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Chapter 1

Lebesgue spaces

Exercises

Exercise 1.1 (Measurability). LetW be a nonmeasurable subset of D := (0, 1). Let f :W → R
be defined by f(x) := 1 if x ∈ D\W and f(x) := 0 if x ∈ W. (i) Is f measurable? (ii) Assume
that there is a measurable subset V ⊂ W s.t. |V | > 0. Compute supx∈D f(x), ess supx∈D f(x),
infx∈D f(x), ess infx∈D f(x). (iii) Is f a member of L∞(D)? (iv) Assume now that W has zero
measure (hence, W is measurable). Compute infx∈D f(x) and ess infx∈D f(x).

Exercise 1.2 (Measurability and equality a.e.). Prove Corollary 1.11. (Hint : consider the
sets Ar := {x ∈ D | f(x) > r} and Br := {x ∈ D | g(x) > r} for all r ∈ R, and show that
Br = (Ar ∩ (Ar\Br)c) ∪ (Br\Ar).)

Exercise 1.3 (Lebesgue’s theorem). Let D := (−1, 1). Let (fn)n∈N be a sequence of functions
in L1(D) and let g ∈ L1(D). Assume that fn → f a.e. in D. Propose a counterexample to show
that the assumption “|fn| ≤ g a.e. for all n ∈ N” cannot be replaced by “fn ≤ g a.e. for all n ∈ N”
in Lebesgue’s dominated convergence theorem.

Exercise 1.4 (Compact support). Let D := (0, 1) and f(x) := 1 for all x ∈ D. What is the
support of f in D? Is the support compact?

Exercise 1.5 (Pointwise limit of measurable functions). Let D be a measurable set in Rd.
Let fn : D → R for all n ∈ N be real-valued measurable functions. (i) Show that lim supn∈N fn
and lim infn∈N fn are both measurable. (Hint : recall that lim supn∈N fn(x) := infn∈N supk≥n fk(x)
and lim infn∈N fn(x) := supn∈N infk≥n fk(x) for all x ∈ D). (ii) Let f : D → R. Assume that
fn(x) → f(x) for every x ∈ D. Show that f is measurable. (iii) Let f : D → R. Assume that
fn(x)→ f(x) for a.e. x ∈ D. Show that f is measurable.

Exercise 1.6 (Operations on measurable functions). The objective of this exercise is to
prove Theorem 1.6. Let f : D → R and g : D → R be two measurable functions and let λ ∈ R. (i)
Show that λf is measurable. (Hint : use Lemma 1.9). (ii) Idem for |f |. (iii) Idem for f + g. (iv)
Idem for fg. (Hint : observe that fg = 1

2 (f + g)2 − 1
2 (f − g)2.)
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Solution to exercises

Exercise 1.1 (Measurability). (i) Since the set {x ∈ D | f(x) < 1} = W is not measurable,
Lemma 1.9 implies that f is not measurable.
(ii) We have

sup
x∈D

f(x) = 1,

ess sup
x∈D

f(x) = 1,

inf
x∈D

f(x) = 0,

ess inf
x∈D

f(x) = 0.

(iii) Although ess supx∈D |f(x)| = 1 ≤ ∞, the function f is not a member of L∞(D) since it is not
measurable.
(iv) Since we now assume that |W | = 0, i.e., f = 1 a.e. in D, we have

inf
x∈D

f(x) = 0,

ess inf
x∈D

f(x) = 1.

Exercise 1.2 (Measurability and equality a.e.). Following the hint, let Ar := {x ∈ D | f(x) >
r} and Br := {x ∈ D | g(x) > r} for all r ∈ R. By assumption, the set Ar is measurable. We
observe that Ar\Br ⊂ {x ∈ D | f(x) 6= g(x)} and Br\Ar ⊂ {x ∈ D | f(x) 6= g(x)}. Hence,
|Ar\Br|∗ = 0 and |Br\Ar|∗ = 0. This means that Ar\Br and Br\Ar are measurable (see Exam-
ple 1.4). After observing that Br ∩ Ar = Ar ∩ (Ar\Br)c and Br ∩ Acr = Br\Ar, we finally have
Br = (Ar ∩ (Ar\Br)c) ∪ (Br\Ar). This shows that Br is measurable since the sets Ar, (Ar\Br)c,
and Br\Ar are measurable. Hence, g is measurable owing to Lemma 1.9.

Exercise 1.3 (Lebesgue’s theorem). The sequence {fn}n≥1 such that fn(x) := −2n if |x| ≤ 1
n

and fn(x) := 0 otherwise is such that fn → 0 a.e. in D and fn ≤ 0 ∈ L1(D), but fn does not
converge to 0 in L1(D) since ‖fn‖L1(D) = 1.

Exercise 1.4 (Compact support). We have {x ∈ D | f(x) 6= 0} = D. The slight subtlety here
is that the closure of D in D is D itself. Hence, the support of f in D is D. Note that D is not
compact since it is not a closed set in R (the limit point of the sequence { 1n}n≥1 does not belong
to D).

Exercise 1.5 (Pointwise limit of measurable functions). (i) Using the hint, we have for all
x ∈ D,

lim sup
n∈N

fn(x) ≤ c⇐⇒ inf
n∈N

sup
k≥n

fk(x) ≤ c

⇐⇒ ∀j ≥ 1, ∃n ≥ 0, sup
k≥n

fk(x) ≤ c+
1

j

⇐⇒ ∀j ≥ 1, ∃n ≥ 0, ∀k ≥ n, fk(x) ≤ c+
1

j

⇐⇒ x ∈
⋂

j≥1

⋃

n≥0

⋂

k≥n

{
y ∈ D | f(y) ≤ c+ 1

j

}
.
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This proves that

{
x ∈ D | lim sup

n∈N

fn(x) ≤ c
}
=
⋂

j≥1

⋃

n≥0

⋂

k≥n

{
y ∈ D | f(y) ≤ c+ 1

j

}
.

Hence, the function lim supn∈N fn is measurable. The proof that lim infn∈N fn is a measurable
function is similar.
(ii) Saying that fn(x)→ f(x) for every x ∈ D means that

lim sup
n∈N

fn(x) = f(x) = lim inf
n∈N

fn(x)

for every x ∈ D. We conclude from Step (i) that f is measurable.
(iii) Let S ⊂ D be such that S := {x ∈ D | f(x) = lim supn∈N fn(x) = lim infn∈N fn(x)}. By
assumption, we have |Sc| = 0. Moreover, we have

S = {x ∈ D | lim sup
n∈N

fn(x) = lim inf
n∈N

fn(x) = f(x)}

⊂ {x ∈ D | f(x) = lim sup fn(x)}.

Hence, {x ∈ D | f(x) 6= lim sup fn(x)} ⊂ Sc. This means that the function f and lim sup fn coin-
cide almost everywhere. Corollary 1.11 implies that f is measurable since lim sup fn is measurable.

Exercise 1.6 (Operations on measurable functions). (i) There is nothing to prove if λ = 0.
Assume now that λ > 0. For all r ∈ R, we have

{x ∈ D | λf(x) > r} = {x ∈ D | f(x) > r/λ}.

Hence, {x ∈ D | λf(x) > r} is measurable. The reasoning for λ < 0 is similar. We conclude that
λf is measurable by invoking Lemma 1.9.
(ii) For all r ∈ R, we have

{x ∈ D | |f(x)| > r} = {x ∈ D | f(x) > r}
⋃
{x ∈ D | f(x) < −r}.

Hence, {x ∈ D | |f(x)| > r} is measurable (recall that the union of two measurable sets is mea-
surable). We conclude by using Lemma 1.9.
(ii) Recall that if f(x) > r− g(x), there exists q ∈ Q such that f(x) > q > r− g(x). Then, for all
r ∈ R, we have

{x ∈ D | (f + g)(x) > r} = {x ∈ D | f(x) > r − g(x)}
=
⋃

q∈Q

{x ∈ D | f(x) > q} ∩ {x ∈ D | g(x) > r − q}.

Since any countable union of measurable sets is measurable, Lemma 1.9 implies that f + g is
measurable.
(ii) Let us notice that fg = 1

2 (f +g)
2− 1

2 (f −g)2. Hence, Theorem 1.14 combined with (ii) implies
that fg is measurable.
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Chapter 2

Weak derivatives and Sobolev
spaces

Exercises

Exercise 2.1 (Lebesgue point). Let a ∈ R. Let f : R → R be defined by f(x) := 0 if x < 0,
f(0) := a, and f(x) := 1 if x > 0. Show that 0 is not a Lebesgue point of f for all a.

Exercise 2.2 (Lebesgue differentiation). The goal is to prove Theorem 2.2. (i) Let h ∈ H (the

sign of h is unspecified). Show that R(x, h) := F (x+h)−F (x)
h − f(x) = 1

h

∫ x+h
x

(f(t) − f(x)) dt. (ii)
Conclude.

Exercise 2.3 (Lebesgue measure and weak derivative). Let D := (0, 1). Let C∞ be
the Cantor set (see Example 1.5). Let f : D → R be defined by f(x) := x if x 6∈ C∞, and
f(x) := 2 − 5x if x ∈ C∞. (i) Is f measurable? (Hint : use Corollary 1.11.) (ii) Compute
supx∈D f(x), ess supx∈D f(x), infx∈D f(x), ess infx∈D f(x), and ‖f‖L∞(D). (iii) Show that f is

weakly differentiable and compute ∂xf(x). (iv) Compute f(x) −
∫ x
0 ∂tf(t) dt for all x ∈ D. (iv)

Identify the function f c ∈ C0(D) that satisfies f = f c a.e. on D? Compute f c(x) −
∫ x
0 ∂tf(t) dt

for all x ∈ D.

Exercise 2.4 (Weak derivative). Let D := (−1, 1). Prove that if u ∈ L1
loc(D) has a second-

order weak derivative, it also has a first-order weak derivative. (Hint : consider ψ(x) :=
∫ x
−1

(ϕ(t)−
cϕρ(t)) dt for all ϕ ∈ C∞

0 (D), with cϕ :=
∫
D ϕdx, ρ ∈ C∞

0 (D), and
∫
D ρ dx = 1.)

Exercise 2.5 (Clairaut’s theorem). Let v ∈ L1
loc(D). Let α, β ∈ Nd and assume that the weak

derivatives ∂αv, ∂βv exist and that the weak derivative ∂α(∂βv) exists. Prove that ∂β(∂αv) exists
and ∂α(∂βv) = ∂β(∂αv).

Exercise 2.6 (Weak and classical derivatives). Let k ∈ N, k ≥ 1, and let v ∈ Ck(D). Prove
that, up to the order k, the weak derivatives and the classical derivatives of v coincide.

Exercise 2.7 (H1(D)). (i) Let D := (−1, 1) and u : D → R s.t. u(x) := |x| 32 − 1. Determine
whether u is a member of H1(D;R). (ii) Let u1 ∈ C1((−1, 0];R) and u2 ∈ C1([0, 1);R) and assume
that u1(0) = u2(0). Let u be such that u|(−1,0) := u1 and u|(0,1) := u2. Determine whether u is a
member of H1(D;R). Explain why u 6∈ H1(D;R) if u1(0) 6= u2(0).
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Exercise 2.8 (Broken seminorm). Let D be an open set in Rd. Let {D1, . . . , Dn} be a partition
of D as in Remark 2.13. (i) Show that (∇v)|Di = ∇(v|Di) for all i ∈ {1:n} and all v ∈ W 1,1

loc (D).
(ii) Let p ∈ [1,∞) and v ∈ W 1,p(D). Show that

∑
i∈{1:n} |v|Di |

p
W 1,p(Di)

= |v|pW 1,p(D). (iii) Let

s ∈ (0, 1), p ∈ [1,∞), and v ∈W s,p(D). Prove that
∑

i∈{1:n} |v|Di |
p
W s,p(Di)

≤ |v|pW s,p(D).

Exercise 2.9 (W s,p). LetD be a bounded open set in Rd. Let α ∈ (0, 1]. Show that C0,α(D;R) →֒
W s,p(D;R) for all p ∈ [1,∞) if s ∈ [0, α).

Exercise 2.10 (Unbounded function in H1(D)). Let D := B(0, 12 ) ⊂ R2 be the ball centered
at 0 and of radius 1

2 . (i) Show that the (unbounded) function u(x) := ln
(
−ln(‖x‖ℓ2)

)
has weak

partial derivatives. (Hint : work on D\B(0, ǫ) with ǫ ∈ (0, 12 ), and use Lebesgue’s dominated
convergence theorem.) (ii) Show that u is in H1(D).

Exercise 2.11 (Equivalent norm). Let m ∈ N, m ≥ 2, and let p ∈ [1,∞). Prove that the norm

‖v‖ := (‖v‖pLp + ℓmpD |v|pWm,p(D))
1
p is equivalent to the canonical norm in Wm,p(D). (Hint : use the

Peetre–Tartar lemma (Lemma A.20) and invoke the compact embeddings from Theorem 2.35.)

Solution to exercises

Exercise 2.1 (Lebesgue point). Let r > 0. We have

1

2r

∫ r

−r
|f(t)− a| dt = 1

2r

∫ 0

−r
|a| dt+ 1

2r

∫ r

0

|1− a| dt = 1

2
(|a|+ |1− a|).

Since 1
2 (|a|+ |1− a|) ≥ 1

2 for all a ∈ R, this proves that 1
2r

∫ r
−r |f(t)− a| dt cannot converge to zero

a r ↓ 0. Hence, 0 is not a Lebesgue point of f .

Exercise 2.2 (Lebesgue differentiation). (i) Let x ∈ R. We have

F (x+ h)− F (x)
h

=
1

h

∫ x+h

x

f(t) dt,

for all h ∈ H. We infer that

R(x, h) =
1

h

∫ x+h

x

f(t) dt− f(x) = 1

h

∫ x+h

x

(f(t)− f(x)) dt.

(ii) We want to prove that we have |F (x+h)−F (x)
h − f(x)| → 0 as h → 0, for every Lebesgue point

x of f , i.e., R(x, h)→ 0. Recalling that the sign of h is unspecified and using the above expression
for R(x, h), we have

|R(x, h)| ≤ 1

|h|

∫ x+h

x

|f(t)− f(x)| dt ≤ 2
1

|2h|

∫ x+h

x−h
|f(t)− f(x)| dt,

which shows that limh→0 |R(x, h)| = 0 since x is a Lebesgue point of f . Hence, F is strongly
differentiable at x.
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Exercise 2.3 (Lebesgue measure and weak derivative). (i) Yes, f is measurable according
to Corollary 1.11, since f(x) = x for a.e. x ∈ D.
(ii) We have

sup
x∈D

f(x) = max

(
sup

x∈D\C∞

x, sup
x∈C∞

(2− 5x)

)
= 2,

ess sup
x∈D

f(x) = sup
x∈D\C∞

x = 1,

inf
x∈D

f(x) = min

(
inf

x∈D\C∞

x, inf
x∈C∞

(2 − 5x)

)
= −3,

ess inf
x∈D

f(x) = inf
x∈D\C∞

x = 0,

‖f‖L∞(D) = ess sup
x∈D

|f(x)| = sup
x∈D\C∞

|x| = 1.

(iii) For all φ ∈ C∞(D), we have

∫

D

f(x)∂xφ(x) dx =

∫

D

x∂xφ(x) dx =

∫

D

−φ(x) dx.

Hence, f is weakly differentiable and ∂xf(x) = 1 for a.e. x ∈ D.
(iv) For all x ∈ D\C∞, we have

f(x)−
∫ x

0

∂tf(t) dt = x− x = 0.

For all x ∈ C∞, we have

f(x)−
∫ x

0

∂tf(t) dt = 2− 5x− x = 2− 6x.

Hence, the fundamental theorem of calculus for f holds true only a.e. on D.
(v) We have f(x) = x for a.e. x ∈ D, hence f c(x) = x. (Observe that, in accordance with
Theorem 2.26 with d = 1 and all p = 1, we indeed have f c ∈ C0(D).) Since ∂tf

c = ∂tf a.e. in D,
the fundamental theorem of calculus implies that

f c(x)−
∫ x

0

∂tf(t) dt = f c(x) −
∫ x

0

∂tf
c(t) dt = f c(0) = 0.

Exercise 2.4 (Weak derivative). Let ρ ∈ C∞
0 (D) with

∫
D ρ dx = 1. For all ϕ ∈ C∞

0 (D), the
function ψ in the hint is in C∞

0 (D) and ∂xψ = ϕ− cϕρ with cϕ :=
∫
D
ϕdx. Letting v := ∂xxu and

Cρ :=
∫
D u∂xρ dx, we have

∫

D

u∂xϕdx =

∫

D

u∂xxψ dx+ cϕCρ =

∫

D

vψ dx+ cϕCρ

=

∫

D

v(x)

∫ x

−1

(ϕ(y) − cϕρ(y)) dy dx+ cϕCρ

=

∫

D

(∫ 1

y

v(x) dx

)
(ϕ(y)− cϕρ(y)) dy + cϕCρ.
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Setting C′
ρ := Cρ −

∫
D

(∫ 1

y v(x) dx
)
ρ(y) dy, we thus have

∫

D

u∂xϕdx =

∫

D

(∫ 1

y

v(x) dx

)
ϕ(y) dy + C′

ρ

∫

D

ϕ(y) dy,

which shows that u has a weak first-order derivative.

Exercise 2.5 (Clairaut’s theorem). Let ϕ ∈ C∞
0 (D). Using Clairaut’s theorem for ϕ, we infer

that

(−1)|α|
∫

D

∂αv∂βϕdx =

∫

D

v∂α(∂βϕ) dx

=

∫

D

v∂β(∂αϕ) dx = (−1)|β|
∫

D

∂βv∂αϕdx,

where we used the definition of ∂αv (and ∂βϕ ∈ C∞
0 (D)) and ∂βv (and ∂αϕ ∈ C∞

0 (D)). Using the
definition of ∂α(∂βv), the above identity shows that

∫

D

∂αv∂βϕdx = (−1)|β|
∫

D

∂α(∂βv)ϕdx,

for all ϕ ∈ C∞
0 (D), which, in turn, implies that the weak derivative ∂β(∂αv) exists and that this

weak derivative is indeed equal to ∂α(∂βv).

Exercise 2.6 (Weak and classical derivatives). Let α ∈ Nd be a multi-index of length |α| ≤ k.
Let (∂αv)cl, (∂

αv)wk denote the classical and weak derivatives, respectively. For all ϕ ∈ C∞
0 (D),

integrating by parts the classical derivative (there are no boundary terms since ϕ has compact
support), we infer that

∫

D

(∂αv)clϕdx = (−1)|α|
∫

D

v∂αϕdx =

∫

D

(∂αv)wkϕdx,

and we conclude by invoking the vanishing integral theorem (Theorem 1.32).

Exercise 2.7 (H1(D)). (i) Let us set D := (−1, 1). We have u ∈ L2(D). Let us determine
whether u has a weak derivative and whether the weak derivative is in L2(D). Let φ ∈ C∞

0 (D).
We observe that

∫ 1

−1

u(x)∂xφ(x) dx =

∫ 0

−1

((−x) 3
2 − 1)∂xφ(x) dx +

∫ 1

0

(x
3
2 − 1)∂xφ(x) dx

= −
∫ 0

−1

− 3
2 (−x)

1
2φ(x) dx − φ(0)−

∫ 1

0

3
2x

1
2φ(x) dx + φ(0)

= −
∫ 0

−1

− 3
2 |x|

1
2φ(x) dx −

∫ 1

0

3
2 |x|

1
2φ(x) dx

= −
∫ 1

−1

w(x)φ(x) dx,

where w(x) := 3
2 |x|

1
2 sgn(x) with

sgn(x) =

{
−1 if x < 0,

1 otherwise.
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Since w ∈ L2(D), we infer that u ∈ H1(D).

(ii) Since u1 ∈ L2((−1, 0)), u2 ∈ L2((0, 1)) and ‖u‖L2(D) = (‖u1‖2L2((−1,0)) + ‖u2‖2L2((0,1)))
1
2 , we

infer that u ∈ L2(D). Let φ ∈ C∞
0 (D). Using that u1 ∈ C1((−1, 0]), u2 ∈ C1([0, 1)), and setting

v(x) := u1(x) if x < 0 and v(x) := u2(x) otherwise, we infer that

∫

D

u(x)∂xφ(x) dx =

∫ 0

−1

u1(x)∂xφ(x) dx +

∫ 0

−1

u2(x)∂xφ(x) dx

= −
∫

D

v(x)φ(x) dx + φ(0)(u1(0)− u2(0))

= −
∫

D

v(x)φ(x) dx,

since u1(0) = u2(0). We infer that ∂xu = v which is in L2(D). Hence, u ∈ H1(D). If u1(0) 6= u2(0),
we infer from Example 2.5 that there is no function w ∈ L1

loc(D) s.t.
∫
D
vφdx = φ(0) for all

φ ∈ C∞
0 (D). Hence, u 6∈ H1(D).

Exercise 2.8 (Broken seminorm). (i) Let v ∈ W 1,1
loc (D). Let k ∈ {1:d}, let i ∈ {1:n}, and let

ϕ ∈ C∞
0 (Di). Letting ϕ̃ denote the zero-extension of ϕ to D, we have

∫

Di

(∂kv)|Diϕdx =

∫

D

∂kvϕ̃dx = −
∫

D

v∂kϕ̃dx = −
∫

Di

v|Di∂kϕdx,

which shows that (∂kv)|Di = ∂k(v|Di).
(ii) The identity is a direct consequence of (∇v)|Di = ∇(v|Di) since

∑

i∈{1:n}
|v|Di |pW 1,p(Di)

=
∑

i∈{1:n}
‖∇(v|Di)‖pLp(Di) =

∑

i∈{1:n}
‖(∇v)|Di‖pLp(Di)

= ‖∇v‖p
Lp(D) = |v|

p
W 1,p(D).

(iii) The definition of W s,p(D) implies that

|v|pW s,p(D) =

∫

D

∫

D

|v(x)− v(y)|p
‖x− y‖sp+dℓ2

dxdy

=
∑

i∈{1:n}

∑

j∈{1:n}

∫

Di

∫

Dj

|v(x)− v(y)|p
‖x− y‖sp+dℓ2

dxdy

≥
∑

i∈{1:n}

∫

Di

∫

Di

|v(x)− v(y)|p
‖x− y‖sp+dℓ2

dxdy =
∑

i∈{1:n}
|v|pW s,p(Di)

.

Exercise 2.9 (W s,p). Notice first that C0,α(D) →֒ L∞(D) since α > 0. Then C0,α(D) →֒ Lp(D)
since D is bounded. Let v ∈ C0,α(D) and let cα be the constant such that |v(x) − v(y)| ≤
cα‖x− y‖αℓ2 . Let ℓD := diam(D). Since D ⊂ B(x, ℓD) for all x ∈ D, we infer that

|v|pW s,p(D) =

∫

D

∫

D

|v(x)− v(y)|p
‖x− y‖sp+dℓ2

dxdy ≤ cpα
∫

D

∫

D

1

‖x− y‖(s−α)p+dℓ2

dxdy

≤ cpα
∫

D

∫

B(x,ℓD)

1

‖x− y‖(s−α)p+dℓ2

dxdy

= cpα|S(0, 1)|ℓ(α−s)pD

∫

D

∫ 1

0

r(α−s)p−1 dr dx,
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where S(0, 1) is the unit sphere in Rd and |S(0, 1)| is the (d − 1)-dimensional measure of S(0, 1).
The integral is finite, i.e., |v|W s,p(D) is finite, if and only if s < α.

Exercise 2.10 (Unbounded function in H1(D)). (i) First, we observe that u ∈ L2(D). Let
ǫ ∈ (0, 12 ). Then u is of class C∞ in D\B(0, ǫ). Using radial coordinates, we set w1(x) := ∂1u(x) =
cos(θ)
r ln(r) and w2(x) := ∂2u(x) =

sin(θ)
r ln(r) for x 6= 0. One can verify that wi ∈ L1(D) for i ∈ {1, 2}. Let

ϕ ∈ C∞
0 (D). We obtain

∫

D\B(0,ǫ)

wiϕdx = −
∫

D\B(0,ǫ)

u∂iϕdx + T (ǫ),

with T (ǫ) :=
∫
∂B(0,ǫ)(ei·n)uϕds, where n is the unit normal at ∂B(0, ǫ) pointing outward and ei

is the unit canonical vector defining the i-th direction. Since |T (ǫ)| ≤ 2πǫ ln(− ln(ǫ))‖ϕ‖L∞(D), we
infer that T (ǫ) → 0 as ǫ → 0. Since wi and u are in L1(D), letting ǫ → 0 in the above equality,
we infer using Lebesgue’s dominated convergence theorem that

∫
D wiϕdx = −

∫
D u∂iϕdx. Since

ϕ is arbitrary in C∞
0 (D), we conclude that wi is the weak derivative of u in the i-th direction.

(ii) Let us now show that wi ∈ L2(D) for all i ∈ {1, 2}. We have

‖w1‖2L2(D) + ‖w2‖2L2(D) = 2π

∫ 1
2

0

r

r2 ln(r)2
dr = 2π

∫ − ln(2)

−∞

1

t2
dt =

2π

ln(2)
<∞.

Exercise 2.11 (Equivalent norm). For every integer n ≥ 0, let Bn,d := {α ∈ Nd | |α| = n} and
bn,d := card(Bn,d). Let Yn := [Lp(D)]bn,d be equipped with some product norm. Let us consider
the integer m ≥ 2 and let Y := Lp(D)×Ym be equipped with the product norm

‖(z, (yα)α∈Bm,d)‖Y :=


‖z‖pLp(D) + ℓmpD

∑

α∈Bm,d
‖yα‖pLp(D)




1
p

.

We define the operator A : Wm,p(D) → Y by A(v) := (v, (∂αv)α∈Bm,d). Let Z := Y1× . . .×Ym−1

be equipped with some product norm. We define T :Wm,p(D)→ Z by

T (v) := ((∂α1v)α1∈B1,d
, . . . , (∂αm−1v)αm−1∈Bm−1,d

).

The equivalence of norms in finite-dimensional spaces implies that there exists c such that

c ‖v‖Wm,p(D) ≤ ‖A(v)‖Y + ‖T (v)‖Z, ∀v ∈ Wm,p(D).

Both A and T are linear and bounded. The operatorA is injective. The operator T is compact since
the embedding Wm,p(D) →֒ Wm′,p(D) is compact for all m′ ∈ {1:m−1} owing to the compact
embeddings from Theorem 2.35. Then the assertion follows from Lemma A.20.



Chapter 3

Traces and Poincaré inequalities

Exercises

Exercise 3.1 (Scaling). Let D ⊂ Rd be a Lipschitz domain. Let λ > 0 and D̃ := λ−1D. (i) Show
that D and D̃ have the same Poincaré–Steklov constant in (3.8). (ii) Same question for (3.11).

Exercise 3.2 (Poincaré–Steklov, 1D). Let D := (0, 1) and u ∈ C1(D;R). Prove the following
bounds: (i) ‖u‖2L2(D) ≤ 1

2‖u′‖2L2(D) if u(0) = 0. (Hint : u(x) =
∫ x
0 u

′(t) dt.) (ii) ‖u‖2L2(D) ≤
1√
8
‖u′‖2L2(D) if u(0) = u(1) = 0. (Hint : as above, but distinguish whether x ∈ (0, 12 ) or x ∈ (12 , 1).)

(iii) ‖u‖2L2(D) ≤ 1
6‖u′‖2L2(D) + u2 with u :=

∫ 1

0 u dx. (Hint : square the identity u(x) − u(y) =∫ y
x u

′(t) dt.) (iv) maxx∈D |u(x)|2 ≤ 2u(1)2 + 2‖u′‖2L2(D). (Hint : square u(x) = u(1) +
∫ x
1 u

′(t) dt.)

(v) maxx∈D |u(x)|2 ≤ 2(‖u‖2L2(D)+‖u′‖2L2(D)). (Hint : prove that u(x)
2 ≤ 2u(y)2+2‖u′‖2L2(D) and

integrate over y ∈ D.)

Exercise 3.3 (Fractional Poincaré–Steklov). (i) Prove (3.10). (Hint : write
∫
D |v(x)−vD|pdx =∫

D
|D|−p

∣∣∫
D
(v(x)− v(y)) dy

∣∣pdx.) (ii) Prove that |v−vD|W r,p(D) ≤ ℓs−rD |v|W s,p(D) for all r ∈ (0, s]
and all s ∈ (0, 1).

Exercise 3.4 (Zero-extension in W 1,p
0 (D)). Let p ∈ [1,∞). Let D be an open set in Rd. Show

that W 1,p
0 (D) →֒ W̃ 1,p(D) and ‖ũ‖W 1,p(Rd) ≤ ‖u‖W 1,p(D) for all u ∈W 1,p

0 (D).

Exercise 3.5 (Integral representation). Let v : [0,∞) −→ R be a continuous function with
bounded derivative, and let w : [0,∞) −→ R be such that w(x) := 1

x

∫ x
0
(v(t) − v(x)) dt. (i)

Show that |w(x)| ≤ Mx
2 where M := supx∈[0,∞) |∂xv(x)|. (ii) Estimate w(0). (iii) Show that

∂t(tw(t)) = −t∂tv(t). (iv) Prove that v(x) − v(0) = −w(x) −
∫ x
0
w(t)
t dt. (Hint : observe that

v(x) − v(0) =
∫ x
0

1
t (t∂tv(t)) dt, use (iii), and integrate by parts.) (v) Prove the following integral

representation formula (see Grisvard [20, pp. 29-30]):

v(0) = v(x) +
1

x

∫ x

0

(v(t) − v(x)) dt+
∫ x

0

1

y2

∫ y

0

(v(t)− v(y)) dt dy.

Exercise 3.6 (Trace inequality in W s,p, sp > 1). Let s ∈ (0, 1), p ∈ [1,∞), and sp > 1. Let
a > 0 and F be an open bounded subset of Rd−1. Let D := F×(0, a). Let v ∈ C1(D)∩C0(D). (i)
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Let y ∈ F . Using the integral representation from Exercise 3.5, show that there are c1(s, p) and
c2(s, p) such that

|v(y, 0)| ≤ a− 1
p ‖v(y, .)‖Lp(0,a) + (c1(s, p) + c2(s, p))a

s− 1
p |v(y, .)|W s,p(0,a).

(ii) Accept as a fact that there is c (depending on s and p) such that
∫

F

∫ a

0

∫ a

0

|v(xd−1, xd)− v(xd−1, yd)|p
|xd − yd|sp+1

dx1 . . . dxd−1 dxd dyd ≤ c |v|W s,p(D).

Prove that ‖v(., 0)‖Lp(F ) ≤ c′ (a−
1
p ‖v‖Lp(D) + as−

1
p |v|W s,p(D)). Note: this shows that the trace

operator γg : C1(D) ∩ C0(D) → Lp(F ) is bounded uniformly w.r.t. the norm of W s,p(D) when
sp > 1. This means that γg can be extended toW s,p(D) since C1(D)∩C0(D) is dense inW s,p(D).

Solution to exercises

Exercise 3.1 (Scaling). (i) Consider the mapping ψ : D̃ → D s.t. ψ(x̃) := λx̃. We have
ψ−1(x) = λ−1x. Let J be the Jacobian matrix of ψ, i.e., J = λId and J−1 = λ−1Id (where Id is
the identity matrix in Rd×d). Let v ∈ W 1,p(D) and set ṽ(x̃) := v(ψ(x̃)) for all x̃ ∈ D̃. We infer
that (∇ṽ)(x̃) = λ(∇v)(ψ(x̃)) and

‖∇ṽ‖p
Lp(D̃)

= λp
∫

D

‖∇v(x)‖p|det(J−1)| dx = λp−d
∫

D

‖∇v(x)‖p dx.

Hence, ‖∇ṽ‖Lp(D̃) = λ1−
d
p ‖∇v‖Lp(D). Moreover, using that |D̃| = λ−d|D|, we infer that

ṽD̃ =
1

|D̃|

∫

D̃

ṽ dx̃ =
λd

|D|

∫

D

v|det(J−1)| dx = vD.

Hence, we have

‖ṽ − ṽD̃‖
p

Lp(D̃)
=

∫

D

(v − vD)p|det(J−1)| dx = λ−d‖v − vD‖pLp(D).

Assume that (3.8) holds true for all v ∈W 1,p(D). Using that ℓD̃ = λ−1ℓD, we obtain

Cps,p‖ṽ − ṽD̃‖Lp(D̃) = λ−
d
pCps,p‖v − vD‖Lp(D)

≤ λ− d
p ℓD|v|W 1,p(D)

= λ1−
d
p ℓD̃λ

−1+ d
p |ṽ|W 1,p(D̃)

= ℓD̃|ṽ|W 1,p(D̃),

which proves the assertion.
(ii) The proof for (3.11) is similar.

Exercise 3.2 (Poincaré–Steklov, 1D). Let u ∈ C1(D;R).
(i) Assume that that u(0) = 0. Then we have

|u(x)| =
∣∣∣∣
∫ x

0

u′(t) dt

∣∣∣∣ ≤
∫ x

0

|u′(t)| dt

≤
(∫ x

0

dt

) 1
2
(∫ x

0

(u′(t))2 dt

) 1
2

≤ x 1
2 ‖u′‖L2(D).



Part I. Elements of functional analysis 13

This implies that ‖u‖2L2(D) ≤ (
∫ 1

0
xdx)‖u′‖2L2(D) =

1
2‖u′‖2L2(D) if u(0) = 0.

(ii) Assume that u(0) = u(1) = 0. If x ∈ (0, 12 ), the above argument shows that |u(x)| ≤
x

1
2 ‖u′‖L2(0, 12 )

. Similarly, if x ∈ (12 , 1), we have |u(x)| ≤ (1− x) 1
2 ‖u′‖L2( 1

2 ,1)
. We infer that

‖u‖2L2(D) =

∫ 1
2

0

u(x)2 dx+

∫ 1

1
2

u(x)2 dx

≤ ‖u′‖2L2(0, 12 )

∫ 1
2

0

xdx+ ‖u′‖2L2( 1
2 ,1)

∫ 1

1
2

(1− x) dx

≤ 1

8

(
‖u′‖2L2(0, 12 )

+ ‖u′‖2L2( 1
2 ,1)

)
=

1

8
‖u′‖2L2(0,1).

(iii) Let us set u :=
∫ 1

0
u dx. After squaring the equation u(x)− u(y) =

∫ y
x
u′(t) dt, we obtain

u(x)2 + u(y)2 − 2u(y)u(x) =

∫ y

x

u′(t) dt ≤ |y − x| ‖u′‖2L2(D).

This, in turn, implies that
∫

D

∫

D

u(x)2 dxdy +

∫

D

∫

D

u(y)2 dxdy − 2

∫

D

∫

D

u(y)u(x) dxdy

≤ ‖u′‖2L2(D)

∫

D

∫

D

|y − x| dxdy.

A direct computation shows that
∫

D

∫

D

u(x)2 dxdy +

∫

D

∫

D

u(y)2 dxdy − 2

∫

D

∫

D

u(y)u(x) dxdy = 2‖u‖2L2(D) − 2u2,

and that
∫

D

∫

D

|y − x| dxdy =

∫ 1

0

(∫ y

0

(y − x) dx +

∫ 1

y

(x− y) dx
)

dy

=

∫ 1

0

(
1

2
y2 +

1

2
(1 − y)2) dy =

2

6
=

1

3
.

We conclude that

2‖u‖2L2(D) − 2u2 ≤ 1

3
‖u′‖2L2(D),

which proves the assertion.
(iv) Let x ∈ D = [0, 1]. Recalling that u(x) = u(1) +

∫ x
1
u′(t) dt, we obtain

u(x)2 =

(
u(1) +

∫ x

1

u′(t) dt

)2

≤ 2u(1)2 + 2

(∫ x

1

u′(t) dt

)2

≤ 2u(1)2 + 2x‖u′‖2L2(D) ≤ 2u(1)2 + 2‖u′‖2L2(D),

which proves that maxx∈D |u(x)|2 ≤ 2u2(1) + 2‖u′‖2L2(D).

(v) Similarly, we have u(x) = u(y) +
∫ x
y
u′(t) dt. Proceeding as above, we obtain

u(x)2 =

(
u(y) +

∫ x

y

u′(t) dt

)2

≤ 2u(y)2 + 2

(∫ x

y

u′(t) dt

)2

≤ 2u(y)2 + 2|y − x|‖u′‖2L2(D) ≤ 2u(y)2 + 2‖u′‖2L2(D).
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This implies that

u(x)2
∫

D

dy ≤ 2

∫

D

u(y)2 dy + 2‖u′‖2L2(D)

∫

D

dy,

and we conclude that maxx∈D |u(x)|2 ≤ 2‖u‖2L2(D) + 2‖u′‖2L2(D).

Exercise 3.3 (Fractional Poincaré–Steklov). (i) Following the hint, we observe that

∫

D

|v(x)− vD|pdx =

∫

D

|D|−p
∣∣∣∣
∫

D

(v(x) − v(y)) dy
∣∣∣∣
p

dx

≤
∫

D

|D|−p


∫

D

|v(x)− v(y)|
‖x− y‖s+

d
p

ℓ2

‖x− y‖s+
d
p

ℓ2 dy



p

dx

≤
∫

D

|D|−p
∫

D

|v(x)− v(y)|p
‖x− y‖sp+dℓ2

dy

(∫

D

‖x− y‖(s+
d
p )p

′

ℓ2 dy

) p

p′

dx,

where p′ := p
p−1 . Using that ‖x− y‖ℓ2 ≤ ℓD for all x,y ∈ D, we infer that

‖v − vD‖pLp(D) ≤
∫

D

|D|−p
∫

D

|v(x)− v(y)|p
‖x− y‖sp+dℓ2

dy dx

(
max
x∈D

∫

D

‖x− y‖(s+
d
p )p

′

ℓ2 dy

) p

p′

≤ |v|pW s,p(D)|D|−p
(∫

D

ℓ
(s+d

p )p
′

D dy

) p

p′

≤ |v|pW s,p(D)|D|−p|D|
p
p′ ℓsp+dD ≤ |v|pW s,p(D)ℓ

sp+d
D |D|−1.

Hence, ‖v − vD‖Lp(D) ≤ ℓsD
(
ℓdD
|D|

) 1
p |v|W s,p(D).

(ii) Using the definitions and ‖x− y‖ℓ2 ≤ ℓD for all x,y ∈ D, we have

|v − vD|pW r,p(D) = |v|
p
W r,p(D) =

∫

D

∫

D

|v(x)− v(y)|p
‖x− y‖rp+dℓ2

dxdy

=

∫

D

∫

D

|v(x)− v(y)|p
‖x− y‖sp+dℓ2

‖x− y‖(s−r)pℓ2 dxdy

≤ ℓ(s−r)pD |v|pW s,p(D).

This concludes the proof.

Exercise 3.4 (Zero-extension inW 1,p
0 (D)). Let u ∈ W 1,p

0 (D). By definition, there is a sequence
(un)n∈N in C∞

0 (D) such that un → u inW 1,p(D). For all ϕ ∈ C∞
0 (Rd) and all i ∈ {1:d}, we observe

that
∫

Rd
ũ∂iϕdx =

∫

D

u∂iϕdx = lim
n→∞

∫

D

un∂iϕdx = − lim
n→∞

∫

D

∂iunϕdx

=

∫

D

∂iuϕdx ≤ ‖∂iu‖Lp(D)‖ϕ‖Lp′(D)

≤ ‖∂iu‖Lp(D)‖ϕ‖Lp′(Rd),
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where p′ ∈ (1,∞] is the conjugate of p. This shows that the linear form ϕ 7→
∫
Rd
ũ∂iϕdx is bounded

in Lp
′

(Rd). Since Lp
′

(Rd) = (Lp(Rd))′, we infer that ∂iũ ∈ Lp(Rd). Since i ∈ {1:d} is arbitrary,

this implies that ũ ∈W 1,p(Rd), i.e., u ∈ W̃ 1,p(D). Finally, the estimate ‖ũ‖W 1,p(Rd) ≤ ‖u‖W 1,p(D)

results from the above bound.

Exercise 3.5 (Integral representation). (i) Any time we see a quantity like v(t) − v(x), we
must think of the fundamental theorem of calculus, i.e., v(t)− v(x) =

∫ t
x ∂xv(z) dz. We have

|w(x)| = 1

x

∣∣∣∣
∫ x

0

(v(t) − v(x)) dt
∣∣∣∣ =

1

x

∣∣∣∣
∫ x

0

∫ t

x

∂zv(z) dz dt

∣∣∣∣

≤ 1

x

∫ x

0

∣∣∣∣
∫ t

x

∂zv(z) dz

∣∣∣∣ dt ≤
1

x

∫ x

0

∫ x

t

|∂zv(z)| dz dt

≤ M

x

∫ x

0

∫ x

t

dz dt =
M

x

∫ x

0

(x − t) dt = M

x
(x2 − 1

2
x2).

Hence, |w(x)| ≤ Mx
2 for all x ∈ [0,∞).

(ii) The estimate |w(x)| ≤ Mx
2 shows that |w(0)| ≤ 0, meaning that w(0) = 0.

(iii) Upon observing that tw(t) =
∫ t
0
(v(z) − v(t)) dz and recalling that the fundamental theorem

of calculus implies that

∂t

(∫ t

0

f(z) dz

)
= f(t),

we have

∂(tw(t)) = ∂t

∫ t

0

(v(z)− v(t)) dz = ∂t

∫ t

0

v(z) dz − ∂t(v(t)t)

= v(t)− v(t)− t∂tv(t) = −t∂tv(t).

Hence, ∂t(tw(t)) = −t∂tv(t).
(iv) Following the hint, we infer that

v(x) − v(0) =
∫ x

0

1

t
(t∂tv(t)) dt = −

∫ x

0

1

t
∂t(tw(t)) dt

=

∫ x

0

∂t

(
1

t

)
tw(t) dt −

[
1

t
tw(t)

]x

0

= −
∫ x

0

1

t2
tw(t) dt − w(x) + w(0),

thereby proving that v(x) − v(0) = −
∫ x
0

1
tw(t) dt− w(x).

(v) The integral representation is obtained by replacing w(t) and w(x) in the above identity.

Exercise 3.6 (Trace inequality in W s,p, sp > 1). The identity from Exercise 3.5 gives

v(y, 0) = v(y, x) +
1

x

∫ x

0

(v(y, t) − v(y, x)) dt+
∫ x

0

1

y2

∫ y

0

(v(y, t)− v(y, y)) dt dy.
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Using Hölder’s inequality repeatedly, we infer that

1

a

∫ a

0

v(y, x) dx ≤ a− 1
p ‖v(y, .)‖Lp(0,a),

1

a

∫ a

0

1

x

∫ x

0

(v(y, t)− v(y, x)) dt dx ≤ c1(s, p) as−
1
p |v(y, .)|W s.p(0,a),

1

a

∫ a

0

∫ x

0

1

y2

∫ y

0

(v(y, t)− v(y, y)) dt dy dx ≤ c2(s, p) as−
1
p |v(y, .)|W s.p(0,a),

where c1(s, p) :=
(

p−1
p(s+1)

p−1
p(s+1)−1

) p−1
p

, c2(s, p) :=
(

p−1
p(s+1)

p−1
sp−1

) p−1
p p
p(s+1)−1 . Using that v(y, 0) =

1
a

∫ a
0
v(y, 0) dx, we infer that

|v(y, 0)| ≤ a− 1
p ‖v(y, .)‖Lp(0,a) + (c1(s, p) + c2(s, p))a

s− 1
p |v(y, .)|W s,p(0,a).

(ii) Using the inequality (α + β)p ≤ 2
p−1
p (|α|p + |β|p), we infer that

‖v(., 0)‖Lp(F ) ≤ c (a−
1
p ‖v‖Lp(D) + as−

1
p I(v)),

where

I(v)p :=

∫

F

∫ a

0

∫ a

0

|v(xd−1, xd)− v(xd−1, yd)|p
|xd − yd|sp+1

dx1 . . . dxd−1 dxd dyd.

The rest of the proof consists of proving that there is a constant c such that I(v) ≤ c|v|W s,p(F×(0,a)).
This is actually (a slightly modified version of) Lemma 4.33 in [13, p. 200].



Chapter 4

Distributions and duality in
Sobolev spaces

Exercises

Exercise 4.1 (Distributions). Let D be an open set in Rd. Let v be a distribution in D. (i)
Let ψ ∈ C∞(D). Show that the map C∞

0 (D) ∋ ϕ 7→ 〈v, ψϕ〉 defines a distribution in D (this
distribution is usually denoted by ψv). (ii) Let α, β ∈ Nd. Prove that ∂α(∂βv) = ∂β(∂αv) in the
distribution sense.

Exercise 4.2 (Dirac measure on a manifold). Let D be a smooth bounded and open set in
Rd. Let u ∈ C2(D;R) and assume that u|∂D = 0. Let ũ be the extension by zero of u over Rd.
Compute ∇·(∇ũ) = ∂11u+ . . .+ ∂ddu in the distribution sense.

Exercise 4.3 (P.V. 1
x). Let D := (−1, 1). Prove that the linear map T : C∞

0 (D)→ R defined by
〈T, ϕ〉 := limǫ→0

∫
|x|>|ǫ|

1
xϕ(x) dx is a distribution.

Exercise 4.4 (Integration by parts). Prove the two identities in (4.8) by using the divergence
formula

∫
D∇·φ dx =

∫
∂D(φ·n) ds for all φ ∈ C1(D).

Exercise 4.5 (Definition (4.11)). Verify that the right-hand side of (4.11) is independent of the
choice of w(l). (Hint : consider two functions w1,w2 ∈ W 1,p′(D) s.t. γg(w1) = γg(w2) = l and

use the density of C∞
0 (D) in W 1,p′

0 (D).)

Solution to exercises

Exercise 4.1 (Distributions). (i) Let K be a compact subset of the open set D. Since v
is a distribution, there exist c ∈ R and p ∈ N (both depending on K) such that |〈v, ϕ〉| ≤
c max|α|≤p

(
ℓ
|α|
D ‖∂αϕ‖L∞(K)

)
for all ϕ ∈ C∞

0 (D) (i.e., ϕ is a smooth function with compact support
in K). Let ψ ∈ C∞(D) and ϕ ∈ C∞

0 (D). Since ψϕ ∈ Cp(D) and supp(ψϕ) ⊂ K, we have ψϕ ∈
Cp0(D). The product rule implies that there exists c′ depending on p such that ‖∂α(ψϕ)‖L∞(K) ≤
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c′ max|β|≤|α|
(
ℓ
|β|
D ‖∂βψ‖L∞(K)

)
‖∂αϕ‖L∞(K) for all α s.t. |α| ≤ p. For all ϕ ∈ C∞

0 (D), we infer that

|〈v, ψϕ〉| ≤ c max
|α|≤p

(
ℓ
|α|
D ‖∂α(ψϕ)‖L∞(K)

)

≤ c c′ max
|α|≤p

max
|β|≤|α|

(
ℓ
|β|
D ‖∂βψ‖L∞(K)

)
‖∂αϕ‖L∞(K)

≤ c c′ max
|β|≤p

(
ℓ
|β|
D ‖∂βψ‖L∞(K)

)
max
|α|≤p

‖∂αϕ‖L∞(K),

thereby proving that the linear map C∞
0 (D) ∋ ϕ 7→ 〈v, ψϕ〉 ∈ R is a distribution.

(ii) Let α, β ∈ Nd. Let ϕ ∈ C∞
0 (D). Using Clairaut’s theorem for ϕ, we infer that

〈∂β(∂αv), ϕ〉 = (−1)|β|〈∂αv, (∂βϕ)〉 = (−1)|α|+|β|〈v, ∂α(∂βϕ)〉
= (−1)|α|+|β|〈v, ∂β(∂αϕ)〉 = (−1)|α|〈∂βv, (∂αϕ)〉
= 〈∂α(∂βv), ϕ〉.

Hence, ∂β(∂αv) = ∂α(∂βv), which is Clairaut’s theorem for distributions.

Exercise 4.2 (Dirac measure on a manifold). We use the notation ∆ := ∇·(∇). By definition,
we have

〈∆ũ, ϕ〉 = 〈ũ, ∂11ϕ+ . . .+ ∂ddϕ〉 =
∫

Rd
ũ∇·(∇ϕ) dx =

∫

D

u∇·(∇ϕ) dx

= −
∫

D

∇u·∇ϕdx =

∫

D

∇·(∇u)ϕdx−
∫

∂D

(n·∇u)ϕds

=

∫

Rd
∆̃uϕdx−

∫

∂D

(n·∇u)ϕds.

Hence, we have proved that ∆ũ = ∆̃u−(∇u·n)δ∂D, where δ∂D is the Dirac measure whose support
is ∂D. Note: one can make sense of the notation (n·∇u)δ∂D by smoothly extending n and u over
Rd and by reasoning as in Exercise 4.1(i) with p := 0.

Exercise 4.3 (P.V. 1
x). Let ǫ > 0. We have

∫

|x|>|ǫ|

1

x
ϕ(x) dx =

∫ −ǫ

−1

1

x
ϕ(x) dx +

∫ 1

ǫ

1

x
ϕ(x) dx

= −
∫ −ǫ

−1

ln(|x|)ϕ′(x) dx + ϕ(−ǫ) ln(ǫ)−
∫ 1

ǫ

ln(x)ϕ′(x) dx − ϕ(ǫ) ln(ǫ)

=

∫ 1

−1

1|(−1,−ǫ)∪(ǫ,1) ln(|x|)ϕ′(x) dx + (ϕ(−ǫ)− ϕ(ǫ)) ln(ǫ),

where 1E is the indicator function of the set E. We notice that

|(ϕ(−ǫ)− ϕ(ǫ)) ln(ǫ)| ≤ ‖ϕ′‖L∞ǫ ln(ǫ).

Moreover, the sequence 1|(−1,−ǫ)∪(ǫ,1) ln(|x|)ϕ′(x) converges a.e. in D to ln(|x|)ϕ′(x), and we also
have 1|(−1,−ǫ)∪(ǫ,1) ln(|x|)ϕ′(x) ≤ ln(|x|)ϕ′(x) ∈ L1(D). Lebesgue’s dominated convergence implies
that

〈T, ϕ〉 := lim
ǫ→0

∫

|x|>|ǫ|

1

x
ϕ(x) dx = −

∫ 1

−1

ln(|x|)ϕ′(x) dx,
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i.e., the limit process with respect to ǫ is well defined. Moreover, we have

|〈T, ϕ〉| =
∣∣∣∣
∫ 1

−1

x(ln(|x|) − 1)ϕ′′(x) dx

∣∣∣∣ ≤ ‖ϕ′′(x)‖L∞(D),

thereby proving that T is indeed a distribution. Notice that we have actually proved that T =
∂x(

1
x), which makes sense after all.

Exercise 4.4 (Integration by parts). The identity (4.8a) follows from the divergence formula
for φ by using φ := v×w (since ∇·(v×w) = (∇×v)·w − v·∇×w) and φ·n = (v×w)×n =
−(v×n)·w), whereas the identity (4.8b) follows from the divergence formula for φ by using φ := vq
(since ∇·(vq) = v·∇q + (∇·v)q and φ·n = (v·n)q).

Exercise 4.5 (Definition (4.11)). Let v ∈ Zc,p(D). Following the hint, let w1,w2 ∈W 1,p′(D)

be s.t. γg(w1) = γg(w2) = l. Then w1 − w2 ∈ W 1,p′

0 (D). Invoking a density argument, let

(φn)n∈N be a sequence in C∞
0 (D) converging to w1 −w2 in W 1,p′

0 (D). Then we have

0 =

∫

D

v·∇×φn dx−
∫

D

φn·∇×v dx.

Passing to the limit n→∞ yields

0 =

∫

D

v·∇×(w1 −w2) dx−
∫

D

(w1 −w2)·∇×v dx.

Hence, 〈γc(v), γg(w1)〉∂D = 〈γc(v), γg(w2)〉∂D, which establishes the claim.
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Chapter 5

Main ideas and definitions

Exercises

Exercise 5.1 (Linear combination). Let S ∈ Rnsh×nsh be an invertible matrix. Let (K,P,Σ)
be a finite element. Let Σ̃ := {σ̃i}i∈N with dofs σ̃i :=

∑
i′∈N Sii′σi′ for all i ∈ N . Prove that

(K,P, Σ̃) is a finite element. Write the shape functions {θ̃j}j∈N and verify that the interpolation

operator does not depend on S, i.e., ĨK(v)(x) = IK(v)(x) for all v ∈ V (K) and all x ∈ K.

Exercise 5.2 (Modal finite element). (i) Let (K,P,Σ) and (K,P, Σ̃) be two modal finite

elements. Let {ζi}i∈N , {ζ̃i}i∈N , be the two bases of P s.t. the dofs in Σ and Σ̃ are given by
σi(p) := |K|−1(ζi, p)L2(K;Rq) and σ̃i(p) := |K|−1(ζ̃i, p)L2(K;Rq) for all i ∈ N . Prove that the

interpolation operators ImK and ĨmK are identical. (ii) Prove that (p, ImK(v)− v)L2(K;Rq) = 0 for all

p ∈ P . (iii) Let M be defined by (5.12), and let Mθ
ij := |K|−1(θi, θj)L2(K;Rq) for all i, j ∈ N ,

where {θi}i∈N are the shape functions associated with (K,P,Σ). Prove thatMθ =M−1.

Exercise 5.3 (Variation on P2). Let K := [0, 1], P := P2, and Σ := {σ1, σ2, σ3} be the linear
forms on P s.t. σ1(p) := p(0), σ2(p) := 2p(12 )− p(0)− p(1), σ3(p) := p(1) for all p ∈ P . Show that
(K,P,Σ) is a finite element, compute the shape functions, and indicate possible choices for V (K).

Exercise 5.4 (Hermite). Let K := [0, 1], P := P3, and Σ := {σ1, σ2, σ3, σ4} be the linear forms
on P s.t. σ1(p) := p(0), σ2(p) := p′(0), σ3(p) := p(1), σ4(p) := p′(1) for all p ∈ P . Show that
(K,P,Σ) is a finite element, compute the shape functions, and indicate possible choices for V (K).

Exercise 5.5 (Powell–Sabin). Consider K := [0, 1] and let P be composed of the functions that
are piecewise quadratic over the intervals [0, 12 ] ∪ [ 12 , 1] and are of class C1 over K, i.e., functions
in P and their first derivatives are continuous. Let Σ := {σ1, . . . , σ4} be the linear forms on P s.t.
σ1(p) := p(0), σ2(p) := p′(0), σ3(p) := p(1), σ4(p) := p′(1). Prove that the triple (K,P,Σ) is a
finite element. Verify that the first two shape functions are

θ1(t) =

{
1− 2t2 if t ∈ [0, 12 ],

2(1− t)2 if t ∈ [ 12 , 1],
θ2(t) =

{
t(1− 3

2 t) if t ∈ [0, 12 ],
1
2 (1− t)2 if t ∈ [ 12 , 1],

and compute the other two shape functions. Note: a two-dimensional version of this finite element
on triangles has been developed in [39].
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Exercise 5.6 (Lebesgue constant for Lagrange element). Prove that the Lebesgue constant
ΛN defined in Example 5.15 is equal to ‖ILK‖L(C0(K)). (Hint : to prove ‖ILK‖L(C0(K)) ≥ ΛN ,
consider functions {ψi}i∈N taking values in [0, 1] s.t.

∑
i∈N ψi = 1 in K and ψi(aj) = δij for all

i, j ∈ N .)

Exercise 5.7 (Lagrange interpolation). Let K := [a, b] and let p ∈ [1,∞). (i) Prove that

‖v‖L∞(K) ≤ (b − a)−
1
p ‖v‖Lp(K) + (b − a)1−

1
p ‖v′‖Lp(K) for all v ∈ W 1,p(K) (Hint : use v(x) −

v(y) =
∫ y
x v

′(t) dt for all v ∈ C1(K), where |v(y)| := minz∈K |v(z)|, then use the density of
C1(K) in W 1,p(K).) (ii) Prove that W 1,p(K) embeds continuously in C0(K). (iii) Let ILK be
the interpolation operator based on the linear Lagrange finite element using the nodes a and
b. Determine the two shape functions and prove that ILK can be extended to W 1,p(K). (iv)
Assuming that w ∈W 1,p(K) is zero at some point in K, show that ‖w‖Lp(K) ≤ (b− a)‖w′‖Lp(K).
(v) Prove the following estimates: ‖(v − ILK(v))′‖Lp(K) ≤ (b − a)‖v′′‖Lp(K), ‖v − ILK(v)‖Lp(K) ≤
(b− a)‖(v − ILK(v))′‖Lp(K), ‖(ILK(v))′‖Lp(K) ≤ ‖v′‖Lp(K), for all p ∈ (1,∞] and all v ∈ W 2,p(K).

Exercise 5.8 (Cross approximation). Let X,Y be nonempty subsets of R and f : X×Y → R
be a bivariate function. Let N := {1:nsh} with nsh ≥ 1, and consider nsh points {xi}i∈N in X
and nsh points {yj}j∈N in Y. Assume that the matrix F ∈ Rnsh×nsh with entries Fij := f(xi, yj) is
invertible. Let ICA(f) : X×Y → R be s.t. ICA(f)(x, y) :=

∑
i,j∈N (F−T)ijf(x, yj)f(xi, y). Prove

that ICA(f)(x, yk) = f(x, yk) for all x ∈ X and all k ∈ N , and that ICA(f)(xk, y) = f(xk, y) for
all y ∈ Y and all k ∈ N .

Exercise 5.9 (Riesz–Fréchet in finite dimension). Let V be a finite-dimensional complex
Hilbert space. Show that for every antilinear form A ∈ V ′, there is a unique v ∈ V s.t. (v, w)V =
〈A,w〉V ′,V for all w ∈ V, with ‖v‖V = ‖A‖V ′ .

Solution to exercises

Exercise 5.1 (Linear combination). We use Remark 5.3. Let p ∈ P be such that σ̃i(p) = 0 for
all i ∈ N . The matrix S being invertible, we infer that σi(p) = 0 for all i ∈ N , so that p = 0 since
(K,P,Σ) is a finite element.
The shape functions are such that θ̃j =

∑
j′∈N (S−T)jj′θj′ since

σ̃i(θ̃j) =
∑

i′∈N

∑

j′∈N
Sii′ (S−T)jj′σi′ (θj′ ) =

∑

i′∈N

∑

j′∈N
Sii′ (S−T)jj′δi′j′

=
∑

i′∈N
Sii′ (S−T)ji′ = δij .

As a result, we infer that for all v ∈ V (K) and all x ∈ K,

ĨK(v)(x) =
∑

i∈N
σ̃i(v)θ̃i(x) =

∑

i∈N

∑

i′∈N

∑

j′∈N
Sii′ (S−T)ij′σi′ (v)θj′ (x)

=
∑

i′∈N

∑

j′∈N
δi′j′σi′ (v)θj′ (x) =

∑

i′∈N
σi′(v)θi′ (x) = IK(v)(x).

Exercise 5.2 (Modal finite element). (i) Since {ζi}i∈N is a basis of P , there are real numbers
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Sij , i, j ∈ N , such that ζ̃i =
∑
j∈N Sijζj . Hence, we have

σ̃i(p) = |K|−1(ζ̃i, p)L2(K;Rq)

=
∑

j∈N
Sij |K|−1(ζj , p)L2(K;Rq) =

∑

j∈N
Sijσj(p).

We conclude by invoking the result from Exercise 5.1.
(ii) Let {θi}i∈N be the shape functions of (K,P,Σ). For all the basis functions ζl, we have

(ζl, ImK(v), ζl)L2(K;Rq) =
∑

i∈N
σi(v)(ζl, θi)L2(K;Rq) =

∑

i∈N
σi(v)|K|σl(θi)

= σl(v)|K| = (ζl, v)L2(K;Rq).

This implies that (p, ImK(v)− v, p)L2(K;Rq) = 0 for all p ∈ P .
(iii) Using the definitions, we have

(MθM)ij =
∑

k∈N
|K|−1(θi, θk)L2(K;Rq)|K|−1(ζk, ζj)L2(K;Rq)

= |K|−1
(
θi,
∑

k∈N
θk|K|−1(ζk, ζj)L2(K;Rq)

)
L2(K;Rq)

= |K|−1
(
θi,
∑

k∈N
θkσk(ζj)

)
L2(K;Rq)

= |K|−1(θi, ζj)L2(K;Rq) = σj(θi) = δij .

Exercise 5.3 (Variation on P2). Observe that dimP2 = 3 = cardΣ. Let p(x) ∈ P2 be such that
σ1(p) = σ2(p) = σ3(p) = 0. Then p(0) = p(1) = 0, which implies that 0 = 2p(12 ) − p(0) − p(1) =
2p(12 ), i.e., p(0) = p(1) = p(12 ) = 0. This, in turn, implies that p vanishes identically. One verifies
that the shape functions are θ1(x) = 1− x, θ2(x) = 2x(1− x), θ3(x) = x. Possible choices for the
domain of the interpolation operator are C0(K) and Hs(K) with s > 1

2 .

Exercise 5.4 (Hermite). We use Remark 5.3. First, we have dimP = cardΣ = 4. Moreover, if
p ∈ P3 is such that σi(p) = 0 for all i ∈ {1:4}, we infer that both t2 and (t− 1)2 divide p. Since p
is of degree ≤ 3, p vanishes identically.
A direct computation shows that

θ1(t) = (2t+ 1)(t− 1)2, θ2(t) = t(t− 1)2,

θ3(t) = (3− 2t)t2, θ4(t) = (t− 1)t2.

For instance, (t− 1)2 divides θ1 since θ1(1) = 0 and θ′1(1) = 0. Then θ1(t) = (at+ b)(t− 1)2, and
the coefficients a and b are determined by the conditions 1 = θ1(0) = b and 0 = θ′1(0) = a − 2b.
Note that by symmetry, we have θ3(t) = θ1(1− t) and θ4(t) = −θ2(1− t). Possible choices for the
domain of the interpolation operator are V (K) := C1(K) or V (K) := H2(K).

Exercise 5.5 (Powell–Sabin). We use Remark 5.3. First, we have dimP = cardΣ = 4. More-
over, if p ∈ P is such that σi(p) = 0 for all i ∈ {1:4}, we infer that p|[0, 12 ] = at2 and p|[ 12 ,1] = b(1−t)2
for some real numbers a, b. The C1-matching condition at t = 1

2 leads to a = b and 2a = −2b,
whence a = b = 0. By symmetry, we have θ3(t) = θ1(1 − t) and θ4(t) = −θ2(1 − t).
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Exercise 5.6 (Lebesgue constant for Lagrange element). Let us prove that ‖ILK‖L(C0(K)) ≤
ΛN . For all v ∈ C0(K), we observe that

|ILK(v)(x)| ≤
∑

i∈N
|v(ai)||θi(x)| ≤

(∑

i∈N
|θi(x)|

)
‖v‖C0(K),

which proves the expected bound. Let us prove the reverse bound. Using the hint, we define the
function

v0(x) :=
∑

j∈N
sgn(θj(x0))ψj(x),

where x0 is a point in K where the function
∑

j∈N |θj(x)| is maximal. Owing to the properties of
the functions {ψi}i∈N , we infer that ‖v0‖C0(K) = 1, and by construction, we obtain

‖ILK(v0)‖C0(K) ≥ ILK(v0)(x0) =
∑

j∈N
|θj(x0)| = ΛN .

The functions {ψi}i∈N can be taken to be the one-dimensional hat basis functions associated with
the P1-Lagrange finite element. Assume that the set {ai}i∈N contains the interval endpoints,
i.e., K = [a1,ansh

]. Let ψi : K → [0, 1] be the piecewise affine function s.t. ψi(x) := x−ai−1

ai−ai−1

if x ∈ [ai−1,ai] (and i > 1), ψi(x) := ai+1−x

ai+1−ai
if x ∈ [ai,ai+1] (and i < nsh), and ψ(x) := 0

otherwise. By construction, ψi takes values in [0, 1] and ψi(aj) = δij . Moreover, the function∑
i∈N ψi(x) is affine in each interval [aj ,aj+1] and takes the value 1 at the two endpoints for

all j ∈ {1:nsh−1}. Hence,
∑

i∈N ψi(x) = 1. Finally, if {ai}i∈N does not contain the interval
endpoints, the function ψ1 (resp., ψnsh

) is extended by the constant value 1 on the left of a1 (resp.,
right of ansh

).

Exercise 5.7 (Lagrange interpolation). (i) Let v ∈ C1(K) and let y ∈ K be such that
|v(y)| = minz∈K |v(z)|. Since v(x) = v(y) +

∫ x
y
v′(t) dt for all x ∈ K, we infer using Hölder’s

inequality that

|v(x)| ≤ |v(y)|+ (b − a)1− 1
p ‖v′‖Lp(K).

Moreover, integrating the inequality |v(y)| ≤ |v(z)| with respect to z ∈ K, we obtain (b −
a)

1
p |v(y)| ≤ ‖v‖Lp(K). We infer that

|v(x)| ≤ (b− a)− 1
p ‖v‖Lp(K) + (b− a)1− 1

p ‖v′‖Lp(K), ∀x ∈ K.

Let now v ∈ W 1,p(K). Let (vn)n∈N be a sequence in C∞(K) converging to v ∈ W 1,p(K). Then,
up to a subsequence, (vn)n∈N converges to v a.e. in K, so that we can pass to the limit in the
above inequality written for vn and infer the expected bound.
(ii) Let (vn)n∈N be a sequence in C1(K) converging to v ∈W 1,p(K). Owing to the bound derived
above, we infer that (vn)n∈N is a Cauchy sequence for the uniform norm. This sequence thus
converges to some ṽ ∈ C0(K). That v = ṽ a.e. in K results from the fact that

∫
K
(v − ṽ)ϕdt = 0

for all ϕ ∈ C∞
0 (int(K)), as can be inferred by passing to the limit in

∫
K vnϕdt and using the

convergence of (vn)n∈N in W 1,p(K) and in C0(K).
(iii) The two shape functions are θ1(t) =

b−t
b−a and θ2(t) =

t−a
b−a . The extension of ILK to W 1,p(K)

is a direct consequence of (ii).
(iv) Proceeding as in (i) with y ∈ K such that w(y) = 0, one can prove that |w(x)|p ≤ (b −
a)p−1‖w′‖pLp(K) for all x ∈ K. Integrating this inequality with respect to x ∈ K yields the

expected bound.
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(v) Let v ∈ W 2,p(K). The function w := (v−ILK(v))′ is in W 1,p(K), and it vanishes at some point
in K since (v−ILK(v)) is in C1(K) and vanishes at the two endpoints. Applying the bound derived
in Step (iv) and observing that w′′ = v′′ since ILK(v) is affine, we infer that ‖(v−ILK(v))′‖Lp(K) ≤
(b− a)‖v′′‖Lp(K). By a similar reasoning, applying the bound derived in Step (iv) to the function

w := v−ILK(v) leads to ‖v−ILK(v)‖Lp(K) ≤ (b−a)‖(v−ILK(v))′‖Lp(K). Since (ILK(v))′ = v(b)−v(a)
b−a ,

we finally infer that

‖(ILK(v))′‖Lp(K) ≤ (b − a) 1
p−1|v(b)− v(a)|

≤ (b − a) 1
p−1(b− a)1− 1

p ‖v′‖Lp(K) = ‖v′‖Lp(K).

Exercise 5.8 (Cross approximation). We only prove the first statement, the proof for the
second one being similar. We observe that

ICA(f)(x, yk) =
∑

i,j∈N
(F−T)ijf(x, yj)f(xi, yk) =

∑

i,j∈N
Fik(F−T)ijf(x, yj)

=
∑

j∈N
δjkf(x, yj) = f(x, yk).

Exercise 5.9 (Riesz–Fréchet in finite dimension). Let m := dim(V ). Let K := ker(A). The
rank nullity theorem implies that dim(K) = m−1. Hence, K⊥ is one-dimensional, i.e., there exists
q ∈ V s.t. K⊥ = span{q} and ‖q‖V = 1. For all w ∈ V, we have w = (w, q)V q + k with k ∈ K⊥.
We infer that

〈A,w〉V ′,V = 〈A, (w, q)V q〉V ′,V + 〈A, k〉V ′,V

= (w, q)V 〈A, q〉V ′,V = (q, w)V 〈A, q〉V ′,V = ((〈A, q〉V ′,V q), w)V .

Denoting v := 〈A, q〉V ′,V q, we have thus shown that 〈A,w〉V ′,V = (v, w)V for all w ∈ V. The
equality of norms follows from

‖v‖V = sup
w∈V

|(v, w)V |
‖w‖V

= sup
w∈V

|〈A,w〉V ′,V |
‖w‖V

= ‖A‖V ′ .

Finally, the uniqueness of v ∈ V is established by contradiction. If there were distinct v1, v2 ∈ V s.t.
(v1, w)V = 〈A,w〉V ′,V = (v2, w)V for all w ∈ V, we would have (v1 − v2, w)V = 0, and considering
w := v1 − v2 leads to the expected contradiction.
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Chapter 6

One-dimensional finite elements
and tensorization

Exercises

Exercise 6.1 (Integrated Legendre polynomials). Let k ≥ 2 and set P(0)k := {p ∈ Pk | p(±1) =
0}. Show that a basis for P(0)k are the integrated Legendre polynomials {

∫ t
−1
Ll(s) ds}l∈{1:k−1}.

Prove (6.6). (Hint : consider moments against polynomials in Pm−2 and the derivative at t = 1.)

Exercise 6.2 (Gauss–Lobatto). The goal of this exercise is to prove Proposition 6.6. (i) Prove
that kQ = 2m−3. (Hint : for all p ∈ P2m−3, m ≥ 3, write p = p1(1− t2)L′

m−1+p2 with p1 ∈ Pm−3

and p2 ∈ Pm−1.) (ii) Prove that ω1 = ωm = 2
m(m−1) . (Hint : compute

∫ 1

−1 L
′
m−1(t)(1+t)L

′
m−1(t) dt

using the quadrature and by integrating by parts.) (iii) Assume m ≥ 3 and let l ∈ {2:m−1}. Prove
that L′

m−2(ξl) = (1−m)Lm−1(ξl) and (1−ξ2l )L′′
m−1(ξl)+m(m−1)Lm−1(ξl) = 0. (Hint : use (6.3).)

Let Ll ∈ Pm−3 be the Lagrange interpolation polynomial s.t. Ll(ξj) = δlj , for all l, j ∈ {2:m−1}
(i.e., ξ1 and ξm are excluded). Prove that Ll(t) =

L′
m−1(t)

t−ξl
1

L′′
m−1(ξl)

. (Hint : compare the degree

of the polynomials, their roots, and their value at ξl.) Finally, prove (6.11). (Hint : integrate the
polynomial Ll(t)(1 − t)L′

m−2(t).) (iv) Let ‖p‖2ξ :=
∑

l∈{1:m} ωlp(ξl)
2. Verify that ‖·‖ξ defines a

norm on Pk with k := m − 1, and prove that ‖p‖L2(K) ≤ ‖p‖ξ ≤ (2k+1
k )

1
2 ‖p‖L2(K) for all p ∈ Pk,

with K := (−1, 1). (Hint : write p = pk−1 + λLk with pk−1 ∈ Pk−1 and λ ∈ R, and compute
‖p‖2L2(K) and ‖p‖2ξ.)
Exercise 6.3 (Gauss–Radau). The goal is to prove Proposition 6.7. (i) Prove that kQ = 2m−2.
(Hint : for all p ∈ P2m−2, write p = p1(Lm − Lm−1) + p2 with p1 ∈ Pm−2 and p2 ∈ Pm−1.) (ii)

Prove that ωm = 2
m2 . (Hint : integrate the polynomial Lm(t)−Lm−1(t)

t−1 L′
m−1(t).) (iii) Assume

m ≥ 2 and let l ∈ {1:m−1}. Prove that L′
m(ξl) = −L′

m−1(ξl). (Hint : use (6.3a) and (6.3b).)
Let Ll ∈ Pm−2 be the Lagrange interpolation polynomial s.t. Ll(ξj) = δlj for all l, j ∈ {1:m−1}
(i.e., ξm is excluded). Prove that Ll(t) = Lm(t)−Lm−1(t)

(1−t)(t−ξl)
1−ξl

−2L′
m−1(ξl)

. (Hint : compare the degree

of the polynomials, their roots, and their value at ξl.) Finally prove (6.12). (Hint : integrate the
polynomial Ll(t)(1 − t)L′

m−1(t).)

Exercise 6.4 (Inverse trace inequality). Let K := [−1, 1]d. Let m ≥ 3 and let {ξl}l∈{1:m} be

the Gauss–Lobatto (GL) nodes in [−1, 1]. Set Im,d := {1 . . .m}d and I0m,d := {2:(m − 1)}d. For
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any α ∈ Im,d, let aα ∈ K be the node with Cartesian coordinates (aα)i := ξαi for all i ∈ {1:d}.
The set (aα)α∈Im,d consists of the tensorized GL nodes in K. Let k := m − 1 and define the
polynomial space Q0

k,d := {q ∈ Qk,d | q(aα) = 0, ∀α ∈ I0m,d}, i.e., polynomials in Q0
k,d vanish at all

the tensorized GL nodes that are located inside K. Prove that

‖v‖L2(K) ≤
(

2d

k(k + 1)
(2 + 1

k )
d−1 |K|
|∂K|

) 1
2

‖v‖L2(∂K),

for all v ∈ Q0
k,d. (Hint : use Exercise 6.2.)

Exercise 6.5 (Lagrange mass matrix). Let M ∈ Rnsh×nsh be the mass matrix with entries

Mij :=
∫ 1

−1
L[a]i−1(t)L

[a]
j−1(t) dt for all i, j ∈ N . Prove that M = (VTV)−1, where V ∈ Rnsh×nsh is

the (generalized) Vandermonde matrix with entries Vij := (2i−1
2 )

1
2Li−1(aj). (Hint : see Proposi-

tion 5.5.)

Exercise 6.6 (Canonical hybrid element). Prove Proposition 6.10. (Hint : use Remark 5.3.)
Compute the shape functions when µl := J1,1

l−1 for all l ∈ {1:k−1}. (Hint : consider the polynomials

J1,0
k−1, J

1,1
l−1 for all l ∈ {1:k−1}, and J0,1

k−1.)

Exercise 6.7 (Qk,d Lagrange). Prove Proposition 6.14. (Hint : observe that any polynomial
q ∈ Qk,d is such that q(x) =

∑
id∈{0:k} qid(x1, . . . , xd−1)x

id
d and use induction on d.)

Exercise 6.8 (Bicubic Hermite). Let K be a rectangle with vertices {zi}1≤i≤4, P := Q3,2, and
Σ := {p(zi), ∂x1p(zi), ∂x2p(zi), ∂

2
x1x2

p(zi)}1≤i≤4. Show that (K,P,Σ) is a finite element. (Hint :
write p ∈ Q3,2 in the form p(x) =

∑
i,j∈{1: 4} γijθi(x1)θj(x2), where {θ1, . . . , θ4} are the shape

functions of the one-dimensional Hermite finite element; see Exercise 5.4.)

Exercise 6.9 (Face unisolvence). Prove Lemma 6.15. (Hint : use the hint from Exercise 6.7.)

Solution to exercises

Exercise 6.1 (Integrated Legendre polynomials). The space P(0)k has dimension k − 1. Set

θl(t) :=
∫ t
−1
Ll(t

′) dt′ for all l ∈ {1:k−1}. These functions are in P(0)k since θl(−1) = 0 by
construction and θl(1) = 0 by the orthogonality property of Legendre polynomials. It remains to
show that the functions {θl(t)}l∈{1:k−1} are linearly independent. Assume that

∑
l∈{1:k−1} αlθl

vanishes identically. Taking the derivative, we infer that
∑
l∈{1:k−1} αlLl vanishes identically,

which implies αl = 0 for all l ∈ {1:k−1}.
Since both sides of (6.6) are polynomials of order (m+1) vanishing at ±1, it is enough to prove that
both polynomials have the same moments against polynomials in Pm−2 and that their derivative
at t = 1 coincides. For all µ ∈ Pm−2, we observe that

− 1

2m

∫ 1

−1

(1 − t2)J1,1
m−1(t)µ(t) dt = 0,

and integration by parts leads to

∫ 1

−1

(∫ t

−1

Lm(s) ds

)
µ(t) dt = −

∫ 1

−1

Lm(t)

(∫ t

−1

µ(s) ds

)
ds = 0,
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since the integrated Legendre polynomial vanishes at ±1 and since
∫ t
−1
µ(s) ds is in Pm−1. Fur-

thermore, considering the derivative at t = 1, that of the left-hand side of (6.6) is Lm(1) = 1,
whereas that of the right-hand side is − 1

2m (−2)J1,1
m−1(1) = 1. This completes the proof.

Exercise 6.2 (Gauss–Lobatto). (i) We already know from Lemma 6.4 thatm−1 ≤ kQ ≤ 2m−1.
If m = 2, then m− 1 = 2m− 3 and kQ ≥ 2m− 3. If m ≥ 3, let p ∈ P2m−3 and using the Euclidean
polynomial division, write p = p1(1 − t2)L′

m−1 + p2 with p1 ∈ Pm−3 and p2 ∈ Pm−1. Integrating
by parts, we infer that

∫ 1

−1

p1(t)(1 − t2)L′
m−1(t) dt = −

∫ 1

−1

(
p1(t)(1 − t2)

)′
Lm−1(t) dt = 0,

since
(
p1(t)(1 − t2)

)′
is in Pm−2. Therefore, we obtain

∫ 1

−1

p(t) dt =

∫ 1

−1

p2(t) dt =
∑

l∈{1:m}
ωlp2(ξl) =

∑

l∈{1:m}
ωlp(ξl),

where we used that p2(ξl) = p(ξl) for all l ∈ {1:m}. Hence, kQ ≥ 2m− 3 for all m ≥ 3 as well. For
all m ≥ 2, the quadrature is not of higher order since it does not integrate exactly the polynomial
(1− t2)(L′

m−1)
2 which is of degree (2m− 2) (the quadrature approximates its integral by zero).

(ii) Following the hint, we observe that the polynomial L′
m−1(t)(1+t)L

′
m−1(t) is of degree (2m−3),

so that it is integrated exactly by the quadrature. Since this polynomial is nonzero only at ξm = 1,
we infer that

∫ 1

−1

L′
m−1(t)(1 + t)L′

m−1(t) dt = ωm2L
′
m−1(1)

2 = ωm
m2(m− 1)2

2
.

Moreover, integrating by parts leads to
∫ 1

−1

L′
m−1(t)(1 + t)L′

m−1(t) dt = 2L′
m−1(1)Lm−1(1) = m(m− 1),

since the polynomial
(
L′
m−1(t)(1 + t)

)′
is of degree (m − 2). Combining the above two identities

proves that ωm = 2
m(m−1) . The proof that ω1 = 2

m(m−1) is similar and consists of using the

polynomial L′
m−1(t)(1 − t)L′

m−1(t) (one can also invoke a symmetry argument).
(iii) Letm ≥ 3 and l ∈ {2:m−1}. Applying (6.3a) at t = ξl with the indexm−1 yields ξlLm−1(ξl) =
Lm−2(ξl) since L′

m−1(ξl) = 0. Applying (6.3b) leads to (m − 1)Lm−2(ξl) + ξlL
′
m−2(ξl) = 0.

Combining these two equalities, we infer that L′
m−2(ξl) = (1 − m)Lm−1(ξl). Applying (6.3c)

at t = ξl with the index m − 1 finally yields (1 − ξ2l )L
′′
m−1(ξl) + m(m − 1)Lm−1(ξl) = 0 since

L′
m−1(ξl) = 0.

Let us now consider the two polynomials Ll(t) and L′
m−1(t)

t−ξl
1

L′′
m−1(ξl)

. These polynomials are of

degree (m− 3), they vanish at the (m− 3) interior Gauss–Lobatto nodes except at ξl where they
take the common value 1. Hence, these two polynomials coincide identically.

Let us finally prove (6.11). Since the polynomial Ll(t)(1 − t)L′
m−2(t) is of degree (2m −

5), it is integrated exactly by the quadrature. Using the quadrature and the identity Ll(t) =
L′
m−1(t)

t−ξl
1

L′′
m−1(ξl)

, we infer that

∫ 1

−1

Ll(t)(1− t)L′
m−2(t) dt = ωl(1− ξl)L′

m−2(ξl) +
4Ll(−1)L′

m−2(−1)
m(m− 1)

= ωl(1− ξl)L′
m−2(ξl) +

(m− 1)(m− 2)

(1 + ξl)L′′
m−1(ξl)

,
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where we used that Ll(−1) = −L
′
m−1(−1)

1+ξl
1

L′′
m−1(ξl)

, together with the fact that L′
m−1(−1)L′

m−2(−1) =
− 1

4m(m−1)2(m−2). Moreover, since the polynomial
(
Ll(t)(1−t)

)′
is of degree (m−3), integrating

by parts and using the L2-orthogonality property of Lm−2 leads to

∫ 1

−1

Ll(t)(1− t)L′
m−2(t) dt = −2Ll(−1)Lm−2(−1)

=
m(m− 1)

(1 + ξl)L′′
m−1(ξl)

.

Combining the above two equalities leads to

ωl(1 − ξl)L′
m−2(ξl) =

2(m− 1)

(1 + ξl)L′′
m−1(ξl)

.

We conclude using the identities L′
m−2(ξl) = −(m− 1)Lm−1(ξl) and (1− ξ2l )L′′

m−1(ξl) = −m(m−
1)Lm−1(ξl).
(iv) Let k := m − 1. To prove that ‖·‖ξ defines a norm on Pk, we need to prove that (p, q)ξ :=∑
l∈{1:m} ωlp(ξl)q(ξl) is an inner product on Pk. The only nontrivial property is definiteness.

Assume that ‖p‖ξ = 0. Since all the weights are positive, we have p(ξl) = 0 for all l ∈ {1:m}.
Hence, p = 0 since p vanishes at m = k+1 distinct points and p ∈ Pk. Let now p ∈ Pk. Following
the hint, let us write p = pk−1 + λLk with pk−1 ∈ Pk−1 and λ ∈ R. The L2-orthogonality of
Legendre polynomials implies that

‖p‖2L2(K) =

∫ 1

−1

(pk−1(t) + λLk(t))
2 dt =

∫ 1

−1

pk−1(t)
2 dt+ λ2

2

2k + 1
.

Since p2k−1 is of degree 2k − 2 = 2m − 4 and the quadrature is of order 2m − 3, we infer that∫ 1

−1
pk−1(t)

2 dt = ‖pk−1‖2ξ. Moreover, owing to (6.11), we infer that ‖Lk‖2ξ = 2
k . Hence, we have

‖p‖2L2(K) = ‖pk−1‖2ξ +
k

2k + 1
λ2‖Lk‖2ξ.

In addition, since the polynomial pk−1(t)Lk(t) is of degree 2k − 1 = 2m − 3, we infer that 0 =∫ 1

−1
pk−1(t)Lk(t) dt =

∑
l∈{1:m} ωlpk−1(ξl)L(ξl), so that

‖p‖2ξ =
∑

l∈{1:m}
ωl(pk−1(ξl) + λL(ξl))

2 = ‖pk−1‖2ξ + λ2‖Lk‖2ξ.

Combining the above two equalities proves the assertion.

Exercise 6.3 (Gauss–Radau). (i) We already know from Lemma 6.4 that m−1 ≤ kQ ≤ 2m−1.
Let p ∈ P2m−2 and write p = p1(Lm − Lm−1) + p2 with p1 ∈ Pm−2 and p2 ∈ Pm−1. Owing to
the L2-orthogonality of the Legendre polynomials, the fact that the quadrature is at least of order
(m − 1), and the definition of the Gauss–Radau nodes (which implies that p(ξl) = p2(ξl) for all
l ∈ {1:m}), we infer that

∫ 1

−1

p(t) dt =

∫ 1

−1

p2(t) dt =
∑

l∈{1:m}
ωlp2(ξl) =

∑

l∈{1:m}
ωlp(ξl).

Hence, kQ ≥ 2m− 2. The quadrature is not of higher order since it does not integrate exactly the

polynomial (Lm(t)−Lm−1(t))
2

t−1 which is of degree (2m− 1) (the quadrature approximates its integral
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by zero).

(ii) The polynomial Lm(t)−Lm−1(t)
t−1 L′

m−1(t) is of degree (2m− 3), so that it is integrated exactly by
the quadrature. Since this polynomial vanishes at all the Gauss–Radau nodes except at ξm = 1,
using l’Hôpital’s rule we infer that

∫ 1

−1

Lm(t)− Lm−1(t)

t− 1
L′
m−1(t) dt = ωm(L′

m(1)− L′
m−1(1))L

′
m−1(1) = ωm

m2(m− 1)

2
.

Moreover, since the polynomial
(Lm(t)−Lm−1(t)

t−1

)′
is of degree (m− 2), integrating by parts leads to

∫ 1

−1

Lm(t)− Lm−1(t)

t− 1
L′
m−1(t) dt =

[
Lm(t)− Lm−1(t)

t− 1
Lm−1(t)

]1

−1

= m− 1.

Combining the above two equalities shows that ωm = 2
m2 .

(iii) Assume m ≥ 2 and let l ∈ {1:m−1}. Applying (6.3a) at t = ξl and since Lm(ξl) = Lm−1(ξl),
we infer that 1

m (ξ2l −1)L′
m(ξl) = (ξl−1)Lm(ξl). Proceeding similarly with (6.3b) leads to L′

m(ξl) =
mLm(ξl) + ξlL

′
m−1(ξl). Combining the above two equalities proves that L′

m(ξl) = −L′
m−1(ξl).

Let us prove that Ll(t) = Lm(t)−Lm−1(t)
(1−t)(t−ξl)

1−ξl
−2L′

m−1(ξl)
. Both functions are polynomials of degree

(m− 2), they vanish at the (m− 2) interior Gauss–Lobatto nodes except at ξl where they take the
common value 1 since L′

m(ξl) − L′
m−1(ξl) = −2L′

m−1(ξl), as we just showed above. Hence, these
two polynomials coincide identically.

Let us finally prove (6.12). Since the polynomial Ll(t)(1 − t)L′
m−1(t) is of degree (2m− 3), it

is integrated exactly by the quadrature. Using the quadrature, we infer that

∫ 1

−1

Ll(t)(1 − t)L′
m−1(t) dt = ωl(1− ξl)L′

m−1(ξl).

Moreover, since the polynomial
(
Ll(t)(1 − t)

)′
is of degree (m − 2), integrating by parts in time

and using the L2-orthogonality property of Lm−1 leads to

∫ 1

−1

Ll(t)(1 − t)L′
m−1(t) dt = −2Ll(−1)Lm−1(−1)

= −2Lm(−1)− Lm−1(−1)
−2(1 + ξl)

1− ξl
−2L′

m−1(ξl)
Lm−1(−1)

=
1− ξl
1 + ξl

1

L′
m−1(ξl)

,

where we used the above expression for Ll(t) and that Lm(−1) = (−1)m. Combining the above
two equalities proves the assertion.

Exercise 6.4 (Inverse trace inequality). Using the norm equivalence from Exercise 6.2, ex-
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tended to Rd by tensorization, we obtain

‖v‖2L2(K) ≤
∑

α∈Ik,d
ωαv(aα)

2 =
∑

i∈{1:d}

∑

α∈Ik,d
αi∈{1,k+1}

ωαv(aα)
2

=
2

k(k + 1)

∑

i∈{1:d}

∑

α∈Ik,d
αi∈{1:k+1}

(∏

j 6=i
ωαj

)
v(aα)

2

≤ 2

k(k + 1)

∑

i∈{1:d}

(
2 +

1

k

)d−1

‖v‖2L2({xi=±1})

=
2

k(k + 1)

(
2 +

1

k

)d−1

‖v‖2L2(∂K),

with ωα :=
∏
j∈{1:d} ωαj .

Exercise 6.5 (Lagrange mass matrix). Let k := nsh− 1. Since the set {Lm}m∈{0:k} is a basis
of Pk, letting σj(p) := p(aj−1) for all j ∈ N , the generalized Vandermonde matrix with entries

Vij := σj((
2i−1
2 )

1
2Li−1) is invertible. Owing to Proposition 5.5, we infer that

L[a]i−1(t) =
∑

j∈N
(V−1)ij

(
2j − 1

2

) 1
2

Lj−1(t).

