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Abstract

We consider in this article reaction-diffusion equations of the Fisher-KPP type with a non-
linearity depending on the space variable x, oscillating slowly and non-periodically. We are
interested in the width of the interface between the unstable steady state 0 and the stable
steady state 1 of the solutions of the Cauchy problem. We prove that, if the heterogeneity has
large enough oscillations, then the width of this interface, that is, the diameter of some level
sets, diverges linearly as t→ +∞ along some sequences of times, while it is sublinear along other
sequences. As a corollary, we show that under these conditions generalized transition fronts do
not exist for this equation.

AMS Classification: 35B40, 35C07, 35K57.
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1 Introduction and main results

This article investigates propagation phenomena for heterogeneous reaction-diffusion equations:

∂tu = ∂xxu+ f(x, u), t > 0, x ∈ R. (1.1)

We consider real-valued functions f : (x, s) 7→ f(x, s) which are uniformly continuous in R× [0, 1],
Lipschitz-continuous with respect to s ∈ [0, 1] uniformly in x ∈ R, for which there exists δ > 0
such that ∂sf exists and is continuous and bounded in R× [0, δ], and which satisfy the Fisher-KPP
property 

∀x ∈ R, f(x, 0) = f(x, 1) = 0,

∀ 0 < s1 < s2 ≤ 1, inf
x∈R

(f(x, s1)

s1
− f(x, s2)

s2

)
> 0.

(1.2)

We denote  µ(x) := ∂sf(x, 0) for x ∈ R,
µ+ := sup

x∈R
µ(x), µ− := inf

x∈R
µ(x), (1.3)

∗This work has been carried out in the framework of the A*MIDEX project (ANR-11-IDEX-0001-02), funded
by the “Investissements d’Avenir” French Government program managed by the French National Research Agency
(ANR). The research leading to these results has also received funding from the ANR project RESISTE (ANR-18-
CE45-0019).
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and we assume that
µ− > 0, (1.4)

implying that 0 is a linearly unstable steady state of the ordinary differential equation
ξ̇(t) = f(x, ξ(t)), for each point x ∈ R. No periodicity or any other specific condition on the
dependence of f with respect to x is assumed.

The aim of this article is to quantify the width of the transition between the stable steady
state 1 and the unstable steady state 0. More precisely, we want to construct nonlinearities for
which the solutions of the Cauchy problem associated with appropriate initial data have an interface
between 1 and 0 whose size diverges linearly as t→ +∞ along some sequences of times.

We consider measurable initial conditions u0 satisfying:

u0(x) = 0 for all x > 0, lim
x→−∞

u0(x) = 1, 0 ≤ u0 ≤ 1 in R. (1.5)

The Cauchy problem (1.1) with initial condition (1.5) is well posed: the unique bounded solu-
tion u belongs to C1,2t,x ((0,+∞) × R), u(t, ·) → u0 as t → 0+ in L1

loc(R), 0 < u < 1 in (0,+∞) × R
and {

u(t,−∞) = 1,

u(t,+∞) = 0,
locally uniformly with respect to t ≥ 0.

For γ ∈ (0, 1) and t > 0, we can then define
X+
γ (t) := max

{
x ∈ R : u(t, x) ≥ γ

}
= max

{
x ∈ R : u(t, x) = γ

}
,

X−γ (t) := min
{
x ∈ R : u(t, x) ≤ γ

}
= min

{
x ∈ R : u(t, x) = γ

}
,

Iγ(t) := X+
γ (t)−X−γ (t) ≥ 0.

Notice immediately that, if f does not depend on x and if u0 were also assumed to be nonincreasing,
then µ would be constant and u(t, ·) would be continuous and decreasing in R for every t > 0, hence
X+
γ (t) = X−γ (t) and Iγ(t) = 0 for every γ ∈ (0, 1) and t > 0.

The main result of the paper shows that, for some functions f as above, the diameters Iγ(tn)
of the level sets associated with small values γ > 0 can grow linearly with respect to tn along some
diverging sequences of times (tn)n∈N, while Iγ(t′n) is small with respect to t′n along some other
diverging sequences of times (t′n)n∈N, for any fixed value γ ∈ (0, 1).

Theorem 1.1 There are some functions f : R× [0, 1]→ R, fulfilling the conditions (1.2)-(1.4) and

µ+ > 2µ− > 0, (1.6)

such that the solution u of (1.1) and (1.5) satisfies

lim sup
t→+∞

Iγ(t) = +∞

for all γ > 0 small enough, and even

lim inf
γ→0+

(
lim sup
t→+∞

Iγ(t)

t

)
≥ µ+√

µ+ − µ−
− 2
√
µ− > 0. (1.7)

On the other hand, for all γ ∈ (0, 1), there holds

0 = lim inf
t→+∞

Iγ(t)

t
≤ lim sup

t→+∞

Iγ(t)

t
≤ 2(
√
µ+ −

√
µ−) < +∞. (1.8)

Furthermore, f can be chosen of the type f(x, s) = µ(x)s(1− s), where µ is a C∞(R) function with
bounded derivatives at any order.
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Several comments are in order. First of all, an easy computation shows that the condition
µ+ > 2µ− > 0 ensures that

µ+√
µ+ − µ−

− 2
√
µ− > 0, (1.9)

hence the positivity of lim supt→+∞ Iγ(t)/t for all γ > 0 small enough.
We also point out that the functions f constructed in the proof of Theorem 1.1 are such

that µ(x) = ∂sf(x, 0) take values arbitrarily close to the minimal and maximal values µ− and µ+
in larger and larger intervals as x→ +∞.

