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On biases in displacement estimation for image registration,

with a focus on photomechanics

Frédéric Sur∗, Benôıt Blaysat†, Michel Grédiac†

Abstract

Image registration under small displacements is the keystone of several image analy-
sis tasks such as optical flow estimation, stereoscopic imaging, or full-field displacement
estimation in photomechanics. A popular approach consists in locally modeling the dis-
placement field between two images by a parametric transformation and performing
least-squares estimation afterwards. This procedure is known as “digital image cor-
relation” (DIC) in several domains as in photomechanics. The present article is part
of this approach. First, the estimated displacement is shown to be impaired by bi-
ases related to the interpolation scheme needed to reach subpixel accuracy, the image
gradient distribution, as well as the difference between the hypothesized parametric
transformation and the true displacement. A quantitative estimation of the difference
between the estimated value and the actual one is of importance in application domains
such as stereoscopy or photomechanics, which have metrological concerns. Second, we
question the extent to which these biases could be eliminated or reduced. We also
present numerical assessments of our predictive formula in the context of photome-
chanics. Software codes are freely available to reproduce our results. Although this
paper is focused on a particular application field, namely photomechanics, it is relevant
to various scientific areas concerned by image registration.
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1 Introduction

Two images I and I ′ of a scene being given, image registration consists in estimating a
bidimensional displacement field φ which permits to map pixels from one image to the
corresponding pixels in the other image. Assuming that corresponding pixels have the
same intensity, for any pixel x, the following relation thus holds: I(x) = I ′(x + φ(x)).
When small displacements are sought (typically below one pixel), the displacement field is
often estimated locally by imposing the preceding relation over corresponding subsets of
the domains of I and I ′. While image registration is the very first step of many image
analysis tasks, the case of small amplitude displacements is of particular interest in optical
flow estimation [11, 12], disparity estimation in stereoscopic imaging [9, 31, 33, 34], or ex-
tensometry in experimental mechanics [20, 43], to mention some representative examples.
Although we will focus our presentation on displacement estimation in photomechanics,
which is a branch of experimental solid mechanics dedicated to full-field measurements
from images, many aspects of the problem discussed in this paper are of general inter-
est. However, in this lattest application domain, no occlusions are present, in contrast to
stereoscopic imaging or optical flow estimation.

1.1 Problem statement

In photomechanics, digital image correlation (DIC) [20, 43] is of prime interest to mea-
sure displacement fields on the surface or in the bulk of materials subjected to thermo-
mechanical loads. The term DIC equally refers to methods which are based on cross-
correlation (CC), on sum of squared differences (SSD), or on normalized CC or SSD as
well [27]. DIC methods are based on two images I and I ′ of the surface of the specimen
taken before and after deformation, respectively. The specimen shall be marked before-
hand with a contrasted random pattern, called a speckle pattern, as shown in Section 3.
The aim is to retrieve the displacement field u such that for any x, I(x) = I ′(x + u(x)).
Strain fields are then deduced by differentiation. These fields are used to observe various
phenomena, which occur on the surface of deformed specimens, and which are revealed by
displacement or strain heterogeneities. They can eventually be used to identify parameters
governing constitutive equations, which are then used to design structural components [19].
It is therefore of prime importance to retrieve displacement and strain maps affected by the
lowest possible measurement errors, so that the resulting identified parameters are them-
selves as reliable as possible. The displacement field usually features values well below
one pixel. The so-called local subset-based DIC consists in registering I ′ on I by optimiz-
ing some criterion as the above-mentioned CC or SSD over subsets of the image domains.
These criteria being equivalent under mild assumptions [27], we focus on the sum of squared
differences (SSD), which is also used in block matching for stereoscopic imaging [31]. Since
I and I ′ are known only at integer pixel coordinates and since subpixel accuracy of u is
sought, interpolation is required. In order to estimate the displacement u at a pixel x, the

2



following SSD, defined over a subset Ωx of the image of the specimen surface centered at x,
is minimized with respect to a displacement φx defined over Ωx:∑

xi∈Ωx

(
I(xi)− Ĩ ′(xi + φx(xi))

)2
(1)

Here Ĩ ′ denotes a continuous interpolation of I ′ (I ′ being sampled at integer coordinates),
and Ωx is a set of M pixels (x1, . . . ,xM ). Minimization is performed with respect to a
displacement field φx expected to approximate the actual unknown displacement u over Ωx.
We do not consider a weighted SSD criterion, but the formulas in the remainder of the
paper would easily adapt.

An estimation φ(x) of the displacement field over the whole specimen surface is even-
tually obtained by taking, at any pixel x, the value of φx at the center of the subset Ωx.

Displacement estimation is an ill-posed problem because of under-determination. In-
deed, at each pixel, a bidimensional displacement must be retrieved. Moreover, information
is lost from the component of the displacement orthogonal to the image gradient. This is
the so-called aperture problem [11, 12]. Consequently, in experimental mechanics (and in
general applications as well [7]), the displacement φx is usually sought as the linear com-
bination of N shape (or basis) functions (φj)1≤j≤N , such that the parameters (λj)1≤j≤N
minimize

SSD(λ1, . . . , λN ) =
∑

xi∈Ωx

(
I(xi)− Ĩ ′

(
xi +

∑N
j=1 λjφj(xi)

))2
(2)

It may be noted that classic ways to deal with the aperture problem are either to consider
a constant displacement φx over Ωx and a first-order Taylor expansion of the preceding
equation, giving fast approaches à la Lucas-Kanade [25], or to consider global smoothing
with regularization constraints, giving approaches à la Horn-Schunck [21]. In experimental
mechanics, it is often preferred to numerically minimize SSD because an accurate estimation
of φ is required and setting the hyperparameter involved by regularization is not an easy
task, which rules out such approaches.

From now on, we assume that Λ = (λ1, . . . , λN )T minimizes the expression of SSD
given by Equation 2, and φx =

∑N
j=1 λjφj denotes the corresponding local displacement

field. For example, as recalled in [5], zero-order shape functions are such that N = 2 and
φ1(x) = (1 0)T , φ2(x) = (0 1)T , giving a constant φx over Ωx. First-order shape functions
are such that N = 6 and functions φ3(x) = (x 0)T , φ4(x) = (0 x)T , φ5(x) = (y 0)T ,
φ6(x) = (0 y)T are added to φ1 and φ2. Second-order shape functions are such that
N = 12 and embed the following additional functions: φ7(x) = (x2, 0)T , φ8(x) = (xy, 0)T ,
φ9(x) = (y2, 0)T , φ10(x) = (0, x2)T , φ11(x) = (0, xy)T , φ12(x) = (0, y2)T .

The origin of the axis is often the center of the subset Ωx, so that the displacement
estimated at x by minimizing the SSD criterion over Ωx is given by φ(x) = φx(0, 0) =
(λ1, λ2)T for any order. Moreover, one can see that first- and second-order shape functions
satisfy ∂φx/∂x(0, 0) = (λ3, λ4)T and ∂φx/∂y(0, 0) = (λ5, λ6)T .
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The displacement field is supposed to be smooth enough so that approximating u by φ
makes sense. In particular, no occlusions (an object hide the part of another object in
stereoscopy) or missing parts (as a mechanical fracture) are allowed. Displacement is locally
invertible if the mapping from x to x+φ(x) has a non-singular Jacobian matrix, thanks to
the inverse function theorem. In the case of polynomial shape functions, the determinant of
this matrix at the center of the subset is (1+λ3)(1+λ6)−λ4λ5 = 1+λ3 +λ6 +λ3λ6−λ4λ5.
Of course, zero-order shape functions (corresponding to simple translations) give invertible
displacement since, in this case, λi = 0 for i ∈ {3, 4, 5, 6} and the determinant is non-
zero. Higher-order shape functions also yield locally invertible displacement fields if the
λi’s are small with respect to 1, which holds true under the classic small strain hypothesis
in photomechanics.