Hence, we have

Mij =

∫ 1

−1

L[a]i−1(t)L
[a]
j−1(t) dt

=
∑

m,l∈N
(V−1)im(V−1)jl

(
2m− 1

2

2l− 1

2

)1
2
∫ 1

−1

Lm−1(t)Ll−1(t) dt

=
∑

m,l∈N
(V−1)im(V−1)jlδml = (V−1V−T)ij .

Exercise 6.6 (Canonical hybrid element). For k = 1, the dofs define a Lagrange finite element.
For k ≥ 2, we observe that dim(Pk) = k + 1 = cardΣ and that a polynomial p ∈ Pk verifying
σl(p) = 0 for all l ∈ {0:k} is such that p(±1) = 0, so that p(t) = (1− t2)q(t) with q ∈ Pk−2. Taking
the moment of p against q yields q = 0.
Let us verify that the shape functions are

θ0(t) =
(−1)k−1

2
(1− t)J1,0

k−1(t),

θl(t) =
1

cl−1,1,1
(1− t2)J1,1

l−1(t), ∀l ∈ {1:k − 1},

θk(t) =
1

2
(1 + t)J0,1

k−1(t).

Clearly, σk(θ0) = θ0(1) = 0 and

σ0(θ0) = θ0(−1) = (−1)k−1

2 2J1,0
k−1(−1) = (−1)k−1(−1)k−1 = 1.
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Moreover, for all l ∈ {1:k − 1}, we have

σl(θ0) =
(−1)k−1

2

∫ +1

−1

(1− t)J1,0
k−1(t)J

1,1
l−1(t) dt.

But J1,1
l−1 ∈ Pk−2 = span{J1,0

0 , . . . , J1,0
k−2} so that σl(θ0) = 0. In conclusion, σl(θ0) = δl0 for all

l ∈ {0:k}. A similar argument shows that σl(θk) = δlk for all l ∈ {0:k}. Let l ∈ {1:k−1}. Then
we have σ0(θl) = σk(θl) = 0 by definition. Moreover, for any l′ ∈ {1:k − 1}, we infer that

σl(θl′ ) =
1

cl−1,1,1

∫ +1

−1

(1− t)2J1,1
l′−1(t)J

1,1
l−1(t) dt =

cl−1,1,1

cl−1,1,1
δl′−1,l−1.

Hence, σl(θl′) = δl′,l. In conclusion, σl(θl′) = δll′ for all l
′ ∈ {0:k}.

Exercise 6.7 (Qk,d Lagrange). Since cardΣ = dim(Qk,d) = (k + 1)d, we have to verify that
a polynomial q ∈ Qk,d vanishing at all the Qk,d Lagrange nodes vanishes identically. We do this
by induction on d. The assertion holds true for d = 1 (where Pk,1 = Qk,1). Let now d ≥ 2.
Using the hint, we have q(x) =

∑
id∈{0:k} qid(x1, . . . , xd−1)x

id
d . Consider the face {xd = z+d } of

the cuboid K. This face is a cuboid in Rd−1, and the Qk,d-Lagrange nodes located on this face are
the Qk,d−1-Lagrange nodes of this face. Let bi := (bi,1, . . . , bi,d)

T be one of these nodes. Let us set

b̃i := (bi,1, . . . , bi,d−1)
T. Since the function xd 7→

∑
id∈{0:k} qid(b̃i)x

id
d is in Qk,1 and vanishes at

(k+1) distinct nodes in [z−d , z
+
d ], it is identically zero. This shows that all the functions qid vanish

at all the Lagrange nodes of the face. By the induction hypothesis, all these functions vanish
identically.

Exercise 6.8 (Bicubic Hermite). First, we have cardΣ = dim(Q3,2) = 16. Thus, it re-
mains to show that if p ∈ Q3,2 is such that all its dofs vanish, then p = 0. Writing p in
the form p(x) =

∑
i,j∈{1: 4} γijθi(x1)θj(x2) where {θ1, . . . , θ4} are the shape functions of the

one-dimensional Hermite finite element, we first infer using the dofs associated with the values
of p and its first-order derivatives that γij = 0 if i ∈ {1, 3} or j ∈ {1, 3}. Moreover, since
∂2x1x2

p(x) =
∑

i,j∈{1: 4} γijθ
′
i(x1)θ

′
j(x2), we infer using the dofs associated with the values of the

second-order derivatives of p that γ22 = γ24 = γ42 = γ44 = 0. In conclusion, we have shown that
p = 0.

Exercise 6.9 (Face unisolvence). Without loss of generality, we consider the face F contained
in the plane {xd = z−d }. Let {ai}i∈NF be the Lagrange nodes located on F . It is clear that if
p|F = 0, then σi(p) := p(ai) = 0 for all i ∈ NF . Let us prove the converse. Let us denote by

ãi ∈ Rd−1 the point with Cartesian components (ai,1, . . . , ai,d−1), where (ai,1, . . . , ai,d) are the
Cartesian components of ai. Note that ai,d = z−d since ai is on F . Let p ∈ Qk,d and assume that
p(ai) = 0 for all i ∈ NF . Since p can be written as p(x) =

∑
j∈{0:d} qj(x1, . . . , xd−1)(xd − z−d )j

where qj ∈ Qk,d−1, the condition p(ai) = 0, for all i ∈ NF , implies that q0(ãi) for all i ∈ NF .
Consider the cuboid F̂ :=

∏d−1
j=1 [z

−
j , z

+
j ] in R

d−1. Consider the dofs Σ̂ := {σi(q) := q(ãi)}i∈NF .

From Proposition 6.14, we know that (F̂ ,Qk,d−1, Σ̂) is a finite element, so that we can conclude
that q0 = 0. This, in turn, implies that p|F = 0.
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Chapter 7

Simplicial finite elements

Exercises

Exercise 7.1 (Lagrange interpolation). Let IK be the P1 Lagrange interpolation operator on
a simplex K. Prove that ‖IK(v)‖C0(K) ≤ ‖v‖C0(K) for all v ∈ C0(K). (Hint : use the convexity of
K and recall that K is closed.) Does this property hold true for P2 Lagrange elements?

Exercise 7.2 (Geometric identities). Prove the statements in Remark 7.6. (Hint : use the
divergence theorem to prove (7.1).)

Exercise 7.3 (Barycentric coordinates). Let K be a simplex in Rd. (i) Prove that λi(x) =

1 − |Fi|
d|K|nK|Fi ·(x − zi) for all x ∈ K and all i ∈ {0:d}, and that ∇λi = − |Fi|

d|K|nK|Fi . (ii) For all

x ∈ K, let Ki(x) be the simplex obtained by joining x to the d vertices zj with j 6= i. Show that

λi(x) =
|Ki(x)|

|K| . (iii) Prove that
∫
K
λi dx = 1

d+1 |K| for all i ∈ {0:d}, and that
∫
Fj
λi ds = 1

d |Fj |
for all j ∈ {0:d} with j 6= i, and

∫
Fi
λi ds = 0. (Hint : consider an affine mapping from K to the

unit simplex.) (iv) Prove that if h ∈ Rd satisfies Dλi(h) = 0 for all i ∈ {1:d}, then h = 0.

Exercise 7.4 (Space Pk,d). (i) Give a basis for P2,d for d ∈ {1, 2, 3}. (ii) Show that any polynomial
p ∈ Pk,d can be written in the form p(x1, . . . , xd) = r(x1, . . . , xd−1) + xdq(x1, . . . , xd), with unique
polynomials r ∈ Pk,d−1 and q ∈ Pk−1,d. (iii) Determine the dimension of Pk,d. (Hint : by induction
on d.) (iv) Let K be a simplex in Rd. Let F0 be the face of K opposite to the vertex z0.
Prove that if p ∈ Pk,d satisfies p|F0

= 0, then there is q ∈ Pk−1,d s.t. p = λ0q. (Hint : write
the Taylor expansion of p at zd and use (7.2) with zd playing the role of z0.) (v) Prove that

{λβ0

0 . . . λβdd | β0 + . . .+ βd = k} is a basis of Pk,d.

Exercise 7.5 (Nodes of simplicial Lagrange FE). Let K be a simplex in Rd, and consider the
set of nodes {ai}i∈N with barycentric coordinates

(
i0
k , . . . ,

id
k

)
, ∀i0, . . . , id ∈ {0:k} with i0 + . . .+

id = k. (i) Prove that the number of nodes located on any one-dimensional edge of K is (k + 1)
in any dimension d ≥ 2. (ii) Prove that the number of nodes located on any (d − 1)-dimensional
face of K is the dimension of Pk,d−1. (iii) Prove that if k ≤ d, all the nodes are located on the
boundary of K.

Exercise 7.6 (Hierarchical basis). Let k ≥ 1 and let {θ0, . . . , θk} be a hierarchical basis of Pk,1.
Let {λ0, . . . , λd} be a basis of P1,d and assume that λi : Rd → R is surjective for all i ∈ {0:d} (i.e.,
λi is not constant). (i) Show that the functions (mapping Rd to R) {θ0(λi), . . . , θk(λi)} are linearly
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independent for all i ∈ {0:d}. (Hint : consider a linear combination
∑
l∈{0:k} αlθl(λi) ∈ Pk,d and

prove that the polynomial
∑
l∈{0:k} αlθl ∈ Pk,1 vanishes at (k+1) distinct points.) (ii) Show that

the functions (mapping Rd to R) from the set Sk,d := {θα1(λ1) . . . θαd(λd) | (α1, . . . αd) ∈ Nd, |α| ≤
k} are linearly independent. (Hint : by induction on d.) (iii) Show that (Sk,d)k≥0 is a hierarchical
polynomial basis, i.e., Sk,d ⊂ Sk+1,d and Sk,d is basis of Pk,d. (Note: the (d+ 1) vertices of K do
not play here the same role.)

Exercise 7.7 (Cubic Hermite triangle). LetK be a triangle with vertices {z0, z1, z2}. Set Σ :=
{p(zi), ∂x1p(zi), ∂x2p(zi)}0≤i≤2 ∪ {p(aK)}, where aK is a point inside K. Show that (K,P3,2,Σ)
is a finite element. (Hint : show that any p ∈ P3,2 for which all the dofs vanish is identically zero
on the three edges of K and infer that p = cλ0λ1λ2 for some c ∈ R.)

Exercise 7.8 (P2,d canonical hybrid FE). Compute the shape functions of the P2,d canonical
hybrid finite element for the unit simplex for d = 1 and d = 2 (provide an expression using the
Cartesian coordinates and another one using the barycentric coordinates).

Exercise 7.9 (P4,2 Lagrange). Using the Lagrange nodes defined as in Proposition 7.11, give
the expression of the P4,2 Lagrange shape functions in terms of the barycentric coordinates.

Exercise 7.10 (Quadratic Crouzeix–Raviart). Let K be the unit simplex. Let α ∈ (0, 1).
Let g1 := (α, 0), g2 := (1 − α, 0), g3 := (1 − α, α), g4 := (α, 1 − α), g5 := (0, 1− α), g6 := (0, α).
(i) Compute λ0(gj)

2 + λ1(gj)
2 + λ2(gj)

2 for all j ∈ {1:6}, where λ0, λ1, λ2 are the barycentric
coordinates of K. (ii) Let σj ∈ L(P2,2;R) be defined by σj(p) := p(gj) for all p ∈ P2,2 and
j ∈ {1:6}. Let Σ := {σj}j∈{1:6}. Is the triple (K,P2,2,Σ) a finite element? (iii) Let Fi, i ∈ {0:2},
be one of the three faces of K. Let TFi : [−1, 1]→ Fi be one of the two affine mappings that realize
a bijection between [−1, 1] and Fi. Let {q0, q1} be a basis of P1,1. Let̟2i+k ∈ L(P2,2;R), i ∈ {0:2},
k ∈ {0:1}, be defined by ̟2i+k(p) :=

1
|Fi|
∫
Fi
(qk◦T−1

Fi
)p ds for all p ∈ P2,2. Let Σ := {̟j}j∈{0:5}.

Is the triple (K,P2,2,Σ) a finite element? (Hint : consider the points TFi(ξk), i ∈ {0:2}, k ∈ {0:1},
where ξ0, ξ1 are the two nodes of the Gauss–Legendre quadrature of order 3, then use Step (ii).)

Solution to exercises

Exercise 7.1 (Lagrange interpolation). Since K is convex and closed and since IK(v) is affine,
IK(v) reaches its extrema at a vertex of K, where its value coincides with that of v. This property
fails for piecewise quadratic functions since the basis functions can take negative values.

Exercise 7.2 (Geometric identities). It suffices to prove that the family {nK|Fi}i∈{1:d} is

linearly independent. Let h ∈ Rd be s.t.
∑

i∈{1:d} hinK|Fi = 0. Taking the ℓ2(Rd)-inner product

with (zj − z0) and observing that nK|Fi ·(zj − z0) = δij
d|K|
|Fi| , we infer that hi = 0 for all i ∈ {1:d}.

Let us now prove (7.1) Let h ∈ Rd. We observe that

0 =

∫

K

∇·hdx =

∫

∂K

h·nK ds

=
∑

i∈{0:d}
|Fi|h·nK|Fi = h·


 ∑

i∈{0:d}
|Fi|nK|Fi


 ,
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yielding the first geometric identity. For the second one, integration by parts yields for all h1,h2 ∈
Rd,

|K|h1·h2 =

∫

K

∇(h1·x)·h2 dx =
∑

i∈{0:d}

∫

Fi

(h1·x)(h2·nK|Fi) ds

=
∑

i∈{0:d}
|Fi|(h1·cFi)(h2·nK|Fi)

= h1·


 ∑

i∈{0:d}
|Fi|(cFi − cK)⊗ nK|Fi


 ·h2,

where we used that∇(h1·x) = h1, the definition of cFi , and the first geometric identity to introduce
cK . Since the vectors h1,h2 are arbitrary in Rd, we infer the second geometric identity.

Exercise 7.3 (Barycentric coordinates). (i) Since λi is affine and constant on Fi, its gradient
is constant and collinear to nK|Fi . Using λi(zi) = 1, we infer that λi(x) = 1 − cinK|Fi ·(x − zi).
We obtain ci by using that |K| = 1

d |Fi|(nK|Fi ·(zj − zi)) for all j 6= i. The expression for the
gradient follows immediately.

(ii) The function |Ki(x)|
|K| is in P1,d and coincides with λi(x) at the (d + 1) vertices of K, so both

functions coincide everywhere. Another way to look at this problem consists of observing that∑
i∈{1:d}(zi − z0)λi(x) = x− z0, i.e.,



z1,1 − z0,1 . . . zd,1 − z0,1

...
. . .

...
z1,d − z0,d . . . zd,d − z0,d






λ1(x)

...
λd(x)


 =



x1 − z0,1

...
xd − z0,d


 ,

where (zi,1, . . . , zi,d) are the Cartesian coordinates of zi. Cramer’s rule implies that

λi(x) =
det(z1 − z0, . . . ,x− z0, . . . , zd − z0)

det(z1 − z0, . . . , zd − z0)
,

where (z1−z0, . . . ,x−z0, . . . , zd−z0) is the matrix with the column vectors z1−z0, . . . , x−z0,
. . . , zd − z0 with the vector x− z0 in the i-th column. Since |K| = |det(z1− z0, . . . , zd− z0)| and
|Ki(x)| = |det(z1 − z0, . . . ,x− z0, . . . , zd − z0)|, we infer that λi(x) =

|Ki(x)|
|K| .

(iii) Consider an affine transformation, say TK , mapping K to the unit simplex, say K̂. Then∫
K λi dx = |K|

|K̂|
∫
K̂
λ̂i dx̂ and λ̂i is the barycentric coordinate associated with the vertex TK(zi) in

K̂. A direct computation shows that |K̂| = 1
d! and

∫
K̂
λ̂i dx̂ = 1

(d+1)! . Hence,
∫
K
λi dx = 1

d+1 |K|.
The proof for the integral of λi on the faces of K is similar.
(iv) Writing h :=

∑
j∈{1:d} hj(zj − z0), we infer that for all i, j ∈ {1:d},

Dλi(h) =
∑

j∈{1:d}
hjDλi(zj − z0)

=
∑

j∈{1:d}
hj(λi(zj)− λi(z0)) =

∑

j∈{1:d}
hjδij = hi,

since λi is affine, λi(zj) = δij and λi(z0) = 0. Hence, h = 0.
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Exercise 7.4 (Space Pk,d). (i) For d = 1, a basis is

{1, x, x2}.

For d = 2, a basis is

{1, x1, x2, x21, x1x2, x22}.
For d = 3, a basis is

{1, x1, x2, x3, x21, x1x2, x1x3, x22, x2x3, x23}.

(ii) Writing α := (α′, αd) with α′ ∈ Nd−1 for a multi-index α ∈ Nd and writing x := (x′, xd) with
x′ ∈ Rd−1 for x ∈ Rd, we have

p(x) =
∑

α∈Ak,d,αd=0

aαx
α +

∑

α∈Ak,d,αd≥1

aαx
α

=
∑

α′∈Ak,d−1

a(α′,0)(x
′)α

′

+ xd


 ∑

β∈Ak−1,d

aβ+γdx
β


 ,

where in the second sum we introduced the multi-index γd := (0, . . . , 0, 1) ∈ Nd. This means that
p(x) = r(x′) +xdq(x) with r ∈ Pk,d−1 and q ∈ Pk−1,d. Uniqueness of r and q results from the fact
that if r + xdq vanishes identically, then taking xd = 0 first yields r = 0 so that xdq = 0, whence
we infer that q = 0.
(iii) For d = 1, dimPk,1 = (k + 1) =

(
k+1
1

)
. Assume that for d ≥ 2, dimPk,d−1 =

(
k+d−1
d−1

)
. For

k = 1, dimP1,d = (d+1) =
(
1+d
d

)
since there is at most one nonzero index αj for j ∈ {1:d}. Owing

to Step (ii), we have dimPk,d = dimPk,d−1 + dimPk−1,d, so that

dimPk,d =

(
k + d− 1

d− 1

)
+

(
k + d− 1

d

)
=

(
k + d

d

)
.

(iv) Writing (7.2) with zd playing the role of z0, we infer that h := x−zd =
∑

i∈{0:d−1} λi(x)(zi−
zd) for all x ∈ Rd. Writing the Taylor expansion of p at zd of order k, we infer that

p(x) = p(zd) +
∑

l∈{1:k}

1

l!
Dlp(zd)(h, . . . ,h) =

∑

l∈{1:k}

1

l!
Dlp(zd)(h, . . . ,h),

since p(zd) = 0. LetMl := {0:d− 1}l. Using the multilinearity of the Fréchet derivative, we infer
that

Dlp(zd)(h, . . . ,h) =
∑

µ∈Ml

λµ1 . . . λµlΩl,µ,

where Ωl,µ = Dlp(zd)(zµ1 − zd, . . . , zµl − zd) is a real number. Since p|F0
≡ 0, we infer that

Dlp(zd)(zµ1−zd, . . . , zµl−zd) = 0 if all the indices µ1, . . . , µl are not zero, because D
lp(zd)(zµ1−

zd, . . . , zµl − zd) is a tangential derivative along F0 in this case. Let M∗
l := {µ ∈ Ml | ∃jµ ∈

{1:l}, µjµ = 0}. The above argument implies that

Dlp(zd)(h, . . . ,h) =
∑

µ∈M∗
l

λµ1 . . . λµlΩl,µ = λ0
∑

µ∈M∗
l


∏

j 6=jµ
λµj


Ωl,µ.
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Hence, p = λ0q with q =
∑

l∈{1:k}
1
l!

∑
µ∈M∗

l

(∏
j 6=jµ λµj

)
Ωl,µ, and since the barycentric coordi-

nates are affine functions, we infer that q ∈ Pk−1,d.
(v) It suffices to prove linear independence since

card({(β0, . . . , βd) ∈ Nd+1 | β0 + . . .+ βd = k}) =
(
k + d

k

)
= dim(Pk,d).

Assume that
∑

β µβ0...βdλ
β0

0 . . . λβdd = 0. Restricting this function to the face F0 where λ0 vanishes
identically and using induction on d, we infer that µβ0...βd = 0 whenever β0 = 0. If k = 1, we
infer that µ10...0λ0 vanishes identically, so that µ10...0 = 0. If k ≥ 2, we can factor out λ0 and use
induction on k to conclude that µβ0...βd = 0 for all β0 ≥ 1.

Exercise 7.5 (Nodes of simplicial Lagrange FE). (i) Consider a one-dimensional edge of K.
There are two distinct integers j1, j2 ∈ {0:d} such that this edge connects the vertices zj1 and zj2 .
Then the nodes located on the edge correspond to setting ij := 0 for all j ∈ {0:d} \ {j1, j2}. In
other words, such nodes correspond to the choices j1, j2 ∈ {0:d} and j1 + j2 = k, and there are
(k + 1) such choices.
(ii) Consider now a (d− 1)-dimensional face of K. There is an integer j ∈ {0:d} such that all the

nodes located on this face are such that ij = 0, and there are

(
k + d− 1
d− 1

)
choices for these nodes,

which is the dimension of Pk,d−1.
(iii) Assume k ≤ d. This means that at least one index ij , for j ∈ {0:d}, vanishes. Then the
corresponding node is located on the (d− 1)-dimensional face of K opposite to the vertex zj .

Exercise 7.6 (Hierarchical basis). (i) Let α0, . . . , αk ∈ R and assume that α0θ0(λi(x)) +
. . . + αkθk(λi(x)) = 0 for all x ∈ Rd. Let x0, . . . xk be (k + 1) distinct real numbers. Since
λi : Rd → R is surjective, there are (k + 1) points x0, . . .xk in Rd such that λi(xl) = xl for all
l ∈ {0:k}. Hence, α0θ0(xl) + . . .+αkθk(xl) = 0 for all l ∈ {0:k}. This means that the polynomial
α0θ0 + . . . + αkθk ∈ Pk,1 vanishes at (k + 1) distinct points. Hence, this polynomial vanishes
identically. Since {θ0, . . . , θk} is a basis of Pk,1, we infer that α0 = . . . = αk = 0.
(ii) We prove the statement by induction over d ≥ 1. The statement has been proved for d = 1 in
Step (i). Assume now that d ≥ 2. Recall the set Ak,d from §7.3. Let {aα}α∈Ak,d and assume that

∑

α∈Ak,d
aαθα1(λ1(x)) . . . θαd(λd(x)) = 0, ∀x ∈ Rd.

We infer that

0 =
∑

αd∈{0:k}
θαd(λd(x))×


 ∑

|α|d−1≤k−αd
aαθα1(λ1(x)) . . . θαd−1

(λd−1(x))


 ,

with |α|d−1 := α1 + . . .+ αd−1. Since {λ0 . . . λd} is a basis of P1,d, there are z0, . . . , zd ∈ Rd such
that

x =
∑

i∈{0:d}
ziλi(x), ∀x ∈ Rd,

and this representation is unique. Let y1, . . . , yd−1, x be d arbitrary real numbers and let x :=
zdx+

∑
i∈{1:d−1} ziyi. Then λ1(x) = y1, . . . , λd−1(x) = yd−1, λd(x) = x. We infer that

0 =
∑

αd∈{0:k}
θαd(x)×


 ∑

|α|d−1≤k−αd
aαθα1(y1) . . . θαd−1

(yd−1)


 ,
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for all x ∈ R. Since {θ0, . . . , θk} is a basis of Pk,1, we conclude that

0 =
∑

α1+...+αd−1≤k−αd
aαθα1(y1) . . . θαd−1

(yd−1),

for all (y1, . . . yd−1) ∈ Rd−1 and all αd ∈ {0:d}. Let H be the affine hyperplane passing through
the points z0, . . . , zd−1 and let T : Rd−1 → H be such that

T (y) := z0 +
∑

i∈{1:d−1}
yi(zi − z0) =

(
1−

∑

i∈{1:d−1}
yi

)
z0 +

∑

i∈{1:d−1}
yizi.

The identity x =
∑
i∈{0:d} ziλi(x) obtained above implies that λ0(T (y)) = 1 −∑i∈{1:d−1} yi

and λi(T (y)) = yi for all i ∈ {1:d−1} (note in passing that λd(T (y)) = 0). Let us set λ̃i(y) :=
λi(T (y)). It is clear that the set {λ̃0, . . . , λ̃d−1} is linearly independent. Moreover, this set has
cardinality d = dimP1,d−1, so that {λ̃0, . . . , λ̃d−1} is a basis of P1,d−1. Finally, the above argument
shows that

0 =
∑

|α|d−1≤k−αd
aαθα1(λ̃1(y)) . . . θαd−1

(λ̃d−1(y)),

for all (y1, . . . yd−1) ∈ Rd−1 and all αd ∈ {0:d}. The induction hypothesis implies that aα = 0.
(iii) We have proved in Step (ii) that Sk,d is linearly independent. Moreover, card(Sk,d) =

card(Ak,d) =
(
k+d
d

)
= dim(Pk,d). Hence, Sk,d is a basis of Pk,d. Finally, it is clear that Sk,d ⊂

Sk+1,d, i.e., Sk,d is a hierarchical basis of Pk,d.

Exercise 7.7 (Cubic Hermite triangle). We first observe that cardΣ = dimP3,2 = 10. Let
p ∈ P3,2 be such that all its dofs vanish. Restricting p to the face Fi of K, i ∈ {0, 1, 2}, we obtain
a polynomial in P3,1 that vanishes at the two endpoints as well as its derivative. Hence, p vanishes
identically on Fi. Using the result for F0 implies that p = λ0q0 with q0 ∈ P2,2. Since q0 vanishes
identically on F1, q0 = λ1q1 with q1 ∈ P1,2, and reasoning similarly for F2 yields p = cλ0λ1λ2 for
some c ∈ R. Evaluating p at the interior point aK for which all the barycentric coordinates are
nonzero, we infer that c = 0.

Exercise 7.8 (P2,d canonical hybrid FE). (i) Let us start with the unit simplex in dimension
one, i.e., K := [0, 1]. Let us set z0 := 0 and z1 := 1. Let θ0(x) := (1 − x)(1 + ax). Observe

that θ0(z0) = 1 and θ0(z1) = 0. We now compute a so that
∫ 1

0
θ0(x) dx = 0 (here we take

P0,1 := span{1}). Then 1 − 1
2 + a(12 − 1

3 ) = 0 gives a = −3. Hence, θ0(x) = (1 − x)(1 − 3x).
Similarly, by symmetry, we have θ1(x) = x(3x − 2) (just replace x by 1 − x in the expression of

θ0(x)). For the third shape function, we have θ2(x) = ax(1−x). The constraint a
∫ 1

0 x(1−x) dx = 1

gives a(12 − 1
3 ) = 1. Hence, a = 6 and θ2(x) = 6x(1 − x). In terms of the barycentric coordinates

λ0(x) := 1− x and λ1(x) := x, we obtain

θ0 = λ0(3λ0 − 2), θ1 = λ1(3λ1 − 2), θ2 = 6λ0λ1.

(ii) Here, we take again P0,2 := span{1}. Let us set z0 := (0, 0), z1 := (1, 0), and z2 := (0, 1).
Setting θ0(x) := (1 − x1 − x2)(1 + ax2 + bx2), we observe that

∫
F0
θ0(x) dx = 0, θ0(z1) = 0,

θ0(z2) = 0, and θ0(z0) = 1. We must also have
∫
F2
θ0(x) dx = 0 =

∫ 1

0 (1−x1)(1+ax1) dx1. Hence,
a = −3. Similarly, we infer that b = −3, which proves that θ0(x) = (1−x1−x2)(1−3x1−3x2). By
symmetry, we obtain θ1(x) = x1(3x1 − 2) (replace 1− x1 − x2 by x1, or just do the computation)
and θ2(x) = x2(3x2 − 2) (replace 1 − x1 − x2 by x2, or just do the computation). We now
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compute θ3(x) = ax1x2 with the constraint 1
|F0|

∫
F0
θ3(x) dx = 1. Hence, a

∫ 1

0
x1(1 − x1) dx1 = 1,

which gives a = 6, i.e., θ3(x) = 6x1x2. By symmetry, we obtain θ4(x) = 6x2(1 − x1 − x2) and
θ5(x) = 6x1(1−x1−x2). In terms of the barycentric coordinates λ0(x) := 1−x1−x2, λ1(x) := x1,
and λ2(x) := x2, we obtain

θ0 = λ0(3λ0 − 2), θ1 = λ1(3λ1 − 2), θ2 = λ2(3λ2 − 2),

θ3 = 6λ1λ2, θ4 = 6λ0λ2, θ5 = 6λ0λ1.

Exercise 7.9 (P4,2 Lagrange). Let us use the notation from Proposition 7.11, that is, the
Lagrange nodes are defined by aα := z0 + α1

4 (z1 − z0) + α2

4 (z2 − z0) with α := (α1, α2) and
0 ≤ α1 + α2 ≤ 4. Let λi be the barycentric coordinate associated with the vertex zi for all
i ∈ {0, 1, 2}. Then the shape functions associated with the vertices are

θ0,0(x) =
1

3
λ0(4λ0 − 3)(2λ0 − 1)(4λ0 − 1),

θ4,0(x) =
1

3
λ1(4λ1 − 3)(2λ1 − 1)(4λ1 − 1),

θ0,4(x) =
1

3
λ2(4λ2 − 3)(2λ2 − 1)(4λ2 − 1).

Those associated with the first edge (connecting z1 to z2) are

θ3,1(x) =
16

3
λ1λ2(2λ1 − 1)(4λ1 − 1),

θ2,2(x) = 4λ1λ2(4λ1 − 1)(4λ2 − 1),

θ1,3(x) =
16

3
λ1λ2(2λ2 − 1)(4λ2 − 1).

Those associated with the second edge (connecting z2 to z0) are

θ0,3(x) =
16

3
λ0λ2(2λ2 − 1)(4λ2 − 1),

θ0,2(x) = 4λ0λ2(4λ0 − 1)(4λ2 − 1),

θ0,1(x) =
16

3
λ0λ2(2λ0 − 1)(4λ0 − 1).

Those associated with the third edge (connecting z0 to z1) are

θ1,0(x) =
16

3
λ0λ1(2λ0 − 1)(4λ0 − 1),

θ2,0(x) = 4λ0λ1(4λ0 − 1)(4λ1 − 1),

θ3,0(x) =
16

3
λ0λ1(2λ1 − 1)(4λ1 − 1).

Finally, those associated with the three internal Lagrange nodes are

θ1,1(x) = 32λ0λ1λ2(4λ0 − 1),

θ2,1(x) = 32λ0λ1λ2(4λ1 − 1),

θ1,2(x) = 32λ0λ1λ2(4λ2 − 1).

Exercise 7.10 (Quadratic Crouzeix–Raviart). (i) We observe that

λ0(gj)
2 + λ1(gj)

2 + λ2(gj)
2 = α2 + (1 − α)2, ∀j ∈ {1:6}.
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(ii) Since the nonzero polynomial q(x) = λ0(x)
2 + λ1(x)

2 + λ2(x)
2 − α2 + (1 − α)2 is such that

σj(q) = 0 for all j ∈ {1:6}, we conclude that the unisolvence property does not hold. Hence,
(K,P2,2,Σ) is not a finite element.

(iii) Let ξ0 := −
√
3
3 , ξ1 :=

√
3
3 be the two nodes of the Gauss–Legendre quadrature of order 3

and let ω0 = ω1 := 1 be the corresponding weights (see Table 6.1). Let a2i+k := TFi(ξk). Setting
α := 1

2 (ξ0+1), we have a4 = (α, 0), a5 = (1−α, 0), a0 = (1−α, α), a1 = (α, 1−α), a3 = (0, 1−α),
a2 = (0, α). Let p(x) := λ0(x)

2 + λ1(x)
2 + λ2(x)

2 − α2 + (1 − α)2. From Step (ii), we infer that
p(aj) = 0 for all j ∈ {0:5}. Since the quadrature is of order three, this shows that

̟2i+k(p) =
1

2
(ω0p(a2i+0) + ω1p(a2i+1)) = 0,

for all i ∈ {0:2} and all k ∈ {0:1}. Hence, the triple (K,P2,2,Σ) is not a finite element.



Chapter 8

Meshes

Exercises

Exercise 8.1 (Curved triangle). Consider the P2 transformation of a triangle shown in the
upper right panel of Figure 8.1. Consider a geometric node of K that is the image of the midpoint
of an edge of K̂. Show that the tangent vector to the curved boundary at this node is collinear to
the vector formed by the two vertices of the corresponding curved edge. (Hint : use the properties
of the Lagrange P2 shape functions.)

Exercise 8.2 (Euler relations). Let Th be a matching mesh in R2 composed of polygons all
having ν vertices. (i) Show that 2Ne − N∂

e = νNc. (ii) Combine this result with the Euler
relations to show that Nc ∼ 2

ν−2Nv and Ne ∼ ν
ν−2Nv for fine enough meshes where N∂

v = N∂
e ≪

min(Nv, Ne, Nc).

Exercise 8.3 (Connectivity arrays j cv, j ce). Write admissible connectivity arrays j cv and
j ce for the following mesh where the face enumeration is identified with large circles and the cell
enumeration with squares.

5 3

2

41

K̂

463

21

1

2

5

8

3

3

8

2 1 1
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10 4

9

5

7

2

6
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Exercise 8.4 (Connectivity array j geo). Define a connectivity array j geo for the following
mesh such that the determinant of the Jacobian matrix of TK is positive for all the cells.
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K̂
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1
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Exercise 8.5 (Geometric mapping). Let z1 := (0, 0), z2 := (1, 0), z3 := (0, 1), z4 := (13 ,
1
3 ).

Consider the triangles K1 := conv(z1, z2, z4), K2 := conv(z2, z3, z4), and K3 := conv(z3, z1, z4).
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(i) Construct the affine geometric mappings TK2 : K1 → K2 and TK3 : K1 → K3 s.t. TK2(z1) = z2,
TK2(z4) = z4, and TK3(z1) = z3, TK3(z4) = z4. (Hint : TK2 is of the form TK2(x) = z2+JK2(x−
z1).) (ii) Compute det(JK2)J

−1
K2

and det(JK3)J
−1
K3

. Note: the transformation v 7→ det(JK)J−1
K v◦TK

is called contravariant Piola transformation; see (9.9c).

Solution to exercises

Exercise 8.1 (Curved triangle). To fix the ideas, consider the enumeration of the nodes in K̂
as depicted in the central panel of Figure 8.2, and consider the tangent vector to the boundary of
K at the node a6 = TK(â6). This tangent vector is collinear to

∑6
i=1 ai∂x̂1

ψ̂i(â6), and owing to

the properties of the shape functions of the Lagrange P2 finite element, we infer that −∂x̂1
ψ̂1(â6) =

∂x̂1
ψ̂2(â6) 6= 0, whereas we have ∂x̂1

ψ̂i(â6) = 0 for all i ∈ {3, 4, 5, 6}. Hence, the tangent vector is

colinear to ∂x̂1
ψ̂2(â6)(a2 − a1).

Exercise 8.2 (Euler relations). (i) Separating all the mesh cells, we obtain νNc edges (since
the boundary of each polygon consists of ν faces), and this number is equal to 2Ne − N∂

e since
each edge leads to two edges except the boundary edges, i.e., νNc = 2Ne −N∂

e .
(ii) Combined with the Euler relations Nc = Ne − Nv + 1 − I and N∂

e = N∂
v , we infer that

ν−2
2 Nc = Nv − 1

2N
∂
v + I − 1, so that Nc ∼ 2

ν−2Nv for fine meshes. Finally, Ne ∼ ν
2Nc ∼ ν

ν−2Nv.

Exercise 8.3 (Connectivity arrays j cv, j ce). One possibility is the following connectivity
arrays:

j cv =




1 2 6
6 8 4
5 8 6
4 8 3
2 5 6



, j ce =




10 2 1
8 5 11
11 4 9
7 6 8
4 10 3



.

Any permutation of the indices in each line is also legitimate, provided the same permutation is
applied to j cv and j ce.

Exercise 8.4 (Connectivity array j geo). The following array j geo is such that the determi-
nant of TK is positive for all the cells:

j geo =




1 2 6 12 7 14
6 8 4 10 11 18
5 8 6 18 13 16
4 8 3 17 9 10
2 5 6 13 12 15



.

It is possible to apply in each line any cyclic permutation to the indices of the first three columns
and applying the same permutation to the indices of the last three columns.

Exercise 8.5 (Geometric mapping). (i) The geometric mapping TK2 is necessarily of the form

TK2(x) = z2 + JK2(x− z1), JK2
:=

(
a b
c d

)
,

since it is affine and TK2(z1) = z2. The requirements TK2(z2) = z3 and TK2(z4) = z4 (this is the
only possibility since TK2 maps the vertices of K1 to the vertices of K2) lead to

(
a b
c d

)(
1 1

3
0 1

3

)
=

(
0 1

3
1 1

3

)
−
(
1 1
0 0

)
=

(
−1 − 2

3
1 1

3

)
.



Part III. Finite element interpolation 45

Hence, we obtain

JK2 =

(
−1 −1
1 0

)
.

Similarly, let us set

TK3(x) = z3 + JK3(x− z1), JK3
:=

(
a b
c d

)
.

Observing that TK3(z2) = z1 and TK3(z4) = z4, we infer that

(
a b
c d

)(
1 1

3
0 1

3

)
=

(
0 1

3
0 1

3

)
−
(
0 0
1 1

)
=

(
0 1

3
−1 − 2

3

)
.

Hence, we obtain

JK3 =

(
0 1
−1 −1

)
.

(ii) We have det(JK2) = 1 and J−1
K2

=

(
0 1
−1 −1

)
, so that

det(JK2)J
−1
K2

(
u
v

)
=

(
v

−u− v

)
.

Similarly, we have det(JK3) = 1 and J−1
K3

=

(
−1 −1
1 0

)
, so that

det(JK3)J
−1
K3

(
u
v

)
=

(
−u− v
u

)
.
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Chapter 9

Finite element generation

Exercises

Exercise 9.1 (Canonical hybrid element). Consider an affine geometric mapping TK and

the pullback by TK for ψK . Let (K̂, P̂ , Σ̂) be the canonical hybrid element of §7.6. Verify that
Proposition 9.2 generates the canonical hybrid element in K. Write the dofs.

Exercise 9.2 (Line measure). (i) Prove Lemma 9.12 for line measures. (Hint : the change

in line measure is dl

dl̂
(x) = limh→0

‖TK(x̂+hτ̂)−TK(x̂)‖ℓ2
‖hτ̂‖ℓ2

.) (ii) Assume that d = 2. Show that

|det(JK)|‖J−T

K n̂‖ℓ2(R2) = ‖JK τ̂‖ℓ2(R2) for any pair of unit vectors (n̂, τ̂ ) that are orthogonal.

Exercise 9.3 (Surface measure). (i) Let TF := TK|F̂ : F̂ → F and x̂ ∈ F̂ . Let JF (x̂) ∈
Rd×(d−1) be the Jacobian matrix representing the (Fréchet) derivative DTF (x̂). Let gF (x̂) =
(JF (x̂))TJF (x̂) ∈ R(d−1)×(d−1) be the surface metric tensor at x̂. Prove that

√
det(gF (x̂)) =

|det(JK)| ‖J−T

K n̂‖ℓ2 . (Hint : use that ds =
√
det(gF (x̂)) dŝ.) (ii) Let K̂ := {(x̂1, x̂2, x̂3) ∈ R3 | 0 ≤

x̂1, x̂2, x̂3, x̂1 + x̂2 + x̂3 ≤ 1} be the unit simplex in R3. Let TK(x̂) := (x̂1, x̂2, x̂
2
1 + x̂22 − x̂3)T. Let

F̂ be the face {x̂3 = 0} and F := TK(F̂ ). Compute JF , JK , gF and verify the identity proved in
Step (i).

Exercise 9.4 (Sobolev spaces). Prove that ψg
K is a bounded isomorphism from H1(K) to

H1(K̂), that ψc
K is a bounded isomorphism from H(curl;K) to H(curl; K̂), and that ψd

K is a

bounded isomorphism from H(div;K) to H(div; K̂).

Exercise 9.5 (Transformation of cross products). Let A be a 3×3 invertible matrix. Prove
that A−T(x×y) = det(A)−1(Ax×Ay) for any vectors x,y ∈ R3.

Exercise 9.6 ((9.15b)). Prove (9.15b).

Solution to exercises

Exercise 9.1 (Canonical hybrid element). Let {µm}m∈{1:ne
sh} be a basis of Pk−2,1, {ζm}m∈{1:nf

sh}
be a basis of Pk−3,2, and {ψm}m∈{1:nc

sh} be a basis of Pk−4,3. Let K = TK(K̂). For the vertex
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dofs, we have with z = TK(ẑ),

σv
z(v) = σ̂v

ẑ(v ◦ TK) = (v ◦ TK)(ẑ) = v(z),

for all i ∈ {0:d}. For the edge dofs, letting E = TK(Ê), we observe that

σe
E,m(v) = σ̂e

Ê,m
(v ◦ TK) =

1

|Ê|

∫

Ê

(v ◦ TK)(µm ◦ T−1

Ê
) dl̂

=
1

|Ê|

∫

Ê

(v ◦ TK)((µm ◦ T−1

Ê
◦ T−1

K ) ◦ TK) dl̂

=
1

|E|

∫

E

v(µm ◦ T−1
K,E) dl,

for all m ∈ {1:ne
sh}, where TK,E := TK ◦ TÊ maps R to the line in R3 supporting the edge E.

Proceeding similarly for the face dofs and setting F := TK(F̂ ), we infer that

σf
F,m(v) =

1

|F |

∫

F

p(ζm ◦ T−1
K,F ) ds,

for all m ∈ {1:nf
sh}, where we have set TK,F := TK ◦ TF̂ which maps R2 to the plane in R3

supporting the face F . For the cell dofs, we finally find that

σc
m(p) =

1

|K|

∫

K

p(ψm ◦ T−1
K ) dx,

for all m ∈ {1:nc
sh}.

Exercise 9.2 (Line measure). (i) Let Ê be an edge of K̂ and let x̂ be a point in the interior of

Ê. There is no ambiguity to define a unit vector tangent to Ê at x̂, say τ̂ (note that there are two

choices for τ̂ ). Let E := TK(Ê). The change in line measure between Ê and E is by definition

dl

dl̂
= lim

h→0

‖TK(x̂+ hτ̂ )− TK(x̂)‖ℓ2
‖hτ̂‖ℓ2

.

Using the definition of the Fréchet derivative, we have

∣∣∣∣
dl

dl̂
− ‖JK τ̂‖ℓ2

∣∣∣∣ =
∣∣∣∣
dl

dl̂
− lim
h→0

‖DTK(x̂)(hτ̂ )‖ℓ2
‖hτ̂‖ℓ2

∣∣∣∣

≤
∣∣∣∣ limh→0

‖TK(x̂+ hτ̂ )− TK(x̂)−DTK(x̂)(hτ̂ )‖ℓ2
‖hτ̂‖ℓ2

∣∣∣∣ = 0.

Hence, dl = ‖JK τ̂‖ℓ2 dl̂.
(ii) When d = 2, the two statements in Lemma 9.12 are identical. Indeed in this case, ds = dl and

dŝ = dl̂. Hence, |det(JK)| ‖J−T

K n̂‖ℓ2(R2) = ‖JK τ̂‖ℓ2(R2). Another (longer) way to proceed consists

of using the cofactor formula for J−T

K and do the full computation.

Exercise 9.3 (Surface measure). (i) This is a simple consequence of Lemma 9.12. Since ds =
|det(JK)| ‖J−T

K ‖ℓ2 dŝ, we infer that indeed

√
det(gF (x̂)) = |det(JK)|‖J−T

K ‖ℓ2 .
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(ii) Using the definition of TK , we have

JF =




1 0
0 1

2x̂1 2x̂2


 , gF =

[
1 + 4x̂21 4x̂1x̂2
4x̂1x̂2 1 + 4x̂22

]
,

and

JK =




1 0 0
0 1 0

2x̂1 2x̂2 −1


 , det(JK) = −1, J−T

K =



1 0 2x̂1
0 1 2x̂2
0 0 −1


 .

By definition, n̂F̂ = (0, 0,−1)T, so that J−T

K n̂F̂ = (−2x̂1,−2x̂2, 1)T. We conclude that

√
det(gF (x̂)) =

√
1 + 4x̂21 + 4x̂22 = |det(JK)| ‖J−T

K n̂F̂ ‖ℓ2 .

Exercise 9.4 (Sobolev spaces). The assertions are direct consequences of Lemma 9.6 and the
fact that the geometric mapping TK has bounded derivatives of any order.

Exercise 9.5 (Transformation of cross products). The key is to remember that the mixed
product of three vectors z·(x×y) is equal to det[z,x,y] where [z,x,y] is the matrix with column
vectors z,x,y. We have

zTA−T(x×y) = (A−1z)·(x×y) = det[A−1z,x,y] = det(A−1[z,Ax,Ay])

= det(A−1) det[z,Ax,Ay] = det(A)−1zT(Ax×Ay).

This proves the expected identity since z is arbitrary.

Exercise 9.6 ((9.15b)). The following holds true:

∫

E

(v·Φc
K(τ̂Ê))(x)q(x) dl =

∫

Ê

(v·Φc
K(τ̂Ê))(TK(x̂))ψg

K(q)(x̂)‖JK τ̂Ê‖ℓ2 dl̂

=

∫

Ê

((v ◦ TK)·(JK τ̂Ê))(x̂)ψ
g
K(q)(x̂) dl̂

=

∫

Ê

(ψc
K(v)·τ̂Ê)(x̂)ψ

g
K(q)(x̂) dl̂.



50 Chapter 9. Finite element generation



Chapter 10

Mesh orientation

Exercises

Exercise 10.1 (Faces in 2D). LetRπ
2
be the rotation of angle π

2 in R2. (i) Let A be an inversible

2×2 matrix. Prove that A−TRπ
2
= 1

det(A)R
π
2
A. (ii) Prove that Φd

K(Rπ
2
(z)) = Rπ

2
(Φc

K(z)) for all

z ∈ R2.

Exercise 10.2 (Connectivity arrays j cv, j ce). Consider the mesh shown in Figure 10.1,
where the face enumeration is identified with large circles and the cell enumeration is identified
with squares. (i) Write the connectivity arrays j cv and j ce based on increasing vertex-index

5 3
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41

K̂

863

21

2

1

5

4

3

3

8

2 1 1

3

10 4

9

5

7

2
6

11

Figure 10.1: Illustration for Exercise 10.2.

enumeration. (ii) Give the sign of the determinant of the Jacobian matrix of TK for each triangle.

Exercise 10.3 (Connectivity array j geo). Consider the mesh shown in Figure 10.2 and based
on the P2,2 geometric Lagrange element. (i) Write the connectivity array j geo based on increasing
vertex-index enumeration. (ii) Give the sign of the determinant of the Jacobian matrix of TK for
each triangle.

Exercise 10.4 (Orientation of quadrangular mesh). (i) Using the enumeration and the
orientation conventions proposed in this chapter, orient the mesh shown in Figure 10.3, where the
cell enumeration is identified with shaded rectangles. (ii) Give the connectivity array j geo so that
the mesh orientation is generation-compatible and the determinant of the Jacobian matrix of TK
is positive for even quadrangles and negative for odd quadrangles.

Exercise 10.5 (Mesh extrusion). (i) Let K be a triangular prism. Denote by e3 the unit vector
in the vertical direction. Let z1, z2, z3 be the three vertices of the bottom triangular face of K,
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Figure 10.3: Illustration for Exercise 10.4.

and let z4, z5, z6 be the three vertices of its top triangular face, so that the segments [zp, zp+3]
are parallel to e3 for every p ∈ {1, 2, 3}. Propose a way to cut K into three tetrahedra. (ii) Let
Th be a two-dimensional oriented mesh composed of triangles. Let T ′

h be a copy of Th obtained by
translating Th in the third direction e3, say T ′

h := Th + e3. Propose a way to cut all the prisms
thus formed to make a matching mesh composed of tetrahedra.

Solution to exercises

Exercise 10.1 (Faces in 2D). (i) Let us set A :=
(
a b
c d

)
. We have

A−TRπ
2
=

1

det(A)

(
d −c
−b a

)(
0 −1
1 0

)
=

1

det(A)

(
−c −d
a b

)
.

We also have

Rπ
2
A =

(
0 −1
1 0

)(
a b
c d

)
=

(
−c −d
a b

)
.
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This proves the claim.
(ii) Using the above result and the definition of Φd

K and Φc
K , we obtain

Φd
K(Rπ

2
(z)) = ǫK

J−T

K Rπ
2
(z)

‖J−T

K Rπ
2
(z)‖ℓ2

= ǫK
|det(JK)|
det(JK)

Rπ
2
(JKz)

‖Rπ
2
(JKz)‖ℓ2

= Rπ
2

(
JKz

‖JKz‖ℓ2

)
= Rπ

2
(Φc

K(z)).

Exercise 10.2 (Connectivity arrays j cv, j ce). (i) The connectivity arrays are

j cv =




1 2 6
4 6 8
4 5 6
3 4 8
1 5 6



, j ce =




2 10 1
5 8 11
4 11 9
8 6 7
4 10 3



.

(ii) The signs of the determinants are as follows:

[
index of K: 1 2 3 4 5
sign(det JK): − − − − +

]
.

Exercise 10.3 (Connectivity array j geo). (i) The following array j geo is based on increasing
vertex-index enumeration:

j geo =




1 2 6 7 12 14
3 6 8 18 10 11
5 6 8 18 16 13
3 4 8 17 10 9
1 5 6 13 12 15



.

(ii) The signs of the determinants are as follows:

[
index of K: 1 2 3 4 5
sign(det JK): − + − − +

]
.

Exercise 10.4 (Orientation of quadrangular mesh). (i) A generation-compatible orientation
of the edges and faces is as follows:
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The edges belonging to the same connected component of the edge/cell graph are linked by a
dotted curve.
(ii) If one wishes that the determinant of the Jacobian matrix is positive for even quadrangles and
negative for odd quadrangles, the geometric connectivity is as follows:

j geo =




1 2 6 8
2 8 13 9
6 8 7 9
4 10 13 3
11 4 5 10
12 11 1 4
1 6 4 7
4 13 7 9




.

Note that for each cell Km, m ∈ {1:6}, j geo(m, 1) gives the index of the vertex that is the origin
of Km (such that the two edges sharing it are oriented away from it).

Exercise 10.5 (Mesh extrusion). (i) We first orient the edges of the bottom face using the
increasing vertex-index enumeration. Then one needs to find a strategy to cut the three vertical
faces. The key idea is to use the orientation of the edges of the bottom face. The cutting of
the face whose vertices are (z1, z2, z4, z5) is done by connecting z1 with z5, i.e., the cut starts
from z1 and is done along the vector (z2 − z1) + e3. The cutting of the face whose vertices are
(z1, z3, z4, z6) is done by connecting z1 with z6, i.e., the cut starts from z1 and is done along
the vector (z3 − z1) + e3. The cutting of the face whose vertices are (z2, z3, z5, z6) is done by
connecting z2 with z6, i.e., the cut starts from z2 and is done along the vector (z3 − z2) + e3.
The proposed cutting produces three tetrahedra, with vertices (z1, z4, z5, z6), (z1; z2, z5, z6), and
(z1, z2, z3, z6).
(ii) The key idea is to use the orientation of the edges of Th to do the cutting of the vertical faces
of the prisms produced by translating Th in the e3 direction. Let E be an edge of Th with vertices
zp, zq and orientation vector τE , and assume that zq − zp and τE have the same orientation
(notice that if p < q, then zq − zp and τE have the same orientation if the increasing vertex-index
enumeration technique is used). Let zr := zp + e3 and zs := zq + e3. Then we cut the vertical
face whose vertices are (zp, zq, zr, zs) by connecting zp with zs, i.e., the cut starts from zp and is
done along the vector τE + e3. Notice that for the two prisms sharing the same rectangular face,
the proposed strategy provides for a unique way to cut the face in question. As a result, the mesh
of tetrahedra thus formed is a matching mesh.
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Local interpolation on affine
meshes

Exercises

Exercise 11.1 (High-order derivative). Let two integers m, d ≥ 2. Consider the map Φ :
{1:d}m ∋ j 7−→ (Φ1(j), . . . ,Φd(j)) ∈ Nd, where Φi(j) := card{k ∈ {1:m} | jk = i} for all i ∈
{1:d}, so that |Φ(j)| = m by construction. Let Cm,d := maxα∈Nd,|α|=m card{j ∈ {1:d}m | Φ(j) =
α}. Let v be a smooth (scalar-valued) function. (i) Show that

‖Dmv‖Mm(Rd,...,Rd;R) ≤ C
1
2

m,d


 ∑

α∈Nd,|α|=m
|∂αv|2




1
2

.

(ii) Show that Cm,2 = max0≤l≤m
(
m
l

)
= 2m. (iii) Evaluate Cm,3 and m ∈ {2, 3}. (iv) Show that∑

α∈Nd,|α|=m |∂αv| ≤
(
d+m−1
d−1

)
‖Dmv‖Mm(Rd,...,Rd;R).

Exercise 11.2 (Flat triangle). Let K be a triangle with vertices (0, 0), (1, 0) and (−1, ǫ) with
0 < ǫ ≪ 1. Consider the function v(x1, x2) := x21. Evaluate the P1 Lagrange interpolant ILK(v)
(see (9.7)) and show that |v − ILK(v)|H1(K) ≥ ǫ−1|v|H2(K). (Hint : use a direct calculation of
ILK(v).)

Exercise 11.3 (Barycentric coordinate). Let K be a simplex with barycentric coordinates
{λi}i∈{0:d}. Prove that |λi|W 1,∞(K) ≤ ρ−1

K for all i ∈ {0:d}.

Exercise 11.4 (Bramble–Hilbert). Prove Corollary 11.11. (Hint : use the Bramble–Hilbert/Deny–
Lions lemma.)

Exercise 11.5 (Taylor polynomial). LetK be a convex cell. Consider a Lagrange finite element
of degree k ≥ 1 with nodes {ai}i∈N and associated shape functions {θi}i∈N . Consider a sufficiently
smooth function v. For all x,y ∈ K, consider the Taylor polynomial of order k and the exact
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remainder defined as follows:

Tk(x,y) := v(x) +Dv(x)(y − x) + . . .+
1

k!
Dkv(x)(y − x, . . . ,y − x︸ ︷︷ ︸

k times

),

Rk(v)(x,y) :=
1

(k + 1)!
Dk+1v(ηx+ (1− η)y)(y − x, . . . ,y − x︸ ︷︷ ︸

(k + 1) times

),

so that v(y) = Tk(x,y) + Rk(v)(x,y) for some η ∈ [0, 1]. (i) Prove that v(x) = ILK(v)(x) −∑
i∈N Rk(v)(x,ai)θi(x), where ILK is the Lagrange interpolant defined in (9.7). (Hint : interpolate

with respect to y.) (ii) Prove that Dmv(x) = Dm(ILK(v))(x) −∑i∈N Rk(v)(x,ai)D
mθi(x) for

all m ≤ k. (Hint : proceed as in (i), take m derivatives with respect to y at x, and observe
that v(x) = Tk(x,x).) (iii) Deduce that |v − ILK(v)|Wm,∞(K) ≤ cσmKh

k+1−m
K |v|Wk+1,∞(K) with

c := 1
(k+1)! c∗h

m
K̂

∑
i∈N |θ̂i|Wm,∞(K̂), where c∗ comes from (11.7b) with s = m and p =∞.

Exercise 11.6 (Lp-stability of Lagrange interpolant). Let α ∈ (0, 1). Consider the Lagrange
P1 shape functions θ1(x) := 1 − x and θ2(x) := x. Consider the sequence of continuous functions
{un}n∈N\{0} defined over the interval K := [0, 1] as un(x) := nα − 1 if 0 ≤ x ≤ 1

n and un(x) :=
x−α− 1 otherwise. (i) Prove that the sequence is uniformly bounded in Lp(0, 1) for all p such that
pα < 1. (ii) Compute ILK(un). Is the operator ILK stable in the Lp-norm? (iii) Is the operator ILK
stable in any Lr-norm with r ∈ [1,∞)?

Exercise 11.7 (Norm scaling, s 6∈ N). Complete the proof of Lemma 11.7 for the case s 6∈ N.
(Hint : use (2.6) with s = m+ σ, m := ⌊s⌋, σ := s−m ∈ (0, 1).)

Exercise 11.8 (Morrey’s polynomial). Let U be a nonempty open set in Rd. Let k ∈ N and p ∈
[1,∞]. Let u ∈ W k,p(U). Show that there is a unique polynomial q ∈ Pk,d s.t.

∫
U
∂α(u− q) dx = 0

for all α ∈ Nd of length at most k. (Hint : see the proof of Lemma 11.9 and also Morrey [34,
Thm. 3.6.10].)

Exercise 11.9 (Fractional Sobolev norm). Let r ∈ (0, 1). Let (Th)h∈H be an shape-regular

affine mesh sequence and let K̂ be the reference element. Let K be an affine cell in Th. Using the

notation v̂ := v ◦ TK , show that there is c such that ‖v̂‖Hr(K̂) ≤ ch
r− d

2

K |v|Hr(K) for all v ∈ Hr(K)

such that
∫
K v dx = 0, all K ∈ Th, and all h ∈ H. (Hint : use Lemma 3.26.)

Solution to exercises

Exercise 11.1 (High-order derivative). (i) Let h1, . . . ,hm be vectors in Rd such that ‖hl‖ℓ2(Rd) =
1 for all l ∈ {1:m}. Owing to the Cauchy–Schwarz inequality, we infer that

Dmv(h1, . . . ,hm) =
∑

j1∈{1:d}
. . .

∑

jm∈{1:d}
h1,j1 . . . hm,jm∂

Φ(j)v

≤


 ∑

j∈{1:d}m
|∂Φ(j)v|2




1
2

.
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As a result, we have

‖Dmv‖Mm(Rd,...,Rd;R) ≤


 ∑

|α|=m

∑

Φ(j)=α

|∂αv|2



1
2

,

where α ∈ Nd in the first summation and j ∈ {1:d}m in the second one.
(ii) For d = 2, α = (l,m− l) with l ∈ {0:m} and card{j ∈ {1, 2}m | Φ(j) = (l,m− l)} =

(
m
l

)
.

(iii) A direct calculation shows that C2,3 = 3 (attained, e.g., for (1, 1, 0)) and C3,3 = 6 (attained
for α = (1, 1, 1)).
(iv) Since |∂αv| ≤ ‖Dmv‖Mm(Rd,...,Rd;R) for all α ∈ Nd with |α| = m, the expected bound can be

obtained with Čl,d := card{α ∈ Nd | |α| = m} =
(
d+m−1
d−1

)
.

Exercise 11.2 (Flat triangle). We obtain ILK(v) = x1 + 2ǫ−1x2, so that |v − ILK(v)|H1(K) =∫
K
((2x1 − 1)2 + 4

ǫ2 ) dx ≥ 4
ǫ2 |K|, but |v|2H2(K) = 4|K| is uniformly bounded w.r.t. ǫ.

Exercise 11.3 (Barycentric coordinate). Let i ∈ {0:d}. Let Fi be the face of K where λi
vanishes. Let ni be the outward unit normal to Fi. Let B be the largest ball that can be inscribed
into K and let ρK be the diameter of B. Let Si be the point where B is touching Fi and let Ni
be the point opposite to Si on ∂B. We have

1 ≥ λ(Ni) = λ(Ni)− λ(Si) = −ρKni·∇λi = ρK‖∇λi‖ℓ2(Rd),

since λi(Si) = 0, Si = Pi + ρKni, λi is affine, and ∇λi is collinear to ni.

Exercise 11.4 (Bramble–Hilbert). For all π ∈ Pk,d, |f(v)| = |f(v + π)| ≤ ‖f‖(Wk+1,p(S))′‖v +
π‖Wk+1,p(S), that is, |f(v)| ≤ ‖f‖(Wk+1,p(S))′ infπ∈Pk,d ‖v+π‖Wk+1,p(S). Thus, the assertion follows
from Lemma 11.9.

Exercise 11.5 (Taylor polynomial). (i) Starting from v(y) = Tk(x,y) + Rk(v)(x,y) and
interpolating with respect to y at any fixed x ∈ K leads to

ILK(v)(y) = Tk(x,y) +
∑

i∈N
Rk(v)(x,ai)θi(y),

since the polynomial Tk(x,y) in y at fixed x is preserved by ILK . Evaluating the above expression
at y = x yields the assertion since Tk(x,x) = v(x).
(ii) Differentiating m times, m ≤ k, the above expression with respect to y at fixed x leads to

Dm(ILK(v))(y) = DmTk(x,y) +
∑

i∈N
Rk(v)(x,ai)D

mθi(y),

and evaluating the expression at y = x yields the assertion since DmTk(x,x) = Dmv(x).
(iii) Use the result of Step (ii) together with the triangle inequality and the bound |Rk(v)(x,ai)| ≤

1
(k+1)!h

k+1
K |v|Wk+1,∞(K) for all x ∈ K.

Exercise 11.6 (Lp-stability of Lagrange interpolant). (i) Observe that ‖un‖Lp(0,1) ≤ ‖x−α−
1‖Lp(0,1) ≤ 1 + ‖x−α‖Lp(0,1) ≤ 1 + 1

(1−pα)
1
p
<∞ since pα < 1.

(ii) ILKun(x) = un(0)θ1(x) + un(1)θ2(x) = (nα − 1)(1− x), so that

‖ILKun‖Lp(0,1) ≥ (nα − 1)‖(1− x)‖Lp(0,1) ≥ (nα − 1)‖ 12‖Lp(0, 12 ) ≥
1
4 (n

α − 1).
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This proves that ‖ILKun‖Lp(0,1) ≥ (nα − 1)γ−1‖un‖Lp(0,1) with γ := 1 + 1

(1−pα)
1
p
, thereby proving

that ‖ILK‖L(Lp;Lp) ≥ 1
4 (n

α − 1)γ−1 for all n ∈ N\{0}. In conclusion, ‖ILK‖L(Lp;Lp) =∞, i.e., ILK is

not Lp stable for all p < 1
α .

(iii) Since α is arbitrary in (0, 1), the above result implies that ILK is not Lr stable for all r ∈ [1,∞)
in dimension one.

Exercise 11.7 (Norm scaling, s 6∈ N). Let AH
⌊m⌋,d = {α ∈ Nd | |α| = m} be the set of the

multi-indices of length equal to m. We have

|ψK(v)|W s,p(K̂)
:=


 ∑

α∈AH
m,d

|∂αψK(v)|p
Wσ,p(K̂)




1
p

.

By proceeding as in the proof of Lemma 11.7 and using that TK is affine, we infer that the following
holds true for all α ∈ AH

m,d:

‖∂αψK(v)(x̂)− ∂αψK(v)(ŷ)‖ℓ2 ≤ c‖AK‖ℓ2‖JK‖mℓ2
∑

β∈AH
m,d

‖(∂βv)(TK(x̂))− (∂βv)(TK(ŷ))‖ℓ2 .

We infer that

|∂αψK(v)|p
Wσ,p(K̂)

=

∫

K̂

∫

K̂

‖∂αψK(v)(x̂)− ∂αψK(v)(ŷ)‖pℓ2
‖x̂− ŷ‖σp+dℓ2

dx̂dŷ

≤ c‖AK‖pℓ2‖JK‖
pm
ℓ2

∑

β∈AH
m,d

∫

K̂

∫

K̂

‖(∂βv)(TK(x̂))− (∂βv)(TK(ŷ))‖pℓ2
‖x̂− ŷ‖σp+dℓ2

dx̂dŷ

≤ c‖AK‖pℓ2‖JK‖
pm
ℓ2 |det(JK)|−2‖JK‖σp+dℓ2

×
∑

β∈AH
m,d

∫

K

∫

K

‖∂βv(x)− ∂βv(y)‖pℓ2
‖x− y‖σp+dℓ2

dxdy,

since ‖x̂− ŷ‖ℓ2 = ‖J−1
K (x− y)‖ℓ2 ≥ ‖JK‖−1

ℓ2 ‖x− y‖ℓ2 . In conclusion, we have

|ψK(v)|W s,p(K̂) ≤ c ‖AK‖ℓ2‖JK‖mℓ2 |det(JK)|− 2
p ‖JK‖

σ+ d
p

ℓ2 |v|W s,p(K)

≤ c ‖AK‖ℓ2‖JK‖sℓ2 |det(JK)|− 1
p
(
|det(JK)|−1‖JK‖dℓ2

) 1
p |v|W s,p(K),

which proves the statement. The proof of the other inequality is similar.

Exercise 11.8 (Morrey’s polynomial). We have proved in Lemma 11.9 that the map Φk,d :
Pk,d → RNk,d such that Φk,d(q) = (

∫
U
∂αq dx)α∈Ak,d is an isomorphism. Hence, there is a unique

q ∈ Pk,d such that Φk,d(q) = (
∫
U
∂αu dx)α∈Ak,d , i.e.,

∫
U
∂α(u − q) dx = 0 for all α ∈ Ak,d. Note

that the polynomial in question is denoted by π(u) in the proof of Lemma 11.9.

Exercise 11.9 (Fractional Sobolev norm). Since v̂ has zero mean value over K̂, Lemma 3.26
implies that

‖v̂‖2
Hr(K̂)

= ‖v̂‖2
L2(K̂)

+ |v̂|2
Hr(K̂)

≤ ĉ |v̂|2
Hr(K̂)

.



Part III. Finite element interpolation 59

Moreover, we have

|v̂|2
Hr(K̂)

=

∫

K̂

∫

K̂

|v̂(x̂)− v̂(ŷ)|2
‖x̂− ŷ‖d+2r

ℓ2

dx̂dŷ

=
|K̂|2
|K|2

∫

K

∫

K

|v(x)− v(y)|2
‖J−1
K (x− y)‖d+2r

ℓ2

dxdy

≤ |K̂|
2

|K|2 J
d+2r
K |v|2Hr(K).

Hence, ‖v̂‖Hr(K̂) ≤ ch
r− d

2

K |v|Hr(K), where c depends on the regularity of the mesh sequence.
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Chapter 12

Local inverse and functional
inequalities

Exercises

Exercise 12.1 (ℓp vs. ℓr). Let p, r be two nonnegative real numbers. Let {ai}i∈I be a finite

sequence of nonnegative numbers. Set ‖a‖ℓp(RI ) := (
∑

i∈I a
p
i )

1
p and ‖a‖ℓr(RI ) := (

∑
i∈I a

r
i )

1
r .

(i) Prove that ‖a‖ℓp(RI) ≤ ‖a‖ℓr(RI ) for r ≤ p. (Hint : set θi := ari /‖a‖rℓr(RI).) (ii) Prove that

‖a‖ℓp(RI) ≤ card(I)
r−p
pr ‖a‖ℓr(RI) for r > p.

Exercise 12.2 (Lp-norm of shape functions). Let θK,i, i ∈ N , be a local shape function. Let

p ∈ [1,∞]. Assume that (Th)h∈H is shape-regular. Prove that ‖θK,i‖Lp(K) is equivalent to h
d/p
K

uniformly w.r.t. K ∈ Th and h ∈ H.

Exercise 12.3 (dof norm). Prove Proposition 12.5. (Hint : use Lemma 11.7.)

Exercise 12.4 (Inverse inequality). (i) Let k ≥ 1, p ∈ [1,∞], let K̂ := {(x̂1, . . . , x̂d) ∈
(0, 1)d | ∑i∈{1:d} x̂i ≤ 1}, and set ĉk,p := supv̂∈Pk,d

‖∇v̂‖
Lp(K̂)

‖v̂‖
Lp(K̂)

. Explain why ĉk,p is finite. (ii) Let

K be a simplex in Rd and let ρK denote the diameter of its largest inscribed ball. Show that

‖∇v‖Lp(K) ≤ ĉk,p
√
2

ρK
‖v‖Lp(K) for all v ∈ Pk,d ◦ TK , where TK : K̂ → K is the geometric mapping.

(Hint : use (9.8a) and Lemma 11.1.)

Exercise 12.5 (Markov inequality). (i) Justify that the constant C2,k in the Markov inequal-
ity (12.7) can be determined as the largest eigenvalue of the stiffness matrix A. (ii) Compute
numerically the constant C2,k for k ∈ {1, 2, 3}.

Exercise 12.6 (Fractional trace inequality). Prove (12.17). (Hint : use a trace inequality in

W s,p(K̂).)

Exercise 12.7 (Mapped polynomial approximation). Let (K̂, P̂ , Σ̂) be a reference finite

element such Pk,d ⊂ P̂ , k ∈ N. Let Th be a member of a shape-regular mesh sequence. Let

TK(K̂) = K ∈ Th and let (K,PK ,ΣK) be the finite element generated by the geometric mapping
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TK and the functional transformation ψK(v) := AK(v ◦ TK). Recall that PK = ψ−1
K (P̂ ). Show

that there is c s.t.
inf
q∈PK

|v − q|Wm,p(K) ≤ c hr−mK |v|W r,p(K), (12.1)

for all r ∈ [0, k+ 1], all p ∈ [1,∞) if r 6∈ N or all p ∈ [1,∞] if r ∈ N, every integer m ∈ {0:⌊r⌋}, all
v ∈ W r,p(K), all K ∈ Th, and all h ∈ H, where the mesh cells are supposed to be convex sets if
r ≥ 1. (Hint : use Lemma 11.7 and Corollary 12.13.)

Exercise 12.8 (Trace inequality). Let U be a Lipschitz domain in Rd. Prove that there are

c1(U) and c2(U) such that ‖v‖Lp(∂U) ≤ c1(U)‖v‖Lp(U)+c2(U)‖∇v‖
1
p

Lp(U)‖v‖
1− 1

p

Lp(U)) for all p ∈ [1,∞)

and all v ∈ W 1,p(U). (Hint : accept as a fact that there exists a smooth vector field N ∈ C1(U)
and c0(U) > 0 such that (N ·n)|∂U ≥ c0(U) and ‖N(x)‖ℓ2(Rd) = 1 for all x ∈ U .)

Exercise 12.9 (Weighted inverse inequalities). Let k ∈ N. (i) Prove that ‖(1−t2) 1
2 v′‖L2(−1,1) ≤(

k(k + 1)
) 1

2 ‖v‖L2(−1,1) for all v ∈ Pk,1. (Hint : let L̃m :=
(
2m+1

2

)1/2
Lm, Lm being the Legendre

polynomial from Definition 6.1, and prove that
∫ 1

−1
(1− t2)(L̃m)′(t)(L̃n)′(t) dt = δmnm(m+ 1) for

every integers m,n ∈ {0:k}.) (ii) Prove that ‖v‖L2(−1,1) ≤ (k + 2)‖(1 − t2)
1
2 v‖L2(−1,1) for all

v ∈ Pk,1. (Hint : consider a Gauss–Legendre quadrature with lQ := k+2 and use the fact that the
rightmost Gauss–Legendre node satisfies ξlQ ≤ cos( π

2lQ
).) Note: see also Verfürth [44].

Solution to exercises

Exercise 12.1 (ℓp vs. ℓr). (i) We observe that θi := ari /‖a‖rℓr(RI ) ∈ [0, 1] and
∑

i∈I θi = 1.

Since p
r ≥ 1, we infer that

∑
i∈I θ

p
r

i ≤
∑
i∈I θi = 1. Rearranging the terms leads to the expected

estimate.
(ii) Using Hölder’s inequality, we infer that

∑

i∈I
θ
p
r

i ≤
(∑

i∈I
θ
p
r
r
p

i

) p
r
(∑

i∈I
1

r
r−p

)1− p
r

≤ card(I)1−
p
r .

Exercise 12.2 (Lp-norm of shape functions). Observe that

‖θK,i‖Lp(K) =

(
|K|
|K̂|

) 1
p

‖θ̂i‖Lp(K̂),

and use the regularity of the mesh sequence to conclude.

Exercise 12.3 (dof norm). Owing to (12.3), it is sufficient to prove the equivalence for p =∞.

Let vh =
∑

i∈N σK,i(vh)θK,i ∈ PK . Recalling that θK,i = ψ−1
K (θ̂i) for all i ∈ N , we infer that

‖vh‖L∞(K;Rq) ≤
∑

i∈N
|σK,i(vh)|‖θK,i‖L∞(K;Rq)

≤
∑

i∈N
|σK,i(vh)|‖ψ−1

K ‖L(L∞(K̂;Rq);L∞(K;Rq))‖θ̂i‖L∞(K̂;Rq)

≤ c1‖ψ−1
K ‖L(L∞(K̂;Rq);L∞(K;Rq))

∑

i∈N
|σK,i(vh)|,
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where c1 := maxi∈N ‖θ̂i‖L∞(K̂;Rq) only depends on the reference element. Using (11.7b) with l := 0

and p :=∞, we infer that

‖vh‖L∞(K;Rq) ≤ c ‖A−1
K ‖ℓ2

∑

i∈N
|σK,i(vh)|.

Let us now prove the reverse bound. Let v̂h := ψK(vh). Since (K̂, P̂ , Σ̂) is a finite element,∑
i∈N |σn(v̂h)| is a norm on P̂ . The equivalence of norms in P̂ implies that there is c2, depending

only on (K̂, P̂ , Σ̂), such that

∑

i∈N
|σK,i(vh)| =

∑

i∈N
|σ̂i(v̂h)| ≤ c2‖v̂h‖L∞(K̂;Rq) = c2‖ψK(vh)‖L∞(K̂;Rq)

≤ c2‖ψK‖L(L∞(K;Rq);L∞(K̂;Rq))‖vh‖L∞(K;Rq)

≤ c′2‖AK‖ℓ2‖vh‖L∞(K;Rq),

where the last bound follows from (11.7a) with l := 0 and p := ∞. The conclusion follows from
the fact that ‖AK‖ℓ2‖A−1

K ‖ℓ2 is bounded by a constant that only depends on the regularity of the
mesh sequence owing to (11.12).

Exercise 12.4 (Inverse inequality). (i) Since Pk,d is finite-dimensional, the unit sphere Ŝp :=
{v̂ ∈ Pk,d | ‖v̂‖Lp(K̂) = 1} is compact. Hence, the continuous function v̂ 7→ ‖∇v̂‖

Lp(K̂) attains its

maximum on Ŝp. Since the maximum in question is ĉk,p by definition, this proves that this real
number is finite.
(ii) Let v ∈ Pk,d ◦TK . Then v̂ := v ◦T−1

K ∈ Pk,d. Let JK be the Jacobian of the geometric mapping

TK . The chain rule (9.8a) implies that ∇v = J−T

K ∇v̂. Since TK is affine, we infer that

‖∇v‖Lp(K) ≤ ‖J−1
K ‖ℓ2|det(JK)| 1p ‖∇v̂‖

Lp(K̂)

≤ ĉk,p‖J−1
K ‖ℓ2 |det(JK)| 1p ‖v̂‖Lp(K̂)

≤ ĉk,p‖J−1
K ‖ℓ2‖v‖Lp(K).

Finally, invoking Lemma 11.1 gives ‖J−1
K ‖ℓ2 ≤

h
K̂

ρK
. Since K̂ is the unit simplex and K̂ is convex,

and we have hK̂ =
√
2 in every space dimension.

Exercise 12.5 (Markov inequality). (i) Let v ∈ Pk,1. We can write v(t) =
∑

l∈{0:k} vlL̃l(t).

Exploiting the L2-orthonormality of the basis and the definition of the stiffness matrix A, we infer
that

‖v′‖L2(−1,1)

‖v‖L2(−1,1)
=
V TAV
V TV

≤ ρ(A).

(ii) A direct computation of A for k ∈ {1, 2, 3}, respectively, yields

(
0 0
0 3

)
,



0 0 0
0 3 0
0 0 15


 ,




0 0 0 0

0 3 0
√
21

0 0 15 0

0
√
21 0 42


 ,

with spectral radius 3, 15, and 45+
√
1605

2 , respectively.
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Exercise 12.6 (Fractional trace inequality). Let v ∈ W s,p(K). Let K ∈ Th be a mesh cell
and F be a face of K. Since the mapping TK is affine, using the trace theorem (Theorem 3.10) in

W s,p(K̂), we infer that

‖v‖Lp(F ) =
|F | 1p
|F̂ | 1p

‖ψg
K(v)‖Lp(F̂ ) ≤ cs,p|F |

1
p (‖ψg

K(v)‖Lp(K̂) + |ψ
g
K(v)|W s,p(K̂)),

where cs,p can grow unboundedly as sp ↓ 1 if p > 1. Using Lemma 11.7, this inequality is rewritten
as

‖v‖Lp(F ) ≤ c′s,p|F |
1
p |K|− 1

p (‖v‖Lp(K) + ‖JK‖−sℓ2 |v|W s,p(K)).

The conclusion follows from the regularity of the mesh sequence (see (11.3)).

Exercise 12.7 (Mapped polynomial approximation). Let k ∈ N. Let r ∈ [0, k + 1], let
p ∈ [1,∞) if r 6∈ N or p ∈ [1,∞] if r ∈ N, and let m ∈ {0:⌊r⌋}. Let v ∈ W r,p(K) and set

v̂ := ψK(v). Let q̂∗ ∈ P̂ be s.t. |v̂ − q̂∗|Wm,p(K̂) = inf q̂∈P̂ |v̂ − q̂|Wm,p(K̂). We have (the value of c

changes at each occurrence)

inf
q∈PK

|v − q|Wm,p(K) ≤ |v − ψ−1
K (q̂∗)|Wm,p(K) = |ψ−1

K (v̂)− ψ−1
K (q̂∗)|Wm,p(K)

≤ c ‖A−1
K ‖ℓ2‖J−1

K ‖mℓ2 |det(JK)| 1p |v̂ − q̂∗|Wm,p(K̂)

≤ c ‖A−1
K ‖ℓ2‖J−1

K ‖mℓ2 |det(JK)| 1p inf
q̂∈Pk,d

|v̂ − q̂|Wm,p(K̂)

≤ c ‖A−1
K ‖ℓ2‖J−1

K ‖mℓ2 |det(JK)| 1p |v̂|W r,p(K̂)

≤ c ‖AK‖ℓ2‖A−1
K ‖ℓ2‖JK‖rℓ2‖J−1

K ‖mℓ2 |v|W r,p(K)

≤ c hr−mK |v|W r,p(K),

where we used that ψ−1
K (q̂∗) ∈ PK in the first line, (11.7b) in the second line, the definition of q̂∗

and Pk,d ⊂ P̂ in the third line, Corollary 12.13 in the fourth line, (11.7a) in the fifth line, and the
regularity of the mesh sequence in the last line. This proves (12.1).

Exercise 12.8 (Trace inequality). We first observe that

c0(U)

∫

∂U

|v|p dx ≤
∫

∂U

(n·N)|v|p dx =

∫

U

∇· (N |v|p) dx

≤
∫

U

((∇·N)|v|p + p(N ·∇v)|v|p−1) dx

≤ c1(U)‖v‖pLp(U) + p‖∇v‖Lp(U)‖v‖p−1
Lp(U),

where we set c1(U) := ‖∇·N‖L∞(U), used that ‖N(x)‖ℓ2(Rd) = 1 for all x ∈ U , and used Hölder’s
inequality to bound

∫
U
‖∇u‖ℓ2|v|p−1 dx. The conclusion follows by applying the inequality (a +

b)
1
p ≤ a 1

p + b
1
p for all a, b ≥ 0, i.e.,

‖v‖Lp(U) ≤
(
c1(U)

c0(U)

) 1
p

‖v‖Lp(U) + p
1
p c0(U)−

1
p ‖∇v‖

1
p

Lp(U)‖v‖
1− 1

p

Lp(U).

Exercise 12.9 (Weighted inverse inequalities). (i) Without loss of generality, assume n ≤ m.
Integrating by parts and since (1− t2) vanishes at t = ±1, we infer that

∫ 1

−1

(1 − t2)(L̃m)′(t)(L̃n)
′(t) dt = −

∫ 1

−1

L̃m(t)
(
(1− t2)(L̃n)′(t)

)′
dt.
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Since
(
(1 − t2)(L̃n)

′(t)
)′

is a polynomial of degree n whose leading coefficient is equal to that

of L̃n multiplied by −n(n + 1), the orthonormality of the (normalized) Legendre polynomials

implies that
∫ 1

−1
(1 − t2)(L̃m)′(t)(L̃n)′(t) dt = δmnm(m + 1). As a result, writing any v ∈ Pk,1 as

v(t) =
∑

l∈{0:k} vlL̃l(t), we infer that

∫ 1

−1

(1− t2)|v′(t)|2 dt =
∑

l∈{0:k}
v2l l(l + 1)

≤ k(k + 1)
∑

l∈{0:k}
v2l = k(k + 1)‖v‖2L2(−1,1).

(ii) Since (1− t2)v2 is of degree (2k+ 2) and the quadrature is of order 2lQ − 1 = 2k+ 3, we infer
that

∫ 1

−1

(1 − t2)v(t)2 dt =
∑

l∈{1: lQ}
ωl(1 − ξ2l )v(ξl)2

≥ (1− ξ2lQ)
∑

l∈{1: lQ}
ωlv(ξl)

2 = (1− ξ2lQ)
∫ 1

−1

v(t)2 dt.

The conclusion follows from
1

1− ξ2lQ
≤ 1

sin2( π
2lQ

)
≤ (lQ)

2,

since sin(x) ≥ 2
πx for all x ∈ [0, π2 ].
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Chapter 13

Local interpolation on nonaffine
meshes

Exercises

Exercise 13.1 (Chain rule). Let f ∈ C3(U ;W1) and g ∈ C3(W1;W2), where V, W1, W2 are
Banach spaces and U is an open set in V. (i) Evaluate the pure derivatives D2(g ◦ f)(x)(h, h) and
D3(g ◦ f)(x)(h, h, h) for x ∈ U and h ∈ V. (ii) Rewrite these expressions when f and g map from
R to R.

Exercise 13.2 (Pure derivatives, Qk,d-polynomials). Let {ei}i∈{1:d} be the canonical Carte-

sian basis of Rd. Let k ≥ 1. Verify that Dk+1q(ei, . . . , ei) = 0 for all i ∈ {1:d} if and only if
q ∈ Qk,d. (Hint : by induction on d.) What is instead the characterization of polynomials in Pk,d
in terms of Dk+1q?

Exercise 13.3 (Lemma 13.5). Complete the proof of Lemma 13.5 by proving (13.9) for all
m ≤ k + 1. (Hint : use induction on m and the chain rule formula (B.4) applied to T−1(T (x̂)).)

Exercise 13.4 (Tensor-product transformation). Assume the transformation T has the
tensor-product form T (x̂) =

∑
j∈{1:d} tj(x̂j)ej for some univariate function tj , for all j ∈ {1:d},

where {ej}j∈{1:d} is the canonical Cartesian basis of Rd. (i) Show that (13.15) can be sharpened as

|[w ◦ T ]|W l,p(K̂) ≤ c‖det(DT̃ )−1‖
1
p

L∞(K̂)
‖DT̃ ‖l|[w]|W l,p(K). (Hint : recall that |[w]|W l,p(K) is a semi-

norm and there exists a uniform constant c so that ℓlD|[w]|W l,p(K) ≤ c‖w‖W l,p(K).) (ii) What is the

consequence of this new bound on the error estimate (13.21) under the assumption (13.20)?

Exercise 13.5 (Q1-quadrangles). Prove that det(DT (âi)) = |Pi|, where Pi is the parallelogram
formed by ai−1, ai, ai+1 (with a0 := a4 and a5 := a1). (Hint : see §13.5.)

Exercise 13.6 (Butterfly subdivision algorithm). Consider a mesh composed of four tri-
angles with the connectivity array such that j geo(1, 1:3) := (3, 4, 5), j geo(2, 1:3) := (0, 4, 5),
j geo(3, 1:3) := (1, 3, 5), j geo(4, 1:3) := (2, 3, 4). Let m be the midpoint of the edge (z3, z4). Let
ẑ0 := (0, 0), ẑ1 := (1, 0), ẑ2 := (0, 1), ẑ3 := (12 ,

1
2 ), ẑ4 := (0, 12 ), ẑ5 := (12 , 0). Consider now the

curved triangle given by the P2 geometric mapping T that transforms ẑi to zi for all i ∈ {0:5}.
Let {f0, . . . , f7} ∈ R. Let p̂ ∈ P2,2 be the polynomial defined by p̂(ẑi) := fi for all i ∈ {0:5}. (i)
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Compute p̂(T−1(m)). (ii) Consider two additional points z6, z7 and two more triangles given by
j geo(5, 1:3) := (2, 3, 6), j geo(6, 1:3) := (2, 4, 7). Let T ′ be the P2 geometric mapping that trans-
forms ẑi to zi for all i ∈ {2:7}. Let p̂′ ∈ P2,2 be defined by p̂′(ẑi) := fi for all i ∈ {2:7}. Compute
1
2

(
p̂(T−1(m)) + p̂′((T ′)−1(m))

)
. Note: the name of the algorithm comes from the shape of the

generic configuration. The algorithm is used for three-dimensional computer graphics. It allows
the representation of smooth surfaces via the specification of coarser piecewise linear polygonal
meshes. Given an initial polygonal mesh, a smooth surface is obtained by recursively applying the
butterfly subdivision algorithm to the Cartesian coordinates of the vertices; see Dyn et al. [16].

Solution to exercises

Exercise 13.1 (Chain rule). (i) We apply Lemma B.4. For the second-order derivative, the
summation in l has two terms and we obtain (we omit the point x in the (Fréchet) derivatives of
f)

D2(g ◦ f)(x)(h, h) = Dg(f(x))(D2f(h, h)) +D2g(f(x))(Df(h), Df(h)).

For the third-order derivative, the summation in l has three terms and we obtain

D3(g ◦ f)(x)(h, h, h) = Dg(f(x))(D3f(h, h, h))

+ 3D2g(f(x))(Df(h), D2f(h, h))

+D3g(f(x))(Df(h), Df(h), Df(h)),

where we used Theorem B.3 for the second term on the right-hand side.
(ii) When f and g map from R to R, we obtain

(g ◦ f)′′(x) = g′(f(x))(f ′(x))2 + g′′(f(x)),

and

(g ◦ f)′′′(x) = g′(f(x))(f ′(x))3 + 3g′′(f(x))f ′(x)f ′′(x) + g′′′(f(x))(f ′(x))3.

Exercise 13.2 (Pure derivatives, Qk,d-polynomials). A direct verification shows that any
polynomial q ∈ Qk,d verifies Dk+1q(x)(ei, . . . , ei) = 0 for all i ∈ {1:d}. Conversely, assume that
q is such that Dk+1q(x)(ei, . . . , ei) = 0 for all i ∈ {1:d}. We proceed by induction on d. If
d = 1, then q ∈ Qk,1. For d ≥ 2, writing x = (x′, xd) and fixing x′, we infer that the (k + 1)-th
derivative of the function xd 7→ q(x′, xd) is zero, so that there are functions q0(x

′), . . . , qk(x′) s.t.
q(x) =

∑
m∈{0:k} qm(x′)xmd . Since we have for all j < d,

0 = Dk+1q(x)(ej , . . . , ej) =
∑

m∈{0:k}
Dk+1qm(x′)(ej , . . . , ej)x

m
d ,

and the monomials {xmd } are linearly independent, we infer that

Dk+1qm(x′)(ej , . . . , ej) = 0, ∀j ∈ {1:d−1}.

