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The equational theory of relations can be characterized using graphs and homomorphisms. This result, found independently by Freyd and Scedrov and by Andréka and Bredikhin, shows that the equational theory of relations is decidable. In this paper, We extend this characterization to the whole universal first-order theory of relations. Using our characterization, we show that the positive universal fragment is also decidable.

Introduction

Binary relations are a versatile mathematical object, used to model graphs, programs, databases, etc. It is then a natural task to understand the laws governing them. Since the seminal work of Tarski [START_REF] Tarski | On the calculus of relations[END_REF], this task has occupied researchers for several decades, see for example [START_REF] Monk | On representable relation algebras[END_REF][START_REF] Bredikhin | The equational theory of relation algebras with positive operations[END_REF][START_REF] Bloom | Notes on equational theories of relations[END_REF][START_REF] Maddux | Relation Algebras[END_REF][START_REF] Andréka | Axiomatizability of positive algebras of binary relations[END_REF][START_REF] Brunet | Petri automata for kleene allegories[END_REF][START_REF] Nakamura | Partial derivatives on graphs for kleene allegories[END_REF].

Relations usually come with a certain number of standard operations: union ∪, intersection ∩, composition •, converse • etc. We are interested in containment between terms built with these operatons with respect to their relational interpretations. When a containment between two terms t and u holds, we say that t ≥ u is a valid inequation for relations and write Rel |= t ≥ u. For instance, an emblematic valid inequation is the following one:

(a • b) ∩ (a • c) ≥ a • (b ∩ c)
This law is valid because no matter how we interpret the letters a, b and c as relations, the relation denoted by the term a • (b ∩ c) will be contained in the relation denoted by the term (a • b) ∩ (a • c). A very simple way to check that this inequation is valid relies on the following characterization ([1, Thm. 1], [8, p. 208]):

Rel |= t ≥ u ⇔ G(t) ▷ G(u) (⋆)
In this theorem, G(t) and G(u) are finite graphs associated to the terms t and u respectively, and ▷ denotes graph homomorphism. For example, the validity of the law above is witnessed by this homomorphism (in red) from the graph of (a As maybe noticed by the reader, inequations are implicitly universally quantified. They actually form a very basic and small subset of the more general universal first-order formulas.

The latter comprises universal positive formulas which are basically disjunctions of inequations, and Horn formulas which are implications between inequations.

Universal first-order formulas have received a lot of attention in the model theoretical community. They enjoy for example the Łoś-Tarski theorem [START_REF] Hodges | A Shorter Model Theory[END_REF]Thm.5.4.4], which states that the set of universal first-order formulas is exactly the set of first-order formulas preserved under taking substructures.

In this paper, we give a graph characterization for those universal first-order formulas which are valid for relations, generalizing the characterization (⋆). To this end, we proceed in three steps. First, we provide a characterization of relational validity for positive universal formulas. Based on this, we show that relational validity is decidable for this fragment. As a second step, we characterize relational validity for Horn formulas. On our way to this result, we introduce the notion of limit of a sequence of graphs related by homomorphisms, which we believe is of independent interest. Finally we combine the techniques used for both fragments to characterize validity for all universal first-order formulas. Before presenting our results, we start by recalling some background in Section 2.

Preliminaries

Universal theory of relations

We let a, b . . . range over the letters of an alphabet A. Terms are generated by this syntax:

t, u ::= t • u | t ∩ u | t • | 1 | ⊤ | a a ∈ A
We denote the set of terms by T . We often write tu for t • u, and assign priorities to symbols so that ab ∩ c, a ∩ b • and ab • parse respectively as (a

• b) ∩ c, a ∩ (b • ) and a • (b • ).
First-order formulas are generated by the following syntax:

φ, ψ := t ≥ u | ¬(t ≥ u) | φ ∨ ψ | φ ∧ ψ | ∃a.φ | ∀a.φ t, u ∈ T , a ∈ A.
Formulas of the form t ≥ u are called inequations. We extend the operation of negation ¬ to all formulas in the standard way, for instance ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ. Implication φ ⇒ ψ is a shortcut for ¬φ ∨ ψ. Free and bound variables are defined as usual, and we call sentence a formula without free variables.