1.2 Motivation

The motivation of our work is the observation that, in photomechanics, displacement fields
are often impaired by spurious small fluctuations. These fluctuations are often believed, in
this community, to be caused by sensor noise, interpolation bias, or the numerical scheme
minimizing the DIC criterion. Nevertheless, recent works consider the random marking
on the surface of the specimen [14, 24, 45], in addition to the aforementioned causes,
the authors of [10] coining the term pattern-induced bias. From a different perspective,
it is known that the local parametric estimation of a displacement field is intrinsically
biased, the retrieved displacement being merely the convolution of the true displacement
by a Savitzky-Golay filter [36]. In this latter approach, specimen marking does not play
any role, which is contradictory with the presence of a pattern-induced bias. The main
motivation of this study is thus to see if this contradiction can be removed.

1.3 Contributions

The goal of the present paper is to provide a theoretical basis for these different view-
points and thus to show that they can coexist. More precisely, we shall give the relation
between the retrieved Λ (thus, the retrieved displacement φ) and the actual unknown dis-
placement u over any subset Ωx. By revisiting papers dealing with disparity estimation
in stereo-imaging [1, 9, 31, 34], we show in Section 2 that the estimation of Λ is mainly
the sum of two terms, namely a term depending on the unknown displacement u and the
approximation induced by the shape functions, and a term caused by the interpolation
error. We propose a characterization of these terms, which actually depend on the gradi-
ent distribution over the imaged specimen. This unifies the points of view of stereoscopy
(fattening effect) and photomechanics (pattern-induced bias). In Section 3, numerical ex-
periments validate the theoretical developments and assess their limitations. To limit the
size of the paper, we discuss how sensor noise propagates from the images to the estimated
displacement field in a separate companion research report [42].
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1.4 Related work

Stereoscopy and photomechanics share the same objective, namely estimating displace-
ment fields very accurately. The proposed contribution echoes different papers from these
research areas.

First, the proposed approach relies on the calculation presented in [31] (and, to some
extent, in [9]) in the context of disparity estimation in stereo-imaging. In this research
field, disparity plays the role of the displacement field considered in the present paper.
On the one hand, disparity may be estimated at any pixel as a constant monodimensional
displacement between small patches extracted from the stereo image pair. Indeed, dispar-
ity is collinear with a given direction, since images are rectified so that the epipolar lines
are parallel to each other. In this context, the authors of [9, 31] give predictive formulas
for quantifying the fattening effect, i.e., the bias in disparity estimation caused by image
gradient distribution. On the other hand, in experimental mechanics, local non-constant
displacements are estimated as linear combinations of shape functions and they are not
constrained to be collinear with a given direction. The main difference with disparity is
that displacement fields are usually smooth and have tiny fluctuations, the strain com-
ponents (defined from the partial derivatives of the displacement) being below 10−2 for
many materials and load intensity. Gradient distribution is also likely to affect displace-
ment estimation, giving pattern-induced bias. A first attempt at characterizing this bias
in photomechanics is available in [24].

In addition to pattern-induced bias or fattening effect, the interpolation scheme required
for registration is certainly a source of error. It is a common assumption in stereo-imaging
that the input images satisfy Shannon-Nyquist sampling conditions, cf. [9, 31, 34]. This
involves that continuous images can be perfectly interpolated from the Fourier coefficients
without any interpolation bias. However, it is mentioned in [29, 40] that aliasing, although
hardly noticeable to the naked eye on the raw input images, may strongly affect the esti-
mated displacement and strain fields in photomechanics. This motivates the use of bilinear
or bicubic interpolation schemes in this field [43] instead of Fourier interpolation. The
drawback is that Ĩ ′ matches I ′ only at integer pixel coordinates: non-integer pixel coor-
dinates are thus affected by interpolation error, as numerically illustrated in [6]. Seeing
interpolation as a convolution filter, the authors of [35] have proposed a characterization of
the interpolation-induced bias giving rise to the famous “S-shape function”. The authors
of [38] reduce the interpolation bias by sampling the subset Ω at non-integer pixels.

As mentioned in the introduction, the most popular approach in experimental mechan-
ics is certainly to locally approximate the displacement field by a linear combination of
shape functions, which may in turn undermatch the true displacement. This is another
source of error discussed in [36], where it is shown that the retrieved displacement field is
the convolution of the true displacement with a Savitzky-Golay filter characterized by the
order of the shape functions and the size of the subset. This characterization is used in [14]
and [46] to define some metrological parameters, and in [16] to restore displacement fields
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through a dedicated deconvolution procedure.

1.5 Notation and reminder

In what follows, 〈·, ·〉 and | · | denote the bidimensional Euclidean product and norm,
respectively. The gradient of any 2D function is denoted by ∇. We identify any vector
with the corresponding column matrix, in boldface letters. The transpose of any matrix A
is denoted by AT .

We denote by O Landau’s “big-O” for a variable tending to 0. We recall that if f and
g are 2D-valued functions, f = O(|g|) means that for some K > 0, any small enough x
satisfies |f(x)| ≤ K|g(x)|. If f = O(|g|) and A is some 2-column matrix, then Af = O(|g|)
and in particular 〈h, f〉 = O(|g|) for any constant 2-D vector h.

In the remainder of this paper, we will make use of partial derivatives of interpolated
2-D functions. While some interpolation schemes, such as bilinear interpolation, do not
provide us with derivatives at integer pixel coordinates, it should be noted that derivatives
of the interpolated functions will be calculated at points like xi+φ(xi), xi being an integer
pixel coordinate. In most situations, φ(xi) has a subpixel value, thus xi +φ(xi) has a non-
integer value and the derivatives are well defined.

2 Estimating displacements by minimizing SSD

This section gives a closed-form expression of the displacement φ estimated by minimizing
the SSD criterion (defined in Equation 2) as a function of the actual unknown displace-
ment u. The aim is to emphasize the role of systematic errors caused by image texture and
interpolation scheme. Non-noisy images are considered in this section. Images affected by
signal-dependent noise are investigated in a separate research report [42].

Since the present section deals with the minimization problem at a given pixel x and
in order to simplify notations, we do not write the index x to remind that the subset is
centered at a pixel x, and we simply write Ω and φ instead of Ωx and φx.

2.1 Relation between retrieved and actual displacement fields

The goal here is to express Λ as a function of the images I and I ′, of the interpolated
continuous image Ĩ ′, and of the unknown displacement field u.

By definition, Λ = (λ1, . . . , λN )T is a stationary point of the SSD given by Equation 2.
For any j ∈ {1, . . . , N}, taking the derivative with respect to λj thus gives:∑

xi∈Ω

(
I(xi)− Ĩ ′ (xi + φ(xi))

)
·
〈
∇Ĩ ′ (xi + φ(xi)) ,φj(xi)

〉
= 0 (3)

Let δ be the difference between the unknown displacement field and the retrieved one,
such that for any xi ∈ Ω, δ(xi) = u(xi)−φ(xi). It quantifies the undermatching of shape
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functions mentioned in [36].
First,

I(xi)− Ĩ ′ (xi + φ(xi)) =
(
I(xi)− I ′ (xi + φ(xi))

)
+
(
I ′ (xi + φ(xi))− Ĩ ′ (xi + φ(xi))

)
(4)

By definition of u,

I(xi)− I ′ (xi + φ(xi)) = I ′ (xi + u(xi))− I ′ (xi + φ(xi)) (5)

A first-order Taylor series expansion allows writing:

I(xi)− I ′ (xi + φ(xi)) =
〈
∇I ′(xi + u(xi)), δ(xi)

〉
+O(|δ(xi)|2) (6)

Denoting by DI ′ = I ′ − Ĩ ′ the interpolation error (equal to 0 at integer coordinates), we
conclude from Equation 4 that

I(xi)− Ĩ ′ (xi + φ(xi)) =
〈
∇I ′(xi + u(xi)) , δ(xi)

〉
+ DI ′ (xi + φ(xi)) +O(|δ(xi)|2) (7)

Second, another Taylor series expansion gives:

∇I ′ (xi + φ(xi))−∇I ′ (xi + u(xi)) = −δ(xi)
T HI ′ (xi + φ(xi)) δ(xi) +O(|δ(xi)|3)