By the induction hypothesis, we have qm ∈ Qk,d−1, so that q ∈ Qk,d. By proceeding as above,
we finally show that q ∈ Pk,d if and only if Dk+1q = 0, that is, Dk+1q(h1, . . . ,hk+1) = 0 for all
h1, . . . ,hk+1 ∈ Rd.
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Exercise 13.3 (Lemma 13.5). Let m ∈ {1:k}. We are going to use the following induction
hypothesis: For all n ≤ m, there is c−n only depending on κ, c1, . . . , cn so that ‖Dn(T−1)‖ ≤
c−n‖D(T̃−1)‖n. The case m = 1 has been proved in Lemma 13.3 with c−1 := (1 − c1)−1. The
assumption has been shown to hold true for m = 2 in the proof of Lemma 13.5. Let us now
show that it also holds true for m + 1. Applying the chain rule formula (B.4) to the identity
x̂ = T−1(T (x̂)) and using the triangle inequality, we obtain

‖Dm+1(T−1)‖ ≤ c(m)
∑

l∈{1:m}
‖Dl(T−1)‖

×
∑

1≤r1+...+rl=m+1

‖Dr1T ‖‖D(T−1)‖r1 . . . ‖DrlT ‖‖D(T−1)‖rl

≤ c(m) ‖D(T−1)‖m+1
∑

l∈{1:m}
‖Dl(T−1)‖

∑

1≤r1+...+rl=m+1

‖Dr1T ‖ . . . ‖DrlT ‖.

We now use that ‖DrT ‖ ≤ čr‖DT̃ ‖ with the convention č1 := (1 + c1) and čr := cr for r ≥
2 (see (13.5) and (13.8)). We also use that ‖D(T−1)‖ = ‖(DT )−1‖ and invoke the induction
assumption. We infer that

‖Dm+1(T−1)‖ ≤ c(m)‖D(T−1)‖m+1

×
∑

l∈{1:m}
c−l‖D(T̃−1)‖l‖DT̃ ‖l

∑

1≤r1+...+rl=m+1

čr1 . . . črl

≤ c(m) ‖D(T−1)‖m+1
∑

l∈{1:m}
c−lκ

l
∑

1≤r1+...+rl=m+1

čr1 . . . črl .

Setting c−(m+1) := c(m)
∑

l∈{1:m}c−lκ
l
∑

1≤r1+...+rl=m+1 čr1 . . . črl proves the assertion.

Exercise 13.4 (Tensor-product transformation). (i) When T has a tensor-product form, we

obtain DrT (x̂)(ei, . . . , ei) = t
(r)
i (xi)ei for all i ∈ {1:d}. Therefore, using the chain rule, we now

infer that

|Dl(w ◦ T )(x̂)|Q ≤ c
∑

m∈{0: l}
|(Dmw)(T (x̂))|Q

×
∑

1≤r1+...+rm=l

|Dr1T (x̂)|Q . . . |DrmT (x̂)|Q.

The expected estimate readily follows.
(ii) The error estimate (13.21) under the assumption (13.20) becomes

|v − IK(v)|Wm,p(K) ≤ c λ
1
pκm‖DT̃ ‖l−m |[v]|W l,p(K).

Note that such an error estimate cannot hold under the assumption (13.19) (think of k = l = 1,
d = 2, and v = x1x2 for which |[v]|W 1,p(K) = 0).

Exercise 13.5 (Q1-quadrangles). Consider the (Fréchet) derivativeDT at â1 which corresponds
to x̂1 = x̂2 = 0. Then DT (x̂) = (a2 − a1,a4 − a1). Taking into account the orientation of the
enumeration of vertices leads to the expected result.

Exercise 13.6 (Butterfly subdivision algorithm). (i) Let us set m̂ := T−1(m). Using the
following expression of the P2 shape functions:

θ̂0 = λ̂0(2λ̂0 − 1), θ̂1 = λ̂1(2λ̂1 − 1), θ̂2 = λ̂2(2λ̂2 − 1),

θ̂3 = 4λ̂1λ̂2, θ̂4 = 4λ̂2λ̂0, θ̂5 = 4λ̂0λ̂1,
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together with λ̂0(m̂) = 1
4 , λ̂1(m̂) = 1

4 , λ̂2(m̂) = 1
2 , we obtain

p̂(m̂) =

5∑

i=0

fiθ̂i(m̂) = −1

8
f0 −

1

8
f1 +

1

2
f3 +

1

2
f4 +

1

4
f5.

(ii) Similarly, we have

p̂′(m̂) = −1

8
f6 −

1

8
f7 +

1

2
f3 +

1

2
f4 +

1

4
f2.

We infer that

1

2
(p̂(m̂) + p̂′(m̂)) = − 1

16
f0 −

1

16
f1 +

1

8
f2 +

1

2
f3 +

1

2
f4 +

1

8
f5 −

1

16
f6 −

1

16
f7.

The generic configuration is shown in the right panel of Figure 13.1. The mesh mapped to the
reference space is shown in the left panel of Figure 13.1.
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Figure 13.1: Illustration for Exercise 13.6.
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H(div) finite elements

Exercises

Exercise 14.1 (RTRTRT0,d). (i) Prove that
∫
K
ιF,Kθ

f
F dx = cF − cK , where θfF is defined in (14.3),

and cF , cK are the barycenters of F and K, respectively. (Hint : use (14.3) and
∫
F x ds = |F |cF .)

Provide a second proof without using (14.3). (Hint : fix e ∈ Rd, define φ(x) = (x− cF )·e, observe
that ∇φ = e, and compute e·

∫
K θ

f
F dx.) (ii) Prove that

∑
F∈FK |F |θfF (x) ⊗ nF = Id for all

x ∈ K. (Hint : use (7.1).) (iii) Prove that v(x) = 〈v〉K + 1
d (∇·v)(x− cK) for all v ∈ RTRTRT0,d, where

〈v〉K := 1
|K|
∫
K v dx is the mean value of v on K.

Exercise 14.2 (RTRTRT0,d in 3D). Let d = 3. Let Fi, i ∈ {0:3}, be a face of K with vertices
{ar,ap,aq} s.t.

(
(zq − zr)×(zp − zr)

)
·nK|Fi > 0. (i) Prove that ∇λp×∇λq = zr−zi

6|K| and prove

similar formulas for ∇λq×∇λr and ∇λr×∇λp. (Hint : prove the formula in the reference simplex,
then use Exercise 9.5.) (ii) Prove that θfi = −2(λp∇λq×∇λr+λq∇λr×∇λp+λr∇λp×∇λq). Find
the counterpart of this formula if d = 2.

Exercise 14.3 (Piola transformation). (i) Let v ∈ C1(K) and q ∈ C0(K). Prove that∫
K
q∇·v dx =

∫
K̂
ψg
K(q)∇·ψd

K(v) dx̂. (ii) Show that
∫
K
v·θ dx = ǫK

∫
K̂
ψd
K(v)·ψc

K(θ) dx̂ for all
θ ∈ C1(K).

Exercise 14.4 (Generating RTRTRTk,d). (i) Let c ∈ Rd, q ∈ PHk,d, and A ∈ Rd×d
′

. Show that there is

r ∈ Pk−1,d′ such that q(Ay + c) = q(Ay) + r(y). (ii) Defining s(y) := q(Ay), show that s ∈ PHk,d′ .
(iii) Prove that (ψd

K)−1(RTRTRTk,d) ⊂ RTRTRTk,d. (iv) Prove the converse inclusion.

Exercise 14.5 (BDM). Verify that card(Σ) = dim(PPPk,d) for d ∈ {2, 3}.

Exercise 14.6 (Cartesian Raviart–Thomas element). (i) Propose a basis for RTRTRT�

0,2 and for

RTRTRT�

0,3 in K := [0, 1]d. (ii) Prove (14.15). (iii) Prove Proposition 14.24.
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Solution to exercises

Exercise 14.1 (RTRTRT0,d). (i) By definition, we have
∫
K
ιF,Kθ

f
F dx = 1

d(cK − zF ) since
∫
K
x dx =

|K|cK . Let us prove that cK − zF = d(cF − cK). Since cK = 1
d+1

∑
F∈FK zF , we infer that

d(cF − cK) =


 ∑

F ′∈FK\{F}
zF ′


− dcK

=

( ∑

F ′∈FK
zF ′

)
− zF − dcK

= (d+ 1)cK − zF − dcK = cK − zF .

Hence, we have ∫

K

ιF,Kθ
f
F dx =

1

d
(cK − zF ) = cF − cK .

For the second proof, let e ∈ Rd. Let φ(x) := (x− cF )·e and observe that ∇φ = e. This gives

e·
∫

K

θfF dx =

∫

K

θfF ·∇φdx = −
∫

K

φ∇·θfF dx+
∑

F ′∈FK

∫

F ′

(θfF ·nK|F ′)φds.

Owing to Lemma 14.7, θfF ·nK is piecewise constant with θfF ·nK|F ′ = ιF,K
δFF ′

|F | . Moreover, we

have |K|∇·θfF =
∫
K
∇·θfF dx =

∫
F
θfF ·nK|F ds = ιF,K . We infer that

e·
∫

K

ιF,Kθ
f
F dx = − 1

|K|

∫

K

φdx+
1

|F |

∫

F

φds = −(cK − cF )·e,

since
∫
K φdx = φ(cK)|K| and

∫
F φds = 0. This implies that

∫
K ιF,Kθ

f
F dx = cF − cK since the

above equality holds true for all e ∈ Rd.
(ii) Let x ∈ K. We observe that

∑

F∈FK
|F |θfF (x)⊗ nF =

∑

F∈FK
|F |ιF,KθfF (x)⊗ nK|F

=
∑

F∈FK

|F |
d|K|(x− zZ)⊗ nK|F

=
∑

F∈FK

|F |
d|K|(cK − zi)⊗ nK|F

=
∑

i∈FK

|F |
|K| (cF − cK)⊗ nK|F = Id,

where we used the definition of θfF , the first geometric identity in (7.1) to replace x by cK , the
fact that cK − zF = d(cF − cK), and the second geometric identity in (7.1) to conclude.
(iii) Let v ∈ RTRTRT0,d. We can write v = a + b(x − cK), where a ∈ Rd, b ∈ R, whence we infer
that ∇·v = bd, i.e., b = 1

d∇·v. Moreover, since (x− cK) has zero mean value on K, we infer that
a = 〈v〉K . In conclusion, v = 〈v〉K + 1

d(∇·v)(x− cK).

Exercise 14.2 (RTRTRT0,d in 3D). (i) Let us first notice that the assumption that
(
(zq − zr)×(zp −

zr)
)
·nK|Fi > 0 means that the vectors (zp − zr), (zq − zr), (zi − zr) form a right-handed triple.
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Let us do the computation in the reference simplex. Let ẑr := 0, ẑp − ẑr := (1, 0, 0)T, ẑq − ẑr :=
(0, 1, 0)T, and ẑi − ẑr := (0, 0, 1)T. Then λ̂p = x̂1, λ̂q = x̂2, ∇λ̂p = (1, 0, 0)T, and λ̂q = (0, 1, 0)T.

This implies that ∇λ̂p×∇λ̂q = (0, 0, 1) = ẑi−ẑr. Since 6|K̂| = 1, we infer that ∇λ̂p×∇λ̂q = ẑi−ẑr

6|K̂| .

Let us now prove the formula in K. Let TK be the affine mapping that transforms (ẑp, ẑq, ẑr, ẑi)
into (zp, zq, zr, zi). Let JK be the Jacobian matrix of TK . Observe that det(JK) > 0 since
(ẑp − ẑr), (ẑq − ẑr), (ẑi − ẑr) and (zp − zr), (zq − zr), (zi − zr) form two right-handed triples.
Owing to Exercise 9.5, we infer that

∇λp×∇λq = (J−T

K ∇λ̂p)×(J−T

K ∇λ̂q) = det(J−T

K )JK(∇λ̂p×∇λ̂q)

= det(J−T

K )JK
ẑi − ẑr
6|K̂|

= det(JK)−1 zi − zr
6|K̂|

,

which proves that ∇λp×∇λq = zi−zr
6|K| since det(JK) = |K|

|K̂| . By circular permutation on the

indices (p, q, r) (which does not change the orientation of K), we also have ∇λq×∇λr = zi−zp
6|K| and

∇λr×∇λp =
zi−zq
6|K| .

(ii) Recall that θfi =
x−zi
3|K| and that

x− zi = λp(x)(zp − zi) + λq(x)(zq − zi) + λr(x)(zr − zi).

It follows immediately from Step (i) that

θfi(x) = −2(λp(x)∇λq×∇λr + λq(x)∇λr×∇λp + λr(x)∇λp×∇λq).

Exercise 14.3 (Piola transformation). (i) This identity follows from (9.8c), i.e., ∇·v(x) =
1

det(JK(x̂))∇·ψd
K(v)(x̂).

(ii) We prove the second identity as follows:
∫

K

v·θ dx =

∫

K̂

(v ◦ TK)·(θ ◦ TK)|det(JK)| dx̂

= ǫK

∫

K̂

(det(JK)J−1
K v ◦ TK)·(JTKθ ◦ TK) dx̂

= ǫK

∫

K̂

ψd
K(v)·ψc

K(θ) dx̂.

Exercise 14.4 (Generating RTRTRTk,d). (i) Let x, c ∈ Rd and consider the polynomial q(x) :=∑
|α|=d aαx

α1

1 . . . xαdd . We have

q(x+ c) =
∑

|α|=d
aα(x1 + c1)

α1 . . . (xd + cd)
αd

=
∑

|α|=d
aα(x

α1
1 + r1(x1)) . . . (x

αd
d + rd(xd)),

where ri ∈ Pαi−1,d for all i ∈ {1:d}. We infer that

q(x+ c) =
∑

|α|=d
aαx

α1
1 . . . xαdd + t(x) = q(x) + t(x),

where t ∈ Pk−1,d. Replacing x by Ay, we obtain

q(Ay + c) = q(Ay) + t(Ay).
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But defining r such that r(y) = t(Ay), we have r ∈ Pk−1,d′ .
(ii) Let

pi(y) :=


 ∑

j∈{1:d′}
Aijyj



αi

.

This polynomial is homogeneous of degree αi. Moreover, the product of a homogeneous polynomial
of degree αi with a homogeneous polynomial of degree αj is a homogeneous polynomial of degree
αi + αj . Hence, the polynomial

q(Ay) =
∑

|α|=d
aαp1(y) . . . pd(y)

is homogeneous of degree α1 + . . .+ αd = |α| = k.
(iii) Let TK(x̂) := JKx̂+bK with JK ∈ Rd×d and bK ∈ Rd. Let v be a member of (ψd

K)−1(RTRTRTk,d).
Then, ψd

K(v) = p̂+ x̂q̂ with p̂ ∈ PPPk,d and q̂ ∈ PHk,d, yielding

v = (ψd
K)−1(p̂+ x̂q̂) =

1

det(JK)
JK(p̂ ◦ T−1

K + (x̂q̂) ◦ T−1
K ).

Using x̂ = J−1
K (x− bK), we have

q̂ ◦ T−1
K = q̂(J−1

K x− J−1
K bK) = q̂(J−1

K x) + r,

where r ∈ Pk−1,d, and we have shown that q̂ ◦ J−1
K ∈ PHk,d. Hence, we have

v = s+
1

det(JK)
JKJ

−1
K x(q̂ ◦ J−1

K ) = s+ xt,

where s ∈ PPPk,d and t ∈ PHk,d. We conclude that (ψd
K)−1(RTRTRTk,d) ⊂ RTRTRTk,d.

(iv) The converse inclusion follows from a dimension argument.

Exercise 14.5 (BDM). For d = 2, we have card(Σ) = 3(k+1)+(k−1)(k+1) = (k+1)(k+2) =
dim(PPPk,2). For d = 3, we have card(Σ) = 4 1

2 (k+1)(k+2)+ 1
2 (k− 1)(k+1)(k+2) = 1

2 (k+1)(k+
2)(k + 3) = dim(PPPk,3).

Exercise 14.6 (Cartesian Raviart–Thomas element). (i) A basis for RTRTRT�

0,2 is

{(
1
0

)
,
(
0
1

)
,
(
x1
0

)
,
(

0
x2

)}
,

whereas a basis for RTRTRT�

0,3 is

{(
1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)
,
(
x1
0
0

)
,
(

0
x2
0

)
,
(

0
0
x3

)}
.

(ii) Let v1 ∈ Qk+1,k,...,k so that v1(x) =
∑
α∈A1,k,d

aαx
α1
1 . . . xαdd , where A1,k,d := {(α1, . . . , αd) ∈

Nd | α1 ≤ k + 1, α2, . . . , αd ≤ k}. Hence, ∂1v1(x) =
∑
α aαα1x

α1−1
1 . . . xαdd ∈ Qk,d. The same

reasoning on the other indices implies that ∇·(RTRTRT�

k,d) ⊂ Qk,d. Let us prove that v|H ·nH ∈
Qk,d−1 ◦ T−1

H for all v ∈ RTRTRT�

k,d. We do the proof for nH = e1, which means that x1 is constant
over H . Hence, we have

v|H ·nH = v1|H =
∑

α∈A1,k,d

(aαx
α1
1 )xα2

2 . . . xαdd =
∑

β∈Bk,d
bβx

β1

2 . . . x
βd1
d ,
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where Bk,d := {(β1, . . . , βd−1) ∈ Nd−1 | β1, . . . , βd−1 ≤ k}. Let TH : Rd−1 → H be defined by
TH(y1, . . . , yd−1) := (x1, y1, . . . , yd−1). Then T−1

H (x) = (x2, . . . , xd). Let us define the function

q(y) :=
∑

β∈Bk,d bβy
β1

1 . . . y
βd1
d . Then v|H ·nH = q ◦ T−1

H where q ∈ Qk,d−1.

(iii) Observe first that

card(Σ) = dk(k + 1)d−1 + 2d(k + 1)d−1 = d(k + 1)d−1(k + 2) = dim(RTRTRT�

k ).

Let v ∈ RTRTRT�

k be such that σ(v) = 0 for all σ ∈ Σ. The assumption σf
i,m(v) = 0, for all i ∈ {1:2d}

and allm ∈ {1:nf
sh}, together with the fact that v|Fi ·nFi ∈ Qk,d−1◦T−1

Fi
, implies that v|Fi ·nFi = 0.

This, in turn, implies that v can be rewritten as v = (x1(1 − x1)r1, . . . , xd(1 − xd)rd)T, where
r := (r1, . . . , rd)

T is a member of Qk−1,k,...,k× . . .×Qk,...,k,k−1. Then the assumption σc
i,m(v) = 0

for all i ∈ {1:d} and all m ∈ {1:nc
sh} implies that

∫
K
v·r dx = 0, which, in turn, leads to r = 0,

thereby proving that v = 0.
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Chapter 15

H(curl) finite elements

Exercises

Exercise 15.1 (SSS1,d). (i) Prove that for all q ∈ SSS1,d, there is a unique skew-symmetric matrix Q
s.t. q(x) = Qx. (ii) Propose a basis of SSS1,d. (iii) Show that q ∈ SSS1,3 if and only if there is b ∈ R3

such that q(x) = b×x.

Exercise 15.2 (Cross product). (i) Prove that (Ab)×(Ac) = A(b×c) for every rotation matrix
A ∈ R3×3 and all b, c ∈ R3. (Hint : use Exercise 9.5.) (ii) Show that (a×b)×c = (a·c)b− (b·c)a.
(Hint : (a×b)k = εikjaibj with Levi-Civita tensor εikj ; see also the proof of Lemma 9.6.) (iii)
Prove that −(b×n)×n+ (b·n)n = b if n is a unit vector.

Exercise 15.3 (NNN0,3). (i) Prove (15.4). (Hint : verify that tE ·∇λq = 1 and tE ·∇λp = −1.) (ii)
Prove that v = 〈v〉K + 1

2 (∇×v)×(x− cK) for all v ∈ NNN0,3, where 〈v〉K is the mean value of v on
K and cK is the barycenter of K. (Hint : ∇×(b×x) = 2b for b ∈ R3.) (iii) Let θeE be the shape
function associated with the edge E ∈ EK . Let F ∈ FK with unit normal nK|F pointing outward
K. Prove that (θeE)|F×nK|F = 0 if E is not an edge of F , and

∫
F θ

e
E×nK|F ds = ιE,F (cE − cF )

otherwise, where cE is the barycenter of E, cF that of F , and ιE,F = −1 if nK|F×tE points outward
F , ιE,F = 1 otherwise. (Hint : use Lemma 15.15 and Exercise 14.1(ii).) (iv) Let FE collect the two
faces sharing E ∈ EK . Prove that

∫
K
θeE dx = 1

2

∑
F∈FE ιE,F (cF −cK)×(cE−cF ). (Hint : take the

inner product with an arbitrary vector e ∈ R3 and introduce the function ψ(x) := 1
2e×(x− cK).)

Exercise 15.4 (Rotated RTRTRTk,2). Prove Lemma 15.9. (Hint : observe that Rπ
2
(PPPk,2) = PPPk,2 and

SSSk+1,2 = Rπ
2
(x)PHk,2.)

Exercise 15.5 (Hodge decomposition). Prove that for all k ∈ N,

PPPk+1,d = NNNk,d ⊕∇PHk+2,d.

(Hint : compute NNNk,d ∩ ∇PHk+2,d, and use a dimension argument.)

Exercise 15.6 (Face element). We use the notation from the proof of Lemma 15.15. Let

F ∈ FK . Let TF : Ŝ2 → F be an affine bijective mapping. Let JF be the Jacobian matrix of TF .
Let v ∈ NNNk,3 and let v̂ := JTF (I3 −nF⊗nF )(v ◦TF ). Show that v̂ ∈ NNNk,2. (Hint : compute ŷTv̂(ŷ)
and apply the result from Exercise 14.4.)
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Exercise 15.7 (Geometric mapping TA). Let A be an affine subspace of Rd of dimension
l ∈ {1:d − 1}, d ≥ 2. Let a ∈ A and let PA(x) := a + ΠA(x − a) be the orthogonal projection
onto A, where ΠA ∈ Rd×d. (i) Let n ∈ Rd be such that n·(x − y) = 0 for all x,y ∈ A (we say
that n is normal to A). Show that ΠAn = 0. Let t ∈ Rd be such that a+ t ∈ A (we say that t is
tangent to A). Show that ΠA(t) = t. (ii) Let q ∈ Pk,l and let q̃(x) := q(T−1

A ◦PA(x)). Compute
∇q̃. (iii) Show that there are t1, . . . , tl tangent vectors and q1, . . . , ql polynomials in Pk,l such that
∇q̃(x) =∑s∈{1: l} qs(T

−1
A (x))ts for all x ∈ A. (iv) Let t be a tangent vector. Show that there is

µ ∈ Pk,l such that t·∇q̃(x) = µ(T−1
A (x)).

Exercise 15.8 (Cartesian Nédélec element). (i) Propose a basis for NNN�

0,3. (ii) Prove Proposi-
tion 15.23. (Hint : accept as a fact that any field v ∈ NNN�

k,3 annihiliating all the edge and faces dofs
defined in (15.17) satisfies v|F×nF = 0 for all F ∈ FK ; then adapt the proof of Lemma 15.16 by
using the RTRTRT�

k,3 finite element defined in §14.5.2.)

Solution to exercises

Exercise 15.1 (SSS1,d). (i) Let q ∈ SSS1,d. Since q is homogeneous of degree 1, there is a unique d×d
matrixQ such q(x) = Qx. Then, q ∈ SSS1,d if and only if xTQx = 0 for all x ∈ Rd, which means that
the quadratic form

∑
i∈{1:d}Qiix

2
i +

∑
i6=j∈{1:d}(Qij + Qji)xixj vanishes for all x ∈ Rd. Hence,

Q is skew-symmetric. We have established that there is a one-to-one correspondence between the
members of SSS1,d and the d×d skew-symmetric matrices.

(ii) Consider the d(d−1)
2 skew-symmetric matrices Qij , for all i, j ∈ {1:d} with i 6= j, defined by

Qijkl := δkiδlj − δkjδli (the only nonzero entries of Qij are Qijij = 1 and Qijji = −1). Then, setting

qij(x) := Qijx, we have shown that {qij}i,j∈{1:d},i6=j is a basis of SSS1,d.
(ii) Let us now focus on the case d = 3. The above definitions show that q12(x) = −e3×x,
q23(x) = −e1×x and q31(x) = −e2×x. Hence, for all q(x) = β3q

12(x) + β1q
23(x) + β2q

31(x) ∈
SSS1,3, we have q(x) = b×x, where b := −β1e1 − β2e2 − β3e3.

Exercise 15.2 (Cross product). (i) Using Exercise 9.5, we obtain

(Ab)×(Ac) = det(A)−1A−T(b×c) = A(b×c),

since det(A) = 1 and A−T = A.
(ii) We have (using summation for repeated indices)

((a×b)×c)k = −ciεikjalεljmbm
= −cialbm(δimδkl − δilδkm)

= (a·c)bk − (b·c)ak,

since εikjεljm = δimδkl − δilδkm.
(iii) We apply the formula derived in Step (ii) using n·n = 1.

Exercise 15.3 (NNN0,3). (i) Since tE = zq −zp, (zq −zp)·∇λq = λq(zq)−λq(zp) = 1, and similarly
(zq − zp)·∇λp = −1, we infer that

∫
E
θeE·tE dl =

∫
E
(λp + λq) dl = |E| showing that σe

E(θ
e
E) = 1.

Consider now an edge E′ with E′ 6= E. Then, at least one vertex zp or zq is not in E
′, say zp 6∈ E′.

This implies that λp = 0 in E′ and that tE′ ·∇λp = 0. Hence, σe
E′(θeE) = 0.

(ii) Let v ∈ NNN0,3. Then v = a + b×(x − cK) with a, b ∈ R3, and since cK is the barycenter of
K, we infer that a = 〈v〉K . Furthermore, using the hint yields that ∇×v = 2b. In conclusion,
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v = 〈v〉K + 1
2 (∇×v)×(x− cK).

(iii) The assertion (θeE)|F×nK|F = 0 if E is not an edge of F is a direct consequence of Lemma 15.15
since the three dofs of θeE attached to F vanish. Assume now that E is an edge of F . Observing
that

θeE×nK|F = ιE,FRπ
2
(θeE − (θeE ·nK|F )nK|F ),

where Rπ
2

is the rotation by π
2 in the hyperplane parallel to F , and recalling that Rπ

2
(θeE −

(θeE ·nK|F )nK|F ) ◦ TF is in RTRTRT0,2, we can use Exercise 14.1(ii) to infer that
∫
F
θeE×nK|F ds =

ιE,F (cE − cF ).
(iv) Using the hint, we obtain that

e·
∫

K

θeE dx =

∫

K

(∇×ψ)·θeE =

∫

K

ψ·(∇×θeE) dx−
∑

F∈FK

∫

F

(nK|F×θeE)·ψ ds.

The first term on the right-hand side vanishes since ψ has zero mean value on K and ∇×θeE is
constant on K. Since the summation in the second term reduces to F ∈ FE owing to Step (iii),
we infer that

e·
∫

K

θeE dx = −
∑

F∈FE

∫

F

(nK|F×θeE)·ψ ds =: T1 + T2,

with

T1 := −
∑

F∈FE

∫

F

(nK|F×θeE)·ψ(cF ) ds,

T2 := −
∑

F∈FE

∫

F

(nK|F×θeE)·(ψ −ψ(cF )) ds.

Since ψ(cF ) is constant, we can use Step (iii) to evaluate T1, so that

T1 =
1

2

∑

F∈FE
ιE,F (cE − cF )·(e×(cF − cK))

=
1

2

∑

F∈FE
ιE,Fe·((cF − cK)×(cE − cF )).

Let us finally prove that T2 = 0. Since ψ −ψ(cF ) has zero mean value on F , we can write

T2 = −
∑

F∈FE

∫

F

(nK|F×(θeE − θeE(cF )))·(ψ −ψ(cF )) ds−
∑

F∈FE

∫

F

IF ds.

Since θeE(x)− θeE(cF ) = b×(x− cF ) for some b ∈ R3 and since ψ(x)−ψ(cF ) = 1
2e×(x− cF ), we

obtain that

IF :=
1

2
(nK|F×(b×(x− cF )))·(e×(x− cF ))

=
1

2
(nK|F ·b)(x− cF )·(e×(x− cF )) = 0,

since nK|F ·(x− cF ) = 0.
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Exercise 15.4 (Rotated RTRTRTk,2). We observe that Rπ
2
PPPk,2 = PPPk,2. Moreover, we have

0 = x·q =
∑

l∈{0:k+1}
q1,lx

l+1
1 xk+1−l

2 +
∑

l∈{0:k+1}
q2,lx

l
1x
k+2−l
2 .

This implies that q1,k+1 = 0, q2,0 = 0, and q1,l = −q2,l+1 for all l ∈ {0:k}. Hence, q1 = x2r
and q2 = −x1r with r =

∑
l∈{0:k} q1,lx

l
1x
k−l
2 ∈ PHk,2. This shows that SSSk+1,2 = (Rπ

2
x)PHk,2. We

conclude that NNNk,2 = Rπ
2
(RTRTRTk,2).

Exercise 15.5 (Hodge decomposition). Let v ∈ NNNk,d ∩ ∇PHk+2,d, so that v = ∇p where

p ∈ PHk+2,d. Observe that ∇p ∈ PPPHk+1,d and x·∇p(x) = (k+2)p(x). The assumption v = ∇p ∈ NNNk,d
and the property ∇p ∈ PPPHk+1,d imply that x·∇p(x) = 0, which can be true only if p = 0. Hence,
v = 0. We conclude by using a dimension argument, since we have

dim(NNNk,d) + dim(∇PHk+2,d) = dim(NNNk,d) + dim(PHk+2,d)

=
(k + d+ 1)!

k!(d− 1)!(k + 2)
+

(k + d+ 1)!

(k + 2)!(d− 1)!

= d
(k + d+ 1)!

(k + 1)!d!
= dim(PPPk+1,d).

Exercise 15.6 (Face element). By definition, we have v = r+q where r ∈ PPPk,3 and q ∈ PPPHk+1,3

satisfies yTq(y) = 0. Let ΠF := I3 − nF⊗nF . Let ŷ ∈ R2. We have

ŷTv̂(ŷ) = ŷTJTFΠF (v ◦ TF )(ŷ)
= ŷTJTFΠFr(TF (ŷ)) + (JF ŷ)

TΠFq(TF (ŷ))

= ŷTJTFΠFr(TF (ŷ)) + (JF ŷ)
TΠFq(TF (ŷ)− TF (0R2) + TF (0R2))

= ŷTJTFΠFr(TF (ŷ)) + (JF ŷ)
TΠFq(JF (ŷ) + TF (0R2)).

We now invoke the result from Exercise 14.4 componentwise: there is t̂ ∈ PPPk,2 such that q(JF (ŷ)+
TF (0R2)) = q(JF (ŷ)) + t̂(ŷ). Setting ŝ(ŷ) := ŷTJTFΠF (r(TF (ŷ)) + t̂(ŷ)) where ŝ ∈ Pk+1,2, and
observing that (JF ŷ)TnF = 0 for all ŷ, we obtain

ŷTv̂(ŷ) = ŝ(y) + (JF ŷ)
Tq(JF (ŷ)) = ŝ(y).

Since v̂ ∈ PPPk+1,2, we have the decomposition v̂ = r̂ + q̂ where r̂ ∈ PPPk,2 and q̂ ∈ PPPHk+1,2. We have

ŷTv̂(ŷ) = ŷTr̂(ŷ) + ŷTq̂(ŷ) = ŝ(y) ∈ Pk+1,2,

but ŷTr̂(ŷ) ∈ Pk+1,2 and ŷTq̂(ŷ) ∈ PHk+2,2. Hence, ŷTq̂(ŷ) = 0 for all ŷ, which proves that
v̂ ∈ NNNk,2.

Exercise 15.7 (Geometric mapping TA). (i) These are elementary results in linear algebra. Let
t1, . . . , tl be a basis of A− a. Let nl+1, . . . ,nd be a basis of span{t1, . . . , tl}⊥. Let n be a normal
vector. Let x := a+n. Then PA(x)−a = ΠA(x−a) = ΠA(n). Observe that 0 = ns·(PA(x)−a) =
ns·ΠA(n), for every normal vector ns for all s ∈ {l+1:d}. Note also that ts·(PA(x) − x) = 0
for every tangent vector ts for all s ∈ {1:d}, i.e., 0 = ts·(a + ΠA(n) − x) = ts·(−n + ΠA(n)) =
ts·ΠA(n). Hence, ΠA(n) is orthogonal to span{t1, . . . , tl} ⊕ span{nl+1, . . . ,nd} = Rd, meaning
that ΠA(n) = 0. Let t be a tangent vector and let x = a+ t, so that x ∈ A by definition. Hence,
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t = x− a = PA(x)− a = ΠA(x− a) = ΠA(t).
(ii) Let h ∈ Rd. We use the Fréchet derivative notation and apply the chain rule. This gives

Dq̃(x)(h) = Dq(T−1
A ◦ PA(x))(D(T−1

A ◦ PA(x))(h))
= Dq(T−1

A ◦ PA(x))(DT−1
A (PA(x))(DPA(x)(h))).

Note that DPA(x)(h) = ΠA(h) and DT−1
A (x′)(h′) = J−1

A h
′ for all x′ ∈ A and all h′ ∈ Rd. We

identify the Fréchet derivatives of q̃ and q with the gradients, so that

∇q̃(x)·h := Dq̃(x)(h) = ∇q(T−1
A ◦ PA(x))·(J−1

A ΠA(h))

= ΠA(J
−T

A ∇q(T−1
A ◦ PA(x)))·h, ∀h ∈ Rd.

Hence, we have
∇q̃(x) = ΠT

A(J
−T

A ∇q(T−1
A ◦ PA(x))), ∀x ∈ Rd.

(iii) Let n any normal vector. We have

n·∇q̃(x) = n·ΠT

A(J
−T

A ∇q(T−1
A ◦ PA(x))) = ΠA(n)·J−T

A ∇q(T−1
A ◦ PA(x)) = 0,

since we have already proved that ΠA(n) = 0. Hence, ∇q̃(x) ∈ span{t1, . . . , tl}. Moreover, since
PA(x) = x for all x ∈ A, we have

∇q̃(x) = ΠA(J
−T

A ∇q(T−1
A (x))), ∀x ∈ A.

Hence, ∇q̃(x) is an l-variate Rd-valued polynomial of degree at most k. The above two arguments
show that there exist q1, . . . , ql ∈ Pl,d such that

∇q̃(x) =
∑

s∈{1: l}
qs(T

−1
A (x))ts, ∀x ∈ A.

(iv) Let t be a tangent vector. The above arguments show that there is µ ∈ Pk,l such that

t·∇q̃(x) = µ(T−1
A (x)), ∀x ∈ A.

Exercise 15.8 (Cartesian Nédélec element). (i) A basis for NNN�

0,3 is

{(
x2x3
0
0

)
,
(
x2(1−x3)

0
0

)
,
(

(1−x2)x3

0
0

)
,
(

(1−x2)(1−x3)
0
0

)
,

(
0

x3x1
0

)
,
(

0
x3(1−x1)

0

)
,
(

0
(1−x3)x1

0

)
,
(

0
(1−x3)(1−x1)

0

)
,

(
0
0

x1x2

)
,
(

0
0

x1(1−x2)

)
,
(

0
0

(1−x1)x2

)
,
(

0
0

(1−x1)(1−x2)

)}
.

(ii) Observe first that card(Σ) = 3k2(k+1)+12k(k+1)+12(k+1) = 3(k+1)(k+2)2 = dimNNN�

k,3.
It remains to show that any field v ∈ NNN�

k,3 that annihilates all the dofs defined in (15.17) vanishes
identically. Owing to the hint, we already know that v|∂K×nK = 0.
(ii.a) Let us first prove that w := ∇×v = 0. The definition of the polynomial spaces NNN�

k,3 and
RTRTRT�

k,3 implies that w ∈ Qk+1,k,k×Qk,k+1,k×Qk,k,k+1 = RTRTRT�

k,3. Thus, we are going to show that
w = 0 by invoking Proposition 14.24, i.e., by showing that w annihilates all the dofs defined
in (14.16). First, we observe that the normal component of w vanishes on ∂K since v|∂K×nK = 0.
Therefore, w annihilates all the face dofs in (14.16). Let j ∈ {1:d} and let {ψj,m}m∈{1:nc

sh}
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be a basis of Qα1,α2,α3 with αj = k − 1 and αj′ = k if j′ 6= j. Let {νK,j := |Fj |ej}j∈{1:d}
be the vectors orienting K, where {ej}j∈{1:d} is the canonical Cartesian basis of Rd. Setting
φj,m := νK,jψm,j, we have

∫
K
w·φj,m dx =

∫
K
v·∇×φj,m dx since v|∂K×nK = 0. Since we have

∇×φj,m =
∑

j∈{1:d} ejrj,m with rj,m ∈ Qβ1,β2,β3 with βj = k and βj′ = k − 1 if j′ 6= j, we infer

from (15.17c) that
∫
K v·∇×φj,m dx = 0. In conclusion, w annihilates all the cell dofs of the RTRTRT�

k,3

finite element as well. Hence, w = 0.
(ii.b) Since the field v ∈ NNN�

k,3 is curl-free, there is q ∈ Qk+1,3 such that v = ∇q. The property
v|∂K×nK = 0 implies that q is constant on ∂K, and without loss of generality, we assume that
q|∂K = 0. If k = 0, this implies that q = 0, so that it remains to consider the case k ≥ 1. In
this situation, there is q̃ ∈ Qk−1,3 such that q = bq̃ with b :=

∏
i∈{1:d} xi(1 − xi). Let us write

q̃ =
∑

α∈Bk−1,3
aαx

α with Bk−1,3 := {α ∈ N3 | αi ∈ {0:k−1}, ∀i ∈ {1:d}}. We consider the

polynomial r(x) :=
∑

α∈Bk−1,3

1
α1+1aαx1x

α. We have r ∈ Qk,k−1,k−1 so that (15.17c) implies that∫
K
v·(e1r) dx = 0. Since v = ∇q, ∇·(e1r) = q̃, and q|∂K = 0, we infer that

0 =

∫

K

v·(e1r) dx = −
∫

K

bq̃2 dx,

which proves that q̃ vanishes identically. In conclusion, we have shown that v = 0. This completes
the proof.



Chapter 16

Local interpolation in H(div) and
H(curl) (I)

Exercises

Exercise 16.1 (V̌ d(K)). Show that V d(K) defined in (16.2) can be used in the commuting
diagram of Lemma 16.2 after replacing L1(K) by W s−1,p(K). (Hint : use Theorem 3.19.)

Exercise 16.2 (IdK). Prove that the estimate (16.6) holds true for all r ∈ [1, k + 1], r 6∈ N,
every integer m ∈ {0:⌊r⌋}, and all p ∈ [1,∞). Prove that (16.7) holds true for all r ∈ [0, k + 1],
r 6∈ N, every integer m ∈ {0:⌊r⌋}, and all p ∈ [1,∞). (Hint : combine Wm,p-stability with
Corollary 12.13.)

Exercise 16.3 (de Rham). Prove that the leftmost diagram in Lemma 16.16 commutes. (Hint :
verify that ∇IgK(v)− IcK(∇v) annihilates all dofs in NNNk,d.)

Exercise 16.4 (Poincaré operators). Assume that K is star-shaped with respect to a point

a ∈ K. Let f and g be smooth functions on K. Define P g(g)(x) := (x−a)·
∫ 1

0
g(a+ t(x−a)) dt,

P c(g)(x) := −(x− a)×
∫ 1

0 g(a+ t(x− a)) dt (if d = 3), and P d(f)(x) := (x− a)
∫ 1

0 f(a+ t(x−
a))td−1 dt. Verify that (i) ∇P g(g) = g if ∂igj = ∂jgi for all i, j ∈ {1:d}; (ii) ∇×P c(g) = g if
∇·g = 0; (iii) ∇·P d(f) = f .

Exercise 16.5 (Koszul operator). (i) Let v ∈ PPPHk,d with d = 3. Prove that∇(x·v)−x×(∇×v) =
(k + 1)v and −∇×(x×v) + x(∇·v) = (k + 2)v. (Hint : use Euler’s identity from Lemma 14.3.)
(ii) Prove that PPPk,d = ∇Pk+1,d ⊕ (x×PPPk−1,d) = ∇×PPPk+1,d ⊕ (xPk−1,d). (Hint : establish first these
identities for homogeneous polynomials.) Note: defining the Koszul operators κg(v) := x·v and
κc(v) := −x×v for vector fields and κd(v) := xv for scalar fields, one has κg(∇q) = kq (Euler’s
identity) and ∇·(κd(q)) = (k + d)q for all q ∈ PHk,d, and ∇(κg(q)) + κc(∇×q) = (k + 1)q and

∇×(κc(q)) + κd(∇·q) = (k + 2)q for all q ∈ PPPHk,d; see [1, Sec. 3.2].

Exercise 16.6 (∇·RTRTRTk,d and ∇×NNNk,3). (i) Prove that ∇·RTRTRTk,d = Pk,d. (Hint : prove that
∇· : xPk,d → Pk,d is injective using Lemma 14.3.) (ii) Let us set RTRTRTdiv=0

k,d := {v ∈ RTRTRTk,d | ∇·v =

0}. Determine dim(RTRTRTdiv=0
k,d ) for d ∈ {2, 3}. (iii) Show that RTRTRTdiv=0

k,3 = ∇×PPPk+1,3. (Hint : use

Lemma 14.9.) (iv) Prove that RTRTRTdiv=0
k,3 = ∇×NNNk,3. (Hint : use the rank nullity theorem.)
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Exercise 16.7 (∇Pk+1,d and ∇×PPPk+1,3). Let k ∈ N. (i) Set PPPck,d := ∇Pk+1,d. Show that

dim(PPPck,d) =
(
k+d+1
d

)
− 1. (ii) Assume d = 3. Set PPPdk,3 := ∇×PPPk+1,3. Show that dim(PPPdk,3) =

3
(
k+4
3

)
−
(
k+5
3

)
+ 1 = 3

(
k+3
3

)
−
(
k+2
3

)
(with the convention that

(
2
3

)
= 0). (Hint : use the exact

cochain complex P0,d
i−→ Pk+2,d

∇−→ PPPk+1,d
∇×−→ PPPk,d

∇·−→ Pk−1,d
o−→ {0}.)

Solution to exercises

Exercise 16.1 (V̌ d(K)). Let s < 1 (the case s ≥ 1 is trivial). The proof of Proposition 16.1
shows that after integration by parts, the term

∫
K(∇·v)q dx can be given a weak meaning for

v ∈ V d(K) and q ∈ Pk,d. One replaces L1(K) by W s−1,p(K) := (W 1−s,p′
0 (K))′ and extends the

domain of IbK to W s−1,p(K), which is legitimate since W 1−s,p′
0 (K) =W 1−s,p′(K) owing to (3.5a)

and 1− s < 1− 1
p = 1

p′ .

Exercise 16.2 (IdK). Let us consider the estimate (16.6). Let r ∈ [1, k + 1], r 6∈ N, m ∈ {0:⌊r⌋},
and p ∈ [1,∞). Notice that ⌊r⌋ ≥ 1. For all m ∈ {1:⌊r⌋}, we have Wm,p(K) →֒ V d(K) (see
(16.2)). Hence, IdK is Wm,p-stable. Since m ≤ ⌊r⌋ ≤ k and since PPPk,d ⊂ RTRTRTk,d is pointwise
invariant under IdK , we infer that

|v − IdK(v)|Wm,p(K) ≤ c inf
q∈PPPk,d

|v − q|Wm,p(K),

and we conclude by invoking Corollary 12.13. If m = 0, we reason similarly by using the fact
that the stability property (16.8) also holds true for r ≥ 1 (because W 1,p(K) →֒ V d(K)), and
we conclude as above. Finally, the reasoning for the estimate on the divergence is similar since
Lemma 11.18 implies that IbK is Wm,p-stable for all m ∈ {0:⌊r⌋}.

Exercise 16.3 (de Rham). We first notice that ∇Pk+1,d ⊂ PPPk,d ⊂ NNNk,d. Let us prove that
σi(δ) = 0 with δ = ∇IgK(v) − IcK(∇v) for all v ∈ V̌ g(K) and all the dofs {σi}i∈N of the NNNk,d
element. Let E ∈ EK be an edge ofK with geometric mapping TE and let zp, zq be the end vertices
of E such that tE = zq−zp. Set τE := |E|−1tE . Let µm ∈ Pk,1. Using τE ·∇(µm◦T−1

E ) = µ′
m◦T−1

E

and µ′
m ∈ Pk−1,1 (if k ≥ 1, or µ′

m = 0 otherwise), together with the definitions of the dofs (7.11a),
(7.11b), and (15.8a), we infer that (denoting µE,m := µm ◦ T−1

E )

∫

E

∇IgK(v)·τEµE,m dl =
[
IgK(v)µE,m

]zq
zp
−
∫

E

τE ·∇(µm ◦ T−1
E )IgK(v) dl

=
[
vµE,m

]zq
zp
−
∫

E

(µ′
m ◦ T−1

E )v dl

=

∫

E

∇v·τEµE,m dl =

∫

E

IcK(∇v)·τEµE,m dl.

Hence, δ annihilates all the edge dofs of the NNNk,d element. The proof is similar for the surface and
volume dofs.
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Exercise 16.4 (Poincaré operators). (i) We have

∇P g(g)(x) =

∫ 1

0

g(a+ t(x− a)) dt+
∫ 1

0

∇g(a + t(x− a))·(x− a)t dt

= g(x)−
∫ 1

0

d
dtg(a + t(x− a))t dt+

∫ 1

0

∇g(a + t(x− a))·(x− a)t dt

= g(x) +

∫ 1

0

(∇g −∇gT)(a+ t(x− a))·(x− a)t dt

= g(x),

where we integrated by parts with respect to t, used that d
dtg(a + t(x − a)) = ∇gT(a + t(x −

a))·(x− a), and that ∇g = ∇gT by assumption.
(ii) Since ∇×(φ×ψ) = (∇·ψ)φ− (φ·∇)ψ) − (∇·φ)ψ + (ψ·∇)φ, we have

∇×P c(g)(x) =

∫ 1

0

∇gT(a + t(x− a))·(x− a)t2 dt− 2

∫ 1

0

g(a+ t(x− a))t dt

= g(x) +

∫ 1

0

∇gT(a + t(x− a))·(x− a)t2 dt−
∫ 1

0

d
dtg(a + t(x− a))t2 dt

= g(x),

where we used that ∇·g = 0, ∇·(x− a) = 3, and (ψ·∇)(x− a) = ψ.
(iii) We have

∇·P d(f)(x) = d

∫ 1

0

f(a+ t(x− a))td−1 dt+ (x− a)·
∫ 1

0

∇f(a+ t(x− a))td dt

= f(x)−
∫ 1

0

d
dtf(a+ t(x− a))td dt+ (x− a)·

∫ 1

0

∇f(a+ t(x− a))td dt

= f(x).

Exercise 16.5 (Koszul operator). (i) Recall that ∇v has components (∇v)ij = ∂jvi for all
i, j ∈ {1:d}. We have ∇(x·v) = v + (∇v)Tx and x×(∇×v) = (∇v)Tx− (∇v)x. Thus, ∇(x·v)−
x×(∇×v) = v + (∇v)x, and applying Euler’s identity to each component of v, we infer that
(∇v)x = (x·∇)v = kv. In conclusion, ∇(x·v) − x×(∇×v) = (k + 1)v. Let us now consider the
second identity. We have ∇×(x×v) = x(∇·v) − (x·∇)v + v − (∇·x)v = x(∇·v) − (x·∇)v − 2v.
Hence, we have −∇×(x×v) + x(∇·v) = (x·∇)v + 2v = (k + 2)v, where we used again Euler’s
identity to conclude.
(ii) Let us prove that PPPHk,d = ∇PHk+1,d ⊕ x×PPPHk−1,d. Let v ∈ PPPHk,d. Then q := 1

k+1x·v ∈ PHk+1,d and

w := − 1
k+1∇×v ∈ PPPHk−1,d. The above identity implies that

∇q + x×w =
1

k + 1
(∇(x·v)− x×∇×v) = v.

This proves that PPPHk,d ⊂ ∇PHk+1,d + (x×PPPHk−1,d), and the other inclusion is evident. Moreover, the

sum is direct. Indeed, if v ∈ PPPHk,d is s.t. v = ∇q = x×w for some q ∈ PHk+1,d and some w ∈ PPPHk−1,d,
then ∇×v = 0 and x·v = 0, so that the above identity implies that (k + 1)v = ∇(x·v) −
x×(∇×v) = 0 − 0 = 0, i.e., v = 0. This establishes that PPPHk,d = ∇PHk+1,d ⊕ (x×PPPHk−1,d), and
by decomposing polynomials into homogeneous components, we conclude that PPPk,d = ∇Pk+1,d ⊕
(x×PPPk−1,d). Finally, the proof that PPPk,d = ∇×PPPk+1,d ⊕ (xPk−1,d) is similar.
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Exercise 16.6 (∇·RTRTRTk,d and ∇×NNNk,3). (i) Let q ∈ Pk,d be such that ∇·(xq) = 0. Writing
q :=

∑
l∈{0:k} q

H
l with qHl ∈ PHl,d, we infer using Lemma 14.3 that 0 = ∇·(xq) =∑l∈{0:k}(l+ d)qHl ,

so that all the homogeneous polynomials qHl vanish. This shows that ∇· : xPk,d → Pk,d is injective.
Since dim(xPk,d) = dim(Pk,d), we infer that ∇· : xPk,d → Pk,d has full rank. The surjectivity of
∇· : RTRTRTk,d → Pk,d follows from xPk,d ⊂ RTRTRTk,d.
(ii) Using the rank nullity theorem, we infer that dim(RTRTRTdiv=0

k,d ) = dim(RTRTRTk,d)− dim(Pk,d). Using

Lemma 14.6, we obtain for d = 2 that dim(RTRTRTdiv=0
k,2 ) = (k + 1)(k + 3) − 1

2 (k + 1)(k + 2) =
1
2 (k + 1)(k + 4), and for d = 3,

dim(RTRTRTdiv=0
k,3 ) =

1

2
(k + 1)(k + 2)(k + 4)− 1

6
(k + 1)(k + 2)(k + 3)

=
1

6
(k + 1)(k + 2)(2k + 9).

(iii) The identity RTRTRTdiv=0
k,3 = ∇×PPPk+1,3 follows from the hint since RTRTRTdiv=0

k,3 ⊂ PPPk,3 by Lemma 14.9.

We can now compute in a different way the dimension of dim(RTRTRTdiv=0
k,3 ). This gives

dim(RTRTRTdiv=0
k,3 ) = dim(PPPck+1,3)

⊥ = 3

(
k + 4

3

)
−
(
k + 5

3

)
+ 1

=
1

6
(k + 1)(k + 2)(2k + 9).

(iv) We have ∇× : NNNk,3 → RTRTRTdiv=0
k,3 since ∇×v ∈ PPPk,3 ⊂ RTRTRTk,3 (see Lemma 15.10) and ∇·(∇×v) =

0. Moreover, we have already shown that ∇×v = 0 implies that v ∈ ∇Pk+1,3. Hence ∇× :
NNNk,3/∇Pk+1,3 → RTRTRTdiv=0

k,3 is injective. Now, dim(∇Pk+1,3) = dim(Pk+1,3)− 1, so that

dim(NNNk,3/∇Pk+1,3) = dim(NNNk,3)− dim(Pk+1,3) + 1

=
1

2
(k + 1)(k + 3)(k + 4)− 1

6
(k + 2)(k + 3)(k + 4) + 1

=
1

6
(k + 1)(k + 2)(2k + 9) = dim(RTRTRTdiv=0

k,3 ),

owing to Step (iii). The rank nullity theorem implies that ∇× : NNNk,3 → RTRTRTdiv=0
k,3 is surjective.

Exercise 16.7 (∇Pk+1,d and ∇×PPPk+1,3). (i) Let ∇ : Pk+1,d −→ PPPk,d. The rank nullity theorem

says that dim(ker∇) + dim(im∇) = dim(Pk+1,d) =
(
k+1+d
d

)
. Since dim(ker∇) = 1, we have

dim(PPPck,d) = dim(im∇) =
(
k+1+d
d

)
− 1.

(ii) We have PPPdk,3 = im(∇×). The first equality follows from

dim(PPPdk,3) = dim(PPPk+1,3)− dim(ker∇×)
= dim(PPPk+1,3)− dim(im∇)
= dim(PPPk+1,3)− dim(Pk+2,3) + dim(ker∇)

= dim(PPPk+1,3)− dim(Pk+2,3) + 1 = 3

(
k + 4

3

)
−
(
k + 5

3

)
− 1,

where we used the rank nullity theorem, that ker(∇×) = im(∇), the rank nullity theorem again,
and that ker(∇) is composed of constant functions. The second equality follows from

dim(PPPdk,3) = dim(im∇×) = dim(ker∇·)

= dim(PPPk,3)− dim(im∇·) = 3

(
k + 3

3

)
−
(
k + 2

3

)
,

where we used that im(∇×) = ker(∇·), the rank nullity theorem, and the surjectivity of ∇·.



Chapter 17

Local interpolation in H(div) and
H(curl) (II)

Exercises

Exercise 17.1 (Lifting). Let D := (0, 1)2. Let x := (x1, x2)
T and consider the function φ(x) :=

x1√
x2
1+x

2
2

. (i) Compute limx1↓0 φ(x) and limx2↓0 φ(x). (ii) Without invoking a trace argument,

prove directly that φ 6∈ H1(D). (iii) Construct a function ψ ∈ C∞(D; [0, 1]) s.t. limx1↓0 ψ(x) = 0,
limx2↑1 ψ(x) = 0, limx1↑1 ψ(x) = 0, and limx2↓0 ψ(x) = 1.

Exercise 17.2 (Extended face dofs for RTRTRTk,d). (i) Let ǫK,F := nF ·nK|F , ǫK̂,F̂ := nF̂ ·nK̂|F̂ ,
and ǫK := det(JK)/|det(JK)|. Prove that ǫK,F = ǫK̂,F̂ ǫK . (ii) Prove (17.17). (Hint : show that

LKF (ζm ◦ T−1
K,F ) = LK̂

F̂
(ζm ◦ T−1

F̂
) ◦ T−1

K and use (9.8a).)

Exercise 17.3 (IcK). (i) Let r > 1
2 and p ∈ (2, 4

3−2r ]. Prove the stability estimate ‖IcK(v)‖L2(K) ≤
c
(
‖v‖L2(K) + hrK |v|Hr(K) + h

1+3( 1
2− 1

p )

K ‖∇×v‖Lp(K)

)
for all v ∈ V c(K). (Hint : use the trace

theorem (Theorem 3.10), the Sobolev embedding theorem (Theorem 2.31), and reason as in the
proof of Theorem 17.5.) (ii) Prove Theorem 17.11. (Hint : proceed as in the proof of Theorem 17.5.)

Exercise 17.4 (Extended edge dofs for NNNk,d). Use the notation from Remark 17.10. (i) Let
w ∈ C1(K) be a smooth function. Prove that ǫK,F,E = ǫKǫK̂,F̂ ,Ê where ǫK := det(JK)/|det(JK)|.
(Hint : apply the Kelvin–Stokes formula (16.15) to the shape function of the lowest-order Nédélec el-
ement associated with E). (ii) Prove (17.28). (Hint : proceed as in Exercise 17.2(ii) and use (9.8b).)

Solution to exercises

Exercise 17.1 (Lifting). (i) We have

lim
x1↓0

φ(x) = 0 and lim
x2↓0

φ(x) = 1.
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(ii) Using polar coordinates, we have φ(x) = cos(θ). Hence, ∇φ(x) = (0,− 1
r sin(θ))

T. This implies
that

|φ|2H1(D) ≥
∫ 1

0

∫ π
2

0

1

r2
sin(θ)2r dr dθ =

π

4

∫ 1

0

1

r
dr =∞.

This proves that φ 6∈ H1(D).
(iii) The following function satisfies the requirements in the question:

ψ(x) =
x1√
x21 + x22

1− x1√
(1 − x1)2 + x22

(1− x2).

One can verify that ψ ∈ Hs(D) for all s ∈ [0, 1).

Exercise 17.2 (Extended face dofs for RTRTRTk,d). (i) Since the orientation of the mesh Th is
generation-compatible according to Definition 10.3, the unit normal vectors nF and nF̂ are con-
nected by nF = Φd

K(n̂F̂ ), and recalling the definition (9.14a) of Φd
K leads to

nF = ǫK
1

‖J−T

K n̂F̂ ‖ℓ2
J−T

K n̂F̂ .

Moreover, Lemma 9.11 implies that

nK|F =
1

‖J−T

K n̂K̂|F̂ ‖ℓ2
J−T

K n̂K̂|F̂ .

Hence, we have

1

‖J−T

K n̂K̂|F̂ ‖ℓ2
J−T

K n̂K̂|F̂ = nK|F = ǫK,FnF

= ǫK,F ǫK
1

‖JKn̂F̂ ‖ℓ2
J−T

K n̂F̂

= ǫK,F ǫKǫK̂,F̂
1

‖J−T

K n̂K̂|F̂ ‖ℓ2
J−T

K n̂K̂|F̂ .

This proves that ǫK,F = ǫKǫK̂,F̂ .

(ii) By definition, we have

σf
F,m(v) = σ̂f

F̂ ,m
(ψd

K(v))

= ǫK̂,F̂

∫

K̂

(
ψd
K(v)·∇LK̂

F̂
(ζm ◦ T−1

F̂
) + (∇·ψd

K(v))LK̂
F̂
(ζm ◦ T−1

F̂
)
)
dx̂.

Now, for all x ∈ F = TK(F̂ ), we use the definition of LKF stated in (17.9). This gives

LKF (ζm ◦ T−1
K,F )(x) = LKF (ζm ◦ T−1

F̂
◦ T−1

K|F̂ )(x)

= LK̂
F̂
(ζm ◦ T−1

F̂
◦ T−1

K|F̂ ◦ TK|F̂ )(T
−1
K (x))

= LK̂
F̂
(ζm ◦ T−1

F̂
)(T−1

K (x)),
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where we used that T−1
K,F = T−1

F̂
◦ T−1

K|F̂ . Owing to (9.8a) and since JK is constant, we infer that

∇(LK̂
F̂
(ζm ◦ T−1

F̂
))(x̂) = ∇(LKF (ζm ◦ T−1

K,F ) ◦ TK)(x̂)

= JTK∇(LKF (ζm ◦ T−1
K,F ))(TK(x̂)).

This, in turn, implies that

σf
F,m(v) = ǫK̂,F̂

∫

K̂

(
ψd
K(v)·∇(LK̂

F̂
(ζm ◦ T−1

F̂
)) + (∇·ψd

K(v))LK̂
F̂
(ζm ◦ T−1

F̂
)
)
dx̂

= ǫK̂,F̂

∫

K̂

(
det(JK)J−1

K v·JTK∇(LKF (ζm ◦ T−1
K,F ))

+ det(JK)(∇·v)LKF (ζm ◦ T−1
K,F )

)
(TK(x̂)) dx̂

= ǫK̂,F̂ ǫK

∫

K

(
v·∇(LKF (ζm ◦ T−1

K,F )) + (∇·v)LKF (ζm ◦ T−1
K,F )

)
(x) dx,

with ǫK := det(JK)/|det(JK)|. We conclude using the identity ǫK,F = ǫKǫK̂,F̂ from Step (i).

Exercise 17.3 (IcK). (i) Using Proposition 12.5, Ac
K := JTK , and the regularity of the mesh

sequence, we infer that

‖IcK(v)‖L2(K) ≤ c h
3
2−1

K max
i∈N
|σK,i(v)|.

Proposition 17.9 leads to

‖IcK(v)‖L2(K) ≤ c h
3
2

K

(
h
− 3
p

K ‖v‖Lp(K) + h
1− 3

p

K ‖∇×v‖Lp(K) + h
− 2
p

K ‖v×nK‖Lp(∂K)

)
.

Since v ∈ Hr(K), r > 1
2 , the trace theorem (Theorem 3.10) implies that v×nK ∈ Lp(∂K) since

p ∈ (2, 4
3−2r ]. The Sobolev embedding theorem (Theorem 2.31) implies that v ∈ Lq(K) with

q := 6
3−2r > p. Reasoning as in the proof of Theorem 17.5, we infer that

h
− 3
p

K ‖v‖Lp(K) + h
− 2
p

K ‖v×nK‖Lp(∂K) ≤ c
(
h
− 3

2

K ‖v‖L2(K) + h
r− 3

2

K |v|Hr(K)

)
.

This leads to

‖IcK(v)‖L2(K) ≤ c
(
‖v‖L2(K) + hrK |v|Hr(K) + h

1+3( 1
2− 1

p )

K ‖∇×v‖Lp(K)

)
,

which is the expected stability bound.
(ii) We can now conclude by proceeding as in the proof of Theorem 17.5. We combine the stability
bound from Step (i) with the fact that PPP0,d is pointwise invariant under IcK , the fractional Poincaré–
Steklov inequality from Lemma 12.12, and that |v − q|Hr(K) = |v|Hr(K) and ∇×(v − q) = ∇×v
for all q ∈ PPP0,d.

Exercise 17.4 (Extended edge dofs). (i) Let θeE be the shape function of the lowest-order
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Nédélec element associated with the edge E. We have

ǫK,F,E = ǫK,F,Eσ
e
E(θ

e
E) = ǫK,F,E

1

|E|

∫

E

(θeE ·tE) dl = ǫK,F,E

∫

E

(θeE ·τE) dl

=

∫

E

(θeE ·τK,F |E) dl =
∫

∂F

(θeE ·τK,F ) dl

=

∫

F

(∇×θeE)·nK|F ds =

∫

F

(J−1
K (∇×θeE))·(JTKnK|F ) ds

=

∫

F

det(J−1
K )
(
(∇×ψc

K(θeE))·n̂K̂|F̂
)
◦ T−1

K[F ‖JTKnK|F ‖ℓ2 ds

= ǫK

∫

F̂

(∇×ψc
K(θeE))·n̂K̂|F̂ dŝ,

where we used the definition of the NNN0,d dofs and of the tangent vectors tE and τE in the first
line, the definition of ǫK,F,E and the fact that θeE has zero tangential component on ∂F\E in the
second line, the Kelvin–Stokes formula (16.15) and an elementary manipulation in the third line,
the identity (9.8b) and the fact that JTKnK|F = ‖JTKnK|F ‖ℓ2n̂K̂|F̂ ◦T−1

K|F in the fourth line, and the

transformation of surface measures in the fifth line. Since ψc
K(θeE) is the reference shape function

of the lowest-order Nédélec element associated with the edge Ê s.t. TK(Ê) = E, we conclude using
the same arguments as above that

ǫK̂,F̂ ,Ê = ǫK̂,F̂ ,Êσ̂
e
E(ψ

c
K(θeE)) =

∫

F̂

(∇×ψc
K(θeE))·n̂K̂|F̂ dŝ,

and putting everything together yields the expected identity.
(ii) Let v ∈ V c(K). By definition, we have σe

E,m = σ̂e
Ê,m

(ψc
K(v)) = ǫK̂,F̂ ,Ê(T1 + T2) with

T1 :=

∫

K̂

(∇×ψc
K(v))·∇LK̂

Ê
(µm ◦ T−1

Ê
) dx̂,

T2 :=

∫

F̂

(ψc
K(v)×n̂K̂|F̂ )·∇LF̂Ê(µm ◦ T

−1

Ê
) dŝ.

Proceeding as in Step (ii) of Exercise 17.2, we infer that LK̂
Ê
(µm ◦T−1

Ê
) = LKE (µm ◦T−1

K,E) ◦TK , so

that invoking (9.8a) we obtain

∇LK̂
Ê
(µm ◦ T−1

Ê
) = JTK(∇LKE (µm ◦ T−1

K,E)) ◦ TK .

Invoking (9.8b), we infer that

T1 =

∫

K̂

det(JK)
(
J−1
K (∇×v)·JTK(∇LKE (µm ◦ T−1

K,E))
)
◦ TK dx̂

= ǫK

∫

K

(∇×v)·∇LKE (µm ◦ T−1
K,E) dx.

Similarly, we have ∇LF̂
Ê
(µm ◦ T−1

Ê
) = JTK(∇LFE(µm ◦ T−1

K,E)) ◦ TK , and

ψc
K(v)×n̂K̂|F̂ =

1

‖JTKnK|F ‖ℓ2
((JTKv)×(JTKnK|F )) ◦ TK|F̂

= det(JK)
1

‖JTKnK|F ‖ℓ2
J−1
K (v×nK|F ) ◦ TK|F̂ ,
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where we used the definition of ψc
K , the identity (9.10) on the transformation of unit normals, and

‖(JTKnK|F )(x)‖ℓ2 = ‖(J−T

K n̂K̂|F̂ )(x̂)‖−1
ℓ2 in the first line, and the identity from Exercise 9.5 in the

second line. Using Lemma 9.12 on the transformation of surface measures, we infer that

T2 =

∫

F̂

(
(JTKv×

JTKnK|F
‖JTKnK|F ‖ℓ2

)·JTK(∇LFE(µm ◦ T−1
K,E))

)
◦ TK|F̂ dŝ

=

∫

F̂

det(JK)
1

‖JTKnK|F ‖ℓ2
(
J−1
K (v×nK|F )·JTK(∇LFE(µm ◦ T−1

K,E))
)
◦ TK|F̂ dŝ

= ǫK

∫

F

(v×nK|F )·∇LFE(µm ◦ T−1
K,E) ds.

Putting everything together and using the identity ǫK,F,E = ǫKǫK̂,F̂ ,Ê from Step (i) proves

that (17.28) holds true.
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Chapter 18

From broken to conforming spaces

Exercises

Exercise 18.1 (H(div), H(curl)). Prove Theorem 18.10. (Hint : use (4.8).)

Exercise 18.2 (Discrete Sobolev inequality). (i) Assume d ≥ 3. Prove that ‖vh‖L∞(K) ≤
ch

1−d
2

K ‖∇vh‖L2(K) for all vh ∈ P g,b
k (Th), all K ∈ Th, and all h ∈ H. (Hint : use Theorem 2.31.)

(ii) Assume d = 2. Prove (18.15). (Hint : let K ∈ Th with hK ≤ δD
2 , let x ∈ K and let y

have polar coordinates (r, θ) with respect to x with r ≥ δD
2 and θ ∈ (0, ω), use that vh(x) =

vh(y) −
∫ r
0 ∂ρvh(ρ, θ) dρ, decompose the integral as

∫ r
0 · dρ =

∫ hK
0 · dρ +

∫ r
hK
· dρ, and bound the

two addends.)

Exercise 18.3 (Orthogonal and oblique projections). (i) Show that I♯
K̂

is the L2-orthogonal

projection onto P̂ . (Hint : observe that (ρ̂i, θ̂j)L2(K̂;Rq) = |K̂|δij for all i, j ∈ N .) (ii) Prove that

I♯K is the oblique projection onto PK = ψ−1
K (P̂ ) parallel to Q⊥

K with QK := Φ−1
K (P̂ ). (Hint :

use (18.17).) (iii) Show that PK = QK if the matrix AK is unitary, i.e., AT

KAK = AKAT

K = Iq.

Exercise 18.4 (Approximation on faces). Prove (18.28).

Solution to exercises

Exercise 18.1 (H(div), H(curl)). Let v ∈W 1,p(Th). Using the hint, we infer for the divergence
that ∫

D

v·∇Φdx =
∑

K∈Th
−
∫

K

∇·(v|K)Φ dx+
∑

F∈F◦
h

∫

F

[[v·n]]FΦds,

for all Φ ∈ C∞
0 (D), and we infer for the curl that
∫

D

v·∇×Φ dx =
∑

K∈Th

∫

K

∇×(v|K)·Φ dx+
∑

F∈F◦
h

∫

F

[[v×n]]F ·Φ ds,

for all Φ ∈ C∞
0 (D). The rest of the proof follows the same arguments as those presented in the

proof of Theorem 18.8.
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Exercise 18.2 (Discrete Sobolev inequality). (i) It suffices to apply the inverse inequal-
ity (12.3) with p :=∞ and q := 2∗ := 2d

d−2 followed by Theorem 2.31.

(ii) Let vh ∈ P g
k (Th) and let K ∈ Th be such that hK ≤ δD

2 . Fix x ∈ K. Set C♯(x) := {y ∈
C(x) | ‖y− x‖ℓ2(R2) ≥ δD

2 }. Let y be arbitrary in C♯(x) with polar coordinates (r, θ) with respect

to x. Since vh(x) = vh(y)−
∫ r
0 ∂ρvh(ρ, θ) dρ, we infer that

|vh(x)|2 ≤ 2|vh(y)|2 + 2(I1 + I2)
2,

with

I1 :=

∫ hK

0

∂ρvh(ρ, θ) dρ, I2 :=

∫ r

hK

∂ρvh(ρ, θ) dρ.

Concerning I1, let B(x, hK) be the ball of center x and radius hK and set Tx := {K ′ ∈ Th | K ′ ∩
(B(x, hK) ∩ C(x)) 6= ∅}, as illustrated in the figure below.

x

y

C♯(x)

Tx

By definition, we have |I1| ≤ hK maxK′∈Tx
‖∇vh‖L∞(K′). Using the inverse inequality (12.3) with

p := ∞ and q := 2 and the fact that all the mesh cells in Tx have a size equivalent to that of K
owing to Proposition 11.6, we infer that

|I1| ≤ c hK max
K′∈Tx

h−1
K′‖∇vh‖L2(K′) ≤ c ‖∇vh‖L2(B(x,hK)∩C(x)).

Concerning I2, we employ the Cauchy–Schwarz inequality to infer that

|I2|2 =

(∫ r

hK

ρ−
1
2 ρ

1
2 ∂ρvh(ρ, θ) dρ

)2

≤ ln

(
r

hK

)∫ r

hK

|∂ρvh(ρ, θ)|2ρ dρ,

and the logarithmic factor is bounded by ln( δDhK ). We regroup the above bounds on I1 and I2 and

integrate the inequality for all y ∈ C♯(x) to infer that there is c > 0 such that

c |C♯(x)||vh(x)|2 ≤ ‖vh‖2L2(D) + |C♯(x)|‖∇vh‖2L2(D) + ln

(
δD
hK

)
δ2D‖∇vh‖2L2(D),

where we bounded integrals over C(x) by integrals over D and where we used that

∫ δD

1
2 δD

∫ ω

0

∫ r

0

|∂ρvh(ρ, θ)|2ρ dρ dθ dr ≤ δ2D‖∇vh‖2L2(D)

to bound the last term on the right-hand side. The assertion follows by dividing by |C♯(x)| which
scales like ωδ2D with ω > 0.
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Exercise 18.3 (Orthogonal and oblique projections). (i) Since we have im(I♯
K̂
) ⊂ P̂ , we

only need to prove that (q̂, I♯
K̂
(v̂))L2(K̂;Rq) = (q̂, v̂)L2(K̂;Rq) for all q̂ ∈ P̂ and all v̂ ∈ L1(K̂;Rq).

The definition of the dofs implies that for all i, j ∈ N ,

δij = σ̂j(θ̂i) =
1

|K̂|
(ρ̂j , θ̂i)L2(K̂;Rq).

Let now v̂ ∈ L1(K̂;Rq) and let q̂ ∈ P̂ . Since {ρ̂j}j∈N is a basis of P̂ , we can write q̂ =
∑
j∈N λj ρ̂j.

We infer that

(q̂, I♯
K̂
(v̂))L2(K̂;Rq) =

∑

i∈N
σ̂♯i (v̂)(q̂, θ̂i)L2(K̂;Rq)

=
∑

i∈N

1

|K̂|
(ρ̂i, v̂)L2(K̂;Rq)(q̂, θ̂i)L2(K̂;Rq)

=
∑

i,j∈N

1

|K̂|
λj(ρ̂i, v̂)L2(K̂;Rq)(ρ̂j , θ̂i)L2(K̂;Rq)

=
∑

j∈N
λj(ρ̂j , v̂)L2(K̂;Rq) = (q̂, v̂)L2(K̂;Rq),

thereby proving the assertion.
(ii) Since im(I♯K) ⊂ PK , we only need to prove that (q, I♯K(v))L2(K;Rq) = (q, v)L2(K;Rq) for all

q ∈ QK and all v ∈ L1(K;Rq). Using that I♯
K̂

is the L2-orthogonal projection onto P̂ , that

ΦK(q) ∈ P̂ , and the identity (18.17) twice, we infer that

(q, I♯K(v))L2(K;Rq) = (q, ψ−1
K (I♯

K̂
(ψK(v))))L2(K;Rq)

= (φK(q), I♯
K̂
(ψK(v)))L2(K̂;Rq)

= (φK(q), ψK(v))L2(K̂;Rq) = (q, v)L2(K;Rq),

thereby proving the assertion.
(iii) If the matrix AK is unitary, we have A−T

K = AK and since | det(JK)| = 1, we infer that

[ q ∈ QK ] ⇐⇒ [φK(q) ∈ P̂ ]

⇐⇒ [ |det(JK)|A−T

K (q ◦ TK) ∈ P̂ ]

⇐⇒ [AK(q ◦ TK) ∈ P̂ ]

⇐⇒ [ψK(q) ∈ P̂ ]

⇐⇒ [ q ∈ PK ].

This shows that PK = QK and that I♯K is L2-orthogonal.

Exercise 18.4 (Approximation on faces). Assume that k ≥ 1 and for simplicity that q = 1. Let
v ∈ W 1+r,p(K). Assume first that r ∈ [1, k]. Owing to the multiplicative trace inequality (12.16),

we infer that, with η := v − I♯K(v),

‖∇η‖Lp(F ) ≤ c
(
h
− 1
p

K |η|W 1,p(K) + |η|
1− 1

p

W 1,p(K)|η|
1
p

W 2,p(K)

)
.
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Invoking (18.25) with m ∈ {1, 2} (note that m ≤ 1 + ⌊r⌋) shows that (18.28) holds true in this
case. Let us now assume that r ∈ ( 1p , 1) with p > 1. Let q1 ∈ ψ−1

K (P1,d) = P1,d be arbitrary. We
have

h
1
p

K‖∇η‖Lp(F ) ≤ h
1
p

K‖∇(v − q1)‖Lp(F ) + h
1
p

K‖∇(I♯K(v)− q1)‖Lp(F )

≤ c
(
|v − q1|W 1,p(K) + hrK |v|W 1+r,p(K) + |I♯K(v)− q1|W 1,p(K)

)

≤ c
(
|v − q1|W 1,p(K) + hrK |v|W 1+r,p(K) + |v − I♯K(v)|W 1,p(K)

)
,

where we used the triangle inequality in the first line, the fractional trace inequality (12.17), that
q1 ∈ P1,d, and the discrete trace inequality (12.10) in the second line, and the triangle inequality
in the third line. Invoking (12.15) (since q1 is arbitrary in P1,d) and (18.25) with m := 1 leads
again to (18.28).



Chapter 19

Main properties of the conforming
subspaces

Exercises

Exercise 19.1 (Connectivity classes). Consider the mesh shown in Figure 19.1 and let P g
2 (Th)

be the associated finite element space composed of continuous Lagrange P2 finite elements. Assume
that the enumeration of the Lagrange nodes has been done with the increasing vertex-index tech-
nique (see (10.10)). (i) What is the domain and the codomain of j dof? (ii) Identify j dof−1(8)
and j dof−1(13). (iii) Identify T6 and T10.

1

5

2

4

3
K̂

10

11

18

3

21

5 4

6

67
4

9

3

16

8
17

5

14

1

2

12

15

13

Figure 19.1: Illustration for Exercise 19.1.

Exercise 19.2 (Stiffness, mass, incidence matrices). Let {λn}n∈{1:Nv} be the global shape
functions in P g

1 (Th). Let {θm}m∈{1:Ne} be the global shape functions in P c
0 (Th). (i) Recall the in-

cidence matrixMev ∈ RNe×Nv defined in Remark 10.2. Prove that ∇λn =
∑

m∈{1:Ne}Mev
mnθm for

all n ∈ {1:Nv}. (Hint : compute σe
m(∇λn) where {σe

m}m∈{1:Ne} is the dual basis of {θm}m∈{1:Ne},
i.e., the associated dofs.) (ii) Let A ∈ RNv×Nv be the Courant stiffness matrix with entries
Ann′ :=

∫
D
∇λn·∇λn′ dx for all n, n′ ∈ {1:Nv}, and let N ∈ RNe×Ne be the Nédélec mass matrix

with entries Nmm′ :=
∫
D θm·θm′ dx for all m,m′ ∈ {1:Ne}. Prove that A = (Mev)TNMev.

Exercise 19.3 (Zero trace). (i) Show that ϕa ∈ P x
k,0(Th) for all a ∈ A◦

h. (ii) Prove Proposi-
tion 19.13.

Exercise 19.4 (Approximability in Lp). Let p ∈ [1,∞). Prove that limh↓0 infvh∈P g
k (Th) ‖v −

vh‖Lp(D) = 0 for all v ∈ Lp(D). (Hint : by density.)
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Exercise 19.5 (Hermite). Let Th := {[xi, xi+1]}i∈{0: I} be a mesh of the interval D := (a, b). Re-
call the Hermite finite element from Exercise 5.4. Specify global shape functions {ϕi,0, ϕi,1}i∈{0:I+1}
in Hh := {vh ∈ C1(D) | ∀i ∈ {0:I}, vh|[xi,xi+1] ∈ P3}. (Hint : consider values of the function or
of its derivative at the mesh nodes.) Can the bicubic Hermite rectangular finite element from
Exercise 6.8 be used to enforce C1-continuity for d = 2?

Solution to exercises

Exercise 19.1 (Connectivity classes). (i) We have

j dof : {1:5}×{1:6} → {1:18}.

(ii) Recall that (K, i) ∈ j dof−1(a) iff j dof(K, i) = a. Hence, we have

j dof−1(8) = {(3, 3), (2, 3), (4, 3)},
j dof−1(13) = {(5, 4), (3, 6)}.

(iii) Recall that Ta := {K ∈ Th | ∃i ∈ N , j dof(K, i) = a}. Hence, we have

T6 = {K1,K2,K3,K5},
T10 = {K2,K4}.

Exercise 19.2 (Stiffness, mass, incidence matrices). (i) Let us first notice that∇λn ∈ P c
0 (Th)

for all n ∈ {1:Nv}. Since {σe
m}m∈{1:Ne} is the dual basis of {θm}m∈{1:Ne}, the assertion is proved

by showing that σe
m(∇λn) =Mev

mn for all n ∈ {1:Nv} and all m ∈ {1:Ne}. We have

σe
m(∇λn) =

1

|Em|

∫

Em

(∇λn)·tEm dl,

where tEm is the vector orienting Em (recall that ‖tEm‖ℓ2 = |Em|). Let {zp, zq} be the two
endpoints of Em so that tEm points from zp to zq. We have

σe
m(∇λn) = λn(zq)− λn(zp) = δnq − δnp =Mev

mn,

by definition of the incidence matrixMev. This completes the proof.
(ii) Using that ∇λn =

∑
m∈{1:Ne}Mev

mnθm for all n ∈ {1:Nv}, we infer that for all n, n′ ∈ {1:Nv},

Ann′ =

∫

D

∇λn·∇λn′ dx =
∑

m∈{1:Ne}

∑

m′∈{1:Ne}
Mev

mn

(∫

D

θm·θm′ dx
)
Mev

m′n′

=
∑

m∈{1:Ne}

∑

m′∈{1:Ne}
Mev

mnNmm′Mev
m′n′ =

(
(Mev)TNMev

)
nn′ .

This proves the expected identity.

Exercise 19.3 (Zero trace). (i) Let a ∈ A◦
h. For all a′ ∈ A∂h, we have σa′(ϕa) = δaa′ = 0

because {A∂h,A◦
h} forms a partition of Ah. We conclude by invoking (19.38a) and the definition of

P x
k,0(Th).
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(ii) We have already established that the set {ϕa}a∈Ah is linearly independent. Hence, {ϕa}a∈A∂h
is also linearly independent. For all v ∈ P x

k,0(Th) ⊂ P x
k (Th), we have

v =
∑

a∈A∂h

σa(v)ϕa +
∑

a∈A◦
h

σa(v)ϕa,

but by definition σa(v) = 0 for all a ∈ A∂h (see Definition 19.11). Hence, v =
∑

a∈A◦
h
σa(v)ϕa,

thereby showing that {ϕa}a∈A◦
h
is a spanning set.

Exercise 19.4 (Approximability in Lp). Let ǫ > 0. Let l be as in Corollary 19.8 and set s :=
max(l, k+1). Since W s,p(D) is dense in Lp(D), there is vǫ ∈W s,p(D) such that ‖v−vǫ‖Lp(D) ≤ ǫ.
Since ILh (vǫ) ∈ P g

k (Th), the triangle inequality gives

inf
vh∈P g

k (Th)
‖v − vh‖Lp(D) ≤ ‖v − ILh (vǫ)‖Lp(D)

≤ ‖v − vǫ‖Lp(D) + ‖vǫ − ILh (vǫ)‖Lp(D).

Owing to Corollary 19.8 with m := 0, we infer that the second term tends to zero as h→ 0. Hence,
lim suph→0(infvh∈P g

k (Th) ‖v − vh‖Lp(D)) ≤ ǫ, and the conclusion follows since ǫ is arbitrary.

Exercise 19.5 (Hermite). Let {θ̂i}i∈{1: 4} be the shape functions of the Hermite finite element
on the reference interval [0, 1]; see Exercise 5.4. This yields

ϕi,0(x) =





θ̂3

(
x−xi−1

xi−xi−1

)
if x ∈ [xi−1, xi],

θ̂1

(
x−xi

xi+1−xi

)
if x ∈ [xi, xi+1],

0 otherwise,

and

ϕi,1(x) =





hi−1θ̂4

(
x−xi−1

xi−xi−1

)
if x ∈ [xi−1, xi],

hiθ̂2

(
x−xi

xi+1−xi

)
if x ∈ [xi, xi+1],

0 otherwise,

with hi := xi+1 − xi for all i ∈ {0:I}. Proceeding as in the proof of Proposition 19.4 shows
that these global shape functions are linearly independent and form a spanning set of the whole
space Hh. Finally, the bicubic Hermite rectangular finite element can indeed be used to enforce
C1-continuity. For instance, consider p ∈ Q3,2. On the face {x1 = 1}, the x2-dependent function
∂x1p|{x1=1} is in P3,1. Owing to the choice of the dofs, its values and x2-derivatives are the same
on both sides of the face.



100 Chapter 19. Main properties of the conforming subspaces



Chapter 20

Face gluing

Exercises

Exercise 20.1 (Affine mapping between faces). Let F := ∂Kl ∩ ∂Kr ∈ F◦
h and set F̂l :=

T−1
Kl

(F ) and F̂r := T−1
Kr

(F ). Prove that the mapping Trl := T−1
Kl
◦TKr|F̂r is affine. (Hint : let

(K̂, P̂geo, Σ̂geo) be the geometric reference Lagrange finite element. Observe that the two face

finite elements (F̂l, P̂
g
geo,l, Σ̂

g
geo,l) and (F̂r , P̂

g
geo,r, Σ̂

g
geo,r) can be constructed from the same reference

Lagrange finite element (F̂ d−1, P̂ d−1
geo , Σ̂

d−1
geo ).)

Exercise 20.2 (Linear maps). Let E,F,G be finite-dimensional vector spaces, let A ∈ L(E;F )
and let T ∈ L(E;G). Assume that ker(T ) ⊂ ker(A). Set G̃ := T (E). (i) Prove that there is
Ã ∈ L(G̃;F ) s.t. A = Ã ◦ T . (Hint : build a right inverse of T using a direct sum E = E1 ⊕ E2

with E1 := ker(T ).) (ii) Show that Ã is uniquely defined, i.e., does not depend on E2.

Exercise 20.3 (γK,F and NK,F ). (i) Prove that PK =
∑

F∈FK ker(γxK,F ) (nondirect sum of
vector spaces) if and only if there is F ∈ FK s.t. i 6∈ NK,F for all i ∈ N . (ii) Let the face
unisolvence assumption hold true. Let F(K, i) := {F ∈ FK | ker(γK,F ) ⊂ ker(σK,i)}. Prove the
following statements: (ii.a) F ∈ F(K, i) iff i ∈ NK,F ; (ii.b) F ∈ F(K, i) iff γK,F (θK,i) 6= 0 where
θK,i is the local shape function associated with the dof i.

Exercise 20.4 (Reference face element). Let F̂ be any face of K̂. Let P̂ x := γx
K̂,F̂

(P̂ ) and let

NK̂,F̂ be the subset of N s.t.
⋂
i∈N

K̂,F̂
ker(σK̂,i) = ker(γK̂,F̂ ). Recall that this means that there

exists σ̂x
F̂ ,i

: P̂K̂,F̂ → R s.t. σ̂i = σ̂x
F̂ ,i
◦ γx

K̂,F̂
for all i ∈ NK̂,F̂ . Assume that NK̂,F̂ is nonempty,

that the triple {F̂ , P̂ x, Σ̂x} with Σ̂x := {σ̂x
F̂ ,i
}i∈N

K̂,F̂
is a finite element, and that there is a linear

bijective map ψF : P x
K,F → P̂ x s.t. ψ−1

F ◦ γxK̂,F̂ = γxK,F ◦ ψ−1
K . Prove that Assumption 20.12 holds

true and NK,F = NK̂,F̂ . (Hint : show that the finite element {F, P x
K,F ,Σ

x
K,F } is generated from

{F̂ , P̂ x, Σ̂x} using the map ψF .)

Exercise 20.5 (Permutation invariance). Let Ŝ1 := [0, 1] and consider the bases B1 :=
{µ1(s) = 1 − s, µ2(s) = s} and B2 := {µ1(s) = 1, µ2(s) = s}. Are these bases invariant under

permutation of the vertices of Ŝ1?
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Exercise 20.6 (Canonical hybrid element, d = 3). Consider the assumptions made in §20.4.3.
(i) Prove the face unisolvence assumption 20.12. (ii) Let F ∈ FK . Let TF̂ : Ŝ2 → F̂ be an affine

bijective mapping, and let TK,F := TK|F̂ ◦TF̂ : Ŝ2 → F . Verify that P g
K,F = Pk,d−1◦T−1

K,F and that

{F, P g
K,F ,Σ

g
K,F } is a two-dimensional canonical hybrid element. (iii) Prove that P g

Kl,F
= P g

Kr ,F
=:

P g
F and Σg

Kl,F
= Σg

Kr,F
=: Σg

F .

Exercise 20.7 (PK,F ). Let K̂ be the unit simplex in R2 and let {F̂i}i∈{0: 2} be the faces of K̂.
Recall that for Pk,d scalar-valued elements, we have PK̂,F̂i := γg

K̂,F̂i
(Pk,d). (i) Compute a basis of

PK̂,F̂i for all i ∈ {0:2} assuming that (K̂, P̂ , Σ̂) is the P1 Lagrange element. Is (F̂i, PK̂,F̂i ,ΣK̂,F̂i)

a finite element? (ii) Compute a basis of PK̂,F̂i for all i ∈ {0:2} assuming that (K̂, P̂ , Σ̂) is the P1

Crouzeix–Raviart element. Is (F̂i, PK̂,F̂i ,ΣK̂,F̂i) a finite element?

Solution to exercises

Exercise 20.1 (Affine mapping between faces). Let (K̂, P̂geo, Σ̂geo) be the geometric reference
Lagrange finite element. By assumption, the two face finite elements

(F̂l, P̂
g
geo,l, Σ̂

g
geo,l) and (F̂r, P̂

g
geo,r, Σ̂

g
geo,r)

can be constructed from the same reference Lagrange finite element (F̂ d−1, P̂ d−1
geo , Σ̂

d−1
geo ). Let

{θ̂n}n∈Nd−1 be the reference shape functions of (F̂ d−1, P̂ d−1
geo , Σ̂

d−1
geo ), and let {ψ̂n}n∈Ngeo be the

reference shape functions of (K̂, P̂geo, Σ̂geo). Let Ngeo,l and Ngeo,r be the indices of the geometric
Lagrange nodes from Kl and Kr on F . These two sets of nodes must be identical, i.e., there
exist two bijective maps jl : N d−1 → Ngeo,l and jr : N d−1 → Ngeo,r such that gj geo(jl(n),Kl) =

gj geo(jr(n),Kr) and θ̂n = ψ̂jl(n) ◦ TF̂l = ψ̂jr(n) ◦ TF̂r for all n ∈ N d−1, where TF̂l : F̂
d−1 → F̂l and

TF̂r : F̂ d−1 → F̂r are the two affine geometric mappings which map the vertices of F̂ d−1 to the

vertices of F̂l and F̂r, respectively. We have for all x̂ in F̂ d−1,

TKl|Fl(TF̂l(x̂)) =
∑

m∈Ngeo,l

gj geo(m,Kl)ψ̂m(TF̂l(x̂))

=
∑

n∈Nd−1

gj geo(jl(n),Kl)ψ̂jl(n)(TF̂l(x̂))

=
∑

n∈Nd−1

gj geo(jr(n),Kr)ψ̂jr(n)(TF̂r(x̂)) = TKr|Fr(TF̂r (x̂)).