Let us now make the link between Theorem 1.1 and the notion of generalized transition fronts
connecting 1 to 0 for (1.1), defined as follows:

Definition 1.2 [3, 17] A generalized transition front connecting 1 to 0 for equation (1.1) is an
entire solution U : R× R→ (0, 1) associated with a real valued map t 7→ ξt such that

U(t, ξt + x)→ 1 (resp. 0) as x→ −∞ (resp. x→ +∞) uniformly with respect to t ∈ R.

We can then derive from Theorem 1.1 the non-existence of generalized transition fronts.

Corollary 1.3 There are some functions f : R × [0, 1] → R, fulfilling the conditions (1.2)-(1.4)
and (1.6), such that equation (1.1) does not admit any generalized transition front connecting 1
to 0.

Zlatos [19] proved that, if µ+ < 2µ−, then there exists a generalized transition front connecting 1
to 0 for this equation. It follows from the arguments developed in the proof of Corollary 1.3 that, in
that case, for u0 ≡ 1(−∞,0), the width Iγ(t) of the interface remains bounded with respect to t > 0,
for any fixed γ ∈ (0, 1). We leave as an open problem the critical case µ+ = 2µ−.

Up to our knowledge, the optimality of the condition µ+ < 2µ− for the existence of transition
fronts connecting 1 to 0 had been proved only for compactly supported perturbations of a homoge-
neous nonlinearity f(u) [16]. Therefore, our result shows the optimality of this condition µ+ < 2µ−
on the existence of transition fronts connecting 1 to 0 for a new class of heterogeneous nonlinearities
f(x, u), and it also provides some quantitative estimates of the diameters of the level sets of the
solution u of (1.1) and (1.5) at large time.

In a recent paper, Cerny, Drewitz and Schmitz [6] investigate similar questions in a different
situation, namely that of random stationary ergodic media. The authors consider a random growth
rate µ(x, ω) depending on a random event ω, such that µ is ergodic with respect to spatial shifts
and such that the law of µ(x, ·) does not depend on x ∈ R. It is proved in [6] that, if µ+ > 2µ−,
then Iγ(t) = X+

γ (t) −X−γ (t) grows at least logarithmically as t → +∞. The location of X±γ (t) is
also addressed in a companion paper [7].

Next, several authors addressed the question of spreading speeds for Fisher-KPP reaction-
diffusion equations during the last decade: they tried to determine whether the quantities X±γ (t)/t
converge as t→ +∞. For example, the case of initial data which oscillate between two decreasing
exponential functions and which lead to convergent or non-convergent quantities X±γ (t)/t has been
addressed in [11, 18], when f does not depend on x. For initial data decaying more slowly than
any exponential function, then acceleration occurs: limt→+∞X

±
γ (t)/t = +∞ (this has been proved

when f does not depend on x in [12, 13], and when f is periodic in x in [13]). On the other hand,
we refer to [5] for a review of situations where X±γ (t)/t converges as t→ +∞.
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The type of nonlinearities we use in order to prove Theorem 1.1 was initially introduced in [10]
in order to quantify the spreading speeds. In [10], the authors showed that, under the assump-
tions (2.2)-(2.3) below, one has

lim inf
t→+∞

X−γ (t)

t
= 2
√
µ−, (1.10)

for every γ ∈ (0, 1). From some inequalities used in [10], the equality lim inft→+∞X
+
γ (t)/t = 2

√
µ−

can also be derived (even if this equality was not written explicitly in [10]). We actually prove
here this latter equality as a consequence of other estimates (see the end of the proof of Theo-
rem 1.1 in Section 2). It was also proved in [10] that, under some additional assumptions, then
lim supt→+∞X

−
γ (t)/t = lim supt→+∞X

+
γ (t)/t = 2

√
µ+,1 and other conditions were provided en-

suring that, on the contrary, X±γ (t)/t converges as t→ +∞.
Here, our point of view is different since our aim is to measure the width of the interface

Iγ(t) = X+
γ (t)−X−γ (t). On the one hand, from the observations of the previous paragraph, we get

that lim inft→+∞ Iγ(t)/t = 0 for every γ ∈ (0, 1). But this yields no further information on Iγ(t),
and other arguments are needed in order to estimate Iγ(t)/t and to bound it from below by positive
constants along some diverging sequences of times.

As explained above, our result shows the non-existence of generalized transition fronts connec-
ting 1 to 0 for some nonlinearities f satisfying (1.2)-(1.4) and µ+ > 2µ−. However, another notion
of front has been introduced by the second author in [15], that of critical traveling waves. These
waves are time-global solutions that are steeper than any other one (see the proof of Corollary 1.3 for
more details on the notion of steepness). Critical traveling waves exist under very mild conditions,
that are satisfied by (1.2)-(1.4). The description of these critical traveling waves is an interesting
open question which goes beyond the scope of this article and which we leave open for a future
work.

2 Proofs of Theorem 1.1 and Corollary 1.3

We start with the proof of Theorem 1.1. Throughout the proof, we fix two positive constants µ±
such that

µ+ > 2µ− > 0. (2.1)

We also consider any two increasing sequences (xn)n∈N and (yn)n∈N of real numbers such that{
0 < xn < yn − 2 < yn < xn+1 for all n ∈ N,
yn − xn → +∞ and yn = o(xn+1) as n→ +∞.

