requires 64 reads port (32 bits wide)
for all the PEs to read sinogram data in local memory,
and 2 read/write ports (2048 bits wide) for accumulation
in the block of voxels. Intel recommends to have four
or less read/write ports to local memory for stall-free
access without arbitration [23]. We have a total memory
replication factor of 22 to support parallel access to the
local sinogram. Each replicate has the same sinogram data
for the reconstruction. In addition, we place 8 privates



Fig. 4: BP-Prefetch architecture with 64 PEs

copies of the local memory for concurrent execution of loop
iterations (ϕ loop in algorithm 2).

IV. Roofline analysis and results

The Berkeley Roofline model was used to highlight the
optimization steps after improving our implementation’s
computational intensity. We first build our architecture to
determine the attainable performance and then tuning the
block size for better performance.

A. Experiment setup

In this experiment we do not consider the data transfer
between the host and the device therefore the considered
runtimes do not include memory transfer. However, to
speed up the memory transfer, the allocate data must
be at least 64 bytes aligned to allow the Direct Memory
Access (DMA) transfer. To allocate an aligned memory,
the posix function posix memalign can be used in the
host side. In our experience the aligned memory achieves
better transfer rate than non-aligned in all cases. We
used for this work the FPGA FLIK Arria 10 GX FPGA
(10AX115N2F45E1SG) with 1150K logic elements, which
comes with 8 GB of DDR4-2133 memory, with a maxi-
mum frequency of 480 MHz. The FPGA is connected in
PCIe connection (via Thunderbolt 3) to the host system.
The considered volume is a 2563 voxel, with 256 angles
variations. Each kernel execution is monitored through the
Intel FPGA dynamic Profiler for OpenCL. For each kernel,
this tool provides, amongst other things, the operating
frequency, the execution time, the logic utilization, and
the latency, bandwidth, and stall of most memory access.

B. Roofline model for FPGAs

The roofline model first introduced by [19] is a tool for
visually and quickly observing the possible limitations of
an algorithm relative to theoretical maximum performance
on a target architecture. The model is characterised by
two keys parameters which defines two roofs: the device
peak performance and the attainable bandwidth. The

work of Williams et al. [19], focused on CPU multi-core
architectures, was extended to the FPGA architectures
in [24] through HLS tools and taking into account the
resource utilization of the device.

We use the roofline model to iteratively analyze our
algorithm and guide the optimizations. Each algorithm
results on a specific roofline for FPGAs. The performance
roof is determined by the number of resources consumed
and the effective operating frequency. The dynamic profiler
gives the effective (measured) DRAM bandwidth achieved.
Table I lists the number of operations GBOP and the num-
ber of global memory accesses of the 3D back-projection
in GB.We determine the Computational Intensity (CI) for
different versions of the algorithm. The BP-Cache design
is memory-bound (see Fig. 5 red dot) due to the lack
of spatial and temporal data locality in the sinogram.
The computational intensity of this version is very low,
elaborating another strategy to access off-chip memory
might substantially increase the CI and allow the use of
more DSP slices to improve the performance.

Bz Operations GBOP DRAM (GB) CI
BP-cache N/A 236 17.2 13.7

BP-prefetch

1 253 1.1 236
2 253 0.8 314
4 253 0.67 377
8 253 0.6 419
16 253 0.57 443

TABLE I: Roofline analysis Memory and Operations
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Fig. 5: Roofline of 3D back-projection with different Bz

We can see that CI increases as long as the block size
grows until it reaches the maximum data reuse rate, and
at the same time, the DRAM transactions is decreased.
The memory operations in the table I take into account
memory coalescence allowed by loop unrolling.

C. Effect block size variation

Table II shows the results of our implementation. The
BP-cache design is a version of the 3D back-projection
using burst-coalesced cached LSU (algorithm 1). OpenCL
optimizations such as loop pipelining and unrolling were
applied to this version to leverage the FPGA. This version



Version BRAM DSP Stall Occ Freq Time
(%) % (%) (%) (Mhz) (s)

BP-Cache 72 27 71.27 24.6 150 3.65
322 × 1 50 58 88.34 12.3 197 2.78
322 × 2 50 58 90.1 24.3 190 1.46

BP- 322 × 4 50 58 7.22 43.5 195 0.893
Prefetch 322 × 8 50 58 0.44 60.3 180 0.719

642 × 1 50 63 2.79 43.5 183 0.843
642 × 2 50 63 0.34 58.9 186 0.658
642 × 4 50 63 0.2 74.4 187 0.529
642 × 8 62 63 0.06 84.1 189 0.425