This proves that TKl|Fl ◦TF̂l = TKr|Fr ◦TF̂r , i.e., T
−1
Kl|Fl ◦TKr|Fr = TF̂l ◦T

−1

F̂r
. Hence, T−1

Kl|Fl ◦TKr|Fr
is affine since TF̂l ◦ T

−1

F̂r
is affine.

Exercise 20.2 (Linear maps). (i) Let E = E1 ⊕ E2 be one direct-sum decomposition of E
with E1 := ker(T ) (this is always possible since E is finite-dimensional). For all x ∈ E, we write
x = x1 + x2 with x1 ∈ E1 := ker(T ) and x2 ∈ E2. Let T̃ : E2 → T (E) be such that T̃ (e2) = T (e2)
for all e2 ∈ E2. Let e2 ∈ E2 be such that T̃ (e2) = 0. Then e2 ∈ ker(T ) ∩ E2 = E1 ∩ E2 = {0},
whence e2 = 0. This proves that T̃ is injective. Let g̃ ∈ T (E). There is e = e1 + e2 ∈ E such that
T (e) = g̃. Hence, g̃ = T (e) = T (e2) = T̃ (e2). This proves that T̃ is surjective. In conclusion, T̃ is
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bijective. Note that T ◦ T̃−1(g̃) = T̃ ◦ T̃−1(g̃) = g̃ for all g̃ ∈ T (E) since T̃−1(g̃) ∈ E2. Hence, T̃
−1

is a right inverse of T . Set Ã := A ◦ T̃−1 : T (E)→ F . Using that A(x1) = 0 for all x1 ∈ E1 since
ker(T ) ⊂ ker(A), we infer that

(Ã ◦ T )(x) = (A ◦ T̃−1 ◦ T )(x) = (A ◦ T̃−1)(T (x2)) = (A ◦ T̃−1 ◦ T̃ )(x2)
= A(x2) = A(x1 + x2) = A(x).

Hence, Ã ◦ T = A.
(ii) Let us show that Ã is uniquely defined, i.e., Ã does not depend on the choice of E2 in the
direct sum E = E1 ⊕ E2. Let Ã1 : T (E) → F and Ã2 : T (E) → F be two maps constructed as
above using two different subspaces E2. We have Ã1 ◦T = A = Ã2 ◦T . Let g̃ ∈ T (E). Thus, there
is e ∈ E such that T (e) = g̃. This implies that

Ã1(g̃) = Ã1(T (e)) = (Ã1 ◦ T )(e) = (Ã2 ◦ T )(e) = Ã2(T (e)) = Ã2(g̃).

Hence, Ã1 = Ã2.

Exercise 20.3 (γK,F and NK,F ). (i) Assume that PK =
∑

F∈FK ker(γxK,F ). Let us reason
by contradiction and assume that there is i ∈ N such that i ∈ NK,F for all F ∈ FK . Since
i ∈ NK,F implies that ker(γxK,F ) ⊂ ker(σK,i), and since this inclusion holds true for all F ∈ FK ,
we obtain PK =

∑
F∈FK ker(γxK,F ) ⊂ ker(σK,i), which contradicts that σK,i(θK,i) = 1. Conversely,

assume that for all i ∈ N , there is F ∈ FK s.t. i 6∈ NK,F , that is, θK,i ∈ ker(γxK,F ). Since any
function in PK can be written as a linear combination of the functions θK,i, we conclude that
PK =

∑
F∈FK ker(γxK,F ).

(ii) Let us assume that the face unisolvence assumption holds true.
(ii.a) Let F ∈ F(K, i) and assume that i is not in NK,F . This implies that σK,j(θK,i) = δij = 0 for
all j ∈ NK,F because i 6∈ NK,F . Recall that the face unisolvence assumption (Assumption (20.12))
says that ker(γK,F ) =

⋂
j∈NK,F ker(σK,j). Hence, we have θK,i ∈ ker(γK,F ), which, in turn, implies

that θK,i ∈ ker(σK,i) because F ∈ F(K, i). This is absurd. Hence, i ∈ NK,F . Let us assume now
that i ∈ NK,F . Then ker(γK,F ) =

⋂
j∈NK,F ker(σK,j) ⊂ ker(σK,i), which implies that F ∈ F(K, i).

(ii.b) Let F ∈ F(K, i) and assume that γK,F (θK,i) = 0. Then σK,i(θK,i) = 0 because F ∈ F(K, i),
which is absurd. Hence, γK,F (θK,i) 6= 0. Assume now that γK,F (θK,i) 6= 0, and assume that
F 6∈ F(K, i), which owing to the above characterization of F(k, i) means that i 6∈ NK,i. Then
σK,j(θK,i) = δij = 0 for all j ∈ NK,F , which owing to the face unisolvence assumption implies that
γK,F (θK,i) = 0 which is absurd. Hence, F ∈ F(K, i).

Exercise 20.4 (Reference face element). The fact that P̂ x = ψF (P
x
K,F ) follows from

P̂ x = γx
K̂,F̂

(P̂ ) = ψF (γ
x
K,F (ψ

−1
K (P̂ ))) = ψF (γ

x
K,F (PK)) = ψF (P

x
K,F ).

Let us now show that NK̂,F̂ = NK,F . Indeed, i ∈ NK̂,F̂ means that there is σ̂x
F̂ ,i

: P̂ x → R s.t.

σ̂i = σ̂x
F̂ ,i
◦ γx

K̂,F̂
. Defining σx

K,F,i : P
x
K,F → R by σx

K,F,i := σ̂x
F̂ ,i
◦ ψF , we obtain for all p ∈ PK ,

σK,i(p) = σ̂i(ψK(p)) = σ̂x
F̂ ,i

(γx
K̂,F̂

(ψK(p)))

= σ̂x
F̂ ,i

(ψF (γ
x
K,F (p))) = σx

K,F,i(γ
x
K,F (p)),

so that i ∈ NK,F . This proves that NK̂,F̂ ⊂ NK,F , and the converse inclusion is proved similarly.

Since σ̂i = σ̂x
F̂ ,i
◦ γx

K̂,F̂
, we conclude that {F, P x

K,F ,Σ
x
K,F } is generated from {F̂ , P̂ x, Σ̂x} using the

map ψF .
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Exercise 20.5 (Permutation invariance). There are two possible permutations of the vertices,
the mappings S1(s) = s (under which the vertices are invariant, and thus invariance of any basis
is trivial) and S2(s) = 1 − s (exchanging the two vertices). The basis B1 is left invariant by the
permutation S2 since µ1 ◦ S2 = µ2 and µ2 ◦ S2 = µ1. This is not the case for the basis B2 for
which µ2 ◦ S2 differs from µ1 and from µ2.

Exercise 20.6 (Canonical hybrid element, d = 3). (i) Let F ∈ FK . Let

N v
K,F := {i ∈ N | ∃z(i) ∈ VF , σK,i = σv

z(i)},

be the collection of the vertex dofs associated with F , let (if k ≥ 2)

N e
K,F := {i ∈ N | ∃(E(i),m(i)) ∈ EF × {1:ne

sh}, σK,i = σe
E(i),m(i)},

be the collection of the edge dofs associated with F , and let (if k ≥ 3)

N f
K,F := {i ∈ N | ∃m(i) ∈ {1:nf

sh}, σK,i = σf
F,m(i)}.

We adopt the convention N e
K,F := ∅ if k = 1 and N f

K,F := ∅ if k ≤ 2. Let us set NK,F :=

N v
K,F ∪N e

K,F ∪N f
K,F . We first observe that the set NK,F is nonempty. Moreover, since γgK,F (v) :=

v|F , we infer that γgK,F (v) = 0 implies that σK,i(v) = 0 for all i ∈ NK,F , i.e., ker(γgK,F ) ⊂⋂
i∈NK,F ker(σK,i). The converse inclusion follows from the proof of Proposition 7.19.

(ii) Let F ∈ FK . We have already shown in Lemma 20.5 that P g
K,F := γgK,F (PK) = Pk,d−1◦T−1

K,F .
Moreover, let us consider the following linear forms:

σv
K,F,i(v) := v(z(i)), ∀i ∈ N v

K,F ,

σe
K,F,i(v) :=

1

|E(i)|

∫

E(i)

(µm(i) ◦ T−1
K,E(i))v dl, ∀i ∈ N e

K,F ,

σf
K,F,i(v) :=

1

|F |

∫

F

(ζm(i) ◦ T−1
K,F )v ds, ∀i ∈ N s

K,F ,

where TK,E(i) := TK|Ê(i)◦TÊ(i) : Ŝ1 → E(i), Ê(i) := T−1
K (E(i)), and TÊ(i) : Ŝ1 → Ê(i), and

similarly TK,F = TK|F̂◦TF̂ : Ŝ2 → F , F̂ := T−1
K (F ), and TF̂ : Ŝ2 → F̂ . Since for all i ∈ NK,F

and all x ∈ {v,e,f}, we have σx
K,i(v) = σx

K,F,i(γ
g
K,F (v)), the definition (20.10) implies that the

set Σg
K,F is exactly the above collection of dofs. Moreover, these expressions show that the triple

{F, P g
K,F ,Σ

g
K,F } is a two-dimensional canonical hybrid element.

(iii) Let F := ∂Kl∩∂Kr ∈ F◦
h . We have already shown in Lemma 20.6 that P g

Kl,F
= P g

Kr,F
=: P g

F .

To prove that Σg
Kl,F

= Σg
Kr,F

=: Σg
F , we have to construct a bijective map χlr : NKl,F → NKr ,F

such that σg
Kr,F,χlr(i)

= σg
Kl,F,i

for all i ∈ NKl,F . Let i ∈ NKl,F . We distinguish three cases.

(iii.a) Assume that i ∈ N v
Kl,F

. Then z(i) is a vertex of F so that there is ir ∈ N v
Kr,F

such that
z(i) = z(ir). We set χlr(i) := ir, and this gives σg

Kr ,F,χlr(i)
(v) = σg

Kl,F,i
(v) for all v ∈ P g

F . Notice

that χlr(N v
Kl,F

) = N v
Kr,F

.
(iii.b) Assume i ∈ N e

Kl,F
and consider the associated pair (E(i),m(i)) ∈ EF × {1:ne

sh}. Since E(i)

is an edge of F which is a face of Kl an Kr, we can consider the mappings TKl,E(i) : Ŝ
1 → E(i)

and TKr,E(i) : Ŝ1 → E(i). Since Se
lr := T

−1
Kr,E(i) ◦TKl,E(i) : Ŝ1 → Ŝ1 is an affine bijective mapping,

and since we assumed that the basis {µm}m∈{1:ne
sh} is invariant under permutation of the vertices

of Ŝ1, there is an index permutation ̟e
lr : {1:ne

sh} → {1:ne
sh} such that µm ◦ Se

lr = µ̟e
lr(m).

By definition of N e
Kr ,F

, there is ir ∈ N e
Kr,F

such that E(ir) = E(i) and m(ir) = ̟e
lr(m(i)).
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Finally, we set χlr(i) := ir, and this gives σg
Kr ,F,χlr(i)

(v) = σg
Kl,F,i

(v) for all v ∈ P g
F . Notice that

χlr(N e
Kl,F

) = N e
Kr,F

.

(iii.c) Assume i ∈ N s
Kl,F

and let m(i) ∈ {1:nf
sh} be the associated index. Since Ss

lr := T−1
Kr,F

◦
TKl,F : Ŝ2 → Ŝ2 is an affine bijective mapping, and since we assumed that the basis {ζm}m∈{1:nf

sh
}

is invariant under permutation of the vertices of Ŝ2, there is an index permutation ̟s
lr : {1:nf

sh} →
{1:nf

sh} such that ζm ◦ Ss
lr = ζ̟s

lr(m). Then by definition of N s
Kr,F

, there is ir ∈ N s
Kr,F

such that

m(ir) = ̟s
lr(m(i)). Finally, we set χlr(i) := ir, and this gives σg

Kr,F,χlr(i)
(v) = σg

Kl,F,i
(v) for all

v ∈ P g
F . Notice that χlr(N s

Kl,F
) = N s

Kr ,F
.

In conclusion, we have built a bijective map χlr : NKl,F → NKr ,F such that σg
Kr,F,χlr(i)

= σg
Kl,F,i

for all i ∈ NKl,F .

Exercise 20.7 (PK,F ). (i) Let us set x := (x, y). Recall that λ̂0(x) = 1 − x − y, λ̂1(x) = x,

λ̂1(x) = y, and that F̂ 0 = {x+ y = 1}, F̂ 1 = {x = 0}, F̂ 2 = {y = 0}. We have

λ̂0|F̂0
(x) = 0, λ̂1|F̂0

(x) = x, λ̂2|F̂0
(x) = 1− x.

Hence, φ̂0,1(x) := x, φ̂0,2(x) := 1− x forms a basis of PK̂,F̂0
. Similarly, we have

λ̂0|F̂1
(x) = 1− y, λ̂1|F̂1

(x) = 0, λ̂2|F̂1
(x) = y.

Hence, φ̂1,1(x) := y, φ̂1,2(x) := 1− y forms a basis of PK̂,F̂1
. Finally, we have

λ̂0|F̂2
(x) = 1− x, λ̂1|F̂2

(x) = x, λ̂2|F̂2
(x) = 0.

Hence, φ̂2,1(x) := x, φ̂2,2(x) := 1− x forms a basis of PK̂,F̂2
. For F̂0, we have ΣK̂,F̂0

= {σ̂0,1, σ̂0,2}
with σ̂0,2(p̂) := p̂(z1), σ̂0,2(p̂) := p̂(z2) for all p̂ ∈ PK̂,F̂0

, and the triple (F̂0, PK̂,F̂0
,ΣK̂,F̂0

) is a

finite element. The reasoning for F̂1 and F̂2 is similar.
(ii) Since the polynomial space for the Crouzeix–Raviart element is the same as for the P1 Lagrange
element, the bases are those found in Step (i). Since for the Crouzeix–Raviart element, there is
only one dof per face, we have card(ΣK̂,F̂i) = 1. For instance, we have

σK̂,F̂0
(p̂) = p̂

(
1
2 (z1 + z2)

)
,

for all p̂ ∈ PK̂,F̂0
. In conclusion, (F̂i, PK̂,F̂i ,ΣK̂,F̂i) is not a finite element since dim(PK̂,F̂i) = 2

and card(ΣK̂,F̂i) = 1.
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Chapter 21

Construction of the connectivity
classes

Exercises

Exercise 21.1 (Mesh orientation, NK,F , χlr). Consider the mesh Th shown in Exercise 19.1.
(i) Orient the mesh by using the increasing vertex-index enumeration technique. (ii) Consider the
corresponding space P g

2 (Th). Use the enumeration convention adopted in this chapter for the dofs.
Find the two cells Kl,Kr for the second face of the cell 5 and for the first face of the cell 3. (iii)
Let F be the second face of the cell 5. Identify N5,F , j dof(5,N5,F ), and the map χlr. (iv) Let
F ′ be the first face of the cell 3. Identify N3,F ′ , j dof(3,N3,F ′), and the map χlr.

Exercise 21.2 (M-dofs). Let K ∈ Th, let F ∈ FK , and let M ∈ Mh be a geometric entity s.t.
M ⊂ F . Prove that NK,M ⊂ NK,F .
Exercise 21.3 (Qk,3 dofs). Determine nv

sh, n
e
sh, n

f
sh, n

c
sh for scalar-valued Qk,3 Lagrange elements.

Solution to exercises

Exercise 21.1 (Mesh orientation, NK,F , χlr). (i) Here is a picture showing the orientation
vectors {τE}E∈Eh , {nF }F∈Fh for the mesh in question:

3

4
5

2
1 10

11

18

3

21
6

67
4

9

3

16

8
17

5

14

1

2
15

5
4

K̂ 13

12

(ii) Recalling the orientation convention of the faces, we have Kl = 5 and Kr = 1 for the second
face of the cell 5 (this is the face of K5 whose vertices have indices 2 and 6), and we have Kl = 3
and Kr = 2 or the first face of the cell 3 (this is the face of K3 whose vertices have indices 6 and



108 Chapter 21. Construction of the connectivity classes

8).
(iii) For the interface F , we have

N5,F = {1, 3, 5},
j dof(5,N5,F ) = {2, 6, 12}.

To find the map χlr, we first identify

N1,F = {2, 3, 4},
j dof(1,N1,F ) = {2, 6, 12},

so that
χlr(1) = 2, χlr(3) = 3, χlr(5) = 4.

(iv) For the interface F ′, we have

N3,F ′ = {2, 3, 4},
j dof(3,N3,F ′) = {6, 8, 18}.

To find the map χlr, we first identify

N2,F ′ = {2, 3, 4},
j dof(1,N2,F ′) = {6, 8, 18},

so that
χlr(2) = 2, χlr(3) = 3, χlr(4) = 4.

Exercise 21.2 (M-dofs). Let i ∈ N\NK,F , i.e., i 6∈ NK,F . Assumption 20.12 implies that
θK,i ∈ ker(γK,F ). Assume that i ∈ NK,M . Then σK,i = σK,M,i ◦ γK,M and ker(γK,F ) ⊂ ker(γK,M )
by Assumption 21.9. The inclusion ker(γK,F ) ⊂ ker(γK,M ) means that σK,i(θK,i) = σK,M,i ◦
γK,M (θK,i) = 0, which is absurd. Hence, i 6∈ NK,M . This proves that NK,M ⊂ NK,F .

Exercise 21.3 (Qk,3 dofs). We have nv
sh = 1, ne

sh = k − 1 if k ≥ 2, nf
sh = (k − 1)2 if k ≥ 2, and

nc
sh = (k − 1)3 if k ≥ 2.



Chapter 22

Quasi-interpolation and best
approximation

Exercises

Exercise 22.1 (F̌◦
K). Identify the set F̌◦

K for the canonical hybrid, Nédélec, and Raviart–Thomas
elements.

Exercise 22.2 (Lp-stability). Prove directly, i.e., without using Lemma 22.3, the Lp-stability of
J av
h . (Hint : use Proposition 12.5.)

Exercise 22.3 (Poincaré–Steklov in DK). The goal is to prove (22.20). Let p ∈ [1,∞], K ∈ Th,
and v ∈ W 1,p(DK) (i) Let Kl,Kr ∈ ŤK sharing an interface F := ∂Kl ∩ ∂Kr. Show that

|K| 1p |vKl − vKr | ≤ c hK |v|W 1,p(Kl∪Kr).

(Hint : observe that |F |− 1
p |vKl − vKr | ≤ ‖vKl − vKl‖Lp(F ) + ‖vKr − vKr‖Lp(F ), then use the trace

inequality (12.16).) (ii) Prove (22.20). (Hint : use that vDK − vK′ =
∑
K′′∈ŤK

|K′′|
|DK |(vK′′ − vK′) for

all K ′ ∈ ŤK .)

Exercise 22.4 (Polynomial approximation in DK). Prove that there is c s.t. for all r ∈
[0, k + 1], all p ∈ [1,∞) if r 6∈ N or all p ∈ [1,∞] if r ∈ N, every integer m ∈ {0:⌊r⌋}, all
v ∈W r,p(DK), all K ∈ Th, and all h ∈ H:

inf
g∈Pk,d

|v − g|Wm,p(DK) ≤ c hr−mK |v|W r,p(DK). (22.1)

(Hint : use Morrey’s polynomial as in the proof of Corollary 12.13.)

Exercise 22.5 (Approximation on faces). (i) Prove that

‖v − Iavh (v)‖Lp(F ) ≤ c h
r− 1

p

K |v|W r,p(ŤK),

for all p ∈ [1,∞), all r ∈ ( 1p , k + 1] if p > 1 or r ∈ [1, k + 1] if p = 1, all v ∈ W r,p(DK), all

K ∈ Th, all F ∈ FK , and all h ∈ H (c can grow unboundedly as rp ↓ 1 if p > 1). (Hint : use the
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multiplicative trace inequality (12.16) or its fractional version (12.17).) (ii) Assume k ≥ 1. Prove
that

‖∇(v − Iavh (v))‖Lp(F ) ≤ c h
r− 1

p

K |v|W 1+r,p(ŤK),

for all r ∈ ( 1p , k] if p > 1 or r ∈ [1, k] if p = 1, all v ∈ W 1+r,p(DK), all K ∈ Th, and all h ∈ H.

Exercise 22.6 (L2-projection). (i) Prove that (22.42) implies the H1-stability of Pg
h. (Hint :

adapt the proof of Proposition 22.21.) (ii) Set ‖y‖∗,r := supw∈Hr(D;Rq)

(y,w)L2(D;Rq)

‖w‖Hr(D;Rq)
for all y ∈

L2(D;Rq) (this is not the standard norm of the dual space H−r(D;Rq) := (Hr
0 (D;Rq))′). Prove

that there is c s.t. for every integer r ∈ {1:k + 1}, all v ∈ L2(D;Rq), and all h ∈ H,

‖v − Ph(v)‖∗,r ≤ c hr‖v − Ph(v)‖L2(D;Rq),

‖v − Ph0(v)‖H−r(D;Rq) ≤ c hr‖v − Ph0(v)‖L2(D;Rq).

(Hint : use Iavh (v).)

Exercise 22.7 (Discrete commutator). Let (Th)h∈H be a shape-regular mesh sequence. The
goal is to prove that there is c s.t. for every integers l ∈ {0:1} and m ∈ {0: l}, all p ∈ [1,∞], all
vh ∈ P g

k (Th), all K ∈ Th, all h ∈ H, and all φ in W 1+l,∞(D),

‖φvh − Ig,avh (φvh)‖Wm,p(K) ≤ c h1+l−mK ‖vh‖W l,p(DK)‖φ‖W 1+l,∞(DK).

This property provides a useful tool to analyze nonlinear problems; see Bertoluzza [4] and Johnson
and Szepessy [31]. (i) Fix K ∈ Th. Let vDK denote the mean value of vh in DK . Prove that

‖φvDK − I
g,av
h (φvDK )‖Wm,p(K) ≤ c h1+l−mK ‖vh‖Lp(DK)‖φ‖W 1+l,∞(DK).

(Hint : use Theorem 22.6 and verify that ‖vDK‖Lp(DK) ≤ ‖vh‖Lp(DK).) (ii) Set ηh := vh − vDK .
Prove that

‖φηh − Ig,avh (φηh)‖Wm,p(K) ≤ ch1+l−mK ‖vh‖W l,p(DK)‖φ‖W 1,∞(DK).

(Hint : observe that φ(xK)ηh = Ig,avh (φ(xK)ηh) where xK is some point in K, e.g., the barycenter
of K, then use (22.20) to bound ηh.) Conclude.

Solution to exercises

Exercise 22.1 (F̌◦
K). For the canonical hybrid element, the set F̌◦

K collects all the mesh interfaces
that have at least a common vertex with K. For Nédélec elements, the set F̌◦

K collects all the
mesh interfaces that have at least a common edge with K. For Raviart–Thomas elements, the set
F̌◦
K collects all the mesh interfaces that are faces of K.

Exercise 22.2 (Lp-stability). We prove the result for p = ∞. The other cases are obtained by
using local inverse inequalities in P b(Th). Using the triangle inequality and the regularity of the
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mesh sequence, we infer that

‖J av
h (vh)‖L∞(K;Rq) ≤

∑

i∈N

‖θK,i‖L∞(K;Rq)

card(aK,i)

∑

(K′,i′)∈aK,i

∣∣σK′,i′(vh|K′)
∣∣

≤ c
∑

i∈N

‖A−1
K ‖ℓ2

card(aK,i)

∑

(K′,i′)∈aK,i

∣∣σK′,i′(vh|K′)
∣∣

≤ c
∑

K′∈TK
‖A−1

K ‖ℓ2
∑

i′∈N

∣∣σK′,i′(vh|K′)
∣∣

≤ c ‖vh‖L∞(DK ;Rq),

where we used |σK′,i′(vh|K′)| ≤ |σK′,i′(vh|K′)− σK,i(vh|K)| + |σK,i(vh|K)|, the assumption (22.8),
the inequality |[[vh]]F |L∞(F ;Rt) ≤ ‖vh‖L∞(DK ;Rq) and Proposition 12.5.

Exercise 22.3 (Poincaré–Steklov in DK). (i) To prove the hint, we observe that

|vKl − vKr | = |F |
− 1
p ‖vKl − vKr‖Lp(F )

= |F |− 1
p ‖vKl − v|Kl + v|Kr − vKr‖Lp(F ),

since v|Kl = v|Kr in F owing to Theorem 18.8, and we conclude by using the triangle inequality.
We can now bound each of norms ‖v|Ki − vKi‖Lp(F ), i ∈ {l, r}, using the trace inequality (12.17)

(see also Exercise 12.6) and the fact that ‖v − vKi‖Lp(Ki) ≤ 1
πhKi |v|W 1,p(Ki) (owing to (12.13)

since Ki is a convex set). This yields ‖v|Ki − vKi‖Lp(F ) ≤ ch
1− 1

p

Ki
|v|W 1,p(Ki), and we conclude by

invoking the regularity of the mesh sequence.
(ii) Let K ′ ∈ ŤK . Using the hint and the triangle inequality, we observe that

‖v − vDK‖Lp(K′) ≤ ‖v − vK′‖Lp(K′) +
∑

K′′∈ŤK

|K ′′|
|DK |

|vK′′ − vK′ ||K ′| 1p .

For all K ′′ ∈ ŤK , we can find a path of mesh cells in ŤK linking K ′ to K ′′ s.t. any consecutive mesh
cells in the path share a common face. Using Step (i) together with the regularity of the mesh
sequence, we infer that ‖v− vK′‖Lp(K′) ≤ chK |v|W 1,p(DK), and the conclusion follows by summing

over K ′ ∈ Th and using the fact that card(ŤK) is uniformly bounded.

Exercise 22.4 (Polynomial approximation in DK). We proceed as in Bramble and Hilbert [5,
Thm. 1], but instead of invoking Morrey [34, Thm. 3.6.11], where the constants may depend onDK ,
we are going to track the constants to make sure that they are independent ofDK . Ifm = r, there is
nothing to prove. Let us assume thatm < r. Let ℓ ∈ N be such that ℓ = r−1 if r is a natural number
or ℓ = ⌊r⌋ otherwise (note that 1 ≤ r if r is a natural number since we assumed that 0 ≤ m < r).
In both cases, the integer ℓ is such that m ≤ ℓ ≤ k. Let Aℓ,d = {α ∈ Nd | |α| := α1+ . . .+αd ≤ ℓ}.
Note that card(Aℓ,d) = dim(Pℓ,d) =

(
ℓ+d
d

)
=: Nℓ,d. Since the map Φℓ,d : Pℓ,d → RNℓ,d such that

Φℓ,d(q) = (
∫
DK

∂αq dx)α∈Aℓ,d is an isomorphism, there is a unique polynomial πℓ(v) ∈ Pℓ,d such

that Φℓ,d(πℓ(v)) = (
∫
DK

∂αv dx)α∈Aℓ,d , i.e.,
∫
DK

∂α(v − πℓ(v)) dx = 0 for all α ∈ Aℓ,d (this result

is actually stated in Morrey [34, Thm. 3.6.10]).
Since by definition

∫
DK

∂α(v − πℓ(v)) dx = 0 for all |α| = m ≤ ℓ, we can apply (22.20), i.e.,

there is a uniform constant c such that |v − πℓ(v)|Wm,p(DK) ≤ chK |v − πℓ(v)|Wm+1,p(DK). We can
repeat the argument if m+ 1 ≤ ℓ since in this case we also have

∫
DK

∂α(v − πℓ(v)) dx = 0 for all

|α| = m+ 1 ≤ ℓ. Eventually, we obtain

|v − πℓ(v)|Wm,p(DK) ≤ chℓ−mK |v − πℓ(v)|W ℓ,p(DK).
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If r ∈ N, then ℓ + 1 = r, and we can apply the above argument one last time since
∫
DK

∂α(v −
πℓ(v)) dx = 0 for all |α| = ℓ, which gives (22.1) because ∂απℓ(v) = 0 for all |α| = ℓ+1. Otherwise,
ℓ = ⌊r⌋ and we apply Lemma 3.26 to all the partial derivatives ∂α(v − πℓ(v)) with |α| = ℓ,
s = r − ⌊r⌋ ∈ (0, 1) and O := DK ; this is legitimate since all these partial derivatives have zero
average over O = DK . We infer that there is c, uniform with respect to s, p, K, and v, such that

|v − πℓ(v)|Wm,p(DK ;Rq) ≤ c h⌊r⌋−mK h
r−⌊r⌋
DK

(
hdDK
|DK |

) 1
p

|v − πℓ(v)|W r,p(DK ;Rq).

Note that |v − πℓ(v)|W r,p(DK ;Rq) = |v|W r,p(DK ;Rq) since ∂
απℓ(v) is a constant in Rq for all |α| = ℓ.

We conclude that (22.1) holds true owing to the regularity of the mesh sequence.

Exercise 22.5 (Approximation on faces). (i) Let us assume first that r ∈ [1, k + 1]. We can
invoke the multiplicative trace inequality (12.16). Letting η := v − Iavh (v), we have

‖η‖Lp(F ) ≤ c
(
h
− 1
p

K ‖η‖Lp(K) + ‖η‖
1− 1

p

Lp(K)|η|
1
p

W 1,p(K)

)
.

The expected bound follows from Theorem 22.6 (with m ∈ {0, 1}). Let us now assume that
r ∈ ( 1p , 1) with p > 1. Let v be the mean value of v in K. We have

h
1
p

K‖v − Iavh (v)‖Lp(F ) ≤ h
1
p

K‖v − v‖Lp(F ) + h
1
p

K‖v − Iavh (v)‖Lp(F )

≤ c(‖v − v‖Lp(K) + hrK |v|W r,p(K)) + h
1
p

K‖v − Iavh (v)‖Lp(F )

≤ c′(‖v − v‖Lp(K) + ‖v − Iavh (v)‖Lp(K) + hrK |v|W r,p(K))

≤ c′(2‖v − v‖Lp(K) + ‖v − Iavh (v)‖Lp(K) + hrK |v|W r,p(K)),

where we used the triangle inequality in the first line, (12.16) if r = 1 or (12.17) if r < 1 and the
fact that |v− v|W r,p(K) = |v|W r,p(K) since v is constant on K in the second line, the discrete trace
inequality (12.10) (with r := p) in the third line, and the triangle inequality in the fourth line.
We conclude by using the Poincaré–Steklov inequality (12.14) and the approximation properties
of Iavh from Theorem 22.6 (with m := 0).
(ii) We proceed as above. If r ∈ [1, k], the desired bound follows from the multiplicative trace
inequality (12.16) and Theorem 22.6 (with m ∈ {1, 2}). Otherwise, let us assume r ∈ [ 1p , 1) and
p > 1. Let w be the average over K of ∇v. We have

h
1
p

K‖∇v −∇Iavh (v)‖Lp(F ) ≤ h
1
p

K‖∇v −w‖Lp(F ) + h
1
p

K‖w −∇Iavh (v)‖Lp(F )

≤ c(‖∇v −w‖Lp(K) + hrK |v|W r+1,p(K)) + h
1
p

K‖w −∇Iavh (v)‖Lp(F )

≤ c′(‖∇v −w‖Lp(K) + ‖w −∇Iavh (v)‖Lp(K) + hrK |v|W r+1,p(K))

≤ c′(2‖∇v −w‖Lp(K) + ‖∇v −∇Iavh (v)‖Lp(K) + hrK |v|W r+1,p(K)).

We conclude using the Poincaré–Steklov inequality (12.14) (componentwise) and the approximation
properties of Iavh from Theorem 22.6 (with m := 1).

Exercise 22.6 (L2-projection). (i) We employ the same arguments as in the proof of Propo-
sition 22.21, except that we use a local inverse inequality and the ℏ−1-weighted stability prop-
erty (22.42). This yields

|Pg
h(v)|H1(D) ≤ |Pg

h(v − I
g,av
h (v))|H1(D) + |Ig,avh (v)|H1(D)

≤ c ‖ℏ−1Pg
h(v − I

g,av
h (v))‖L2(D) + |Ig,avh (v)|H1(D)

≤ c ‖ℏ−1(v − Ig,avh (v))‖L2(D) + |Ig,avh (v)|H1(D),
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and we conclude by invoking Theorem 22.6.
(ii) For all v ∈ L2(D;Rq) and all w ∈ Hr(D;Rq), we observe that

(v − Ph(v), w)L2(D;Rq) = (v − Ph(v), w − Iavh (w))L2(D;Rq)

≤ ‖v − Ph(v)‖L2(D;Rq)‖w − Iavh (w)‖L2(D;Rq)

≤ ‖v − Ph(v)‖L2(D;Rq)ch
r|w|Hr(D;Rq),

where we used (22.35), the Cauchy–Schwarz inequality, and Theorem 22.6 (with p := 2 andm := 0).
The proof of the second inequality is almost identical since one has to invoke Iavh0(w) instead of
Iavh (w) (and Theorem 22.14).

Exercise 22.7 (Discrete commutator). (i) Owing to Theorem 22.6 (since m ≤ 1+ l), we infer
that

‖φvDK − I
g,av
h (φvDK )‖Wm,p(K) ≤ c h1+l−mK |φvDK |W 1+l,p(DK)

= c h1+l−mK ‖vDK‖Lp(DK)‖φ‖W 1+l,∞(DK),

since vDK is constant. We conclude by observing that ‖vDK‖Lp(DK) ≤ ‖vh‖Lp(DK) since, owing to
Hölder’s inequality with p′ := p

p−1 , we have

vDK = |DK |−1

∫

DK

vh dx ≤ |DK |−1‖vh‖Lp(DK)‖1‖Lp′(DK) = |DK |−
1
p ‖vh‖Lp(DK).

(ii) The hint is proved by observing that φ(xK) is constant and that P g
k (Th) is pointwise invariant

under Ig,avh . As a result, letting ηφ := φ− φ(xK), we infer that

‖φηh − Ig,avh (φηh)‖Wm,p(K) = ‖ηφηh − Ig,avh (ηφηh)‖Wm,p(K)

≤ c h1−mK ‖ηφηh‖W 1,p(DK)

≤ c h1−mK

(
‖ηφ‖L∞(DK)‖ηh‖W 1,p(DK) + |ηφ|W 1,∞(DK)‖ηh‖Lp(DK)

)
,

where we used Theorem 22.6 (since m ≤ 1) followed by the Leibniz product rule. One readily ver-
ifies that |ηφ|W 1,∞(DK) = |φ|W 1,∞(DK) and that ‖ηφ‖L∞(DK) ≤ hK |φ|W 1,∞(DK) owing to the fun-
damental theorem of calculus. Moreover, ‖ηh‖Lp(DK) ≤ chK |vh|W 1,p(DK) owing to (22.20), and we
have |ηh|W 1,p(DK) = |vh|W 1,p(DK). This yields the expected bound on ‖φηh − Ig,avh (φηh)‖Wm,p(K).
Summing the two bounds and using the triangle inequality yields the assertion.
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Chapter 23

Commuting quasi-interpolation

Exercises

Exercise 23.1 (Star-shaped domain). Assume that 0 ∈ D and that D is star-shaped with
respect to the ball B(0, r) for some r > 0. Verify that the mapping ϕδ : Rd → Rd such that
ϕ(x) := (1− δ)x verifies the properties stated in Lemma 23.1.

Exercise 23.2 (Commuting). Prove Lemma 23.3. (Hint : use Lemma 9.6.)

Exercise 23.3 (Translation). Let λ0 > 0. Assume that ψλ : D → D is a diffeomorphism of
class C1 such that ‖ψλ(x)− x‖ℓ2 ≤ c′λ and ‖Dψλ(x)− I‖ℓ2 ≤ 1

2 for all x ∈ D and all λ ∈ [0, λ0].
Assume also that µλ,t : x 7→ x+ t(ψλ(x)− x) maps D into D for all t ∈ [0, 1] and all λ ∈ [0, λ0].
Show that there is c such that ‖f◦ψλ−f‖Lp(D) ≤ c λ‖∇f‖Lp(D) for all λ ∈ [0, λ0], all f ∈ W 1,p(D),
and all p ∈ [1,∞]. (Hint : assume first that f is smooth, then use Remark 23.8.)

Exercise 23.4 (Approximation). (i) Prove (23.9) for Kg
δ with s ∈ (0, 1), p ∈ [1,∞). (ii) Prove

the result for s = 1, p ∈ [1,∞]. (Hint : use Exercise 23.3.) (iii) Prove (23.9) for Kx
δ for x ∈ {c, d, b}.

(Hint : observe that Kx
δ (f) = K

xKg
δ(f).)

Exercise 23.5 (Preserving constants). Propose a definition of Kδ that preserves constants and
commutes with the differential operators. (Hint : start with Ǩg

δ (f) := K
g
δ(f − f −∇f ·(x−xD)) +

f +∇f ·(x− xD), f,∇f denoting mean values over D and xD the barycenter of D.)

Exercise 23.6 (Inverse inequality). Prove (23.19). (Hint : use (23.15b).)

Exercise 23.7 (Approximation with J c
h). Let r ∈ [0, k + 1] and p ∈ [1,∞]. Let g ∈W r,p(D)

be such that ∇×g ∈ W r,p(D). Prove that ‖g − J c
h (g)‖Lp(D) ≤ chr|g|W r,p(D) and ‖∇×(g −

J c
h (g))‖Lp(D) ≤ chr|∇×g|W r,p(D). (Hint : use Theorem 23.12.)

Exercise 23.8 (Best approximation in Lp). We propose an alternative proof of Corollary 22.9
on quasi-uniform meshes. Let h ∈ H be the meshsize of Th and set δ := ǫh in (23.4) with ǫ fixed
small enough. Prove that inffh∈Pk(Th) ‖f − fh‖Lp(D;Rq) ≤ chrℓ−rD ‖f‖W r,p(D;Rq) for all r ∈ [0, k+1],
all p ∈ [1,∞), and all f ∈ W r,p(D;Rq). (Hint : admit as a fact that there is c, uniform, s.t.
δs|Kδ(f)|W s,p(D;Rq) ≤ c(δ/ℓD)t‖f‖W t,p(D;Rq) for all s ≥ t ≥ 0, then use Ih◦Kδ.)

Exercise 23.9 (Zc,p
0 (D) = ker(γc)). Let p ∈ (1,∞) and let Zc,p

0 (D) := C
∞
0 (D)

Zc,p(D)
. We

want to prove that Zc,p
0 (D) = ker(γc) with the trace map γc : Zc,p(D) → W− 1

p ,p(∂D) s.t.
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〈γc(v), l〉 :=
∫
D
v·∇×w(l) dx −

∫
D
(∇×v)·w(l) dx for all v ∈ Zc,p(D) and all l ∈ W 1

p ,p
′

(∂D),

where w(l) ∈ W 1,p(D) is such that γd(w(l)) = l (see §4.3). (i) Show that Zc,p
0 (D) ⊂ ker(γc).

(Hint : Kg
δ(w) → w in W 1,p(D) as δ → 0 for all w ∈ W 1,p(D) and γg : W 1,p(D) → W

1
p ,p

′

(∂D)

is surjective.) (ii) Let v ∈ ker(γc). Show that ∇×ṽ = ∇̃×v ∈ Lp(Rd), where for every function v
defined in D, ṽ denotes its zero-extension to Rd. (iii) Show that ker(γc) ⊂ Zc,p

0 (D). (Hint : use
the mollification operator Kc

δ,0 defined in (23.23).)

Solution to exercises

Exercise 23.1 (Star-shaped domain). The smoothness properties of ϕ are evident, whereas
(23.2) means that (1 − δ)D + δB(0, r) ⊂ D which is nothing but the assumption that D is star-
shaped with respect to the ball B(0, r).

Exercise 23.2 (Commuting). Upon setting T (x) := ϕδ(x) + (δr)y for a fixed y ∈ B(0, 1), the
identities in Lemma 23.3 are simple consequences of the chain rule (see Lemma 9.6):

∇(f◦T )(x) = JTδ (x)(∇f)(T (x)),
∇·(det(Jδ(x))J−1

δ (g◦T ))(x) = det(Jδ(x))(∇·g)(T (x)),
∇×(JTδ (x)(g◦T ))(x) = det(Jδ(x))J

−1
K (x)(∇×g)(T (x)).

Exercise 23.3 (Translation). (1) Assume first that f is smooth. Let x ∈ D and v(t) :=
f(µλ,t(x)) with t ∈ [0, 1]. The chain rule implies that v′(t) = Df(µλ,t(x))(ψλ(x) − x), thereby
showing that

f(ψλ(x))− f(x) =
∫ 1

0

v′(t) dt =
∫ 1

0

Df(µλ,t(x))(ψλ(x)− x) dt.

Assuming that p <∞, we infer that

‖f◦ψλ − f‖pLp(D) ≤
∫

D

‖ψλ(x)− x‖pℓ2
∫ 1

0

‖∇f(µλ,t(x))‖pℓ2 dt dx

≤ c′ λp
∫ 1

0

∫

D

‖∇f(µλ,t(x))‖pℓ2 dt dx.

The assumptions onψλ imply that the mapping µλ,t is invertible and ‖Dµ−1
λ,t‖ℓ2 ≤ 2, |det(Dµ−1

λ,t)| ≤
2d. This gives

‖f◦ψλ − f‖pLp(D) ≤ c′ λp
∫ 1

0

∫

D

‖∇f(z)‖pℓ2 |det(Dµ−1
λ,t)| dz dt,

which finally implies that there is c0 s.t. ‖f◦ψλ − f‖Lp(D) ≤ c0 λ‖∇f‖Lp(D). The case p = ∞ is
treated similarly.
(2) If f is not smooth, we deduce from Remark 23.8 that there exists a sequence of smooth
functions converging to f in W 1,p(D), i.e., for all ǫ > 0, there is a smooth function fǫ such that
‖f − fǫ‖Lp(D) ≤ ǫ and ‖∇fǫ‖Lp(D) ≤ 2‖∇f‖Lp(D). We infer that

‖f◦ψλ − f‖Lp(D) ≤ ‖(f − fǫ)◦ψλ‖Lp(D) + ‖fǫ◦ψλ − fǫ‖Lp(D) + ‖fǫ − f‖Lp(D)

≤ cǫ+ 2c0λ‖∇f‖Lp(D) + ǫ.

The conclusion follows readily since ǫ is arbitrary.
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Exercise 23.4 (Approximation). (i) Let f ∈ W s,p(D) with s ∈ (0, 1) and p ∈ [1,∞). We
estimate Kg

δ (f)− f in Lp(D) as follows:

‖Kg
δ(f)− f‖pLp(D) =

∫

D

∣∣∣∣
∫

B(0,1)

ρ(y)
(
f(ϕδ(x) + (δr)y) − f(x)

)
dy

∣∣∣∣
p

dx

≤ c
∫

B(0,1)

∫

D

|f(ϕδ(x) + (δr)y) − f(x)|p

‖ϕδ(x) + (δr)y − x‖sp+dℓ2

‖ϕδ(x) + (δr)y − x‖sp+dℓ2 dxdy.

Let us make the change of variables

B(0, 1) ∋ y 7→ z = ϕδ(x) + (δr)y ∈ ϕδ(D) + δrB(0, 1) ⊂ D.
Observe that the Jacobian of this transformation is bounded from above by δr and

‖ϕδ(x) + (δr)y − x‖ℓ2 ≤ ‖ϕδ(x)− x‖ℓ2 + δr‖y‖ℓ2 ≤ c δ.
Hence, we have

‖Kg
δ(f)− f‖

p
Lp(D) ≤ c δsp+dδ−d

∫

D

∫

D

|f(z)− f(x)|p

‖z − x‖sp+dℓ2

dxdz ≤ c δsp|f |pW s,p(D).

(ii) Assume now s = 1 and p ∈ [1,∞). Let f ∈ W 1,p(D). By proceeding as above, we infer that

‖Kg
δ(f)− f‖

p
Lp(D) ≤ c

∫

B(0,1)

∫

D

|f(ϕδ(x) + (δr)y) − f(x)|p dxdy.

Let us fix y ∈ B(0, 1) and define the mapping ψδ : D ∋ x 7→ ϕδ(x)+ (δr)y ∈ ϕδ(D)+ δrB(0, 1) ⊂
D. We observe that

‖ψδ(x)− x‖ℓ2 ≤ ‖ϕδ(x)− x‖ℓ2 + δr‖y‖ℓ2 ≤ c δ,
‖Dψδ(x)− I‖ℓ2 = ‖Dϕδ(x)− I‖ℓ2 ≤ c δ,

and x+t(ψδ(x)−x) = x+t(ϕδ(x)+δry−x) ∈ D, i.e., ψδ satisfies the assumptions of Exercise 23.3.
We infer that

∫
D
|f(ϕδ(x) + (δr)y) − f(x)|p dx ≤ c δp‖∇f‖p

Lp(D). We conclude that ‖Kg
δ(f) −

f‖Lp(D) ≤ c δ‖∇f‖Lp(D). The case s = 1, p =∞ is treated similarly.
(iii) The definition (23.4) implies that Kx

δ (f) = K
xKg

δ (f) for all x ∈ {c, d, b}. Hence, we have

‖Kx
δ (f)− f‖Lp(D;Rq) ≤ ‖KxKg

δ (f)−Kx(f)‖Lp(D;Rq) + ‖Kx(f)− f‖Lp(D;Rq)

≤ ‖Kx‖L∞(D;Rq×q)‖Kg
δ(f)− f‖Lp(D;Rq) + ‖Kx − I‖L∞(D;Rq×q)‖f‖Lp(D;Rq)

≤ c
(
δs|f |W s,p(D;Rq) + ℓ−1

D δ‖f‖Lp(D;Rq)

)

≤ c ℓ−sD δs
(
δ1−s

ℓ1−sD

‖f‖Lp(D;Rq) + ℓsD|f |W s,p(D;Rq)

)
.

Since δ ≤ ℓD, this implies that ‖Kx
δ (f)− f‖Lp(D) ≤ cℓ−sD δs‖f‖W s,p(D).

Exercise 23.5 (Preserving constants). Let us assume that f ∈ Zg,p(D). Let us consider
Ǩg
δ(f) = K

g
δ (f−f−∇f ·(x−xD))+f+∇f ·(x−xD) as suggested in the hint, where f = 1

|D|
∫
D
f dx

and ∇f = 1
|D|
∫
D∇f dx. It is clear that if f = f , then Ǩg

δ(f) = f = f , i.e., Ǩg
δ preserves constant

fields. Moreover, Ǩg
δ (f) ∈ C∞(D;R). Notice also in passing that

‖Ǩg
δ(f)− f‖L(D) ≤ ‖Kg

δ(f − f −∇f ·(x− xD))− (f − f −∇f ·(x− xD))‖L(D)

≤ c ℓ−1
D δ‖f − f −∇f ·(x− xD)‖W 1,p(D)

≤ c ℓ−1
D δ(‖f − f‖W 1,p(D) + ℓD‖∇f‖Lp(D)).
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The Poincaré-Steklov inequality implies that ‖Ǩg
δ(f)− f‖Lp(D) ≤ cδ|f |W 1,p(D).

Let us now modify Kc
δ. Using that ∇◦Kg

δ = Kc
δ◦∇, we have

∇Ǩg
δ (f) = Kc

δ(∇f −∇f) +∇f.

Using that ∇×(A×x) = 2A for all A ∈ R3, the above identity suggests to take the following
alternative definition for Kc

δ:

Ǩc
δ(g) := Kc

δ(g − g − 1
2∇×g×(x− xD)) + g + 1

2∇×g×(x− xD).

Using g = ∇f in this definition, we obtain ∇Ǩg
δ (f) = Ǩc

δ(∇f), i.e., the expected commutation
holds true for all f ∈ Zg,p(D). Notice that Ǩc

δ(g) ∈ C∞(D;R3) and Ǩc
δ preserves constant

fields. Proceeding as for Ǩg
δ , we note in passing that we can also prove that ‖Ǩc

δ(g) − g‖Lp(D) ≤
cδ|g|W 1,p(D).

Let us continue with ∇×Ǩc
δ(g) where g ∈ Zc,p(D). Using that (∇×)◦Kc

δ = Kd
δ ◦(∇×), we have

∇×Ǩc
δ(g) = Kd

δ (∇×g −∇×g) +∇×g.

Using that ∇·(Ax) = dA for all A ∈ Rd, the above identity suggests to take

Ǩd
δg := Kd

δ (g − g − 1
d∇·g(x− xD)) + g + 1

d∇·g(x− xD).

Using g = ∇×h in this definition, we obtain∇×Ǩc
δ(h) = Ǩd

δ (∇×h), i.e., the expected commutation
holds true. Notice that Ǩd

δ (g) ∈ C∞(D;R3) and Ǩd
δ preserves constant fields. Proceeding as for

Ǩg
δ , we can also prove that ‖Ǩd

δ (g) − g‖Lp(D) ≤ cδ|g|W 1,p(D).

Let us continue with ∇·Ǩd
δ (g) where g ∈ Zd,p(D). Using that (∇·)◦Kd

δ = Kb
δ◦∇·, we have

∇·Ǩd
δ (g) = Kb

δ (∇·g −∇·g) +∇·g.
Since we have reached the end of the de Rham diagram, we can set

Ǩb
δ (f) := Kb

δ (f − f) + f.

This gives ∇·Ǩd
δ (g) = Ǩb

δ (∇·g), i.e., the expected commutation holds true. Notice that Ǩb
δ (f) ∈

C∞(D;R) and Ǩb
δ preserves constant fields. Proceeding as for Ǩg

δ , we can also prove that ‖Ǩb
δ (f)−

f‖Lp(D) ≤ cδ|f |W 1,p(D).

Exercise 23.6 (Inverse inequality). Let x ∈ K. Since the function ρ is bounded, we infer that

‖Kδ(f)(x)‖ℓ2 ≤ c
∫

B(0,1)

‖f(ϕδ(x)(x) + δ(x)y)‖ℓ2 dy.

The condition (23.15b) implies that

‖Kδ(f)(x)‖ℓ2 ≤ c ‖δ−1‖dL∞(DK)

∫

DK

‖f(z)‖ℓ2 dz

≤ c ǫ−dminh
−d
K |DK |1−

1
p ‖f‖Lp(DK ;Rq).

We conclude using the regularity of the mesh sequence.

Exercise 23.7 (Approximation with J c
h). Owing to the commuting property from Theo-

rem 23.12, we infer that

‖∇×(g − J c
h (g))‖Lp(D) ≤ ‖∇×g − J d

h (∇×g)‖Lp(D).

Using the best-approximation result from Theorem 23.12 for x = c and x = d, and invoking
Corollary 22.9 yields the desired bound.



Part IV. Finite element spaces 119

Exercise 23.8 (Best approximation in Lp). Let f ∈ Lp(D;Rq) and consider the smallest
integer l such that W l,p(D;Rq)) →֒ V x(D) and l ≥ k + 1. The triangle inequality leads to

‖f − Ixh(Kx
δ (f))‖Lp(D;Rq) ≤ ‖f −Kx

δ (f)‖Lp(D;Rq) + ‖Kx
δ (f)− Ixh(Kx

δ (f))‖Lp(D;Rq).

We can bound ‖Kx
δ (f) − Ixh(Kx

δ (f))‖Lp(D;Rq) by using the inverse inequality provided in the hint
and Corollary 19.8 for x = g, Corollary 19.9 for x = c or Corollary 19.10 for x = d:

‖Kx
δ (f)− Ixh(Kx

δ (f))‖pLp(D;Rq) =
∑

K∈Th
‖Kx

δ (f)− Ixh(Kx
δ (f))‖pLp(K;Rq)

≤ c
∑

K∈Th

∑

m∈{k+1: l}
hmpK |Kx

δ (f)|pWm,p(K;Rq)

≤ c
∑

m∈{k+1: l}
hmp|Kx

δ (f)|pWm,p(D;Rq)

≤ cℓ−rpD ‖f‖pW r,p(D;Rq)δ
rp

∑

m∈{k+1: l}
hmpδ−mp,

which gives ‖Kx
δ (f) − Ixh(Kx

δ (f))‖Lp(D;Rq) ≤ cℓ−rD hr‖f‖W r,p(D;Rq) since δ = ǫh and ǫ is fixed. In
conclusion, we have

‖f − Ixh(Kx
δ (f))‖Lp(D;Rq) ≤ ‖f −Kx

δ (f)‖Lp(D;Rq) + cℓ−rD hr‖f‖W r,p(D;Rq)

≤ c′ℓ−rD (δr + hr)‖f‖W r,p(D;Rq),

which gives the desired result (since δ = ǫh and ǫ is fixed).

Exercise 23.9 (Zc,p
0 (D) = ker(γc)). (i) Let v ∈ Zc,p

0 (D). By definition, there is a sequence
of smooth functions (vn)n∈N in C∞

0 (D) converging to v in Zc,p(D). Let l be any function in

W
1
p ,p

′

(∂D). Since γg is surjective, there is a function w(l) ∈ W 1,p(D) such that γg(w(l)) = l.
Let δ > 0 and let us consider Kg

δ(w(l)). Since vn is compactly supported, we have

0 =

∫

D

∇·(Kg
δ (w(l))×vn) dx

=

∫

D

vn·∇×(Kg
δ (w(l))) dx −

∫

D

(Kg
δ(w(l)))·∇×vn dx.

Both integrals on the right-hand side converge as δ → 0 and n→∞. We infer that

〈γc(v), l〉 :=
∫

D

v·∇×w(l) dx−
∫

D

w·∇×v(l) dx = 0,

for every function l in W
1
p ,p

′

(∂D). In conclusion, v ∈ ker(γc). Hence, Zc,p
0 (D) ⊂ ker(γc).

(ii) Let v ∈ ker(γc). Let us show that ṽ has a weak curl in Lp(Rd). Let φ ∈ C∞
0 (Rd). By

definition, we have

〈∇×ṽ,φ〉 =
∫

Rd
ṽ·∇×φ dx =

∫

D

v·∇×φ dx.

Using that v ∈ ker(γc), the above equality implies that

〈∇×ṽ,φ〉 =
∫

D

v·∇×φ dx =

∫

D

φ·∇×v dx =

∫

Rd
φ·∇̃×v dx.
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This proves that ṽ has a weak curl in Lp(Rd) such that ∇×ṽ = ∇̃×v. We have thus shown that

v ∈ Z̃c,p(D) := {w ∈ Lp(D) | ∇̃×v ∈ Lp(Rd)}.
(iii) We can now apply the hint. According to Theorem 23.18 and Corollary 23.19, the sequence
(Kc

δ,0(v))δ>0 converges to v in Zc,p(D) (recall that we have established in Step (ii) that v ∈
Z̃c,p(D)). This proves that v ∈ Zc,p

0 (D) since Kc
δ,0(v) ∈ C∞

0 (D) (see Lemma 23.16). This shows

that ker(γc) ⊂ Zc,p
0 (D).
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Weak formulation of model
problems

Exercises

Exercise 24.1 (Forms). Let D := (0, 1). Which of these maps are linear or bilinear forms on
L2(D)×L2(D): a1(f, g) :=

∫
D(f+g+1) dx, a2(f, g) :=

∫
D x(f−g) dx, a3(f, g) :=

∫
D(1+x

2)fg dx,
a4(f, g) :=

∫
D
(f + g)2 dx?

Exercise 24.2 ((Non)-uniqueness). Consider the domain D in R2 whose definition in polar
coordinates is D := {(r, θ) | r ∈ (0, 1), θ ∈ (πα , 0)} with α ∈ (−1,− 1

2 ). Let ∂D1 := {(r, θ) | r =
1, θ ∈ (πα , 0)} and ∂D2 := ∂D\∂D1. Consider the PDE−∆u = 0 inD with the Dirichlet conditions
u = sin(αθ) on ∂D1 and u = 0 on ∂D2. (i) Let ϕ1 := rα sin(αθ) and ϕ2 := r−α sin(αθ). Prove
that ϕ1 and ϕ2 solve the above problem. (Hint : in polar coordinates ∆ϕ = 1

r∂r(r∂rϕ) +
1
r2 ∂θθϕ.)

(ii) Prove that ϕ1 and ϕ2 are in L2(D) if α ∈ (−1,− 1
2 ). (iii) Consider the problem of seeking

u ∈ H1(D) s.t. u = sin(αθ) on ∂D1, u = 0 on ∂D2, and
∫
D∇u·∇v = 0 for all v ∈ H1

0 (D). Prove
that ϕ2 solves this problem, but ϕ1 does not. Comment.

Exercise 24.3 (Poisson in 1D). Let D := (0, 1) and f(x) := 1
x(1−x) . Consider the PDE

−∂x((1 + sin(x)2)∂xu) = f in D with the Dirichlet conditions u(0) = u(1) = 0. Write a weak
formulation of this problem with both trial and test spaces equal to H1

0 (D) and show that the
linear form on the right-hand side is bounded on H1

0 (D). (Hint : notice that f(x) = 1
x + 1

1−x .)

Exercise 24.4 (Weak formulations). Prove Propositions 24.2 and 24.3.

Exercise 24.5 (Darcy). (i) Derive another variation on (24.12) and (24.14) with the functional
spaces V =W :=H(div;D)×L2(D). (Hint : use Theorem 4.15.) (ii) Derive yet another variation
with the functional spaces V := L2(D)×L2(D) and W :=H(div;D)×H1

0 (D).

Exercise 24.6 (Variational formulation). Prove that u solves (24.7) if and only if u minimizes
over H1

0 (D) the energy functional

E(v) :=
1

2

∫

D

|∇v|2 dx−
∫

D

fv dx.

(Hint : show first that E(v + tw) = E(v) + t
{∫

D∇v·∇w dx−
∫
D fw dx

}
+ 1

2 t
2
∫
D |∇w|2 dx for all

v, w ∈ H1
0 (D) and all t ∈ R.)
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Exercise 24.7 (Derivative of primitive). Prove (24.18). (Hint : use Theorem 1.38 and Lebesgue’s
dominated convergence theorem.)

Exercise 24.8 (Biharmonic problem). Let D be an open, bounded, set in Rd with smooth
boundary. Derive a weak formulation for the biharmonic problem

∆(∆u) = f in D, u = ∂nu = 0 on ∂D,

with f ∈ L2(D). (Hint : use Theorem 3.16.)

Solution to exercises

Exercise 24.1 (Forms). The map a1 is neither linear nor bilinear since a1(0, 0) = |D| 6= 0. The
map a2 is linear (not bilinear). The map a3 is bilinear (not linear). The map a4 is neither linear
(a4(1, 0) = |D| 6= 1

2a4(2, 0) = 4|D|) nor bilinear (a4(1, 0) 6= 0).

Exercise 24.2 ((Non)-uniqueness). (i) Direct verification.
(ii) We have ϕ2 ∈ L∞(D) since α < 0, whereas ϕ1 is in L2(D) if 2α+ 1 > −1, i.e., if α > −1.
(iii) One verifies that ϕ2 ∈ H1(D) provided 2(−α − 1) + 1 > −1, i.e., α < 0, which is indeed
satisfied. The same argument shows that ϕ1 6∈ H1(D). This shows that by going from L2(D) to
the smaller space H1(D), the nonuniqueness of the solution observed in Step (ii) disappears.

Exercise 24.3 (Poisson in 1D). We take ϕ ∈ C∞
0 (D), test the equation with ϕ, and integrate

by parts. This yields ∫ 1

0

d(x)∂xu∂xϕdx =

∫ 1

0

f(x)ϕ(x) dx,

with d(x) := 1 + sin(x)2. Notice that
∫ 1

0 f(x)ϕ(x) dx is unambiguously defined since f is of class
C∞ and bounded on the support of ϕ. We now want to pass to the limit and want to make sense
of this integral when the test function is in H1

0 (D). We have

∫ 1

0

f(x)ϕ(x) dx =

∫ 1

0

(
1

x
+

1

1− x

)
ϕ(x) dx

=

∫ 1

0

∂x (ln(x) − ln(1− x))ϕ(x) dx

= −
∫ 1

0

(ln(x)− ln(1− x)) ∂xϕ(x) dx.

Hence, g(x) = ln(x) − ln(1 − x) is the weak derivative of f . Since g ∈ L2(D), the integral

−
∫ 1

0
g(x)∂xϕ(x) dx makes sense for all ϕ ∈ H1

0 (D). In conclusion, the weak formulation consists
of seeking u ∈ H1

0 (D) such that

∫ 1

0

d(x)∂xu∂xv dx = −
∫ 1

0

g∂xv dx, ∀v ∈ H1
0 (D).

Exercise 24.4 (Weak formulations). (i) Consider Proposition 24.2. Taking the test function
(τ , 0) with τ arbitrary in C∞

0 (D) shows that σ +∇p = 0 a.e. in D. Take next the test function
(0, q) with q arbitrary in C∞

0 (D) to infer that ∇·σ = f a.e. in D. The boundary condition is
explicitly enforced in the space for p.
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(ii) Consider now Proposition 24.3. The PDE σ +∇p = 0 a.e. in D is recovered as before. Take
next the test function (0, q) with q arbitrary in C∞

0 (D) to infer that σ has a weak divergence in
L2(D) and that ∇·σ = f a.e. in D. The boundary condition on p is explicitly enforced.

Exercise 24.5 (Darcy). (i) Taking the functional spaces V = W :=H(div;D)×L2(D) leads to
the following weak formulation:

{
Find u := (σ, p) ∈ V such that∫
D(σ·τ − p∇·τ − q∇·σ) dx = −

∫
D fq dx, ∀w := (τ , q) ∈W.

(ii) Taking the trial space V := L2(D)×L2(D) and the test space W := H(div;D)×H1
0 (D) leads

to the following weak formulation:

{
Find u := (σ, p) ∈ V such that∫
D
(σ·τ − p∇·τ − σ·∇q) dx =

∫
D
fq dx, ∀w := (τ , q) ∈ W.

Exercise 24.6 (Variational formulation). The expanded formula for E(v + tw) is established
by developing the various terms and reordering them as zeroth-, first- and second-order terms in
w. Let u solve (24.7). Taking v := u and t := 1 in the expanded formula leads to E(u+w) ≥ E(u)
for all w ∈ H1

0 (D). This implies that u minimizes E over H1
0 (D). Conversely, assume that u

minimizes E over H1
0 (D). Let w ∈ H1

0 (D). The right-hand side of the expanded formula is a
second-order polynomial in t that is minimal at t = 0. Hence, the derivative of this polynomial
vanishes at t = 0, which amounts to

∫
D
∇u·∇w dx−

∫
D
fw dx = 0. Since w is arbitrary in H1

0 (D),
u solves (24.7).

Exercise 24.7 (Derivative of primitive). We use a density argument. Since C∞
0 (D) is dense

in L1(D), there is a sequence (fn)n∈N in C∞
0 (D) that converges to f in L1(D) and such that

‖fn‖L1(D) ≤ 2‖f‖L1(D). Let φ ∈ C∞
0 (D). It is clear that

∣∣∣∣
∫ 1

0

fnφds−
∫ 1

0

fφds

∣∣∣∣ ≤ (sup
x∈D
|φ(x)|)

∫ 1

0

|fn − f | ds→ 0.

Likewise (
∫ x
0
fn ds)φ

′(x) → (
∫ x
0
f ds)φ′(x) a.e. in D, and

∣∣∣∣φ′(x)
∫ x

0

fn ds

∣∣∣∣ ≤ 2|φ′(x)|
∫ 1

0

|f | ds.

Lebesgue’s dominated convergence theorem implies that

∫ 1

0

(

∫ x

0

fn ds)φ
′(x) dx→

∫ 1

0

(

∫ x

0

f ds)φ′(x) dx.

Passing to the limit in the relation

∫ 1

0

(∫ x

0

fn ds

)
φ′(x) dx = −

∫ 1

0

fn(x)φ(x) dx

yields (24.18).

Exercise 24.8 (Biharmonic problem). Theorem 3.16 shows that

V := H2
0 (D) = {v ∈ H2(D) | v = ∂nv = 0 on ∂D}.
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Multiplying by a test function v ∈ C∞
0 (D), integrating over D, and using twice Green’s formula

along with the boundary conditions leads to the following weak formulation:

{
Find u ∈ V such that∫
D
∆u∆w dx =

∫
D
fw dx, ∀w ∈ V.

If u solves the above weak formulation, taking w ∈ C∞
0 (D) shows that ∆u has a weak Laplacian

in L2(D), and since f ∈ L2(D), we infer that ∆(∆u) = f a.e. in D. The boundary conditions on
u are explicitly enforced in V.



Chapter 25

Main results on well-posedness

Exercises

Exercise 25.1 (Riesz–Fréchet). The objective is to prove the Riesz–Fréchet theorem (Theo-
rem C.24) by using the BNB theorem. Let V be a Hilbert space with inner product (·, ·)V . (i)
Show that for every v ∈ V, there is a unique Jrf

V (v) ∈ V ′ s.t. 〈Jrf
V (v), w〉V ′,V := (v, w)V for all

w ∈ V. (ii) Show that Jrf
V : V ′ → V is a linear isometry.

Exercise 25.2 (Reflexivity). Let V,W be two Banach spaces such that there is an isomorphism
A ∈ L(V ;W ). Assume that V is reflexive. Prove that W is reflexive. (Hint : consider the map
A∗∗ ◦ JV ◦A−1.)

Exercise 25.3 (Space VR). Let V be a set and assume that V has a vector space structure over
the field C. By restricting the scaling λv to λ ∈ R and v ∈ V, V has also a vector space structure
over the field R, which we denote by VR (V and VR are the same sets, but they are equipped with
different vector space structures); see Remark C.11. Let V ′ be the set of the bounded anti-linear
forms on V and V ′

R be the set of the bounded linear forms on VR. Prove that the map I : V ′ → V ′
R

such that for all ℓ ∈ V ′, I(ℓ)(v) := ℜ(ℓ(v)) for all v ∈ V, is a bijective isometry. (Hint : for ψ ∈ V ′
R,

set ℓ(v) := ψ(v) + iψ(iv) with i2 = −1.)

Exercise 25.4 (Orthogonal projection). Let V be a Hilbert space with inner product (·, ·)V
and induced norm ‖·‖V . Let U be a nonempty, closed, and convex subset of V. Let f ∈ V. (i)
Show that there is a unique u in U such that ‖f − u‖V = minv∈U ‖f − v‖V . (Hint : recall that
1
4 (a − b)2 = 1

2 (c − a)2 + 1
2 (c − b)2 − (c − 1

2 (a + b))2 and show that a minimizing sequence is a
Cauchy sequence.) (ii) Show that u ∈ U is the minimizer if and only if ℜ((f − u, v − u)V ) ≤ 0
for all v ∈ U . (Hint : proceed as in the proof of Proposition 25.8.) (iii) Assuming that U is a
(nontrivial) subspace of V, prove that the unique minimizer is characterized by (f − u, v)V = 0 for
all v ∈ U , and prove that the map ΠU : V ∋ f 7→ u ∈ U is linear and ‖ΠU‖L(V ;U) = 1. (iv) Let a
be a bounded, Hermitian, and coercive sesquilinear form (with ξ := 1 for simplicity). Let ℓ ∈ V ′.
Set E(v) := 1

2a(v, v)− ℓ(v). Show that there is a unique u ∈ V such that E(u) = minv∈U E(v) and
that u is the minimizer if and only if ℜ(a(u, v − u)− ℓ(v − u)) ≥ 0 for all v ∈ U .

Exercise 25.5 (Inf-sup constant). Let V be a Hilbert space, U a subset of V, and W a closed

subspace of V. Let β := infu∈U supw∈W
|(u,w)V |

‖u‖V ‖w‖W . (i) Prove that β ∈ [0, 1]. (ii) Prove that
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β = infu∈U
‖ΠW (u)‖V

‖u‖V , where ΠW is the orthogonal projection onto W. (Hint : use Exercise 25.4.)

(iii) Prove that ‖u−ΠW (u)‖V ≤ (1 − β2)
1
2 ‖u‖V . (Hint : use the Pythagorean identity.)

Exercise 25.6 (Fixed-point argument). The goal of this exercise is to derive another proof of
the Lax–Milgram lemma. Let A ∈ L(V ;V ) be defined by (A(v), w)V := a(v, w) for all v, w ∈ V
(note that we use an inner product to define A). Let L be the representative in V of the linear form
ℓ ∈ V ′. Let λ be a positive real number. Consider the map Tλ : V → V s.t. Tλ(v) := v−λξ(A(v)−L)
for all v ∈ V. Prove that if λ is small enough, ‖Tλ(v) − Tλ(w)‖V ≤ ρλ‖v − w‖V for all v, w ∈ V
with ρλ ∈ (0, 1), and show that (25.6) is well-posed. (Hint : use Banach’s fixed-point theorem.)

Exercise 25.7 (Coercivity as necessary condition). Let V be a reflexive Banach space
and let A ∈ L(V ;V ′) be a monotone self-adjoint operator; see Definition C.31. Prove that A
is bijective if and only if A is coercive (with ξ := 1). (Hint : prove that ℜ(〈A(v), w〉V ′,V ) ≤
〈A(v), v〉

1
2

V ′,V 〈A(w), w〉
1
2

V ′,V for all v, w ∈ V.)

Exercise 25.8 (Darcy). Prove that the problem (24.14) is well-posed. (Hint : adapt the proof
of Proposition 25.18.)

Exercise 25.9 (First-order PDE). Prove that the problem (24.21) is well-posed. (Hint : adapt
the proof of Proposition 25.19.)

Exercise 25.10 (T -coercivity). Let V,W be Hilbert spaces. Prove that (bnb1)-(bnb2) are
equivalent to the existence of a bijective operator T ∈ L(V ;W ) and a real number η > 0 such
that ℜ(a(v, T (v))) ≥ η‖v‖2V for all v ∈ V. (Hint : use J−1

W , (A−1)∗, and the map Jrf
V from the

Riesz–Fréchet theorem to construct T .)

Exercise 25.11 (Sign-changing diffusion). Let D be a Lipschitz domain D in Rd partitioned
into two disjoint Lipschitz subdomainsD1 andD2. Set Σ := ∂D1∩∂D2, each having an intersection
with ∂D of positive measure. Let κ1, κ2 be two real numbers s.t. κ1 > 0 and κ2 < 0. Set
κ(x) := κ11D1(x)+κ21D2(x) for all x ∈ D. Let V := H1

0 (D) be equipped with the norm ‖∇v‖L2(D).
The goal is to show that the bilinear form a(v, w) :=

∫
D
κ∇v·∇w satisfies conditions (bnb1)-(bnb2)

on V×V ; see Chesnel and Ciarlet [11]. Set Vm := {v|Dm | v ∈ V } for all m ∈ {1, 2}, equipped
with the norm ‖∇vm‖L2(Dm) for all vm ∈ Vm, and let γ0,m be the traces of functions in Vm on
Σ. (i) Assume that there is S1 ∈ L(V1;V2) s.t. γ0,2(S1(v1)) = γ0,1(v1). Define T : V → V s.t.
for all v ∈ V, T (v)(x) := v(x) if x ∈ D1 and T (v)(x) := −v(x) + 2S1(v|D1)(x) if x ∈ D2. Prove
that T ∈ L(V ) and that T is an isomorphism. (Hint : verify that T ◦ T = IV , the identity in
V.) (ii) Assume that κ1

|κ2| > ‖S1‖2L(V1;V2)
. Prove that the conditions (bnb1)-(bnb2) are satisfied.

(Hint : use T -coercivity from Remark 25.14.) (iii) Let D1 := (−a, 0)×(0, 1) and D2 := (0, b)×(0, 1)
with a > b > 0. Show that if κ1

|κ2| 6∈ [1, ab ], (bnb1)-(bnb2) are satisfied. (Hint : consider the map

S1 ∈ L(V1;V2) s.t. S1(v1)(x, y) := v1(−abx, y) for all v1 ∈ V1, and the map S2 ∈ L(V2;V1) s.t.
S2(v2)(x, y) := v2(−x, y) if x ∈ (−b, 0) and S2(v2)(x, y) := 0 otherwise, for all v2 ∈ V2.)

Solution to exercises

Exercise 25.1 (Riesz–Fréchet). (i) For every v ∈ V, consider the linear form ℓv ∈ V ′ defined
by ℓv(w) := (v, w)V for all w ∈ V. Since (·, ·)V is an inner product, we have

‖v‖V = sup
w∈W

|(v, w)V |
‖w‖V

= sup
w∈V

|ℓv(w)|
‖w‖V

.
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Hence, ℓv ∈ V ′ for all v ∈ V. Let us define the bilinear form a(f, w) := 〈f, w〉V ′,V for all f ∈ V ′ and
all w ∈ V. We need to prove that for all v ∈ V, there is a unique Jrf

V (v) ∈ V ′ s.t. a(Jrf
V (v), w) :=

ℓv(w) for all w ∈ V. We do this by means of the BNB theorem, i.e., we verify the two assumptions
of this theorem. We have

‖f‖V ′ = sup
w∈V

|〈f, w〉V ′,V |
‖w‖V

= sup
w∈V

|a(f, w)|
‖w‖V

.

Hence, (25.11a) holds true:

inf
f∈V ′

sup
w∈V

|a(f, w)|
‖f‖V ′‖w‖V

= 1.

Next, assume that a(f, w) = 0 for all f ∈ V ′. Then 〈f, w〉V ′,V = 0 for all f ∈ V ′. Owing to
Corollary C.14, we infer that

‖w‖V = sup
f∈V ′

|〈f, w〉V ′,V |
‖f‖V ′

= 0.

This proves that w = 0. Hence, (25.11b) holds true as well.
(ii) Jrf

V : V ′ → V is clearly linear. We have proved in Step (i) that

‖Jrf
V (v)‖V ′ = sup

w∈V

|a(f, w)|
‖w‖V

= sup
w∈V

|ℓv(w)|
‖w‖V

= ‖v‖V .

Hence, Jrf
V : V ′ → V is an isometry.

Exercise 25.2 (Reflexivity). Let us prove that A∗∗ ◦ JV ◦ A−1 = JW . Let w ∈ W. We observe
that

〈A∗∗(JV (A
−1(w))), w′〉W ′′,W ′ = 〈JV (A−1(w), A∗(w′))〉V ′′,V ′

= 〈A∗(w′), A−1(w)〉V ′,V

= 〈w′, AA−1(w)〉W ′ ,W

= 〈w′, w〉W ′,W = 〈JW (w), w′〉W ′′,W ′ ,

for all w′ ∈ W ′. Hence, A∗∗(JV (A−1(w))) = JW (w) inW ′, which proves that A∗∗◦JV ◦A−1 = JW .
Since A is an isomorphism, A∗∗ is also an isomorphism (see Corollary C.52). Moreover, JV is an
isomorphism since V is reflexive. Hence, JW is an isomorphism, which proves the reflexivity of W.

Exercise 25.3 (Space VR). The operator I(ℓ) maps onto R and is linear since I(ℓ)(tv) =
ℜ(ℓ(tv)) = ℜ(tℓ(v)) = tℜ(ℓ(v)) = tI(ℓ)(v) for all t ∈ R and all v ∈ V. Moreover, I(ℓ) is bounded
since

|I(ℓ)(v)| = |ℜ(ℓ(v))| ≤ |ℓ(v)| ≤ ‖ℓ‖V ′‖v‖V ,

for all v ∈ V, so that ‖I(ℓ)‖V ′
R
≤ ‖ℓ‖V ′ . Furthermore, the map I is injective. Assuming indeed

that I(ℓ) = 0, i.e., ℜ(ℓ(v)) = 0 for all v ∈ V, the hypothesis I(ℓ) = 0 implies that 0 = I(ℓ)(iv) =
ℜ(ℓ(iv)) = ℜ(−iℓ(v)) = ℑ(ℓ(v)) since iv ∈ V. Hence, I(ℓ) = 0 implies that ℜ(ℓ(v)) = 0 and
ℑ(ℓ(v)) = 0. This proves that ℓ(v) = 0 for all v ∈ V. Hence, ℓ = 0. Let us now prove that I is
surjective. Let ψ ∈ V ′

R and consider the map ℓ : V → C s.t.

ℓ(v) = ψ(v) + iψ(iv), ∀v ∈ V.
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(Recall that ψ is only R-linear.) By construction, I(ℓ) = ψ, and the map ℓ : V → C is antilinear.
Indeed, let λ ∈ C and write λ = µ+ iν with µ, ν ∈ R. We infer that

ℓ(λw) = ψ(µw + iνw) + iψ(iµw − νw)
= µψ(w) + νψ(iw) + iµψ(iw)− iνψ(w)

= µ (ψ(w) + iψ(iw)) − iν (ψ(w) + iψ(iw)) = λℓ(v),

for all w ∈ V, where we used the R-linearity of ψ. Let us finally show that ‖ℓ‖V ′ ≤ ‖ψ‖V ′
R
. Let

v ∈ V be s.t. ℓ(v) 6= 0 and set λ := ℓ(v)
|ℓ(v)| ∈ C. We have

|ℓ(v)| = λ−1ℓ(v) = ℓ(λ−1v) = ψ(λ−1v) + iψ(iλ−1v),

but since ψ takes values in R, we infer that ψ(iλ−1v) = 0, so that |ℓ(v)| = ψ(λ−1v). This implies
that

|ℓ(v)| ≤ ‖ψ‖V ′
R
‖λ−1v‖V = ‖ψ‖V ′

R
‖v‖V ,

since |λ| = 1. The proof is complete.

Exercise 25.4 (Orthogonal projection). (i) Let (un)n∈N be a minimizing sequence in U . A
direct calculation shows that

1

4
‖un − um‖2V =

1

2
‖f − un‖2V +

1

2
‖f − um‖2 − ‖f − 1

2 (un + um)‖2V

≤ 1

2
‖f − un‖2V +

1

2
‖f − um‖2,

which shows that (un)n∈N is a Cauchy sequence in V. Since V is a Hilbert space and U is closed,
its limit, say u, is in U , and by construction, u is a minimizer. Uniqueness follows from the above
formula since considering for un and um two minimizers gives

‖f − 1
2 (un + um)‖2V <

1

2
‖f − un‖2V +

1

2
‖f − um‖2,

if un and um are distinct, which is a contradiction with the fact that un and um are minimizers.
(ii) We proceed as in the proof of Proposition 25.8 with E(v) := ‖f − v‖2V . Let u be such that
E(u) = minv∈U E(v). Let t ∈ [0, 1]. The formula (25.10) becomes

E(u + tw) = E(u)− 2tℜ((f − u,w)V ) + t2‖w‖2V .

For all v ∈ U and all t ∈ [0, 1], take w := v − u and observe that u + tw ∈ U by convexity
of U . Hence, E(u + tw) ≥ E(u) for all t ∈ [0, 1]. Since p(t) := E(u + tw) is a polynomial in t
and p(t) ≥ p(0) for all t ∈ [0, 1], we infer that its derivative at t := 0 is nonnegative, yielding
−ℜ((f − u, v − u)V ) = p′(0) ≥ 0 for all v ∈ U . Conversely, if u ∈ U satisfies this property,
evaluating E(u + tw) with w := v − u at t := 1 yields E(v) ≥ E(u) for all v ∈ U .
(iii) When U is a subspace of V, (v − u) spans U , so that the characterization becomes ℜ((f −
u, v)V ) ≤ 0 for all v ∈ U , and since the same inequality is verified for ξv for all ξ ∈ C with
|ξ| = 1, we infer that (f − u, v)V = 0 for all v ∈ U . The linearity of the map ΠU results from this
characterization, which also yields

‖ΠU (f)‖2V = ‖f‖2V − ‖f −ΠU (f)‖2V ,

for all f ∈ V, showing that ‖ΠU‖L(V ;U) ≤ 1. Equality is attained on the elements of U (unless
U = {0}, in which case ‖ΠU‖L(V ;U) = 0).
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(iv) All of the above can be extended by replacing the old functional ‖f−v‖2V by the new functional
E(v). In particular, we have

α

8
‖un − um‖2V ≤

1

8
a(un − um, un − um) =

1

2
E(un) +

1

2
E(um)− E(12 (un + um)).

Exercise 25.5 (Inf-sup constant). (i) That β ≥ 0 follows from its definition, and that β ≤ 1
follows from the Cauchy–Schwarz inequality.

(ii) The properties of the orthogonal projection imply that ‖ΠW (u)‖V = supw∈W
|(u,w)V |
‖w‖V . Let

indeed r be the right-hand side. Taking w := ΠW (u) in the supremum and since (u,ΠW (u))V =
‖ΠW (u)‖2V , we infer that ‖ΠW (u)‖V ≤ r. Moreover, since (u,w)V = (ΠW (u), w)V for all w ∈ W,
the Cauchy–Schwarz inequality implies that |(u,w)V | ≤ ‖ΠW (u)‖V ‖w‖V . Hence, r ≤ ‖ΠW (u)‖V ,
and we conclude that equality holds true.
(iii) Step (ii) shows that ‖ΠW (u)‖V ≥ β‖u‖V for all u ∈ U . Owing to the Pythagorean identity,
we infer that

‖u−ΠW (u)‖2V = ‖u‖2V − ‖ΠW (u)‖2V ≤ (1− β2)‖u‖2V .
Exercise 25.6 (Fixed-point argument). We observe that

‖Tλ(v)− Tλ(w)‖2V = ‖(v − w)− λA(v − w)‖2V
= ‖v − w‖2V − 2λℜ(ξa(v − w, v − w)) + λ2‖A(v − w)‖2V
≤ (1 − 2λα+ λ2‖a‖2V×V )‖v − w‖2V .

Taking λ := α
‖a‖2

V×V
yields 1− 2λα+λ2‖a‖2V×V = 1− ( α

‖a‖V×V
)2 ∈ (0, 1). The above bound shows

that the map Tλ is a contraction. Owing to Banach’s fixed-point theorem, there exists a unique
u ∈ V such that Tλ(u) = u, which is equivalent to u solving (25.6).

Exercise 25.7 (Coercivity as necessary condition). Assume that A is monotone and self-
adjoint (so that 〈Ay, y〉V ′,V takes real values for all y ∈ V ). Let v, w ∈ V. For all t ∈ R, we infer
that

0 ≤ 〈A(v + tw), (v + tw)〉V ′,V

= 〈A(v), v〉V ′,V + 2tℜ(〈A(v), w〉V ′,V ) + t2〈A(w), w〉V ′,V .

The right-hand side is a second-order polynomial in t taking only nonnegative values. We infer that

ℜ(〈A(v), w〉V ′,V ) ≤ 〈A(v), v〉1/2V ′,V 〈A(w), w〉
1/2
V ′,V . Assume now that A is bijective. The condition

(bnb1) implies that there is a real number α > 0 such that for all v ∈ V,

α‖v‖V ≤ sup
w∈W

|〈A(v), w〉W ′ ,W |
‖w‖W

= sup
w∈W

ℜ(〈A(v), w〉W ′ ,W )

‖w‖W
.

Using the above bound on ℜ(〈A(v), w〉V ′,V ) yields

α‖v‖V ≤ 〈A(v), v〉
1
2
V ′,V sup

w∈W

〈A(w), w〉
1
2
W ′ ,W

‖w‖W
≤ 〈A(v), v〉

1
2
V ′,V ‖A‖

1
2
L(V ;V ′).

Hence, coercivity holds true with constant α2

‖A‖L(V ;V ′)
and ξ = 1.

Exercise 25.8 (Darcy). We verify conditions (bnb1)-(bnb2) for the bilinear form

a((σ, p), (τ , q)) =

∫

D

(σ·τ +∇p·τ + σ·∇q) dx,
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for the functional spaces V =W := L2(D)×H1
0 (D). Owing to the Poincaré–Steklov inequality for

p, we equip these spaces with the norm ‖(σ, p)‖V = {‖σ‖2
L2(D) + ‖∇p‖2L2(D)}1/2. Set

S := sup
(τ ,q)∈V

a((σ, p), (τ , q))

‖(τ , q)‖V
.

We have

‖σ‖2L2(D) = a((σ, p), (σ,−p)) ≤ S ‖(σ, p)‖V ,
‖∇p‖2L2(D) = a((σ, p), (∇p,−p)) ≤ 2S ‖(σ, p)‖V ,

so that (bnb1) holds true. Let now (τ , q) ∈ V be such that a((σ, p), (τ , q)) = 0 for all (σ, p) ∈ V.
Testing with (σ, p) = (τ ,−q) yields ‖τ‖2L2(D) = 0, so that τ = 0. Moreover, testing with

(σ, p) := (∇q,−q) yields ‖∇q‖2
L2(D) = 0, so that q = 0. Hence, (bnb2) holds true.

Exercise 25.9 (First-order PDE). Let D := (0, 1). We verify conditions (bnb1)-(bnb2) for
the bilinear form

a(v, w) :=

∫ 1

0

dv

dt
w dt,

and the functional spaces V := {v ∈ H1(D) | v(0) = 0} and W := L2(D) equipped with the norms
‖v‖V := ‖dvdt ‖L2(D) (this is legitimate owing to the Poincaré–Steklov inequality) and ‖w‖W :=
‖w‖L2(D), respectively. We first observe that

‖v‖V = ‖dvdt ‖L2(D) = sup
w∈L2(D)

|
∫
D

dv
dtw dt|

‖w‖L2(D)
= sup
w∈W

|a(v, w)|
‖w‖W

,

so that (bnb1) holds true. Let now w ∈ W be such that
∫ 1

0
dv
dtw dt = 0 for all v ∈ V. Taking first

v ∈ C∞
0 (D), we infer that w has a weak derivative such that dw

dt = 0. Hence, w is constant on D.
Taking v := t shows that w = 0, i.e., (bnb2) holds true.

Exercise 25.10 (T -coercivity). Assume the existence of a bijective operator T ∈ L(V ;W ) and
a real number η > 0 such that ℜ(a(v, T (v))) ≥ η‖v‖2V for all v ∈ V. The condition (bnb1) holds
true with α := η

‖T‖L(V ;W )
since for all v ∈ V with v 6= 0, we have

η‖v‖2V ≤ ℜ(a(v, T (v))) ≤
ℜ(a(v, T (v)))
‖T (v)|W

‖T (v)‖W

≤ sup
w∈W

|a(v, w)|
‖w‖W

‖T ‖L(V ;W )‖v‖V .

Let us show that the condition (bnb2) also holds true. Considering w ∈ W such that a(v, w) = 0
for all v ∈ V, the bijectivity of T implies that there is vw ∈ V with T (vw) = w. Taking vw leads
to 0 = a(vw, w) = a(vw, T (vw)), so that 0 = ℜ(a(vw , T (vw))) ≥ η‖vw‖2V . Hence, vw = 0, so that
w = 0.
Conversely, let us assume that (bnb1)-(bnb2) hold true. Then A ∈ L(V ;W ′) is an isomorphism
and A−1 ∈ L(W ′;V ). Let us consider (A−1)∗ ∈ L(V ′;W ′′). Set T := J−1

W ◦ (A−1)∗ ◦ Jrf
V , where

JW :W →W ′′ is the canonical isomorphism (recall that W is reflexive since it is a Hilbert space)
and Jrf

V : V → V ′ is the Riesz–Fréchet isomorphism. Then T ∈ L(V ;W ) and T is an isomorphism.

Moreover, using that 〈w′, J−1
W (w′′)〉W ′,W = 〈JW (J−1

W (w′′)), w′〉W ′′,W ′ = 〈w′′, w′〉W ′′,W ′ for all w′ ∈
W ′ and all w′′ ∈ W ′′, we infer that for all v ∈ V,

a(v, T (v)) = 〈A(v), T (v)〉W ′,W = 〈(A−1)∗(Jrf
V (v)), A(v)〉W ′′ ,W ′

= 〈Jrf
V (v), v〉V ′,V = ‖v‖2V .
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Exercise 25.11 (Sign-changing diffusion). (i) It is clear that the map T is linear and bounded.
Moreover, we observe that (T ◦ T )(v)(x) = v(x) for all v ∈ V and all x ∈ D1, whereas we have for
all x ∈ D2,

(T ◦ T )(v)(x) = −T (v)(x) + 2S1((T (v))|D1)(x)

= −(−v(x) + 2S1(v|D1)(x)) + 2S1(v|D1)(x) = v(x).