= O(|δ(xi)|2) (8)

where HI ′ (xi + φ(xi)) is the Hessian matrix of I ′ at xi + φ(xi).
Consequently,

∇Ĩ ′ (xi + φ(xi)) = ∇I ′ (xi + u(xi)) +
(
∇Ĩ ′ (xi + φ(xi))−∇I ′ (xi + φ(xi))

)
+
(
∇I ′ (xi + φ(xi))−∇I ′ (xi + u(xi))

)
= ∇I ′ (xi + u(xi))−D∇I ′ (xi + φ(xi)) +O(|δ(xi)|2) (9)

where D∇I ′ = ∇I ′ −∇Ĩ ′ is the gradient interpolation error.
Plugging Equations 7 and 9 into Equation 3 gives:∑

xi∈Ω

(〈
∇I ′(xi + u(xi)), δ(xi)

〉
+ DI ′ (xi + φ(xi)) +O(|δ(xi)|2)

)
×
〈
∇I ′ (xi + u(xi))−D∇I ′ (xi + φ(xi)) +O(|δ(xi)|2),φj(xi)

〉
= 0 (10)
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For any i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}, let Lu
i,j = 〈∇I ′ (xi + u(xi)) ,φj(xi)〉, such

that Lu is a M ×N matrix. We eventually obtain:∑
xi∈Ω

(
Lu
i,j

〈
∇I ′(xi + u(xi)), δ(xi)

〉
+ Lu

i,jDI ′ (xi + φ(xi)) +O(|δ(xi)|2)

+O
(
|D∇I ′ (xi + φ(xi)) | · |δ(xi)|

)
+O

(
|DI ′ (xi + φ(xi)) | · |D∇I ′ (xi + φ(xi)|)

)
+O

(
|DI ′ (xi + φ(xi)) | · |δ(xi)|

))
= 0 (11)

or in a simpler way:∑
xi∈Ω

Lu
i,j

〈
∇I ′(xi + u(xi)), δ(xi)

〉
+
∑
xi∈Ω

Lu
i,jDI ′ (xi + φ(xi))

+O(|δ|2) +O
(
|DI ′| · |D∇I ′|

)
+O

(
|DI ′| · |δ|

)
+O

(
|D∇I ′| · |δ|

)
= 0 (12)

where O(|f |) denotes
∑

xi∈Ω(O|f(xi)|).
Since δ(xi) = u(xi)− φ(xi) = u(xi)−

∑N
k=1 λkφk(xi), the preceding equation gives:

∑
xi∈Ω

Lu
i,j

〈
∇I ′(xi + u(xi)),u(xi)

〉
−
∑
xi∈Ω

Lu
i,j

N∑
k=1

λkL
u
i,k +

∑
xi∈Ω

Lu
i,jDI ′ (xi + φ(xi))

+O(|δ|2) +O
(
|DI ′| · |D∇I ′|

)
+O

(
|DI ′| · |δ|

)
+O

(
|D∇I ′| · |δ|

)
= 0 (13)

If we denote by G the vector of components Gi = 〈∇I ′(xi + u(xi)),u(xi)〉 for any i ∈
{1, . . . ,M}, we obtain with Equation 13 the following matrix relation:

(Lu)TLuΛ = (Lu)TG + (Lu)TDI ′ +O(|δ|2) +O
(
|DI ′| · |D∇I ′|

)
+O

(
|DI ′| · |δ|

)
(14)

Matrix (Lu)TLu is invertible as soon as the columns of Lu are linearly independent (it
is a Gramian matrix), which holds if the φj form a valid basis and if the gradient is not
equal to zero over the whole subset Ω. We assume in the following that these assumptions
hold.

We have finally demonstrated the following theorem.

Theorem 1 If Λ minimizes the SSD criterion of Equation 2 registering image I ′ over I,
then the following equality holds:

Λ = ((Lu)TLu)−1(Lu)TG + ((Lu)TLu)−1(Lu)TDI ′

+O(|δ|2) +O
(
|DI ′| · |D∇I ′|

)
+O

(
|DI ′| · |δ|

)
(15)

where u is the actual displacement field, and for any i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}, the
following notations hold: Lu

i,j = 〈∇I ′ (xi + u(xi)) ,φj(xi)〉, Gi = 〈∇I ′(xi + u(xi)),u(xi)〉,
DI ′ = I ′ − Ĩ ′, D∇I ′ = ∇I ′ − ∇Ĩ ′, Ĩ ′ denotes the interpolation of I ′ at non-integer
coordinates, and δ = u− φ.
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With this presentation, it is not straightforward to see how the estimation of Λ is
affected by a systematic error.

Let us now decompose (for instance, in the least-squares sense) the unknown, true
displacement u over the basis functions (φk). We introduce the N -dimensional vector Λu =
(λu1 , . . . , λ

u
N )T such that u =

∑N
k=1 λ

u
kφk + ε where ε is the residual in the decomposition

of u over the basis (φk)k∈{1,...,N}. Consequently, for any i ∈ {1, . . . ,M},

Gi =
N∑
k=1

λuk
〈
∇I ′(xi + u(xi)),φk(xi)

〉
+
〈
∇I ′(xi + u(xi)), ε(xi)

〉
(16)

If we denote by E the vector of components Ei = 〈∇I ′(xi + u(xi)), ε(xi)〉, we obtain
G = LuΛ + E. Consequently, Theorem 1 gives the following corollary.

Corollary 1 If Λ minimizes the SSD criterion of Equation 2 registering image I ′ over I,
then the following equality holds:

Λ = Λu + ((Lu)TLu)−1(Lu)TE + ((Lu)TLu)−1(Lu)TDI ′

+O(|δ|2) +O
(
|DI ′| · |D∇I ′|

)
+O

(
|DI ′| · |δ|

)
(17)

with, in addition to the notations of Theorem 1, Ei = 〈∇I ′(xi + u(xi)), ε(xi)〉 for any
i ∈ {1, . . . ,M}, where ε is the component of u out of the basis (φk).

2.2 Discussion

Skipping second-order terms from Theorem 1 gives:

Λ = ((Lu)TLu)−1(Lu)TG + ((Lu)TLu)−1(Lu)TDI ′ (18)

and from Corollary 1:

Λ = Λu + ((Lu)TLu)−1(Lu)TE + ((Lu)TLu)−1(Lu)TDI ′ (19)

It is easy to see that if interpolation is perfect (DI ′ = 0), and if the function basis is
expressive enough to perfectly represent the true displacement u (E = 0) or at least if the
degree of the polynomial basis is large enough (E ' 0) , then Λ is equal to the sought Λu.

These assumptions are, however, optimistic. They are discussed in the remainder of
this section.

2.2.1 Interpolation bias

In Equation 18 the term ((Lu)TLu)−1(Lu)TDI ′ quantifies the effect of subpixel interpola-
tion error. Since the underlying image I ′ is unknown, it is not possible to bound a priori
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this error, except if some additional information is available. For instance, well-sampled
images satisfying the Shannon-Nyquist condition give no interpolation error when using
Fourier interpolation as in [31, 44] and in this case, DI ′ = 0. As discussed in the in-
troduction, real images from photomechanical experiments probably do not satisfy these
hypotheses.

It should be noted that most image interpolation schemes (such as Fourier, bilinear,
bicubic, or Lanczos interpolations) are actually linear, in the sense that any interpolated
value is a weighted mean of image values at integer pixel coordinates [13, 23]. For any
x ∈ R2, there exists a row matrix P (x) of size M such that the interpolation of I ′ at x
is given by Ĩ ′(x) = P (x)I ′, where I ′ momentarily denotes the matrix of image values
reshaped as a column vector. For instance, row-vector P (x) has four non-zero entries in
bilinear interpolation, sixteen in bicubic or bicubic spline interpolation [13, 23], which are
the most popular schemes in photomechanics.