A universal formula is a formula from the syntax above which does not use existential quantification. A generalized Horn formula is a formula of the following form, where ∀⃗ a denotes a sequence of universal quantifications:

∀⃗ a. j∈J (v j ≥ w j ) ⇒ i∈I (t i ≥ u i )
We generally write it as follows, where H is the set of inequations {v j ≥ w j , j ∈ J}:

∀⃗ a. H ⇒ i∈I (t i ≥ u i )
We call H its hypothesis and i∈I (t i ≥ u i ) its conclusion. A Horn formula is a generalized Horn formula whose conclusion contains a single disjunct. We write it like this:

∀⃗ a. H ⇒ t ≥ u
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A Positive universal formula is a a generalized Horn formula whose set of hypothesis is empty. It looks like this: ∀⃗ a.

i∈I (t i ≥ u i )
A universal inequation is a positive universal formula with a single disjunct. We will sometimes call it simply inequation. It looks like this:

∀⃗ a. t ≥ u
In the rest of the paper, we will be interested only on universal sentences, this is why we will omit the universal quantification in front of our formulas.

Note that every universal formula can be written as the conjunction of generalized Horn formulas. In the rest of the paper, we will mainly focus on the latter.

Let us define relational validity for generalized Horn sentences. An interpretation σ is a function σ : A P(B × B) mapping letters into relations over a base set B. We can extend σ to all terms σ : T P(B × B), by interpreting the operations •, ∩, • , 1 and ⊤ on relations as follows: Here are respectively a universal inequation (1), a positive universal sentence (2), and a Horn sentence [START_REF] Bloom | Notes on equational theories of relations[END_REF], that are all valid for relations:

R • S = {(x, y) | ∃z.(x, z) ∈ R and (z, y) ∈ S} (Composition) R ∩ S = {(x, y) | (x, y) ∈ R and (x, y) ∈ S} (Intersection) R • = {(x, y) | (y, x) ∈ R} (Converse) 1 = {(x, x) | x ∈ B} (Identity) ⊤ = {(x, y) | x,
a(ba ∩ 1)b ≥ ab ∩ 1 (1) ⊤c⊤ ∩ ab ∩ ad ≥ a(b ∩ d) ∨ d ≥ ac (2) ef • ≥ ⊤ ⇒ (ae ∩ cf )(e • b ∩ f • d) ≥ ab ∩ cd (3)
We will see in the upcoming sections how to check their validity.

Graph characterization of the inequational theory of relations

Let A be an alphabet. A 2-pointed labeled graph is a structure (V, E, ι, o) where V is a set of vertices and E ⊆ V × A × V and ι and o are two distinguished vertices called the input and output. We simply call them graphs in the sequel; we depict them as expected, with unlabelled ingoing and outgoing arrows to denote the input and the output, respectively.

We denote by Gr the set of finite graphs. If G is a graph and x, y two of its vertices, we M F C S 2 0 2 1
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Graph characterization of the universal theory of relations denote by (x, G, y) the graph obtained from G by considering x and y as input and output respectively.

We define the following operations of graphs.

G ∩ H = G H G • H = G H G • = G
We associate to every term t ∈ T a graph G(t) called the graph of t, by letting

G (a) = a G (1) = G (⊤) =
and by interpreting the operations •, ∩ and • on graphs as above.

▶ Example 1. The graphs G(⊤c⊤ ∩ ab), G(ab ∩ 1) and G(bd • ) are respectively the following:

b d a b a b c
Graph homomorphisms play a central role in the paper, they are defined as follows:

▶ Definition 2 (Graph homomorphism). Given two graphs G = ⟨V, E, ι, o⟩ and G ′ = ⟨V ′ , E ′ , ι ′ , o ′ ⟩, a (graph) homomorphism h : G H is a mapping from V V ′ that preserves labeled edges, ie. if (x, a, y) ∈ E then (h(x), a, h(y)) ∈ E ′ ,

and preserves input and

output, ie. h(ι) = ι ′ and h(o) = o ′ . The image of G by h, denoted h(G), is the graph ⟨h(V ), E ′′ , ι ′ , o ′ ⟩ where E ′′ = {(h(x), a, h(y)) | (x, a, y) ∈ E} .
We write G ▷ H if there exists a graph homomorphism from G to H, and G H if there exists an injective graph homomorphism from G to H. In the later case, we usually consider G as an actual subgraph of H.

Our starting point was this characterization of the inequational theory of relations: [8, p. 208]). For all terms u, v,

▶ Theorem 3 ([1, Thm. 1],
Rel |= u ≥ v iff G (u) ▷ G (v)

Graphs and interpretations

We state below the main lemma (Lemma 6) that was used to prove Theorem 3, which will be useful for us too. But first, let us explicit a link between graphs and interpretations.