Hence, T ◦ T = IV , and this implies that T is bijective.
(ii) To prove T -coercivity, we observe that for all v ∈ V,

a(v, T (v)) =

∫

D1

κ1|∇v|2 dx−
∫

D2

κ2|∇v|2 dx+ 2

∫

D2

κ2∇v·∇(S1(v|D1)) dx

= κ1‖v|D1‖2V1
− κ2‖v|D2‖2V2

+ 2

∫

D2

κ2∇v·∇(S1(v|D1 )) dx

≥ (κ1 − η−1|κ2|‖S1‖2L(V1;V2)
)‖v|D1‖2V1

− κ2(1− η)‖v|D2‖2V2
,

where η > 0 can be chosen as small as needed. Under the assumption that κ1

|κ2| > ‖S1‖2L(V1;V2)
, it is

possible to choose η ∈ (0, 1) such that both real numbers (κ1−η−1|κ2|‖S1‖2L(V1;V2)
) and −κ2(1−η)

are positive. This yields T -coercivity, and, therefore, the conditions (bnb1)-(bnb2) are satisfied.
(iii) The map S1 is in L(V1;V2), and one verifies that ‖S1‖2L(V1;V2)

= a
b . Hence, the conditions

(bnb1)-(bnb2) are satisfied if κ1

|κ2| >
a
b . Reasoning similarly with the operator S2 shows that

T -coercivity holds true provided κ1

|κ2| < ‖S2‖2L(V2;V1)
, and one verifies that ‖S2‖2L(V2;V1)

= 1.
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Chapter 26

Basic error analysis

Exercises

Exercise 26.1 ((bnb2)). Prove that (26.8) is equivalent to (26.5b) provided (26.5a) holds true.
(Hint : use that dim(Wh) = rank(Ah) + dim(ker(A∗

h)) (A∗
h is defined in (26.9)) together with the

rank nullity theorem.)

Exercise 26.2 (Bijectivity of A∗
h). Prove that Ah is an isomorphism if and only if A∗

h is
an isomorphism. (Hint : use dim(Vh) = rank(A∗

h) + dim(ker(Ah)) and dim(Wh) = rank(Ah) +
dim(ker(A∗

h)).)

Exercise 26.3 (Petrov–Galerkin). Let V,W be real Hilbert spaces, let A ∈ L(V ;W ′) be an
isomorphism, and let ℓ ∈ W ′. Consider a conforming Petrov–Galerkin approximation with a
finite-dimensional subspace Vh ⊂ V and Wh := (Jrf

W )−1AVh ⊂ W , where Jrf
W : W → W ′ is the

Riesz–Fréchet isomorphism. The discrete bilinear form is ah(vh, wh) := 〈A(vh), wh〉W ′,W , and the
discrete linear form is ℓh(wh) := ℓ(wh) for all vh ∈ Vh and all wh ∈Wh. (i) Prove that the discrete
problem (26.3) is well-posed. (ii) Show that its unique solution minimizes the residual functional
R(v) := ‖A(v)− ℓ‖W ′ over Vh.

Exercise 26.4 (Fortin’s lemma). (i) Prove that Πh in the converse statement of Lemma 26.9

is idempotent. (Hint : prove that B ◦A∗†
h = IV ′

h
.) (ii) Assume that there are two maps Π1,h,Π2,h :

W → Wh and two uniform constants c1, c2 > 0 such that ‖Π1,h(w)‖W ≤ c1‖w‖W , ‖Π2,h((I −
Π1,h)(w))‖W ≤ c2‖w‖W and a(vh,Π2,h(w) − w) = 0 for all vh ∈ Vh, w ∈ W. Prove that Πh :=
Π1,h+Π2,h(I−Π1,h) is a Fortin operator. (iii) Write a variant of the direct statement in Lemma 26.9
assuming V,W reflexive, A ∈ L(V ;W ′) bijective, and using this time an operator Πh : V → Vh
such that a(Πh(v)− v, wh) = 0 for all (v, wh) ∈ V×Wh and γΠh‖Πh(v)‖V ≤ ‖v‖V for all v ∈ V for
some γΠh > 0. (Hint : use (26.10) and Lemma C.53.)

Exercise 26.5 (Compact perturbation). Let V,W be Banach spaces with W reflexive. Let
A0 ∈ L(V ;W ′) be bijective, let T ∈ L(V ;W ′) be compact, and assume that A := A0 + T is
injective. Let a0(v, w) := 〈A0(v), w〉W ′,W and a(v, w) := 〈A(v), w〉W ′ ,W for all (v, w) ∈ V×W. Let
Vh ⊂ V and Wh ⊂ W be s.t. dim(Vh) = dim(Wh) for all h ∈ H. Assume that approximability
holds, and that the sesquilinear form a0 satisfies the inf-sup condition

inf
vh∈Vh

sup
wh∈Wh

|a0(vh, wh)|
‖vh‖V ‖wh‖W

=: α0 > 0, ∀h ∈ H.



134 Chapter 26. Basic error analysis

Following Wendland [46], the goal is to show that there is h0 > 0 s.t.

inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖V ‖wh‖W

=: α > 0, ∀h ∈ H ∩ (0, h0].

(i) Prove that A ∈ L(V ;W ′) is bijective. (Hint : recall that a compact operator is bijective iff it is
injective; this follows from the Fredholm alternative, Theorem 46.13.) (ii) Consider Rh ∈ L(V ;Vh)
s.t. for all v ∈ V, Rh(v) ∈ Vh satisfies a0(Rh(v) − v, wh) = 0 for all wh ∈ Wh. Prove that
Rh ∈ L(V ;Vh) and that Rh(v) converges to v as h ↓ 0 for all v ∈ V. (Hint : proceed as in the proof
of Céa’s lemma.) (iii) Set L := IV + A−1

0 T and Lh := IV + RhA
−1
0 T where IV is the identity

operator in V (observe that both L and Lh are in L(V )). Prove that Lh converges to L in L(V ).
(Hint : use Remark C.5.) (iv) Show that if h ∈ H is small enough, Lh is bijective and there is C,
independent of h ∈ H, such that ‖L−1

h ‖L(V ) ≤ C. (Hint : observe that L−1Lh = IV −L−1(L−Lh)
and consider the Neumann series.) (v) Conclude.

Solution to exercises

Exercise 26.1 ((bnb2)). The statement (26.8) is equivalent to ker(A∗
h) = {0}. Since

dim(Wh) = rank(Ah) + dim(ker(A∗
h)),

this statement is equivalent to dim(Wh) = rank(Ah). Since the inf-sup condition (26.5a) implies
that ker(Ah) = {0}, we infer that rank(Ah) = dim(Vh) owing to the rank nullity theorem. We
conclude that (26.8) is equivalent to dim(Vh) = dim(Wh).

Exercise 26.2 (Bijectivity of A∗
h). We observe that Ah : Vh → W ′

h is an isomorphism iff
ker(Ah) = {0} and rank(Ah) = dim(W ′

h) = dim(Wh). Since we have dim(Vh) = rank(A∗
h) +

dim(ker(Ah)) and dim(Wh) = rank(Ah) + dim(ker(A∗
h)), these two statements are equivalent to

dim(Vh) = rank(A∗
h) and dim(ker(A∗

h)) = 0, i.e., to the bijectivity of A∗
h.

Exercise 26.3 (Petrov–Galerkin). (i) We apply the discrete BNB theorem 26.6. Since (Jrf
W )−1A :

V → W is an isomorphism, the subspaces Vh and Wh have the same dimension, thus prov-
ing (26.5b). Moreover, taking wh := (Jrf

W )−1A(vh) ∈Wh for all vh ∈ Vh, we observe that

|ah(vh, wh)| = |〈A(vh), (Jrf
W )−1(A(vh))〉W ′,W | = ‖A(vh)‖2W ′ ≥ α‖vh‖2V ,

for some real number α > 0 since A : V → W ′ is an isomorphism. In addition, ‖wh‖W =
‖A(vh)‖W ′ ≤ ‖A‖L(V ;W ′)‖vh‖V . Combining these two bounds yields the inf-sup condition (26.5a).
(ii) We observe that

R(v)2 = 〈A(v)− ℓ, (Jrf
W )−1(A(v) − ℓ)〉W ′,W , ∀v ∈ V.

Proceeding as in the proof of Proposition 25.8, we infer that uh minimizes R over Vh iff

〈A(uh)− ℓ, (Jrf
W )−1A(vh)〉W ′,W = 0, ∀vh ∈ Vh,

which is just a reformulation of the discrete problem in the Petrov–Galerkin setting.

Exercise 26.4 (Fortin’s lemma). (i) We have for all θh ∈ V ′
h,

〈B(A∗†
h (θh)), vh〉V ′

h
,Vh = a(vh, A

∗†
h (θh)) = 〈Ah(vh), A∗†

h (θh)〉W ′
h
,Wh

= 〈A∗
h(A

∗†
h (θh)), vh〉V ′

h
,Vh = 〈θh, vh〉V ′

h
,Vh ,
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for all vh ∈ Vh, which proves that B ◦A∗†
h = IV ′

h
. As a result, we have

Πh(Πh(w)) = A∗†
h (B ◦A∗†

h (B(w))) = A∗†
h (B(w)) = Πh(w),

for all w ∈W, i.e., Πh is idempotent.
(ii) We have

a(vh,Πh(w)) = a(vh,Π1,h(w) + Π2,h((I −Π1,h)(w)))

= a(vh,Π1,h(w)) + a(vh,Π2,h((I −Π1,h)(w)))

= a(vh,Π1,h(w)) + a(vh, (I −Π1,h)(w)) = a(vh, w).

Moreover, we have

‖Πh(w)‖W ≤ ‖Π1,h(w)‖W + ‖Π2,h((I −Π1,h)(w))‖W ≤ (c1 + c2)‖w‖W .

Hence, Πh is a Fortin operator.
(iii) We observe that for all wh ∈Wh,

sup
vh∈Vh

|a(vh, wh)|
‖vh‖V

≥ sup
v∈V

|a(Πh(v), wh)|
‖Πh(v)‖V

≥ γΠh sup
v∈V

|a(v, wh)|
‖v‖V

.

Owing to Lemma C.53 (with W ′ in lieu of W ) and since V is reflexive and A is an isomorphism,
we infer that

α = inf
v∈V

sup
w∈W

|a(v, w)|
‖w‖W ‖v‖V

= inf
w∈W

sup
v∈V

|a(v, w)|
‖w‖W ‖v‖V

,

where we used the reflexivity ofW and the fact that a(v, w) = 〈A(v), w〉W ′ ,W . Since wh ∈Wh ⊂W,
this implies that supv∈V

|a(v,wh)|
‖v‖V ≥ α‖wh‖W , thereby proving that

inf
wh∈Wh

sup
vh∈Vh

|a(vh, wh)|
‖vh‖V ‖wh‖W

≥ γΠhα.

Invoking (26.10), we conclude that a satisfies the inf-sup condition (26.5a) with αh := γΠhα.

Exercise 26.5 (Compact perturbation). (i) Since A0 is bijective, we can write A−1
0 A = IV +

A−1
0 T . The operator A−1

0 T being compact, the Fredholm alternative shows that A−1
0 A is bijective

if and only if it is injective. That A−1
0 A is injective is a consequence of A0 being bijective and A

being injective.
(ii) Let v ∈ V. Owing to inf-sup condition satisfied by the sesquilinear form a0, we infer that

α0 ‖Rh(v)‖V ≤ sup
wh∈Wh

|a0(Rh(v), wh)|
‖wh‖W

= sup
wh∈Wh

|a0(v, wh)|
‖wh‖W

≤ ‖a0‖ ‖v‖V ,

where ‖a0‖ is the boundedness constant of a0 on V×W. Hence, Rh ∈ L(V ;Vh) with ‖Rh‖L(V ;Vh) ≤
‖a0‖
α0

. Furthermore, proceeding as in the proof of Céa’s lemma, we infer that

‖Rh(v)− v‖V ≤
(
1 +
‖a0‖
α0

)
inf

vh∈Vh
‖v − vh‖V ,

so that the convergence of Rh(v) to v as h→ 0 follows from the approximability property.
(iii) Since Rh converges to IV pointwise, we infer from Remark C.5 that Rh converges to IV
uniformly on compact sets. Since A−1

0 T is compact, this implies that Lh converges to L uniformly
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on bounded sets, i.e., in L(V ).
(iv) Since L−1Lh = IV − L−1(L − Lh), taking h ∈ H small enough, say h ∈ (0, h1] with h0 > 0,
s.t. ‖L−1(L− Lh)‖L(V ) ≤ 1

2 , we infer that Lh is invertible with

L−1
h L =

∑

k∈N

(
L−1(L− Lh)

)k
,

so that ‖L−1
h ‖L(V ) ≤ C := 2‖L−1‖L(V ).

(v) Let vh ∈ Vh. Assume h ∈ (0, h1]. We infer that

α0

C
‖vh‖V ≤ α0‖Lh(vh)‖V ≤ sup

wh∈Wh

|a0(Lh(vh), wh)|
‖wh‖W

≤ sup
wh∈Wh

|a0((L − Lh)(vh), wh)|
‖wh‖W

+ sup
wh∈Wh

|a(vh, wh)|
‖wh‖W

,

since a0(L(vh), wh) = 〈A0(L(vh)), wh〉W ′,W = 〈A(vh), wh〉W ′,W = a(vh, wh). The first term on the
right-hand side can be estimated by ‖a0‖ ‖L−Lh‖L(V )‖vh‖V , and taking h ∈ H small enough, say
h ∈ (0, h2] with h2 > 0, the factor ‖a0‖ ‖L − Lh‖L(V ) can be bounded by α0

2C and thus hidden
on the left-hand side, yielding the expected inf-sup condition for the sesquilinear form a with
h0 := min(h1, h2) > 0.



Chapter 27

Error analysis with variational
crimes

Exercises

Exercise 27.1 (Error identity). Assume stability, i.e., (27.1) holds true. Let V♯ be defined
in (27.2) and equip this space with a norm ‖·‖V♭ s.t. there is c♭ s.t. ‖vh‖V♭ ≤ c♭‖vh‖Vh for all
vh ∈ Vh. Prove that

‖u− uh‖V♭ = inf
vh∈Vh

[
‖u− vh‖V♭ +

c♭
αh
‖δh(vh)‖W ′

h

]
.

Exercise 27.2 (Boundary penalty). (i) Prove that x2−2βxy+η0y2 ≥ η0−β2

1+η0
(x2+y2) for all real

numbers x, y, η0 ≥ 0 and β ≥ 0. (ii) Using the notation of §27.3.1, prove that ah(vh, vh) ≥ 3
8‖vh‖2Vh

for all vh ∈ Vh. (Hint : prove that |v′h(0)vh(0)| ≤ ‖v′h‖L2(0,h)h
− 1

2 |vh(0)|.)

Exercise 27.3 (First-order PDE). The goal is to prove (27.11). (i) Prove that

h−
1
2 ‖G(vh)‖ℓ2(RI) ≤ sup

wh∈Vh

|a(vh, wh)|
‖wh‖L2(D)

≤
√
6h−

1
2 ‖G(vh)‖ℓ2(RI),

where Gi(vh) := a(vh, ϕi) for all i ∈ {1:I} with I := dim(Vh). (Hint : use Simpson’s rule to
compare Euclidean norms of component vectors and L2-norms of functions.) (ii) Assume that I
is even (the odd case is treated similarly). Prove that αh ≤ c2h. (Hint : consider the oscillating
function vh s.t. vh(x2i) := 2ih for all i ∈ {1: I2} and vh(x2i+1) := 1 for all i ∈ {0: I2−1}.) (iii) Prove
that αh ≥ c1h. (Hint : prove that maxi∈{1: I} |vh(xi)| ≤ 2

∑
k∈{1: I} |Gk(vh)|.) (iv) Prove that

inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖W 1,1(D)‖wh‖L∞(D)

≥ α0 > 0

with Wh := {wh ∈ L∞(D) | ∀i ∈ {0:I−1}, wh|[xi,xi+1] ∈ P0}. (Hint : see Proposition 25.19.)

Exercise 27.4 (GaLS 1D). The goal is to prove (27.12). Let vh ∈ Vh. (i) Compute ah(vh, vh).
(ii) Let ζ(x) := −2x/ℓD, set ζh := Ibh(ζ), and show that ah(vh,J av

h (ζhvh)) ≥ 1
2ℓ

−1
D ‖vh‖2L2(D) −
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c1a(vh, vh) uniformly w.r.t. h ∈ H, J av
h is the averaging operator defined in (22.9), and Ibh is the

L2-projection on the functions that are piecewise constant over the mesh. (iii) Prove (27.12).
(Hint : use the test function zh := 2J av

h (ζhvh) + 2(c1 + 1)vh.)

Exercise 27.5 (Nonconforming Strang 1). Let T : Wh → W ∩ Wh. Let Vs := V so that
V♯ := V +Vh, and assume that V♯ is equipped with a norm ‖·‖V♯ satisfying (27.5). (i) Assume that
ah can be extended to Vh×(W +Wh). Assume that there is ‖a‖♯h s.t. consistency/boundedness
holds true in the form |a(u, T (wh))− ah(vh, T (wh))| ≤ ‖a‖♯h‖u− vh‖V♯‖wh‖Wh

. Prove that

‖u− uh‖V♯ ≤ inf
vh∈Vh

[(
1 + c♯

‖a‖♯h
αh

)
‖u− vh‖V♯ +

c♯
αh
‖δ̂st1h (vh)‖W ′

h

]
,

with ‖δ̂st1h (vh)‖W ′
h
:= ‖ℓh− ℓ◦T +ah(vh, T (·))−ah(vh, ·)‖W ′

h
. (Hint : add/subtract ah(vh, T (wh)).)

(ii) We now derive another error estimate that avoids extending ah but restricts the discrete trial
functions to Vh ∩V (this is reasonable provided the subspace Vh ∩V has approximation properties
that are similar to those of Vh). Assuming that there is ‖a‖V×Wh

s.t. boundedness holds true in
the form |a(u− vh, T (wh))| ≤ ‖a‖V×Wh

‖u− vh‖V♯‖wh‖Wh
, prove that

‖u− uh‖V♯ ≤ inf
vh∈Vh∩V

[(
1 + c♯

‖a‖V×Wh

αh

)
‖u− vh‖V♯ +

c♯
αh
‖δ̌st1h (vh)‖W ′

h

]
,

with ‖δ̌st1h (vh)‖W ′
h
:= ‖ℓh − ℓ ◦ T + a(vh, T (·))− ah(vh, ·)‖W ′

h
. (Hint : add/subtract a(vh, T (wh)).)

Exercise 27.6 (Orthogonal projection). Consider the setting of Exercise 25.4 with real vector
spaces and coercivity with ξ := 1 for simplicity. Let u be the unique element in V such that
a(u, v − u) ≥ ℓ(v − u) for all v ∈ U . Let Vh be a finite-dimensional subspace of V, and let Uh be
a nonempty, closed, and convex subset of Vh. We know from Exercise 25.4 that there is a unique
uh in Vh such that a(uh, vh − uh) ≥ ℓ(vh − uh) for all vh ∈ Uh. (i) Show that there is c1(u) such
that for all (v, vh) ∈ U×Vh,

‖u− uh‖2V ≤ c1(u)
(
‖u− vh‖V + ‖uh − v‖V + ‖u− uh‖V ‖u− vh‖V

)
.

(Hint : prove α‖u − uh‖2V ≤ a(u, v − uh) + ℓ(uh − v) + a(uh, vh − u) + ℓ(u − vh).) (ii) Show that
there is c2(u) such that

‖u− uh‖V ≤ c2(u)
(

inf
vh∈Uh

(
‖u− vh‖V + ‖u− vh‖2V

)
+ inf
v∈U
‖uh − v‖V

) 1
2

.

Solution to exercises

Exercise 27.1 (Error identity). Let vh ∈ Vh. The triangle inequality, the assumption on the
‖·‖V♭-norm, stability, and the fact that the discrete solution satisfies ah(uh, wh) = ℓh(wh) for all
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wh ∈Wh imply that

‖u− uh‖V♭ ≤ ‖u− vh‖V♭ + ‖uh − vh‖V♭
≤ ‖u− vh‖V♭ + c♭‖uh − vh‖Vh
≤ ‖u− vh‖V♭ +

c♭
αh

sup
wh∈Wh

|ah(uh − vh, wh)|
‖wh‖Wh

= ‖u− vh‖V♭ +
c♭
αh

sup
wh∈Wh

|ℓh(wh)− ah(vh, wh)|
‖wh‖Wh

= ‖u− vh‖V♭ +
c♭
αh
‖δh(vh)‖W ′

h
.

Since vh is arbitrary in Vh, we conclude that ‖u−uh‖V♭ ≤ rh, where rh denotes the right-hand side
of the expected identity. Taking vh := uh in the infimum and since δh(uh) = 0 ∈W ′

h, we conclude
that ‖u− uh‖V♭ ≥ rh, i.e., ‖u− uh‖V♭ = rh.

Exercise 27.2 (Boundary penalty). (i) Note that x2 − 2βxy + η0y
2 ≥ η0−β2

1+η0
(x2 + y2) iff

1 + β2

1 + η0
x2 − 2βxy +

η2 + β2

1 + η0
y2 ≥ 0.

Since the coefficients of x2 and y2 are both positive, the above condition amounts to

β2 ≤ 1 + β2

1 + η0

η2 + β2

1 + η0
.

Rearranging the terms leads to 2η0β
2 ≤ η20 + β4, which is trivially true.

(ii) Let vh ∈ Vh. Since v′h is piecewise constant, we have

|v′h(0)vh(0)| ≤ h
1
2 |v′h(0)|×h−

1
2 |vh(0)| = ‖v′h‖L2(0,h)×h−

1
2 |vh(0)|.

Using the Cauchy–Schwarz inequality, we infer that

−v′h(0)vh(0)− v′h(1)vh(1) ≥ −‖v′h‖L2(D)

(
h−1|vh(0)|2 + h−1|vh(1)|2

) 1
2 .

As a result, we have
ah(vh, vh) ≥ x2 − xy + y2,

with x := ‖v′h‖L2(D) and y :=
(
h−1|vh(0)|2 + h−1|vh(1)|2

) 1
2 . Using the quadratic inequality from

Step (i) with η0 := 1 and β := 1
2 , we conclude that

ah(vh, vh) ≥
3

8
(x2 + y2) =

3

8
‖vh‖2Vh .

Exercise 27.3 (First-order PDE). (i) Denote by {ϕi}i∈{1:I} the nodal basis of Vh. Let Rϕ :
RI → Vh be the isomorphism that reconstructs a function in Vh from its coordinate vector in RI .
A direct computation using Simpson’s rule (see §6.2) shows that 1

6h‖Y ‖2ℓ2(RI) ≤ ‖Rϕ(Y )‖2L2(D) ≤
h‖Y ‖2ℓ2(RI) for all Y ∈ RI . These bounds imply that

h−
1
2 ‖G(vh)‖ℓ2(RI) ≤ sup

wh∈Vh

|a(vh, wh)|
‖wh‖L2(D)

≤
√
6h−

1
2 ‖G(vh)‖ℓ2(RI), (27.1)
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where Gi(vh) := a(vh, ϕi) for all i ∈ {1:I}.
(ii) Let us write vh :=

∑
i∈{1:I} Viϕi with V2i := 2ih for all i ∈ {1: I2} and V2i+1 := 1 for all

i ∈ {0: I2−1}. Set V0 := 0 and let ⌊·⌋ denote the floor function. We infer that

h‖v′h‖2L2(D) =
∑

i∈{0:I−1}
h

∫ xi+1

xi

(v′h)
2
dt =

∑

i∈{0: I−1}
(Vi+1 − Vi)2

≥
∑

i∈{0: I2−1}
(1 − 2ih)2 ≥

∑

i∈{0:⌊ I4 ⌋}
(1 − 2ih)2 ≥ 1

4 (⌊ I4⌋+ 1),

since 1 − 2ih ≥ 1
2 if i ≤ ⌊ I4⌋. Using the inequality ⌊ I4⌋ + 1 > I

4 = 1
4h yields ‖v′h‖L2(D) ≥ 1

4h .

Furthermore, Gi(vh) = 0 if i is even, and Gi(vh) = h otherwise. Hence, ‖G(vh)‖ℓ2(RI) ≤ h1/2.

Using the rightmost bound in (27.1) leads to αh ≤ c2h with c2 := 4
√
6.

(iii) Let vh be arbitrary in Vh. Set V0 := 0 and VI+1 := VI . Since Gi(vh) =
1
2 (Vi+1 − Vi−1) for all

i ∈ {1:I}, we infer that for the even indices, we have |V2i| ≤ 2
∑
k∈{0: i−1} |G2k+1(vh)|, whereas for

the odd indices, we have |V2i−1| ≤ |VI+1|+2
∑
k∈{i: I2 } |G2k(vh)| ≤ 2

∑
k∈{1: I} |Gk(vh)|. Hence, we

have
‖V ‖ℓ∞(RI) ≤ 2

∑

k∈{1:I}
|Gk(vh)| ≤ 2h−

1
2 ‖G(vh)‖ℓ2(RI),

owing to the Cauchy–Schwarz inequality. Furthermore, a direct computation shows that ‖v′h‖L2(D) ≤√
2h−1‖V ‖ℓ∞(RI). Using the leftmost bound in (27.1) and the Poincaré inequality

√
2‖v′h‖L2(D) ≥

‖vh‖H1(D) leads to αh ≥ c1h with c2 := 1
4 .

(iv) Inspired by the proof of Proposition 25.19, we take wh|[xi,xi+1] := sgn(v′h|[xi,xi+1]
) for all vh ∈ Vh

(notice that v′h is piecewise constant). Then ‖wh‖L∞(D) = 1 and a(vh, wh) = ‖v′h‖L1(D), and we
conclude as in Proposition 25.19.

Exercise 27.4 (GaLS 1D). Let vh ∈ Vh.
(i) Applying the definition of ah(vh, wh), we obtain

ah(vh, vh) = h‖v′h‖2L2 +

∫ 1

0

1

2
(v2h)

′ dx = h‖v′h‖2L2(D) +
1

2
vh(1)

2.

(ii) Let J av
h be the averaging operator defined in (22.9). Let ζ(x) = −2x/ℓD and let us set

ζh = Ibh(ζ). We have

ah(vh,J av
h (ζhvh)) = a(vh,J av

h (ζhvh)) + h

∫ 1

0

v′h(J av
h (ζhvh))

′ dx

= a(vh, ζvh) + a(vh, (ζh − ζ)vh) + a(vh,J av
h (ζhvh)− ζhvh)

+ h

∫ 1

0

v′h(J av
h (ζhvh))

′ dx,

where we recall that a(v, w) :=
∫ 1

0 v
′w dx. Let us bound the four terms on the right-hand side.

First, we have

a(vh, ζvh) =

∫ 1

0

v′hζvh dx = −
∫ 1

0

1

2
v2hζ

′ dx+ ζ(1)
1

2
vh(1)

2 = ℓ−1
D ‖vh‖2L2(D) − v2h(1).

Second, using that ‖ζh − ζ‖L∞(D) ≤ cℓ−1
D h, we have

|a(vh, (ζh − ζ)vh)| ≤ c ℓ−1
D h‖v′h‖L2(D)‖vh‖L2(D).
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Third, using (22.11) from Lemma 22.3, the fact that vh and ζ are continuous and ‖ζh− ζ‖L∞(D) ≤
c hℓ−1

D , and a discrete trace inequality, we have

|a(vh,J av
h (ζhvh)− ζhvh)| ≤ ‖v′h‖L2(D)‖J av

h (ζhvh)− ζhvh‖L2(D)

≤ c h 1
2 ‖v′h‖L2(D)

( ∑

F∈F◦
h

‖[[ζhvh]]‖2L2(F )

) 1
2

≤ c h 1
2 ‖v′h‖L2(D)

( ∑

F∈F◦
h

‖[[(ζh − ζ)]]vh‖2L2(F )

) 1
2

≤ c ‖ζh − ζ‖L∞(D)‖v′h‖L2(D)‖vh‖L2(D)

≤ c ℓ−1
D h‖v′h‖L2‖vh‖L2(D).

Fourth, we use that ζh is piecewise constant, vh is continuous, and we invoke (22.11) from
Lemma 22.3 together with the triangle inequality, the bound |ζhvh|H1(K) ≤ 2ℓ−1

D ‖vh‖L2(K) +
2|vh|H1(K), and the above manipulations on the jump term to infer that

h

∫ 1

0

v′h(J av
h (ζhvh))

′ dx ≤ h‖v′h‖L2(D)

( ∑

K∈Th
|J av
h (ζhvh)|2H1(K)

) 1
2

≤ c h‖v′h‖L2(D)

( ∑

K∈Th
ℓ−2
D ‖vh‖2L2(K) + ‖v′h‖2L2(K) + h−1

∑

F∈F̌◦
K

‖[[ζh − ζ]]vh‖2L2(F )

) 1
2

≤ c h‖v′h‖L2(D)

( ∑

K∈Th
ℓ−2
D ‖vh‖2L2(K) + ‖v′h‖2L2(K) + ℓ−2

D h
∑

F∈F̌◦
K

‖vh‖2L2(F )

) 1
2

≤ c h‖v′h‖L2(D)(ℓ
−1
D ‖vh‖L2 + ‖v′h‖L2(D)).

In conclusion, we have established that

ah(vh,J av
h (ζhvh)) ≥ ℓ−1

D ‖vh‖2L2(D) − c
(
vh(1)

2 + ℓ−1
D h‖v′h‖L2(D)‖vh‖L2(D) + h‖v′h‖2L2(D)

)

≥ 1

2
ℓ−1
D ‖vh‖2L2(D) − c1

(
1

2
vh(1)

2 + h‖v′h‖2L2(D)

)
,

where the last bound follows from the use of Young’s inequality.
(iii) The identity from Step (i) combined with the bound from Step (ii) implies that

ah(vh,J av
h (ζhvh)) + ah(vh, (c1 + 1)vh) ≥

1

2

(
ℓ−1
D ‖vh‖2L2(D) + vh(1)

2 + h‖v′h‖2L2(D)

)
.

Hence, ah(vh, zh) ≥ ‖vh‖2Vh where zh := 2J av
h (ζhvh) + 2(c1 + 1)vh. By proceeding as above, one

can also show that ‖zh‖Vh ≤ c2‖vh‖Vh . This finally proves that

sup
wh∈Vh

ah(vh, wh)

‖wh‖Vh
≥ ah(vh, zh)

‖zh‖Vh
≥ ‖vh‖

2
Vh

‖zh‖Vh
≥ c−1

2 ‖vh‖Vh ,

whence the inf-sup condition (27.12).

Exercise 27.5 (Nonconforming Strang 1). The starting point for both questions is the bound

‖u− uh‖V♯ ≤ ‖u− vh‖V♯ +
c♯
αh
‖δh(vh)‖W ′

h
.



142 Chapter 27. Error analysis with variational crimes

(i) Since ah can be extended to Vh×(W +Wh), we can write

〈δh(vh), wh〉W ′
h,Wh

= ℓh(wh)− ah(vh, wh)
= ℓh(wh)− ℓ(T (wh)) + a(u, T (wh))− ah(vh, wh)

+ ah(vh, T (wh))− ah(vh, T (wh))
= 〈δ̂st1h (vh), wh〉W ′

h,Wh
+ a(u, T (wh))− ah(vh, T (wh)),

where a(u, T (wh)) = ℓ(T (wh)) follows from T (wh) ∈ W. Assuming consistency/boundedness in the
form

|a(u, T (wh))− ah(vh, T (wh))| ≤ ‖a‖♯h ‖u− vh‖V♯‖wh‖Wh

leads to
‖δh(vh)‖W ′

h
≤ ‖δ̂st1h (vh)‖W ′

h
+ ‖a‖♯h ‖u− vh‖V♯ ,

whence we infer the expected error estimate.
(ii) Taking vh ∈ Vh ∩ V, we can write

〈δh(vh), wh〉W ′
h,Wh

= ℓh(wh)− ℓ(T (wh)) + a(u, T (wh))− ah(vh, wh)
+ a(vh, T (wh))− a(vh, T (wh))

= 〈δ̌st1h (vh), wh〉W ′
h
,Wh

+ a(u− vh, T (wh)).

Assuming boundedness in the form

|a(u− vh, T (wh))| ≤ ‖a‖V×Wh
‖u− vh‖V♯‖wh‖Wh

leads to
‖δh(vh)‖W ′

h
≤ ‖δ̌st1h (vh)‖W ′

h
+ ‖a‖V×Wh

‖u− vh‖V♯ ,
whence we infer the expected error estimate.

Exercise 27.6 (Orthogonal projection). (i) Using the coercivity of a, we deduce that

α ‖u− uh‖2V ≤ a(u− uh, u− uh) = a(u, u− uh)− a(uh, u− uh)
≤ a(u, u− v) + a(u, v − uh)− a(uh, u− vh)− a(uh, vh − uh).

Using that a(u, u − v) ≤ ℓ(u − v) and a(uh, uh − vh) ≤ ℓ(uh − vh), the above inequality implies
that

α‖u− uh‖2V ≤ ℓ(u− v) + a(u, v − uh) + a(uh, vh − u) + ℓ(uh − vh)
≤ ℓ(u− vh) + a(u, v − uh) + a(uh, vh − u) + ℓ(uh − v),

which is the inequality suggested in the hint. Using the triangle inequality and letting ‖a‖ denote
the boundedness constant of a on V×V, we infer that

α ‖u− uh‖2V ≤ ‖ℓ‖V ′‖u− vh‖V + ‖a‖ ‖u‖V ‖v − uh‖V
+ ‖a‖ ‖uh‖V ‖vh − u‖V + ‖ℓ‖V ′‖uh − v‖

≤ ‖ℓ‖V ′‖u− vh‖V + ‖a‖ ‖u‖V ‖v − uh‖V
+ ‖a‖ ‖uh − u‖V ‖vh − u‖V + ‖a‖ ‖u‖V ‖vh − u‖V + ‖ℓ‖V ′‖uh − v‖

≤ 2max(‖ℓ‖V ′ , ‖a‖ ‖u‖V )(‖u− vh‖V + ‖v − uh‖V ) + ‖a‖ ‖uh − u‖V ‖vh − u‖V .
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(ii) We split the quadratic term on the right-hand side as follows:

‖a‖ ‖uh − u‖V ‖vh − u‖V ≤
‖a‖2
2α
‖vh − u‖2V +

α

2
‖u− uh‖2V .

We infer that

α

2
‖u− uh‖2V ≤ 2max(‖ℓ‖′V , ‖a‖ ‖u‖V )(‖u− vh‖V + ‖v − uh‖V ) +

‖a‖2
2α
‖vh − u‖2V .

We can now take the infimum on vh ∈ Uh and on v ∈ U since vh and v are arbitrary.
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Chapter 28

Linear algebra

Exercises

Exercise 28.1 (Matrix representation of operators). Let H be a (complex) Hilbert space
with inner product (·, ·)H . Let Vh be a finite-dimensional subspace of H with basis {ϕi}i∈{1:I}.
Let Z : Vh → Vh be a linear operator. LetM ∈ CI×I be the mass matrix s.t. Mij := (ϕj , ϕi)H ,
and let B,D ∈ CI×I be s.t. Bij := (Z(ϕj), ϕi)H , Dij := (Z(ϕj), Z(ϕi))H for all i, j ∈ {1:I}. Prove
that D = BHM−1B. (Hint : use Z ∈ CI×I s.t. Z(ϕj) :=

∑
k∈{1:I}Zkjϕk.)

Exercise 28.2 (Smallest singular value). Prove that the real number αℓ2 defined (28.17a)
is equal to ‖A−1‖−1

ℓ2(CI)
. (Hint : to bound αℓ2 , consider a vector V∗ ∈ CI s.t. ‖A−1V∗‖ℓ2(CI) =

‖A−1‖ℓ2(CI)‖V∗‖ℓ2(CI ).)

Exercise 28.3 (ℓ2-condition number). Let Z ∈ RI×I be the upper triangular matrix such that
Zii := 1 for all i ∈ {1:I}, and Zij := −1 for all i, j ∈ {1:I}, i 6= j. Let X ∈ RI have coordinates
Xi := 21−i for all i ∈ {1:I}. Compute ZX, ‖ZX‖ℓ2(RI), and ‖X‖ℓ2(RI). Show that ‖Z‖ℓ2(RI) ≥ 1
and derive a lower bound for κℓ2(Z). What happens if I is large?

Exercise 28.4 (Local mass matrix, 1D). Evaluate the local mass matrix for one-dimensional
P1 and P2 Lagrange finite elements on a cell of length h.

Exercise 28.5 (Stiffness matrix). (i) Let {λ̂1, λ̂2, λ̂3} be the shape functions of the P1 Lagrange
element with the cell K̂ shown on the leftmost part of Figure 28.1. Here, λ̂1 is associated with
the vertex (1, 0), λ̂2 with the vertex (0, 1), and λ̂3 with the vertex (0, 0). Evaluate the stiffness
matrix for

∫
K̂
∇v·∇w dx. Same question for the Q1 Lagrange element with the shape functions

{θ̂1, θ̂2, θ̂3, θ̂4} associated with the vertices (1, 0), (1, 1), (0, 1), (0, 0), respectively (see the central
part of Figure 28.1). (ii) Consider the meshes of D := (0, 3)×(0, 2) shown in the right part of
Figure 28.1. Evaluate the stiffness matrix for

∫
D∇v·∇w dx.

Exercise 28.6 (Sensitivity to perturbations). Let Z ∈ CI×I be invertible and let X ∈ CI
solve ZX = B with B 6= 0. Set κ := κℓ2(Z). (i) Let X̃ ∈ CI solve ZX̃ = B̃. Prove that
‖X̃−X‖

ℓ2(CI )

‖X‖ℓ2(CI )
≤ κ

‖B̃−B‖
ℓ2(CI )

‖B‖ℓ2(CI )
. (ii) Let X̌ ∈ CI solve ŽX̌ = B. Prove that

‖X̌−X‖
ℓ2(CI )

‖X̌‖
ℓ2(CI )

≤ κ
‖Ž−Z‖

ℓ2(CI )

‖Z‖ℓ2(CI )
.

(iii) Explain why the above bounds are sharp.
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(0,0) (1,0)

(0,1)

(0,0) (0,1)

(1,1)(0,1)

Figure 28.1: Illustration for Exercise 28.5. Left and central panels: reference triangle and square
considered in Step (i). Right panel: three meshes for Step (ii).

Exercise 28.7 (Stability). Let AU = B be the linear system resulting from the Galerkin ap-

proximation. Equip the vector space CI with the norm ‖V‖∗ := sup
Y∈CI

|VH
Y|

‖Rψ(Y)‖Wh
. Show that

‖uh−vh‖Vh
‖uh‖Vh

≤ ‖ah‖
αh

‖B−AV‖∗

‖B‖∗
for all V ∈ CI , where uh := Rϕ(U) and vh := Rϕ(V). (Hint : show that

αh‖uh − vh‖Vh ≤ ‖A(U− V)‖∗ and that ‖B‖∗ ≤ ‖ah‖‖uh‖Vh , where αh and ‖ah‖ are the stability
and boundedness constants of ah on Vh×Wh.)

Exercise 28.8 (ℓ∞-norm). (i) Prove Proposition 28.18. (Hint : use thatAY ≥ minj∈{1: I}(AY)jU,
where U ∈ RI has all entries equal to 1.) (ii) Derive a bound on ‖A−1‖ℓ∞(RI) with A :=
h−1 tridiag(−1, 2,−1). (Hint : consider the function x 7→ x(1 − x) on (0, 1) to build a majorizing
vector.) (iii) Let (E1, . . . ,EI) be the canonical basis of RI . Let α ∈ R and consider the matrix
Z := I +αE1⊗ EI with entries Zij := δij +αδi1δjI . Verify that Z−1 = I −αE1⊗EI and evaluate
the condition number κℓ∞(Z). What happens if α is large?

Exercise 28.9 (Lumped mass matrix). Let D be a two-dimensional polygonal set and consider
an affine mesh Th of D composed of triangles and P1 Lagrange elements. (i) Let K be a cell in
Th. Compute the local mass matrixMK with entriesMK

ij :=
∫
K θK,i(x)θK,j(x) dx, i, j ∈ {1:3}.

(ii) Compute the lumped local mass matrix MK
with MK

ij := δij
∑
l∈{1: 3}MK

il . (iii) Compute

the eigenvalues of (MK
)−1(MK −MK). (iv) Let M be the global mass matrix and M be the

lumped mass matrix. Show that the largest eigenvalue of (M)−1(M−M) is 3
4 .

Exercise 28.10 (CG). Let A ∈ RI×I be a real symmetric positive definite matrix and let
J : RI → R be such that J(V) := 1

2V
TAV − BTV. Let Um be the iterate at step m ≥ 1 of

the CG method. (i) Prove that Um minimizes J over U0 + Km. (Hint : use Proposition 28.20.)
(ii) Let ηm := arg minη∈C J(Um + ηPm). Show that ηm = αm in the CG method. (iii) Write the

preconditioned CG method by just invoking the matrix P := PLPT

L .

Exercise 28.11 (Complex symmetric system). Let A := T + iσI where T is symmetric real,
σ > 0, and I is the identity matrix of size I×I. Let A∗ and A∗∗ be the two rewritings of A as a real
matrix of size 2I×2I (see Remark 28.23). Determine the spectra σ(A), σ(A∗), and σ(A∗∗), and
comment on their position with respect to the origin. What happens if one considers the rotated
linear system −iAU = −iB instead?
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Solution to exercises

Exercise 28.1 (Matrix representation). Let i, j ∈ {1:I}. We have

Bij = (Z(ϕj), ϕi)H =
∑

k∈{1: I}
Zkj(ϕk, ϕi)H =

∑

k∈{1: I}
ZkjMik = (MZ)ij ,

i.e., B =MZ. Moreover, we have

Dij = (Z(ϕj), Z(ϕi))H =
∑

k∈{1: I}

∑

l∈{1: I}
ZkjZli(ϕk, ϕl)H

=
∑

k∈{1: I}

∑

l∈{1:I}
ZkjZH

ilMlk = (ZHMZ)ij ,

showing that D = ZHMZ. Putting everything together, and sinceMH =M, we conclude that

D = (M−1B)HM(M−1B) = BHM−1B.

Exercise 28.2 (Smallest singular value). We first observe that

α−1
ℓ2 = sup

V∈CI

‖V‖ℓ2(CI)
‖AV‖ℓ2(CI )

= sup
V∈CI

‖A−1AV‖ℓ2(CI)
‖AV‖ℓ2(CI)

≤ ‖A−1‖ℓ2(CI ).

Since CI is finite-dimensional, there is V∗ ∈ CI s.t. ‖A−1‖ℓ2(CI) =
‖A−1

V∗‖ℓ2(CI )

‖V∗‖ℓ2(CI )
. Letting V∗∗ =

A−1V∗, we infer that

αℓ2 ≤
‖AV∗∗‖ℓ2(CI)
‖V∗∗‖ℓ2(CI)

=
‖V∗‖ℓ2(CI )
‖A−1V∗‖ℓ2(CI)

= ‖A−1‖−1
ℓ2(CI)

.

Exercise 28.3 (ℓ2-condition number). A direct computation shows that all the components
of ZX are equal to 21−I , so that ‖ZX‖ℓ2(RI) = I1/221−I , and that ‖X‖ℓ2(RI) = (43 (1 − 41−I))1/2 ≥
(43 )

1/2. Since the last vector of the canonical basis of RI is left invariant by Z, we infer that
‖Z‖ℓ2(RI) ≥ 1. This yields

κℓ2(Z) ≥ ‖Z−1‖ℓ2(RI) ≥
1

‖ZX‖ℓ2(RI )
‖X‖ℓ2(RI) ≥

(
4
3

) 1
2 I−

1
2 2I−1.

If I is large, the matrix Z is ill-conditioned.

Exercise 28.4 (Local mass matrix, 1D). Setting h := 1
I , the local mass matrices are, respec-

tively, given by

MK,P1 = h

(1
3

1
6

1
6

1
3

)
, MK,P2 = h




2
15

1
15 − 1

30
1
15

8
15

1
15

− 1
30

1
15

2
15


 .

Observe the two negative entries inMK,P2.

Exercise 28.5 (Stiffness matrix). For the P1 element, we obtain

∇λ̂1 =

(
1
0

)
, ∇λ̂2 =

(
0
1

)
, ∇λ̂3 =

(
−1
−1

)
,
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so that the stiffness matrix is

Â =



α δ γ
δ α γ
γ γ β


 ,

with α := 1
2 , β := 1, γ := − 1

2 , and δ := 0. For the Q1 element, we obtain

∇θ̂1 =

(
1− y
−x

)
, ∇θ̂2 =

(
y
x

)
, ∇θ̂3 =

(
−y
1− x

)
, ∇θ̂4 =

(
y − 1
x− 1

)
,

so that the stiffness matrix is

Â =




a b c b
b a b c
c b a b
b c b a


 ,

with a := 2
3 , b := − 1

6 , and c := − 1
3 .

Let us consider the domain D := (0, 3)×(0, 2). Since the geometric mappings are isometries,

we can just combine the entries of the stiffness matrix Â. For the first mesh, we obtain

A =

(
2β + 4α 2γ

2γ 2β + 4α

)
=

(
4 −1
−1 4

)
.

For the second mesh, we obtain

A =

(
4a 2b
2b 4a

)
=

(
8
3 − 1

3
− 1

3
8
3

)
.

For the third mesh, we obtain

A =

(
2a+ β + 2α b+ γ

b+ γ 2a+ β + 2α

)
=

(
10
3 − 2

3
− 2

3
10
3

)
.

Exercise 28.6 (Sensitivity to perturbations). (i) The estimate results from

‖X̃− X‖ℓ2(CI) ≤ ‖Z−1‖ℓ2(CI)‖B̃− B‖ℓ2(CI ),
‖B‖ℓ2(CI) ≤ ‖Z‖ℓ2(CI)‖X‖ℓ2(CI ).

(ii) To prove the second estimate, we observe that (Ž − Z)X̌ = Z(X− X̌) and infer that

‖X̌− X‖ℓ2(CI) ≤ ‖Z−1‖ℓ2(CI )‖Ž − Z‖ℓ2(CI)‖X̌‖ℓ2(CI).

Rearranging the terms proves the assertion.
(iii) Let us prove that the estimate from Step (i) is sharp. Owing to the compactness of the
unit ball in finite dimension, there exist X0,B0 ∈ CI s.t. ‖ZX0‖ℓ2(CI) = ‖Z‖ℓ2(CI)‖X0‖ℓ2(CI),
‖Z−1B0‖ℓ2(CI ) = ‖Z−1‖ℓ2(CI)‖B0‖ℓ2(CI ). This implies that the estimate is sharp. The proof that
the estimate from Step (ii) is sharp is similar.

Exercise 28.7 (Stability). Owing to the Cauchy–Schwarz inequality, we infer that

αh‖uh − vh‖Vh ≤ sup
wh∈Wh

|ah(uh − vh, wh)|
‖wh‖Wh

= sup
W∈CI

|WHA(U− V)|
‖Rψ(W)‖Wh

≤ ‖A(U− V)‖∗.
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Moreover, we have

‖B‖∗ = sup
Y∈CI

|YHB|
‖Rψ(Y)‖Wh

= sup
Y∈CI

|ℓh(Rϕ(Y))|
‖Rψ(Y)‖Wh

= sup
Y∈CI

|ah(uh,Rϕ(Y))|
‖Rψ(Y)‖Wh

≤ ‖ah‖‖uh‖Vh .

Combining these two bounds and recalling that AU = B proves the assertion.

Exercise 28.8 (ℓ∞-norm). (i) Let V ∈ RI and set W := AV. Since A−1 ≥ 0, we have

±V = ±A−1W ≤ ‖W‖ℓ∞(RI)A−1U,

where U ∈ RI has all entries equal to 1. Using the hint leads to

A−1
U ≤ 1

minj∈{1: I}(AY)j
Y,

so that ‖V‖ℓ∞(RI ) ≤
‖Y‖

ℓ∞(RI )

minj∈{1: I}(AY)j
‖W‖ℓ∞(RI), whence the assertion.

(ii) We observe that A is a nonsingular M -matrix and that the vector Y ∈ RI with components
Yi := xi(1 − xi) for all i ∈ {1:I} is a majorizing vector for A. Indeed Y > 0 and (AY)i = 2h for
all i ∈ {1:I}. Using Proposition 28.18 yields ‖A−1‖ℓ∞(RI ) ≤ 1

8h
−1.

(iii) A direct computation shows that

ZZ−1 = (I + αE1 ⊗ EI)(I − αE1 ⊗ EI)

= I − α2(E1 ⊗ EI)(E1 ⊗ EI)

= I − α2(E1·EI)E1 ⊗ EI = I.

Moreover, ‖Z‖ℓ∞(CI ) = ‖Z−1‖ℓ∞(CI) = 1 + |α|, so that κℓ∞(Z) = (1 + |α|)2. If α is large, the
matrix Z is ill-conditioned.

Exercise 28.9 (Lumped mass matrix). (i) Consider a cell in the mesh, say K ∈ Th. Let
z1, z2, z3 be the three vertices of K and let λ1, λ2, λ3 be the associated barycentric coordinates
(i.e., the local nodal shape functions). The local mass matrix MK ∈ R3×3 associated with K is
defined to be

MK
ij :=

∫

K

λi(x)λj(x) dx = |K|Wij ,

where the matrix W ∈ R3×3 is given by

W =




1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6


 .

One way to do this computation is by using the quadrature formula (30.3) (observe that K is
indeed a triangle since the mesh is affine).

(ii) The local lumped matrixMK ∈ R3×3 is

MK

ij := |K|Wij with W =




1
3 0 0

0 1
3 0

0 0 1
3


 .
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Of course, since W is diagonal,MK
is diagonal and the assembled matrixM is also diagonal.

(iii) The three eigenvalues of the matrix

(MK
)−1(MK −MK) =W−1

(W −W) = 3




1
6 − 1

12 − 1
12

− 1
12

1
6 − 1

12

− 1
12 − 1

12
1
6


 =




1
2 − 1

4 − 1
4

− 1
4

1
2 − 1

4

− 1
4 − 1

4
1
2




are (0, 34 ,
3
4 ).

(iv) Let (Y, λ) be an eigenpair ofM−1
(M−M)), i.e., YT(M−M)Y = λYTMY. We infer that

|YT(M−M)Y| =
∣∣∣∣
∑

K∈Th
Y
T

K(MK −MK)YK

∣∣∣∣

≤
∑

K∈Th
|K|‖YK‖ℓ2‖W −W‖ℓ2‖YK‖ℓ2 ,

where YK = (Yj dof(K,1),Yj dof(K,2),Yj dof(K,3))
T ∈ R3 is the vector of the three components of

Y that are associated with the vertices of the triangle K (j dof is the connectivity array) and
where ‖·‖ℓ2 denotes either the Euclidian norm or the matrix norm induced by the Euclidean norm.
Owing to Step (iii), we infer that ‖W −W‖ℓ2 ≤ 1

4 , which, in turn, implies that

|YT(M−M)Y| ≤ 3

4

∑

K∈Th

1

3
|K|‖YK‖2ℓ2 =

3

4

∑

K∈Th
|K|YT

KM
K
YK =

3

4
Y
TMY.

In conclusion, we have established that

|YT(M−M)Y| = |λ|YTMY ≤ 3

4
YTMY,

which proves that λ ≤ 3
4 .

Exercise 28.10 (CG). (i) We observe that for all V ∈ RI ,
1

2
‖V − U‖2A =

1

2
(V − U)TA(V − U)

=
1

2
VTAV − BTV +

1

2
UTAU

= J(V) +
1

2
UTAU.

This shows that minimizing J over U0 +Km is equivalent to minimizing the energy error over this
subspace. Proposition 28.20 implies that V = Um.
(ii) Since

J(Um + ηPm) = J(Um)− ηPT

mRm +
1

2
η2PT

mAPm,
we infer that

ηm =
PT
mRm

PT
mAPm

.

From step (m − 1) of the CG method, we obtain Pm = Rm + βm−1Rm−1 and since RT
m−1Rm = 0

owing to Proposition 28.20, we infer that PT
mRm = RT

mRm, whence we conclude that ηm = αm.

(iii) The CG method applied to the preconditioned system ÃŨ = B̃ with Ã := P−1
L A(PT

L )
−1

and B̃ = P−1
L B yields iterates Ũm, P̃m, and R̃m such that Ũm = PT

LUm, P̃m = PT

LPm, and

R̃m = P−1
L Rm, where Um, Pm, and Rm are delivered by Algorithm 28.1.
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Algorithm 28.1 Preconditioned CG.

choose U0, set R0 := B−AU0 and P0 := P−1R0

choose a tolerance tol and set m := 0
while ‖Rm‖ℓ2 > tol do
αm := RT

mP−1Rm/P
T
mAPm

Um+1 := Um + αmPm

Rm+1 := Rm − αmAPm
βm := RT

m+1P−1Rm+1/R
T
mP−1Rm

Pm+1 := P−1Rm+1 + βmPm

m← m+ 1
end while

Exercise 28.11 (Complex symmetric system). One readily sees that σ(A) = {µ + iσ | µ ∈
σ(T )}, so that σ(A∗) = {µ ± iσ | µ ∈ σ(T )}. If the matrix T is indefinite, the spectrum of A∗
straddles the origin. Furthermore, since AA = T 2 + σ2I, σ(A∗∗) = {±(µ2 + σ2)

1
2 | µ ∈ σ(T )}

is included in the real line but straddles the origin with an equal number of eigenvalues on both
sides. If one considers the rotated system −iAU = −iB and the first rewriting as a real system,
one obtains

(−iA)∗ =

(
σI T
−T σI

)
,

whose spectrum is contained in a line segment parallel to the imaginary line and symmetric with
respect to the real line. This is a (much) more favorable situation for Krylov subspace methods.
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Chapter 29

Sparse matrices

Exercises

Exercise 29.1 (Retrieving a nonzero entry in CSR format). Write an algorithm to retrieve
the value Aij from the array aa stored in CSR format.

Exercise 29.2 (Ellpack (ELL)). Write the arrays needed to store the matrix from Example 29.3
in the Ellpack format. Write an algorithm that performs a matrix-vector multiplication in this
format.

Exercise 29.3 (Coordinate format (COO)). Let A be a I×I sparse matrix. Consider the
storage format where one stores the nonzero entries Aij in the array aa(1:nnz) and stores in the
same order the row and columns indices in the integer arrays ia(1:nnz) and ja(1:nnz), respectively.
(i) Use this format to store the matrix defined in (29.4). (ii) Write an algorithm to perform a
matrix-vector product in this format. Compare with the CSR format.

Exercise 29.4 (Storage). Consider the storage format for sparse I×I matrices where one stores
the nonzero entries Aij in the array aa(1:nnz) and stores in the same order the integer (i− 1)I + j
in the integer array ja(1:nnz). (i) Use this format for the matrix defined in (29.4). (ii) Write an
algorithm to do matrix-vector products in this format. Compare with the CSR format.

Exercise 29.5 (Greedy coloring). (i) Prove that the total number of colors found by Algo-
rithm 29.5 is at most equal to 1 plus the largest degree in the graph. (ii) Assume that a graph G
can be colored with two colors only. Prove that if the BFS reordering is used to initialize traverse,
then Algorithm 29.5 finds a two-color partitioning. (Hint : by induction on the number of level
sets.)

Exercise 29.6 (Multicolor ordering). Prove Proposition 29.10.

Exercise 29.7 (CMK reordering). Give the sparsity pattern and the CMK reordering for the
matrix shown in Figure 29.4.
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Solution to exercises

Exercise 29.1 (Retrieving a nonzero entry in CSR format). Algorithm 29.1 shows how to
retrieve the value of Aij from the array aa assuming that the entry Aij is nonzero:

Algorithm 29.1 Retrieving Aij 6= 0 in CSR format.

for p ∈ {ia(i): ia(i+1)−1} do
if ja(p) := j then
value := aa(p); Exit loop over p

end if
end for

Exercise 29.2 (Ellpack (ELL)). For the 5×5 matrix shown in (29.4), Nrow = 4 and

aa =




1. 2. 0. 0.
3. 4. 5. 0.
6. 7. 8. 9.
10. 11. 0. 0.
12. 0. 0. 0.



, ja =




1 4 4 4
1 2 4 4
1 3 4 5
3 4 4 4
5 5 5 5



.

The following algorithm shows how to evaluate the matrix-vector multiplication y = Ax in the
Ellpack format.

Algorithm 29.2 Matrix-vector multiplication in Ellpack format.

for i ∈ {1:I} do; yi := 0
for p ∈ {1:Nrow} do
yi := yi+ aa(i, p) ∗ x(ja(i, p))

end for
y(i) := yi

end for

Exercise 29.3 (Coordinate format (COO)). (i) One possibility could be

aa = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]

ia = [1 1 2 2 2 3 3 3 3 4 4 5]

ja = [1 4 1 2 4 1 3 4 5 3 4 5]

Another one could be

aa = [1. 3. 6. 4. 7. 10. 2. 5. 8. 11. 9. 12.]

ia = [1 2 3 2 3 4 1 2 3 4 3 5]

ja = [1 1 1 2 3 3 4 4 4 4 5 5]

(ii) We now write an algorithm for the matrix-vector multiplication in the coordinate format. The
algorithm essentially consists of a single loop, whereas there are two nested loops for the CSR
format.
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Algorithm 29.3 Matrix-vector multiplication in coordinate format.

for i ∈ {1:I} do
y(i) := 0

end for
for p ∈ {1:nnz} do
y(ia(p)) := y(ia(p)) + aa(p) ∗ x(ja(p))

end for

Exercise 29.4 (Storage). One possibility could be

aa = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]

ja = [1 4 6 7 9 11 13 14 15 18 19 25]

Another one could be

aa = [1. 3. 6. 4. 7. 10. 2. 5. 8. 11. 9. 12.]

ja = [1 2 3 7 13 14 16 17 18 19 23 25]

(ii) We now write an algorithm for the matrix-vector multiplication in the proposed format. The
algorithm essentially consists of a single loop, whereas there are two nested loops for the CSR
format.

Algorithm 29.4 Matrix-vector multiplication.

for i ∈ {1:I} do
y(i) := 0

end for
for p ∈ {1:nnz} do
j = modulo(ja(p)− 1, I) + 1
i = (ja(p)− j)/I + 1
y(i) := y(i) + aa(p) ∗ x(j)

end for

Exercise 29.5 (Greedy coloring). (i) Let k ≥ 0 be the largest degree in the graph. Let
j ∈ {1:I}. Assume that Adj(j) 6= ∅ (otherwise the greedy coloring algorithm (Algorithm 29.5)
gives color(j) = 1 ≤ k + 1). Assume that min{l > 0 | l 6∈ color(Adj(j))} ≥ k + 2. This means
that {1, . . . , k+1} ⊂ color(Adj(j)), which in turn implies that the cardinality of color(Adj(j)) is
at least k+1. Hence, the cardinality of Adj(j) is at least k+1, which is in contradiction with the
definition of k. We then conclude that min{l > 0 | l 6∈ color(Adj(j))} ≤ k + 1, and this implies
that color(j) as defined by the greedy coloring algorithm is less than k + 1. This proves that the
total number of colors found by the algorithm is at most k + 1.
(ii) Since we know that the graph can be colored with two colors only, there exists a (theoretical)
graph coloring map colorth : V → {1, 2}. Let {Ll}1∈{1: l} be a set of level sets of the graph G.

Assume that traverse is based on the BFS reordering using these level sets. Let us prove by
induction that card(colorth(Ll)) = 1 and that the greedy coloring algorithm (Algorithm 29.5)
gives the same color, modulo(l−1, 2)+1, to all the vertices in the same level set Ll. The induction
hypothesis holds true for l = 1 since the first level set L1 has only one vertex. Assume that k ≥ 2,
otherwise there is nothing to prove. Let l ≥ 1 and j, n ∈ Ll+1. Since traverse is based on the
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BFS reordering, one of the neighboring vertices of j, say i(j), must belong to the level set Ll.
The same argument shows that one of the neighboring vertices of n, say i(n), must belong to the
level set Ll. But the graph can be colored with two colors only. This means that two neighboring
vertices must have different colors. As a result, one must have

colorth(j) = modulo(colorth(i(j), 2) + 1

= modulo(colorth(i(n), 2) + 1 = colorth(n).

Hence, we have proved that card(colorth(Ll+1)) = 1. This argument also shows that j cannot
have any neighbor in Ll+1. Hence, by construction of the level sets, the neighbors of j can only
belong to Ll ∩ Ll+2. Since the vertices in Ll+2 (if l+ 2 ≥ k) have not been visited yet, their color
assigned by Algorithm 29.5 is zero. Hence, we have

min{s ≥ 1 | s 6∈ color(Adj(j))} = min{s ≥ 1 | s 6= color(i(j))}
= min{s ≥ 1 | s 6= modulo(l − 1, 2) + 1}
= modulo(l, 2) + 1.

In other words, color(j) = modulo(l, 2) + 1 for every j ∈ Ll+1. This proves the assertion.

Exercise 29.6 (Multicolor ordering). Let B be the reordered matrix. We define a k max×k max

block structure of B by saying that Bij is in the block k×l if color(i) = k and color(j) = l. Let
i, j ∈ {1:I} be s.t. Bij is in the k-th diagonal block. This means that i and j have the same color
k. Assume that i 6= j. Then j 6∈ Adj(i), otherwise j and i would have different colors. This means
that Bij = 0 (recall that j ∈ Adj(i) iff Bij 6= 0 or Bji 6= 0). This proves that the k-th diagonal
block of B is diagonal.

Exercise 29.7 (CMK reordering). Starting from the vertex 8, the level sets are

L1 = {8}, L2 = {2}, L3 = {1, 3, 4, 5}, L4 = {6, 7}.

One possibility for the permutation index corresponding to the CMK reordering is

perm = {8, 2, 1, 5, 3, 4, 6, 7}.

The sparsity pattern and adjacency graph are shown in Figure 29.1.

 5

 2

 3

 4

 1

 8

 7

 6

Figure 29.1: Sparsity pattern (left) and adjacency graph (right) of a 8×8 sparse matrix.
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Quadratures

Exercises

Exercise 30.1 (Quadratures on simplices). Let K be a simplex in Rd. Let zK be the barycen-
ter ofK, let {zi}i∈{0:d} be the vertices ofK, and let {mi}i∈{0:d} be the midpoints of the edges ofK.

Consider the following quadratures: {zK}, {|K|}; {zi}i∈{0:d}, { 1
d+1 |K|}; {mi}i∈{0:d}, { 1

d+1 |K|}.
(i) Prove that the first and the second quadratures are of order one. (ii) Prove that the third one
is of order two for d = 2.

Exercise 30.2 (Quadrature for Q2,d). Let K̂ := [0, 1]d be the unit hypercube. Let âi1...id :=
( i12 , . . . ,

id
2 ), i1, . . . , id ∈ {0:2}. Show that the quadrature

∫
K̂
f(x̂) dx̂ ≈ ∑i1,...id

wi1...idf(âi1...id)

where wi1...id := 1
6d

∏d
k=1(3ik(2− ik)+ 1) is exact for all f ∈ Q2,d. (Hint : write the Q2,d Lagrange

shape functions in tensor-product form and use Simpson’s rule in each direction.)

Exercise 30.3 (Global quadrature error). Prove that

∣∣∣∣
∫

D

φ(x) dx−
∑

K∈Th

∑

l∈{1: lQ}
ωlK φ(ξlK )

∣∣∣∣ ≤ chm|D|
1− 1

p |φ|Wm,p(D),

for all φ ∈ Wm,p(D) and all h ∈ H. (Hint : use Lemma 30.9.)

Exercise 30.4 (Quadrature error with polynomial). The goal is to prove (30.7). We are
going to make use of (30.6) formulated as follows: |EK(ψq)| ≤ c hµK |ψ|Wµ,∞(K)‖q‖L1(K) for all
q ∈ Pν,d◦TK where µ+ν−1 ≤ kQ, µ, ν ∈ N. (i) Prove that |EK(φp

K
)| ≤ chmK |φ|Wm,∞(K)‖p‖L1(K),

where p
K

is the mean value of p over K. (ii) Prove (30.7). (Hint : use Step (i) with µ := m− 1.)

Exercise 30.5 (Surface quadrature). Assume d = 3. Let F be a face of a mesh cell. Let F̂ ⊂ R2

be a reference face and let TF : F̂ → F be the geometric mapping for F . Let t1(ŝ), t2(ŝ) be the two
column vectors of the Jacobian matrix of TF (ŝ), say JF (ŝ) := [t1(ŝ), t2(ŝ)] ∈ R3×2. (i) Compute
the metric tensor gF := JTF JF ∈ R2×2 in terms of the dot products ti·tj , i, j ∈ {1, 2}. (ii) Show that
ds = ‖t1(ŝ)×t2(ŝ)‖ℓ2(R3) dŝ. (Hint : use Lagrange’s identity, that is, ‖a‖2ℓ2(R3)‖b‖2ℓ2(R3) − (a·b)2 =

‖a×b‖2ℓ2(R3) for any pair of vectors a, b ∈ R3, and recall that ds =
√
det(gF ) dŝ). (iii) Given a

quadrature {ŝl, ŵl}l∈{1: l∂Q} on F̂ , generate the quadrature on F .
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Exercise 30.6 (Asssembling). Let D := (0, 1)2. Consider the problem −∆u+ u = 1 in D and
u|∂D = 0. (i) Approximate its solution with P1 H1-conforming finite elements on the two meshes
shown in Figure 30.1. (ii) Evaluate the discrete solution in both cases. (Hint : there is only one
degree of freedom in both cases, see Exercise 28.5 for computing the gradient part of the stiffness
coefficient and use a quadrature from Table 30.1 for the zero-order term.) (iii) For a fine mesh
composed of 800 elements, we have uh(

1
2 ,

1
2 ) ≈ 0.0702. Comment.

0 1

1

0 1

1

Figure 30.1: Illustration for Exercise 30.6.

Exercise 30.7 (Discrete data). Adapt Algorithm 30.1 to the case where (dk1k2)k1,k2∈{1:d},
(βk1)k1∈{1:d}, and µ are known in the discrete space Vh. (Hint : let dif, beta, and mu be the corre-
sponding coordinate vectors, and observe that µ(ξlKm) =

∑
n∈{1:nsh} mu(j dof(m, i))× theta(n, l),

etc.)

Exercise 30.8 (Assembling of RHS). Write the assembling algorithm for the right-hand side
vector in the case where F (ξ, wh) := f(ξ)wh(ξ)+

∑
k1∈{1:d} βk1(ξ)

∂wh
∂xk1

(ξ) with analytically known

data.

Solution to exercises

Exercise 30.1 (Quadratures on simplices). (i) Consider the first quadrature. Let i ∈ {0:d}
and λi be the i-th barycentric coordinate. We have

∫
K λi dx = 1

(d+1) |K| and λi(zK) = 1
d+1 .

Hence,
∫
K
λi dx = λi(zK)|K|. This proves that the first quadrature is at least of order 1 since

P1,d = span{λi}i∈{0:d}. To show that the quadrature is not of order 2, we observe that
∫
K λ

2
i dx =

|K| 2
(d+1)(d+2) , whereas the quadrature gives |K| 1

(d+1)2 . Let us consider the second quadrature. We

have
∫
K
λi dx = 1

(d+1) |K|
∑
j∈{0:d} λi(zj) since

∑
j∈{0:d} λi(zj) = 1. This proves that the second

quadrature is at least of order 1 since P1,d = span{λi}i∈{0:d}. To show that the quadrature is not

of order 2, we observe again that
∫
K
λ2i dx = |K| 2

(d+1)(d+2) , whereas the quadrature gives |K| 1
d+1 .

(ii) Let us now consider the third quadrature for d = 2. We have
∫
K λi dx = 1

(d+1) |K| =
1

(d+1) |K|
∑
j∈{0: 2} λi(mj), where we used that

∑
j∈{0: 2} λi(mj) = 1 in R2. Since

∫
K
λiλj dx =

1
(d+2)(d+1) |K| with i 6= j (see (30.3)), we infer that

∫
K λiλj dx = 1

(d+1) |K|
∑
k∈{0: 2} λi(mk)λj(mk)

since we have
∑

k∈{0: 2} λi(mk)λj(mk) = 1
4 = 1

d+2 . This proves that the third quadrature is at

least of order 2 since P2,2 = span{λ0, λ1, λ2, λ0λ1, λ0λ2, λ1λ2}. To show that the quadrature is not
of order 3, we observe that

∫
K
λ3i dx = |K| 6

(d+1)(d+2)(d+3) , whereas the quadrature gives |K| d
8(d+1) .

Exercise 30.2 (Quadrature for Q2,d). Let θ̂i1...id be theQ2,d Lagrange shape function associated

with the node âi1...id = ( i12 , . . . ,
id
2 ), i1, . . . , id ∈ {0:2}. This shape function is s.t. θ̂i1...id(x̂) =
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θ̂i1(x̂1) . . . θ̂id(x̂d) where x̂ := (x̂1, . . . , x̂d)
T and {θ̂i}i∈{0:2} are the univariate Q2,d Lagrange basis

functions associated with the nodes 0, 1
2 , and 1. Using Simpson’s rule yields

∫

K̂

θ̂i1...id(x̂) dx̂ =
∏

k∈{1:d}

(∫ 1

0

θ̂ik(x̂k) dx̂k

)

=
∏

k∈{1:d}

1

6
(θ̂ik(0) + 4θ̂ik(

1
2 ) + θ̂ik(1))

=
1

6d

∏

k∈{1:d}


 ∑

l∈{0: 2}
(3l(2− l) + 1)θ̂ik(

l
2 )




=
1

6d

∏

k∈{1:d}
(3ik(2− ik) + 1) = wi1...id .

The conclusion follows readily since (θ̂i1...id)i1,...,id∈{0: 2} is a basis of Q2,d.

Exercise 30.3 (Global quadrature error). Owing to Lemma 30.9, we infer that
∣∣∣∣∣∣

∫

D

φ(x) dx−
∑

K∈Th

∑

l∈{1: lQ}
ωlK φ(ξlK)

∣∣∣∣∣∣
≤
∑

K∈Th
|EK(φ)|

≤ c
∑

K∈Th
hmK |K|1−

1
p |φ|Wm,p(K)

≤ c hm
( ∑

K∈Th
|K|
) 1
p′
( ∑

K∈Th
|φ|pWm,p(K)

) 1
p

,

with 1
p +

1
p′ = 1, where we used Hölder’s inequality in RNc (where Nc denotes the number of mesh

cells). The conclusion follows from
∑
K∈Th |K| = |D|.

Exercise 30.4 (Quadrature error with polynomial). (i) We use the hint with ψ := φ,
q := p

K
, µ := m, and ν := 0. This is legitimate since 1 ≤ n implies that µ + ν − 1 = m − 1 ≤

m+ n− 2 ≤ kQ. Hence, |EK(φp
K
)| ≤ chmK |φ|Wm,∞(K)‖pK‖L1(K). We conclude by observing that

‖p
K
‖L1(K) ≤ ‖p‖L1(K).

(ii) We apply again the hint with µ := m− 1 and ν = n. Notice that µ ≥ 0 since m ≥ 1 and that
µ+ ν − 1 = m+ n− 2 ≤ kQ. This yields

|EK(φ(p− p
K
))| ≤ c hm−1

K |φ|Wm−1,∞(K)‖p− pK‖L1(K),

and ‖p − p
K
‖L1(K) ≤ chK‖∇p‖L1(K) follows from the Poincaré–Steklov inequality (see (3.8) or

(12.13)). Since EK(φp) = EK(φ(p − p
K
)) + EK(φp

K
), we conclude by using the bound from

Step (i).

Exercise 30.5 (Surface quadrature). (i) By definition, we have

gF := JTF JF :=

[
tT1
tT2

] [
t1, t2

]
=

[
t1·t1 t1·t2
t2·t1 t2·t2

]
.

(ii) We have ds =
√
det(gF ) dŝ, but Lagrange’s identity gives

det(gF ) = ‖t1‖2ℓ2(R3)‖t2‖2ℓ2(R3) − (t1·t2)2 = ‖t1×t2‖2ℓ2(R3),
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whence ds = ‖t1(ŝ)×t2(ŝ)‖ℓ2(R3) dŝ.

(iii) Let {ŝl, ŵl}l∈{1: l∂Q} be a quadrature on F̂ . We have
∫

F

φ(x) ds =

∫

F̂

φ(TF (ŝ))‖t1(ŝ)×t2(ŝ)‖ℓ2(R3) dŝ

≈
∑

l∈∈{1: l∂Q}
φ(TF (ŝl))ŵl‖t1(ŝl)×t2(ŝl)‖ℓ2(R3).

The quadrature on F is {TF (ŝl), ŵl‖t1(ŝl)×t2(ŝl)‖ℓ2(R3)}l∈{1: l∂Q}.

Exercise 30.6 (Asssembling). (i) Let us consider a reference triangle K̂ with vertices (1, 0),

(0, 1), (0, 0) and let λ̂1, λ̂2, λ̂3 be the corresponding barycentric coordinates. The local stiffness
matrix has been computed in Exercise 28.5. Using the same enumeration convention as in Exer-
cise 28.5, we have

(∫

K̂

∇λ̂m·∇λ̂n dx̂
)
m,n∈{1:3}

=




1
2 0 − 1

2

0 1
2 − 1

2

− 1
2 − 1

2 1


 =: D.

For the zero-order term, we can use the quadrature of degree 2 from Table 30.1 based on the three
edge midpoints. We obtain

(∫

K̂

λ̂mλ̂n dx̂
)
m,n∈{1:3}

=




1
12

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
12


 =:M.

The stiffness matrix is then A := D+M. For the assembly procedure, we have h = 1
2 , |K| = h2

2 =
1
8 , |K̂| = 1

2 , and ∫

K

∇ϕi·∇ϕj dx = h−2 |K|
|K̂|

∫

K̂

∇θ̂m·∇θ̂n dx̂ =

∫

K̂

∇θ̂m·∇θ̂n dx̂,
∫

K

ϕiϕj dx =
|K|
|K̂|

∫

K̂

θ̂mθ̂n dx̂ =
1

4

∫

K̂

θ̂mθ̂n dx̂,

∫

K

ϕi dx =
|K|
|K̂|

∫

K̂

θ̂m dx̂ =
1

4

∫

K̂

θ̂m dx̂ =
1

24
,

with i := j dof(K,m) and j := j dof(K,n). Here, we have only one global shape function so that
i := 1 and j := 1.

For the mesh on the left, we obtain for the stiffness coefficient and the right-hand side A11 =
4(D11 + D22) + 4 1

4 (M11 +M22) = 4 + 1
6 = 25

6 and F1 = 8 1
24 = 1

3 , respectively, so that the
approximate solution is U = 2

25 ≈ 0.08.
For the mesh on the right, we obtain A11 = 4D33 + 4 1

4M33 = 4 + 1
12 = 49

12 and F1 = 4 1
24 = 1

6 ,
so that U = 2

49 ≈ 0.04.
We observe that the first mesh leads to a more accurate solution. The advantage of this mesh

is that all the mesh cells contribute to the matrix and the right-hand side vector. In the second
mesh, the four triangles having two boundary edges do not contribute to the approximation.

Exercise 30.7 (Discrete data). We use the hint to compute the values of all the coefficients at
the Gauss nodes on every mesh cell. The assembling is done in Algorithm 30.1.

Exercise 30.8 (Assembling of RHS). The assembling is done in Algorithm 30.2.
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Algorithm 30.1 Assembling of AQ for discrete data.

AQ = 0
for m ∈ {1:Nc} do
for l ∈ {1: lQ} do; tmp := 0
for k1 ∈ {1:d} do
for k2 ∈ {1:d} do
dif l(k1, k2) :=

∑

n∈{1:nsh}
dif(k1, k2, j dof(m,n)) ∗ theta(n, l)

end for
beta l(k1) :=

∑

n∈{1:nsh}
beta(k1, j dof(m,n)) ∗ theta(n, l)

end for
mu l :=

∑

n∈{1:nsh}
mu(j dof(m,n)) ∗ theta(n, l)

for ni ∈ {1:nsh} do
for nj ∈ {1:nsh} do
x1 :=

∑

k1,k2∈{1:d}
dtheta dK(k1, nj, l,m)∗dif l(k1, k2)∗ dtheta dK(k2, ni, l,m)

x2 := theta(ni, l) ∗
∑

k1∈{1:d}
beta l(k1) ∗ dtheta dK(k1, nj, l,m)

x3 := theta(ni, l) ∗ mu l ∗ theta(nj, l)
tmp(ni, nj) := tmp(ni, nj) + [x1 + x2 + x3] ∗ weight K(l,m)

end for
end for

end for
Accumulate tmp in AQ as in Algorithm 29.2

end for

Algorithm 30.2 Assembling of RHS vector BQ.
BQ := 0
for m ∈ {1:Nc} do
for l ∈ {1: lQ} do; tmp := 0
for k1 ∈ {1:d} do
xi l(k1) :=

∑

n∈{1:ngeo}
coord(k1, j geo(n,m)) psi(n, l)

end for
for ni ∈ {1:nsh} do
x1 := f(xi l) ∗ theta(ni, l)
x2 :=

∑

k1∈{1:d}
βk1(xi l) ∗ dtheta dK(k1, ni, l,m)

tmp(ni) := tmp(ni) + [x1 + x2] ∗ weight K(l,m)
end for

end for
for ni ∈ {1:nsh} do; i := j dof(m,ni)
BQ,i := BQ,i + tmp(ni)

end for
end for
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Chapter 31

Scalar second-order elliptic PDEs

Exercises

Exercise 31.1 (Cordes). Prove that ellipticity implies the Cordes condition if d = 2. (Hint : use
that ‖d‖2F = (tr(d))2 − 2 det(d).)

Exercise 31.2 (Poincaré–Steklov). Prove (31.23). (Hint : use (3.12).)

Exercise 31.3 (Potential flow). Consider the PDE ∇·(−κ∇u+βu) = f in D with homogeneous
Dirichlet conditions and assume that κ is a positive real number. Assume that β := ∇ψ for some
smooth function ψ (we say that β is a potential flow). Find a functional E : H1

0 (D)→ R of which
the weak solution u is a minimizer on H1

0 (D). (Hint : consider the function e−ψ/κu.)

Exercise 31.4 (Purely diffusive Neumann). Prove Proposition 31.19. (Hint : for all w ∈
H1(D), the function w̃ := w − wD is in H1

∗ (D), use also the Poincaré–Steklov inequality from
Lemma 3.24.)

Exercise 31.5 (Mixed Dirichlet–Neumann). The goal is to show by a counterexample that
one cannot assert that the weak solution is in H2(D) for the mixed Dirichlet–Neumann problem
even if the domain and the boundary data are smooth. Using polar coordinates, set D := {(r, θ) ∈
(0, 1) × (0, π)}, ∂Dn := {r ∈ (0, 1), θ = π}, and ∂Dd := ∂D\∂Dn. Verify that the function

u(r, θ) := r
1
2 sin(12θ) satisfies −∆u = 0 in D, ∂u

∂n |Dn
= 0, and u|Dd

= r
1
2 sin(12θ). (Hint : in polar

coordinates, ∆u = 1
r
∂
∂r

(
r ∂u∂r

)
+ 1

r2
∂2u
∂θ2 .) Verify that u 6∈ H2(D).

Exercise 31.6 (H2(Rd)-seminorm). Prove that |φ|H2(Rd) = ‖∆φ‖L2(Rd) for all φ ∈ C∞
0 (Rd).

(Hint : use Theorem B.3.)

Exercise 31.7 (Counterexample to elliptic regularity in W 2,∞(D)). Let D be the unit disk
in R2. Consider the function u(x1, x2) := x1x2 ln(r) with r2 := x21 + x22 (note that u|∂D = 0).
Verify that ∆u ∈ L∞(D), but that u 6∈ W 2,∞(D). (Hint : consider the cross-derivative.)

Exercise 31.8 (Domain with slit). Let D := {r ∈ (0, 1), θ ∈ (0, 2π)}, where (r, θ) are the polar
coordinates, i.e., D is the closed ball of radius 1 centered at 0. Let u(r, θ) := r cos(12θ) for all r > 0

and θ ∈ [0, 2π). (i) Let p ∈ [1,∞). Is u|D in W 1,p(D)? Is u|int(D) in W
1,p(int(D))? (Hint : recall

Example 4.3.) (ii) Is the restriction to D of the functions in C1(D) dense in W 1,p(D)? (Hint :
argue by contradiction and use that ‖v|D‖W 1,p(D) = ‖v|int(D)‖W 1,p(int(D)) for all v ∈ C1(D).)
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Exercise 31.9 (A priori estimate). Consider the PDE −κ0∆u + β·∇u + µ0u = f with ho-
mogeneous Dirichlet conditions. Assume that κ0, µ0 ∈ R, κ0 > 0, ∇·β = 0, β|∂D = 0, and

f ∈ H1
0 (D). Let ∇sβ := 1

2 (∇β + (∇β)T) denote the symmetric part of the gradient of β, and
assume that there is µ′

0 > 0 s.t. ∇sβ + µ0Id ≥ µ′
0Id in the sense of quadratic forms. Prove

that |u|H1(D) ≤ (µ′
0)

−1|f |H1(D) and ‖∆u‖L2(D) ≤ (4µ′
0κ0)

− 1
2 |f |H1(D). (Hint : use −∆u as a test

function.) Note: these results are established in Beirão da Veiga [3], Burman [8].

Exercise 31.10 (Complex-valued diffusion). Assume that the domain D is partitioned into
two disjoint subdomains D1 and D2. Let κ1, κ2 be two complex numbers, both with positive
modulus and such that κ1

κ2
6∈ R−. Set κ(x) := κ11D1(x) + κ21D2(x) for all x ∈ D. Let f ∈ L2(D).

Show that the problem of seeking u ∈ V := H1
0 (D;C) such that a(u,w) :=

∫
D κ∇u·∇w dx =∫

D
fw dx for all w ∈ V is well-posed. (Hint : use (25.7).)

Exercise 31.11 (Dependence on diffusion coefficient). Consider two numbers 0 < λ♭ ≤ λ♯ <
∞ and define the setK := {κ ∈ L∞(D;R) | κ(x) ∈ [λ♭, λ♯], a.e. x ∈ D}. Let V := H1

0 (D) equipped
with the norm ‖v‖V := ‖∇v‖L2(D) and V ′ = H−1(D). Consider the operator Tκ : V → V ′

s.t. Tκ(v) := −∇·(κ∇v) for all v ∈ V and all κ ∈ K. (i) Prove that λ♭ ≤ ‖Tκ‖L(V ;V ′) ≤ λ♯
and that Tκ is an isomorphism. (Hint : use Proposition 31.8 with θ := 1 and the bilinear form
a(v, w) :=

∫
D
κ∇v·∇w dx on V × V.) (ii) Prove that ‖Tκ − Tκ′‖L(V ;V ′) = ‖κ − κ′‖L∞(D) for all

κ, κ′ ∈ K∩C0(D;R). (Hint : if ‖κ−κ′‖L∞(D) > 0, for all ǫ > 0 there is an open subset Dǫ ⊂ D such
that the sign of (κ−κ′)|Dǫ is constant and |κ−κ′| ≥ ‖κ−κ′‖L∞(D)−ǫ in Dǫ; then consider functions
in H1

0 (Dǫ).) (iii) Let Sκ := T−1
κ ∈ L(V ′;V ). Prove that λ2♭‖Sκ − Sκ′‖L(V ′;V ) ≤ ‖κ− κ′‖L∞(D) ≤

λ2♯‖Sκ − Sκ′‖L(V ′;V ) for all κ, κ
′ ∈ K ∩C0(D;R). (Hint : Sκ − Sκ′ = Sκ(Tκ′ − Tκ)Sκ′ .)

Solution to exercises

Exercise 31.1 (Cordes). Using the symmetry of d, we have ‖d‖2F = (tr(d))2 − 2 det(d), where

det(d) is the determinant of d, so that
‖d‖2

F

(tr(d))2 = 1
1+ǫ with ǫ := 2 det(d)

‖d‖2
F

. Since det(d) > 0 by the

ellipticity condition, we have ǫ > 0. Since (tr(d))2 ≥ 4 det(d) if d = 2, we have ‖d‖2F ≥ 2 det(d),
so that ǫ ≤ 1, the case ǫ = 1 being reached when both eigenvalues of d are equal, i.e., d = λI with
λ > 0.

Exercise 31.2 (Poincaré–Steklov). Let us define the linear form f(v) := ℓ
1
2

D|∂D|−
1
2

∫
∂D

γg(v) ds.
This defines a bounded linear form on H1(D). Applying (3.12) (with p := 2), we infer that there
is Čps s.t. √

2Čps‖v‖L2(D) ≤ ℓD‖∇v‖L2(D) + ℓ
1
2

D|∂D|−
1
2

∣∣∣∣
∫

∂D

γg(v) ds

∣∣∣∣ ,

for all v ∈ H1(D). The rightmost term is bounded as |
∫
∂D γ

g(v) ds| ≤ |∂D| 12 ‖γg(v)‖L2(∂D) owing
to the Cauchy–Schwarz inequality. Hence, we have

√
2Čps‖v‖L2(D) ≤ ℓD(‖∇v‖L2(D) + ℓ

− 1
2

D ‖γg(v)‖L2(∂D)),

and we conclude using Young’s inequality: (a+ b) ≤ (2(a2 + b2))
1
2 .

Exercise 31.3 (Potential flow). We observe that

∇
(
e−ψ/κu

)
=

1

κ
e−ψ/κ(κ∇u − βu),
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since ∇ψ = β. Consider the functional E : H1
0 (D)→ R such that

E(v) :=
1

2

∫

D

eψ/κκ
∣∣∣∇
(
e−ψ/κv

)∣∣∣
2

dx−
∫

D

e−ψ/κfv dx,

for all v ∈ H1
0 (D). Proceeding as in the proof of Proposition 25.8, we see that u ∈ H1

0 (D) is a
global minimizer of E if and only if

∫

D

eψ/κκ∇
(
e−ψ/κu

)
·∇
(
e−ψ/κw

)
dx =

∫

D

e−ψ/κfw dx,

for all w ∈ H1
0 (D). Taking w to be arbitrary in C∞

0 (D), we infer that
∫

D

e−ψ/κ∇·(−κ∇u+ βu)w dx =

∫

D

e−ψ/κfw dx,

which shows that u satisfies the PDE ∇·(−κ∇u+ βu) = f a.e. in D.

Exercise 31.4 (Purely diffusive Neumann). For all w ∈ H1(D), writing w := w̃ + wD with
w̃ ∈ H1

∗ (D) and testing the weak formulation against w̃, we infer that the weak solution satisfies

a
d

(u,w) = a
d

(u, w̃) =

∫

D

fw̃ dx+

∫

∂D

gγg(w̃) ds

=

∫

D

fw dx+

∫

∂D

gγg(w) ds,

where we used the compatibility condition (31.28) in the last equality. Since the equality a
d

(u,w) =∫
D fw dx+

∫
∂D gγ

g(w) ds is valid for every function w ∈ H1(D), we infer as in the case of Robin
conditions that the PDE and the boundary condition in (31.27) are satisfied a.e. in D and a.e. on
∂D, respectively. To prove the well-posedness of the weak formulation, we use the Poincaré–Steklov
Lemma 3.24 with p := 2, i.e., Cps‖v‖L2(D) ≤ ℓD‖∇v‖L2(D) for all v ∈ H1

∗ (D), so that V := H1
∗ (D)

equipped with the norm ‖v‖V := ‖∇v‖L2(D) is a Hilbert space. Since a
d

(v, v) ≥ λ♭‖v‖2V , this
proves the coercivity of a

d

. Finally, the well-posedness follows from the Lax–Milgram lemma.