(2.2)

Notice that (2.2) also implies that xn → +∞, yn → +∞, xn+1 − yn → +∞ and yn = o(xn+1 − yn)
as n → +∞. A typical example is given by xn = (2n + 3)! and yn = (2n + 4)! for every n ∈ N.
Other examples are given by xn = n! and yn = n! + αnβ or yn = n! + α lnn (for n large enough),
with α > 0, β > 0.

We then fix a uniformly continuous function µ : R→ R such that
µ− ≤ µ(x) ≤ µ+ for all x ∈ R,
µ(x) = µ+ if x ∈ [xn + 1, yn − 1],

µ(x) = µ− if x ∈ [yn, xn+1],

(2.3)

1Together with (1.10), this shows that the upper bound of lim supt→+∞ Iγ(t)/t in (1.8) is optimal in general.
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and we set
f(x, s) = µ(x) s (1− s) for (x, s) ∈ R× [0, 1]. (2.4)

This function f then satisfies (1.2)-(1.4) and the general regularity properties listed in the intro-
duction. Furthermore, the function µ can be chosen of class C∞(R) with bounded derivatives at
any order.

The proof of Theorem 1.1 consists in showing that the solution u of (1.1) and (1.5) with this
function f satisfies the desired conclusions listed in Theorem 1.1. For the proof of (1.7), the strategy
is to estimate u from above and below at some larger and larger times and at some further and
further points. More precisely, on the one hand, the fact that µ takes its maximal value µ+ on
the large intervals [xn + 1, yn − 1] lead to the existence of time-growing bumps on these spatial
intervals, whereas, on the other hand, the fact that µ takes its minimal value µ− on the large
intervals [yn, xn+1] slows down the propagation in some time intervals when the growing bumps are
still negligible (see the following lemmas for further details and Figure 1 below).

First of all, (2.1) yields (1.9), that is,

µ+ > 2
√
µ−(µ+ − µ−), (2.5)

and there is then ε0 ∈ (0, µ−) ⊂ (0, µ+/2) small enough so that, for every ε ∈ (0, ε0],

0 <
2µ+ − ε− 2µ−

2(µ+ − 2ε)
√
µ+ − µ−

<
2
√
µ+ − µ−

µ+ + 2
√
µ−(µ+ − µ−)

<
1

2
√
µ−

. (2.6)

Consider any ε ∈ (0, ε0]. We then choose R > 0 such that

π2

4R2
≤ ε < µ− <

µ+
2

(2.7)

and Γ ∈ (0, 1) such that

f(x, s) ≥ (µ(x)− ε)s ≥ (µ− − ε)s for all x ∈ R and s ∈ [0,Γ]. (2.8)

From (2.3)-(2.4), it turns out that we can choose Γ = ε/µ+.
Our goal is to show that

lim sup
t→+∞

Iγ(t)

t
≥ 2(µ+ − 2ε)

√
µ+ − µ−

2µ+ − ε− 2µ−
− 2
√
µ− > 0 for all γ ∈ (0,Γ].

This will then yield the desired conclusion (1.7) in Theorem 1.1, due to the arbitrariness
of ε ∈ (0, ε0].

We start with a lemma extending [16, Lemma 3.3] to nonlinearities f(x, s) that are not linear
near s = 0, and providing some lower Gaussian estimates in semi-infinite intervals on the right-hand
side of points moving with speed 2

√
µ− − ε.

Lemma 2.1 There exists θ > 0 such that, for every γ ∈ (0,Γ] and every bounded solution v of (1.1)
with γ 1(−1,0) ≤ v(0, ·) ≤ 1 in R, there holds

v(t, x) ≥ θ γ e(µ−−ε)t
∫ 0

−1

e−(x−z)
2/(4t)

√
4πt

dz (2.9)

for all t > 0 and x ≥ 2
√
µ− − ε t.
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Proof. Let V denote the bounded solution of

∂tV = ∂xxV + µ−V (1− V ) in (0,+∞)× R

with initial condition V (0, ·) = Γ1(−1,0) in R. From the maximum principle, one has 0 ≤ V ≤ 1
in [0,+∞) × R and the standard spreading result of [2] implies that max|x|≤ct |V (t, x) − 1| → 0
as t→ +∞ for every c ∈ [0, 2

√
µ−). In particular, there is T > 0 such that

V (t, 2
√
µ− − ε t) ≥ Γ for all t ≥ T . (2.10)

Denote
θ = e−µ−T ∈ (0, 1)

and let us check that the conclusion of Lemma 2.1 holds with this constant θ.
To do so, consider now any γ ∈ (0,Γ] and any bounded solution v of (1.1) such

that γ 1(−1,0) ≤ v(0, ·) ≤ 1 in R. Define

vγ =
γ

Γ
V.