▶ Definition 4 (Graphs and interpretations). Let σ : A P(B × B) be an interpretation. The graph associated to σ, G(σ), is the graph whose set of vertices is B and

(x, a, y) is an edge of G(σ) iff (x, y) ∈ σ(a).
Conversely if G = (E, V ) is a graph, the interpretation associated to G, I(G), is the function

A P(E × E) a {(x, y) | (x, a, y) ∈ V }
In the above definition, graphs are considered without distinguished input and output. Recall that (x, G, y) is the graph G where x and y are chosen to be the input and output.

▶ Lemma 6 ([1], Lemma 3). For every interpretation σ : A P(B × B) and x, y ∈ B we have:

σ(t) ∋ (x, y) iff G(t) ▷ (x, G(σ), y)
3

Characterizing the positive universal theory of relations

Given two graphs G and H, we define G ⊕ H as the disjoint union of G and H, whose input and output are those of G. Note that ⊕ is associative, but not commutative. However, note that the following holds:

G ⊕ H ⊕ K = G ⊕ K ⊕ H G ▷ H ⊕ H ⊕ K ⇔ G ▷ H ⊕ K
Now we can state our first characterization theorem:

▶ Theorem 7.
For all terms t i , u i where i ∈ [1, n], the following holds

Rel |= i∈[1,n] (t i ≥ u i ) iff i∈[1,n] G(t i ) ▷ G(u i ) ⊕ G where G = G(u 1 ) ⊕ • • • ⊕ G(u n ).
Using the remark above, the case of two disjuncts can be formulated as follows

Rel |= (t 0 ≥ u 0 ) ∨ (t 1 ≥ u 1 ) iff G(t 0 ) ▷ G(u 0 ) ⊕ G(u 1 ) or G(t 1 ) ▷ G(u 1 ) ⊕ G(u 0 )
▶ Example 8. The validity of the following positive universal sentence

⊤c⊤ ∩ ab ∩ ad ≥ a(b ∩ d) ∨ d ≥ ac (2)
is witnessed by this homomorphism depicted below: Graph characterization of the universal theory of relations Proof. We show here the case of binary disjunctions to lighten notations. The general case works exactly in the same way.

G(⊤c⊤ ∩ ab ∩ ad) ▷ G(a(b ∩ d)) ⊕ G(ac)
(⇒) Suppose that Rel |= (t 0 ≥ u 0 ) ∨ (t 1 ≥ u 1 ), let us show that either

G(t 0 ) ▷ G(u 0 ) ⊕ G(u 1 ) or G(t 1 ) ▷ G(u 1 ) ⊕ G(u 0 )
Let G be the graph (without specified input and output) which is the disjoint union of G(u 0 ) and G(u 1 ), and let σ be the interpretation associated to G. We denote by G 0 the graph G(u 0 ) ⊕ G(u 1 ) and by G 1 the graph G(u 1 ) ⊕ G(u 0 ). To conclude the proof of this direction, we show that, for i = 0, 1: (⇐) Suppose that G(t 0 ) ▷ G(u 0 ) ⊕ G(u 1 ) and let us show that:

σ(t i ) ⊇ σ(u i ) ⇒ G(t i ) ▷ G i Suppose that σ(t 0 ) ⊇ σ(u 0 ),
Rel |= (t 0 ≥ u 0 ) ∨ (t 1 ≥ u 1 )
The other case is treated symmetrically. Let σ : A P(B × B) be an interpretation, and let G be its graph. We distinguish two cases. We have either:

∀x, y ∈ B, G(u 1 ) ̸ ▷(x, G, y)
In this case, by Lemma 6, there is no pair (x, y) such that (x, y) ∈ σ(u 1 ), hence σ(t 1 ) ⊇ σ(u 1 ) is vacuously true.

Suppose now that there is x 1 and y 1 in B such that G(u 1 ) ▷ (x 1 , G, y 1 ), let h 1 be such homomorphism. Notice the following:

∀x, y ∈ B, G(u 0 ) ▷ (x, G, y) ⇒ G(u 0 ) ⊕ G(u 1 ) ▷ (x, G, y) ( †)
Indeed, if h 0 is a homomorphism from G(u 0 ) to (x, G, y), then we can combine it with h 1 to get a homomorphism from G(u 0 ) ⊕ G(u 1 ) to (x, G, y).