Exercise 31.5 (Mixed Dirichlet–Neumann). A direct computation gives

1

r

∂

∂r

(
r
∂u

∂r

)
=

1

4
r−

3
2 sin

(
1

2
θ

)
,

1

r2
∂2u

∂θ2
= −1

4
r−

3
2 sin

(
1

2
θ

)
,

so that ∆u = 0. The Dirichlet condition is clearly satisfied on ∂Dd. Concerning the Neumann
condition on ∂Dn, we observe that ∂u

∂n = 1
r
∂u
∂θ = 1

2r
− 1

2 cos(12θ) which vanishes for θ = π. Finally,

we observe that ∂2u
∂r2 = − 1

4r
− 3

2 sin(12θ) and that
∫ 1

0 r
−3r dr is not bounded.

Exercise 31.6 (H2(Rd)-seminorm). Let φ ∈ C∞
0 (Rd). Integrating by parts, we infer that

|φ|2H2(Rd) =
∑

i,j∈{1:d}

∫

Rd

∂2φ

∂xi∂xj

∂2φ

∂xi∂xj
dx

= −
∑

i,j∈{1:d}

∫

Rd

∂φ

∂xi

∂

∂xj

(
∂2φ

∂xi∂xj

)
dx

= −
∑

i,j∈{1:d}

∫

Rd

∂φ

∂xi

∂3φ

∂xi∂x2j
dx

=
∑

i,j∈{1:d}

∫

Rd

∂2φ

∂x2i

∂2φ

∂x2j
dx = ‖∆φ‖2L2(Rd),

where we used Theorem B.3 to exchange the order of the partial derivatives.
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Exercise 31.7 (Counterexample to elliptic regularity in W 2,∞(D)). We observe that

∆u = x1x2∆(ln(r)) + 2∇(x1x2)·∇(ln(r)) + ∆(x1x2) ln(r)

= 2∇(x1x2)·∇(ln(r)) = 4
x1x2
r2

,

so that ∆u ∈ L∞(D). Moreover, we have

∂2u

∂x1∂x2
= ln(r) + 1− 2x21x

2
2

r4
,

which is unbounded at the origin.

Exercise 31.8 (Domain with slit). (i) Since ∂θu = − 1
2r sin(

1
2θ) + 2rδθ=0, where δθ=0 is the

Dirac measure whose support is the segment {r ∈ (0, 1), θ = 0} = {x1 ∈ (0, 1), x2 = 0}, we infer
that u|D ∈W 1,p(D), but u|int(D) 6∈W 1,p(int(D)) since δθ=0 cannot be identified with any function

in Lp(int(D)); see Example 4.3.
(ii) Assume that the restriction to D of the functions in C1(D) is dense in W 1,p(D). Since
u|D ∈ W 1,p(D), there is a sequence of functions in C1(D), say (vn)n∈N, such that vn|D → u|D in

W 1,p(D). But, since vn ∈ C1(D) ⊂W 1,p(D) and |int(D)\D| = 0, we have

‖vn|D‖W 1,p(D) = ‖vn|int(D)‖W 1,p(int(D)).

This means that (vn|int(D))n∈N is a Cauchy sequence in W 1,p(int(D)). Let w be the limit in
question. We have

w|D = u|D, a.e. in D.

This proves that w|int(D) = u|int(D) since | int(D)\D| = 0. This, in turn, establishes that u|int(D) ∈
W 1,p(int(D)), which is a contradiction. Hence, the restriction to D of the functions in C1(D) is
not dense in W 1,p(D).

Exercise 31.9 (A priori estimate). Following the hint and integrating by parts, we infer that

κ0‖∆u‖2L2(D) − (β·∇u,∆u)L2(D) + µ0|u|2H1(D) = −(f,∆u)L2(D) = (∇f,∇u)L2(D),

where we used that u ∈ H1
0 (D) in the third term on the left-hand side and f ∈ H1

0 (D) on the
right-hand side. Using that β|∂D = 0, we infer that

−(β·∇u,∆u)L2(D) = −
∑

i,j∈{1:d}
(βi∂iu, ∂j∂ju)L2(D)

=
∑

i,j∈{1:d}
((∂jβi)∂iu, ∂ju)L2(D) + (βi∂i(∂ju), ∂ju)L2(D)

=: T1 + T2.

We have T1 = ((∇sβ)∇u,∇u)L2(D). Using that ∇·β = 0 and using again that β vanishes at the
boundary, we obtain that

T2 =
∑

i,j∈{1:d}
(β·∇∂ju, ∂ju)L2(D) =

∫

D

1

2
∇·(β‖∇u‖2) dx = 0.

In summary, we have shown that

κ0‖∆u‖2L2(D) + ((∇sβ)∇u,∇u)L2(D) + µ0|u|2H1(D) = (∇f,∇u)L2(D).
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Our assumption on ∇sβ implies that

κ0‖∆u‖2L2(D) + µ′
0|u|2H1(D) ≤ (∇f,∇u)L2(D).

The estimate on |u|H1(D) follows by applying the Cauchy–Schwarz inequality to the right-hand side.
The estimate on ‖∆u‖L2(D) follows by bounding the right-hand side as µ′

0|u|2H1(D)+(4µ′
0)

−1|f |2H1(D).

Exercise 31.10 (Complex-valued diffusion). Let us write κm := |κm|eiϕm for all m ∈ {1, 2}.
Set ξ := e−i

ϕ1+ϕ2
2 . Then the real part of ξκ1 is |κ1| cos

(
ϕ1−ϕ2

2

)
and that of ξκ2 is |κ2| cos

(
ϕ2−ϕ1

2

)
.

It is readily seen that these two real numbers have the same sign and that they are both nonzero
since ϕ2−ϕ1

2 6= ±π2 (since otherwise κ1

κ2
would be a negative real number). Hence, up to a possible

sign change in ξ, the bilinear form a satisfies the coercivity property (25.7). We conclude by
invoking the Lax–Milgram lemma.

Exercise 31.11 (Dependence on diffusion coefficient). (i) We have

‖Tκ(v)‖V ′ = sup
w∈V

|〈∇·(κ∇v), w〉V ′,V |
‖w‖V

= sup
w∈V

|
∫
D κ∇v·∇w dx|
‖w‖V

,

for all v ∈ V. Recalling the definition of the ‖·‖V -norm, this implies that ‖Tκ(v)‖V ′ ≤ λ♯‖v‖V and
that

‖Tκ(v)‖V ′ ≥ |
∫
D
κ∇v·∇v dx|
‖v‖V

≥ λ♭‖v‖V .

This lower bound proves that Tκ is injective, and the above two bounds together prove that

λ♭ ≤ sup
v∈V

‖Tκ(v)‖V ′

‖v‖V
= ‖Tκ‖L(V ;V ′) ≤ λ♯.

It remains to prove that Tκ is surjective. Proposition 31.8 applied with θ := 1 (and µ := 0, β := 0)
implies that the bilinear form a(v, w) :=

∫
D κ∇v·∇w dx is coercive on V with a(v, v) ≥ λ♭‖v‖2V .

The Lax–Milgram lemma then implies that for all φ ∈ V ′, there is a unique vφ ∈ V s.t. a(vφ, w) =
〈φ,w〉V ′,V for all w ∈ V. Let φ ∈ V ′. Then we have for all w ∈ V,

〈Tκ(vφ), w〉V ′,V = −〈∇·(κ∇vφ), w〉V ′,V =

∫

D

κ∇vφ·∇w dx = a(vφ, w) = 〈φ,w〉V ′,V .

This shows that Tκ(vφ) = φ, i.e., Tκ is surjective.
(ii) We have

‖Tκ − Tκ′‖L(V ;V ′) = sup
v∈V

sup
w∈V

|
∫
D
(κ− κ′)∇v·∇w dx|
‖v‖V ‖w‖V

≤ ‖κ− κ′‖L∞(D).

Assume that ‖κ− κ′‖L∞(D) > 0 since otherwise there is nothing to prove. Let ǫ > 0 and assume
that ǫ ≤ ‖κ − κ′‖L∞(D). There is a measurable subset Eǫ ⊂ D with |Eǫ| > 0 s.t. the sign of
(κ− κ′)|Eǫ is constant in Eǫ and |κ− κ′| ≥ ‖κ− κ′‖L∞(D) − ǫ in Eǫ. Since we are assuming that
κ, κ′ are continuous functions, there is an open subset Dǫ ⊂ Eǫ. Observing that the zero-extension
of a function in H1

0 (Dǫ) is in V, we infer that

‖Tκ − Tκ′‖L(V ;V ′) ≥ sup
v∈H1

0 (Dǫ)

|
∫
Dǫ

(κ− κ′)‖∇v‖2ℓ2 dx|∫
Dǫ
‖∇v‖2ℓ2 dx

≥ ‖κ− κ′‖L∞(D) − ǫ.
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Since ǫ > 0 is arbitrary, this proves that ‖Tκ − Tκ′‖L(V ;V ′) = ‖κ− κ′‖L∞(D).
(iii) Since Sκ = T−1

κ , we infer from the bounds derived in Step (i) that

λ−1
♯ ≤ ‖Sκ‖L(V ′;V ) ≤ λ−1

♭ .

Using the hint, we obtain

‖Sκ − Sκ′‖L(V ′;V ) ≤ ‖Sκ‖L(V ′;V )‖Tκ − Tκ′‖L(V ;V ′)‖Sκ′‖L(V ′;V )

≤ λ−2
♭ ‖κ− κ′‖L∞(D).

This proves that λ2♭‖Sκ − Sκ′‖L(V ′;V ) ≤ ‖κ − κ′‖L∞(D). Finally, using the identity Tκ − Tκ′ =
Tκ(Sκ′ − Sκ)Tκ′ and reasoning similarly proves that ‖κ− κ′‖L∞(D) ≤ λ2♯‖Sκ − Sκ′‖L(V ′;V ).



Chapter 32

H1-conforming approximation (I)

Exercises

Exercise 32.1 (Discrete solution map). Let Gh be defined in (32.6). (i) Prove that ‖∇(v −
Gh(v))‖L2(D) ≤ chr|v|H1+r(D) for all r ∈ (0, k], all v ∈ H1+r(D), and all h ∈ H. (Hint : observe
that Gh(Ig,avh0 (v)) = Ig,avh0 (v).) (ii) Assume that the adjoint operator A∗ has a smoothing property
in H1+s(D) for some real number s ∈ (0, 1]. Prove that ‖v −Gh(v)‖L2(D) ≤ chr+sℓ1−sD |v|H1+r(D).
(Hint : consider the adjoint problem A∗(ζ) = v −Gh(v).)

Exercise 32.2 (H−1-estimate). Assume that for all g ∈ H1(D), the adjoint solution ζ ∈ H1
0 (D)

s.t. A∗(ζ) = g satisfies ‖ζ‖H2+s(D) ≤ csmoα
−1ℓ2D‖g‖H1(D) with s ∈ (12 , 1]. Assume that k ≥

1 + s. Let ‖v‖H−1(D) := supz∈H1
0 (D)

(v,z)L2(D)

|z|H1(D)
for all v ∈ L2(D). Prove that ‖u − uh‖H−1(D) ≤

ch1+sℓ1−sD ‖∇(u− uh)‖L2(D). (Hint : consider the adjoint problem A∗(ζ) = z.)

Exercise 32.3 (Compactness). The goal is to prove Theorem 32.8. Let I : V → L be the natural

embedding and define ǫ(h) := supv∈V \Vh
‖Gh(v)−v‖L
‖Ghv−v‖V . (i) Prove that ‖Gh − I‖L(V ;L) ≤ ‖a‖

α ǫ(h),

where α and ‖a‖ are the coercivity and the boundedness constants of a on V × V. (ii) Assume
that limh→0 ǫ(h) = 0. Prove that I is compact. (Hint : use (i).) (iii) Let R : L → V be s.t.
a(y,R(f)) := (y, f)L for all y ∈ V and all f ∈ L. Assuming that I is compact, prove that R is
compact. (Hint : prove that R = (A∗)−1I∗ and use Schauder’s theorem; see Theorem C.48.) (iv)
Let PVh : V → Vh be the V -orthogonal projection onto Vh. Let Rh : L → Vh be the operator
defined by a(vh, Rh(f)) := (vh, f)L, for all vh ∈ Vh and all f ∈ L. Prove that ‖R − Rh‖L(L;V ) ≤
‖a‖
α ‖R − PVh ◦R‖L(L;V ). (v) Assuming that I is compact, prove that limh→0 ‖R − Rh‖L(L;V ) = 0.
(Hint : use (iii)-(iv) and proceed as in Remark C.5.) (vi) Assuming that I is compact, prove that
limh→0 ǫ(h) = 0.

Exercise 32.4 (Source approximation). Let f ∈ L2(D), let Ibh(f) be the L2-projection of f
onto P b

k′ (Th). Consider the discrete problem (32.5) with the right-hand side
∫
D Ibh(f)wh dx, that

is: Find uh ∈ Vh := P g
k,0(Th) s.t. a(uh, wh) = ℓh(wh) :=

∫
D Ibh(f)wh dx for all wh ∈ Vh. (i) How

should (32.7) be rewritten? Show that k′ := k − 1 leads to an optimal H1-norm error estimate.
(ii) How should (32.19) be rewritten? Assuming full elliptic regularity, show that k′ := k leads to
an optimal L2-norm error estimate.
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Exercise 32.5 (Advection-diffusion, 1D). Let D := (0, 1). Let ν, b be positive real numbers.
Let f : D → R be a smooth function. Consider the model problem −νu′′+ bu′ = f in D, u(0) = 0,
u(1) = 0. Consider H1-conforming P1 Lagrange finite elements on the uniform grid Th with nodes
xi := ih, ∀i ∈ {0:I}, and meshsize h := 1

I+1 . (i) Evaluate the stiffness matrix. (Hint : factor out

the ratio ν
h and introduce the local Péclet number γ := bh

ν .) (ii) Solve the linear system when

f := 1 and plot the solutions for h := 10−2 and γ ∈ {0.1, 1, 10}. (Hint : wrtite U = U0 + Ũ ∈ RI
with U0

i := b−1ih and Ũi := ̺ + θδi for some constants ̺, θ, δ.) (iii) Consider now the boundary
conditions u(0) = 0 and u′(1) = 0. Write the weak formulation and show its well-posedness.
Evaluate the stiffness matrix. (Hint : the matrix is of order (I + 1).) Derive the equation satisfied
by h−1(UI+1 − UI), and find the limit values as h → 0 with fixed ν > 0 and as ν → 0 with fixed
h ∈ H.

Solution to exercises

Exercise 32.1 (Discrete solution map). (i) We observe that

‖∇(v −Gh(v))‖L2(D) ≤ ‖∇(v − Ig,avh0 (v))‖L2(D) + ‖∇Gh(v − Ig,avh0 (v))‖L2(D)

≤ c ‖∇(v − Ig,avh0 (v))‖L2(D) ≤ c hr|v|H1+r(D),

where we used the triangle inequality, the fact that Gh(Ig,avh0 (v)) = Ig,avh0 (v), the H1-stability of
Gh, and Corollary 22.16.
(ii) Consider the adjoint problem which consists of seeking ζ ∈ H1

0 (D) such that A∗(ζ) = v−Gh(v).
Recall that V := H1

0 (D) is equipped with the norm ‖v‖V := ‖∇v‖L2(D) = |v|H1(D). We infer that

‖v −Gh(v)‖2L2(D) = a(v −Gh(v), ζ) = a(v −Gh(v), ζ − Ig,avh0 (ζ))

≤ ‖a‖ ‖∇(v −Gh(v))‖L2(D)‖∇(ζ − Ig,avh0 (ζ))‖L2(D)

≤ c ‖a‖hr|v|H1+r(D)h
sℓ−1−s
D ‖ζ‖H1+s(D),

and the assertion follows since ‖ζ‖H1+s(D) ≤ c α−1ℓ2D‖v −Gh(v)‖L2(D).

Exercise 32.2 (H−1-estimate). Let z ∈ H1(D). Let ζ ∈ H1
0 (D) be such that A∗(ζ) = z. Recall

that V := H1
0 (D) is equipped with the norm ‖v‖V := ‖∇v‖L2(D) = |v|H1(D). Since exact adjoint

consistency holds true, we infer that

(u − uh, z)L2(D) = a(u− uh, ζ) = a(u − uh, ζ − wh)
≤ ‖a‖ ‖∇(u− uh)‖L2(D)‖∇(ζ − wh)‖L2(D),

for all wh ∈ Vh. Since k ≥ 1 + s, we infer that

inf
wh∈Vh

‖∇(ζ − wh)‖L2(D) ≤ c h1+s|ζ|H2+s(D)

≤ c h1+sℓ−2−s
D ‖ζ‖H2+s(D)

≤ c h1+scsmoα
−1ℓ−sD ‖z‖H1(D)

≤ c′ h1+scsmoα
−1ℓ1−sD ‖∇z‖L2(D),

where the last bound follows from the Poincaré–Steklov inequality. Combining the two bounds,
dividing by ‖∇z‖L2(D), and taking the supremum over z ∈ H1

0 (D) leads to the expected estimate.
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Exercise 32.3 (Compactness). (i) We have

‖Gh − I‖L(V ;L) = sup
v∈V

‖Gh(v) − v‖L
‖v‖V

= sup
v∈V \Vh

‖Gh(v)− v‖L
‖v‖V

= sup
v∈V \Vh

‖Gh(v)− v‖L
‖Gh(v)− v‖V

‖Gh(v) − v‖V
‖v‖V

≤ ǫ(h) sup
v∈V \Vh

‖Gh(v)− v‖V
‖v‖V

.

Using the error estimate (26.18), we obtain

‖Gh − I‖L(V ;L) ≤
‖a‖V×V
αh

ǫ(h) sup
u∈V \Vh

inf
vh∈Vh

‖u− vh‖V
‖u‖V

≤ ‖a‖
α
ǫ(h).

(ii) Using Step (i) and limh→0 ǫ(h) = 0, we infer that limh→0 ‖Gh − I‖L(V ;L) = 0. But Gh is
compact since its rank is finite (recall that Vh is finite-dimensional). Hence, I is compact (see
Theorem A.21).
(iii) Let us assume that I is compact. Let y ∈ V and f ∈ L. By definition, I(y) = y and

〈A∗(R(f)), y〉V ′,V = 〈A(y), R(f)〉V ′,V = a(y,R(f)) = (y, f)L

= (I(y), f)L = 〈I∗(f), y〉V ′,V ,

which proves that A∗ ◦ R = I∗. Since A is an isomorphism, so is A∗, whence we infer that
R = (A∗)−1 ◦ I∗. Schauder’s theorem (Theorem C.48) implies that I∗ : V ′ → L′ ≡ L is compact,
which, in turn, proves that R = (A∗)−1 ◦ I∗ is compact.
(iv) Let Rh : L → Vh be the operator defined by a(vh, Rh(f)) := (vh, f)L for all vh ∈ Vh and all
f ∈ L. Let f ∈ L. The error estimate (26.18) for the adjoint problem gives

‖R(f)−Rh(f)‖V ≤
‖a‖
α

inf
wh∈Vh

‖R(f)− wh‖V ≤
‖a‖
α
‖R(f)− PVh (R(f))‖V ,

where we used that the stability constant for the discrete adjoint problem is again α (see Re-
mark 26.8) together with the property infwh∈Vh ‖R(f)− wh‖V = ‖R(f)− PVh (R(f))‖V .
(v) Since we assume that I is compact, we know from Step (iii) that R is also compact. Let BL
be the unit ball in V and Z := R(BL). Since R is compact, for every ǫ > 0 there is a finite set
of points {xi}i∈I in Z ⊂ V such that for all v ∈ Z, there is i ∈ I such that ‖v − xi‖V ≤ ǫ. Let
f ∈ BL. There is i ∈ I s.t. ‖R(f)− xi‖V ≤ ǫ and

‖R(f)− PVh (R(f))‖V ≤ ‖R(f)− xi‖V + ‖xi − PVh (xi)‖V + ‖PVh (xi −R(f))‖V
≤ 2ǫ+ ‖xi − PVh (xi)‖V .

Hence, we have

‖R− PVh ◦R‖L(L;V ) = sup
f∈BL

‖R(f)− PVh (R(f))‖V ≤ 2ǫ+max
i∈I
‖xi − PVh (xi)‖V .

Using that limh→0 ‖xi − PVh (xi)‖V = 0 for all i ∈ I (which a consequence of the approximability
assumption), and recalling that card(I) is finite, we infer that

lim
h→0

max
i∈I
‖xi − PVh (xi)‖V = max

i∈I
lim
h→0
‖xi − PVh (xi)‖V = 0.
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As a result, we have limh→0 ‖R− PVh ◦R‖L(L;V ) ≤ 2ǫ. Since ǫ is arbitrary, we conclude that

lim
h→0
‖R− PVh ◦R‖L(L;V ) = 0.

Then Step (iv) implies that
lim
h→0
‖R−Rh‖L(L;V ) = 0.

(vi) We now estimate ǫ(h). Let v ∈ V \Vh, i.e., v −Gh(v) 6= 0. We observe that

‖v −Gh(v)‖L = sup
f∈BL

|(v −Gh(v), f)L| = sup
f∈BL

|a(v −Gh(v), R(f))L|

= sup
f∈BL

|a(v −Gh(v), R(f)−Rh(f))L|

≤ ‖a‖ ‖v −Gh(v)‖V sup
f∈BL

‖R(f)−Rh(f)‖V

= ‖a‖ ‖v −Gh(v)‖V ‖R−Rh‖L(L;V ).

We infer that ǫ(h) ≤ ‖a‖‖R−Rh‖L(L;V ), and the conclusion follows from Step (v).

Exercise 32.4 (Source approximation). (i) Either we directly invoke Strang’s first lemma or
we redo the argument from the proof of Lemma 27.5. We follows here the second option. For all
vh ∈ Vh, we have

‖u− uh‖V ≤ ‖u− vh‖V + ‖vh − uh‖V

≤ ‖u− vh‖V +
1

α
sup
wh∈Vh

a(vh − uh, wh)
‖wh‖V

≤ ‖u− vh‖V +
1

α
sup
wh∈Vh

a(vh, wh)− ℓh(wh)
‖wh‖V

≤ ‖u− vh‖V +
1

α
sup
wh∈Vh

a(vh, wh)− ℓ(wh) + ℓ(wh)− ℓh(wh)
‖wh‖V

≤ ‖u− vh‖V +
1

α
sup
wh∈Vh

a(vh − u,wh) + ℓ(wh)− ℓh(wh)
‖wh‖V

≤ ‖u− vh‖V +
‖a‖
α
‖u− vh‖V + δh,

with δh := 1
α supwh∈Vh

∫
D
(f−Ib

h(f))wh dx

‖wh‖V . Recalling that ‖v‖V := ‖∇v‖L2(D) = |v|H1(D), δh is

bounded as

δh =
1

α
sup
wh∈Vh

inf
vh∈Pb

k′
(Th)

∫
D(f − Ibh(f))(wh − vh) dx

‖wh‖V

≤ 1

α
‖f − Ibh(f)‖L2(D) sup

wh∈Vh

ch‖∇wh‖L2(D)

‖wh‖V
≤ c α−1h‖f − Ibh(f)‖L2(D).

This means that

‖u− uh‖V ≤
(
1 +
‖a‖
α

)
inf
v∈Vh

‖u− vh‖V + c α−1h‖f − Ibh(f)‖L2(D).
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If u ∈ Hk+1(D) and f ∈ Hk′(D), then

‖u− uh‖V ≤ c (hk|u|Hk+1(D) + α−1h1+k
′ |f |Hk′ (D)).

So it suffices that k′ := k − 1 to obtain optimality in the H1-norm.
(ii) We now reformulate (32.19). Let ζu−uh ∈ V solve a(v, ζu−uh ) = (v, u− uh)L2(D) for all v ∈ V.
Elliptic regularity implies that ‖ζu−uh‖H1+s(D) ≤ csmoα

−1ℓ2D‖u − uh‖L2(D). For all vh ∈ Vh, we
have

‖u− uh‖2L2(D) = a(u− uh, ζu−uh)
= a(u− uh, ζu−uh − vh) + a(u, vh)− a(uh, vh)

= a(u− uh, ζu−uh − vh) +
∫

D

(f − Ibh(f))vh dx

= a(u− uh, ζu−uh − vh) + inf
wh∈Pb

k′
(Th)

∫

D

(f − Ibh(f))(vh − wh) dx.

Let us take vh to be the best approximation of ζu−uh in Vh in the V -norm. Since

inf
wh∈Pb

k′
(Th)
‖vh − wh‖L2(D) ≤ c′h‖∇vh‖L2(D) ≤ c′′h‖∇ζu−uh‖L2(D),

we infer that

‖u− uh‖2L2(D) ≤ ‖a‖‖u− uh‖V chs|ζu−uh |H1+s(D) + ‖f − Ibh(f)‖L2(D)c
′′h‖∇ζu−uh‖L2(D)

≤ c
(
hsℓ1−sD ‖u− uh‖V + α−1hℓD‖f − Ibh(f)‖L2(D)

)
‖u− uh‖L2(D).

(Note that we have hidden the nondimensional factor ‖a‖
α in the generic constant c.) If u ∈

Hk+1(D) and f ∈ Hk′(D), and assuming s = 1, we obtain

‖u− uh‖L2(D) ≤ c
(
hk+1|u|Hk+1(D) + α−1hk

′+1ℓD|f |Hk′ (D)

)
,

where we used the bound on ‖u − uh‖V from the previous step and h ≤ ℓD. We now obtain
optimality in the L2-norm if k′ := k.

Exercise 32.5 (Advection-diffusion, 1D). (i) The stiffness matrix is given by

A =
ν

h
tridiag

(
− 1− γ

2
, 2,−1 + γ

2

)
.

(ii) Assuming that f = 1, the linear system to be solved is AU = h(1, . . . , 1)T. Since AU0 =
(h, . . . , h, h+γ−1(1− γ

2 ))
T (observe that h(I+1) = 1), we infer that AŨ = (0, . . . , 0, γ−1(γ2 − 1))T.

If γ = 2, then Ũ = 0. Let us now assume that γ 6= 2. Using Ũi = ̺+ θδi, we infer from the rows
{2:I−1} of the linear system that

(
−1− γ

2

)
+ 2δ +

(
−1 + γ

2

)
δ2 = 0,

so that δ = 1 or δ = 2+γ
2−γ . The first row of the system yields θ = −̺. From the last row of the

system, we finally infer that ν
h (1 −

γ
2 )̺(1 − δI+1) = γ−1(γ2 − 1), i.e., b̺(1 − δI+1) = −1. Notice

that δ 6= 1 because we assumed that γ = bh
ν 6= 0. Hence, −θ = ̺ = −b−1(1 − δI+1)−1, that is,

Ũi = −b−1 δi − 1

δI+1 − 1
, δ =

2 + γ

2− γ .
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When γ > 2, the components of the vector Ũ oscillate
between positive and negative values. The approximate
solutions for γ ∈ {0.1, 1, 10} obtained with h := 10−2

are plotted on the figure shown here. We observe that
for γ = 10 the approximate solution exhibits spurious
oscillations close to the boundary layer. Instead, the
approximate solutions for γ := 1 and γ := 0.1 match well
the exact solution.

0 10.5

0

1

0.5

1.5

(iii) Setting V := {v ∈ H1(D) | v(0) = 0}, the weak formulation now consists of seeking u ∈ V
such that a(u,w) = ℓ(w) for all w ∈ V. Since

∫ 1

0
bv′v dx = 1

2 bv(1)
2 ≥ 0, the bilinear form a is still

coercive on V. The stiffness matrix is of order (I + 1) and has the following tridiagonal structure:

A =
ν

h




c0 c+ 0 . . . 0

c−
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . . c0 c+

0 . . . 0 c− c′0



,

with c0 := 2, c′0 := 1 + γ
2 , c+ := −1 + γ

2 , and c− := −1− γ
2 . We infer that (ν + bh

2 )(UI+1 − UI) =∫ xI+1

xN
fϕI+1 dx, so that

UI+1 − UI

h
=

2
∫ xI+1

xI
fϕI+1 dx

2ν + bh
.

Hence, UI+1−UI

h → 0 as h → 0 with fixed ν > 0, whereas UI+1−UI

h → f(1)
b as ν → 0 with fixed

h ∈ H.
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H1-conforming approximation (II)

Exercises

Exercise 33.1 (Regularity assumption). Let uh solve (33.5). Assume that u ∈ H1+r(D)

with r ∈ (0, k]. Prove that ‖u − uh‖H1(D) ≤ c(hr|u|H1+r(D) + (
∑

F∈F∂h h
−1
F ‖g − gh‖2L2(F ))

1
2 ).

(Hint : consider vh := Ig,avh0 (u) +
∑
a∈A∂h σ

∂
a (g)ϕa, and follow the proof of Theorem 22.14 to bound

‖u− vh‖H1(D).)

Exercise 33.2 (Non-homogeneous Dirichlet). Let A denote the system matrix in (33.10).
Let R ∈ RI and let k ≥ 1. Consider the Krylov space Sk := span{R,AR, . . . ,Ak−1R}. For all
V ∈ RI , write V := (V◦,V∂)T. Assume that R∂ = 0. (i) Prove that Y∂ = 0 for all Y ∈ Sk. (ii)
Prove that if A◦◦ is symmetric, the restriction of A to Sk is symmetric.

Exercise 33.3 (DMP). Assume that the stiffness matrix is a Z-matrix. Assume the following:
(i) Aii ≥ −

∑
j 6=iAij for all i ∈ {1:I}; (ii) ∃i∗ ∈ {1:I} such that Ai∗i∗ > −∑j 6=i∗ Ai∗j ; (iii)

For all i ∈ {1:I}, i 6= i∗, there exists a path [i =: i1, . . . , iJ := i∗] such that Aijij+1 < 0 for all
j ∈ {1:J−1}. Prove that A is a nonsingular M -matrix. (Hint : let B ≤ 0, let U := A−1B, and
proceeding by contradiction, assume that there is i ∈ {1:I} s.t. Ui = maxj∈{1: I} Uj > 0.)

Exercise 33.4 (Obtuse mesh). The mesh shown in Figure 33.1 contains three interior nodes
with coordinates z1 := (1, 1), z2 := (3, 1), and z3 := (2, 32 ). The sum of the two angles opposite the
edge linking z1 and z2 is larger than π. (i) Assemble the 3×3 stiffness matrix A generated by the
three shape functions associated with the three interior nodes z1, z2, z3. Is A a Z-matrix? (Hint :
the local stiffness matrix is translation- and scale-invariant, there are four shapes of triangles in
the mesh, and one can work on triangles with vertices ((0, 0), (1, 0), (0, 1)), ((0, 0), (1, 0), (0, 12 )),
((−1, 0), (1, 0), (0, 12 )), and ((−1, 1), (1, 1), (0, 1)).) (ii) Compute A−1. Is A an M -matrix?

Exercise 33.5 (1D DMP). Consider the equation µu+ βu′− νu′′ = f in D := (0, 1). Let Th be
the uniform mesh composed of the cells [ih, (i+1)h], ∀i ∈ {0:I}, with uniform meshsize h := 1

I+1 .

Assume µ ∈ R+, β ∈ R, ν ∈ R+ and f ∈ L1(D). Let uh :=
∑

i∈{0:I+1} Uiϕi ∈ P
g
1 (Th) be such

that
∫
D((µuh + βu′h)ϕi + νu′hϕ

′
i) dx =

∫
D fϕi dx for all i ∈ {1:I}. Let Fi :=

∫
D fϕi dx/

∫
D ϕi dx.

Assume that ν
h ≥

|β|
2 + µh

6 . (i) Show that min(Ui−1, Ui+1,
Fi
µ ) ≤ Ui ≤ max(Ui−1, Ui+1,

Fi
µ ) for all

i ∈ {1:I}. (Hint : write the linear system as µUi + αi−1(µ, β, ν)(Ui − Ui−1) + αi+1(µ, β, ν)(Ui −
Ui+1) = Fi.) (ii) Show that min(U0, UI+1,

minj∈{1: I} Fj
µ ) ≤ Ui ≤ max(U0, UI+1,

maxj∈{1: I} Fj
µ ) for

all i ∈ {1:I}.
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Figure 33.1: Illustration for Exercise 33.4.

Exercise 33.6 (1D DMP, pure diffusion). LetD := (0, 1), f ∈ L∞(D), and a nonuniform mesh
Th of D with nodes {xi}i∈{0:I+1}. Let uh ∈ P g

1 (Th) be s.t. uh(0) = a, uh(1) = b, and
∫
D u

′
hv

′
h dx =∫

D fvh dx for all vh ∈ P g
1,0(Th). (i) Show that maxx∈D uh(x) ≤ max(a, b) + 1

4 ess supx∈D f(x).
(Hint : test with φh ∈ P g

1,0(Th) s.t. φh|[0,xi] :=
x
xi

and φh|[xi,1] :=
1−x
1−xi for all i ∈ {1:I}.) (ii) Let

φh be the function defined in the hint. Compute −∂xxφh. Comment on the result.

Exercise 33.7 (Maximum principle). Let D be a bounded Lipschitz domain in Rd. Let x0 ∈ D
and R ∈ R be s.t. maxx∈D ‖x− x0‖ℓ2 ≤ R. (i) Let φ(x) := − 1

2d‖x− x0‖2ℓ2. Compute −∆φ. Give
an upper bound on maxx∈D φ(x) and a lower bound on minx∈∂D φ(x). (ii) Let f ∈ L∞(D) and
let u ∈ H1(D) solve −∆u = f . LetM := ess supx∈D f(x). Give an upper bound on −∆(u−Mφ).

(iii) Prove that maxx∈D u(x) ≤ maxx∈∂D u(x) +M+
R2

2d with M+ := max(M, 0). (Hint : use (i)
from Theorem 33.6.)

Solution to exercises

Exercise 33.1 (Regularity assumption). Let us set

vh := Ig,avh0 (u) + ugh, ugh :=
∑

a∈A∂
h

σ∂a (g)ϕa.

Observing that vh|∂D =
∑

a∈A∂h σ
∂
a (g)ϕa|∂D = gh, we infer that uh− vh ∈ Vh. Proceeding as in the

proof of Theorem 33.2, we infer that ‖u− uh‖H1(D) ≤ c‖u− vh‖H1(D). Since J g,av
h0 (ugh) = 0 and

recalling that Ig,avh0 (u) = J g,av
h0 I

g,♯
h (u), we infer that

u− vh = (u− Ig,♯h (u)) + (wh − J g,av
h0 (wh)) =: T1 + T2,

with wh := Ig,♯h (u) − ugh. Owing to Theorem 18.14, we infer that ‖T1‖H1(D) ≤ chr|u|H1+r(D).
Concerning T2, we infer from the proof of Theorem 22.14 (with m := 1 and p := 2) that

‖T2‖H1(K) ≤ c
∑

F∈F̌◦
K

h
− 1

2

K ‖[[wh]]F ‖L2(F ) + c′
∑

F∈F̌∂K

h
− 1

2

K ‖wh‖L2(F ).

Since [[ugh]]F = 0, the first sum on the right-hand side is bounded as before. For the second

one, we write ‖wh‖L2(F ) ≤ ‖u − Ig,♯h (u)‖L2(F ) + ‖u − ugh‖L2(F ) by the triangle inequality, and

‖u−Ig,♯h (u)‖L2(F ) is bounded as before using a multiplicative trace inequality. Finally, we observe

that (u − ugh)|F = g − gh for all F ∈ F∂h , and we invoke the regularity of the mesh sequence to
replace hK by hF .
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Exercise 33.2 (Non-homogeneous Dirichlet). (i) A direct computation shows that AR =
(A◦◦R◦ +A◦∂R∂ ,R∂)T = (A◦◦R◦, 0)T since R∂ = 0. By induction, we infer that (AlR)∂ = 0 for all
l ≥ 0.
(ii) Let X and Y be two vectors in the Krylov subspace Sk. Owing to Step (i), we infer that
X∂ = Y∂ = 0. As a result, we have (AX,Y)ℓ2(RI) = (A◦◦X◦,Y◦)ℓ2(RI◦ ) with I = card(Ah) and
I◦ = card(A◦

h). Hence, the restriction of A to Sk has the same symmetry properties as A◦◦.

Exercise 33.3 (DMP). Let B ≤ 0 and let U := A−1B. Proceeding by contradiction, assume that
there is i ∈ {1:I} such that Ui = maxj∈{1: I} Uj > 0. Since AU = B, we infer that

0 ≥ Bi = AiiUi +
∑

j 6=i
AijUj ≥ ∆iUi +

∑

j 6=i
Aij(Uj − Ui),

where ∆i := Aii −
∑

j 6=iAij ≥ 0 owing to Assumption (i), whereas the second term on the right-
hand side is nonnegative since A is a Z-matrix and Ui = maxj∈{1: I} Uj . Hence, both addends
vanish. As a result, i 6= i∗ owing to Assumption (ii). Exploiting Assumption (iii), we consider the
path [i =: i1, . . . , iJ := i∗] such that Aijij+1 < 0 for all j ∈ {1:J−1}. Since we already know that
Aij(Uj − Ui) = 0 for all j 6= i, we infer that Ui2 = Ui. Reasoning similarly, we infer that Uij = Ui
for all j ∈ {1:J}, which provides the expected contradiction once we reach iJ = i∗.

Exercise 33.4 (Obtuse mesh). (i) Let us work on the following triangles:

1

1 11/2 2 1/2
1

1

In all the cases, the vertices are numbered anticlockwise starting from the lower left vertex. The
local stiffness matrices are, respectively,

1

2




2 −1 −1
−1 1 0
−1 0 1


 ,

1

4




5 −1 −4
−1 1 0
−4 0 4


 ,

1

2




5
4

3
4 −2

3
4

5
4 −2

−2 −2 4


 ,

1

2




5
4 − 3

4 − 1
2

− 3
4

5
4 − 1

2

− 1
2 − 1

2 1


 .

(Observe that the row- and columnwise sums of the above matrices vanish.) The entries of the
stiffness matrix are such that A11 = 6 1

2 + 5
8 + 5

4 = 17
4 , A12 = 0 + 3

8 = 3
8 , A13 = −1 − 1

4 = − 5
4 ,

A33 = 2 + 2 1
2 + 2 = 5, and the other entries are evaluated using symmetries so that

A =




17
4

3
8 − 5

4
3
8

17
4 − 5

4

− 5
4 − 5

4 5


 .

Hence, A is not a Z-matrix.
(ii) Computing the inverse of A, we obtain

A−1 =




63
248 − 1

248
1
16

− 1
248

63
248

1
16

1
16

1
16

37
160


 .

Hence, A is not an M -matrix.
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Exercise 33.5 (1D DMP). (i) The discrete system is written

µ
h

6
(Ui−1 + 4Ui + Ui+1) +

β

2
(Ui − Ui−1) +

β

2
(Ui+1 − Ui)

+
ν

h
(Ui − Ui−1) +

ν

h
(Ui − Ui+1) = hFi.

The contribution from the mass matrix can be rewritten

µ
h

6
(Ui−1 + 4Ui + Ui+1) = µhUi − µ

h

6
(Ui − Ui−1)− µ

h

6
(Ui − Ui+1).

In conclusion, we have

µhUi + (Ui − Ui−1)
(
− µh

6
+
β

2
+
ν

h

)
+ (Ui − Ui+1)

(
− µh

6
− β

2
+
ν

h

)
= hFi.

Assume first that Ui ≤ max(Ui−1, Ui+1), so that Ui ≤ max(Ui−1, Ui+1,
Fi
µ ). Assume now that

Ui > max(Ui−1, Ui+1), so that the above identity and the assumption ν
h ≥

|β|
2 + µh

6 imply that

µhUi ≤ hFi,
which means that Ui ≤ Fi

µ . Thus, we infer that Ui ≤ max(Ui−1, Ui+1,
Fi
µ ). The other inequality is

proved similarly.
(ii) By induction, we have Ui ≤ max(Ui−1, Ui+l,maxj∈{i: i+l−1}

Fj
µ ) for all l ∈ {1:I+1− i}. Hence,

Ui ≤ max(Ui−1, UI+1,maxj∈{i: I}
Fj
µ ). Similarly, we have Ui ≤ max(Ui−l, UI+1,maxj∈{i−l+1: I}

Fj
µ )

for all l ∈ {1:i}. Hence,
Ui ≤ max(U0, UI+1, max

j∈{1:I}

Fj
µ
).

The other inequality is proved similarly.

Exercise 33.6 (1D DMP, pure diffusion). (i) If uh is maximum at x0 = 0 or at xI+1 = 1, there
is nothing to prove since maxx∈D uh(x) = max(a, b) ≤ max(a, b)+ 1

4 ess supx∈D f+(x). Assume that
uh is maximum inside D. Since uh is piecewise linear, the maximum must occur at a node xi with
i ∈ {1:I}. Let φh ∈ P g

1,0(Th) be such that φh|[0,xi](x) =
x
xi

and φh|[xi,1](x) =
1−x
1−xi . Since uh(0) = a,

uh(1) = b, and letting Ui := uh(xi), we have
∫

D

fφh dx =

∫

D

u′hφ
′
h dx =

1

xi

∫ xi

0

u′h dx−
1

1− xi

∫ 1

xi

u′h dx

=
1

xi
(Ui − a)−

1

1− xi
(b− Ui)

= Ui(
1

xi
+

1

1− xi
)− a

xi
− b

1− xi
= Ui

1

xi(1− xi)
− a(1− xi) + bxi

xi(1 − xi)
.

We infer that

Ui = a(1− xi) + bxi + xi(1− xi)
∫

D

fφh dx

≤ max(a, b) +
(
ess sup
x∈D

f(x)
)1
2

∫

D

φh dx

≤ max(a, b) +
1

4
ess sup
x∈D

f(x) ≤ max(a, b) +
1

4
ess sup
x∈D

f+(x).
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In conclusion, maxx∈D uh(x) ≤ max(a, b) + 1
4 ess supx∈D f+(x).

(ii) Let ϕ ∈ C∞
0 (D). We have

∫

D

φhϕ
′′ dx = −

∫

D

φ′hϕ
′ dx = − 1

xi

∫ xi

0

ϕ′ dx+
1

1− xi

∫ 1

xi

ϕ′ dx

= −ϕ(xi)(
1

xi
+

1

1− xi
) = − 1

xi(1 − xi)
〈δxi , ϕ〉,

where δxi is the Dirac measure at xi. Hence, −φ′′h = 1
xi(1−xi)δxi . This means that xi(1 − xi)φh is

the Green function of the Laplace operator over D := (0, 1) with Dirichlet boundary conditions.

Exercise 33.7 (Maximum principle). (i) We have −∆φ = 1 in D, maxx∈D φ(x) = 0, and

minx∈∂D φ(x) ≥ −R
2

2d .
(ii) The definitions give −∆(u−Mφ) = f +M∆φ = f −M ≤ 0.
(iii) If M ≤ 0, then f ≤ 0, and using the hint, we infer that

max
x∈D

u(x) ≤ max
x∈∂D

u(x) = max
x∈∂D

u(x) +M+
R2

2d
.

Let us assume now that M > 0. Using the hint together with −∆(u−Mφ) ≤ 0, we infer that

max
x∈D

(u−Mφ(x)) ≤ max
x∈∂D

(u −Mφ(x)) ≤ max
x∈∂D

u(x) +M max
x∈∂D

−φ(x)

≤ max
x∈∂D

u(x)−M min
x∈∂D

φ(x) ≤ max
x∈∂D

u(x) +M
R2

2d
.

Using that M > 0 and φ ≤ 0 gives

max
x∈D

u(x) ≤ max
x∈D

(u(x)−Mφ(x)).

Putting everything together, we conclude that

max
x∈D

u(x) ≤ max
x∈∂D

u(x) +M+
R2

2d
.
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Chapter 34

A posteriori error analysis

Exercises

Exercise 34.1 (Residual). Prove (34.10). (Hint : integrate by parts.)

Exercise 34.2 (Trace inequality in stars). Let Ctr,z be defined in (34.12). Prove that Ctr,z ≤
̟

1
2
z (dC2

PS,z + 2CPS,z)
1
2 with ̟z := hDz

maxF∈F◦
z

|F |
|DF | and DF := int(Kl ∪Kr) with F := ∂Kl ∩

∂Kr. (Hint : see the proof of Lemma 12.15.)

Exercise 34.3 (Bound on dual norm). (i) Prove that ‖T v
K(f)‖H−1(K) ≤ chK‖f‖L2(K) for

all f ∈ L2(K). (Hint : use a scaled Poincaré–Steklov inequality for functions ϕ ∈ H1
0 (K).) (ii)

Prove that ‖T s
F (g)‖H−1(DF ) ≤ ch

1
2

F ‖g‖L2(F ) for all g ∈ L2(F ). (Hint : use the multiplicative trace
inequality from Lemma 12.15.)

Exercise 34.4 (Oscillation). (i) Let P
(p)
m : Lp(K)→ Pm be the best-approximation operator in

Lp(K) for p ∈ [1,∞] and m ∈ N. Prove that

‖(I − P (2)
m )(θvh)‖L2(K) ≤ ‖(I − P (∞)

m−n)(θ)‖L∞(K)‖vh‖L2(K),

for all θ ∈ L∞(K) and all vh ∈ Pn with n ≤ m. (ii) Consider the oscillation indicators defined

in (34.19) with lv := 2k−2 and ls := 2k−1. Prove that φvK(uh, f,d) ≤ hK‖(I−P (2)
2k−2)(f)‖L2(K)+

c(‖(I − P (∞)
k−1 )(∇·d)‖L∞(K) + ‖(I − P (∞)

k )(d)‖L∞(K))‖∇uh‖L2(K) with (∇·d)i :=
∑
j∈{1:d}

∂
∂xj

dji

for all i ∈ {1:d}. Prove that φsF (uh, f,d) ≤ c‖(I − P
(∞)
k )(d)‖L∞(F )‖∇uh‖L2(DF ) with best-

approximation operator P
(∞)
k mapping to L∞(F ). What are the decay rates of the oscillation

terms for smooth f and d? (iii) What happens if lv := k and ls := k− 1 for piecewise constant d?

Exercise 34.5 (Error reduction). Consider two discrete spaces Vh1 ⊂ Vh2 ⊂ H1
0 (D) with

corresponding discrete solutions uh1 and uh2 , respectively. Consider the norm ‖v‖a := a(v, v)
1
2

for all v ∈ H1
0 (D). Prove that ‖u − uh1‖2a = ‖u − uh2‖2a + ‖uh2 − uh1‖2a. (Hint : use the Galerkin

orthogonality property.)

Exercise 34.6 (Approximation class for smooth solution). Let D be a Lipschitz polyhedron
in Rd. Prove that Hk+1(D) ⊂ Ak/d. (Hint : consider uniformly refined meshes.)
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Exercise 34.7 (Graded mesh). Let D := (0, 1) and let (xi)i∈{0: I}, I ≥ 2, be a mesh of D.
Let u ∈ W 1,1(D) and consider the piecewise constant function uI such that uI(x) := u(xi−1)
for all x ∈ (xi−1, xi) and all i ∈ {1:I}. (i) Assume u ∈ W 1,∞(D). Prove that the decay rate
‖u − uI‖L∞(D) ≤ 1

I ‖u′‖L∞(D) is achieved using a uniform mesh. (ii) Assume now u ∈ W 1,1(D).

Prove that the decay rate ‖u− uI‖L∞(D) ≤ 1
I ‖u′‖L1(D) is achieved using a graded mesh such that

xi := Φ(−1)( iI ), where Φ(s) := 1
‖u′‖L1(D)

∫ s
0 |u′(t)| dt for all s ∈ (0, 1) and all i ∈ {0:I}.

Solution to exercises

Exercise 34.1 (Residual). We observe that

〈ρ(uh), ϕ〉 =
∑

K∈Th

∫

K

(fϕ− (d∇uh)·∇ϕ) dx

=
∑

K∈Th

∫

K

(f +∇·(d∇uh))ϕdx −
∑

K∈Th

∫

∂K

((d∇uh)·nK)ϕds,

where nK denotes the outward unit normal to ∂K. We conclude by regrouping the terms from
both sides of each interface and observing that ϕ vanishes at the boundary faces.

Exercise 34.2 (Trace inequality). Let z ∈ Vh and let v ∈ H1
∗ (Dz). Let F := ∂Kl ∩ ∂Kr ∈ F◦

z .
Proceeding as in the proof of Lemma 12.15 with p := 2, we infer that

|K|
|F | ‖v‖

2
L2(F ) ≤ ‖v‖2L2(K) + 2d−1hK‖v‖L2(K)‖∇v‖L2(K),

whereK ∈ {Kl,Kr} is one of the two cells sharing F . Let DF := int(Kl∪Kr). Summing over these
two cells, using hK ≤ hDz

, and the Cauchy–Schwarz inequality for the rightmost term yielding∑
K∈{Kl,Kr} ‖v‖L2(K)‖∇v‖L2(K) ≤ ‖v‖L2(DF )‖∇v‖L2(DF ), we arrive at

|DF |
|F | ‖v‖

2
L2(F ) ≤ ‖v‖2L2(DF ) + 2d−1hDz

‖v‖L2(DF )‖∇v‖L2(DF ).

We now sum over all the faces F ∈ F◦
z . Since any mesh cell in Tz has exactly d faces sharing the

vertex z, we have ∑

F∈F◦
z

‖v‖2L2(DF ) = d‖v‖2L2(Dz)
.

Invoking the Cauchy–Schwarz inequality yields

∑

F∈F◦
z

‖v‖L2(DF )‖∇v‖L2(DF ) ≤
( ∑

F∈F◦
z

‖v‖2L2(DF )

) 1
2
( ∑

F∈F◦
z

‖∇v‖2L2(DF )

) 1
2

≤ d‖v‖L2(Dz)‖∇v‖L2(Dz).

We infer that

∑

F∈F◦
z

|DF |
|F | ‖v‖

2
L2(F ) ≤ d‖v‖2L2(Dz)

+ 2hDz
‖v‖L2(Dz)‖∇v‖L2(Dz).
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Finally, the definition of ̺z implies that

̺−1
z hDz

‖v‖2L2(F◦
z
) ≤ d‖v‖2L2(Dz)

+ 2hDz
‖v‖L2(Dz)‖∇v‖L2(Dz),

where we used that ‖v‖2L2(F◦
z
)
:=
∑

F∈F◦
z

‖v‖2L2(F ). We conclude by invoking Definition 34.5 which

implies that
̺−1
z h−1

Dz
‖v‖2L2(F◦

z
) ≤ (dC2

PS,z + 2CPS,z)‖∇v‖2L2(Dz)
.

Exercise 34.3 (Bound on dual norm). (i) Invoking the Poincaré–Steklov inequality on the
reference simplex and transferring back to K by pullback implies that ‖ϕ‖L2(K) ≤ chK‖∇ϕ‖L2(K)

for all ϕ ∈ H1
0 (K). Using this inequality and the Cauchy–Schwarz inequality, we infer that

‖T v
K(f)‖H−1(K) = sup

ϕ∈H1
0(K)

|
∫
K fϕdx|

‖∇ϕ‖L2(K)
≤ c hK‖f‖L2(K).

(ii) Let F := ∂Kl∩∂Kr ∈ F◦
h . Let ϕ ∈ H1

0 (DF ). The Poincaré–Steklov inequality (proved as above
on the reference simplex and transferred by pullback) yields ‖ϕ‖L2(K) ≤ chK‖∇ϕ‖L2(K) for allK ∈
TF = {Kl,Kr}. Combining this bound with the multiplicative trace inequality from Lemma 12.15

and using the regularity of the mesh sequence, we infer that ‖ϕ‖L2(F ) ≤ ch
1
2

F ‖∇ϕ‖L2(K). We can
now conclude as above.

Exercise 34.4 (Oscillation). (i) Let v ∈ Pn. Since (P
(∞)
m−nθ)vh ∈ Pm, we observe that

‖θvh − P (2)
m (θvh)‖L2(K) ≤ ‖θvh − (P

(∞)
m−nθ)vh‖L2(K)

= ‖(θ − P (∞)
m−nθ)vh‖L2(K) ≤ ‖θ − P (∞)

m−nθ‖L∞(K)‖vh‖L2(K).

(ii) Since f − ∇·(d∇uh) = f − (∇·d)·∇uh − d:D2uh, where D
2uh denotes the Hessian matrix of

uh, we infer using the triangle inequality that

φvK(uh, f,d) = hK‖(I − P (2)
2k−2)(f −∇·(d∇uh))‖L2(K)

= hK‖(I − P (2)
2k−2)f‖L2(K) + hK‖(I − P (2)

2k−2)((∇·d)·∇uh)‖L2(K)

+ hK‖(I − P (2)
2k−2)(d:D

2uh)‖L2(K).

We conclude using the result from Step (i) componentwise for the last two terms on the right-hand
side together with an inverse inequality on the Hessian of uh. To prove the bound on φsF (uh, f,d),
we first observe that [[d∇uh]]F ·nF = (d∇uh)|Kl ·nKlF + (d∇uh)|Kr ·nKrF . Using the triangle
inequality and best-approximation operators in Lp(F ), we obtain

φsF (uh, f,d) ≤ h
1
2

F ‖(I − P
(2)
2k−1)(d∇uh)|Kl‖L2(F ) + h

1
2

F ‖(I − P
(2)
2k−1)(d∇uh)|Kr‖L2(F ).

Finally, we use the result from Step (i) together with a discrete trace inequality and the regularity of
the mesh sequence. If f|K and d|K are smooth, namely f|K ∈ Hk−1(K) and d|K ∈ W k,∞(K;Rd×d),
we infer that

φvK(uh, f,d) ≤ chk+1
K (‖f‖Hk+1(K) + ‖∇uh‖L2(K)),

φsF (uh, f,d) ≤ chk+1
F ‖∇uh‖L2(DF ).

(iii) If d is piecewise constant, choosing lv := k and ls := k − 1 leads to φvK = hK‖f − f̄‖L2(K)

and φsK = 0, where f̄ is the L2-orthogonal projection of f onto Pk(K). This implies that φvK
superconverges by two orders with respect to the approximation error.
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Exercise 34.5 (Error reduction). Since u−uh1 = (u−uh2)+(uh2−uh1), the conclusion follows
from

‖u− uh1‖2a = ‖u− uh2‖2a + ‖uh2 − uh1‖2a + 2a(u− uh2 , uh2 − uh1),

owing to the symmetry of a, and the last term on the right-hand side vanishes owing to the Galerkin
orthogonality property since uh2 − uh1 ∈ Vh2 .

Exercise 34.6 (Approximation class for smooth solution). Let D be a Lipschitz polyhedron
in Rd. Let u ∈ Hk+1(D). Let (Tn)n∈N be a quasi-uniform sequence of matching affine meshes (see
Definition 22.20) so that each mesh Th covers exactly D. Let hn denote the maximal diameter
of the cells composing Tn. The quasi-uniformity of the sequence implies that the d-dimensional
measure of every mesh cell is uniformly equivalent to hdn, i.e., there is c s.t. card(Tn) ≤ ch−dn |D|.
Moreover, we have established in Corollary 22.9 that

inf
vh∈P g

k (Tn)
‖∇(u− v)‖L2(D) ≤ c hkn|u|Hk+1(D).

Hence, we have

inf
vh∈P g

k
(Tn)
‖∇(u− v)‖L2(D) ≤ c card(Tn)−

k
d |D| kd |u|Hk+1(D).

This implies that

|u|Ak
d

≤ c |D| kd |u|Hk+1(D),

i.e., u ∈ A k
d
. This proves that Hk+1(D) ⊂ A k

d
.

Exercise 34.7 (Graded mesh). (i) Let x ∈ D. There is i ∈ {1:I} such that x ∈ (xi−1, xi). We
infer that

|u(x)− uI(x)| = |u(x)− u(xi−1)| ≤
∫ x

xi−1

|u′(t)| dt ≤ |xi − xi−1| ‖u′‖L∞(D).

This proves the assertion on a uniform mesh since we have |xi − xi−1| = 1
I .

(ii) We first observe that

1

‖u′‖L1(D)

∫ xi

xi−1

|u′(t)| dt = Φ(xi)− Φ(xi−1) =
1

I
.

As a result, we infer that

|u(x)− uI(x)| = |u(x)− u(xi−1)| ≤
∫ xi

xi−1

|u′(t)| dt = 1

I
‖u′‖L1(D).
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The Helmholtz problem

Exercises

Exercise 35.1 (1D Helmholtz, well-posedness). Let D := (0, ℓD), κ > 0, and consider the
Helmholtz problem with mixed boundary conditions: −∂xxu − κ2u = f in D, u(0) = 0, and
∂xu(ℓD) − iκu(ℓD) = 0. (i) Give a weak formulation in V := {v ∈ H1(D) | v(0) = 0}. (ii) Show
by invoking an ODE argument that if the weak formulation has a solution, then it is unique. (iii)
Show that the weak problem is well-posed. (Hint : use Lemma 35.3.)

Exercise 35.2 (Green’s function, 1D). Let G : D×D → C be the function defined by

G(x, s) := κ−1

{
sin(κx)eiκs if x ∈ [0, s],

sin(κs)eiκx if x ∈ [s, 1].

(i) Prove that for all x ∈ D, the function D ∋ s 7→ G(x, s) ∈ C solves the PDE −∂ssu−κ2u = δs=x
in D with the boundary conditions u(0) = 0 and ∂su(ℓD) − iκu(ℓD) = 0 (i.e., G is the Green’s
function of the Helmholtz problem from Exercise 35.1). (ii) FindH(x, s) s.t. ∂sH(x, s) = ∂xG(x, s).

(iii) Let u(x) :=
∫ ℓD
0

G(x, s)f(s) ds. Prove that ‖u‖L2(D) ≤ κ−1‖f‖L2(D), |u|H1(D) ≤ ‖f‖L2(D),

and |u|H2(D) ≤ (κ + 1)‖f‖L2(D). (iv) Let v ∈ L2(D) and let z̃(x) := κ2
∫ ℓD
0 G(x, s)v(s) ds. What

is the PDE solved by z̃? Same question for z(x) := κ2
∫ ℓD
0

G(x, s)v(s) ds. Note: The function z is
invoked in Step (1) of the proof of Theorem 35.11. (v) Assume now that v ∈ H1(D) with v(0) = 0,
and let z and z̃ be defined as above. Prove that max(|z|H1(D), |z̃|H1(D)) ≤ 4κℓD|v|H1(D). (Hint :
see Ihlenburg and Babuška [29, p. 14] (up to the factor 4).)

Exercise 35.3 (Variation on Fortin’s lemma). Let V, W be two Banach spaces and let a
be a bounded sesquilinear form on V×W like in Fortin’s Lemma 26.9. Let (Vh)h∈H, (Wh)h∈H be
sequences of subspaces of V andW equipped with the norm of V andW, respectively. Assume that
there exists a map Πh :W →Wh and constants γΠh > 0, c(h) > 0 such that |a(vh, w−Πh(w))| ≤
c(h)‖vh‖V ‖w‖W , γΠh‖Πh(w)‖W ≤ ‖w‖W for all vh ∈ Vh, all w ∈ W, and all h ∈ H. Assume
that limh→0 c(h) = 0. Prove that the discrete inf-sup condition (26.5a) holds true for h ∈ H small
enough.

Exercise 35.4 (Lemma 35.8). (i) Prove that ℜ((m·∇v)v) = 1
2m·∇|v|2 for all v ∈ H1(D;C) and

m ∈ Rd. (ii) Prove that ℜ(m·((∇v)Tv)) = 1
2m·∇‖v‖2ℓ2(Cd) for all v ∈ H1(D;Cd) and m ∈ Rd.



186 Chapter 35. The Helmholtz problem

(iii) Let q ∈ H2(D;C) and let D2q denote the Hessian matrix of q, i.e., (D2q)ij = ∂2xixjq for all

i, j ∈ {1:d}. Show that ℜ(m·((D2q)∇q)) = 1
2m·∇‖∇q‖2ℓ2(Cd). (iv) Prove that (35.11) holds true

for all q ∈ {v ∈ H1(D;C) | ∆v ∈ L2(D;C), ∇v ∈ L2(∂D;Cd)} and all m ∈ W 1,∞(D;Rd). (Hint :
assume first that q ∈ H2(D;C).)

Solution to exercises

Exercise 35.1 (1D Helmholtz, well-posedness). (i) One possible weak formulation is as
follows: Find u ∈ V such that for all v ∈ V,

∫ ℓD

0

(∂xu∂xv − κ2uv) dx− iκu(ℓD)v(ℓD) =

∫ ℓD

0

f(x)v(x) dx.

(ii) Let us consider the homogeneous problem and let u be a solution to the homogeneous problem
a(u,w) = 0 for all w ∈ V. This implies that 0 = |a(u, u)| ≥ κu(ℓD)

2. Hence, u(ℓD) = 0, and the
Robin condition implies that ∂xu(ℓD) = 0 as well. In conclusion, we have

∂xxu− κ2u = 0, ∂xu(ℓD) = 0, u(ℓD) = 0.

This is a linear second-order ODE with homogeneous data. The unique solution is u = 0.

(iii) The well-posedness follows by invoking Lemma 35.3 since the bilinear form
∫ ℓD
0

(∂xu∂xv −
κ2uv) dx− iκu(ℓD)v(ℓD) satisfies the inequality (35.4a).

Exercise 35.2 (Green’s function, 1D). (i) Let x ∈ D be fixed. We observe that

G(x, 0) = 0,

∂sG(x, ℓD)− iκG(x, ℓD) = i sin(κℓD)e
iκℓD − i sin(κℓD)e

iκℓD = 0.

Moreover, it is clear that G(x, s) is continuous at x. We now have to verify that

−∂ssG(x, s) − κ2G(x, s) = δx=s,

where δx=s is the Dirac measure whose support is {x}. We observe that

−∂ssG(x, s) − κ2G(x, s) =
{
κ sin(κx)eiκs − κ sin(κx)eiκs = 0 if x ∈ [0, s],

κ sin(κs)eiκx − κ sin(κs)eiκx = 0 if x ∈ [s, 1].

Let us now verify the jump condition −
(
∂sG(x, x

+)−∂sG(x, x−)
)
= 1, which, let us recall, together

with the above identity and the continuity of G(x, ·), is equivalent to stating that 〈−∂ssG(x, ·) −
κ2G(x, ·), ϕ〉 = ϕ(x) for all ϕ ∈ C∞

0 (D). We indeed have

−
(
∂sG(x, x

+)− ∂sG(x, x−)
)
= −i sin(κx)eikx + cos(κx)eikx = e−ikxeikx = 1.

(ii) Let H(x, s) :=
∫ s
0
∂xG(x, t) dt. We first consider the case s ≤ x. This yields

H(x, s) = κ−1

∫ s

0

iκ sin(κt)eiκx dt = −iκ−1(cos(κs)− 1)eiκx.
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In the second case x ≤ s, we have

H(x, s) = κ−1

∫ x

0

iκ sin(κt)eiκx dt+ κ−1

∫ s

x

κ cos(κx)eiκt dt

= −iκ−1(cos(κx)− 1)eiκx − iκ−1 cos(κx)(eiκs − 1)

= iκ−1(eiκx − cos(κx)eiκs) = −iκ−1eiκx(cos(κx)eiκ(s−x) − 1).

Notice that in both cases, we have |H(x, s)| ≤ 2κ−1.
(iii) We have

|u(x)| =
∣∣∣∣
∫ ℓD

0

G(x, s)f(s) ds

∣∣∣∣ ≤ ℓ
1
2

D‖G(x, ·)‖L∞(D)‖f‖L2(D).

Hence, ‖u‖L2(D) ≤ ℓDκ−1‖f‖L2(D) because ‖G(x, ·)‖L∞(D) ≤ κ−1. Moreover, we have

|∂xu(x)| =
∣∣∣∣
∫ ℓD

0

∂xG(x, s)f(s) ds

∣∣∣∣ ≤ ‖∂xG(x, ·)‖L∞(D)ℓ
1
2

D‖f‖L2(D).

This implies that |u|H1(D) ≤ ℓD‖f‖L2(D). Recall that since G is the Green’s function of the
Helmholtz problem from Exercise 35.1, we have ∂xxu−κ2u = f , u(0) = 0, and ∂xu(ℓD)− iκu(ℓD) =
0. Hence, we can estimate |u|H2(D) as follows:

|u|H2(D) = ‖κ2u+ f‖L2(D) ≤ κ2‖u‖L2(D) + ‖f‖L2(D) ≤ (κ+ 1)‖f‖L2(D).

(iv) Let us assume that v ∈ H1(D) and v(0) = 0. Let us set z̃(x) := κ2
∫ ℓD
0

G(x, s)v(s) ds. Since
G is the Green’s function of the Helmholtz problem from Exercise 35.1, z̃ solves

∂xxz̃ − κ2z̃ = κ2v, z̃(0) = 0, ∂xz̃(ℓD)− iκz̃(ℓD) = 0.

Let us now set z(x) := κ2
∫ ℓD
0

G(x, s)v(s) ds. Since G is the Green’s function of the adjoint
problem, z solves

∂xxz − κ2z = κ2v, z(0) = 0, ∂xz(ℓD) + iκz(ℓD) = 0.

(iv) Using that v(ℓD) =
∫ ℓD
0 ∂sv(s) ds, we infer that |v(ℓD)| ≤ ℓ

1
2

D|v|H1(D), which in turn implies
that

κ−2∂xz(x) =

∫ ℓD

0

∂xG(x, s)v(s) ds =

∫ ℓD

0

∂sH(x, s)v(s) ds

= −
∫ ℓD

0

H(x, s)∂sv(s) ds +H(x, ℓD)v(ℓD)

≤ ‖H(x, ·)‖L∞(D)

(
ℓ

1
2

D|v|H1(D) + |v(ℓD)|
)

≤ 2‖H(x, ·)‖L∞(D)ℓ
1
2

D|v|H1(D).

Hence, |z|H1(D) ≤ 4κℓD|v|H1(D) because ‖H(x, ·)‖L∞(D) ≤ 2κ−1. The same argument holds true
for z̃.
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Exercise 35.3 (Variation on Fortin’s lemma). Let vh ∈ Vh. Using the assumptions, we have

sup
wh∈Wh

|a(vh, wh)|
‖wh‖W

≥ sup
w∈W

|a(vh,Πh(w))|
‖Πh(w)‖W

≥ γΠh sup
w∈W

|a(vh,Πh(w))|
‖w‖W

≥ γΠh sup
w∈W

|a(vh, w)|
‖w‖W

− γΠh sup
w∈W

|a(vh,Πh(w) − w)|
‖w‖W

≥ γΠhα‖vh‖V − γΠhc(h)‖vh‖V .

Let ℓ0 be such that c(h) ≤ 1
2α for all h ∈ (0, ℓ0]. We have

inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖wh‖W

≥ 1

2
γΠhα,

for all h ∈ (0, ℓ0]. This proves (26.5a) with αh ≥ 1
2γΠhα for all h ∈ (0, ℓ0].

Exercise 35.4 (Lemma 35.8). (i) We have

2ℜ((m·∇v)v) = (m·∇v)v + (m·∇v)v
=m·∇(vv)− (m·∇v)v + (m·∇v)v =m·∇|v|2,

which proves the result.
(ii) Recalling that (∇v)ij = ∂xjvi for all i, j ∈ {1:d}, we can apply the above identity as follows:

ℜ(m·((∇v)Tv)) =
∑

j∈{1:d}
ℜ((m·∇vj)vj) =

1

2

∑

j∈{1:d}
m·∇|vj |2 =

1

2
m·∇‖v‖2ℓ2(Cd),

which proves the result.
(iii) Let q ∈ H2(D;C). Using v = ∇q in the identity from Step (ii) and recalling that D2q is a
symmetric matrix leads to ℜ(m·(D2q∇q)) = 1

2m·∇‖∇q‖2ℓ2(Cd).
(iv) Assume first that q ∈ H2(D;C) and let m ∈ W 1,∞(D;Rd). Integration by parts gives

−
∫

D

∆q(m·∇q) dx =

∫

D

∇q·∇(m·∇q) dx−
∫

∂D

(n·∇q)(m·∇q) ds

=

∫

D

∇q·((∇m)T∇q) dx+

∫

D

m·((D2q)∇q) dx−
∫

∂D

(n·∇q)(m·∇q) ds.

We now apply the identity established in Step (iii) integrated over D. Integrating by parts leads
to

ℜ
(∫

D

m·((D2q)∇q) dx
)

=

∫

D

1

2
m·∇‖∇q‖2ℓ2(Cd) dx

= −
∫

D

1

2
(∇·m)‖∇q‖2ℓ2(Cd) dx+

∫

∂D

(m·n)‖∇q‖2ℓ2(Cd) ds.

Notice that all the integrations by parts make sense since q and m have sufficient smoothness.
Putting everything together, we infer that the identity (35.11) holds true for all q ∈ H2(D;C) and
all m ∈ W 1,∞(D;Rd). Reasoning as in the second step of the proof of Lemma 35.7, i.e., invoking
a density argument, we conclude that this identity still holds true if q ∈ {v ∈ H1(D;C) | ∆v ∈
L2(D;C), ∇v ∈ L2(∂D;Cd)}.



Chapter 36

Crouzeix–Raviart approximation

Exercises

Exercise 36.1 (Commuting properties). Let K be a simplex in Rd and let Π0
K denote the

L2-orthogonal projection onto constants. Prove that ∇(IcrK (p)) = Π0
K(∇p) and ∇·(IIIcrK (σ)) =

Π0
K(∇·σ) for all p ∈ H1(K) and all σ ∈ L2(K) with ∇·σ ∈ L1(K) and IIIcrK defined componentwise

using Icrh .

Exercise 36.2 (Best approximation). Let v ∈ H1(D). A global best-approximation of v in
P cr
1 (Th) in the broken H1-seminorm is a function vcrh ∈ P cr

1 (Th) s.t.
∑

K∈Th
‖∇(v − vcrh )‖2L2(K) = min

vh∈P cr
1 (Th)

∑

K∈Th
‖∇(v − vh)‖2L2(K).

(i) Write a characterization of vcrh in weak form and show that vcrh is unique up to an addi-
tive constant. (Hint : adapt Proposition 25.8.) (ii) Let vbh be a global best-approximation of v
in the broken finite element space P b

1 (Th); see §32.2. Prove that
∑
K∈Th ‖∇(v − vcrh )‖2L2(K) =∑

K∈Th ‖∇(v − vbh)‖2L2(K). (Hint : using Exercise 36.1, show that vcrh = Icrh (v) up to an additive

constant.)

Exercise 36.3 (H(div)-flux recovery). Let uh solve (36.10). Assume that f is piecewise con-
stant on Th. Set σh|K := −∇uh|K + 1

df|K(x − xK), where xK is the barycenter of K for all

K ∈ Th. Prove that σh is in the lowest-order Raviart–Thomas finite element space P d
0 (Th) and

that ∇·σ = f ; see Marini [33] (Hint : evaluate
∫
F
[[σh]]·nFϕcr

F ds for all F ∈ F◦
h .)

Exercise 36.4 (Discrete Helmholtz). Let D ⊂ R2 be a simply connected polygon. Prove that
P b

0 (Th) = ∇P g
1 (Th)⊕∇⊥

h P
cr
1,0(Th), where

∇⊥
h P

cr
1,0(Th) := {vh ∈ P b

0 (Th) | ∃qh ∈ P cr
1,0(Th) | vh|K = ∇⊥(qh|K), ∀K ∈ Th},

and ∇⊥ is the two-dimensional curl operator defined in Remark 16.17. (Hint : prove that the
decomposition is L2-orthogonal and use a dimension argument based on Euler’s relations.)

Exercise 36.5 (Rannacher–Turek). Let K := [−1, 1]d. For all i ∈ {1:d} and α ∈ {l, r}, let
Fi,α be the face of K corresponding to {xi = −1} when α = l and to {xi = 1} when α = r.
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Observe that there are 2d such faces, each of measure 2d−1. Let P be spanned by the 2d functions
{1, x1, . . . , xd, x21 − x22, . . . , x2d−1 − x2d}. Consider the linear forms σi,α(p) := 21−d

∫
Fi,α

p ds for all

i ∈ {1:d} and α ∈ {l, r}. Setting Σ := {σi,α}i∈{1:d},α∈{l,r}, prove that (K,P,Σ) is a finite element.
Note: this element has been introduced by [40] for the mixed discretization of the Stokes equations
on Cartesian grids.

Exercise 36.6 (Quadratic space). Let Th be a triangulation of a simply connected domain
D ⊂ R2 and let

P cr
2 (Th) := {vh ∈ P b

2 (Th) |
∫

F

[[vh]]F (q ◦ T−1
F ) ds = 0, ∀F ∈ F◦

h , ∀q ∈ P1,1},

where TF is an affine bijective mapping from the unit segment Ŝ1 = [−1, 1] to F . Orient all the

faces F ∈ Fh and define the two Gauss points g±F on F that are the image by TF of ĝ± := ±
√
3
3 ,

in such a way that the orientation of F goes from g−F to g+F . For all K ∈ Th, let {λ0,K , λ1,K , λ2,K}
be the barycentric coordinates in K and set bK := 2 − 3(λ20,K + λ21,K + λ22,K) (this function is
usually called Fortin–Soulié bubble [17]). One can verify that a polynomial p ∈ P2,2 vanishes at
the six points {g±F }F∈FK if and only if p = αbK for some α ∈ R. Note: this shows that these
six points, which lie on an ellipse, cannot be taken as nodes of a P2,2 Lagrange element. (i)
Extending bK by zero outside K, verify that bK ∈ P cr

2 (Th). (ii) Set B := spanK∈Th{bK} and
B∗ := {vh ∈ B |

∫
D vh dx = 0}. Prove that P g

2 (Th) + B∗ ⊂ P cr
2 (Th) and that P g

2 (Th) ∩B∗ = {0}.
(iii) Define J : P cr

2 (Th) → R2Nf s.t. J(vh) := (vh(g
−
F ), vh(g

+
F ))F∈Fh for all vh ∈ P cr

2 (Th). Prove
that dim(ker(J)) = Nc and dim(im(J)) ≤ 2Nf − Nc. (Hint : any polynomial p ∈ P2,2 satisfies∑
F∈FK (p(g

+
F ) − p(g−F )) = 0 for all K ∈ Th.) (iv) Prove that P cr

2 (Th) = P g
2 (Th) ⊕ B∗; see Greff

[19]. (Hint : use a dimensional argument and Euler’s relation from Remark 8.13.)

Solution to exercises

Exercise 36.1 (Commuting properties). Let p ∈ H1(K). We observe that
∫

K

∇p dx =
∑

F∈FK

∫

F

pnK ds =
∑

F∈FK

∫

F

IcrK (p)nK ds =

∫

K

∇(Icrh (p)) dx.

Since ∇(Icrh (p)) is constant on K, we conclude that ∇(IcrK (p)) = Π0
K(∇p). Let σ ∈ L2(K) with

∇·σ ∈ L1(K). We observe that
∫

K

∇·σ dx =
∑

F∈FK

∫

F

σ·nK ds =
∑

F∈FK

∫

F

IIIcrK (σ)·nK ds =

∫

K

∇·(IIIcrh (σ)) dx.

Since ∇·(IIIcrh (σ)) is constant on K, we conclude that ∇·(IIIcrK (σ)) = Π0
K(∇·σ).

Exercise 36.2 (Best approximation). (i) The function vcrh is a minimizer in P cr
1 (Th) of the

functional

Ẽ(wh) =
1

2

∑

K∈Th
(∇(wh − v),∇(wh − v))L2(K),

or, equivalently (since the function v ∈ H1(D) is fixed), of the functional

E(wh) =
1

2

∑

K∈Th
(∇wh,∇wh)L2(K) −

∑

K∈Th
(∇v,∇wh)L2(K).
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Reasoning as in the proof of Proposition 25.8, we infer that vcrh is s.t.
∑

K∈Th
(∇vcrh ,∇wh)L2(K) =

∑

K∈Th
(∇v,∇wh)L2(K), ∀wh ∈ P cr

1 (Th).

The bilinear form
∑
K∈Th(∇wh,∇wh)L2(K) is coercive on the subspace {wh ∈ P cr

1 (Th) |
∫
D
wh dx =

0}. This shows the existence of vcrh and its uniqueness up to an additive constant.
(ii) For all wh ∈ P b

k (Th), we have
∑

K∈Th
(∇(Icrh (v)),∇wh)L2(K) =

∑

K∈Th
(Π0

K(∇v),∇wh)L2(K) =
∑

K∈Th
(∇v,∇wh)L2(K),

where the last equality follows from the fact that ∇wh is piecewise constant. This shows that
Icrh (v) = vbh, up to an additive constant in each mesh cell, and restricting the test function to
wh ∈ P cr

1 (Th), we infer that Icrh (v) = vcrh up to a global additive constant. Therefore, we have the
expected identity ∑

K∈Th
‖∇(v − vcrh )‖2L2(K) =

∑

K∈Th
‖∇(v − vbh)‖2L2(K).

Exercise 36.3 (H(div)-flux recovery). By definition σh|K ∈ RTRTRT0,d and ∇·(σh|K) = f|K for all
K ∈ Th. Let F ∈ F◦

h with F := ∂Kl ∩ ∂Kr. We infer that
∫

F

[[σh]]·nFϕcr
F ds =

∫

Kl∪Kr
(∇·σh)ϕcr

F dx+

∫

Kl∪Kr
σh·∇ϕcr

F dx

=

∫

Kl∪Kr
fϕcr

F dx−
∫

Kl∪Kr
∇uh·∇ϕcr

F dx = 0,

since
∫
Kl∪Kr(x−xK)·∇ϕcr

F dx = 0 and supp(ϕcr
F ) = int(Kl ∪Kr). This implies that [[σh]]·nF = 0

for all F ∈ F◦
h since the normal component of a function in RTRTRT0,d is constant on each face;

see Lemma 14.7. We conclude that σh ∈ P d
0 (Th) since the zero-jump condition implies that

σh ∈ H(div;D) owing to Theorem 18.10. Since σh is in H(div;D), its divergence equals its
piecewise divergence, i.e., ∇·σh = f in D.

Exercise 36.4 (Discrete Helmholtz). Let ph ∈ P g
1 (Th) and let qh ∈ P cr

1,0(Th). Integrating by
parts cellwise, we infer that

(∇ph,∇⊥
h qh)L2(D) =

∑

K∈Th

∫

∂K

(∇⊥ph·nK)qh ds.

Since ∇⊥ph·nK is constant on each face of K and since qh has continuous mean value on all the
mesh interfaces and zero mean value on all the boundary faces, we conclude that

(∇ph,∇⊥
h qh)L2(D) =

∑

F∈F◦
h

∫

F

[[∇⊥ph]]·nF qh ds = 0,

since ∇⊥ph|Kl ·nKl = −∇⊥ph|Kr ·nKr for all F := ∂Kl ∩ ∂Kr owing to the continuity of ph across

F (note that ∇⊥ph|K ·nK only depends on the tangential derivatives of ph on ∂K). Moreover, we

have dim(∇P g
1 (Th)) = Nv − 1 and dim(∇⊥

h P
cr
1,0(Th)) = Ne − N∂

e since dim(P cr
1,0(Th)) = Ne − N∂

e

and ∇⊥
h is injective on P cr

1,0(Th). Using Euler’s relations from Remark 8.13, we obtain

dim(∇P g
1 (Th)) + dim(∇⊥

h P
cr
1,0(Th)) = Nv − 1 +Ne −N∂

e = 2Nc = dim(P b
0 (Th)).

We conclude that P b
0 (Th) = ∇P g

1 (Th)⊕∇⊥
h P

cr
1,0(Th).
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Exercise 36.5 (Rannacher–Turek). The 2d functions

(1, x1, . . . , xd, x
2
1 − x22, . . . , x2d−1 − x2d)

are linearly independent. Hence,
cardΣ = dimP = 2d.

Consider the linear combination
∑
α∈{l,r}

∑
i∈{1:d} βi,ασi,α and assume that it is the zero form in

L(P ;R). Consider first p := xj for j ∈ {1:d}. Then σi,α(p) = 0 if j 6= i, whereas σj,l(p) = −1 and
σj,r(p) = 1. Hence, βi,l = βi,r for all i ∈ {1:d}. Consider then p := x2j − x2j+1 for j ∈ {1:(d− 1)},
so that σi,α(p) = 0 if i 6∈ {j, j + 1}, whereas σj,l(p) = σj,r(p) =

1
3 and σj+1,l(p) = σj+1,r(p) = − 1

3 .
Hence, βj,l = βj+1,l for all j ∈ {1:(d − 1)}. As a consequence, all the coefficients βi,α take the
same value, say β, and considering p := 1 for which σi,α(p) = 1 for all i ∈ {1:d} and α ∈ {l, r}, we
infer that β(2d) = 0, whence β = 0.

Exercise 36.6 (Quadratic space). (i) For all K ∈ Th and all F ∈ FK , bK vanishes at the
points {g±F }. Let indeed λi,K , λj,K be the two barycentric coordinates that do not vanish on F .
Thus, (λ2i,K ◦ TF )(ĝ±) + (λ2j,K ◦ TF )(ĝ±) = 2

3 . This shows that (bK|F ◦ TF )(ĝ±) = 0. Hence,∫
F
bK(q ◦T−1

F ) ds =
∫
F̂
(bK ◦TF )q dŝ = 0 for all q ∈ P1,1, since (bK ◦TF )q is a polynomial of degree

three and the two-point quadrature based on ĝ± is exact for polynomials of degree three. Since
[[bK ]]F = ±bK , we infer that

∫
F
[[bK ]]F (q◦T−1

F ) ds = 0. Since bK ∈ P b
2 (Th), we obtain bK ∈ P cr

2 (Th).
(ii) Since P g

2 (Th) ⊂ P cr
2 (Th) and B∗ ⊂ B ⊂ P cr

2 (Th), we infer that P g
2 (Th) + B∗ ⊂ P cr

2 (Th). Let
now vh ∈ P g

2 (Th) ∩ B∗ so that vh :=
∑
K∈Th αKbK . Let F ∈ F◦

h and let Kl,Kr be the two cells
such that F := ∂Kl ∩ ∂Kr. Let λil,Kl , λjl,Kl and λir ,Kr , λjr ,Kr be the barycentric coordinates in
Kl and Kr, respectively, that are nonzero over F . The continuity of vh across F implies that

αKl(2− 3λ2il,Kl − 3λ2jl,Kl)|F = αKr (2− 3λ2ir ,Kr − 3λ2jr ,Kr)|F ,

which implies that αKl = αKr since (λ2il,Kl + λ2jl,Kl)|F = (λ2ir ,Kr + λ2jr ,Kr)|F . Hence, vh =

α
∑
K∈Th bK . Moreover, a direct computation gives

∫
K bK dx = 1

2 |K|. Hence,
∫
D vh dx = 1

2α|D|.
Finally, vh ∈ B∗ implies that

∫
D vh dx = 0, so that α = 0.

(iii) A function vh is in ker(J) if it vanishes at the six points {g±F }F∈FK for all K ∈ Th. Hence,
ker(J) = B so that dim(ker(J)) = Nc. Let us now consider im(J). For all K ∈ Th, consider
the vector ψK ∈ R2Nf with components (ψK,F±)F∈Fh such that ψK,F− = −1 and ψK,F+ = 1 if
F ∈ FK , and ψK,F± = 0 otherwise. Then, the hint means that any vector in im(J) is orthogonal
(for the Euclidean inner product) to ψK for all K ∈ Th. It remains to show that the family
{ψK}K∈Th is linearly independent. Assume that

∑
K∈Th µKψK = 0 in R2Nf . Considering the two

components of this vector attached to an interface F := ∂Kl ∩ ∂Kr, we infer that µKl = µKr .
Hence, µK := µ0 for all K ∈ Th. Finally, considering a boundary face F := ∂Kl ∩ ∂D, we obtain
µ0 = µKl = 0.
(iv) We observe that

2Nf = Nf + (Nv +Nc − 1) = (Nv +Nf) + (Nc − 1)

= dim(P g
2 (Th)) + dim(B∗) = dim(P g

2 (Th)⊕B∗)

≤ dim(P cr
2 (Th)) = dim(ker(J)) + dim(im(J))

≤ Nc + 2Nf −Nc = 2Nf,

where we used Euler’s relation (see Remark 8.13), the inclusion P g
2 (Th) ⊕ B∗ ⊂ P cr

2 (Th) from
Step (ii), and the rank nullity theorem for J together with Step (iii). Hence, the above inequalities
are equalities, showing that dim(P g

2 (Th)⊕B∗) = dim(P cr
2 (Th)). Since P g

2 (Th)⊕B∗ ⊂ P cr
2 (Th), we

conclude that the reverse conclusion also holds true.



Chapter 37

Nitsche’s boundary penalty
method

Exercises

Exercise 37.1 (Poincaré–Steklov). Let Čps be defined in (31.23). Prove that Čpsℓ
−1
D ‖v‖L2(D) ≤

(‖∇v‖2L2(D) + |v|2∂)
1
2 for all v ∈ H1(D). (Hint : use h ≤ ℓD and (31.23).)

Exercise 37.2 (Quadratic inequality). Prove that x2 − 2βxy+̟0y
2 ≥ ̟0−β2

1+̟0
(x2 + y2) for all

real numbers x, y, ̟0 ≥ 0 and β ≥ 0.

Exercise 37.3 (Error estimate). Prove (37.14). (Hint : consider the quasi-interpolation opera-
tor from §22.3.)

Exercise 37.4 (Gradient). Let U be an open bounded set in Rd, let s ∈ (0, 1), and setHs
00(U) :=

[L2(U),H1
0 (U)]s,2. (i) Show that ∇ : H1−s(U) → (Hs

00(U))
′
is bounded for all s ∈ (0, 1). (Hint :

use Theorems A.27 and A.30.) (ii) Assume that U is Lipschitz. Show that∇ :H1−s(U)→H−s(U)
is bounded for all s ∈ (0, 1), s 6= 1

2 . (Hint : see (3.7), Theorem 3.19; see also Grisvard [20,
Lem. 1.4.4.6].)

Exercise 37.5 (L2-estimate). (i) Modify the proof of Theorem 37.7 by measuring the inter-
polation error on the adjoint solution with the operator Ig,avh instead of Ig,avh0 , i.e., use Yh :=
Vh instead of Yh := Vh ∩ H1

0 (D). (Hint : set a♯(v, w) := (∇v,∇w)L2(D) − (n·∇v, w)L2(∂D) +∑
F∈F∂h ̟0

1
hF

(v, w)L2(F ).) (ii) Do the same for the proof of Theorem 37.8.

Solution to exercises

Exercise 37.1 (Poincaré–Steklov). Since h ≤ ℓD, we have

‖∇v‖2L2(D) + |v|2∂ ≥ ‖∇v‖2L2(D) + ℓ−1
D ‖v‖2L2(∂D),

where ℓD := diam(D). Using the Poincaré–Steklov inequality (31.23) leads to the expected bound.
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Exercise 37.2 (Quadratic inequality). Notice that x2 − 2βxy +̟0y
2 ≥ ̟0−β2

1+̟0
(x2 + y2) iff

1 + β2

1 +̟0
x2 − 2βxy +

̟2
0 + β2

1 +̟0
y2 ≥ 0.

Since the coefficients 1+β2

1+̟0
and

̟2
0+β

2

1+̟0
are both positive, the above quadratic form is nonnegative

iff

0 ≤ 1 + β2

1 +̟0

̟2
0 + β2

1 +̟0
− β2.

Rearranging the terms leads to 2̟0β
2 ≤ ̟2

0 + β4, which is trivially true.