One has 0 ≤ vγ(0, ·) = γ 1(−1,0) ≤ v(0, ·) ≤ 1 in R together with 0 ≤ vγ ≤ V ≤ 1 in [0,+∞) × R
and

∂tvγ = ∂xxvγ +
γ

Γ
µ−V (1− V ) ≤ ∂xxvγ + µ−vγ(1− vγ) ≤ ∂xxvγ + f(x, vγ)

in (0,+∞) × R. It then follows from the maximum principle that vγ ≤ v in [0,+∞) × R. In
particular, (2.10) yields

v(t, 2
√
µ− − ε t) ≥ γ for all t ≥ T . (2.11)

Next, let us consider the bounded solution w of

∂tw − ∂xxw = (µ− − ε)w in (0,+∞)× R,

with initial condition w(0, ·) = θ γ 1(−1,0). The function w is nonnegative in [0,+∞) × R, and
it is positive and exactly equal to the right-hand side of (2.9) in (0,+∞) × R. It remains to
show that w(t, x) ≤ v(t, x) for all t > 0 and x ≥ 2

√
µ− − ε t. First of all, since f(x, s) ≥ 0 for

all (x, s) ∈ R× [0, 1] and since γ 1(−1,0) ≤ v(0, ·) ≤ 1 in R, there holds

v(t, x) ≥ γ
∫ 0

−1

e−(x−z)
2/(4t)

√
4πt

dz

for all t > 0 and x ∈ R. Since θ e(µ−−ε)t = e−µ−T+(µ−−ε)t ≤ 1 for all t ∈ [0, T ], it follows that

w(t, x) = θ γ e(µ−−ε)t
∫ 0

−1

e−(x−z)
2/(4t)

√
4πt

dz

≤ γ

∫ 0

−1

e−(x−z)
2/(4t)

√
4πt

dz ≤ v(t, x) for all (t, x) ∈ (0, T ]× R.
(2.12)

Secondly, for all t > 0,

0 < w(t, 2
√
µ− − ε t) = θ γ e(µ−−ε)t

∫ 0

−1

e−(2
√
µ−−ε t−z)2/(4t)
√

4πt
dz

≤ θ γ

∫ 0

−1

e−z
2/(4t)

√
4πt

dz ≤ θ γ ≤ γ ≤ Γ,

(2.13)
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hence
w(t, 2

√
µ− − ε t) ≤ γ ≤ v(t, 2

√
µ− − ε t) for all t ≥ T , (2.14)

by using (2.11). Lastly, since w satisfies w(t, 2
√
µ− − ε t) ≤ Γ for all t > 0 by (2.13) and

since x 7→ w(t, x) is positive, symmetric with respect to−1/2 and decreasing with respect to |x+1/2|
for every t > 0, one has 0 < w(t, x) ≤ Γ for all t > 0 and x ≥ 2

√
µ− − ε t. Remembering the defi-

nition (2.8) of Γ, it follows that

∂tw(t, x) ≤ ∂xxw(t, x) + f(x,w(t, x)) for all t > 0 and x ≥ 2
√
µ− − ε t.

Together with (2.14) and (2.12), the latter applied on {T}×[2
√
µ− − ε T,+∞), this means that w is

a subsolution of the problem satisfied by v in the domain {(t, x) ∈ R2 : t ≥ T, x ≥ 2
√
µ− − ε t}. The

maximum principle then implies that v(t, x) ≥ w(t, x) for all t ≥ T and x ≥ 2
√
µ− − ε t. Together

with (2.12), this yields the desired result (2.9). The proof of Lemma 2.1 is thereby complete. �

Next, let us remember that, from the standard results of [2, 9, 14] and since f(x, s) ≥ µ−s(1−s)
for all (x, s) ∈ R× [0, 1] (with µ− > 0), the solution u of (1.1) and (1.5) is such that

max
x≤ct
|u(t, x)− 1| −→

t→+∞
0 for all 0 ≤ c < 2

√
µ−. (2.15)

In particular, u(t, x) → 1 as t → +∞, for each x ∈ R. Now, for each n ∈ N, let yn be the
positive real number given in (2.2). Since u0(x) = 0 for all x > 0, the function u is actually
continuous with respect to (t, x) in [0,+∞)× (0,+∞), hence each map t 7→ u(t, yn) is continuous
in [0,+∞). As u(0, yn) = 0 < 1 = u(+∞, yn), one can then define, for each n ∈ N and γ ∈ (0, 1),
the smallest tn,γ > 0 such that

u(tn,γ , yn) = γ. (2.16)

The next lemma, which follows from Lemma 2.1, is based on the construction of a time-
increasing subsolution with compact support in a finite interval on the right-hand side of the
point xn+1 + 1, taking advantage of the fact that µ is equal to its maximal value µ+ there. That
will provide a lower bound of X+

γ (tn,γ + τn), for some large τn as n→ +∞ (see Figure 1).

Lemma 2.2 Let R > 0 and Γ ∈ (0, 1) be given in (2.7)-(2.8). For every γ ∈ (0,Γ], there holds

X+
γ (tn,γ + τn) ≥ xn+1 + 1 +R for all n large enough,

for some τn > 0 such that

τn ∼
2µ+ − ε− 2µ−

2(µ+ − 2ε)
√
µ+ − µ−

× (xn+1 − yn) as n→ +∞.2 (2.17)

Proof. Let us fix γ ∈ (0,Γ] in the proof. Since u(t, x) → 0 as x → +∞ locally uniformly with
respect to t ∈ [0,+∞), and since yn → +∞ as n → +∞, one has tn,γ ≥ 1 for all n large enough.
The Harnack inequality then yields the existence of a constant C ∈ (0, 1) (independent of γ and n)
such that

u(tn,γ + 1, ·) ≥ Cγ in (yn − 1, yn) for all n large enough.

Remember that R > 0 is given in (2.7) and, for each n ∈ N, denote

τ ′n :=
xn+1 − yn + 2R+ 2

2
√
µ+ − µ−

> 0. (2.18)

2We recall that 0 < ε < µ− < µ+/2 < µ+, hence µ+ − 2ε > 0, 2µ+ − ε − 2µ− > 0 and the factor in front of
(xn+1 − yn) in (2.17) is positive.
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Figure 1: Profiles of the functions x 7→ u(t, x) at the times t = tn,γ and t = tn,γ + τn, with
c− = 2

√
µ−; the growing bump has a growth rate ≈ µ+ and its size is magnified by a factor

≈ eµ+τn between the times tn,γ and tn,γ + τn.