TABLE II: Block size variation effect on the performance

suffers from a high pipeline stall percentage because of
the memory access pattern making the global bandwidth
the main bottleneck. The BP-Prefetch design (algorithm
2) achieves better performance compared to the BP-cache
version. The table II shows the effect of block shape and
size variation. We saw in Fig. 3 that the reuse rate varies
with the number of voxels in the block. For instance, the
blocks 64×64×1 and 32×32×4 have the same number of
voxels and approximately the same reuse rate. However,
the reconstruction based on the 64× 64× 1 block is faster
than the 32 × 32 × 4. The memory access pattern is a
bit different for the two block due to the data alignment.
The performance for blocks with Bx = By = 64 are
always better than Bx = By = 32 given the same number
of voxels. In the design, all loops are pipelined with an
Initiation Interval (II) of 1. Once Bx and By are fixed, Bz

tuning allows to optimize the data reuse rate and therefore
the overall performances as illustrated on table II. We have
obtained a better execution time with the 64 × 64 × 8
block, which corroborates the static study performed on
the data reuse. Compared to the previous BP-cache design,
we achieved a speedup of 8.6 at 188.9MHz.

The resource usage of the 64 × 64 × 8 block version
is presented in table III. As mentioned above our design
contains 64 PEs, the overall back-projector design uses
949 DSP slices and 1952 blocks RAMs. The BRAM usage
also includes the memory replication overhead to support
concurrent access within the pipeline.

FF LUT BRAM DSP
Usage 407183 184616 1952 949

Available 1577720 788860 2537 1518
Ratio 25% 44% 62% 63%

TABLE III: FPGA resources consumption on Arria 10

D. Performance comparison

To fairly compare different implementations with differ-
ent problem sizes, we use the Giga Updates Per Second
(GUPS) indicator, which is insensitive to the size of the
problem, by using the formula given in [25].

GUPS = GU

Timekernel
with GU =

Nvoxel ∗Nacc/voxel

10243
(4)

with Nvoxel the size of volume and Nacc/voxel the num-
ber of accumulation per voxel. The GUPS in [25] uses
10243 instead of 10003, so we use recalculate all GUPS
according to this formula.

Our work achieved a comparable performance (same
order of magnitude) to our embedded GPU implemen-
tation in terms of GUPS, as shown in table IV. For
FPGA accelerations, Vivado HLS is commonly used to
achieve acceleration as in [17], [16], although we use in
this work Intel FPGA SDK for OpenCL. OpenCL is a
bit at a higher abstraction than HLS. Hence the designer
has more control over the pipeline using HLS compilers
such as Vivado HLS or Intel HLS compiler. Therefore
we have achieved low GUPS than the works using HLS.
Moreover, we use much fewer resources than those works
since our target device is a middle-end Intel FPGA. Choi
et al. [17] used, with helical geometry, the Convey HC-
1ex platform with four FPGAs running at 100 Mhz of
operating frequency, and their design consumes 1408 DSP
slices. Wen et al. [16] targeted the Xilinx ZCU102 platform
(based on an UltraScale FPGA) with an overall DSP
utilization of 1476 at 299.97 Mhz. We then evaluate all the
FPGA implementations’ design efficiency by comparing
the Giga update perform per cycle by each MAC (Multiply
ACcumulator) . Our OpenCL implementation on Arria 10
has approximately the same design efficiency as the HLS
ones (table IV). We evaluate our pipeline efficiency by
computing the update/cycle/PE, which is equals to 0.84 ;
it demonstrates that our pipeline works efficiently close to
the optimal compute throughput of 1 update/cycle/PE.

Reference Platform Volume Acc. Time GUPS GUpdate
/voxel (s) /cycle

/MAC
[17] 4×Virtex-6 5122×372 831 3.7 20.4 0.156
[16] ZCU102 10242×128 502 2.10 29.9 0.073

GPU Jetson TX2 2563 256 0.25 15.8 0.078
BP-cache Arria 10 2563 256 3.62 1.1 0.019

BP-prefetch Arria 10 2563 256 0.42 9.4 0.056

TABLE IV: Performance comparison of our work and other works

V. Conclusion

We present in this paper an optimization based on back-
projection algorithm for CT reconstruction using FPGA
BRAM efficiently. A reconstruction by block of voxels was
developed to maximize data reuse and reduce external
memory bandwidth, and maximize at the same time the
use of the on-chip local memory. By expressing an higher
CI for back-projection algorithm, our design implementa-
tion performs 9.4 GUPS based on an efficient pipeline with
no stall percentage on Intel Arria 10. Performances are
therefore becoming closer to the ones obtained on embed-
ded GPU. We plan to extend this work to the ray-driven
projector to run a full iterative reconstruction, and also to
further optimize the implementations to target the Intel
Stratix 10 GX device, which offers more computational
capabilities.
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