Exercise 37.3 (Error estimate). We bound the infimum in (37.13) by taking vh := Ig,avh (u),
where Ig,avh : L1(D) → P g

k (Th) is the quasi-interpolation operator from §22.3. Let us localize the
‖·‖V♯-norm as follows:

‖v‖2V♯ :=
∑

K∈Th
‖v‖2V♯(K),

‖v‖2V♯(K) := ‖∇v‖2L2(K) + h−1
F ‖v‖2L2(F ) +

∑

F∈FK∩F∂h

hF ‖n·∇v‖2L2(F ),

if K ∈ T ∂Dh and ‖v‖2V♯(K) = ‖∇v‖2
L2(K) otherwise. Owing to the estimate (22.14) from Theo-

rem 22.6 (with m := 1, p := 2) and to the approximation results for Ig,avh on faces (see Exer-
cise 22.5), we infer that ‖u − Ig,avh (u)‖V♯(K) ≤ chtK |u|H1+t(ŤK) for all K ∈ Th, where ŤK is the
collection of the mesh cells sharing at least a vertex with K. Then (37.14) follows by invoking the
regularity of the mesh sequence.

Exercise 37.4 (Gradient). (i) Let y ∈ L2(U). By definition of the weak derivative of y, we have

‖∇y‖H−1(U) = sup
v∈H1

0 (U)

|〈∇y,v〉|
‖v‖H1

0(U)

= sup
v∈H1

0 (U)

|
∫
U
y∇·v dx|

‖v‖H1
0(U)

≤ c ‖y‖L2(U).

Let now y ∈ H1(U). We then have

‖∇y‖L2(U) ≤ c ‖y‖H1(U).

This shows that ∇ maps boundedly from L2(U) toH−1(U) and from H1(U) to L2(U). The Riesz–
Thorin theorem (Theorem A.27) implies that ∇ maps boundedly from [L2(U), H1(U)]1−s,2 =
H1−s(U) to [H−1(U),L2(U)]1−s,2 for all s ∈ (0, 1). But Theorem A.30 implies that

[H−1(U),L2(U)]1−s,2 = [L2(U),H1
0 (U)]′s,2.

Setting Hs
00(U) := [L2(U),H1

0 (U)]s,2, we have

[H−1(U),L2(U)]1−s,2 = (Hs
00(U))

′
.

(ii) From (3.7) and Theorem 3.19, we know that Hs
00(U) = Hs

0(U) for all s ∈ (0, 1) if s 6= 1
2 .

Hence, ∇ maps boundedly from H1−s(U) to H−s(U) := (Hs
0(U))

′
for all s ∈ (0, 1) if s 6= 1

2 .

Exercise 37.5 (L2-estimate). (i) Let us consider V♯ := Vs + Vh, Zs := H1+s(D) ∩ H1
0 (D),

Yh := Vh, and Z♯ := Zs + Vh equipped with the norm ‖z‖2Z♯ := ‖∇z‖2L2(D) + |z|2∂ . Let us consider
the bilinear form

a♯(v, w) := (∇v,∇w)L2(D) − (n·∇v, w)L2(∂D) +
∑

F∈F∂h

̟0h
−1
F (v, w)L2(F ).
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Notice that a♯ is bounded on V♯×Z♯. The Galerkin orthogonality property holds true for a♯ since
for all yh ∈ Vh,

a♯(u, yh) = ℓh(yh) = ah(uh, yh) = a♯(uh, yh).

Let δadj(ζe) be the adjoint consistency error defined in (36.29), i.e., for all v ∈ V♯,

〈δadj(ζe), v〉V ′
♯
,V♯ := −(v,∆ζe)L2(D) − a♯(v, ζe).

Since ζe vanishes on ∂D, the following identity holds true: For all v ∈ V♯,

〈δadj(ζe), v〉V ′
♯
,V♯ = −(v,n·∇ζe)L2(∂D).

Hence, the adjoint consistency error can be bounded as in the proof of Theorem 37.7. Concerning
the interpolation error on the adjoint solution, we can now consider the interpolation operator
Ig,avh from §22.3, and we deduce as before that

inf
yh∈Yh

‖∇(ζe − yh)‖L2(D) ≤ ‖ζe − Ig,avh (ζe)‖Z♯ ≤ c hs|ζe|H1+s(D).

(ii) For the proof of Theorem 37.8, one proceeds as above by considering the bilinear form
a♯(v, w) := (∇v,∇w)L2(D) − (n·∇v, w)L2(∂D) − (v,n·∇w)L2(∂D) +

∑
F∈F∂h ̟0h

−1
F (v, w)L2(F ).
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Chapter 38

Discontinuous Galerkin

Exercises

Exercise 38.1 (Elementary dG identities). (i) Let F := ∂Kl ∩ ∂Kr ∈ F◦
h . Prove that

2{σ·nKq} = ({σ}[[q]] + [[σ]]{q})·nF . (ii) Let θl, θr ∈ [0, 1] such that θl + θr = 1. Let [[a]]θ :=
2(θral − θlar) and {a}θ := θlal + θrar. Show that {ab} = {a}{b}θ + 1

4 [[a]]θ[[b]].

Exercise 38.2 (Boundary conditions). (i) Assume that u solves the Poisson problem (38.1)
with the non-homogeneous Dirichlet condition u = g on ∂D. Let aθh be defined in (38.20). Devise

ℓθ,nDh so that exact consistency holds for the following formulation: Find uh ∈ Vh such that

aθh(uh, wh) = ℓθ,nDh (wh) for all wh ∈ Vh. (ii) Assume that u solves the Poisson problem with the
Robin condition γu+ n·∇u = g on ∂D. Let ℓRb

h be defined in (38.13b). Devise aRb
h so that exact

consistency holds for the following formulation: Find uh ∈ Vh such that aθ,Rb
h (uh, wh) = ℓRb

h (wh)
for all wh ∈ Vh.

Exercise 38.3 (L2-estimate). Prove Theorem 38.12. (Hint : see the proof of Theorem 37.8.)

Exercise 38.4 (Local lifting). Prove (38.22a). (Hint : use (38.10).)

Exercise 38.5 (Local formulation). Write the local formulation of the OBB, NIP, and IIP dG
methods discussed in Remark 38.13.

Exercise 38.6 (Extending (38.25)). Let ãh (resp., ah) be defined by extending (38.25) (resp.,
(38.4)) to V♯×Vh. Show that ãh(v, wh) = ah(v, wh) +

∑
F∈Fh

∫
F
{∇hv − Ibh(∇hv)}·nF [[wh]] ds for

all (v, wh) ∈ V♯×Vh.

Exercise 38.7 (Discrete gradient). Let (vh)h∈H be a sequence in (Vh)h∈H (meaning that vh ∈
Vh for all h ∈ H). Assume that there is C s.t. ‖vh‖Vh ≤ C for all h ∈ H. One can show that there is
v ∈ L2(D) such that, up to a subsequence, vh → v in L2(D) as h→ 0; see [15, Thm. 5.6]. (i) Show
that, up to a subsequence, Glh(vh) weakly converges to some G in L2(D) as h→ 0. (Hint : bound
‖Glh(vh)‖L2(D).) (ii) Show that G = ∇v and that v ∈ H1

0 (D). (Hint : extend functions by zero

outsideD and prove first that
∫
Rd

Glh(vh)·Φ dx = −
∫
Rd
vh∇·Φ dx+

∑
F∈Fh

∫
F {Φ−IbhΦ}·nF [[vh]] ds

for all Φ ∈ C∞
0 (Rd).)
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Solution to exercises

Exercise 38.1 (Elementary dG identities). (i) Let F := ∂Kl ∩∂Kr ∈ F◦
h be an interface. We

have

σ|Klq|Kl − σ|Krq|Kr =
1

2
σ|Klq|Kl −

1

2
σ|Klq|Kr +

1

2
σ|Klq|Kr +

1

2
σ|Klq|Kl

− 1

2
σ|Krq|Kr +

1

2
σ|Krq|Kl −

1

2
σ|Krq|Kl −

1

2
σ|Krq|Kr

=
1

2
σ|Kl [[q]] + σ|Kl{q}+

1

2
σ|Kr [[q]]− σ|Kr{q}

= {σ}[[q]] + [[σ]]{q},

and the result follows after observing that nKl = −nKr =: nF .
(ii) We proceed as above and obtain that

1

2
(albl + arbr) =

1

2
(θlalbl + θralbr − θralbr + θralbl) +

1

2
(θrarbr + θlarbl − θlarbl + θlarbr)

=
1

2
al{b}θ +

1

2
ar{b}θ +

1

2
(θral − θlar)bl −

1

2
(θral − θlar)br

= {a}{b}θ +
1

4
[[a]]θ[[b]].

Exercise 38.2 (Boundary conditions). (i) Integration by parts shows that

∑

K∈Th

∫

D

∇hu·∇hwh dx−
∑

F∈F◦
h

∫

F

{∇hu}·nF [[wh]] ds−
∑

F∈F∂h

∫

F

(∇hu·nK)wh ds =

∫

D

fwh dx.

Adding the symmetry term and the penalty term on the interfaces on the left-hand side does not
change anything since u is continuous across the interfaces. Notice though that the symmetry and
the penalty terms are not zero at the boundary. Hence, we must add them on both sides of the
equation, yielding

∑

K∈Th

∫

D

∇hu·∇hwh dx−
∑

F∈F◦
h

∫

F

{∇hu}·nF [[wh]] ds−
∑

F∈F∂h

∫

F

(∇hu·nK)wh ds

− θ
∑

F∈F◦
h

∫

F

{∇hwh}·nF [[u]] ds− θ
∑

F∈F∂h

∫

F

(∇hwh·nK)u ds

+
∑

F∈F◦
h

̟(hF )

∫

F

[[u]][[wh]] ds+
∑

F∈F∂h

̟(hF )

∫

F

uwh ds

=

∫

D

fwh dx− θ
∑

F∈F∂h

∫

F

(∇hwh·nK)u ds+
∑

F∈F∂h

̟(hF )

∫

F

uwh ds,

where the value of θ ∈ {−1, 0, 1} depends on the method that is chosen (NIP, IIP, SIP). Now,
we replace u|∂D by g on the right-hand side and we regroup the boundary and interface integrals
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using the usual convention about jumps and averages at the boundary. This leads to

∑

K∈Th

∫

D

∇hu·∇hwh dx−
∑

F∈Fh

∫

F

{∇hu}·nF [[wh]] ds

− θ
∑

F∈Fh

∫

F

{∇hwh}·nF [[u]] ds+
∑

F∈Fh
̟(hF )

∫

F

[[u]][[wh]] ds

=

∫

D

fwh dx− θ
∑

F∈F∂h

∫

F

(∇hwh·nK)g ds+
∑

F∈F∂h

̟(hF )

∫

F

gwh ds.

Thus, the exact consistency property aθh(u,wh) = ℓθ,nDh (wh) holds true for all wh ∈ Vh if we set

ℓθ,nDh (wh) :=

∫

D

fwh dx− θ
∑

F∈F∂h

∫

F

(∇hwh·nK)g ds+
∑

F∈F∂h

̟(hF )

∫

F

gwh ds.

(ii) We proceed as above for the Robin boundary condition. The only difference is that we do not
add the symmetry term and the penalty term at the boundary. This leads to

∑

K∈Th

∫

D

∇hu·∇hwh dx−
∑

F∈F◦
h

∫

F

{∇hu}·nF [[wh]] ds−
∑

F∈F∂h

∫

F

(∇hu·nK)wh ds

− θ
∑

F∈F◦
h

∫

F

{∇hwh}·nF [[u]] ds+
∑

F∈F◦
h

̟(hF )

∫

F

[[u]][[wh]] ds =

∫

D

fwh dx.

We conclude by replacing ∇hu·nK at the boundary by −γu+ g, leading to

∑

K∈Th

∫

D

∇hu·∇hwh dx−
∑

F∈F◦
h

∫

F

{∇hu}·nF [[wh]] ds+
∑

F∈F∂
h

∫

F

γuwh ds

− θ
∑

F∈F◦
h

∫

F

{∇hwh}·nF [[u]] ds+
∑

F∈F◦
h

̟(hF )

∫

F

[[u]][[wh]] ds =

∫

D

fwh dx+
∑

F∈F∂
h

∫

F

gwh ds.

Therefore, once again the exact consistency property, i.e.,

aθ,Rb
h (u,wh) = ℓh(wh) +

∑

F∈F∂h

∫

F

gwh ds =: ℓRb
h (wh), ∀wh ∈ Vh,

holds true if we set

aθ,Rb
h (v, wh) :=

∑

K∈Th

∫

D

∇hv·∇hwh dx

−
∑

F∈F◦
h

∫

F

{∇hv}·nF [[wh]] ds− θ
∑

F∈F◦
h

∫

F

{∇hwh}·nF [[v]] ds

+
∑

F∈F∂h

∫

F

γvwh ds+
∑

F∈F◦
h

̟(hF )

∫

F

[[v]][[wh]] ds.

Exercise 38.3 (L2-estimate). Let e := u−uh. Let us set V♯ := Vs+Vh, Zs := H1+s(D)∩H1
0 (D),

Yh := Vh ∩H1
0 (D), Z♯ := Zs + Yh equipped with the same norm as V♯. Consider the bilinear form

a♯(v, w) := (∇hv,∇hw)L2(D) −
∑

F∈Fh

∫

F

[[v]]{∇hw}·nF ds.
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Notice that a♯ is bounded on V♯×Z♯, and that for all yh ∈ Yh,
a♯(u, yh) = (f, yh)L2(D) = ℓh(yh) = ah(uh, yh) = a♯(uh, yh),

since Yh ⊂ H1
0 (D) and [[u]] = 0 for all F ∈ Fh. Hence, the Galerkin orthogonality property holds

true for a♯. We can therefore apply the abstract nonconforming estimate from Lemma 36.14 which
yields

‖e‖L2(D) ≤
(‖δadj(ζe)‖V ′

♯

‖e‖L2(D)
+ inf
yh∈Yh

‖∇(ζe − yh)‖L2(D)

‖e‖L2(D)

)
‖e‖V♯ ,

where ζe ∈ H1
0 (D) is the adjoint solution associated with the error e (recall that ‖ζ‖H1+s(D) ≤

cℓ2D‖e‖L2(D)) and where the two terms between parentheses are the adjoint consistency error and
the interpolation error on the adjoint solution. Let us first bound the adjoint consistency error.
The definition of δadj(ζe) implies that for all v ∈ V♯,

〈δadj(ζe), v〉V ′
♯
,V♯ := −(v,∆ζe)L2(D) − a♯(v, ζe) = 0,

where we used that [[∇ζe]]F = 0 for all F ∈ F◦
h since s > 1

2 , i.e., exact adjoint consistency holds
true. To bound the interpolation error on the adjoint solution, we consider the quasi-interpolation
operator Ig,avh0 from §22.4 and deduce that

inf
yh∈Yh

‖ζe − yh‖Z♯ ≤ ‖ζe − Ig,avh0 (ζe)‖Z♯
≤ c hs|ζe|H1+s(D)

≤ c hsℓ−1−s
D ‖ζe‖H1+s(D)

≤ c csmo h
sℓ1−sD ‖e‖L2(D),

where we used the approximation properties of Ig,avh0 from Theorem 22.14. Note: it is also possible
to estimate the interpolation error using any of the operators from §18.3 (e.g., the L2-orthogonal
projection) by considering the bilinear form

a♯(v, w) = (∇hv,∇hw)L2(D) −
∑

F∈Fh

∫

F

{∇hv}·nF [[w]] ds

−
∑

F∈Fh

∫

F

[[v]]{∇hw}·nF ds+
∑

F∈Fh

̟0

hF

∫

F

[[v]][[w]] ds.

Exercise 38.4 (Local lifting). We observe that

‖LLLlF (ϕ)‖2L2(DF ) =

∫

F

{LLLlF (ϕ)}·nFϕds.

Using the Cauchy–Schwarz inequality together with the fact that {w} = |TF |−1
∑

K∈TF w|K for
every function w, we infer that

‖LLLlF (ϕ)‖2L2(DF ) ≤ ‖{LLLlF (ϕ)}‖L2(F )‖[[ϕ]]‖L2(F )

= h
1
2

F ‖{LLLlF (ϕ)}‖L2(F ) × h−
1
2

F ‖[[ϕ]]‖L2(F )

≤ 1

|TF |
∑

K∈TF
h

1
2

F ‖LLLlF (ϕ)|K‖L2(F ) × h−
1
2

F ‖[[ϕ]]‖L2(F )

≤ 1

|TF |
∑

K∈TF
cdt‖LLLlF (ϕ)‖L2(K) × h−

1
2

F ‖[[ϕ]]‖L2(F )

≤ cdt‖LLLlF (ϕ)‖L2(DF ) × h−
1
2

F ‖[[ϕ]]‖L2(F ),
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since
∑

K∈TF ‖LLL
l
F (ϕ)‖L2(K) ≤ |TF |

1
2 ‖LLLlF (ϕ)‖L2(DF ) and |TF | ≥ 1.

Exercise 38.5 (Local formulation). The local formulations take the form
∫

K

Gh(uh)·∇q dx+
∑

F∈FK
(nK ·nF )

∫

F

Φ̂F (uh)q ds =

∫

K

fq dx,

with

Gobb
h (uh) := ∇huh +LLLlh([[uh]]), Φ̂obb

F (uh) := −{∇huh}·nF ,
Gnip
h (uh) := ∇huh +LLLlh([[uh]]), Φ̂nip

F (uh) := −{∇huh}·nF +̟(hF )[[uh]],

Giip
h (uh) := ∇huh, Φ̂iip

F (uh) := −{∇huh}·nF +̟(hF )[[uh]].

Exercise 38.6 (Extending (38.25)). We observe that

ãh(v, wh)− ah(v, wh) = −
∫

Rd
∇hv·LLLlh([[wh]]) dx +

∑

F∈Fh

∫

F

{∇hv}·nF [[wh]] ds

= −
∫

Rd
Ibh(∇hv)·LLLlh([[wh]]) dx+

∑

F∈Fh

∫

F

{∇hv}·nF [[wh]] ds

=
∑

F∈Fh

∫

F

{∇hv − Ibh(∇hv)}·nF [[wh]] ds,

where we used that LLLlh([[vh]]) ∈ P b
l (Th) and the definition of LLLlh([[vh]]).

Exercise 38.7 (Discrete gradient). (i) The sequence (Glh(vh))h∈H is uniformly bounded in
L2(D) since the triangle inequality and (38.22b) imply that

‖Glh(vh)‖L2(D) ≤ ‖∇hvh‖L2(D) + ‖LLLlh([[vh]])‖L2(D) ≤ max(1, n
1
2

∂ cdt)
√
2‖vh‖Vh .

Since L2(D) is a Hilbert space (which is a reflexive Banach space), Theorem C.23 implies that
there is G ∈ L2(D) s.t. Glh(vh) weakly converges to G in L2(D) as h→ 0.
(ii) Let now Φ ∈ C∞

0 (Rd). We have
∫

Rd
Glh(vh)·Φ dx =

∫

Rd
∇hvh·Φ dx−

∫

Rd
LLLlh([[vh]])·Φ dx

=

∫

Rd
∇hvh·Φ dx−

∫

Rd
LLLlh([[vh]])·Ibh(Φ) dx

= −
∫

Rd
vh∇·Φ dx+

∑

F∈Fh

∫

F

[[vh]]Φ·nF ds−
∫

Rd
LLLlh([[vh]])·Ibh(Φ) dx

= −
∫

Rd
vh∇·Φ dx+

∑

F∈Fh

∫

F

[[vh]]{Φ− Ibh(Φ)}·nF ds,

where we used elementwise integration by parts and proceeded as in Exercise 38.6. Let T1,T2

denote the two terms on the right-hand side. The convergence of vh to v in L2(Rd) implies that
T1 → −

∫
Rd
v∇·Φ dx. Moreover, the Cauchy–Schwarz inequality and the regularity of the mesh

sequence lead to

|T2| ≤ |vh|J
( ∑

K∈Th
hK‖Φ− Ibh(Φ)‖2L2(∂K)

) 1
2

.
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Using the Poincaré–Steklov inequality, we infer that

|T2| ≤ |vh|J
( ∑

K∈Th
h2K |Φ‖2H1(K)

) 1
2

≤ h|vh|J|Φ|H1(D) → 0,

since |vh|J is uniformly bounded w.r.t. h ∈ H. Letting h→ 0 in the above equality and using the
weak convergence of Glh(vh) to G, we infer that

∫

Rd
G·Φ dx = −

∫

Rd
v∇·Φ dx.

This shows that v ∈ H1(Rd) with ∇v = G. Since v has been extended by zero outside D, we infer
that γg(v) = 0, i.e., v ∈ H1

0 (D).



Chapter 39

Hybrid high-order method

Exercises

Exercise 39.1 (Stabilization). Prove that âK(v̂K , v̂K) is equivalent to ‖∇rK‖2L2(K)+θ̂K(v̂K , v̂K)

for all v̂K ∈ V̂ kK , with rK := R(v̂K) and

θ̂K(v̂K , v̂K) := h−2
K ‖vK −ΠkK(rK)‖2L2(K) + h−1

K ‖v∂K −Πk∂K(rK)‖2L2(∂K).

(Hint : note that S(v̂K) = Πk∂K(vK −ΠkK(rK))|∂K − (v∂K − Πk∂K(rK)), and to bound âK(v̂K , v̂K)

from below, prove that θ̂K(v̂K , v̂K)
1
2 ≤ c h−1

K ‖vK−rK‖L2(K)+h
− 1

2

K ‖S(v̂K)‖L2(∂K), then invoke the
Poincaré–Steklov inequality, the triangle inequality, and the lower bound from Lemma 39.2.)

Exercise 39.2 (Finite element viewpoint). Let VkK be defined in (39.10). Let EK : H1(K)→
V k+1
K be the elliptic projection and set δ := v − EK(v) for all v ∈ VkK . (i) Prove that

h−1
K ‖ΠkK(δ)‖L2(K) ≤ c

(
‖∇EK(v)‖L2(K) + h

− 1
2

K ‖S(ÎkK(v))‖L2(∂K)

)
.

(Hint : use the Poincaré–Steklov inequality in K and the lower bound from Lemma 39.2.) (ii)
Prove that

‖∇δ‖L2(K) ≤ c
(
‖∇EK(v)‖L2(K) + h

− 1
2

K ‖S(ÎkK(v))‖L2(∂K)

)
.

(Hint : integrate by parts ‖∇δ‖2
L2(K) and accept as a fact that a discrete trace inequality and an

inverse inequality are valid on VkK , then use that S(ÎkK(v)) = Πk∂K(ΠkK(δ)|∂K)−Πk∂K(δ|∂K).) (iii)

Let aK(v, w) := (∇EK(v),∇EK(w))L2(K)+h
−1
K (S(ÎkK(v)), S(ÎkK (v)))L2(∂K) on VkK×VkK . Prove that

aK(v, v) ≥ c‖∇v‖2
L2(K) with c > 0.

Exercise 39.3 (Elliptic projection). Prove the second bound in Theorem 39.17. (Hint : intro-
duce the L2-orthogonal projection Πk+1

K .)

Exercise 39.4 (Reconstruction). (i) Let G : V̂ kK → V k
K := PPPk,d ◦ T−1

K be s.t. (G(v̂K), q)L2(K) =

−(vK ,∇·q)L2(K) + (v∂K ,nK ·q)L2(∂K) for all q ∈ V k
K . Prove that Π∇V k+1

K
G = ∇R, where Π∇V k+1

K

is the L2-orthogonal projection onto ∇V k+1
K . (ii) Let Grt : V̂ kK → V k

K := (ψd
K)−1(RTRTRTk,d) be

s.t. (Grt(v̂K), q)L2(K) = −(vK ,∇·q)L2(K) + (v∂K ,nK ·q)L2(∂K) for all q ∈ V k
K , where ψd

K is the
contravariant Piola transformation defined in (9.9c), and RTRTRTk,d is the Raviart–Thomas polynomial
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space. Prove that ‖Grt(v̂K)‖L2(K) ≥ c|v̂K |V̂ kK with c > 0. (Hint : use the dofs of the Raviart–

Thomas element; see John et al. [30] for the seminal idea in the context of dG methods.)

Exercise 39.5 (k = 0). (i) Derive the HHO method in 1D for k = 0, as well as the global trans-

mission problem. (ii) Prove that, in dimension d ≥ 2 for k = 0, R(v̂K)(x) = vK+
∑
F∈FK

|F |
|K| (vF −

vK)nK|F ·(x − xK) for all x ∈ K, with vF := v∂K|F for all F ∈ FK , and xK is the barycenter of
K, and S(v̂K)|F = vK − vF −∇R(v̂K)·(xK −xF ), where xF is the barycenter of F for all F ∈ FK
(Hint : any function q ∈ P1,d ◦ T−1

K is of the form q(x) = qK +Gq·(x− xK), where qK := q(xK)
is the mean value of q over K and Gq := ∇q, and use also (7.1).)

Exercise 39.6 (Transmission problem). (i) Prove the converse statement in Proposition 39.10.
(Hint : write ŵK = (wK − Uw∂K , 0) + (Uw∂K , w∂K).) (ii) Justify Remark 39.11. (Hint : for the
converse statement show that aK(u,w) − ℓK(w) = aK(Uλ∂K , Uµ)− ℓK(Uµ) with µ := w∂K .) (iii)
Adapt the statement if aK is nonsymmetric. (Hint : consider U∗

λ ∈ H1(K) s.t. U∗
λ|∂K = λ and

aK(ψ,U∗
λ) = 0 for all ψ ∈ H1

0 (K).) (iv) Prove (39.23).

Exercise 39.7 (HDG). Consider the HDG method. Assume the following: if (vK , µ∂K) ∈
VK×V∂K with V∂K :=

∏
F∈FK VF is s.t. (τ∂K(vK|∂K − µ∂K), vK|∂K − µ∂K)L2(∂K) = 0 and

(vK ,∇·τK)L2(K) − (µ∂K , τK ·nK)L2(∂K) = 0 for all τK ∈ SK , then vK and µ∂K are constant
functions taking the same value. Prove that the discrete problem (39.25) is well-posed. (Hint :
derive an energy identity.)

Exercise 39.8 (Space Λ). Let Λ be defined in (39.21). Recall that the trace map γg∂K : H1(K)→
H

1
2 (∂K) is surjective. (i) Prove that there are constants 0 < c1 ≤ c2 s.t. c1‖∇Uµ‖L2(K) ≤

|µ|
H

1
2 (∂K)

≤ c2‖∇Uµ‖L2(K) for all µ ∈ H
1
2 (∂K), all K ∈ Th, and all h ∈ H. (Hint : prove first the

bounds on the reference cell K̂.) (ii) Set ‖λ‖2Λ :=
∑
K∈Th |λ∂K |2H 1

2 (∂K)
. Verify that ‖·‖Λ indeed

defines a norm on Λ, and that Λ is a Hilbert space. (Hint : for all λ ∈ Λ, consider the function
Uλ : D → R s.t. Uλ|K := Uλ∂K for all K ∈ Th, and prove that Uλ ∈ H1

0 (D).)

Exercise 39.9 (Liftings, 1D). Consider a uniform mesh of D := (0, 1) with nodes xi := ih,
i := 1

I+1 for all i ∈ {0:(I+1)}. Consider the PDE −u′′ = f in D with u(0) = u(1) = 0.

(i) Prove that (39.22) amounts to AX = B with A = h−1 tridiag(−1, 2,−1), Xi = λi, and
Bi =

∫ xi+1

xi−1
ϕif ds for all i ∈ {1:I}. (Hint : prove that Uλ is affine on every cell Ki = [xi−1, xi].)

Prove that λi = u(xi). (Hint : write f = −u′′ and integrate by parts. This remarkable fact only

happens in 1D.) (ii) Let k ≥ 2. For all m ≥ 1, set φm := (2(2m + 1))−
1
2 (Lm+1 − Lm−1), where

Lm is the Legendre polynomial of degree m (see §6.1). Verify that {φm}m∈{1:k−1} is a basis of

P◦k := {p ∈ Pk | p(±1) = 0}. Prove that Uf
|K̂
(x) =

∫
K̂
G(x, s)f(s) ds on K̂ := [−1, 1] with the

discrete Green’s function G(x, s) :=
∑
m∈{1:k−1} φm(x)φm(s). (Hint : observe that φ′m = Lm.)

Infer the expression of Uf|Ki for every cell Ki.

Solution to exercises

Exercise 39.1 (Stabilization). Using the hint and the triangle inequality leads to

‖S(v̂K)‖L2(∂K) ≤ ‖Πk∂K(vK −ΠkK(rK))|∂K‖L2(∂K) + ‖v∂K −Πk∂K(rK)‖L2(∂K)

≤ c h−
1
2

K ‖vK −ΠkK(rK)‖L2(K) + ‖v∂K −Πk∂K(rK)‖L2(∂K)

≤ c′h
1
2

K θ̂K(v̂K , v̂K)
1
2 ,
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where we used the L2-stability of Πk∂K and a discrete trace inequality. Hence, we have

âK(v̂K , v̂K) = ‖∇rK‖2L2(K) + h−1
K ‖S(v̂K)‖2L2(∂K)

≤ ‖∇rK‖2L2(K) + c θ̂K(v̂K , v̂K).

Let us now prove the converse bound. Using again the identity from the hint and the triangle
inequality, we infer that

θ̂K(v̂K , v̂K)
1
2 ≤ h−1

K ‖vK −ΠkK(rK)‖L2(K) + h
− 1

2

K ‖S(v̂K)‖L2(∂K)

+ h
− 1

2

K ‖Πk∂K(vK −ΠkK(rK))|∂K‖L2(∂K).

Rearranging the terms, using the L2-stability of Πk∂K and a discrete trace inequality leads to

θ̂K(v̂K , v̂K)
1
2 ≤ c h−1

K ‖vK −ΠkK(rK)‖L2(K) + h
− 1

2

K ‖S(v̂K)‖L2(∂K).

Since vK −ΠkK(rK) = ΠkK(vK − rK), we invoke the L2-stability of ΠkK to obtain

θ̂K(v̂K , v̂K)
1
2 ≤ c h−1

K ‖vK − rK‖L2(K) + h
− 1

2

K ‖S(v̂K)‖L2(∂K).

Owing to the Poincaré–Steklov inequality (recall that vK − rK has zero mean value on K), we
infer that

θ̂K(v̂K , v̂K)
1
2 ≤ c ‖∇(vK − rK)‖L2(K) + h

− 1
2

K ‖S(v̂K)‖L2(∂K).

The triangle inequality and the lower bound from Lemma 39.2 imply that

θ̂K(v̂K , v̂K)
1
2 ≤ c

(
‖∇rK‖L2(K) + h

− 1
2

K ‖S(v̂K)‖L2(∂K)

)
.

This proves that θ̂K(v̂K , v̂K)
1
2 ≤ câK(v̂K , v̂K)

1
2 , and since ‖∇rK‖L2(K) ≤ âK(v̂K , v̂K)

1
2 , we con-

clude that ‖∇rK‖2L2(K) + θ̂K(v̂K , v̂K) ≤ câK(v̂K , v̂K).

Exercise 39.2 (Finite element viewpoint). (i) Let v ∈ VkK and let us set δ := v−EK(v). The
L2-stability of ΠkK and the Poincaré–Steklov inequality (recall that δ has zero mean value on K)
imply that

‖ΠkK(δ)‖L2(K) ≤ ‖δ‖L2(K) ≤ c hK‖∇δ‖L2(K).

The triangle inequality and the lower bound from Lemma 39.2 yield

h−1
K ‖ΠkK(δ)‖L2(K) ≤ c

(
‖∇EK(v)‖L2(K) + h

− 1
2

K ‖S(ÎkK(v))‖L2(∂K)

)
.

(ii) Integrating by parts and using the definition of VkK , we infer that

‖∇δ‖2L2(K) = −(ΠkK(δ),∆δ)L2(K) + (Πk∂K(δ|∂K),nK ·∇δ)L2(∂K).

Invoking the Cauchy–Schwarz inequality, together with a discrete trace inequality and an inverse
inequality in VkK , leads to

‖∇δ‖L2(K) ≤ c
(
h−1
K ‖ΠkK(δ)‖L2(K) + h

− 1
2

K ‖Πk∂K(δ|∂K)‖L2(∂K)

)
,

where c is uniform w.r.t. K ∈ Th, h ∈ H, and v ∈ VkK . Recalling the definition of the stabilization

operator, rearranging the terms, and recalling that EK = R ◦ ÎkK , we infer that

S(ÎkK(v)) = Πk∂K(ΠkK(δ)|∂K)−Πk∂K(δ|∂K).



206 Chapter 39. Hybrid high-order method

Invoking the triangle inequality, the L2-stability of Πk∂K , and a discrete trace inequality leads to

‖Πk∂K(δ|∂K)‖L2(∂K) ≤ ‖S(ÎkK(v))‖L2(∂K) + c h
− 1

2

K ‖ΠkK(δ)‖L2(K).

Hence, we have

‖∇δ‖L2(K) ≤ c
(
h−1
K ‖ΠkK(δ)‖L2(K) + h

− 1
2

K ‖S(ÎkK(v))‖L2(∂K)

)
,

and the assertion follows by invoking the bound from Step (i).
(iii) The Pythagorean identity implies that

‖∇v‖2L2(K) = ‖∇EK(v)‖2L2(K) + ‖∇(v − EK(v))‖2L2(K).

The bound from Step (ii) implies that

‖∇(v − EK(v))‖2L2(K) ≤ c aK(v, v).

Since ‖∇EK(v)‖2
L2(K) ≤ aK(v, v), this completes the proof.

Exercise 39.3 (Elliptic projection). Let us define the function δ ∈ H1(D) such that δ|K :=

u|K−EK(u) on all K ∈ Th. Recall that u ∈ H1+r(D), r > 1
2 , and that t := min(k+1, r). Owing to

the optimality property of the local elliptic projection and the approximation properties of Πk+1
K ,

we have
‖∇δ‖L2(K) ≤ ‖∇(u−Πk+1

K (u))‖L2(K) ≤ c htK |u|H1+t(K).

Using the triangle inequality, the approximation properties of Πk+1
K , a discrete trace inequality,

and the optimality property of the local elliptic projection, we infer that

h
1
2

K‖∇δ‖L2(∂K) ≤ h
1
2

K‖∇(u−Πk+1
K (u))‖L2(∂K) + h

1
2

K‖∇(EK(u)−Πk+1
K (u))‖L2(∂K)

≤ c
(
htK |u|H1+t(K) + ‖∇(EK(u)−Πk+1

K (u))‖L2(K)

)

≤ c
(
htK |u|H1+t(K) + 2‖∇(u−Πk+1

K (u))‖L2(K)

)

≤ c′ htK |u|H1+t(K).

Exercise 39.4 (Reconstruction). (i) For all q ∈ V k+1
K , since ∇V k+1

K ( V k
K , we have

(G(v̂K),∇q)L2(K) = −(vK ,∇·∇q)L2(K) + (v∂K ,nK ·∇q)L2(∂K)

= (∇R(v̂K),∇q)L2(K).

This proves that Π∇V k+1
K

G = ∇R.
(ii) Let v̂K ∈ V̂ kK . Recalling from Definition 14.10 the dofs of the Raviart–Thomas finite element,
we consider the function qv ∈ V k

K s.t.

(qv·νK , ζm ◦ T−1
F )L2(F ) = h−1

K (v∂K − vK , ζm ◦ T−1
F )L2(F ), ∀F ∈ FK ,

(qv,ψm ◦ T−1
K )L2(K) = (∇vK ,ψm ◦ T−1

K )L2(K),

where {ζm}m∈{1:nf
sh} is a basis of Pk,d−1 with nf

sh := dim(Pk,d−1) =
(
d+k−1
k

)
and {ψm}m∈{1:nc

sh
}

is a basis of PPPk−1,d with nc
sh := dim(Pk−1,d) =

(
d+k−1
k−1

)
. We observe that

(Grt(v̂K), qv)L2(K) = −(vK ,∇·qv)L2(K) + (v∂K ,nK ·qv)L2(∂K)

= (∇vK , qv)L2(K) − (vK − v∂K ,nK ·qv)L2(∂K)

= ‖∇vK‖2L2(K) + h−1
K ‖vK − v∂K‖2L2(∂K) = |v̂K |2V̂ kK .
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Using inverse inequalities shows that

‖qv‖L2(K) ≤ c
(
‖∇vK‖L2(K) + h−1

K ‖vK − v∂K‖L2(∂K)

)
= c |v̂K |V̂ kK .

The Cauchy–Schwarz inequality implies that

|v̂K |2V̂ kK = (Grt(v̂K), qv)L2(K) ≤ ‖Grt(v̂K)‖L2(K)‖qv‖L2(K)

≤ c ‖Grt(v̂K)‖L2(K)|v̂K |V̂ kK ,

whence the conclusion.

Exercise 39.5 (k = 0). (i) We enumerate the mesh vertices from 0 to N + 1. On a mesh cell
Ki := [xi, xi+1] of size hi, for all i ∈ {0:N}, the discrete unknowns are the real number ui := uKi
attached to the cell and the two real numbers u∂Ki := (λi, λi+1) attached to the two endpoints.
Recall that λ0 = λN+1 = 0 owing to the enforcement of the homogeneous Dirichlet condition. A
direct computation shows that d

dxR(ui, (λi, λi+1)) = h−1
i (λi+1 − λi) and that S(ui, (λi, λi+1)) =

ui− 1
2 (λi +λi+1) at both endpoints of Ki. The local discrete equations are for all v := (vi)i∈{0:N}

and all µ := (µi)i∈{0:N+1} with µ0 = µN+1 = 0,

∑

i∈{0:N}

(
h−1
i (λi+1 − λi)(µi+1 − µi)

+ 2h−1
i

(
ui −

1

2
(λi + λi+1)

)(
vi −

1

2
(µi + µi+1)

))
=

∑

i∈{0:N}
hif̄ivi,

where f̄i denotes the mean value of f over Ki. Taking first vi =
1
2 (µi + µi+1) for all i ∈ {0:N}

allows us to get rid of the stabilization term and leads to

h−1
i (λi+1 − λi)(µi+1 − µi) = hif̄i

1

2
(µi + µi+1).

This is the transmission problem identified in Proposition 39.10. The algebraic realization of this
problem is AΛ = F, where A is the tridiagonal matrix of order N with entries (−1, 2,−1), Λ ∈ RN
is the vector formed by the λi’s at the interior vertices, and F ∈ RN has components given by
Fi :=

1
2 (h

2
i−1f̄i−1 + h2i f̄i) for all i ∈ {1:N}. (Up to an aproximation of the right-hand side with

a quadrature, this linear system is the same as the one obtained using continuous P1 Lagrange
finite elements.) Once the λi’s have been computed, the cell unknowns ui are recovered by taking
arbitrary cell test functions and zero face test functions. This gives

ui =
1

2
h2i f̄i +

1

2
(λi + λi+1), ∀i ∈ {0:N}.

Finally, the local liftings are such that

Uλi,λi+1 =
1

2
(λi + λi+1), Uf|K =

1

2
h2i f̄i.

One can observe that d
dxR(Uλi,λi+1 , (λi, λi+1)) = h−1

i (λi+1−λi) and that S(Uλi,λi+1 , (λi, λi+1)) = 0.

(ii) Let v̂K ∈ V̂ 0
K . Thus, vK is constant on K and v∂K is piecewise constant on ∂K. Let us set

vF := v∂K|F for all F ∈ FK . For all q ∈ P1,d ◦ T−1
K with q(x) := qK +Gq·(x − xK) where xK is

the barycenter of K, we have

(∇R(v̂K),∇q)L2(K) = −(vK ,∆q)L2(K) + (v∂K ,nK ·∇q)
=
∑

F∈FK
|F |vFnK|F ·Gq.
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Since ∇R(v̂K) and Gq are constant in K, we conclude that

∇R(v̂K) =
∑

F∈FK

|F |
|K|vFnK|F .

Since
∑

F∈FK |F |nK|F = 0 (see (7.1)), we infer that

∇R(v̂K) =
∑

F∈FK

|F |
|K| (vF − vK)nK|F ,

and, finally, we obtain

R(v̂K)(x) = vK +
∑

F∈FK

|F |
|K| (vF − vK)nK|F ·(x− xK), ∀x ∈ K.

Furthermore, we have for all F ∈ FK ,

S(v̂K)|F = Π0
F (vK − vF + (I −Π0

k)R(v̂K)) = vK − vF −∇R(v̂K)·(xK − xF ),

since Π0
K(R(v̂K)) = vK and Π0

F (R(v̂K)) = vK +∇R(v̂K)·(xF − xK).

Exercise 39.6 (Transmission problem). (i) Let ŵh ∈ V̂ kh,0 and assume that uFh solves the
transmission problem (39.20). Setting ûK := (uK , u∂K) := (Uf|K , 0)+ (Uu∂K , u∂K) for all K ∈ Th,
we infer that

âK(ûK , ŵK)

= âK((Uf|K , 0) + (Uu∂K , u∂K), (wK − Uw∂K , 0)) + âK((Uf|K , 0) + (Uu∂K , u∂K), (Uw∂K , w∂K))

= âK((Uf|K , 0), (wK − Uw∂K , 0)) + ℓK(Uw∂K ) + âK((Uu∂K , u∂K), (Uw∂K , w∂K))− ℓK(Uw∂K )

= ℓK(wK) + âK((Uu∂K , u∂K), (Uw∂K , w∂K))− ℓK(Uw∂K ),

using that âK((Uu∂K , u∂K), (yK , 0)) = 0 for all yK ∈ V kK , a similar argument for (Uw∂K , w∂K)
together with the symmetry of âK , and the definition of Uf|K . Summing over K ∈ Th shows that

∑

K∈Th
âK(ûK , ŵK) =

∑

K∈Th
ℓK(wK),

i.e., ûh solves the global HHO problem (39.16).
(ii) Let us prove the forward statement. Assume that u is the weak solution, i.e., u ∈ H1

0 (D) and
a(u,w) = ℓ(w) for all w ∈ H1

0 (D). Let K ∈ Th. Let us now define λ by setting λ∂K := u|∂K for all
K ∈ Th. This definition makes sense, i.e., λ∂K is single-valued since u does not jump across the
interfaces (see Theorem 18.8). Moreover, λ ∈ Λ owing to the trace theorem (see Theorem 3.10).
Let ψ ∈ H1

0 (K) and let ψ̃ be the zero-extension of ψ to D. Since ψ̃ ∈ H1
0 (D), we infer that

a(u, ψ̃) = ℓ(ψ̃). The definition of Uf|K implies that

aK(u − Uf|K , ψ) = a(u, ψ̃)− aK(Uf|K , ψ) = ℓ(ψ̃)− ℓK(ψ) = 0.

Since (u − Uf|K )|∂K = λ∂K , the above identity together with the definition of Uλ∂K implies that
u|K −Uf|K = Uλ∂K . Let us now prove that (39.22) holds true. Let µ be a member of Λ. Using the

symmetry of aK , the fact that u|K − Uλ∂K ∈ H1
0 (K), and the definition of Uµ∂K , we infer that

aK(u− Uλ∂K , Uµ∂K ) = aK(Uµ∂K , u− Uλ∂K ) = 0.
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As a result, we have aK(u, Uµ∂K ) = aK(Uλ∂K , Uµ∂K ). Consider the function w defined by setting
w|K := Uµ∂K for all K ∈ Th. The restriction of w to K is in H1(K) for every K ∈ Th, the
jumps of w across the interfaces vanish by construction, and w vanishes at the boundary faces.
Theorem 18.8 implies that w ∈ H1

0 (D). Using that 0 = a(u,w)− ℓ(w), this implies that

0 =
∑

K∈Th

(
aK(u, Uµ∂K )− ℓK(Uµ∂K )

)
=
∑

K∈Th

(
aK(Uλ∂K , Uµ∂K )− ℓK(Uµ∂K )

)
,

thereby showing that Uλ∂K solves the global transmission problem (39.22).
Let us now prove the converse statement. Assume that λ solves (39.22). Set u := Uλ∂K +Uf|K

for all K ∈ Th. This implies that u|∂K = λ∂K . Let w ∈ H1
0 (D). Let K ∈ Th and set µ := w∂K .

Since w − Uµ ∈ H1
0 (K), we infer that

aK(u,w − Uµ)− ℓK(w − Uµ) = aK(Uλ∂K , w − Uµ) + aK(Uf|K , w − Uµ)− ℓK(w − Uµ)
= 0 + 0 = 0,

by definition of Uλ∂K and Uf|K . As a result, we have

aK(u,w)− ℓK(w) = aK(u, Uµ)− ℓK(Uµ) + aK(u,w − Uµ)− ℓK(w − Uµ)
= aK(u, Uµ)− ℓK(Uµ)

= aK(Uf|K , Uµ) + aK(Uλ∂K , Uµ)− ℓK(Uµ)

= aK(Uλ∂K , Uµ)− ℓK(Uµ),

since aK(Uf|K , Uµ) = aK(Uµ, Uf|K ) owing to the symmetry of aK , the definition of Uµ∂K , and the

fact that Uf|K ∈ H1
0 (K). Summing the above equality for all K ∈ Th, we infer that u is the weak

solution.
(iii) The global transmission problem (39.22) now consists of seeking λ ∈ Λ such that

∑

K∈Th
aK(Uλ∂K , U

∗
µ∂K

) =
∑

K∈Th
ℓK(U∗

µ∂K
), ∀µ ∈ Λ.

All the above arguments are readily adapted to this case.
(iv) Using that Uf|K ∈ H1

0 (K), −∆Uf|K = f|K , and −∆Uλ∂K = 0, we have

∑

K∈Th

(
aK(Uλ∂K , Uµ∂K )− ℓK(Uµ∂K )

)

=
∑

K∈Th

(
(∇Uλ,∇Uµ∂K )L2(K) − (f, Uµ∂K )L2(K)

)

=
∑

K∈Th

(
(nK ·∇Uλ, Uµ∂K )L2(∂K) + (∆Uf , Uµ∂K )L2(K)

)

=
∑

K∈Th

(
(nK ·∇(Uλ + Uf), Uµ∂K )L2(∂K) − (∇Uf ,∇Uµ∂K )L2(K)

)

=
∑

K∈Th
(∇u·nK , µ)L2(∂K) =

∑

F∈F◦
h

([[∇u]]F ·nF , µ)L2(F ).

Exercise 39.7 (HDG). Since (39.25) amounts to a square finite-dimensional linear system, it suf-
fices to prove that the only solution corresponding to zero data is the trivial one. Let (σTh , uTh , λFh)
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be one such solution. For all K ∈ Th, testing with τK := σK := σTh|K and wK := uK := uTh|K ,
and letting λ∂K := (λF )F∈FK , we infer that

(σK ,σK)L2(K) + (τ∂K(uK|∂K − λ∂K), uK|∂K − λ∂K)L2(∂K) = 0,

where we integrated by parts and used the expression (39.26) for the numerical flux trace φh.
This implies that the two terms on the left-hand side vanish. In particular, we obtain σK = 0.
Equation (39.25a) with σK := 0 and the fact that (τ∂K(uK|∂K − λ∂K), uK|∂K − λ∂K)L2(∂K) = 0
imply, by assumption, that uK and λ∂K are constant functions taking the same value. Reasoning
as we did in the argumentation above Lemma 39.8 and observing that λFh|F∂h = 0 by construction,
we conclude that uTh and λFh vanish.

Exercise 39.8 (Space Λ). (i) Let K̂ be the reference cell. Let µ̂ ∈ H 1
2 (∂K̂). Since the trace

map γg
∂K̂

is surjective, we have

ĉ1|µ̂|
H

1
2 (∂K̂)

≤ inf
v̂∈H1(K̂)
γg

∂K̂
(v̂)=µ̂

‖∇v̂‖2
L2(K̂)

≤ ‖∇Ûµ̂‖2L2(K̂)
,

where Ûµ̂ is the unique solution in H1(K̂) s.t.

γg
∂K̂

(Ûµ̂) = µ̂, (∇Ûµ̂,∇ψ̂)L2(K̂) = 0, ∀ψ̂ ∈ H1
0 (K̂).

Reasoning as in Proposition 31.12, i.e., invoking the stability of the Poisson problem with non-
homogeneous Dirichlet conditions, yields

‖∇Ûµ̂‖L2(K) ≤ ĉ2 |µ̂|H 1
2 (∂K̂)

.

Let now K ∈ Th and µ ∈ H 1
2 (∂K). Let us set µ̂ := µ◦TK|∂K̂. Using the transformation of Sobolev

seminorms by the pullback by the geometric mapping (see Lemma 11.7), we infer that

|µ|
H

1
2 (∂K)

≤ ĉ h
d−1
2 − 1

2

K |µ̂|
H

1
2 (∂K̂)

≤ ĉĉ−1
1 h

d
2−1

K ‖∇Ûµ̂‖L2(K̂).

Moreover, since Uµ ◦ TK ∈ H1(K̂) and γg
∂K̂

(Uµ ◦ TK) = µ̂, we infer using (9.8a) that

‖∇Ûµ̂‖L2(K̂) ≤ ‖∇(Uµ ◦ TK)‖
L2(K̂) = ‖JTK(∇Uµ) ◦ TK‖L2(K̂)

≤ |K̂|
1
2

|K| 12
‖JTK‖ℓ2‖∇Uµ‖L2(K) ≤ ĉ h1−

d
2

K ‖∇Uµ‖L2(K).

Hence, we have |µ|
H

1
2 (∂K)

≤ c‖∇Uµ‖L2(K), where c only depends on the regularity of the mesh

sequence. The proof of the converse bound uses similar arguments.
(ii) The only nontrivial property to verify in order to prove that ‖λ‖2Λ :=

∑
K∈Th |λ∂K |2H 1

2 (∂K)

defines a norm on Λ is that ‖λ‖Λ = 0 implies that λ = 0. Assuming that ‖λ‖Λ = 0, we infer that
λ∂K is constant for all K ∈ Th. Since λ|F∂h = 0, this implies that λ∂K is zero for all K ∈ Th having
at least one boundary face. We can then repeat the argument for cells having an interface with
those cells, and we can move inward and reach all the cells in Th by repeating the process a finite
number of times. This proves that λ = 0.

For all λ ∈ Λ, let Uλ : D → R be s.t. Uλ|K := Uλ∂K for all K ∈ Th, that is, we have
Uλ|K ∈ H1(K), aK(Uλ|K , φ) = 0 for all φ ∈ H1

0 (K), and γg∂K(Uλ) = λ∂K for all K ∈ Th. By
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definition of the space Λ, the lifting Uλ vanishes on all the boundary faces and is continuous across
all the mesh interfaces. Theorem 18.8 then implies that Uλ ∈ H1

0 (D). Consider now a Cauchy
sequence (λn)n∈N in Λ, and let us set Un := Uλn ∈ H1

0 (D) for all n ∈ N. Summing the result from
Step (i) over all the mesh cells, we infer that

c1 ‖Un‖H1
0 (D) ≤ ‖λn‖Λ ≤ c2 ‖Un‖H1

0(D), (39.1)

for all n ∈ N, with 0 < c1 ≤ c2, where we equipped the Hilbert space H1
0 (D) with the norm

‖v‖H1
0(D) := ‖∇v‖L2(D) owing to the Poincaré–Steklov inequality. The lower bound in (39.1)

implies that (Un)n∈N is a Cauchy sequence in H1
0 (D). Hence, there is U ∈ H1

0 (D) s.t. Un → U in
H1

0 (D) as n → ∞. The function λ ∈ L2(Fh) s.t. λ∂K := γg∂K(U) is in Λ since U has a zero trace
on the boundary faces. Moreover, the upper bound in (39.1) implies that λn → λ in Λ as n→∞.
This proves that Λ equipped with the norm ‖·‖Λ is a Hilbert space.

Exercise 39.9 (Liftings, 1D). (i) LetKi := [xi−1, xi] be a mesh cell. In 1D, we identifyH
1
2 (∂Ki)

with R2, and we write λ := (λi−1, λi)
T. Since (Uλ)

′′ = 0 in Ki, we infer that Uλ is affine in K.
Since Uλ(xi−1) = λi−1 and Uλ(xi) = λi, we infer that Uλ = (λi−1ϕi−1 + λiϕi)|Ki , where the ϕi’s
are the global shape functions in 1D. Inserting this expression into (39.22), we obtain the linear
system AX = B with Xi := λi. It remains to prove that λi = u(xi) for all i ∈ {1:I}. Since
f = −u′′, integration by parts leads to

Bi = −
∫ xi+1

xi−1

u′′ϕi ds =
∫ xi+1

xi−1

u′ϕ′
i ds =

1

h

∫ xi

xi−1

u′ ds− 1

h

∫ xi+1

xi

u′ ds.

Hence, Bi = −u(xi+1−u(xi)
h − u(xi−u(xi−1)

h . Using the matrix A, we infer that B = AŪ , where Ū
has components Ūi = u(xi). Hence, A(X− Ū) = 0, and since A is invertible, we infer that X = Ū ,
i.e., λi = u(xi) for all i ∈ {1:I}.
(ii) The functions {φm}m∈{1:k−1} are linearly independent. Moreover, φm is of degree (m + 1),
and φm(±1) = 0 since Lm(−1) = (−1)m and Lm(1) = 1. Hence, {φm}m∈{1:k−1} is a basis of P◦k.

Using the hint, we observe that
∫
K
φ′m(x)φ′l(x) dx = δkl. As a result, letting K̂ := [−1, 1], we infer

that for all p ∈ P◦k with p :=
∑

l∈{1:k−1} plφl,

∫

K̂

(Uf
|K̂
)′(x)p′(x) dx =

∑

m∈{1:k−1}

∫

K̂

∫

K̂

φ′m(x)φm(s)f(s)p′(x) ds dx

=
∑

m∈{1:k−1}

∑

l∈{1:k−1}
pl

∫

K̂

∫

K̂

φ′m(x)φm(s)f(s)φ′l(x) dxds

=
∑

m∈{1:k−1}

∑

l∈{1:k−1}
plδlm

∫

K̂

φm(s)f(s) ds =

∫

K̂

f(s)p(s) ds.

This proves that Uf
|K̂
(x) =

∫
K̂
G(x, s)f(s) ds. The expression for Uf|Ki in Ki is obtained by

applying the pullback by the map ψi(t) =
xi−1+xi

2 + th2 for all t ∈ [−1, 1]. We obtain Uf|Ki (x) =∫
Ki
Gi(x, s)f(s) ds with Gi(x, s) :=

xi−xi−1

2

∑
m∈{1:k−1}(φm ◦ ψ−1

i )(x)(φm ◦ ψ−1
i )(s).
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Chapter 40

Contrasted diffusivity (I)

Exercises

Exercise 40.1 (Normal flux). Let σ ∈ {τ ∈ Lp(K) | ∇·τ ∈ L2(K)}, p > 2. Let γd∂K(σ) ∈
H− 1

2 (∂K) be s.t. 〈γd∂K(σ), φ〉∂K :=
∫
K
σ·∇v(φ) dx +

∫
K
(∇·σ)v(φ) dx for all φ ∈ H 1

2 (∂K), where

v(φ) ∈ H1(K) is a lifting of φ, i.e., γg∂K(v(φ)) = φ (see (4.12)). Prove that 〈γd∂K(σ), φ〉∂K =∑
F∈FK 〈(σ·nK)|F , φ|F 〉F . (Hint : reason as in the proof of (40.18b).)

Exercise 40.2 (Bound on |v|♯). Prove that for all v ∈ Vs, |v|n♯ ≤ cλ
− 1

2

♭ (ℓ
d( 1

2− 1
p )

D ‖σ(v)‖Lp(D) +

ℓ
d( 2+d

2d − 1
q )

D ‖∇·σ(v)‖Lq(D)). (Hint : for the sum with Lp-norms, use Hölder’s inequality after observ-

ing that hdK ≤ c|K|, and for the sum with Lq norms, use that (
∑

K∈Th a
t
K)

1
t ≤ (

∑
K∈Th a

s
K)

1
s for

real numbers t ≥ s.)

Exercise 40.3 (Jump identity). Let F := ∂Kl∩∂Kr ∈ F◦
h . Let θl, θr ∈ [0, 1] be s.t. θl+θr = 1.

Set {a}θ := θlal + θrar and {a}θ̄ := θral + θlar. (i) Show that [[ab]] = {a}θ̄[[b]] + [[a]]{b}θ. (ii) Show
that [[ab]] = {a}θ[[b]] + [[a]]{b}θ̄.

Solution to exercises

Exercise 40.1 (Normal flux). Let φ ∈ H
1
2 (K) and let v(φ) ∈ H1(K) s.t. γg∂K(v(φ)) = φ.

Consider the mollification operators Kd
δ : L1(D)→ C∞(D) and Kb

δ : L1(D)→ C∞(D) introduced
in §23.1. Let us introduce the shorthand notation

Fδ(φ) :=
∑

F∈FK
〈(Kd

δ (σ)·nK)|F , φ|F 〉F .

Recalling (40.15), we have

Fδ(φ) =
∑

F∈FK

∫

K

(
Kd
δ (σ)·∇LKF (φ|F ) +∇·(Kd

δ (σ))L
K
F (φ|F )

)
dx,
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and invoking the commuting property (40.19), we infer that

Fδ(φ) =
∑

F∈FK

∫

K

(
Kd
δ (σ)·∇LKF (φ|F ) +Kb

δ (∇·σ))LKF (φ|F )
)
dx.

Therefore, we have

lim
δ→0
Fδ(φ) =

∑

F∈FK

∫

K

(
σ·∇LKF (φ|F ) + (∇·σ))LKF (φ|F )

)
dx

=
∑

F∈FK
〈(σ·nK)|F , φ|F 〉F .

Since Kd
δ (σ) is a smooth function, we also have

Fδ(φ) =
∑

F∈FK

∫

∂K

Kd
δ (σ)·nKLKF (φ|F ) ds

=

∫

∂K

Kd
δ (σ)·nKφds

=

∫

K

(
Kd
δ (σ)·∇v(φ) +∇·(Kd

δ (σ))v(φ)
)
dx

=

∫

K

(
Kd
δ (σ)·∇v(φ) +Kb

δ (∇·σ)v(φ)
)
dx.

We infer that

lim
δ→0
Fδ(φ) =

∫

K

(
σ·∇v(φ) + (∇·σ)v(φ)

)
dx,

and this concludes the proof.

Exercise 40.2 (Bound on |v|♯). Let us write

T1 :=

( ∑

K∈Th
h
2d( 1

2− 1
p )

K ‖σ(v)|K‖2Lp(K)

) 1
2

,

T2 :=

( ∑

K∈Th
h
2d( 2+d

2d − 1
q )

K ‖∇·σ(v)|K‖2Lq(K)

) 1
2

.

Concerning T1, the regularity of the mesh sequence and Hölder’s inequality with r := p
2 > 1 and

r′ := r
r−1 = p

p−2 imply that

T1 ≤ c
( ∑

K∈Th
|K|2( 1

2− 1
p )‖σ(v)|K‖2Lp(K)

) 1
2

= c

( ∑

K∈Th
|K| 1r′ ‖σ(v)|K‖2Lp(K)

) 1
2

≤ c
( ∑

K∈Th
|K|
) 1

2r′
( ∑

K∈Th
‖σ(v)|K‖pLp(K)

) 1
p

= c |D| 12− 1
p ‖σ(v)‖Lp(D) ≤ c ℓ

d(1
2− 1

p )

D ‖σ(v)‖Lp(D),
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where the last bound follows from |D| ≤ ℓdD. Moreover, since (
∑

K∈Th a
t
K)

1
t ≤ (

∑
K∈Th a

s
K)

1
s for

t ≥ s, and since q ≤ 2, we infer that

T2 ≤
( ∑

K∈Th
h
qd( 2+d

2d − 1
q )

K ‖∇·σ(v)|K‖qLq(K)

) 1
q

≤ ℓd(
2+d
2d − 1

q )

D ‖∇·σ(v)‖Lq(D),

where the last bound follows from 2+d
2d > 1

q and hK ≤ h ≤ ℓD for all K ∈ Th. In conclusion, we
have shown that

|v|n♯ ≤ c λ
− 1

2

♭

(
ℓ
d( 1

2− 1
p )

D ‖σ(v)‖Lp(D) + ℓ
d( 2+d

2d − 1
q )

D ‖∇·σ(v)‖Lq(D)

)
.

Exercise 40.3 (Jump identity). (i) We verify the statement

{a}θ̄[[b]] + [[a]]{b}θ = (θral + θlar)(bl − br) + (al − ar)(θlbl + θrbr)

= θralbl − θralbr + θlarbl − θlarbr + θlalbl + θralbr − θlarbl − θrarbr
= θralbl − θlarbr + θlalbl − θrarbr
= albl − arbr = [[ab]].

(ii) Switching a and b and using Step (i), we obtain

[[ab]] = [[ba]] = {b}θ̄[[a]] + [[b]]{a}θ = {a}θ[[b]] + [[a]]{b}θ̄.
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Chapter 41

Contrasted diffusivity (II)

Exercises

Exercise 41.1 (Conforming finite elements). Consider the approximation of (40.3) by con-
forming finite elements. Let V := H1

0 (D), Vh := P g
k,0(Th) ⊂ V, k ≥ 1, and consider the norm

‖v‖V := ‖λ 1
2∇v‖L2(D). Assume u ∈ H1+r(D), r > 0, and set t := min(r, k). Prove that there is

c, uniform w.r.t. λ, s.t. ‖u− uh‖V ≤ c(
∑

K∈Th λKh
2t
K |u|2H1+t(ŤK)

)
1
2 for all h ∈ H, where ŤK is the

collection of the mesh cells sharing at least a vertex with K, and that |u|H1+t(ŤK) can be replaced

by |u|H1+t(K) if 1 + t > d
2 .

Exercise 41.2 (dG). Prove the estimate (41.21).

Exercise 41.3 (HHO). (i) Prove (41.28a) (Hint : adapt the proof of (40.18a), i.e., use the
definition of the pairing 〈·, ·〉F together with the definition (39.2) for R). (ii) Prove (41.28b).
(Hint : adapt the proof of (40.18b). (iii) Prove the error bound (41.31). (Hint : see the proof
of (39.32) in Theorem 39.17.) (iv) Prove (41.32). (Hint : set ℓ = ⌈t⌉ and consider the elliptic
projection of degree ℓ, say EℓK , for all K ∈ Th.)

Solution to exercises

Exercise 41.1 (Conforming finite elements). Reasoning as in the proof of Céa’s lemma, we
infer that

‖u− uh‖V = inf
vh∈Vh

‖u− vh‖V .

We bound the infimum by taking vh := Ig,avh0 (u) of degree ℓ s.t. ℓ := ⌈t⌉. We can then invoke

Theorem 22.14 to conclude that ‖u − uh‖V ≤ c(
∑

K∈Th λKh
2t
K |u|2H1+t(ŤK)

)
1
2 . If 1 + t > d

2 , we

can take instead vh := Igh0(u) (the canonical interpolation operator with zero boundary trace) or
vh := ILh0(u) (the Lagrange interpolation operator with zero boundary trace). In both cases, we

obtain that ‖u− uh‖V ≤ c(
∑
K∈Th λKh

2t
K |u|2H1+t(K))

1
2 .
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Exercise 41.2 (dG). The definition of n♯ and the Cauchy–Schwarz inequality imply that

|n♯(vh, wh)| =
∣∣∣∣
∑

F∈Fh

∫

F

{σ(vh)}θ·nF [[wh]] ds
∣∣∣∣

≤
∑

F∈Fh
h

1
2

Fλ
− 1

2

F ‖{σ(vh)}θ·nF ‖L2(F ) × λ
1
2

Fh
− 1

2

F ‖[[wh]]‖L2(F )

≤
∑

F∈Fh

( ∑

K∈TF
|TF |θ2K,FλKλ−1

F hF ‖λ
1
2

K∇vh|K‖2L2(F )

) 1
2

× λ
1
2

Fh
− 1

2

F ‖[[wh]]‖L2(F ),

where we used that

‖{σ(vh)}θ·nF ‖2L2(F ) =

∫

F

∣∣∣∣
∑

K∈TF
θK,FλK∇vh|K ·nF

∣∣∣∣
2

ds

≤
∑

K∈TF
|TF |θ2K,Fλ2K

∫

F

‖∇vh|K‖2ℓ2 ds

=
∑

K∈TF
|TF |θ2K,FλK‖λ

1
2

K∇vh|K‖2L2(F ).

Using that θK,F ≤ θ
1
2

K,F (since θK,F ≤ 1) and that |TF |θK,FλKλ−1
F = 1, together with the inverse

inequality hF ‖∇vh|K‖2L2(F ) ≤ c2dt‖∇vh|K‖2L2(K), and invoking the Cauchy–Schwarz inequality, we
obtain

|n♯(vh, wh)| ≤ cdt
( ∑

F∈Fh

∑

K∈TF
‖λ

1
2

K∇vh|K‖2L2(K)

) 1
2

×
( ∑

F∈Fh
λFh

−1
F ‖[[wh]]‖2L2(F )

) 1
2

.

Since
∑

F∈Fh
∑
K∈TF (·) =

∑
K∈Th

∑
F∈FK (·) and card(FK) ≤ n∂ , we conclude that

|n♯(vh, wh)| ≤ cdtn
1
2

∂ ‖λ
1
2∇hvh‖L2(D)

( ∑

F∈Fh
λFh

−1
F ‖[[wh]]‖2L2(F )

) 1
2

.

Exercise 41.3 (HHO). (i) Let vh ∈ P b
k+1(Th) and ŵh ∈ V̂ kh,0. Since the restriction of σ(vh)

to each mesh cell is smooth and since the trace on ∂K of the face-to-cell lifting operator LKF is
nonzero only on F for all F ∈ FK , we have

〈(σ(vh)·nK)|F , (wK − w∂K)|F 〉F =

∫

K

σ(vh)|K ·∇LKF ((wK − w∂K)|F )

+ (∇·σ(vh)|K)LKF ((wK − w∂K)|F )
)
dx

=

∫

∂K

σ(vh)|K ·nKLKF ((wK − w∂K)|F ) ds

=

∫

F

σ(vh)|K ·nK(wK − w∂K) ds,
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where we used the divergence formula in K. Therefore, we obtain

n♯(vh, ŵh) =
∑

K∈Th

∫

∂K

σ(vh)|K ·nK(wK − w∂K) ds

= −
∑

K∈Th
λK

∫

∂K

∇vh|K ·nK(wK − w∂K) ds

=
∑

K∈Th
λK

∫

K

(
∇vh|K ·∇(R(ŵK)− wK)

)
dx,

where we used the definition (39.2) of the local reconstruction operator R with the test function
vh|K ∈ Pk,d ⊂ V k+1

K .

(ii) Let us now prove (41.28b). Let v ∈ Vs and ŵh ∈ V̂ kh,0. We are going to proceed as in the proof

of (40.18b). We consider the mollification operators Kd
δ : L1(D) → C∞(D) and Kb

δ : L1(D) →
C∞(D) introduced in §23.1. Let us consider the mollified bilinear form

n♯δ(v, ŵh) :=
∑

K∈Th

∑

F∈FK
〈(Kd

δ (σ(v))·nK)|F , (wK − w∂K)|F 〉F .

By using (40.15) and invoking the approximation properties of the mollification operators and the
commuting property (40.19), we infer that limδ→0 n♯δ(v, ŵh) = n♯(v, ŵh). Since the restriction of
Kd
δ (σ(v)) to each mesh cell is smooth and since Kd

δ (σ(v)) ∈ C0(D), we infer that

n♯δ(v, ŵh) =
∑

K∈Th

∫

∂K

Kd
δ (σ(v))·nK(wK − w∂K) ds

=
∑

K∈Th

∫

∂K

Kd
δ (σ(v))·nKwK ds

=
∑

K∈Th

∫

K

(
Kd
δ (σ(v))·∇wK +Kb

δ (∇·σ(v))wK
)
dx,

where we used the divergence formula and the commuting property (40.19) in the last line. Letting
δ → 0, we conclude that n♯δ(v, ŵh) also tends to the right-hand side of (41.28b) as δ → 0. Hence,
(41.28b) holds true.

(iii) Let us set ζ̂kh := Îkh(u) − ûh ∈ V̂ kh,0. The coercivity of âh on V̂ kh,0 and the definition of the
consistency error imply that

α ‖ζ̂kh‖2V̂ kh,0 ≤ âh(ζ̂
k
h , ζ̂

k
h) = −〈δh(Îkh(u)), ζ̂kh〉(V̂ kh,0)′,V̂ kh,0 ,

so that âh(ζ̂
k
h , ζ̂

k
h) ≤ α−1‖δh(Îkh(u))‖2(V̂ kh,0)′ . The consistency/boundedness property from Lemma 41.16

yields
âh(ζ̂

k
h , ζ̂

k
h) ≤ c ‖u− Ek+1

h (u)‖2V♯ .

Recalling that uK := uTh|K , u∂K := uFh|∂K , the definitions of âh and of ζ̂kh imply that

∑

K∈Th
λK‖∇R(ÎkK(u)− ûK)‖2L2(K) ≤ c ‖u− Ek+1

h (u)‖2V♯ .

Since R(ÎkK(u)) = EK(u) for all K ∈ Th, we have

u− R(ûK) = (u − EK(u)) + R(ÎkK(u)− ûK).
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Thus, the estimate (41.31) follows from the triangle inequality and the fact that

∑

K∈Th
λK‖∇(u− EK(u))‖2L2(K) ≤ ‖u− Ek+1

h (u)‖2V♯ .

(iv) Let us set ηk+1 := u−Ek+1
h (u). We need to bound ‖ηk+1‖V♯ = |ηk+1|λ,p,q. Recalling (41.11), we

need to estimate the terms ‖∇(ηk+1
|K )‖L2(K), h

d( 1
2− 1

p )

K ‖∇(ηk+1
|K )‖Lp(K), and h

d( d+2
2d − 1

q )

K ‖∆(ηk+1
|K )‖Lq(K).

We have seen in Exercise 39.3 that

‖∇(ηk+1
|K )‖L2(K) ≤ c htK |u|H1+t(K), t := min(r, k + 1).

Let us now consider the other two terms. Let ℓ := ⌈t⌉, so that ℓ ≤ k + 1 and ℓ ≤ 1 + t. Let us set
ηℓ := u − Eℓh(u). Note that we also have ‖∇(ηℓ|K)‖L2(K) ≤ chtK |u|H1+t(K). Invoking the triangle
inequality, an inverse inequality, and the triangle inequality again, we infer that

h
d( 1

2− 1
p )

K ‖∇(ηk+1
|K )‖Lp(K) ≤ h

d( 1
2− 1

p )

K ‖∇(ηℓ|K)‖Lp(K) + c
(
‖∇(ηk+1

|K )‖L2(K) + ‖∇(ηℓ|K)‖L2(K)

)
,

and the two terms between the parentheses are bounded by chtK |u|H1+t(K). Moreover, invok-
ing (41.16), we obtain

h
d( 1

2− 1
p )

K ‖∇(ηℓ|K)‖Lp(K) ≤ c
(
‖∇(ηℓ|K)‖L2(K) + htK |∇(ηℓ|K)|Ht(K)

)

= c
(
‖∇(ηℓ|K)‖L2(K) + htK |u|H1+t(K)

)

≤ c′htK |u|H1+t(K),

since t ≤ ℓ. Similarly, we have

h
d(d+2

2d − 1
q )

K ‖∆(ηk+1
|K )‖Lq(K) ≤ h

d(d+2
2d − 1

q )

K ‖∆(ηℓ|K)‖Lq(K) + c
(
‖∇(ηk+1

|K )‖L2(K) + ‖∇(ηℓ|K)‖L2(K)

)
.

It remains to estimate h
d(d+2

2d − 1
q )

K ‖∆(ηℓ|K)‖Lq(K). We proceed as in the end of the proof of Theo-

rem 41.8. If t ≤ 1 (so that χt = 1), we have ℓ = 1, and we infer that

h
d(d+2

2d − 1
q )

K ‖∆(ηℓ|K)‖Lq(K) = λ−1
K h

d(d+2
2d − 1

q )

K ‖f‖Lq(K).

Otherwise, we have t > 1 (so that χt = 0) and ℓ ≥ 2, and we take q = 2. Then, using the triangle
inequality, an inverse inequality, and the triangle inequality again, we obtain

hK‖∆(ηℓ|K)‖Lq(K) ≤ hK‖∆(u−ΠℓK(u)‖Lq(K) + c
(
‖∇(u−ΠℓK(u))‖L2(K) + ‖∇(ηℓ|K)‖L2(K)

)
.

We conclude by invoking the approximation properties of ΠℓK (the L2-orthogonal projection onto
Pℓ,d) and since ‖∇(ηℓ|K)‖L2(K) ≤ chtK |u|H1+t(K).
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Linear elasticity

Exercises

Exercise 42.1 (Compliance). (i) Let s(e) be defined in (42.3) (i.e., s(e) := 2µe+λtr(e)Id) and
let A be the fourth order tensor s.t. s(e) = Ae. Verify that A is symmetric positive definite. (Hint :

compute the quadratic form Ae:f.) Compute A
1
2
e. (Hint : find α, β ∈ R s.t. A

1
2
e = αe+β tr(e)I.)

(ii) Invert (42.3), i.e., express e as a function of s (the fourth-order tensor C s.t. e = Cs is
called compliance tensor). (Hint : compute first tr(s).) Compute e:s in terms of s′ and tr(s)
where t′ := t − 1

3 tr(t)I is the deviatoric (i.e., trace-free) part of the tensor t. (iii) Consider the
Hellinger–Reissner functional LHR(t,v) :=

∫
D
( 1
4µt

′:t′ + 1
18κ tr(t)2 + (∇·t)·v − f ·v) dx on H × V

where H := {t ∈ L2(D) | t = t

T,∇·t ∈ L2(D)} and V := L2(D). Find the equations (in weak
form) satisfied by a critical point (s,u) of LHR. Verify that (s,u) satisfies (42.1) and (42.3) a.e.
in D. (Hint : use a density argument.)

Exercise 42.2 (Second-order system). (i) Find matrices Ajk ∈ Rd×d for all j, k ∈ {1:d}
s.t. ∇·s(u) =

∑
j,k ∂j(A

jk∂ku). (Hint : verify that
∑

j,k ∂j(λ(ej ⊗ ek)∂ku) = ∇(λ∇·u) and∑
j,k ∂j(µ(ek ⊗ ej)∂ku) = ∇·(µ∇uT) where (ej)j∈{1:d} is the canonical basis of Rd.) (ii) Verify

that (Ajk)T = Akj . What is the consequence on the bilinear form a(v,w) :=
∫
D ∂jw

TAjk∂kv dx?

Exercise 42.3 (Pure traction). The pure traction problem is ∇·s(u)+f = 0 in D and s(u)·n =
g on ∂D. (i) Write a weak formulation in H1(D). (ii) Show that it is necessary that

∫
D f ·r dx+∫

∂D
g·r ds = 0 for a weak solution to exist. (iii) Assume that r ∈ R satisfies

∫
D
r dx = 0 and∫

D∇×r dx = 0. Show that r = 0. (iv) Let V := {v ∈ H1(D) |
∫
D v dx = 0,

∫
D∇×v dx = 0}.

Show that the weak formulation is well-posed in V .

Exercise 42.4 (Timoshenko beam). Consider a horizontal beam D := (0, L) clamped at x = 0
and subjected to a (vertical) force distribution f and to a bending moment distribution m. A
(vertical) shear force F and a bending moment M are applied at x = L. The unknowns are the
vertical displacement u and the rotation angle of the transverse section θ s.t. −(u′′ − θ′) = γ

EI f
and −γθ′′− (u′− θ) = γ

EIm in D, where E is the Young modulus, I is the area moment of inertia,

and γ := 2(1+ν)I
Sκ (S is the cross section area and κ is an empirical correction factor usually set

to 5
6 ). The boundary conditions are u(0) = 0, θ(0) = 0, (u′ − θ)(L) = γ

EIF , and θ
′(L) = 1

EIM .
(i) Assuming f,m ∈ L2(D), write a weak formulation for the pair (u, θ) in Y := X × X with
X := {v ∈ H1(D) | v(0) = 0}. (ii) Prove the well-posedness of the weak formulation. (Hint : use
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that 2
∫
D
θu′ dx ≤ µ‖θ‖2L2(D) +

1
µ |u|2H1(D) with µ sufficiently close to 1 and the Poincaré–Steklov

inequality.) (iii) Write anH1-conforming finite element approximation and deriveH1- and L2-error
estimates for u and θ.

Exercise 42.5 (HHO). (i) Prove (42.25). (ii) Prove Lemma 42.20. (Hint : see Lemma 39.2 and
use the local Korn inequality ‖v‖L2(K) ≤ chK‖e(v)‖L2(K) for all v ∈ H1(K) s.t. (v, r)L2(K) = 0
for all r ∈ RK ; see Horgan [28], Kim [32].) (iii) Prove Lemma 42.21. (Hint : adapt the proof of
Lemma 39.16.)

Solution to exercises

Exercise 42.1 (Compliance). (i) We have

Ae:f = (2µe+ λ tr(e)I):f = 2µe:f + λ tr(e) tr(f).

This expression is symmetric in e and f. Reasoning as in the proof of Theorem 42.11, we also have

Ae:e = 2µe:e+ λ tr(e)2 ≥ min(2µ, 3κ)e:e,

where µ and κ are bounded from below away from zero. Hence, Ae:e ≥ 0 and Ae:e = 0 implies
that e is zero. Using the ansatz A

1
2
e = αe + β tr(e)I and recalling that d = 3, we have

Ae:e = A
1
2
e:A

1
2
e = α2

e:e+ (2αβ + 3β2) tr(e)2.

We identify the coefficients with the above expression of Ae:e and infer that

α2 = 2µ, 3β2 + 2αβ = λ.

Hence, α =
√
2µ and β = 1

3 (
√
3κ−√2µ).

(ii) Taking the trace of (42.3), we infer that

tr(s) = (2µ+ 3λ) tr(e) = 3κ tr(e).

Since κ > 0 by assumption, we have tr(e) = 1
3κ tr(s), so that s = 2µe+ λ

3κ tr(s)I. Since µ > 0 by
assumption, we conclude that

e =
1

2µ

(
s− λ

3κ
tr(s)I

)
.

Introducing the deviatoric part of s, i.e., s′ := s− 1
3 tr(s)I, we have

2µe = s

′ +
2µ

9κ
tr(s)I.

Since s′:I = tr(s′) = 0 and I:I = 3, we obtain

e:s =
1

2µ
s

′:s′ +
1

9κ
tr(s)2.

(iii) The Fréchet derivative of the functional LHR at a critical point (s,u) is s.t.

∂
t

LHR(s,u)(h) =

∫

D

(
1
2µs

′:h′ + 1
9κ tr(s) tr(h) + (∇·h)·u

)
dx,

∂vLHR(s,u)(g) =

∫

D

(∇·s− f)·g dx,
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for all (h, g) ∈ H× V . In the first equation, we observe that

1

2µ
s

′:h′ +
1

9κ
tr(s) tr(h) =

1

2µ
s

′:h+
1

9κ
tr(s) tr(h)

=
1

2µ
(s− 1

3
tr(s)I):h+

1

9κ
tr(s)I:h

=
1

2µ

(
s− λ

3κ
tr(s)I

)
:h.

Taking h to be smooth and compactly supported in D, and recalling that h takes symmetric values
so that

∫
D
(∇·h)·u = −

∫
D
e(u):h dx (in the weak sense), we infer that

1

2µ

(
s− λ

3κ
tr(s)I

)
= e(u).

Step (ii) shows that if (s,u) is a critical point of LHR, then (s,u) satisfies the constitutive rela-
tion (42.3) a.e. in D. Finally, that the equilibrium condition (42.1) is satisfied a.e. in D follows by
taking g to be smooth and compactly supported in D.

Exercise 42.2 (Second-order system). (i) To verify the hint, we observe that

∑

j,k

∂j(λ(ej ⊗ ek)∂ku) =
∑

j,k

∂j(λej∂kuk) =
∑

j

∂j(λej∇·u) = ∇(λ∇·u),

and that ∑

j,k

∂j(µ(ek ⊗ ej)∂ku) =
∑

j,k

∂j(µek∂kuj) = ∇·(µ∇uT).

Furthermore, we have
∑
j,k ∂j(µδjkI∂ku) = ∇·(µ∇u). We conclude that

Ajk = µδjkI+ µek ⊗ ej + λej ⊗ ek.

(ii) It is clear that (Ajk)T = Akj . This implies that the bilinear form a(v,w) :=
∫
D ∂jw

TAjk∂kv dx
is symmetric.

Exercise 42.3 (Pure traction). (i) Le v be a smooth test function. By proceeding as in §42.2.1,
we obtain {

Find u ∈H1(D) such that

a(u,w) =
∫
D
f ·w dx+

∫
∂D
g·w ds, ∀w ∈H1(D),

where a(v,w) =
∫
D

(
2µe(v):e(w) + λ(∇·v)(∇·w)

)
dx.

(ii) Observe first e(r) = 0 and∇·r = 0 for all r ∈ R. Assume that the above problem has a solution
u ∈H1(D). Using test functions inR ⊂H1(D), we infer that 0 = a(u, r) =

∫
D
f ·r dx+

∫
∂D
g·r ds

for all r ∈ R. Hence, it is necessary that the volume and surface loads f and g satisfy the above
compatibility equation for a weak solution to exist in H1(D).
(iii) Let r = α + β×x ∈ R and assume that

∫
D
r dx = 0 and

∫
D
∇×r dx = 0. Observing that

∇×r = 2β, the condition
∫
D∇×r dx = 0 implies that β = 0. The condition

∫
D r dx = α

∫
D dx =

0 implies that α = 0. In conclusion, r = 0.
(iv) Let V := {v ∈H1(D) |

∫
D
v dx = 0,

∫
D
∇×v dx = 0} and consider the weak problem: Find

u ∈ V such that a(u,w) =
∫
D f ·w dx +

∫
∂D g·w ds for all w ∈ V . The well-posedness of this

problem is established by proceeding as in the proof of Theorem 42.11. The boundedness of a
and of the right-hand side is evident. To prove the coercivity of the bilinear form a, we use that
V ∩R = {0} and apply Korn’s second inequality (see (42.14)).
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Exercise 42.4 (Timoshenko beam). (i) Let v be a test function for the normal displacement,
and let ω be a test function for the rotation angle. Multiplying the first equation by v, the second
by ω, and integrating by parts over D, we obtain a((u, θ), (v, ω)) = ℓ(v, ω) with

a((u, θ), (v, ω)) :=

∫

D

γθ′ω′ dx+

∫

D

(u′ − θ)(v′ − ω) dx,

ℓ(v, ω) :=
γ

EI

(∫

D

(fv +mω) dx+ Fv(L) +Mω(L)

)
.

To make sense of the above integrals, we introduce the Hilbert space X := {v ∈ H1(D) | v(0) =
0}, and we equip the product space X×X with the norm ‖(u, θ)‖X×X := |u|H1(D) + L|θ|H1(D).
Then, one possible weak formulation of the problem is as follows: Find (u, θ) ∈ X×X such that
a((u, θ), (v, ω)) = ℓ(v, ω) for all (v, ω) ∈ X×X.
(ii) The boundedness of a and ℓ is an application of the Cauchy–Schwarz inequality. Let us prove
the coercivity of a. A straightforward calculation yields

a
(
(u, θ), (u, θ)

)
=

∫

D

γ|θ′|2 dx+

∫

D

|u′|2 dx+

∫

D

θ2 dx− 2

∫

D

θu′ dx.

Let µ > 0. Using the arithmetic-geometric inequality (C.5) with parameter µ, together with the
Poincaré–Steklov inequality Cps‖v‖L2(D) ≤ L‖v′‖L2(D) valid for all v ∈ X, we obtain (with the
nondimensional number γ̃ = L−2γ)

a
(
(u, θ), (u, θ)

)
≥ γ|θ|2H1(D) + |u|2H1(D) + ‖θ‖2L2(D) − µ‖θ‖2L2(D) −

1

µ
|u|2H1(D)

≥
(
1− 1

µ

)
|u|2H1(D) +

γ

2
|θ|2H1(D) +

(
γ̃

2
C2

ps + 1− µ
)
‖θ‖2L2(D).

Taking µ := 1 + γ̃
2C

2
ps yields

a
(
(u, θ), (u, θ)

)
≥

γ̃
2C

2
ps

1 + γ̃
2C

2
ps

|u|2H1(D) +
γ̃

2
L2|θ|2H1(D) ≥ α(γ̃)‖(u, θ)‖2X×X ,

with α(γ̃) := γ̃
2 inf

(
1, C2

ps/(1 + γ̃
2C

2
ps)
)
> 0. This proves that a is coercive since γ > 0. Owing

to the Lax–Milgram lemma, we infer the well-posedness of the weak formulation. Since the weak
solution (u, θ) ∈ X×X satisfies both PDEs in L2(D), we have u′′ = θ′ − γ

EI f and θ′′ = − 1
γ (u

′ −
θ)− 1

EIm, which immediately shows that both u and θ are in H2(D). Finally, since a is symmetric,
Proposition 25.8 shows that (u, θ) = arg inf(v,ω)∈Y E(v, ω) with

E(v, ω) :=

∫

D

1

2
(γ|ω′|2 + |v′ − ω|2) dx− γ

EI

(∫

D

(fv +mω) dx+ Fv(L) +Mω(L)

)
.

(iii) Let Th be a mesh of D with vertices 0 =: x0 < x1 < . . . < xI < xI+1 := L with I ∈ N. We
construct an H1-conforming approximation space by using Pk Lagrange finite elements for both u
and θ and by setting

Xh := {vh ∈ C0(D) | vh|[xi,xi+1] ∈ Pk, ∀i ∈ {0:I}, vh(0) = 0}.
The discrete problem consists of seeking (uh, θh) ∈ Xh×Xh such that a((uh, θh), (vh, ωh)) =
ℓ(vh, ωh) for all (vh, ωh) ∈ Xh×Xh. Assuming that u, θ ∈ H1+r(D), r ∈ {1:k}, and using Céa’s
lemma, we infer that

|u− uh|H1(D) + L|θ − θh|H1(D) ≤ c hr(|u|H1+r(D) + L|θ|H1+r(D)).
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We can also apply the Aubin–Nitsche Lemma since the elliptic regularity theory leads to the pickup
index s = 1. This yields

‖u− uh‖L2(D) + L‖θ− θh‖L2(D) ≤ c h1+r(|u|H1+r(D) + L|θ|H1+r(D)).

Exercise 42.5 (HHO). (i) For all q ∈ V kK , integrating by parts in (42.24), we have

(D(ÎkK(v)), q)L2(K) = −(ΠkK(v),∇q)L2(K) + (Πk∂K(v∂K), qnK)L2(K)

= −(v,∇q)L2(K) + (v∂K , qnK)L2(K) = (∇·v, q)L2(K),

since ∇q ∈ V k
K and qnK ∈ V k

∂K . Since D(ÎkK(v)) ∈ V kK by definition of D, we conclude that (42.25)
holds true.
(ii) The only difference with the proof of Lemma 39.2 is that instead of the local Poincaré–Steklov
inequality in K, we invoke the local Korn inequality mentioned in the hint, i.e.,, ‖v‖L2(K) ≤
chK‖e(v)‖L2(K) for all v ∈ H1(K) s.t. (v, r)L2(K) = 0 for all r ∈ RK . The assumption k ≥ 1 is

used here to prove that ((I −ΠkK)R(v̂K), r)L2(K) = 0 for all r ∈ RK ⊂ PPP1,d ◦ T−1
K .

(iii) The proof is similar to that of Lemma 39.16 for scalar elliptic PDEs. We obtain

〈δI(u), ŵh〉(V̂ k
h,0)

′,V̂ k
h,0

= −
∑

K∈Th

(
T1,K + T2,K + T3,K

)
,

where

T1,K := µ(e(u − EK(u))nK ,wK −w∂K)L2(∂K),

T2,K := λ(∇·u− D(ÎkK(u)),wK −w∂K)L2(∂K),

T3,K := µh−1
K (S(ÎkK(u)), S(ŵK))L2(∂K).

The first and third terms are similar to those obtained in Lemma 39.16 and are estimated in the
same manner, the only difference being that we invoke Korn’s inequality in each cellK ∈ Th instead
of the Poincaré–Steklov inequality when estimating T3,K . The term T2,K is rewritten using the
commuting property (42.25) and is bounded by using the Cauchy–Schwarz inequality.
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Chapter 43

Maxwell’s equations:
H(curl)-approximation

Exercises

Exercise 43.1 (Compactness). Let D := (0, 1)3 be the unit cube in R3. Show that the em-
bedding H0(curl;D) →֒ L2(D) is not compact. (Hint : consider vn := ∇φn with φn(x1, x2, x3) :=
1
nπ sin(nπx1) sin(nπx2) sin(nπx3), n ≥ 1, and prove first that (vn)n≥1 weakly converges to zero in
L2(D) (see Definition C.28), then compute ‖vn‖L2(D) and argue by contradiction.)