Since 0 < ε < µ− and 0 < 2µ− < µ+, one has 0 <
√
µ− − ε <

√
µ+ − µ− and then

xn+1 − yn ≥ 2
√
µ− − ε τ ′n for all n large enough,

because xn+1 − yn → +∞ as n → +∞. With θ > 0 as in Lemma 2.1, it follows from Lemma 2.1,
applied with v := u(tn,γ + 1 + ·, yn + ·) and Cγ ∈ (0,Γ] instead of γ, that

u(tn,γ + 1 + τ ′n, x) ≥ θ C γ e(µ−−ε)τ
′
n

∫ 0

−1

e−(x−yn−z)
2/(4τ ′n)√

4πτ ′n
dz

≥ θ C γ e(µ−−ε)τ
′
n−(xn+1−yn+2R+2)2/(4τ ′n)√

4πτ ′n

for all n large enough
and x ∈ [xn+1+1, xn+1+2R+1].

For each n, consider now the function un : [0,+∞)× [xn+1 + 1, xn+1 + 2R+ 1]→ R defined by

un(t, x) :=
θ C γ e(µ−−ε)τ

′
n−(xn+1−yn+2R+2)2/(4τ ′n)√

4πτ ′n︸ ︷︷ ︸
=:αn

× cos
(π(x−xn+1−R−1)

2R

)
× e(µ+−2ε)t. (2.19)

One has

un(t, xn+1 +R+ 1±R) = 0 < u(tn,γ + 1 + τ ′n + t, xn+1 +R+ 1±R) for all t ≥ 0,
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and
un(0, ·) ≤ u(tn,γ + 1 + τ ′n, ·) in [xn+1 + 1, xn+1 + 2R+ 1] for all n large enough.

Furthermore, since π2/(4R2) ≤ ε by (2.7), the nonnegative function un satisfies

∂tun − ∂xxun =
(
µ+ − 2ε+

π2

4R2

)
un ≤ (µ+ − ε)un

in [0,+∞)× [xn+1 + 1, xn+1 + 2R+ 1]. From (2.2)-(2.3) and (2.8), one has, for all n large enough,{
[xn+1 + 1, xn+1 + 2R+ 1] ⊂ [xn+1 + 1, yn+1 − 1],

f(x, s) ≥ (µ(x)− ε)s = (µ+ − ε)s for all (x, s) ∈ [xn+1 + 1, xn+1 + 2R+ 1]× [0,Γ].

Therefore, for all n large enough, one has ∂tun(t, x) ≤ ∂xxun(t, x) + f(x, un(t, x)) for every
(t, x) ∈ [0,+∞) × [xn+1 + 1, xn+1 + 2R + 1] such that un(t, x) ≤ Γ. Observe also that, for ev-
ery τ > 0,

max
[0,τ ]×[xn+1+1,xn+1+2R+1]

un = un(τ, xn+1 +R+ 1) = αn e
(µ+−2ε)τ ,

and that the definitions (2.18)-(2.19) of τ ′n and αn yield

(µ− − ε)τ ′n −
(xn+1 − yn + 2R+ 2)2

4τ ′n
∼ 2µ− − ε− µ+

2
√
µ+ − µ−

× (xn+1 − yn)→ −∞ as n→ +∞

and then αn → 0 as n→ +∞. Therefore, for all n large enough, there is a time τ ′′n > 0 such that

max
[0,τ ′′n ]×[xn+1+1,xn+1+2R+1]

un = αn e
(µ+−2ε)τ ′′n = γ ≤ Γ,

and

τ ′′n ∼
µ+ + ε− 2µ−

2(µ+ − 2ε)
√
µ+ − µ−

× (xn+1 − yn) as n→ +∞. (2.20)

For all n large enough, the function un is then a subsolution of the equation satisfied
by u(tn,γ + 1 + τ ′n + ·, ·) in [0, τ ′′n ] × [xn+1 + 1, xn+1 + 2R + 1], and the maximum principle then
implies that

un ≤ u(tn,γ + 1 + τ ′n + ·, ·) in [0, τ ′′n ]× [xn+1 + 1, xn+1 + 2R+ 1].

In particular, one has

u(tn,γ + 1 + τ ′n + τ ′′n , xn+1 + 1 +R) ≥ un(τ ′′n , xn+1 + 1 +R) = αn e
(µ+−2ε)τ ′′n = γ

for all n large enough, hence

X+
γ (tn,γ + 1 + τ ′n + τ ′′n) ≥ xn+1 + 1 +R.

By setting τn = 1 + τ ′n + τ ′′n for all n large enough, and observing that

τn ∼
2µ+ − ε− 2µ−

2(µ+ − 2ε)
√
µ+ − µ−

× (xn+1 − yn) as n→ +∞

by (2.18) and (2.20), the proof of Lemma 2.2 is thereby complete. �

The next three lemmas are concerned with upper bounds of u. We start with an obvious global
exponential upper bound following from the definition (2.4) of f (implying that f satisfies the
Fisher-KPP property (1.2)).
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Lemma 2.3 There holds

0 ≤ u(t, x) ≤ min
(
e2µ+t−

√
µ+ x, 1

)
for all t ≥ 0 and x ∈ R.