The interpolation bias thus writes:

((Lu)TLu)−1(Lu)T (I − P (x)) I ′ (20)

It has been derived by another approach in [2] (refining [30, 43]), and experimentally
assessed in [3]. It can be noted that the image gradient is involved in Lu and affects the
interpolation bias. While interpolation error may be neglected (either by assuming the
Shannon-Nyquist condition to be satisfied or by using high-order interpolation schemes),
the next section deals with the so-called “undermatched subset shape functions” which
potentially gives pattern-induced bias.

2.2.2 Undermatched shape functions and pattern-induced bias

In Equation 18, the term ((Lu)TLu)−1(Lu)TG links Λ with the gradient of I ′ and the
actual displacement u. Let us recall that, for any i ∈ {1, . . . ,M} and j ∈ {1, . . . , N},

Lu
i,j =

〈
∇I ′ (xi + u(xi)) ,φj(xi)

〉
(21)

Gi =
〈
∇I ′(xi + u(xi)),u(xi)

〉
. (22)

and
Ei =

〈
∇I ′(xi + u(xi)), ε(xi)

〉
. (23)

We can see that we find again the well-known aperture problem: only the displacement
component collinear with the image gradient plays a role in Gi. Moreover, Theorem 1
(Corollary 1, respectively) shows that each component (the error on each component,
respectively) of Λ is a weighted mean of Gi (of the undermatching error E, respectively),
the weights being proportional to the squared components of the gradient along the shape
functions (here, ((Lu)TLu)−1 acts as a normalization).
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For didactic purposes, we explicit the relation in a simple, yet realistic case, where
displacements is sought as a pure translation along the x-direction. This situation corre-
sponds to disparity estimation in stereo-imaging with rectified images. We have u(xi) =
(u(xi) 0)T , N = 1 and φ1(x) = (1 0)T . In this case, Lu = (I ′x(xi + u(xi)))1≤i≤M is a
column-vector, and:

((Lu)TLu)−1(Lu)TG =

∑M
i=1 (I ′x(xi + u(xi)))

2 u(xi)∑M
i=1 (I ′x(xi + u(xi)))

2
(24)

where I ′x denotes the partial derivative of I ′ along direction x.
In this case, the term related to the interpolation error simplifies into:

((Lu)TLu)−1(Lu)TDI ′ =
∑M

i=1 I ′x(xi + u(xi)) DI ′(xi)∑M
i=1 (I ′x(xi + u(xi)))

2
(25)

When u = (u, 0) is a constant displacement, Equation 24 simplifies to u. This ob-
servation is consistent with Corollary 1 since in this case, the displacement is perfectly
represented by the basis function φ1 as, for any x, u(x) = uφ1(x).

It should be noted that Equation 24 is exactly the relation given in [1, 31]. When
the sought displacement is not constant over Ω, it is a weighted mean of the actual dis-
placement, the weights being the squared image derivatives. This justifies the well-known
fattening effect in stereo-imaging (also called adhesion effect in [9]): points lying in the
neighborhood of edges have a disparity essentially governed by the edge points, which have
large gradient values. Fattening effects can be seen for example in [31, 34]: foreground
objects (which have a larger disparity than the background) appear fatter than they are
because background pixels near their edges inherit their disparity.

In experimental mechanics the relevant formula is given by Theorem 1. The estimated
displacement field given by Λ is biased since it is a weighted sum of the actual displacement
at the pixels belonging to the subset, the weights increasing with the squared gradient at the
pixels (more precisely, with the squared component of the gradient collinear with the shape
functions). In particular, the displacement returned at the center of the considered subset
is essentially the average of the actual displacement taken at high-gradient points, even
if the actual displacement is different at the considered point. Although this corresponds
to the intuition, we are not aware of earlier papers giving a rigorous description of the
phenomenon in the context of experimental mechanics. As a consequence, we keep on
calling this phenomenon “pattern-induced bias” after [10], since the expression “fattening
effect” does not seem to be adequate in experimental mechanics, nothing really becoming
“fatter”.

Note that the relation between Λ and G in Theorem 1 can be seen as a generalized
convolution, with a spatially varying kernel.
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2.3 From pattern-induced bias to Savitzky-Golay filtering

The authors of [36] claim that the estimated displacement is simply the convolution product
between the true displacement and the Savitzky-Golay (SG) kernel (a low-pass filter [32,
26]), causing the so-called matching bias [14]. The SG filter only depends on the degree
of the polynomial shape functions and on the size of the considered subset Ω [32]. In
particular, it does not depend on the gradient of the underlying image. Moreover, the
discussion of Section 2.2.2 concludes that the relation between the estimated displacement
and the true one can be seen as a convolution with a spatially varying kernel. The claim
of [36], backed by results from [14] or [16], therefore seems to contradict Theorem 1 and
pattern-induced bias discussed in the preceding section. In the remainder of this section,
we explain how these two viewpoints can be accomodated.

2.3.1 The case of stationary random patterns

To establish the relation with the SG filter, the ground hypothesis of [36] is that, with our
notations, φ minimizes ∑

xi∈Ωx

|u(xi)− φ(xi)|2 (26)

over a subset Ωx centered at pixel x, for any x. Let us write for a while the x- and
y-components of φ as:

φx(x) =
∑

0≤i+j≤d
αi,jx

iyj (27)

φy(x) =
∑

0≤i+j≤d
βi,jx

iyj (28)

where d is the maximum degree of the shape functions. Thus, λ1 = α0,0, λ2 = β0,0,
λ3 = α1,0, λ4 = β1,0, λ5 = α0,1, λ6 = β0,1, etc.

With Jx = (1, x, . . . , xd, y, . . . , yxd−1, y2, . . . , y2xd−2, . . . , yd)T ,
α = (α0,0, α1,0, . . . , αd,0, α1,0, . . . , α1,d−1, α2,0, . . . , α2,d−2, . . . , αd,0)T ,
and β = (β0,0, β1,0, . . . , βd,0, β1,0, . . . , β1,d−1, β2,0, . . . , β2,d−2, . . . , βd,0)T , Equation 26 writes:∑

xi

(
u1(xi)− JT

xi
α
)2

+
(
u2(xi)− JT

xi
β
)2

(29)

Consequently, minimizing Equation 26 with respect to α and β amounts to solving the
normal equations JTα = u1 and JTβ = u2 where matrix J collects all column vectors Jx. In
other words, α = (JJT )−1Ju1 and β = (JJT )−1Ju2. Since the displacement estimated over
the subset Ω is simply (λ1, λ2) = (α0,0, β0,0), each component of the retrieved displacement
is the convolution of the components of u by a Savitzky-Golay [32] filter of order equal to
the degree of the shape functions and of support given by the dimensions of Ω. With first-
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and second-degree shape functions, the partial derivatives of the displacement field being
given by (λ3, λ4, λ5, λ6), they are also given by SG filters, as explained in [26, 32].

The justification that the sought φ minimizes Equation 26 is only based on heuristic
arguments in [36]. We shall see that the very specific nature of the speckle patterns used
in experimental mechanics permits to justify this claim.

Since I(xi) = I ′ (xi + u(xi)), if we neglect interpolation error and identify Ĩ ′ with I ′,
we obtain the following first-order approximation as in Equation 6:

I(xi)− Ĩ ′ (xi + φ(xi)) =
〈
∇I ′(xi + u(xi)),u(xi)− φ(xi)

〉
(30)

Provided this first-order approximation holds (for instance because an initial guess of the
solution is available), minimizing the SSD criterion thus amounts to minimizing:∑

xi∈Ω

g2
i cos2(θi) |u(xi)− φ(xi)|2 (31)

with gi the norm of ∇I ′(xi+u(xi)) and θi the angle between ∇I ′(xi+u(xi)) and the error
u(xi)−φ(xi). As can be seen, this is not Equation 26. It can be noted that the component
of u− φ orthogonal to the gradient of I ′ does not play any role, which is consistent with
the preceding discussion about the aperture problem. This was also mentioned in [24].

As explained in the introduction, specimens tested in experimental mechanics are
marked with random speckle patterns which can be modeled as stationary textures. We
can thus safely assume that the gradient norms (gi)xi∈Ω are indentically distributed ran-
dom variables, as well as the angles (θi)xi∈Ω, and that at each pixel xi, gi and θi are
independent. Nevertheless, these random variables are spatially correlated. A common as-
sumption is that spatial correlation vanishes with the distance between pixels as in natural
images [37].