Let us show that σ(t 0 ) ⊇ σ(u 0 ). If σ(u 0 ) ∋ (x, y), then by Lemma 6, we have that G(u 0 ) ▷ (x, G, y). Using the remark ( †), we get that G(u 0 ) ⊕ G(u 1 ) ▷ (x, G, y). By our hypothesis, we know that G(t 0 ) ▷ G(u 0 ) ⊕ G(u 1 ), thus G(t 0 ) ▷ (x, G, y). We conclude that σ(t 0 ) ∋ (x, y), and this ends the proof of our first characterization theorem. ◀

Testing the existence of a homomorphism between finite graphs is decidable. Hence, we get as a corollary of Theorem 7 that:

▶ Theorem 10. The positive universal theory of relations is decidable.

Characterizing the Horn theory of relations

To give a characterization of the Horn theory of relations, we need to generalize the homomophism relation between graphs to take into account some set of hypothesis.

A context is a graph with a distinguished edge labeled by a special letter 

G = C[G(t)] and H = C[G(u)]
We define ▷ H as the transitive closure of ▷∪ > H .

In the definition above, the graphs G, H and C are not necessarily the graphs of some terms.

We can state now the main theorem of this section:

▶ Theorem 12. For all terms t, u and set of inequations H, we have:

Rel |= (H ⇒ t ≥ u) iff G(t) ▷ H G(u)
Hence, in order to show that a Horn sentence (H ⇒ t ≥ u) is valid, we need to find a sequence of graphs G 0 , . . . , G n such that G 0 = G(t), G n = G(u) and for every i ∈ [1, n -1] the graphs G i and G i+1 are either related by homomorphism or by the relation > H . We say that this sequence witnesses the validity of this Horn sentence.

▶ Example 13. The validity of the following Horn sentence:

ef • ≥ ⊤ ⇒ (ae ∩ cf )(e • b ∩ f • d) ≥ ab ∩ cd (3)
is witnessed by the following sequence: We start by applying a homomorphism represented by the dotted lines, then we factorize the obtained graph into a context (in green) and an inner graph (in red) which is the graph of ef • , the lhs of the hypothesis ef • ≥ ⊤. We replace it by the graph of the rhs ⊤, which is the empty graph. Doing so, we get the graph of ab ∩ cd Notice that the intermediary graph is not the graph of a term.

▶ Remark 14. One may wonder whether Theorem 12 leads to a decidability result for the Horn theory of relations. Actually, the latter is undecidable, as it subsumes the word problem for monoids [START_REF] Davis | Computability and Unsolvability[END_REF]Thm.4.5].

The next two subsections are dedicated to the proof of Theorem 12.

From ▷ H to validity

In this section we prove the right-to-left implication of Theorem 12. But first, let us show the following lemma, which says that ▷ H collapses to ▷ if the target graph is the graph of an interpretation making H true.

▶ Lemma 15. Let H be a set of inequations and σ an interpretation. If the inequations H are true under σ, then for every graph G:

G ▷ H (x, G(σ), y) iff G ▷ (x, G(σ), y) M F C S 2 0 2 1
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Proof. The right-to-left direction is trivial. We prove the other direction by induction on the length of a sequence witnessing that G ▷ H (x, G(σ), y). The most interesting base case being when, for some graph H:

G > H H ▷ (x, G(σ), y) (BC)
The other two base cases are: G ▷ (x, G(σ), y), which is trivial, and G > H (x, G(σ), y), which can be seen as a particular case of the interesting base case, by taking H to be (x, G(σ), y).

The inductive step is easy, as the composition of two homomorphisms is a homomorphism. Now, let us prove the interesting base case. Suppose that there is a graph H satisfying (BC), and let us find a homomorphism from G to (x, G(σ), y).

Since G > H H, there is an inequation (t ≥ u) ∈ H and a context C such that G = C[G(t)] and H = C[G(u)].
We have also that H ▷ (x, G(σ), y), so let h be a homomorphism:

h : C[G(u)] (x, G(σ), y)
Let x ′ and y ′ be respectively the image of the input and the output of G(u) by h. By considering the restriction of h to G(u), we have that G(u)▷(x ′ , G(σ), y ′ ). Hence, by Lemma 6, we have that (x ′ , y ′ ) ∈ σ(u). As H is true under σ, we have also that (x ′ , y ′ ) ∈ σ(t), and again by Lemma 6, G(t) ▷ (x ′ , G(σ), y ′ ). Let us denote by k a homomorphism:

k : G(t) (x ′ , G(σ), y ′ )
With these ingredients, we construct a homomorphism

f from G = C[G(t)] to (x, G(σ), y)
as follows: the restriction of f to C is h and the restriction of f to G(t) is k. It is easy to check that f is indeed an homomorphism, and this ends the proof. ◀

We can now prove the right-to-left direction of Theorem 12.