Proof. From (2.3)-(2.4), the function u : [0,+∞) × R → [0, 1] satisfies ∂tu ≤ ∂xxu + µ+u
in (0,+∞) × R, while the function u : (t, x) 7→ u(t, x) := e2µ+t−

√
µ+ x solves ∂tu = ∂xxu + µ+u in

[0,+∞)× R, with u(0, ·) ≤ u(0, ·) in R. The maximum principle yields the conclusion. �

The second lemma, obtained from Lemma 2.3 and using the smallness of µ in the interval
[yn, xn+1], provides an upper bound of u at the position xn+1, after the time sn defined by

sn :=
yn

2
√
µ+

. (2.21)

Lemma 2.4 For every n ∈ N and t ≥ sn, one has
u(t, x) ≤ 2 eµ+(t−sn)−

√
µ+−µ−(xn+1−yn) for all x ≥ xn+1,

u(t, x) ≤ e2µ−(t−sn)−
√
µ−(x−yn)

+2 eµ+(t−sn)+
√
µ+−µ−(x−xn+1)−

√
µ+−µ−(xn+1−yn) for all yn ≤ x ≤ xn+1.

(2.22)

Proof. Let us fix any integer n throughout the proof. Let us first define, for t ≥ sn and x ≥ yn:

un(t, x) :=

{
eµ+(t−sn)−

√
µ+−µ−(x−yn)+eµ+(t−sn)+

√
µ+−µ−(x−xn+1)−

√
µ+−µ−(xn+1−yn) if yn≤x<xn+1,

2 eµ+(t−sn)−
√
µ+−µ−(xn+1−yn) if x ≥ xn+1.

This function un is of class C1 (with respect to the variables (t, x)) in [sn,+∞)× [yn,+∞) and of
class C2 with respect to x in [sn,+∞)×([yn,+∞)\{xn+1}). We also claim that it is a supersolution
of the equation (1.1) satisfied by u, in [sn,+∞) × [yn,+∞). Indeed, first of all, by (2.21) and
Lemma 2.3, one has u(sn, x) ≤ e2µ+sn−

√
µ+x = e−

√
µ+(x−yn) for all x ≥ yn, hence

u(sn, x) ≤ e−
√
µ+−µ−(x−yn) ≤ un(sn, x) for all x ≥ yn.

Furthermore,
u(t, yn) ≤ 1 ≤ un(t, yn) for all t ≥ sn.

Lastly, since µ = µ− in [yn, xn+1] and µ ≤ µ+ in R by (2.3), it is easy to see that

∂tun(t, x)− ∂xxun(t, x) = µ−un(t, x) ≥ f(x, un(t, x))

for all (t, x) ∈ [sn,+∞)× [yn, xn+1) such that un(t, x) ≤ 1, whereas

∂tun(t, x)− ∂xxun(t, x) = µ+un(t, x) ≥ f(x, un(t, x))

for all (t, x) ∈ [sn,+∞) × (xn+1,+∞) such that un(t, x) ≤ 1. Therefore, remembering also that
u ≤ 1, it follows from the maximum principle that

u ≤ min(un, 1) in [sn,+∞)× [yn,+∞).

In particular, at (t, x) with any t ≥ sn and x ≥ xn+1, the inequality u(t, xn+1) ≤ un(t, x) yields the
first inequality in (2.22).
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To get the second one, we now define, for t ≥ sn and x ∈ R:

vn(t, x) := e2µ−(t−sn)−
√
µ−(x−yn) + 2 eµ+(t−sn)+

√
µ+−µ−(x−xn+1)−

√
µ+−µ−(xn+1−yn). (2.23)

The function vn is of class C2 in [sn,+∞)× R and it obeys

∂tvn − ∂xxvn = µ−vn in [sn,+∞)× R.

Hence, the definitions (2.3)-(2.4) of µ and f imply that

∂tvn(t, x)− ∂xxvn(t, x) ≥ f(x, vn(t, x))

for every (t, x) ∈ [sn,+∞)× [yn, xn+1] such that vn(t, x) ≤ 1. Furthermore, Lemma 2.3 and (2.21)
imply that, for every x ∈ R, u(sn, x) ≤ min

(
e−
√
µ+(x−yn), 1

)
, hence u(sn, x) ≤ vn(sn, x) for all

x ≥ yn (remember that
√
µ− <

√
µ+). Lastly, u(t, yn) ≤ 1 ≤ vn(t, yn) for all t ≥ sn, and

u(t, xn+1) ≤ vn(t, xn+1) for all t ≥ sn from the first inequality in (2.22). Remembering that u ≤ 1,
it then follows from the maximum principle that

u(t, x) ≤ min(vn(t, x), 1) for all (t, x) ∈ [sn,+∞)× [yn, xn+1],

which completes the proof of Lemma 2.4. �

Lemma 2.4 then provides an upper bound of X−γ (t) for t belonging to some interval on the right
of sn, as the following lemma shows.

Lemma 2.5 Let Γ ∈ (0, 1) be given in (2.8). For every γ ∈ (0,Γ] and ` > − ln(γ)/
√
µ−, there

exists a constant M = Mγ,` such that, for all n large enough,

X−γ (t) ≤ `+ yn + 2
√
µ− (t− sn) for all sn ≤ t ≤ sn +M +

2
√
µ+ − µ−

µ+ + 2
√
µ−(µ+ − µ−)

× (xn+1 − yn),

with sn defined by (2.21).