Let Xi = g2
i cos2(θi) |u(xi)− φ(xi)|2 for any 1 ≤ i ≤ M . The classic law of large

numbers does not hold here because of spatial correlations. However, generalizations such
as Bernstein’s weak law of large numbers [8, Ex. 254 p. 67] still hold. Assuming that
the variance of the Xi is bounded, i.e., there exists c > 0 such that Var(Xi) ≤ c, and
assuming also that spatial correlations vanish with distance, i.e., Cov(Xi, Xj) → 0 when
|xi − xj | → +∞, we obtain1:

Var

(
M∑
i=1

Xi

)
=

M∑
i=1

Var(Xi) + 2
M∑
i=1

∑
j∈[1,M ]\Vi

Cov(Xi, Xj)

+ 2
M∑
i=1

∑
j∈[1,M ]∩Vi

Cov(Xi, Xj) (32)

1The proposed calculation is adapted from https://math.stackexchange.com/questions/245327/
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where, for any ε > 0, Vi is the set of indices j such that for any i and j ∈ Vi, Cov(Xi, Xj) ≤
ε. Here, B\A denotes the relative complement of a set A with respect to B. Let Ni be the
cardinality of N\Vi which is a finite set since Cov(Xi, Xj)→ 0 when |xi − xj | → +∞, and
N = maxiNi.

Since for any i, j, Cov(Xi, Xj) ≤ c by Cauchy-Schwartz inequality, the following upper
bound holds:

Var

(
M∑
i=1

Xi

)
≤Mc+ 2MNc+ 2M2ε (33)

Thus,

Var

(
1

M

M∑
i=1

Xi

)
≤ c/M + 2Nc/M + 2ε (34)

Chebyshev’s inequality implies that the random variable 1
M

∑M
i=1Xi− 1

M

∑M
i=1E(Xi) tends

to 0 in probability as M → +∞.
In other words, this justifies that minimizing Equation 31 amounts to minimizing

M∑
i=1

E(Xi) = E(g2)E(cos2(θ))
∑
xi∈Ω

|u(xi)− φ(xi)|2 (35)

as soon as the size M of the domain Ω is “large enough”. Equation 34 states that, for a
given M , the approximation is as tight as the bound c on the variance is small, or as the
spatial correlation of the image gradients quickly vanishes, giving a small N .

2.3.2 Towards an optimum pattern with respect to pattern-induced bias?

The result of the preceding section can be interpreted as follows: minimizing Equation 31
to estimate φ is similar to minimizing Equation 26, provided that the size M of the sub-
set Ω is large enough. From Equation 34, this is all the more valid as the speckle pattern
is fine (giving quickly vanishing spatial correlations, thus a small N for a given ε) and
as the variance of the Xi is small (giving a small c). Since Var(Xi) is proportional to
Var(g2

i cos2(θi)) = E(g4
i )E(cos4(θi))−E2(g2

i )E2(cos2(θi)) = 3E(g4
i )/8−E2(g2

i )/4 (assum-
ing that the θi are uniformly distributed in the interval (0, 2π), which is sound with an
isotropic speckle pattern, we indeed obtain E(cos2(θ)) = 1/2 and E(cos4(θ)) = 3/8). As a
consequence,

Var(g2
i cos2(θi)) = 3Var(g2

i )/8 + E2(g2
i )/8 (36)

A fine pattern minimizing this quantity should have lower pattern-induced bias. One can
see that a concentrated gradient distribution with a low gradient average value is of interest.
However, such a speckle pattern is still to be designed.
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2.3.3 Link with a fattening-free criterion in stereoscopic imaging

Disparity in stereo-imaging being a 1-D displacement, θi = 0 in Equation 31 and gi =
Ĩ ′x(xi + u(xi)) where Ĩ ′x denotes the partial derivative of Ĩ ′ along the epipolar line.

This motivates the authors of [1] to estimate φ by minimizing the following weighted

SSD criterion, denoted S̃SD in what follows:

∑
xi∈Ωx

(
I(xi)− Ĩ ′(xi + φ(x))

)2

max(|Ĩ ′x(xi + u(xi))|2, κ)
(37)

where κ > 0 avoids divisions by zero.
In stereo-imaging, φ is sought as a constant displacement. The solution of S̃SD mini-

mizes
∑

i |u(xi)− φ|2 and does not depend on the image gradient. It is shown in [1] that

estimating φ by minimizing S̃SD at any pixel gives an estimated displacement at x which is
the mean of the u(xi) over Ωx. Interestingly, this is consistent with the preceding section,
since a zero-order Savitzky-Golay filter is a simple moving average with a kernel constant
over its domain.

3 Numerical assessment

The goal of this section is to provide the reader with illustrative didactic experiments,
and to assess the validity of the predictive formulas given by Theorem 1 and Corollary 1.
We also discuss to what extent PIB can be eliminated or decreased. In the proposed
numerical assessments, the real displacement fields are known, and we are able to compare
the estimated displacement to this ground truth. It should be noted that the numerical
scheme actually used to minimize the SSD criterion over the subsets (Equation 2) (see,
e.g., [28]) is not important here. Nevertheless, the stopping criterion must be set carefully
so that the stationarity assumption, which is the ground of Section 2, is valid. In practice,
we use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method with a cubic
line search implemented in Matlab’s fminunc function.

Since the predictive formulas are based on the ideal, continuous images I and I ′ whose
derivatives are required, we shall first consider in Section 3.1 images and deformation fields
expressed as simple closed-form expressions. We also assess the effect of gray-level quan-
tization. Nevertheless, the true derivatives of quantized images are, of course, unknown.
Section 3.2 deals with synthetic speckle images which mimic real images used in experi-
mental solid mechanics.

The numerical experiments proposed in this section can be reproduced with datasets
and Matlab codes available at the following URL:
https://members.loria.fr/FSur/software/PIB/

The interested reader can also easily modify the parameters and datasets for further inves-
tigations.
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Figure 1: Synthetic image in deformed state defined by Equation 39 (image in reference
state defined by Equation 38 is not discernible to the naked eye).

3.1 Image pairs given by a closed-form expression

In this section, we make use of images defined by closed-form expressions in order to assess
the proposed formulas in a controlled experimental setting.

3.1.1 Displacement estimation

We define the image I of the reference state and the image I ′ of the deformed state at any
pixel of coordinates (x, y) as sine waves by the following equations:

I(x, y) = 2b−1(1 + γ sin(2π(x+ u(x))1.5/p1.5)) (38)

I ′(x, y) = 2b−1(1 + γ sin(2πx1.5/p1.5)) (39)

where (x, y) spans a 200 × 15 pixel domain, b = 8 (so that the gray level of both images
spans an 8-bit range), γ = 0.9 is the contrast, p = 50 pixels governs the varying period of
the sine wave, and u(x) is the ground-truth displacement field, supposed to be restricted
along the x-axis. See Figure 1. Note that in this section, images are not quantized over b
bits.

We seek for a constant displacement field (φ, 0) on each subset Ωx of size 15 × 15
pixels2 distributed along the x-axis. The size of the subset is chosen in accordance with the
characteristic scale of the modulated sine wave giving images I and I ′. Such a constant
displacement corresponds to zero-order shape functions. We therefore calculate at any
abscissa x the quantity φ(x) = (φ(x), 0) minimizing the SSD criterion:∑

xi∈Ωx

(
I(xi)− Ĩ ′(xi + φ(x))

)2
. (40)

The numerical assessment in the present section deals with a 1-D displacement along
the x-axis in an image which varies only along the x-axis. The gradient is thus always
collinear with the displacement. Consequently, the aperture problem manifests itself only
because of vanishing image gradients: there is no loss of information orthogonally to the
gradient as in the general 2-D case.