Proof of Theorem 12 (⇐). Suppose that G(t)▷ H G(u).

Let σ be an interpretation satisfying H and suppose that (x, y) ∈ σ(u).

σ(u) ∋ (x, y) ⇒ G(u) ▷ (x, G(σ), y) Lem. 6 ⇒ G(t) ▷ H (x, G(σ), y) By hypothesis ⇒ G(t) ▷ (x, G(σ), y) Lem. 15 ⇒ σ(t) ∋ (x, y) Lem. 6 ◀

From validity to ▷ H

The main ingredient to prove the left-to-right direction of Theorem 12 is to construct, given a set of hypothesis H, an interpretation making them true. For that we start from an arbitrary graph and saturate it by the hypothesis H, then we iterate this construction ω-times and take the limit graph. The desired interpretation will be the interpretation associated to this graph. In the sequel, we define the notions of graph limit and saturation, then we proceed to the proof of our theorem.

Limit of a sequence of graphs

When we consider an increasing sequence of graphs (G i ) i∈ω , that is, G i G i+1 for every i ∈ ω, the notion of limit is clear: it is just the union of the graphs G i , its input and output being respectively the common input and output of the graphs G i ; we denote it by lim

i∈ω G i .
Here is an illustration of this construction:

In the following, we extend this notion of limit to the case where the graphs G i and G i+1 are related by an arbitrary homomorphism, not necessarily an injective one. Let us start by an observation. Let

G 0 h0 -G 1 h1 -G 2 .
. . be a sequence of finite graphs related by homomorphism. Let (H i ) i∈ω be the successive images of G 0 by these homomorphisms, that is:

H 0 = G 0 , and H i+1 = h i (H i ) for i ≥ 0.
At some point, the image of G 0 will stabilize, in other words there is an index s such that, for all i > s the function k i : H i H i+1 , the restriction of h i to H i is a bijection. We call stabilization index of G 0 the least index s satisfying this property, we denote it by s 0 . We call stable image of G 0 the graph H s0 and we denote it by S(G 0 ).

We define in the same way the stabilization index of G i , and denote it s i : it is the least index starting from which the homomorphisms h j for j > s i do not merge nodes coming from G i . We define similarly the stable image of G i and denote it by S(G i ).

Note that if i ≤ j then s i ≤ s j and S(G i ) S(G j ). By considering the sequence of the stable images of the graphs G i , we can now define the limit of this sequence:

▶ Definition 16 (Limit of a sequence of graphs). Let (G i ) i∈ω be a sequence of graphs such that there is a homomorphism h i : G i G i+1 for every i ∈ ω. As the sequence of stable images (S(G i )) i∈ω is increasing, we set:

lim i∈ω G i = lim i∈ω S(G i )
▶ Example 17. Consider the sequence of terms (t i ) i∈ω defined by:

t i = ( i ∩ k=0 a k • i ∩ k=0 b k ) ∩ (a i+1 • b i+1 ).
There is a (unique) homomorphism h i : G(t i ) G(t i+1 ). The limit of the sequence of graphs (G(t i )) i∈ω related by the homomorphisms (h i ) i∈ω , converges to the graph of this "term" 1 :

∞ ∩ k=0 a k • ∞ ∩ k=0 b k
Here is an illustration of this example:

1 This is not really a term since it contains infinite intersections, by it is clear how to define the graphs of such generalized terms.
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u i = ( i ∩ k=0 a k • i ∩ k=0 b k ) ∩ i+1 ∩ k=0 (a k • b k ).
If we consider the injections ι i : G(u i ) G(u i+1 ), then the sequence (G(u i )) i∈ω related by the homomorphisms (ι i ) i∈ω converges to the graph of this "term":

( ∞ ∩ k=0 a k • ∞ ∩ k=0 b k ) ∩ ∞ ∩ k=0 (a k • b k ) But if we consider the homomorphisms k i : G(u i ) G(u i+1
) which merges all the inner nodes 2 of G(u i ), we obtain as limit the graph of this "term":

∞ ∩ k=0 a k • ∞ ∩ k=0 b k
Here are some properties satisfied by the limit of a sequence of graphs, their proof can be found in Appendix A.