Proof. Let γ ∈ (0,Γ] and ` > − ln(γ)/
√
µ− be fixed throughout the proof (notice that ` > 0, since

0 < γ ≤ Γ < 1). Denote

M = Mγ,` :=
ln(γ − e−`

√
µ−)− ln 2− `

√
µ+ − µ−

µ+ + 2
√
µ−(µ+ − µ−)

, (2.24)

which is well defined since ` > − ln(γ)/
√
µ−. As 2

√
µ−(µ+ − µ−) < µ+ by (2.5), one has

4
√
µ−(µ+ − µ−)

µ+ + 2
√
µ−(µ+ − µ−)

< 1,

hence there is n0 ∈ N such that
`+ 2M

√
µ− +

4
√
µ−(µ+ − µ−)

µ+ + 2
√
µ−(µ+ − µ−)

× (xn+1 − yn) < xn+1 − yn

M +
2
√
µ+ − µ−

µ+ + 2
√
µ−(µ+ − µ−)

× (xn+1 − yn) ≥ 0

(2.25)
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for all n ≥ n0.
Consider finally any n ≥ n0 and any t such that

sn ≤ t ≤ sn +M +
2
√
µ+ − µ−

µ+ + 2
√
µ−(µ+ − µ−)

× (xn+1 − yn). (2.26)

One has yn < `+ yn + 2
√
µ− (t− sn) < xn+1 from (2.25) and the positivity of `, hence the second

inequality in the conclusion (2.22) of Lemma 2.4, together with the definition (2.23), yields

u(t, `+yn+2
√
µ−(t−sn)) ≤ vn(t, `+ yn + 2

√
µ−(t− sn))

≤ e−`
√
µ−+2 e−2

√
µ+−µ−(xn+1−yn)+[µ++2

√
µ−(µ+−µ−)](t−sn)+`

√
µ+−µ−

and finally u(t, `+ yn + 2
√
µ− (t− sn)) ≤ γ from (2.24) and (2.26). This implies that

X−γ (t) ≤ `+ yn + 2
√
µ− (t− sn)

and the proof of Lemma 2.5 is thereby complete. �

With the above lemmas in hand, we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let (xn)n∈N, (yn)n∈N, µ and f be as in (2.1)-(2.4), and let ε0 ∈ (0, µ−) be
such that (2.6) holds for all ε ∈ (0, ε0]. Consider then any such ε ∈ (0, ε0], and let R > 0 and
Γ ∈ (0, 1) be as in (2.7)-(2.8).

Consider first in this paragraph any γ ∈ (0,Γ]. Fix any

` > − ln(γ)
√
µ−

and let M ∈ R be as in Lemma 2.5. With tn,γ > 0 given as in (2.16), Lemma 2.2 implies that

X+
γ (tn,γ + τn) ≥ xn+1 + 1 +R for all n large enough, (2.27)

with τn > 0 satisfying (2.17). Next, on the one hand, since tn,γ > 0 and since sn and τn are
respectively of the order yn and xn+1 − yn (as n → +∞) from (2.21) and (2.17), the condition
yn = o(xn+1 − yn) as n→ +∞ implies that

sn ≤ tn,γ + τn for all n large enough.

On the other hand, by picking any c such that 0 < c < 2
√
µ−, it follows from (2.15) and

limn→+∞ yn = +∞ that 0 < tn,γ < yn/c for all n large enough. As 2sn
√
µ+ = yn, one deduces

from (2.6), (2.17) and yn = o(xn+1 − yn) that

tn,γ + τn − sn ≤M +
2
√
µ+ − µ−

µ+ + 2
√
µ−(µ+ − µ−)

× (xn+1 − yn) for all n large enough.

One then infers from Lemma 2.5 that

X−γ (tn,γ + τn) ≤ `+ yn + 2
√
µ− (tn,γ + τn − sn) for all n large enough.

Together with (2.27), it follows that

Iγ(tn,γ + τn) = X+
γ (tn,γ + τn)−X−γ (tn,γ + τn) ≥ 1 +R− `+ xn+1 − yn − 2

√
µ− (tn,γ + τn − sn)
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for all n large enough. Remember that yn = o(xn+1) = o(xn+1 − yn) as n → +∞, while
0 < tn,γ < yn/c (for all n large enough) and sn = yn/(2

√
µ+) then yield tn,γ = o(xn+1 − yn)

and sn = o(xn+1 − yn) as n→ +∞. Since tn,γ + τn → +∞ as n→ +∞, one then gets from (2.17)
and (2.6) that

lim sup
t→+∞

Iγ(t)

t
≥ lim sup

n→+∞

Iγ(tn,γ + τn)

tn,γ + τn
≥ 2(µ+ − 2ε)

√
µ+ − µ−

2µ+ − ε− 2µ−
− 2
√
µ− > 0.

Since the above inequality is valid for every γ ∈ (0,Γ], and since ε can be arbitrary in (0, ε0], it
follows that

lim inf
γ→0+

(
lim sup
t→+∞

Iγ(t)

t

)
≥ 2µ+

√
µ+ − µ−

2µ+ − 2µ−
− 2
√
µ− =

µ+√
µ+ − µ−

− 2
√
µ− > 0,

that is, (1.7) has been proved.
In this remaining part of the proof of Theorem 1.1, consider any γ ∈ (0, 1) and let us show (1.8).