The 1-D displacement considered here is the case of interest of stereoscopy. It is possible
to also implement the S̃SD criterion of [1], recalled in Section 2.3.3 above. We set the value
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Figure 2: For displacement a) (constant displacement of 0.2 pixel): 1) closed-form expres-
sion (first column), 2) bilinear interpolation (second column), and 3) bicubic interpolation
(third column). In each of these three cases, the first row depicts, superimposed on the
same graph: the ground truth u, the displacement φ(x) estimated from SSD, the displace-

ment φ̃(x) estimated from S̃SD, the displacement predicted by Theorem 1, and Savitzky-
Golay filtering of u. In each of the three cases, the second row depicts, superimposed on
the same graph
: the differences (bias estimations) between u on the one hand, and displacement retrieved

with SSD, predicted displacement, displacement retrieved with S̃SD, output of the SG filter
on the other hand.

of κ to achieve the best trade-off between reducing the fattening effect and numerical
stability, see Section 3.2.5.

In the SSD and S̃SD criteria, Ĩ ′ denotes a continuous image. Since we use images
given by closed-form expressions, image values at non-integer pixels are available. Real
experiments require, however, to interpolate images. In this illustrative experiment, we
consider three possibilities: 1) using Equation 39 which allows avoiding any interpolation
scheme (in this case we also use the closed-form expression of the gradient in the quasi-
Newton scheme), 2) using bilinear interpolation, or 3) using bicubic interpolation.

We also consider two displacement fields: a) a constant u(x) = 0.2 pixel, b) a low-
frequency sine wave u(x) = 0.2 sin(2πx/q) where q = 90 pixels. We also discuss in [42] the
case of a high-frequency sine wave (not shown here). In all cases, the largest displacement
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Figure 3: For displacement b) (sine wave of amplitude 0.2 pixel and period 90 pixels):
1) closed-form expression (first column), 2) bilinear interpolation (second column), and 3)
bicubic interpolation (third column). In each of these three cases, the first row depicts,
superimposed on the same graph: the ground truth u, the displacement φ(x) estimated

from SSD, the displacement φ̃(x) estimated from S̃SD, the displacement predicted by
Theorem 1, and Savitzky-Golay filtering of u. In each of the three cases, the second row
depicts, superimposed on the same graph: the differences (bias estimations) between u on
the one hand, and displacement retrieved with SSD, predicted displacement, displacement
retrieved with S̃SD, output of the SG filter on the other hand.
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Figure 4: Effect of gray-level quantization. From left to right: 8-bit images, 10-bit images,
12-bit images, 14-bit images. First row: displacements. Second row: biases (difference
between the predicted or retrieved displacements and the ground truth displacement).

value is 0.2 pixel.
Figures 2 and 3 show various plots. Each of these figures permits discussing displace-

ment fields on the top and biases (systematic errors) on the bottom, as a function of the
interpolation scheme (from left to right: closed-form expression, bilinear interpolation, and
bicubic interpolation). Concerning the displacement, we plot the ground truth u (thin
green line), the displacement φ(x) retrieved by minimizing the SSD criterion (blue), the

displacement φ̃(x) retrieved from the modified criterion S̃SD defined in Equation 37 (red),
the predicted displacement (cf. Theorem 1, yellow) and the filtering of the ground-truth
displacement by the Savitzky-Golay filter of order 0 and frame length 15 (purple). Concern-
ing the biases, we plot the differences between the ground truth displacement on the one
hand, and the retrieved displacement with SSD, the predicted displacement, the retrieved
displacement with S̃SD, and the output of the SG filter on the other hand.

Concerning the constant displacement a) in Figure 2, since it can be represented with
zero-order shape functions, the error ε (thus E) in Corollary 1 is null: no marking bias
should be noticed. With the closed-form expression of image I ′ (case 1), the interpolation
error DI ′ is also null. It can be seen, indeed, that all curves are superimposed in this
case. With bilinear interpolation (case 2), Theorem 1 predicts an error term caused by the
interpolation error. We can see that the retrieved displacement fits well the prediction, the
blue and yellow curves being superimposed. We can also see that correcting the marking
bias (which is, here, non-existent) significantly amplifies the interpolation error, giving the
erratic red curve. When looking closely at the curves showing the biases, we can notice a
small difference between the retrieved bias and the predicted bias, which could probably be
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explained by higher-order error terms than the first-order terms of the present calculation.
With bicubic interpolation (case 3), the interpolation error is very small, all the curves
being close to each other. With the constant displacement considered here, we can see
that interpolation still causes a very small drift in the estimation, giving the increasing
bias. Correcting the marking bias with S̃SD does not give an erratic red curve but a few
spurious estimations can be seen. Interpolation errors seem to be amplified.

Concerning the low-frequency sine displacement b) in Figure 3, it cannot be represented
by zero-order shape functions, thus marking bias should affect the retrieved displacement,
the error term E being non-null in Theorem 1. We can see that with closed-form expression
(case 1), thus no interpolation error, the retrieved displacement fits perfectly the predic-
tion, the blue and yellow curves being superimposed. The marking bias causes departures
from the ground truth displacement, whose amplitude is governed by the gradient of the
underlying image, giving a rather chaotic bias curve. The marking bias is perfectly removed
with the S̃SD criterion: the retrieved displacement indeed fits the output of the SG filter,
as predicted by the theory. With bilinear interpolation (case 2), an additional interpolation
error is predicted by Theorem 1, although it is difficult to see a difference between the blue
and yellow curves. The retrieved displacement globally fits the prediction. With bicubic
interpolation (case 3), the curves are close to case 1. When using the S̃SD criterion, we
can see that cases 1 and 3 fit well the predicted Savitzky-Golay filtering (green and red
curves are superimposed), but as for displacement a), bilinear interpolation error (case 2)
is amplified, giving an erratic red curve.

3.1.2 Effect of quantization

In the preceding section, image intensity is not quantized. We now perform experiments
with quantized images in order to illustrate its impact on the predictive formulas. Bicubic
interpolation is used in order to minimize interpolation bias, as illustrated earlier. We
perform the same experiment as the one described in Figure 3.

Figure 4 shows the result of displacement estimation by minimizing SSD and S̃SD. The
former estimation should match the predicted one, and the latter should match the output
of SG filter. We can see that the proposed predictive formulas are quite accurate as soon as
quantization is performed over 10 bits (the yellow and blue curves are superimposed), and

that retrieving the output of the SG filter with S̃SD requires to quantize image intensity
over 12 bits (so that red and purple curves are superimposed).

3.2 Speckle patterns: assessing the prediction for pattern-induced bias

The previous section shows numerical assessments with smooth images and simple ground-
truth displacement fields. The present section presents numerical assessments based on
speckle pattern images corresponding to typical usage cases in experimental mechanics.
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Figure 5: Two speckle images (size: 500×100 pixels) and y-component uy of the prescribed
displacement field. There is no displacement along the x-direction (ux = 0). The first image
shows the large speckle pattern discussed in Section 3.2.2, the second one the fine speckle
pattern of Section 3.2.3.

BSpeckleRender software2 [41] is used to render synthetic speckle images of size 500 ×
100 pixels: one image corresponds to a reference state and another one corresponds to a
deformed state. Speckles are designed to mimic real patterns such as the ones that can
be seen in [22, 38, 39] for instance. The displacement field u = (ux, uy) is given by the
following closed formula: {

ux = 0

uy = 0.5 cos
(

2π y−50
5+45x/500

) (41)

The speckle pattern is deformed along the y-direction, the prescribed displacement being
a sine wave along the x-direction of maximum amplitude of 0.5 pixel, whose period ranges
from 5 pixels (x = 0) to 50 pixels (x = 500). Such a deformation field is relevant in order to

2We use BSpeckleRender b which renders speckle images with patterns of intensity at pixel x varying as
exp(−4|x−x0|2/R2) with a center x0 given by a Poisson point process and a random radius R, instead of ran-
dom black disks over a white background, so that the image gradient is a smooth function. Matlab software
code is available at the following URL: https://members.loria.fr/FSur/software/BSpeckleRender/
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Figure 6: Fine speckle, zero-order shape functions. From left to right: 7 × 7, 19 × 19,
31× 31, and 43× 43 subset Ω. On the top, displacement following x-axis; on the bottom,
displacement following y-axis (difference between retrieved displacement field and output
of SG filter, and cross-section along the line y = 50).

highlight the frequency response of the SG filter, see [10, 16, 17, 18] for instance. A 12-bit
quantization is used, following the prescription of Section 3.1.2. Note that these images
are smaller than in assessment datasets used in some recent works [14, 15, 17, 18] because
of the time needed to render 12-bit images, and in order to facilitate the reading of the
graphs. Because of the discrete nature of the rendered speckle images, interpolation is also
required. Bicubic interpolation is used, following Section 3.1.1. Consequently, estimation
error is likely to be only caused by the ((Lu)TLu)−1(Lu)TE term in Corollary 1.