▶ Proposition 18. Let (G i ) i∈ω be a sequence of graphs satisfying G i ▷ G i+1 , whose limit is denoted by G ω , and let H be a finite graph.

For every

i ∈ ω, we have G i ▷ G ω . Let π i : G i
G ω be such homomorphism.

For every

i ∈ ω, if H ▷ (x, G i , y) then H ▷ (π i (x), G ω , π i (y)). 3. Conversely, if H ▷ (x, G ω , y) then H ▷ (x ′ , G i , y ′ ) for some i, x ′ , y ′ satisfying π i (x ′ ) = x
and π i (y ′ ) = y.

4.

In particular, we have that:

H ▷ G ω ⇔ ∃i ∈ ω, H ▷ G i .

Saturation by hypothesis

Let G, H ∈ Gr and let x, y be two vertices of G. ▶ Definition 20 (Saturation). Let H be a finite set of inequations, G ∈ Gr and V its set of vertices. Let T ⊆ V × V × Gr be the set of triplets satisfying:

(x, y, H) ∈ T iff ∃(t ≥ u) ∈ H, G(u) ▷ (x, G, y) and H = G(t)
Let (x i , y i , H i ) i≤n be an enumeration of T . The saturation of G by H is the graph denoted Sat H (G) and defined as:

Sat H (G) = G[H 0 /x 0 y 0 ] . . . [H n /x n y n ]
In words, a triplet (x, y, H) is in T means that in the graph G, we "identified" the graph G(u), the rhs of a hypothesis in H, between the nodes x and y. The graph H is G(t), the graph of the lhs of this hypothesis. To make G "agree" with hypothesis H, we need to plug H between x and y. Doing that for all triplets in T , we obtain the saturation of G by H. Now, let us explicit some properties of saturation, whose proofs can be found in Appendix A. 2 That is, nodes different from the input and the output. 1. For every inequation (t ≥ u) ∈ H, we have:

G(u) ▷ (x, G, y) ⇒ G(t) ▷ (x, Sat H (G), y) 2. G ▷ Sat H (G).

Sat

H (G) ▷ H G.
Now, we can define the ω-saturation of a graph by a set of hypothesis.

▶ Definition 22 (ω-saturation). If G is a graph and H a set of inequations, we define the sequence (Sat i H (G)) i∈ω as the successive iterations of G by saturation by the hypothesis H:

Sat 0 H (G) = G, Sat i+1 H (G) = Sat(Sat i H (G)) (i ∈ ω).
By Proposition 26 (2), we have that Sat i H (G) ▷ Sat i+1 H (G). The limit is then well defined by Definition 16. We define the ω-saturation of G by H as the graph:

Sat ω H (G) = lim i∈ω Sat i H (G).
The ω-saturation satisfies the following property. It says that given a set of inequations 

(u) ∋ (x, y) ====⇒ G(u) ▷ (x, G ω , y) Lem. 6 ∃i,x ′ ,y ′ ====⇒ G(u) ▷ (x ′ , G i , y ′ ), x = π i (x ′ ) and y = π i (y ′ ) Prop. 25 (3) ====⇒ G(t) ▷ (x ′ , G i+1 , y ′ ) Prop. 26 (1) ====⇒ G(t) ▷ (x, G ω , y) Prop. 25 (2) ====⇒ σ(t) ∋ (x, y) Lem. 6
And this concludes the proof. ◀

We can go back to the proof of Theorem 12. 

Proof of Theorem 12 (⇐). Suppose that

G(u) ▷ G(u) ω ⇒ σ(u) ∋ (ι, o) Lem. 6 ⇒ σ(t) ∋ (ι, o)
By hypothesis ⇒ G(t) ▷ G(u) ω

Lem. 6 ⇒ G(t) ▷ G(u) i for some i ∈ ω Prop. 25 (4) ⇒ G(t) ▷ H G(u)

Prop. 26 [START_REF] Bloom | Notes on equational theories of relations[END_REF] This ends the proof of Theorem 12. ◀

Characterizing the universal theory of relations

We characterize now the validity of the generalized Horn sentences. The proof is an easy mix of the techniques used to prove Theorems 7 and 12, and can be found in Appendix B.

▶ Theorem 24. For all terms t i , u i where i ∈ [1, n], and set of inequations H, the following holds:

Rel |= H ⇒ i∈[1,n] (t i ≥ u i ) iff i∈[1,n] G(t i ) ▷ H G(u i ) ⊕ G where G = G(u 1 ) ⊕ • • • ⊕ G(u n ).
As every universal sentence can be written as the conjunction of some generalized Horn sentences, Theorem 28 gives us a characterization of the validity of all universal sentences.