On the one hand, (2.15) implies that

lim inf
t→+∞

X−γ (t)

t
≥ 2
√
µ−. (2.28)

On the other hand, consider any σ > 2
√
µ−. Since 0 < yn < xn+1 while yn → +∞ and yn = o(xn+1)

as n→ +∞ by (2.2), one has yn <
√
ynxn+1 < xn+1 and

+∞← √ynxn+1 − yn ∼
√
ynxn+1 = o(xn+1) = o(xn+1 − yn) as n→ +∞.

Therefore, owing to the definition (2.23) of vn and to µ+ > µ− > 0 and σ > 2
√
µ−, there holds

vn

(
sn +

√
ynxn+1

σ
,
√
ynxn+1

)
= e2µ−

√
ynxn+1/σ−

√
µ−(
√
ynxn+1−yn)+2 eµ+

√
ynxn+1/σ+

√
µ+−µ−(

√
ynxn+1−xn+1)−

√
µ+−µ−(xn+1−yn) → 0

as n→ +∞. Similarly,

vn

(
sn +

√
ynxn+1

σ
, xn+1

)
= e2µ−

√
ynxn+1/σ−

√
µ−(xn+1−yn)+2 eµ+

√
ynxn+1/σ−

√
µ+−µ−(xn+1−yn) → 0

as n→ +∞. Since each function vn(sn +
√
ynxn+1/σ, ·) is convex in R by definition, one gets that

max
[
√
ynxn+1,xn+1]

vn

(
sn +

√
ynxn+1

σ
, ·
)
→ 0 as n→ +∞.

Together with the second inequality of (2.22) in Lemma 2.4 and the nonnegativity of u, it
follows that max[

√
ynxn+1,xn+1] u(sn +

√
ynxn+1/σ, ·) → 0 as n → +∞. But the first inequa-

lity of (2.22) in Lemma 2.4 and the comparison
√
ynxn+1 = o(xn+1 − yn) also imply that

max[xn+1,+∞) u(sn +
√
ynxn+1/σ, ·)→ 0 as n→ +∞.3 Finally,

max
[
√
ynxn+1,+∞)

u
(
sn +

√
ynxn+1

σ
, ·
)
→ 0 as n→ +∞,

3Notice that, for each t > 0 and a ∈ R, max[a,+∞) u(t, ·) is well defined since u(t, ·) is positive and continuous
in R, and u(t,+∞) = 0.
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hence

X+
γ

(
sn +

√
ynxn+1

σ

)
<
√
ynxn+1

for all n large enough. Since sn+
√
ynxn+1/σ ∼

√
ynxn+1/σ → +∞ as n→ +∞ by (2.2) and (2.21),

one gets

lim inf
t→+∞

X+
γ (t)

t
≤ lim inf

n→+∞

X+
γ

(
sn +

√
ynxn+1

σ

)
sn +

√
ynxn+1

σ

≤ σ.

As σ was arbitrary in (2
√
µ−,+∞), one obtains

lim inf
t→+∞

X+
γ (t)

t
≤ 2
√
µ−.

Since Iγ(t) = X+
γ (t) − X−γ (t) ≥ 0 for all t > 0, one concludes from the last inequality and (2.28)

that

lim inf
t→+∞

Iγ(t)

t
= 0.

Lastly, Lemma 2.3 implies that

lim sup
t→+∞

X+
γ (t)

t
≤ 2
√
µ+,

which, together with (2.28), yields

lim sup
t→+∞

Iγ(t)

t
≤ 2(
√
µ+ −

√
µ−) < +∞.

The proof of Theorem 1.1 is thereby complete. �

Proof of Corollary 1.3. Assume that there exists a generalized transition front U . Then for every
γ ∈ (0, 1), there is a real number Cγ ≥ 0 such that, for any (t, x) ∈ R × R satisfying U(t, x) = γ,
there holds U(t, y) > γ for every y < x− Cγ and U(t, y) < γ for every y > x+ Cγ .

As µ− > 0, we refer to [4, Theorem 7.1] which implies that, for any continuous function
v0 : R → [0, 1] with ‖v0‖L∞(R) > 0, the solution v of (1.1) with initial condition v0 satisfies
v(t, x) → 1 as t → +∞ locally uniformly in x ∈ R. In particular, U(t, x) → 1 as t → +∞ locally
uniformly in x ∈ R, and then U(t, x)→ 0 as t→ −∞ locally uniformly in x ∈ R (since 0 < U < 1
and ∂xU is bounded in R× R from standard parabolic estimates).

Consider now the solution u of (1.1) and (1.5) associated with the initial condition u0 = 1(−∞,0),
and pick any γ ∈ (0, 1), t > 0 and x ∈ R such that

u(t, x) = γ.

From the previous observation and the continuity of U , there is t0 ∈ R such that U(t0, x) = γ.
Since u0(y) = 1 > U(t0− t, y) for all y < 0 and u0(y) = 0 < U(t0− t, y) for all y > 0, it follows that

u(t, y) > U(t0, y) for all y < x and u(t, y) < U(t0, y) for all y > x

(in other words, since u0 is steeper than U(t0− t, ·), u(t, ·) is steeper than U(t0, ·) as well, see [1, 8]).
Therefore, u(t, y) > U(t0, y) > γ for all y < x − Cγ and u(t, y) < U(t0, y) < γ for all y > x − Cγ ,
which yields Iγ(t) < 2Cγ and then

sup
t>0

Iγ(t) ≤ 2Cγ < +∞.

The proof of Corollary 1.3 is thereby complete. �
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