Figure 5 shows two speckle images and the imposed (ground truth) displacement field.
Images (before and after deformation) with the large speckle pattern are discussed in Sec-
tion 3.2.2. Section 3.2.3 concerns images with the fine speckle pattern. The goal here
is to compare the displacement field retrieved with SSD minimization to its counterpart
given by the predictive formula for the pattern-induced bias (PIB). For didactic purpose,
several values are tested for both the subset size and the order of the shape functions. In
the remainder of this section, we show the displacement maps (in each direction) retrieved
by SSD minimization, the maps predicted by Theorem 1, the ground-truth (GT) displace-
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Figure 7: Large speckle, 7×7 subset Ω and 0-order shape functions. Displacement along x-
(left) and y-axis (right), and corresponding cross-section plots.
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ment, and the output of the Savitzky-Golay filtering of the GT displacement. We also
show a cross-section plot of the displacement field along its middle-line y = 50 where GT
displacement is constant, either null along the x-direction, or equal to 0.5 pixel along the
y-direction.

3.2.1 Influence of the subset size

Figure 6 shows the evolution of the difference between the retrieved displacement and the
output of the Savistzky-Golay filter as a function of the subset size, for zero-order shape
functions used in sterescopy. The results (not shown) for first-order shape functions are
similar. The fine speckle pattern images are used here. As discussed in the following
sections, the predictive formulas for the retrieved displacement are quite accurate. These
figures illustrate the convergence of the retrieved displacement towards the output of the SG
filter, as predicted in Section 2.3. It also illustrates that PIB shows a large amplitude over
areas where the gradient of the displacement has a large value (here, on the left of the uy
displacement field). We can also see that large subsets give very smooth displacement fields,
the corresponding lowpass SG filter having the same support as the subset (see [14, 36]).
Such large subsets are not used in practice. Small subsets are required to avoid a large
Savitzky-Golay smoothing, but they also give a potentially large PIB.

3.2.2 Large speckle pattern

Figure 7 shows the results for a subset Ω of size 7× 7 and zero-order shape functions (that
is, a constant displacement is estimated over each subset). We can see that the seemingly
random fluctuations in the retrieved displacement fields are actually caused by PIB (thus
not by sensor noise) and are well predicted by our formulas. In particular, the cross-section
plots of the displacement maps confirm that the seemingly random fluctuations of the
estimated displacement along the SG filtering of the GT displacement are caused by PIB,
the retrieved and predicted curves being superimposed. Interestingly, despite the null GT
displacement along the x-direction, the x-component of the retrieved displacement is still
affected by PIB. We can see that the amplitude of the PIB is quite large compared to the
true displacement. It can be noticed that PIB is large where displacement gradient is large
(that is, on the left-hand side of the displacement field). Since the retrieved displacement
is a weighted mean of the true displacement in the considered subset, PIB is indeed likely
to be larger if the displacement strongly varies within the subset.

Figure 8 shows results for 13 × 13 subsets and first-order shape functions. It turns
out that higher-order shape functions require larger subsets, since numerical issues affect
smaller subsets (not shown here). With first-order shape functions, Λ has 6 components.
The first two components correspond to the displacement φ(x) at the center of the sub-
set Ωx and can thus be compared to the convolution of the true displacement with SG
filter. The four other components correspond to partial derivatives of the displacement
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Figure 8: Large speckle, 13×13 subset Ω and first-order shape functions. The cross-section
plots show, from left to right and top to bottom, λ1, λ3, λ5, λ2, λ4, λ6, such that the x-
component of the displacement over a subset (giving fields shown on the upper left) is
λ1 + λ3x+ λ5y and the y-component (on the upper right) is λ2 + λ4x+ λ6y.
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Figure 9: Large speckle, 19× 19 subset Ω and second-order shape functions. Displacement
along x- (left) and y-axis (right).

field. They also correspond to the output of (other) SG filters, as recalled in Section 2.33.
In all cases, we can see fluctuations of the estimated displacement around the output of the
SG filter, these fluctuations being due to PIB. Because of the transfer function of the SG
filter, the retrieved displacement field vanishes for certain values. It has even a wrong sign,
as discussed in detail in [14]. It is quite surprising that the PIB give such large spurious
measurements.

Figures 9 and 10 show results for 19 × 19 subsets and second-order shape functions.
Even if second-order shape functions are rarely used in commercial DIC software programs
for experimental mechanics, it can be seen that predictive formulas are still valid in this
case.

3.2.3 Fine speckle pattern

Figures 11 to 14 show the results of the same experiments as in the preceding section,
but with the fine speckle pattern. Although such a pattern makes it difficult to reliably

3It should be noted that these four components are the derivatives of the local displacement field φx

estimated over Ωx. In photomechanics, the derivatives of the displacement field, which are related to strain
components, are rather computed from the derivatives of the global displacement φ.
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Figure 10: Large speckle, 19 × 19 subset Ω and second-order shape functions. From left
to right and top to bottom: λ1, λ3, λ5, λ7, λ9, λ11 concerning x-displacement, and λ2, λ4,
λ6, λ8, λ10, λ12 concerning y-displacement.

estimate the image gradients, we can see that PIB is still accurately predicted. With the
same shape functions and subset sizes, we can see that the fine speckle pattern gives a PIB
with a smaller amplitude, as discussed in Section 2.3.
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Figure 11: Fine speckle, 7 × 7 subset Ω and 0-order shape functions. Displacement maps
along x- (left) and y-axis (right), and cross-section plots.
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Figure 12: Fine speckle, 13 × 13 subset Ω and first-order shape functions. Displacement
maps along x- (left) and y-axis (right). Cross-section plots, from left to right and top to
bottom: λ1, λ3, λ5, λ2, λ4, λ6.
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Figure 13: Fine speckle, 19× 19 subset Ω and second-order shape functions. Displacement
maps along x- (left) and y-axis (right).
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Figure 14: Fine speckle, 19× 19 subset Ω and second-order shape functions. From left to
right and top to bottom: λ1, λ3, λ5, λ7, λ9, λ11 concerning x-displacement, and λ2, λ4, λ6,
λ8, λ10, λ12 concerning y-displacement.

31



Figure 15: Checkerboard pattern.

3.2.4 A remark on checkerboard patterns

While random speckle patterns have a huge popularity in photomechanics, very recent pa-
pers show that checkerboard patterns give less random noise in the retrieved displacement,
see [4, 18]. The reason is that the average gradient norm within a subset has larger values
than with any typical random speckle patterns. Figure 15 shows a checkerboard pattern of
pitch equal to 6 (that is, it is made of juxtaposed black and white squares of width 3 pixels).
Such a pattern has been used in the experimental assessment of [15, 18]. In these papers,
less spurious fluctuations have been observed in the displacement with checkerboard than
with random speckle.

This is confirmed by Figures 16 and 17 which show estimation of the Λ parameters with
checkerboards patterns, with the same settings as in Figures 7-8 with large speckle and 11-
12 with fine speckle. While predictive formulas are not fully satisfied here, the curves being
not perfectly superimposed, it can be noted that the amplitude of the spurious fluctuations
is much smaller than with speckle patterns. The amplitude of the high-frequency spurious
displacement on the x-component of the displacement is less than 5 10−3, an order of
magnitude smaller than with speckles. This high-frequency phenomenon is caused by
aliasing; it cannot be seen with large checkerboard pitches (not shown here). Moreover,
with such a fine pattern, the numerical estimation of the gradient needed in the predictive
formulas is certainly not consistent. While spurious fluctuations cannot be seen, contrary
to the fluctuations caused by random speckle patterns, the PIB still plays a role, giving
displacement fields which do not fit the output of the SG filter, as can be seen in the
cross-section plots in Figures 16 and 17. The difference caused by PIB reaches, however,
values smaller than with random speckle patterns.