Conclusion

We end this paper by some concluding remarks and open problems.

By characterizing the universal theory of relations, we characterized also their existential theory. Now, can we characterize the full first-order theory of relations using graphs and homomorphisms?

Another direction of work is to extend the syntax of terms. For instance, we could add the operations of union and Kleene star. In this case, terms are interpreted, not by a single graph as we did here, but by a set of graphs as in [START_REF] Brunet | Petri automata for kleene allegories[END_REF]Def. 4]. Graph homomorphism is generalized to the relation ▶ between sets of graphs as follows:

C ▶ D ⇔ ∀H ∈ D, ∃G ∈ C, G ▷ H
With these interpretations, Theorem 7 can be easily adapted when union is added to the syntax. However, it is not clear how to adapt it in the presence of the Kleene star. Theorem 12 seems hard to adapt both for the union and the Kleene star extensions.

Even if Theorems 12 and 28 do not give decidability for the corresponding theories, we can wonder whether it can be obtained under some restrictions on the hypothesis H. For instance, is it the case when the hypothesis H form a Noetherian rewriting system?

We can easily adapt this work to the realm of conjunctive queries. Indeed, terms can be replaced by conjunctive queries and inequations between terms by equivalence between conjunctive queries Q 1 ≡ Q 2 . For example, by adapting Theorem 7 we get the decidability of the following problem: which generalizes the result of Chandra and Merlin [START_REF] Ashok | Optimal implementation of conjunctive queries in relational data bases[END_REF].

  • b) ∩ (a • c) to the graph of a • (b ∩ c):

5 ▶ 5 .

 55 Remark The functions G and I are inverses of each other: I • G and G • I are the identity function.

▶

  Remark 9. Surprisingly, this characterization tells us that only one left-hand-side (lhs) of the disjuncts of a positive universal sentence plays a role in its validity. For instance, in the sentence (2) above, we can replace the lhs of the second inequation, d, by any term without affecting the validity.

11 ▶

 11 Proposition 21. Let G be a graph and H a set of inequations.
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 112 Rel |= H ⇒ t ≥ u and let us show that G(t) ▷ H G(u). We denote by G(u) ω the graph Sat ω H (G(u)), by G(u) i the graph Sat i H (G(u)) for every i ∈ ω, and by σ be the interpretation associated to G(u) ω . By Proposition 27, the inequations H are true under σ. Note that the graph associated to σ is G(u) ω and that the input and output of G(u) ω are those of G(u), let us denote them by ι and o respectively. Graph characterization of the universal theory of relations By Poposition 25 (1), we have G(u) ▷ G(u) ω . It follows that:

  Conjunctive queries Q1, Q2, Q3 and Q4. Output: Do we have (Q1 ≡ Q2) ∨ (Q3 ≡ Q4)?

  the other case is treated symmetrically. Let ι and o be respectively the vertices corresponding to the input and output of G(u 0 ) in G. We have that G(u 0 ) ▷ (ι, G, o), then byLemma 6, σ(u 

0 ) ∋ (ι, o). Thus, σ(t 0 ) ∋ (ι, o) and again by Lemma 6, G(t 0 ) ▷ (ι, G, o). But (ι, G, o) is G 0 and this remark concludes the proof.

  Let H be a set of inequations. We define the relation > H on graphs as follows. We set G > H H if and only if there is a context C and an inequation (t ≥ u) ∈ H such that

	A. Doumane	11:7

•, called its hole. If G is a graph and C a context, then C[G] is the graph obtained by "plugging G in the hole" of C, that is, C[G] is the graph obtained as the disjoint union of G and C, where we identify the input (resp. output) of G with the input (resp. output) of the edge labeled by • in C, and we remove the edge of C labeled •. ▶ Definition 11 (The relation ▷ H ).

  We denote by G[H/xy] the graph obtained from G by merging the input of H with x and its output with y. The input and output of G[H/xy] are those of G. ▶ Remark 19. Note that if the input and output of H are equal, then the operation G[H/xy] merges the nodes x, y. Note also that G ▷ G[H/xy], but this homomorphism is not necessarily injective because of the possible merge of x and y.

A

Characterizing the Horn theory of relations ▶ Proposition 25. Let (G i ) i∈ω be a sequence of graphs satisfying G i ▷ G i+1 , whose limit is denoted by G ω , and let H be a finite graph.

1.

For every i ∈ ω, we have G i ▷ G ω . Let π i : G i G ω be such homomorphism.

2.

For every i ∈ ω, if H ▷ (x, G i , y) then H ▷ (π i (x), G ω , π i (y)).

3.

Conversely, if H ▷ (x, G ω , y) then H ▷ (x ′ , G i , y ′ ) for some i, x ′ , y ′ satisfying π i (x ′ ) = x and π i (y ′ ) = y.

4.

In particular, we have that:

Proof. We prove the first property. Let i ∈ ω. We have, by definition of the stable image

Property ( 2) is an easy consequence of property [START_REF] Andréka | The equational theory of union-free algebras of relations[END_REF].

Suppose that

where π i (x ′ ) = x and π i (y ′ ) = y. But S(G i ) is a subgraph of some G j , where j ∈ ω. Hence

Let G be a graph and H a set of inequations.

1.

For very inequation (t ≥ u) ∈ H, we have:

11:14 Graph characterization of the universal theory of relations 2. G ▷ Sat H (G).

Sat H (G) ▷ H G.

Proof. To prove (1), suppose that (t ≥ u) ∈ H and G(u) ▷ (x, G, y). This means that the

Property ( 2) is a consequence of Remark 19 above. For property (3), we will show that if (x, y, H) ∈ T , where T is as in definition 20, then G[H/xy] ▷ H G. The result will be an iteration of this argument for all elements of T . By definition of T , there is a hypothesis (t ≥ u) such that G(u) ▷ (x, G, y) and H = G(t). Let us denote by k a homomorphism from G(u) to (x, G, y). Let C be the context obtained from G by adding an edge labeled • between x and y. We have that:

Indeed, the equaty and inequation > H are trivially true. To justify the ▷ inequation, we define a homomorphism from C[G(u)] to G as follows: its restriction to G(u) its is the homomorphism k, and its restriction to C is the identity. ◀ ▶ Proposition 27. Let H be a set of inequations, G be a graph, and σ the interpretation

The inequations H are true under σ.

Proof. We denote by G ω the graph Sat ω H (G), by G i the graph Sat i H (G) for every i ∈ ω and by σ the interpretation associated to G ω . By Remark 5, the graph associated to σ is G ω .

By Proposition 25, we know that for every i ∈ ω, we have G i ▷ G ω , let us denote by π i a homomorphism witnessing that.

And this concludes the proof. ◀

B Characterizing the universal theory of relations

▶ Theorem 28. For all terms t i , u i where i ∈ [1, n], and set of inequations H, the following holds:

Proof. As for Theorem 7, we prove this result in the case of binary dijunctions, that is:

A. Doumane
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We set G = G(u 0 ) ⊕ G(u 1 ), and let G ω denote the graph Sat ω H (G), G i denote the graph Sat i H (G) for every i ∈ ω, and let σ be the interpretation associated to G ω . By Proposition 27, the inequations H are true under σ. Hence, we have either σ(t 0 ) ⊇ σ(u 0 ) or σ(t 1 ) ⊇ σ(u 1 ).

Let us study the former case, the latter being symmetric.

Suppose that σ(t 0 ) ⊇ σ(u 0 ). Let ι and o be respectively the input and output of G ω . Notice that G(u 0 ) ▷ (ι, G ω , o), it follows that:

This concludes the proof of this direction.

(⇐) Suppose that G(t 0 ) ▷ H G(u 0 ) ⊕ G(u 1 ) and let us show that:

Note that the other case is symmetric. Let σ : A P(B × B) be an interpretation under which H is true, and let G be its graph. We distinguish two cases. We have either:

In this case, by Lemma 6, there is no pair (x, y) such that (x, y) ∈ σ(u 1 ), hence σ(t 1 ) ⊇ σ(u 1 ) is vacuously true.

Suppose now that there is x 1 and y 1 in B such that G(u 1 ) ▷ (x 1 , G, y 1 ). Notice the following:

∀x, y ∈ B, G(u 0 ) ▷ (x, G, y) ⇒ G(u 0 ) ⊕ G(u 1 ) ▷ (x, G, y)

By using Lemma 6 and this remark, we get that if σ(u 0 ) ∋ (x, y) then G(t 0 ) ▷ H (x, G, y). By Lemma 15, and since the inequations H are true under σ, we have that G(t 0 ) ▷ (x, G, y).

Hence, by Lemma 6, we get σ(t 0 ) ∋ (x, y) which concludes the proof. ◀