This experiment illustrates that a periodic and fine pattern such as a checkerboard
gives a smaller difference with the output of the SG filter than the classic speckle patterns.

3.2.5 Towards a PIB-free SSD criterion?

This section discusses the extent to which it is possible to get rid of PIB, after Blanchet et
al.’s approach [1]. We can see from Section 2.3.3 that if φ minimizes the following GT-S̃SD
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Figure 16: Checkerboard, 7× 7 subset Ω and 0-order shape functions. Displacement maps
along x- (left) and y-axis (right), and cross-section plots.
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Figure 17: Checkerboard, 13× 13 subset Ω and first-order shape functions. Displacement
maps along x- (left) and y-axis (right). Cross-section plots, from left to right and top to
bottom: λ1, λ3, λ5, λ2, λ4, λ6.
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Figure 18: Large speckle, 19× 19 subset Ω, zero-order shape functions, and displacement
estimation (along x- on the left and y-axis on the right) with the GT-S̃SD criterion.
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criterion: ∑
xi∈Ωx

1

max(g2
i cos2(θi), κ)

(
I(xi)− Ĩ ′(xi + φ(x))

)2
(42)

(with the notations of Section 2.3.3), then it is also the least-squares estimate of u over Ω.
In this section, κ = 10−2 for the large speckle pattern, and κ = 10−4 for the fine one.

Figure 18 is representative of results obtained with the large speckle pattern. We
can see that the displacement retrieved with this criterion is much less impaired by the
spurious fluctuations caused by PIB. Here, it is possible to estimate g2

i cos2(θi) since the
GT displacement is known. However, Figure 19 shows that this approach is much less
efficient with the fine speckle pattern. The reason is that the GT-S̃SD criterion requires
an estimation of the gradient gi and of the angle θi, which is less accurate with the fine
speckle than with the smooth softly-varying speckle pattern. For the same reason, similar
results are obtained with the checkerboard pattern discussed in Section 3.2.4.

We now discuss two approaches to PIB-free estimation which do not require the knowl-
edge of the true displacement u. In the present experiment, u is actually a 1-D displacement
along the x-axis. It is thus possible to use Blanchet et al.’s approach to fattening-free block
matching, and estimate φ over Ωx by minimizing (again with Matlab’s fminunc function)

the following 1D-S̃SD criterion:

∑
xi∈Ωx

(
I(xi)− Ĩ ′(xi + φ(x))

)2

max(|Ĩ ′x(xi + φ(x))|2, κ)
(43)

where Ĩ ′x denotes the partial derivative along x of the interpolated image I ′, an initial
guess of φ being given by the classic SSD criterion.

The result is shown in Figures 20 and 21 (to be compared to Figures 18 and 19). PIB

significantly decreases: 1D-S̃SD gives a displacement that roughly follows the output of
the SG filter.

Nevertheless, realistic displacements in experimental mechanics are bidimensional. We
also introduce and test the following 2D-S̃SD criterion:

∑
xi∈Ωx

(
I(xi)− Ĩ ′(xi + φ(x))

)2

max(|∇Ĩ ′(xi + φ(x))|2, κ)
(44)

Figure 22 is representative of results generally obtained: this approach only marginally
allows us to decrease PIB, contrary to the case of 1D-S̃SD. A slight decreasing of the
amplitude of PIB can be noticed. As noted earlier in the 1-D case, displacement information
is lost only at points where the derivative of the image vanishes. On the contrary, in the
2-D case the aperture problems manifests itself at any pixel since the component of the
displacement orthogonal to the gradient always vanishes. This probably leads here to an
incomplete correction of the criterion.

36



retrieved with SSD

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.05

0

0.05

predicted

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.05

0

0.05

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.05

0

0.05

output of SG filter

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.05

0

0.05

GT displacement

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.05

0

0.05

retrieved with SSD

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

predicted

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

output of SG filter

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

GT displacement

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

0 100 200 300 400 500
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 100 200 300 400 500
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 19: Fine speckle, 19 × 19 subset Ω, zero-order shape functions, and displacement
estimation (along x- on the left and y-axis on the right) with the GT-S̃SD criterion.
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Figure 20: Large speckle, 19× 19 subset Ω, zero-order shape functions, and displacement
estimation (along x-axis) with the 1D-S̃SD criterion. To be compared to Figure 18.
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Figure 21: Fine speckle, 19 × 19 subset Ω, first-order shape functions, and displacement
estimation (along x-axis) with the 1D-S̃SD criterion. To be compared to Figure 19.
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Figure 22: Large speckle, 19× 19 subset Ω, zero-order shape functions, and displacement
estimation (along x- on the left and y-axis on the right) with the 2D-S̃SD criterion.
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4 Conclusion and open questions

This paper discusses several bias sources in image registration with local parametric es-
timation via a sum of squared differences criterion, with a focus on photomechanics. A
predictive formula is proposed in Theorem 1 for biases caused by interpolation and under-
matched shape functions. These sources of errors all depend on the gradient distribution in
the underlying images. In particular, the pattern-induced bias (PIB), known as fattening
effect in stereoscopic imaging, is caused by the gradient distribution and by the difference
between the true displacement field and its local approximation by shape functions. In ad-
dition to these biases, the retrieved displacement is affected by spatially correlated random
fluctuations caused by sensor noise propagation. This point is discussed in [42].

Several results from the literature are extended or presented in a unifying way. In
Section 2.3, we have also completed the contribution of [36] by establishing a rigorous link
between the estimated displacement and the true displacement through the Savitzky-Golay
(SG) filter, whose parameters depends on the order of the shape functions and on the size
of the analysis subset. The link holds because of the very random nature of speckle images.

A numerical assessment of the predictive formulas is discussed as well. First, we have
noticed that bicubic interpolation gives biases well below PIB in amplitude, in contrast to
bilinear interpolation. Second, it is shown that PIB may have a large amplitude, either if
zero-order (used in stereo-imaging) or first and second-order (used in DIC for experimental
mechanics applications) shape functions are used. This bias term gives fluctuations around
the output of the SG filter of the true displacement. It is striking to note that these
fluctuations may have an amplitude of twice the true displacement. As mentioned in
Section 2.3, the effect of PIB is equivalent to a spatially varying convolution. A fine
understanding of this question would permit to go beyond the deconvolution procedure
that is proposed in [16] in order to reduce the measurement bias.

In experimental mechanics applications, defining a marking pattern which is optimal
with respect to relevant metrological criteria still remains an open question. Some guide-
lines are given in Section 3.2.5. In addition, first results discussed in [18] show that checker-
boards give a smaller measurement bias than classic speckle patterns used in DIC, and
suggest that checkerboards indeed give lower PIB than random speckle patterns. This was
numerically verified and illustrated in Section 3.2.4.

Besides, the set of shape functions used to parameterize the local displacement also
plays a role: we have shown that PIB involves the scalar product of the image gradient
and the difference between the true and the retrieved displacements. It could be of interest
to select shape functions minimizing PIB, by improving statistical criteria such as the ones
discussed in [7].

Concerning modifications of the sum of squared differences criterion permitting to get
rid of pattern-induced bias, we have verified that the approach proposed by Blanchet et
al. [1] is an effective method for 1-D displacements met in stereo-imaging. Our numerical
experiments show that it is also a valid approach with higher-order shape functions than the
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constant local displacement considered in [1]. We have shown that the resulting fattening-
free estimation approximates the output of a SG filter, which generalizes [1]. However,
the case of 2-D displacements is much more complicated because of the aperture problem,
which discards displacement information at any pixel. A PIB-free estimation is still to be
designed in this case.
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