Exercise 43.2 (Curl). (i) Let v be a smooth field. Show that ‖∇×v‖2ℓ2 ≤ 2∇v:∇v. (Hint :
relate ∇×v to the components of (∇v − ∇vT).) (ii) Show that ‖∇×v‖L2(D) ≤ |v|H1(D) for all
v ∈H1

0 (D). (Hint : use an integration by parts.)

Exercise 43.3 (Property (43.12)). Prove the claim in Example 43.2, i.e., for [θmin, θmax] ⊂
(−π, π) with δ := θmax − θmin < π, letting θ := − 1

2 (θmin + θmax)
π

2π−δ , prove that θ ∈ (−π2 , π2 ) and
[θmin + θ, θmax + θ] ⊂ (−π2 , π2 ).
Exercise 43.4 (Dirichlet/Neumann). Let v be a smooth vector field inD such that v|∂Dd

×n =
0. Prove that (∇×v)|∂Dd

·n = 0. (Hint : compute
∫
D
(∇×v)·∇q dx with q well chosen.)

Solution to exercises

Exercise 43.1 (Compactness). Let vn := ∇φn with

φn(x1, x2, x3) :=
1

nπ
sin(nπx1) sin(nπx2) sin(nπx3), n ≥ 1.

Clearly, vn ∈ C∞(D) and vn|∂D×n = 0. Hence, vn ∈H0(curl;D). Observe also that ‖vn‖L2(D) =

(38 )
1
2 and ∇×vn = 0. Hence, ‖vn‖H(curl;D) = (38 )

1
2 , which means that the sequence (vn)n≥1 is

bounded in H0(curl;D). Let us prove that the sequence (vn)n≥1 converges weakly to zero in
L2(D). For all φ ∈ C∞

0 (D), we have

(vn,φ)L2(D) = −(φn,∇·φ)L2(D) → 0 as n→∞.
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Let now w ∈ L2(D). Owing to Theorem 1.38, for all ǫ > 0, there is φ ∈ L2(D) s.t. ‖w −
φ‖L2(D) ≤ ǫ. Writing (vn,w)L2(D) = (vn,φ)L2(D) + (vn,w − φ)L2(D) and using the Cauchy–

Schwarz inequality to bound the second term, we infer that lim supn→∞ |(vn,w)L2(D)| ≤ (38 )
1
2 ǫ,

and since ǫ > 0 is arbitrary, we conclude that limn→∞(vn,w)L2(D) = 0. We have thus shown that
the sequence (vn)n≥1 converges weakly to zero in L2(D). We can now prove that the embedding
H0(curl;D) →֒ L2(D) is not compact. Indeed, if the embedding were compact, there would exist
a subsequence (vnk)k≥1 strongly converging to some v ∈ L2(D), but strong convergence implies

weak convergence so that v = 0, and ‖vnk‖L2(D) = (38 )
1
2 with strong convergence would also imply

‖v‖L2(D) = (38 )
1
2 > 0, which is a contradiction.

Exercise 43.2 (Curl). (i) We have

‖∇×v‖2ℓ2 =
1

2
(∇v −∇vT):(∇v −∇vT) = ∇v:∇v −∇v:∇vT ≤ 2∇v:∇v,

where the last bound follows from the Cauchy–Schwarz inequality.
(ii) Let v ∈H1

0 (D). The above identity shows that ‖∇×v‖2L2(D) = |v|2H1(D)−(∇v,∇vT)L2(D). Us-

ing that v vanishes at the boundary, integration by parts shows that (∇v,∇vT)L2(D) = ‖∇·v‖2L2(D).

This in turn implies that ‖∇×v‖2
L2(D) ≤ |v|2H1(D) for all v ∈H1

0 (D).

Exercise 43.3 (Property (43.12)). Let us set m := 1
2 (θmin + θmax). We have the following

equivalences:

• θ < π
2 iff −2m < 2π − δ iff −θmin < π which holds true by assumption;

• θ > −π2 iff 2m < 2π − δ iff θmax < π which holds true by assumption;

• θmax+ θ < π
2 iff δ

2 +m π−δ
2π−δ <

π
2 iff m < 2π− δ iff θmax < π which holds true by assumption;

• θmin + θ > −π2 iff − δ2 +m π−δ
2π−δ > −π2 iff −2m < 2π − δ iff −θmin < π which holds true by

assumption.

Exercise 43.4 (Dirichlet/Neumann). Let α ∈ H̃
1
2 (∂Dd), which means that α ∈ H

1
2 (∂Dd)

and that the zero extension of α over ∂D is in H
1
2 (∂D). Let q ∈ H1(D) be the solution to the

following problem
∆q = 0, q|∂Dd

= α, q|∂Dn
= 0.

We infer that
∫

D

∇×v·∇q dx = −
∫

∂D

(v×n)·∇q ds = −
∫

∂Dn

v·(n×∇q) ds.

Observe that n×∇q|∂Dn
= 0 since q|∂Dn

= 0. Hence, we have

0 =

∫

D

∇×v·∇q dx =

∫

∂D

(∇×v·n)q ds =
∫

∂Dd

(∇×v·n)α ds.

Since this is true for every α ∈ H̃ 1
2 (∂Dd), this means that (∇×v)|∂Dd

·n = 0.
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Maxwell’s equations: control on
the divergence

Exercises

Exercise 44.1 (Gradient). Let φ ∈ H1
0 (D). Prove that ∇φ ∈H0(curl;D)

Exercise 44.2 (Vector potential). Let v ∈ L2(D) with (νv,∇mh)L2(D) = 0 for all mh ∈Mh0.
Prove that (νv,wh)L2(D) = (∇×zh,∇×wh)L2(D) for all wh ∈ Vh0, where zh solves a curl-curl
problem on Xh0ν .

Exercise 44.3 (Neumann condition). Recall Remark 44.10. Assume that D is simply con-
nected so that there is Ĉps > 0 such that Ĉpsℓ

−1
D ‖b‖L2(D) ≤ ‖∇×b‖L2(D) for all b ∈ X∗ν . Prove

that there is Ĉ′
ps > 0 such that Ĉ′

psℓ
−1
D |bh‖L2(D) ≤ ‖∇×bh‖L2(D) for all bh ∈ Xh∗ν . (Hint : adapt

the proof of Theorem 44.6 using J c
h .)

Exercise 44.4 (Discrete Poincaré–Steklov for ∇·). Let ν be as in §44.1.1. Let Y0ν := {v ∈
H0(div;D) | (νv,∇×φ)L2(D) = 0, ∀φ ∈ H0(curl;D)} and accept as a fact that there is Ĉps > 0

such that Ĉpsℓ
−1
D ‖v‖L2(D) ≤ ‖∇·v‖L2(D) for all v ∈ Y0ν . Let k ≥ 0 and consider the discrete

space Yh0ν := {vh ∈ P d
k,0(Th) | (νvh,∇×φh)L2(D) = 0, ∀φh ∈ P c

k,0(Th;C)}. Prove that there is

Ĉ′
ps > 0 such that Ĉ′

ps‖vh‖L2(D) ≤ ℓD‖∇·vh‖L2(D) for all vh ∈ Yh0ν . (Hint : adapt the proof of

Theorem 44.6 using J d
h0.)

Solution to exercises

Exercise 44.1 (Gradient). It is clear that ∇φ ∈H(curl;D) for all φ ∈ H1
0 (D). Hence, we must

just show that (∇φ)|∂D×n = 0. Using the definition of γc in (4.11), we have

〈γc(∇φ), l〉∂D =

∫

D

∇φ·∇×w(l) dx−
∫

D

(∇×∇φ)·w(l) dx =

∫

D

∇φ·∇×w(l) dx,



230 Chapter 44. Maxwell’s equations: control on the divergence

for all l ∈H 1
2 (∂D). Using the definition of γd in (4.12), we have

〈γc(∇φ), l〉∂D = −
∫

D

φ∇·(∇×w(l)) dx+ 〈γd(∇×w(l)), γg(φ)〉∂ = 0.

Hence, 〈γc(∇φ), l〉∂ = 0 for all l ∈H 1
2 (∂D). This proves that γc(∇φ) = 0.

Exercise 44.2 (Vector potential). The problem defining zh ∈Xh0ν such that

(∇×zh,∇×wh)L2(D) = (νv,wh)L2(D), ∀wh ∈Xh0ν ,

has a unique solution since the sesquilinear form is coercive and bounded onXh0ν (uniformly w.r.t.
h ∈ H) owing to Theorem 44.6. Moreover, the equality (νv,wh)L2(D) = (∇×zh,∇×wh)L2(D)

is valid for all wh := ∇mh with mh ∈ Mh0 owing to the assumption on v and the fact that
∇×(∇mh) = 0. The conclusion follows from the identity Vh0 =Xh0ν ⊕∇Mh0.

Exercise 44.3 (Neumann condition). Let xh ∈Xh∗ν be a nonzero discrete field. Let φ(xh) ∈
M∗ be the solution to the following well-posed Neumann problem:

(ν∇φ(xh),∇m)L2(D) = (νxh,∇m)L2(D), ∀m ∈M∗.

Let ξ(xh) := xh −∇φ(xh), so that ξ(xh) ∈X∗ν . Then we have

xh − J c
h (ξ(xh)) = J c

h (xh − ξ(xh)) = J c
h (∇(φ(xh))) = ∇(J g

h (φ(xh))),

where we used that J c
h (xh) = xh and the commuting properties of the quasi-interpolation operators

J g
h and J c

h . Since xh ∈ Xh∗ν , we infer that (νxh,∇(J g
h (φ(xh))))L2(D) = 0 (note that we can

always shift J g
h (φ(xh)) by a constant without changing its gradient in such a way that this function

is in M∗). We infer that

(νxh,xh)L2(D) = (νxh,xh − J c
h (ξ(xh)))L2(D) + (νxh,J c

h (ξ(xh)))L2(D)

= (νxh,J c
h (ξ(xh)))L2(D).

Multiplying by eiθ, taking the real part, and using the Cauchy–Schwarz inequality, we infer that

ν♭‖xh‖2L2(D) ≤ ν♯‖xh‖L2(D)‖J c
h(ξ(xh))‖L2(D).

The uniform boundedness of J c
h on L2(D) together with the Poincaré–Steklov inequality on X∗ν

implies that

‖J c
h (ξ(xh))‖L2(D) ≤ ‖J c

h‖L(L2;L2)‖ξ(xh)‖L2(D) ≤ ‖J c
h‖L(L2;L2)Ĉ

−1
ps ℓD‖∇×xh‖L2(D),

so that the expected result holds true with Ĉ′
ps := ν−1

♯/♭‖J c
h‖−1

L(L2;L2)Ĉps.

Exercise 44.4 (Discrete Poincaré–Steklov for ∇·). Let xh ∈ Yh0ν be a nonzero discrete
field. Let ζ(xh) ∈M0 := {v ∈H0(curl;D) | ∇·v = 0} be the solution to the following well-posed
problem (see (44.9)):

(ν∇×ζ(xh),∇×m)L2(D) = (νxh,∇×m)L2(D), ∀m ∈M0.

Let us define ξ(xh) := xh − ∇×ζ(xh). This definition implies that ξ(xh) ∈ Y0ν . Indeed, any
φ ∈ H0(curl;D) can be written as φ := m + ∇θ with m ∈ M0 and θ ∈ H1

0 (D) owing to the
Helmholtz decomposition from Lemma 44.1. Hence, we have

(νξ(xh),∇×φ)L2(D) = (νξ(xh),∇×m)L2(D) = 0.
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Invoking the quasi-interpolation operators J c
h0 and J d

h0 introduced in §23.3.3, we observe that

xh − J d
h0(ξ(xh)) = J d

h0(xh − ξ(xh)) = J d
h0(∇×(ζ(xh))) = ∇×(J c

h0(ζ(xh))),

where we used that J d
h0(xh) = xh and the commuting properties of the operators J c

h0 and J d
h0.

Note that the above identity implies that ∇·xh = ∇·J d
h0(ξ(xh)). Since xh ∈ Yh0ν , we infer that

(νxh,xh)L2(D) = (νxh,xh − J d
h0(ξ(xh)))L2(D) + (νxh,J d

h0(ξ(xh)))L2(D)

= (νxh,J d
h0(ξ(xh)))L2(D).

Multiplying by eiθ, taking the real part, and using the Cauchy–Schwarz inequality, we infer that

ν♭‖xh‖2L2(D) ≤ ν♯‖xh‖L2(D)‖J d
h0(ξ(xh))‖L2(D).

The uniform boundedness of J d
h0 on L2(D) together with the Poincaré–Steklov inequality for the

divergence operator, that is,

Ĉpsℓ
−1
D ‖v‖L2(D) ≤ ‖∇·v‖L2(D), ∀v ∈ Y0ν ,

imply that

‖J c
h0(ξ(xh))‖L2(D) ≤ ‖J d

h0‖L(L2;L2)‖ξ(xh)‖L2(D)

≤ ‖J d
h0‖L(L2;L2)Ĉ

−1
ps ℓD‖∇·ξ(xh)‖L2(D)

≤ ‖J d
h0‖L(L2;L2)Ĉ

−1
ps ℓD‖∇·xh‖L2(D),

so that the expected discrete Poincaré–Steklov inequality holds true with Ĉ′
ps := ν−1

♯/♭‖J d
h0‖−1

L(L2;L2)Ĉps.
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Chapter 45

Maxwell’s equations: further
topics

Exercises

Exercise 45.1 (Identity for n♯). Prove (45.13b). (Hint : use the mollification operators Kc
δ :

L1(D)→ C∞(D) and Kd
δ : L1(D)→ C∞(D) from §23.1, and adapt the proof of Lemma 40.5.)

Exercise 45.2 (Consistency/boundedness). Prove Lemma 45.5. (Hint : adapt the proof of
Lemma 41.7 and use Lemma 45.4.)

Exercise 45.3 (Least-squares penalty on divergence). (i) Prove Proposition 45.10. (Hint :
use Lemma 44.1 to write A := A0 +∇p, where A0 is divergence-free and p ∈ H1

0 (D), and prove
that p = 0.) (ii) Prove (45.22). (Hint : use Lemma 44.4 for A−∇p.)

Solution to exercises

Exercise 45.1 (Identity for n♯). Let us set

n♯δ(a, bh) :=
∑

F∈F∂h

〈(Kc
δ(σ(a))|Kl×n)|F ,ΠF (bh)〉F .

Owing to (45.9) and the commuting property ∇×(Kc
δ(v)) = Kd

δ (∇×v), we have

n♯δ(a, bh) =
∑

F∈F∂h

∫

Kl

(
Kc
δ(σ(a))·∇×LKlF (ΠF (bh))−Kd

δ (∇×σ(a))·LKlF (ΠF (bh))

)
dx,

and owing to Theorem 23.4, we infer that

lim
δ→0

n♯δ(a, bh) =
∑

F∈F∂h

∫

Kl

(
σ(a)·∇×LKlF (ΠF (bh))−∇×σ(a)·LKlF (ΠF (bh))

)
dx = n♯(a, bh).
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Since Kc
δ(σ(a)) is smooth, we also have

n♯δ(a, bh) =
∑

F∈F∂h

∫

∂Kl

(Kc
δ(σ(a))×nKl)·LKlF (ΠF (bh)) ds

=
∑

F∈F∂h

∫

F

(Kc
δ(σ(a))×n)·ΠF (bh) ds

=

∫

∂D

(Kc
δ(σ(a))×n)·bh ds

=

∫

D

(
Kc
δ(σ(a))·∇×bh −∇×(Kc

δ(σ(a)))·bh
)
dx

=

∫

D

(
Kc
δ(σ(a))·∇×bh −Kd

δ (∇×(σ(a)))·bh
)
dx.

We conclude by passing to the limit δ → 0 on the right-hand side and using again Theorem 23.4.

Exercise 45.2 (Consistency/boundedness). Let ah, bh ∈ Vh. Using the identities from
Lemma 45.4, we infer that

〈δh(ah), bh〉V ′
h,Vh

= aν,κ(θh, bh)− n♯(θh, bh)−
∑

F∈F∂h

η0e
−iθ |κKl |2

κr,KlhF

∫

F

(ah×n)·(bh×n) ds

=: T1 + T2 + T3,

with θh := A− ah. The Cauchy–Schwarz inequality implies that

|T1| ≤
( ∑

K∈Th

( |νK |2
νr,K

‖θh‖2L2(K) +
|κK |2
κr,K

‖∇×θh‖2L2(K)

)) 1
2

×
( ∑

K∈Th

(
νr,K‖bh‖2L2(K) + κr,K‖∇×bh‖2L2(K)

)) 1
2

.

Hence, |T1| ≤ ‖θh‖V♯‖bh‖Vh . Moreover, recalling that λ−1
F :=

κr,Kl
|κKl |2

, the boundedness esti-

mate (45.14) on n♯ yields

|T2| ≤ c
( ∑

F∈F∂h

κr,Kl
|κKl |2

h
2d( 1

2− 1
p )

Kl
‖σ(θh)‖2V c(Kl)

) 1
2

|bh|∂ .

Since κ is constant on Kl, we have

‖σ(θh)‖V c(Kl) ≤ |κKl |
(
‖∇×θh‖Lp(K) + h

1+d( 1
p− 1

q )

K ‖∇×(∇×θh)‖Lq(K)

)
.

Hence, |T2| ≤ c‖θh‖V♯‖bh‖Vh . Finally, the Cauchy–Schwarz inequality leads to |T3| ≤ |ah|∂ |bh|∂ ,
and we have |θh|∂ = |ah|∂ since A|∂D×n = 0.

Exercise 45.3 (Least-squares penalty on divergence). (i) Assume that A ∈ H0(curl;D)
solves (44.1). We have already established that ∇·A = 0. Hence, A ∈ Z0 and aν,κ,η(A, b) =
aν,κ(A, b) for all b ∈ Z0. This shows thatA solves (45.20). Conversely, assume thatA solves (45.20).
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Recalling Lemma 44.1, let p ∈ H1
0 (D) be s.t. A := A0 + ∇p, where A0 is divergence-free,

i.e., (∇p,∇q)L2(D) = (A,∇q)L2(D) for all q ∈ H1
0 (D). Using the test function b = e−iθ∇p

in (45.20), observing that ∇×(∇p) = 0, (A,∇p)L2(D) = ‖∇p‖2L2(D), ∆p = ∇·A ∈ L2(D), and

(f ,∇p)L2(D) = 0, and taking the real part leads to

ν♭‖∇p‖2L2(D) + ηκ♭‖∆p‖2L2(D) ≤ 0,

whence we infer that p = 0. Hence, A = A0 is divergence-free. Finally, we have aν,κ,η(A, b) =
aν,κ(A, b) for all b ∈ Z0, and this equality can be extended to any b ∈ H0(curl;D) by density of
smooth functions in H0(curl;D). We have thus proved that A solves (44.1).
(ii) Since ∇·A0 is divergence-free, A0 ∈ H0(curl;D), and ∇×A0 = ∇×A, Lemma 44.4 implies
that

Ĉpsℓ
−1
D ‖A−∇p‖L2(D) = Ĉpsℓ

−1
D ‖A0‖L2(D) ≤ ‖∇×A0‖L2(D) = ‖∇×A‖L2(D).

Invoking the triangle inequality and since ‖∇p‖L2(D) ≤ C−1
ps ℓD‖∇·A‖L2(D), where Cps is s.t.

Cpsℓ
−1
D ‖q‖L2(D) ≤ ‖∇q‖L2(D) for all q ∈ H1

0 (D), we conclude that (45.22) holds true with Ĉ′′
ps :=

min(Ĉps, Cps).



236 Chapter 45. Maxwell’s equations: further topics



Chapter 46

Symmetric elliptic eigenvalue
problems

Exercises

Exercise 46.1 (Spectrum). Let L be a complex Banach space. Let T ∈ L(L). (i) Show that
(λT )∗ = λT ∗ for all λ ∈ C. (ii) Show that σr(T ) ⊂ conj(σp(T

∗)) ⊂ σr(T ) ∪ σp(T ). (Hint : use

Corollary C.15.) (iii) Show that the spectral radius of T verifies r(T ) ≤ lim supn→∞ ‖T n‖
1
n

L(L).

(Hint : consider
∑
n∈N(µ

−1T )n and use the root test: the complex-valued series
∑

n∈N an converges

absolutely if lim supn→∞ |an|
1
n < 1.)

Exercise 46.2 (Ascent, algebraic and geometric multiplicities). (i) Let T ∈ L(L). Let µ
be an eigenvalue of T and let Ki := ker(µIL − T )i for all i ∈ N\{0}. Prove that K1 ⊂ K2 . . ., and
assuming that there is j ≥ 1 s.t. Kj = Kj+1, show that Kj = Kj′ for all j

′ > j. (ii) Assume that
µ has a finite ascent α, and finite algebraic multiplicity m and geometric multiplicity g. Show that
α+ g− 1 ≤ m ≤ αg. (Hint : letting gi := dim(Ki) for all i ∈ {1:α}, prove that g1 + i− 1 ≤ gi and
gi ≤ gi−1 + g1.) (iii) Compute the ascent, algebraic multiplicity, and geometric multiplicity of the
eigenvalues of following matrices and verify the two inequalities from Step (i):




1 1 0 0
0 1 2 0
0 0 1 0
0 0 0 1


 ,




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 ,




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Exercise 46.3 (Eigenspaces). The following three questions are independent. (i) Suppose V =
V1 ⊕ V2 and consider T ∈ L(V ) defined by T (v1 + v2) := v1 for all v1 ∈ V1 and all v2 ∈ V2. Find
all the eigenvalues and eigenspaces of T . (ii) Let T ∈ L(V ). Assume that S is invertible. Prove
that S−1TS and T have the same eigenvalues. What is the relationship between the eigenvectors
of T and those of S−1TS? (iii) Let V be a finite-dimensional vector space. Let {vn}n∈{1:m} ⊂ V,
m ≥ 1. Show that the vectors {vn}n∈{1:m} are linearly independent iff there exists T ∈ L(V ) such
that {vn}n∈{1:m} are eigenvectors of T corresponding to distinct eigenvalues.

Exercise 46.4 (Volterra operator). Let L := L2((0, 1);C) and let T : L→ L be s.t. T (f)(x) :=∫ x
0 f(t) dt for a.e. x ∈ (0, 1). Notice that T is a Hilbert–Schmidt operator, but this exercise is
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meant to be done without using this fact. (i) Show that TH(g) =
∫ 1

x
g(t) dt for all g ∈ L2((0, 1);C).

(ii) Show that T is injective. (Hint : use Theorem 1.32.) (iii) Show that 0 ∈ σc(T ). (iv) Show that
σp(T ) = ∅. (v) Prove that µIL−T is bijective if µ 6= 0. (vi) Determine ρ(T ), σp(T ), σc(T ), σr(T ).
Do the same for TH.

Exercise 46.5 (Riesz–Fréchet). Let H be a finite-dimensional complex Hilbert space with
orthonormal basis {ei}i∈{1:n} and inner product (·, ·)H . (i) Let g be an antilinear form on H ,
i.e., g ∈ H ′. Show that (Jrf

H )−1(g) =
∑

i∈{1:n} g(ei)ei with g(ei) := 〈g, ei〉H′,H , ∀i ∈ {1:n}. Is

(Jrf
H )−1 : H ′ → H linear or antilinear? (ii) Let g be a linear form on H . Show that xg :=∑
i∈{1:n} g(ei)ei is s.t. 〈g, y〉H′,H = (xg, y)H . Is the map H ′ ∋ g 7→ xg ∈ H linear or antilinear?

Exercise 46.6 (Symmetric operator). Let L be a complex Hilbert space and T ∈ L(L) be
a symmetric operator. (i) Show that σ(T ) ⊂ R. (Hint : compute ℑ((T (v) − µv, v)L and show
that |ℑ(µ)|‖v‖2L ≤ |(T (v) − µv, v)L| for all v ∈ L.) (ii) Prove that σr(T ) = ∅. (Hint : apply
Corollary C.15.) (iii) Show that the ascent of each µ ∈ σp(T ) is equal to 1. (Hint : compute
‖(µIL − T )(x)‖2L with x ∈ ker(µIL − T )2.)
Exercise 46.7 (H1(R) →֒ L2(R) is not compact). (i) Let χ(x) := 1 + x if −1 ≤ x ≤ 0,
χ(x) := 1−x if 0 ≤ x ≤ 1 and χ(x) := 0 if |x| ≥ 1. Show that χ ∈ H1(R). (ii) Let vn(x) := χ(x−n)
for all n ∈ N. Show that (vn)n∈N converges weakly to 0 in L2(R) (see Definition C.28). (iii)
Show that the embedding H1(R) →֒ L2(R) is not compact. (Hint : argue by contradiction using
Theorem C.23.)

Exercise 46.8 (B1(R) →֒ L2(R) is compact). (i) Show that the embedding B1(R) →֒ L2(R) is
compact, where B1(R) := {v ∈ H1(R) | xv ∈ L2(R)}. (Hint : let (un)n∈N be a bounded sequence
in B1(R), build nested subsets Jk ⊂ N, ∀k ∈ N\{0}, s.t. the sequence (un|(−k,k))n∈Jk converges in
L2(−k, k).) (ii) Give a sufficient condition on α ∈ R so that B1

α(R) →֒ L2(R) is compact, where
B1
α(R) := {v ∈ H1(R) | |x|αv ∈ L2(R)}.

Exercise 46.9 (Hausdorff–Toeplitz theorem). The goal of this exercise is to prove that the
numerical range of a bounded linear operator in a Hilbert space is convex; see also Gustafson [23].
Let L be a complex Hilbert space and let SL(1) := {x ∈ L | ‖x‖L = 1} be the unit sphere in L.
Let T ∈ L(L) and let W (T ) := {α ∈ C | ∃x ∈ SL(1), α = (T (x), x)L} be the numerical range
of T . Let γ, µ ∈ W (T ), γ 6= µ, and x1, x2 ∈ SL(1) be s.t. (T (x1), x1)L = γ, (T (x2), x2)L = µ.
Let T ′ := 1

µ−γ (T − γIL). (i) Compute (T ′(x1), x1)L and (T ′(x2), x2)L. (ii) Prove that there

exists θ ∈ [0, 2π) s.t. ℑ(eiθ(T ′(x1), x2)L + e−iθ(T ′(x2), x1)L) = 0. (iii) Let x′1 := eiθx1. Compute
(T ′(x′1), x

′
1)L. (iv) Let λ ∈ [0, 1]. Show that the following problem has at least one solution: Find

α, β ∈ R s.t. ‖αx′1 + βx2‖L = 1 and (T ′(αx′1 + βx2), αx
′
1 + βx2)L = λ. (Hint : view the two

equations as those of an ellipse and an hyperbola, respectively, and determine how these curves
cross the axes.) (v) Prove that W (T ) is convex. (Hint : compute (T (αx′1 + βx2), αx

′
1 + βx2)L.)

Solution to exercises

Exercise 46.1 (Spectrum). (i) Recalling that, by convention, L′ is composed of antilinear forms,
we have

〈(λT )∗(l′), l〉L′,L = 〈l′, λT (l)〉L′,L = λ〈l′, T (l)〉L′,L = λ〈T ∗(l′), l〉L′,L,

for all λ ∈ C, all l ∈ L, and all l′ ∈ L′. Hence, we have

(λT )∗(l′) = λT ∗(l′), ∀l′ ∈ L′.
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This proves that (λT )∗ = λT ∗ for all λ ∈ C.
(ii) Let us start by showing that σr(T ) ⊂ conj(σp(T

∗)). Let µ ∈ σr(T ). Then µIL−T is injective and

im(µIL − T ) 6= L, i.e., im(µIL−T ) is not dense in L. Using a corollary of Hahn–Banach’s theorem
(Corollary C.15), we infer that there exists 0 6= l′ ∈ L′ such that 0 = 〈l′, (µIL − T )(x)〉L′,L =
〈µl′−T ∗(l′), x〉L′,L for all x ∈ L (recall that (µIL)

∗ = µI∗L). This means that µl′−T ∗(l′) = 0, i.e.,
µIL′ − T ∗ is not injective. This proves that µ is an eigenvalue of T ∗, i.e., σr(T ) ⊂ conj(σp(T

∗)).
We now prove the second inclusion. Let µ ∈ conj(σp(T

∗)) and 0 6= l′ ∈ ker(µIL − T ∗). Then
0 = 〈µl′−T ∗(l′), l〉L′,L = 〈l′, (µIL −T )(l)〉L′,L for all l ∈ L. Hence, im(µIL −T ) is not dense in L.
This means that µ ∈ σ(T ). But µ 6∈ σc(T ). Hence, µ ∈ σp(T ) ∪ σr(T ).
(iii) Let us set r̃(T ) := lim supn→∞ ‖T n‖

1
n

L(L). Let µ ∈ C be s.t. |µ| > r̃(T ) (notice that µ 6= 0). We

have to show that µIL−T is bijective, which is equivalent to show that IL−µ−1T is bijective. The
root test shows that the series

∑
k∈N ‖(µ−1T )k‖L(L) is convergent. It follows that the sequence

Sn :=
∑
k∈{0:n}(µ

−1T )k is Cauchy in L(L). Since L(L) is complete, there is S s.t. Sn → S in

L(L). But

(IL − µ−1T )Sn = (IL − µ−1T )
∑

k∈{0:n}
(µ−1T )k

=
∑

k∈{0:n}
µ−1T k −

∑

k∈{1:n+1}
(µ−1T )k

= IL − (µ−1T )n+1.

Notice that limn→∞ ‖(µ−1T )n‖L(L) = 0 since the series
∑

k∈N ‖(µ−1T )k‖L(L) is convergent. In
conclusion, we have

(IL − µ−1T )S = lim
n→∞

(IL − µ−1T )Sn = IL,

which proves that IL−µ−1T is invertible. Hence, µ ∈ ρ(T ), which, in turn, proves that r(T ) ≤ r̃(T ).
Exercise 46.2 (Ascent, algebraic and geometric multiplicities). (i) Let Ki := ker(µIL−T )i
for all i ∈ N \ {0}. Let x ∈ Ki. We have

(µIL − T )i+1(x) = ((µIL − T ) ◦ (µIL − T )i)(x) = (µIL − T )(0) = 0,

showing that x ∈ Ki+1. Hence, Ki ⊂ Ki+1 for all i ≥ 1. Assume now that Kj = Kj+1 for
some j ≥ 1. Let us show by an induction argument on p that Kj = Kj+p. The statement holds
true for p = 1. Assume that it holds true for some p ≥ 1 and let us show that Kj = Kj+p+1.
Since Kj = Kj+p ⊂ Kj+p+1, it suffices to show that Kj+p+1 ⊂ Kj+p. Let x ∈ Kj+p+1. Since
(µIL − T )j+p+1(x) = 0, we have (µIL − T )(x) ∈ Kj+p = Kj+p−1 by the induction assumption, so
that x ∈ Kj+p. This completes the proof.
(ii) Let gi := dim(Ki) for all i ∈ {1:α}. The definition of the ascent implies that K1  K2  . . .  
Kα = Kα+j for all j ∈ N. As a result, we have g1 + i− 1 ≤ gi for all i ∈ {1:α}. Since g1 = g and
gα = m, this implies that α+ g − 1 ≤ m.
Next, let us prove that gi ≤ gi−1 + g1 for all i ∈ {1:α}. Once this is established, it follows
that g2 ≤ 2g1 = 2g, g3 ≤ g2 + g1 ≤ 3g, and so on, so that m = gα ≤ αg. We start by writing
Ki = Ki−1⊕Yi (this is legitimate since we are working with finite-dimensional spaces). Let us show
that k := dim(Yi) ≤ g := g1. Notice that k ≥ 1 since i ∈ {1:α}. Let (uj)j∈{1:k} be a basis of Yi and
let us verify that the vectors ((µIL − T )i−1(uj))j∈{1:k} are linearly independent. Let (αj)j∈{1:k}
be k scalars such that

∑
j∈{1:k} αj(µIL − T )i−1(uj) = 0. We have

∑
j∈{1:k} αjuj ∈ Ki−1. But∑

j∈{1:k} αjuj ∈ Yi by definition. Since Ki−1 ∩ Yi = {0}, we must have
∑
j∈{1:k} αjuj = 0. Since

(uj)j∈{1:k} is a basis of Yi, it follows that αj = 0 for all j ∈ {1:k}. This proves that indeed the
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vectors ((µIL − T )i−1(uj))j∈{1:k} are linearly independent. But these vectors are also members of
K1 since uj ∈ Ki for each j ∈ {1:k}. This proves that k ≤ g. In conclusion, we have shown that
gi ≤ gi−1 + g1.
(iii) Let T : R4 → R4 be the operator defined by T (X) := AX for all X ∈ L := R4, with

A :=




1 1 0 0
0 1 2 0
0 0 1 0
0 0 0 1


 .

Hence, 1 is the only eigenvalue of T . A direct computation shows that

I4 − A =




0 1 0 0
0 0 2 0
0 0 0 0
0 0 0 0


 , (I4 − A)2 =




0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (I4 − A)3 = O4.

Hence, ker(IL−T )2 6= ker(IL−T )3, but ker(IL−T )3 = ker(IL−T )4 = R4. Thus, the ascent of µ = 1
is α = 3. Moreover, dim(ker(IL−T )3) = 4 and dim(ker(IL−T )) = 2, i.e., the algebraic multiplicity
is m = 4 and the geometric multiplicity is g = 2. Notice that we have α+g−1 = 4 = m ≤ 6 = αg.
Let now T : R4 → R4 be the operator defined by T (X) := AX for all X ∈ L := R4, with

A :=




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 .

Hence, 1 is the only eigenvalue of T . A direct computation shows that

I4 − A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , (I4 − A)2 = O4.

Thus, ker(IL − T ) 6= ker(IL − T )2, but ker(IL − T )2 = ker(IL − T )3 = R4. This shows that
the ascent of µ = 1 is α = 2. Moreover, dim(ker(IL − T )2) = 4 and dim(ker(IL − T )) = 2,
i.e., the algebraic multiplicity is m = 4 and the geometric multiplicity is g = 2. Notice that
α+ g − 1 = 3 ≤ 4 = m = αg.
Let finally T : R4 → R4 be the operator defined by T (X) := AX for all X ∈ L := R4, with

A :=




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Hence, 1 is the only eigenvalue of T . A direct computation shows that

I4 − A =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (I4 − A)2 = O4.
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Thus, ker(IL − T ) 6= ker(IL − T )2, but ker(IL − T )2 = ker(IL − T )3 = R4. This shows that
the ascent of µ = 1 is α = 2. Moreover, dim(ker(IL − T )2) = 4 and dim(ker(IL − T )) = 3,
i.e., the algebraic multiplicity is m = 4 and the geometric multiplicity is g = 3. Notice that
α+ g − 1 = 4 = m ≤ 6 = αg.

Exercise 46.3 (Eigenspaces). (i) Let µ ∈ C and let v := v1 + v2 ∈ V1 ⊕ V2. Then (µ, v) is an
eigenpair iff µv = T (v) = v1. Hence, (µ − 1)v1 + µv2 = 0. But the sum V1 ⊕ V2 being direct, we
infer that (µ − 1)v1 = 0 and µv2 = 0. If µ = 1, then v2 = 0. If µ = 0, then v1 = 0. If µ 6∈ {0, 1},
then v1 = 0 and v2 = 0. In conclusion, the eigenvalues are {0, 1}, and the associated eigenspaces
are ker(T ) = V2 and ker(IL − T ) = V1.
(ii) Let S, T ∈ L(V ) with S invertible. Let µ ∈ C, v ∈ V. Then T (v) = µv iff S−1TSS−1v = µS−1v.
This shows that S−1 ker(µIL − T ) = ker(µIL − S−1TS). Thus, the eigenvalues of T and S−1TS
are identical, and v is an eigenvector of T iff S−1v is an eigenvector of S−1TS.
(iii) Let V be a finite-dimensional vector space. Let v1, . . . , vm ∈ V and let us assume that
v1, . . . , vm are linearly independent. If m < dim(V ) = n, let {vm+1, . . . , vn} be vectors that make
{v1, . . . , vn} a basis of V. Let T : V → V be defined by Tvi := ivi for all i ∈ {1:n}. Then
{v1, . . . , vn} is a basis of eigenvectors of T , and the eigenvalues are {1, . . . , n}. Conversely, assume
that there exists T ∈ L(V ) such that v1, . . . , vm are eigenvectors of T corresponding to distinct
eigenvalues, µ1, . . . , µm. Assume that v1, . . . , vm are linearly dependent. Without loss of generality,
let us assume that v1 depends on (vl)l∈L where L ⊂ {2, . . . ,m}, and the vectors (vl)l∈L are linearly
independent. Then v1 =

∑
l∈L αlvl and

T (v1) = µ1v1 =
∑

l∈L
αlT (vl) =

∑

l∈L
αlµlvl.

This shows that
0 =

∑

l∈L
αl(µl − µ1)vl.

Hence, αl(µl −µ1) = 0 for all l ∈ L, which, in turn, implies that αl = 0 since µ1 6= µl for all l ∈ L.
In conclusion, v1 = 0, which is a contradiction since v1 is an eigenvector (i.e., v1 cannot be equal
to zero). Hence, the vectors v1, . . . , vm are linearly independent.

Exercise 46.4 (Volterra operator). Let L := L2(D;C) with D := (0, 1).
(i) Let f, g ∈ L. Integrating by parts, we obtain

(g, T (f))L =

∫ 1

0

g(x)
( ∫ x

0

f(t) dt
)
dx =

∫ 1

0

∂x

(∫ x

1

g(t) dt
)( ∫ x

0

f(t) dt
)
dx

= −
∫ 1

0

(∫ x

1

g(t) dt
)
f(x) dx.

This means that TH(g) =
∫ 1

x g(t) dt. Note in passing the T is a Hilbert–Schmidt operator. Specifi-

cally, we have T (f)(x) =
∫ 1

0
K(x, t)f(t) dt with K(x, t) := 1 if t ∈ (0, x) and K(x, t) := 0 otherwise

(see Example 46.11). Hence, T is compact and not symmetric.
(ii) Let us show that T is injective. Assume that T (f) = 0. Then

∫ x
0 f(t) dt = 0 for a.e. x ∈ D.

To conclude that f = 0, we apply the vanishing integral theorem (Theorem 1.32) by showing that
(f, ϕ)L = 0 for all ϕ ∈ C∞

0 (D). Let ϕ ∈ C∞
0 (D) and let us define ψ(x) := −ϕ′(x). Observe that

ψ ∈ L and TH(ψ) =
∫ 1

x ψ(t) dt = ϕ(x) − ϕ(1) = ϕ(x) since ϕ is compactly supported in D. Then

0 = (T (f), ψ)L = (f, TH(ψ))L = (f, ϕ)L for all ϕ ∈ C∞
0 (D).

(iii) Let g ∈ L and assume that T (f) = g with f ∈ L, i.e., we have
∫ x
0 f(t) dt = g(x) for a.e.
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x ∈ D. This means that f = ∂xg, i.e., f is the weak derivative of g. But this is not possible unless
g ∈ H1(D;C) and g(0) = 0. In conclusion, T is not surjective. This proves that 0 ∈ σc(T )∪σr(T ).
Note though that the above argument shows that im(T ) = {g ∈ H1(D;C) | g(0) = 0}, from which
we conclude that im(T ) = L2(D;C) = L. (Another way to prove im(T ) = L consists of proving
that the only function h ∈ L that satisfies (h, T (f))L = 0 for all f ∈ L is h = 0 and invoking
Corollary C.15. We leave the details to the reader.) Hence, 0 ∈ σc(T ).
(iv) Assume σp(T ) 6= ∅, and let µ ∈ σp(T ) and 0 6= f ∈ L s.t. T (f) = µf . We have µ 6= 0 since T
is injective. Moreover, we observe that

(
T (f) = µf

)
⇐⇒

(
− µ−1e−µ

−1x

∫ x

0

f(t) dt+ e−µ
−1xf(x) = 0

)

⇐⇒
(
∂x
(
e−µ

−1x

∫ x

0

f(t) dt
)
= 0
)
,

which shows that e−µ
−1x

∫ x
0
f(t) dt should be constant, but this constant must be zero since

limx↓0
∫ x
0
f(t) dt = 0. Hence,

∫ x
0
f(t) dt = 0 for a.e. x ∈ (0, 1). We conclude that f = 0 by using as

above the vanishing integral theorem. This is a contradiction. This proves that σp(T ) = ∅.
(v) Let µ 6= 0. Since T is injective, we only need to prove that T is surjective. Let g ∈ L. Let us
try to find f ∈ L such that T (f)− µf = g. This is equivalent to

(∫ x

0

f(t) dt− µf = g
)
⇐⇒

(
− µe−µx

∫ x

0

f(t) dt+ e−µxf(x) = −µe−µxg(x)
)

⇐⇒
(
∂x

(
e−µx

∫ x

0

f(t) dt
)
= −µe−µxg(x)

)

⇐⇒
(
e−µx

∫ x

0

f(t) dt = −µ
∫ x

0

e−µtg(t) dt
)

⇐⇒
(
f(x) = −µ2eµx

∫ x

0

e−µtg(t) dt− µg(x)
)
.

The triangle inequality and the Cauchy–Schwarz inequality imply that f ∈ L = L2((0, 1);C), and
there is a constant c that depends on µ such that ‖f‖L ≤ c‖g‖L. This proves that T−µIL is bijective
if µ 6= 0. (Notice that T is compact since it is a Hilbert–Schmidt operator; see Example 46.11).
Hence, we could also invoke Theorem 46.14 (i)-(ii) which implies that {0} = σc(T ) ∪ σr(T ). Since
we have already shown that σp(T ) = ∅, we conclude that ρ(T ) = C\{0}, i.e., µIL − T is bijective
for all µ 6= 0.)
(vi) We have shown that ρ(T ) = C\{0}, σp(T ) = ∅, σc(T ) = {0}, σr(T ) = ∅. The same results
hold true for TH.

Exercise 46.5 (Riesz–Fréchet). (i) Let g ∈ H ′. Let y :=
∑
i∈{1:n} yiei ∈ H and let xg :=∑

i∈{1:n} g(ei)ei ∈ H with g(ei) := 〈g, ei〉H′,H . Using the orthonormality of the Hilbert basis, we
obtain

(xg , y)H =
∑

i∈{1:n}
(g(ei)ei, yiei)H =

∑

i∈{1:n}
g(ei)yi

=
∑

i∈{1:n}
〈g, yiei〉H′,H = 〈g, y〉H′,H =: ((Jrf)−1(g), y)H .

This proves that xg = (Jrf)−1(g). The map g 7→ xg is clearly linear, i.e., (Jrf)−1 and Jrf are
linear operators.
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(ii) Similarly, we have

(xg , y)H =
∑

i∈{1:n}
(g(ei)ei, yiei)H =

∑

i∈{1:n}
g(ei)yi = g(y) := 〈g, y〉H′,H .

Finally, the map g 7→ xg is clearly antilinear.

Exercise 46.6 (Symmetric operator). (i) Notice first that (T (v), v)L = (v, T (v))L = (T (v), v)L
for all v ∈ L. Hence, (T (v), v)L ∈ R for all v ∈ L. Let µ ∈ C. We have

2iℑ(T (v)− µv, v)L = (T (v)− µv, v)L − (T (v)− µv, v)L
= (T (v), v)L − µ‖v‖2L − (T (v), v)L + µ‖v‖2L
= −2iℑ(µ)‖v‖2L.

This proves that |ℑ(µ)|‖v‖2L ≤ |((T − µIL)(v), v)L|. Hence, if ℑ(µ) 6= 0, then T − µIL is coercive,
that is, ℑ(µ) 6= 0 implies that µ ∈ ρ(T ) = C\σ(T ). In other words, µ ∈ σ(T ) = C\ρ(T ) implies
that µ ∈ R.
(ii) Assume that σr(T ) 6= ∅. Let µ ∈ σr(T ). Then T − µIL is injective and im(T − µIL) is not
dense in L. Corollary C.15 implies that there is 0 6= f ∈ L such that (f, T (v) − µv)L = 0 for all
v ∈ L. Since µ ∈ R, this means that (T (f) − µf, v)L = 0 for all v ∈ L. This, in turn, implies
that (T − µIL)(f) = 0, i.e., µ ∈ σp(T ), which is impossible since σp(T ) ∩ σr(T ) = ∅. Hence,
σr(T ) = ∅. (iii) Let µ ∈ σp(T ). Let x ∈ ker(µIL − T ). Then (µIL − T ) ◦ (µIL − T )(x) = 0, i.e.,
x ∈ ker(µIL − T )2. This shows that ker(µIL − T ) ⊂ ker(µIL − T )2. Let x ∈ ker(µIL − T )2. This
means that (µIL − T ) ◦ (µIL − T )(x) = 0, and

0 = (x, (µIL − T ) ◦ (µIL − T )(x))L = ((µIL − TH)(x), (µIL − T )(x))L
= ((µIL − T )(x), (µIL − T )(x))L = ‖(µIL − T )(x)‖2L,

where we used that µ = µ and TH = T . The above equality implies that (µIL−T )(x) ∈ ker(µIL−
T ), and this shows that ker(µIL − T )2 = ker(µIL − T ), thereby proving that the ascent of µ is
equal to 1.

Exercise 46.7 (H1(R) →֒ L2(R) is not compact). (i) Let χ(x) := 1 + x if −1 ≤ x ≤ 0,
χ(x) := 1−x if 0 ≤ x ≤ 1, and χ(x) := 0 if |x| ≥ 1. It is clear that χ ∈ L2(R). Moreover, the weak
derivative of χ is equal to 1 if −1 ≤ x ≤ 0, −1 if 0 ≤ x ≤ 1, and 0 if |x| ≥ 1. Hence, χ ∈ H1(R).
(ii) Consider the sequence vn(x) := χ(x− n) for all n ∈ N. Let φ ∈ L2(R). We have

∣∣∣∣
∫

R

φ(x)vn(x) dx

∣∣∣∣ =
∣∣∣∣
∫ n+1

n−1

φ(x)χ(x − n) dx
∣∣∣∣ ≤ ‖φ‖L2(n−1,n+1)

√
2

3
.

But ‖φ‖L2(n−1,n+1) ≤ ‖φ‖L2(n−1,∞) → 0 as n→∞. Hence,
∫
R
φ(x)vn(x) dx→ 0 as n→∞, for all

φ ∈ L2(R). According to Definition C.28, this means that the sequence (vn)n∈N converges weakly
to 0 in L2(R).
(iii) We argue by contradiction. Assume that the embedding H1(R) →֒ L2(R) is compact. Since

‖vn‖L2(R) =
√

2
3 and |vn|H1(R) =

√
2, the sequence (vn)n∈N is bounded in H1(R). Owing to

Theorem C.23, we infer that there exists a subsequence (vnk)k∈N that converges to some v ∈ L2(R).
Since strong convergence implies weak convergence and (vn)n∈N converges weakly to zero owing

to Step (ii), we must have v = 0, but since ‖vn‖L2(R) =
√

2
3 , we must have ‖v‖L2(R) =

√
2
3 > 0.

This is a contradiction.
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Exercise 46.8 (B1(R) →֒ L2(R) is compact). (i) Let (un)n∈N be a sequence in the unit ball of
B1(R). Let us set J0 := N. Let k ∈ N\{0}. Using that the embedding H1(−k, k) →֒ L2(−k, k)
is compact, let us extract a subset J1 ⊂ J0 such that (un|(−1,1))n∈J1 converges strongly to some
function v1 in L2((−1, 1)). By induction on k ≥ 1, we extract from the sequence (un)n∈Jk a
subsequence (un)n∈Jk+1

such that (un|(−(k+1),k+1))n∈Jk+1
converges to some vk+1 in L2(−(k +

1), k+1). Note that by construction vk+1|(−k,k) = vk since the sequence (un)n∈Jk+1
is a subsequence

of (un)n∈Jk . For each k ∈ N\{0}, we define nk to be the smallest integer in Jk such that ‖unk −
um‖L2(−k,k) ≤ 1

k for all m ∈ Jk such that m ≥ nk. This is legitimate since (un|(−k,k))n∈Jk is
a Cauchy sequence in L2(−k, k). Note that nk+1 ∈ Jk+1 ⊂ Jk and for all m ≥ nk+1 we have
‖unk+1

− um‖L2(−k,k) ≤ ‖unk+1
− um‖L2(−k−1,k+1) ≤ 1

k+1 ≤ 1
k . Hence, nk ≤ nk+1. As a result, we

have for all k ≤ l ∈ N,

‖unk − unl‖L2(R) ≤ ‖unk − unl‖L2(−k,k) + ‖unk‖L2(R\(−k,k)) + ‖unl‖L2(R\(−k,k))

≤ 1

k
+

1

k
+

1

l
≤ 3

k
,

where we used that ‖v‖L2(R\(−k,k)) ≤ 1
k‖v‖B1(R) for all v ∈ B1(R). It follows that (unk)k∈N is a

Cauchy sequence in L2(R). This proves the compactness of the embedding B1(R) →֒ L2(R).
(ii) The above proof shows that the embedding B1

α(R) →֒ L2(R) is compact if α > 0 since in this
case ‖v‖L2(R\(−k,k)) ≤ 1

kα ‖v‖B1
α(R)

.

Exercise 46.9 (Hausdorff–Toeplitz theorem). (i) Using the proposed definitions, we have

(T ′(x1), x1)L =
1

µ− γ ((T (x1), x1)L − γ(x1, x1)L) =
1

µ− γ (γ − γ) = 0,

(T ′(x2), x2)L =
1

µ− γ ((T (x2), x2)L − γ(x2, x2)L) =
1

µ− γ (µ− γ) = 1.

(ii) Let us compute ℑ
(
eiθ(T ′(x1), x2)L + e−iθ(T ′(x2), x1)L

)
. We have

ℑ
(
eiθ(T ′(x1), x2)L + e−iθ(T ′(x2), x1)L

)
= cos(θ)ℑ

(
(T ′(x1), x2)L

)
+ sin(θ)ℜ

(
(T ′(x1), x2)L

)

+ cos(θ)ℑ
(
(T ′(x2), x1)L

)
− sin(θ)ℜ

(
(T ′(x1), x2)L

)
.

The equation ℑ
(
eiθ(T ′(x1), x2)L + e−iθ(T ′(x2), x1)L

)
= 0 is equivalent to

cos(θ)ℑ
(
(T ′(x1), x2)L + (T ′(x2), x1)L

)
+ sin(θ)ℜ

(
(T ′(x1), x2)L − (T ′(x1), x2)L

)
= 0.

This problem amounts to finding a unit vector (cos(θ), sin(θ))T that is orthogonal to the vector(
ℑ
(
(T ′(x1), x2)L + (T ′(x2), x1)L

)
,ℜ
(
(T ′(x1), x2)L − (T ′(x1), x2)L

))T
. There are two angles θ sat-

isfying this property.
(iii) Let us set x′1 := eiθx1. We obtain

(T ′(x′1), x
′
1)L = eiθ(T ′(x1), x

′
1)L = eiθe−iθ(T ′(x1), x1)L = 0.

(iv) Let λ ∈ [0, 1], and let us consider the following problem: Find α, β ∈ R s.t. ‖αx′1 + βx2‖L = 1
and (T ′(αx′1 + βx2), αx

′
1 + βx2)L = λ. We have

1 = ‖αx′1 + βx2‖2L = α2‖x′1‖2L + β2‖x2‖2L + 2αβℜ
(
(x′1, x2)L

)
,

= α2 + β2 + 2αβℜ
(
(x′1, x2)L

)
.
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The set of points (α, β) ∈ R2 satisfying this equation is an ellipse intersecting the axes at (1, 0),
(0, 1), (−1, 0), and (0,−1) (note that we used the Cauchy–Schwarz inequality here). Moreover, we
observe that

λ = (T ′(αx′1 + βx2), αx
′
1 + βx2)L

= α2(T ′(x′1), x
′
1) + β2(T ′(x2), x2)L + αβ((T ′(x′1), x2)L + (T ′(x2), x

′
1)L)

= β2 + αβℜ
(
(T ′(x′1), x2)L + (T ′(x2), x

′
1)L
)
.

(Notice that we used ℑ
(
(T ′(x′1), x2)L + (T ′(x2), x′1)L

)
= 0 here.) The set of points (α, β) ∈ R2

satisfying this equation is an hyperbola intersecting the vertical axis at ±
√
λ. Since λ ∈ [0, 1], we

conclude that the system

α2 + β2 + 2αβℜ
(
(x′1, x2)L

)
= 1,

β2 + αβℜ
(
(T ′(x1), x2)L + (T ′(x2), x1)L

)
= λ,

has at least two solutions (four in general).
(v) Let us prove that W (T ) is convex. Let γ, µ ∈ W (T ) ⊂ C and let us prove that the segment
connecting γ to µ is in W (T ). There is nothing to prove if γ = µ. Let us assume now that γ 6= µ.
Let x1, x2 ∈ L be s.t. ‖x1‖L = ‖x2‖L := 1 and (T (x1), x1)L := γ, (T (x2), x2)L := µ. Let λ ∈ [0, 1],
and let x′1, α, and β be constructed as above. We obtain

(T (αx′1 + βx2), αx
′
1 + βx2)L = (T (αx′1 + βx2)− γ(αx′1 + βx2), αx

′
1 + βx2)L

+ γ(αx′1 + βx2, αx
′
1 + βx2)L

= (µ− γ)(T ′(αx′1 + βx2), αx
′
1 + βx2)L + γ

= (µ− γ)λ+ γ.

This proves that (µ− γ)λ+ γ ∈ W (T ) for all λ ∈ [0, 1] because ‖αx′1 + βx2‖L = 1. Hence, W (T )
is convex.
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Chapter 47

Symmetric operators, conforming
approximation

Exercises

Exercise 47.1 (Real eigenvalues). Consider the eigenvalue problem: Find ψ ∈ H1
0 (D;C)\{0}

and λ ∈ C s.t.
∫
D(∇ψ·∇w + ψw) dx = λ

∫
D ψw dx for all w ∈ H1

0 (D;C). Prove directly that λ is
real. (Hint : test with w := ψ.)

Exercise 47.2 (Smallest eigenvalue). Let D1 ⊂ D2 be two Lipschitz domains in Rd. Let
ai : H

1
0 (Di)×H1

0 (Di)→ R, i ∈ {1, 2}, be two symmetric, coercive, bounded bilinear forms. Assume
that a1(v, w) = a2(ṽ, w̃) for all v, w ∈ H1

0 (D1), where ṽ, w̃ denote the extension by zero of v, w, re-
spectively. Let λ1(Di) be the smallest eigenvalue of the eigenvalue problem: Find ψ ∈ H1

0 (Di)\{0}
and λ ∈ R s.t. ai(ψ,w) = λ(ψ,w)L2(Di) for all w ∈ H1

0 (Di). Prove that λ1(D2) ≤ λ1(D1). (Hint :
use Proposition 47.3.)

Exercise 47.3 (Continuity of eigenvalues). Consider the setting defined in §47.1. Let a1, a2 :
V×V → R be two symmetric, coercive, bounded bilinear forms. Let A1, A2 : V → V ′ be the linear
operators defined by 〈Ai(v), w〉V ′,V := ai(v, w), i ∈ {1, 2}, for all v, w ∈ A. Let λk(a1) and λk(a2)
be the k-th eigenvalues, respectively. Prove that |λk(a1)−λk(a2)| ≤ supv∈S |〈(A1−A2)(v), v〉V ′,V |,
where S is the unit sphere in L2(D). (Hint : use the min-max principle.)

Exercise 47.4 (Max-min principle). Prove the second equality in (47.6). (Hint : let Em−1 ∈
Vm−1 and observe that E⊥

m−1 ∩Wm 6= {0}.)
Exercise 47.5 (Laplacian, 1D). Consider the spectral problem for the 1D Laplacian on D :=
(0, 1). (i) Show that the eigenpairs (λm, ψm) are λm = m2π2, ψm(x) = sin(mπx), for all x ∈ D
and all m ≥ 1. (ii) Consider a uniform mesh of D of size h := 1

I+1 and H1-conforming P1 finite
elements. Compute the stiffness matrix A and the mass matrixM. (iii) Show that the eigenvalues

of the discrete problem (47.8) are λhm = 6
h2 (

1−cos(mπh)
2+cos(mπh) ) for all m ∈ {1:I}. (Hint : consider the

vectors (sin(πhml))l∈{1: I} for all m ∈ {1:I}.)
Exercise 47.6 (Stiffness matrix). Assume that the mesh sequence (Th)h∈H is quasi-uniform.
Estimate from below the smallest eigenvalue of the stiffness matrix A defined in (47.9) and estimate
from above its largest eigenvalue. (Hint : see §28.2.3.)
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Solution to exercises

Exercise 47.1 (Real eigenvalues). Testing with w := ψ yields
∫

D

(‖∇ψ‖2ℓ2 + |ψ|2) dx = λ

∫

D

|ψ|2 dx.

Since ψ 6= 0, this shows that λ is real.

Exercise 47.2 (Smallest eigenvalue). For all v ∈ H1
0 (D1), let us denote by ṽ the extension

by zero of v over D2. Theorem 3.18 implies that ṽ ∈ H1
0 (D2) and ‖ṽ‖H1(D2) = ‖v‖H1(D1). We

conclude using Proposition 47.3, which implies that

λ1(D1) = min
v∈H1

0 (D1)

a1(v, v)

‖v‖2L2(D1)

= min
v∈H1

0 (D1)

a2(ṽ, ṽ)

‖ṽ‖2L2(D2)

≥ min
v∈H1

0 (D2)

a2(v, v)

‖v‖2L2(D2)

= λ1(D2).

Exercise 47.3 (Continuity of eigenvalues). Using the min-max principle (Proposition 47.4),
we infer that

λk(a1) = min
Ek∈Vk

max
v∈Ek

〈A1(v), v〉V ′,V

‖v‖2L2(D)

, λk(a2) = min
Ek∈Vk

max
v∈Ek

〈A2(v), v〉V ′,V

‖v‖2L2(D)

.

Let E2
k := span{ψ2

1, . . . , ψ
2
k}, where {ψ2

1, . . . , ψ
2
k} are the k first eigenfunctions of a2, so that

λk(a2) = maxv∈E2
k

〈A2(v),v〉V ′,V

‖v‖2
L2(D)

. We obtain

λk(a1)− λk(a2) ≤ max
v∈E2

k

〈A1(v), v〉V ′,V

‖v‖2L2(D)

− max
v∈E2

k

〈A2(v), v〉V ′,V

‖v‖2L2(D)

.

Let g ∈ E2
k \ {0} be such that

〈A1(g),g〉V ′,V

‖g‖2
L2(D)

:= maxv∈E2
k

〈A1(v),v〉V ′,V

‖v‖2
L2(D)

. We infer that

λk(a1)− λk(a2) ≤
〈A1(g), g〉V ′,V

‖g‖2L2(D)

− 〈A2(g), g〉V ′,V

‖g‖2L2(D)

=
〈(A1 −A2)(g), g〉V ′,V

‖g‖2L2(D)

.

Hence, λk(a1) − λk(a2) ≤ supv∈V
|〈(A1−A2)(v),v〉V ′,V |

‖v‖2
L2(D)

. The other inequality is shown by switching

the roles of λk(a1) and λk(a2).

Exercise 47.4 (Max-min principle). Let us set

Wm−1 := span{ψ1, . . . , ψm−1}, Wm := span{ψ1, . . . , ψm}.

For all v ∈ W⊥
m−1, we have v ∈ span{ψn}n≥m, so that

max
Em−1∈Vm−1

min
v∈E⊥

m−1

R(v) ≥ min
v∈W⊥

m−1

R(v) = min
v∈W⊥

m−1

∑
n≥m λnv

2
n∑

n≥m v
2
n

= λm.

Let now Em−1 ∈ Vm−1. A dimension argument shows that E⊥
m−1 ∩Wm 6= {0}. Thus, we have

min
v∈E⊥

m−1

R(v) ≤ min
v∈E⊥

m−1∩Wm

R(v) ≤ max
v∈E⊥

m−1∩Wm

R(v) ≤ max
v∈Wm

R(v) = λm,
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where the last equality follows from the min-max principle. This proves that

max
Em−1∈Vm−1

min
v∈E⊥

m−1

R(v) ≤ λm.

Altogether, we have shown that

max
Em−1∈Vm−1

min
v∈E⊥

m−1

R(v) = λm.

Exercise 47.5 (Laplacian, 1D). (i) The spectral problem for the Laplacian in the domain
D := (0, 1) is: {

Find ψ ∈ H1
0 (D)\{0} and λ ∈ R such that

a(ψ,w) = λ(ψ,w)L2(D), ∀w ∈ H1
0 (D),

where a(ψ,w) :=
∫ 1

0
ψ′w′dx. It follows that −ψ′′ = λψ, ψ ∈ H1

0 (D). This is an ordinary differential

equation with characteristic equation −s2 = λ. If λ < 0, we have s = ±
√
−λ, and the fundamental

solutions are e
√
−λx and e−

√
−λx. But these two fundamental solutions do not satisfy the boundary

condition. Hence, λ ≥ 0, and the two fundamental solutions are cos(
√
λx) and sin(

√
λx). It follows

from ψ(0) = ψ(1) = 0 that ψ(x) = sin(mπx) with λ = m2π2 and m ∈ N\{0} (since ψ 6= 0).
(ii) The discrete eigenvalue problem is

{
Find ψh ∈ Vh\{0} and λh ∈ R such that

a(ψh, wh) = λh(ψh, wh)L2(D), ∀wh ∈ Vh,

where Vh := P g
1,0(Th). This problem can be recast as follows:

{
Find Uh ∈ RI\{0} and λh ∈ R such that

AUh = λhMUh,

where Aij := a(ϕj , ϕi), Mij := (ϕj , ϕi)L2(D) and {ϕ1, · · · , ϕI} are the global shape functions in
Vh. For all i ∈ {1:I}, we have

ϕi(x) :=

{
− 1
h |x− xi|+ 1 if x ∈ [xi−1, xi+1],

0 otherwise.

We infer that

Aij =
∫ 1

0

ϕ′
j(x)ϕ

′
i(x)dx =





2
h if i = j,

− 1
h if |i− j| = 1,

0 otherwise,

and

Mij =

∫ 1

0

ϕj(x)ϕi(x)dx =





4h
6 if i = j,
h
6 if |i− j| = 1,

0 otherwise.

Thus, A = 1
h tridiag(−1, 2,−1) andM = h

6 tridiag(1, 4, 1).
(iii) Using that

ℑ(2eiπhml − eiπhm(l−1) − eiπhm(l+1)) = 2(1− cos(πhm))ℑ(2eiπhml),
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we infer that the eigenvalues of the stiffness matrix A are

λhm,A =
2

h
(1 − cos (πhm)),

with the corresponding eigenvectors Uhm = (sin(πhml))Tl∈{1: I} for all m ∈ {1:I}. Using that

ℑ(4eiπhml + eiπhm(l−1) + eiπhm(l+1)) = (4 + 2 cos(πhm))ℑ(2eiπhml),

we infer that the eigenvalues of the mass matrixM are

λhm,M =
h

3
(2 + cos (πhm)),

with the corresponding eigenvectors Uhm = (sin(πhml))Tl∈{1: I} for all m ∈ {1:I}. The identity

λhm,AUhm = AUhm = λhmMUhm = λhmλhm,MUhm,

for all m ∈ {1:I} shows that λhm =
λhm,A
λhm,M

= 6
h2 (

1−cos (mπh)
2+cos (mπh) ).

Exercise 47.6 (Stiffness matrix). We are going to use Proposition 28.11. We first have

αL2 := inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖L2(D)‖wh‖L2(D)

≥ inf
vh∈Vh

|a(vh, vh)|
‖vh‖2L2(D)

≥ α.

We also have

ωL2 := sup
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖L2(D)‖wh‖L2(D)

≤ ‖a‖
(

sup
vh∈Vh

‖vh‖H1(D)

‖vh‖L2(D)

)2

≤ c ‖a‖ℓ2Dh−2.

Let µmin
M , µmax

M be the smallest and the largest eigenvalues of the mass matrix M, respectively.
Owing to Proposition 28.6, we infer that c1h

d ≤ µmin
M ≤ µmax

M ≤ c2h
d. Let λmin

A , λmax
A be the

smallest and the largest eigenvalues of A, respectively. Since A is symmetric, we have λmin
A =

‖A−1‖−1
ℓ2 and λmax

A = ‖A‖ℓ2 . Finally, Proposition 28.11 gives

λmin
A = ‖A−1‖−1

ℓ2 ≥ µmin
M αL2 ≥ αµmin

M ≥ c αhd,

and

λmax
A = ‖A‖ℓ2 ≤ µmax

M ωL2 ≤ c µmax
M ‖a‖ℓ2Dh−2 ≤ c ‖a‖ℓ2Dhd−2.



Chapter 48

Nonsymmetric problems

Exercises

Exercise 48.1 (Linearity). Consider the setting of §48.1.2. Let V →֒ L be two complex Banach
spaces and a : V×V → C be a bounded sesquilinear form satisfying the two conditions of the
BNB theorem. Let b : L×L → C be bounded sesquilinear form. (i) Let T : L → L be such that
a(T (v), w) := b(v, w) for all v ∈ L and all w ∈ V. Show that T is well defined and linear. (ii) Let
T∗ : L → L be such that a(v, T∗(w)) := b(v, w) for all v ∈ V and all w ∈ L. Show that T∗ is well
defined and linear.

Exercise 48.2 (Invariant sets). (i) Let S, T ∈ L(V ) be such that ST = TS. Prove that ker(S)
and im(S) are invariant under T . (ii) Let T ∈ L(V ) and let W1, . . . ,Wm be subspaces of V that
are invariant under T . Prove that W1+ . . .+Wm and

⋂
i∈{1:m}Wi are invariant under T . (iii) Let

T ∈ L(V ) and let {v1, . . . , vn} be a basis of V. Show that the following statements are equivalent:
(a) The matrix of T with respect to {v1, . . . , vn} is upper triangular; (b) T (vj) ∈ span{v1, . . . , vj}
for all j ∈ {1:n}; (c) span{v1, . . . , vj} is invariant under T for all j ∈ {1:n}. (iv) Let T ∈ L(V ). Let
µ be an eigenvalue of T . Prove that im(µIV − T ) is invariant under T . Prove that ker(µIV − T )α
is invariant under T for every integer α ≥ 1.

Exercise 48.3 (Trace). (i) Let V be a complex Banach space. Let G ⊂ V be a subspace of V
of dimension m. Let {φj}j∈{1:m} and {ψj}j∈{1:m} be two bases of G, and let {φ′j}j∈{1:m} and
{ψ′

j}j∈{1:m} be corresponding dual bases, i.e., 〈φ′i, φj〉V ′,V = δij , etc. (the way the antilinear forms
{φ′j}j∈{1:m} and {ψ′

j}j∈{1:m} are extended to V does not matter). Let T ∈ L(V ) and assume
that G is invariant under T . Show that

∑
j∈{1:m}〈ψ′

j , T (ψj)〉V ′,V =
∑

j∈{1:m}〈φ′j , T (φj)〉V ′,V .

(ii) Let B ∈ Cm×m be s.t. T (φi) =:
∑
j∈{1:m}Bjiφj (recall that G is invariant under T ). Let

V := (〈φ′j , v〉V ′,V )
T

j∈{1:m} for all v ∈ G. Prove that Tα(v) =
∑
j∈{1:m}(B

αV)jφj for all α ∈ N.
(Hint : use an induction argument.) (iii) Let µ ∈ C, α ≥ 1, and S ∈ L(V ). Assume that
G := ker(µIV − S)α is finite-dimensional and nontrivial (i.e., dim(G) := m ≥ 1). Prove that∑
j∈{1:m}〈φ′j , S(φj)〉V,V ′ = mµ. (Hint : consider the m×m matrix A with entries 〈φ′i, (µIV −

S)(φj)〉V ′,V and show that Aα = 0.)

Exercise 48.4 (Theorem 48.12). Prove the estimates in Theorem 48.12. (Hint : see the proof
of Theorem 48.8.)
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Exercise 48.5 (Nonconforming approximation). Consider the Laplace operator with homo-
geneous Dirichlet boundary conditions in a Lipschitz polyhedron D with b(v, w) :=

∫
D
ρvw dx,

where ρ ∈ C∞(D;R). Verify that the assumptions (48.25) to (48.30) hold true for the Crouzeix–
Raviart approximation.

Solution to exercises

Exercise 48.1 (Linearity). (i) Let ιL,V := supw∈V
‖w‖L
‖w‖V . We first observe that |b(v, w)| ≤

‖b‖ ‖v‖L‖w‖L ≤ ιL,V ‖b‖ ‖v‖L‖w‖V , that is, the antilinear form fv : V → C defined by fv(w) :=
b(v, w) is bounded. Then, for all v ∈ L, there exists a unique T (v) ∈ V →֒ L s.t. a(T (v), w) :=
fv(w) for all w ∈ V. Let v1, v2 ∈ V and α1, α2 ∈ C. We obtain

a(T (α1v1 + α2v2), w) = b(α1v1 + α2v2, w) = α1b(v1, w) + α2b(v2, w)

= α1a(T (v1), w) + α2a(T (v2), w)

= a(α1T (v1) + α2T (v2), w), ∀w ∈ V.

This means that T (α1v1 + α2v2) = α1T (v1) + α2T (v2), i.e., T : L→ L is linear.
(ii) Using the same arguments as above, we prove that the linear form gw : V → C defined by
gw(v) := b(v, w) is continuous. Then, for all w ∈ L, there exists a unique T∗(w) ∈ V →֒ L s.t.
a(v, T∗(w)) := gw(v) for all v ∈ V. Let w1, w2 ∈ V and α1, α2 ∈ C. We have

a(v, T (α1w1 + α2w2)) = b(v, α1w1 + α2w2) = α1b(v, w1) + α2b(v, w2)

= α1a(v, T∗(w1)) + α2a(v, T∗(w2))

= a(v, α1T (w1) + α2T (w2)), ∀v ∈ V.

This means that T∗(α1w1 + α2w2) = α1T∗(w1) + α2T∗(w2), i.e., T∗ : L→ L is linear.

Exercise 48.2 (Invariant sets). (i) Let S, T ∈ L(V ) be such that ST = TS. Let v ∈ ker(S) so
that ST (v) = TS(v) = 0. Hence, T (v) ∈ ker(S), i.e., ker(S) is invariant under T . Let v ∈ im(S),
i.e., there is z ∈ V such that v = S(z). This implies that T (v) = TS(z) = ST (z) ∈ im(S), i.e.,
im(S) is invariant under T .
(ii) Let T ∈ L(V ) and let W1, . . . ,Wm be subspaces of V that are invariant under T . Let w1 +
. . . + wm ∈ W1 + . . . +Wm. Then T (w1 + . . . + wm) = T (w1) + . . . + T (wm) ∈ W1 + . . . +Wm,
i.e., W1 + . . . +Wm is invariant under T . Let w ∈ ⋂i∈{1:m}Wi. Then T (w) ∈ Wi, since w ∈ Wi

and Wi is invariant under T for all i ∈ {1:m}. Hence, T (v) ∈ ⋂i∈{1:m}Wi, i.e.,
⋂
i∈{1:m}Wi is

invariant under T .
(iii) We only prove that (b) implies (c) since the other implications are evident. Let us assume
that (b) holds true. Let us fix j ∈ {1:n}. The statement (b) implies that T (v1) ∈ span{v1} ⊂
span{v1, . . . , vn}, T (v2) ∈ span{v1, v2} ⊂ span{v1, . . . , vn}, . . . , T (vn) ∈ span{v1, . . . , vn}. Hence,
if v is a linear combination of v1, . . . , vn, then T (v) ∈ span{v1, . . . , vn}. In conclusion, we have
shown that span{v1, . . . , vn} is invariant under T , thereby proving (c).
(iv) Let µ be an eigenvalue of T . Let v ∈ im(µIV − T ). Then

T (v) = (T − µIV )(v) + µv ∈ im(µIV − T ) + span{v} ⊂ im(µIV − T ),

i.e., im(µIV − T ) is invariant under T . Let now v ∈ ker(µIV − T )α. We have

(µIV − T )α(µIV − T )(v) = (µIV − T )(µIV − T )α(v) = 0.
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Hence, µv − T (v) ∈ ker(µIV − T )α. This implies that

T (v) ∈ ker(µIV − T )α + span{v} = ker(µIV − T )α.

Hence, ker(µIV − T )α is invariant under T .

Exercise 48.3 (Trace). (i) Since {φj}j∈{1:m} and {ψj}j∈{1:m} are two bases of the same vector
space, there exists an invertible m×m matrix A such that φj =

∑
k∈{1:m}Ajkψk for all j ∈ {1:m}.

Let (A−1
ij )i,j∈{1:m} be the coefficients of A−1 and let {ψ′

j}j∈{1:m} be a dual basis of {ψj}j∈{1:m}.
We obtain

〈
∑

k′∈{1:m}
A−1
k′iψ

′
k′ , φj〉V ′,V = 〈

∑

k′∈{1:m}
A−1
k′iψ

′
k′ ,

∑

k∈{1:m}
Ajkψk〉V ′,V

=
∑

k′∈{1:m}

∑

k∈{1:m}
A−1
k′iAjk〈ψ′

k′ , ψk〉V ′,V

=
∑

k∈{1:m}
AjkA

−1
ki = δji.

This proves that φ′i|G =
∑
k′∈{1:m}A

−1
k′iψ

′
k′ |G. Using that T (G) ⊂ G, i.e., that G is invariant under

T , we infer that

∑

i∈{1:m}
〈φ′i, T (φi)〉V ′,V =

∑

i∈{1:m}
〈φ′i|G, T (φi)〉V ′,V

=
∑

i∈{1:m}
〈
∑

k′∈{1:m}
A−1
k′iψ

′
k′ |G,

∑

k∈{1:m}
AikT (ψk)〉V ′,V

=
∑

k′∈{1:m}

∑

k∈{1:m}
〈ψ′
k′ , T (ψk)〉V ′,V

∑

i∈{1:m}
A−1
k′iAik

=
∑

k∈{1:m}
〈ψ′
k, T (ψk)〉V ′,V ,

which proves the expected result.
(ii) Since G is invariant under T , there are m2 scalars (Bij)i,j∈{1:m} such that

T (φi) =
∑

j∈{1:m}
Bjiφj .

Using the properties of the dual basis, we obtain

〈φ′k, T (φi)〉V ′,V =
∑

j∈{1:m}
Bji〈φ′k, φj〉V ′,V = Bki.

Let v :=
∑

i∈{1:m} Viφi ∈ G. We have

T (v) =
∑

i∈{1:m}
ViT (φi) =

∑

k∈{1:m}

∑

i∈{1:m}
BkiViφk =

∑

k∈{1:m}
(BV)kφk.
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We can now conclude by using an induction argument as follows:

Tα(v) =
∑

i∈{1:m}
(Bα−1

V)iT (φi)

=
∑

k∈{1:m}

∑

i∈{1:m}
Bki(B

α−1V)iφk

=
∑

k∈{1:m}
(BαV)kφk.

(iii) Let us set T := µIV − S. Let v ∈ G := ker(µIV − S)α, so that

(µIV − S)αT (v) = (µIV − S)α(µIV − S)(v)
= (µIV − S)(µIV − S)α(v) = 0,

which means that G is invariant under T . Let A be the m×m matrix with entries 〈φ′i, (µIV −
S)(φj)〉V ′,V for all i, j ∈ {1:m}. Since Tα(v) = (µIV − S)α(v) = 0 for all v ∈ G, the argument in
Step (ii) shows that AαV = 0 for all V ∈ Cm, i.e., Aα = 0. Hence, the matrix A is nilpotent. Since
the trace of any nilpotent matrix is zero, we infer that tr(A) = mµ−∑i∈{1:m}〈φ′i, S(φi)〉V ′,V = 0.
We have thus proved that

tr(S) :=
∑

i∈{1:m}
〈φ′i, S(φi)〉V ′,V = mµ,

which is the expected result.

Exercise 48.4 (Theorem 48.12). We proceed as in the proof of Theorem 48.8. Using t = τµ
and t∗ = τ∗ in (48.31), we infer that

‖(T − Th)|Gµ‖L(Gµ;L2) = sup
v∈Gµ

sup
w∈L2

((T − Th)(v), w)L2(D)

‖v‖L2‖w‖L2

≤ c hτµ+τ∗

.

Using t = τ and t∗ = τ∗µ in (48.31), and recalling that T ∗ = TH, we infer that

‖(T − Th)∗|G∗
µ
‖L(G∗

µ;L
2) = sup

v∈L2

sup
w∈G∗

µ

(v, (TH − TH

h )(w))L2(D)

‖v‖L2‖w‖L2

= sup
v∈L2

sup
w∈G∗

µ

((T − Th)(v), w)L2(D)

‖v‖L2‖w‖L2

≤ c hτ+τ∗
µ .

Using t = τµ and t∗ = τ∗µ in (48.31), we finally infer that

sup
v∈Gµ

sup
w∈G∗

µ

((T − Th)(v), w)L2(D)

‖v‖L2‖w‖L2

≤ c hτµ+τ∗
µ .

The conclusion follows by applying Theorem 48.1 to Theorem 48.3.

Exercise 48.5 (Nonconforming approximation). The assumption (48.25) holds true for the
Laplace operator with homogeneous Dirichlet conditions in a Lipschitz polyhedron with

Vs := H1+r(D) ∩ V, r >
1

2
.
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After extending ah to V♯×V♯ by setting a♯(v, w) :=
∫
D
∇hv·∇hw dx where ∇h is the broken gradient

operator (which is an extension of the usual gradient operator to V♯; see Definition 36.3 and below),
the assumption (48.26) holds true with

‖v‖2V♯ :=
∑

K∈Th
‖∇v‖2L2(K) +

∑

K∈Th
hK‖nK ·∇v‖2L2(∂K).

Since T (v) ∈ H1
0 (D) and S∗(w) ∈ H1

0 (D) for all v, w ∈ L2(D), i.e., ∇T (v) ∈ L2(D) and ∇S∗(w) ∈
L2(D), we have

a♯(T (v), S∗(w)) =
∫

D

∇hT (v)·∇hS∗(w) dx

=

∫

D

∇T (v)·∇S∗(w) dx = a(T (v), S∗(w)),

for all v, w ∈ L2(D). This proves that the assumption (48.27) holds true. Similarly, the as-
sumption (48.28) (related to the restricted and adjoint Galerkin orthogonality properties) holds
true because Vh ∩ V ⊂ V := H1

0 (D). The two properties (48.29) are a consequence of the
error estimate (36.21). Finally, the best-approximation property (48.30) is a consequence of
Vh ∩ V ⊂ P g

1,0(Th) and the approximation properties of H1-conforming finite elements.
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Chapter 49

Well-posedness for PDEs in mixed
form

Exercises

Exercise 49.1 (Algebraic setting). (i) Derive the counterpart of Theorem 49.12 in the setting
of §49.3.1. (Hint : assume that the matrix B has full row rank and consider a basis of ker(B).) (ii)
What happens if the matrix A is symmetric positive definite?

Exercise 49.2 (Constrained minimization). The goal is to prove Proposition 49.11. (i) Prove
that if u minimizes E over Vg, there is (a unique) p ∈ Q such that (u, p) solves (49.35). (Hint :
proceed as in §49.3.1.) (ii) Prove that (u, p) solves (49.35) if and only if (u, p) is a saddle point
of L. (Hint : consider Ep : V → R s.t. Ep(v) := L(v, p) with fixed p ∈ Q.) (iii) Prove that if
(u, p) is a saddle point of L, then u minimizes E over Vg. (iv) Application: minimize E(v) :=
2v21 + 2v22 − 6v1 + v2 over R2 under the constraint 2v1 + 3v2 = −1.

Exercise 49.3 (Symmetric operator). Let X be a Hilbert space and let T ∈ L(X ;X) be a
bijective symmetric operator. (i) Prove that T−1 is symmetric. (ii) Prove that [λ ∈ σ(T ) ] ⇐⇒
[λ−1 ∈ σ(T−1) ]. (Hint : use Corollary 46.18.) (iii) Prove that σ(T ) ⊂ R. (Hint : consider the
sesquilinear form tλ(x, y) := ((T − λIX)(x), y)X and use the Lax–Milgram lemma.)

Exercise 49.4 (Sharp stability). The goal is to prove Proposition 49.8. (i) Assume that ker(B)

is nontrivial. Verify that 1 ∈ σp(T̃ ). (ii) Let λ 6= 1 be in σ(T̃ ). Prove that λ(λ− 1) ∈ σ(S). (Hint :
consider the sequence xn := (vn, qn) in X from Corollary 46.18, then observe that (S(qn), qn)Q =
(1 − λ)2〈A(vn), vn〉V ′,V + δn, with δn := 〈B∗(qn) + (1 − λ)A(vn), A−1B∗(qn) − (1 − λ)vn〉V ′,V ,

and prove that S(qn) − λ(λ − 1)qn → 0 and lim infn→∞ ‖qn‖Q > 0.) (iii) Prove that σ(T̃ ) ⊂
[λ−♯ , λ

−
♭ ]∪ {1}∪ [λ+♭ , λ+♯ ] with λ±♭ = 1

2 (1± (4 β2

‖a‖ +1)
1
2 ), and λ±♯ = 1

2 (1± (4 ‖b‖2

α +1)
1
2 ). (Hint : use

Lemma 49.1.) (iv) Conclude. (Hint : T̃ is symmetric with respect to the weighted inner product
(x, y)X̃ := a(v, w) + (q, r)Q.)

Exercise 49.5 (Abstract Helmholtz decomposition). Consider the setting of §49.2 and
equip V with the bilinear form a as inner product. (i) Prove that im(A−1B∗) is closed and
that V = ker(B) ⊕ im(A−1B∗), the sum being a-orthogonal. (Hint : use Lemma C.39.) (ii)
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Let f ∈ ker(B)⊥. Prove that solving b(v, p) = f(v) for all v ∈ V is equivalent to solving
(S(p), q)Q = (J−1

Q BA−1(f), q)Q for all q ∈ Q.

Exercise 49.6 (Maxwell’s equations). Consider the following problem: For f ∈ L2(D), find
A and φ such that





∇×(κ∇×A) + ν∇φ = f ,

∇·(νA) = 0,

A|∂Dd
×n = 0, φ|∂Dd

= 0, (κ∇×A)|∂Dn
×n = 0, A|∂Dn

·n = 0,

where κ, ν are real and positive constants (for simplicity), and |∂Dd| > 0 (see §49.1.3; here we
writeA in lieu ofH and we consider mixed Dirichlet–Neumann conditions). (i) Give a mixed weak
formulation of this problem. (Hint : use the spaces Vd := {v ∈H(curl;D) | γc(v)|∂Dd

= 0}, where
the meaning of the boundary condition is specified in §43.2.1, and Qd := {q ∈ H1(D) | γg(q)|∂Dd

=
0}.) (ii) Let B : Vd → Q′

d be s.t. 〈B(v), q〉Q′
d
,Qd

:= (νv,∇q)L2(D). Let v ∈ ker(B). Show that

∇·v = 0 and, if v ∈ H1(D), γg(v)|∂Dn
·n = 0. (Hint : recall that ν is constant.) (iii) Accept as a

fact that D, ∂Dd, ∂Dn have topological and smoothness properties such that there exists c > 0
s.t. ℓD‖∇×v‖L2(D) ≥ c‖v‖L2(D), for all v ∈ ker(B), with ℓD := diam(D). Show that the above
weak problem is well-posed. (Hint : use Theorem 49.13.) (iv) Let (Th)h∈H be a shape-regular
sequence of affine meshes. Let k ≥ 0, let Vh := P c

k (Th) ∩ Vd, and let Qh := P g
k+1(Th) ∩Qd. Show

that ∇Qh ⊂ Vh. (v) Show that the discrete mixed problem is well-posed in Vh×Qh assuming that
∂Dd = ∂D. (Hint : invoke Theorem 44.6.)

Solution to exercises

Exercise 49.1 (Algebraic setting). (i) Let us consider the linear system (49.27). We have

already seen that a necessary condition for the invertibility of the matrix
(

A BT

B O

)
is that B has full

row rank and that this implies in particular thatM ′ := N−M ≥ 0. Notice thatM ′ = dim(ker(B))
since dim(im(B)) =M .

If M ′ = 0, i.e., N = M , the matrix B is square and invertible, and it is readily seen that the

matrix
(

A BT

B O

)
is invertible without invoking further assumptions on the matrix A, and we have

(
A BT

B O

)−1

=

(
O B−1

B−T −B−TAB−1

)
.

Thus, if N = M , Theorem 49.12 can be reformulated as follows: the matrix
(

A BT

B O

)
is invertible

iff the matrix B has full row rank.
Assume now that N > M , so that M ′ ≥ 1. Let (Ji)i∈{1:M ′} be a basis of ker(B) (recall that

by convention the Ji’s are column vectors in RN ) and let J ∈ RN×M ′

be the rectangular matrix

formed by the above basis. Observe that ker(J T) = (kerB)⊥ = imBT. Recall that
(

A BT

B O

)
is

invertible iff ker
(

A BT

B O

)
= {0}. Assume first that ker

(
A BT

B 0

)
= {0}. If ker(J TAJ ) 6= {0}, there

exists V 6= 0 in ker(J TAJ ). Then, let U := JV and notice that U 6= 0 since the columns of
J are linearly independent. The identity ker(J T) = imBT implies that there exists P such that

−BTP = AJV = AU. This is a contradiction since 0 6= (U,P) ∈ ker
(

A BT

B O

)
. Hence, J TAJ is
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invertible. Suppose now that J TAJ is invertible. Let (U,P) ∈ RN×RM in ker
(

A BT

B O

)
. Then,

BU = 0, i.e., U ∈ ker(B). Hence, there is V ∈ RM ′

s.t. U = JV. This means that AJV+BTP = 0.
Multiplying on the left by J T gives

0 = J TAJV + J TBTP = J TAJV + (BJ )TP = J TAJV.

Hence, J TAJV = 0, which implies that V = 0, 0 = JV = U and 0 = AJV = −BTP. But

ker(BT) = {0} since B has full row rank, i.e., P = 0. In conclusion,
(

A BT

B O

)
is invertible.

To sum up, the algebraic counterpart of the operator Aπ from Theorem 49.12 is the matrix

Aπ = J TAJ ∈ RM ′×M ′

, and Theorem 49.12 can be reformulated as follows: the matrix
(

A BT

B O

)

is invertible iff the matrix B has full row rank and the matrix Aπ is invertible.
(ii) If the matrix A is symmetric positive definite and N > M , so is the matrix Aπ. Therefore,

the invertibility of
(

A BT

B O

)
is equivalent to B having full row rank.

Exercise 49.2 (Constrained minimization). (i) Since u ∈ Vg, b(u, q) = g(q) for all q ∈ Q.
Let B ∈ L(V ;Q′) be the operator associated with the bilinear form b. The Euler condition yields
DE(u)(h) = 0 for all h ∈ ker(B). Since DE(u)(h) = a(u, h) − f(h), we conclude that the linear
form a(u, ·) − f(·) is in ker(B)⊥ = im(B∗) since B is surjective. Hence, there is p ∈ Q such that
a(u, v) + b(v, p) = f(v) for all v ∈ V. The uniqueness of p follows from the injectivity of B∗.
(ii) Assume that (u, p) solves (49.35). Then L(u, q) = L(u, p) for all q ∈ Q. Moreover, the
functional Ep : V → R s.t. Ep(v) := L(v, p) (with p fixed) is strictly convex and DEp(u)(h) = 0
for all h ∈ V since DEp(u)(h) = a(u, h) + b(h, p) − f(h). This implies that u minimizes Ep over
V. Conversely, assume that (u, p) is a saddle point of L. This implies that L(u, q) − L(u, p) =
〈B(u)− g, q− p〉Q′,Q ≤ 0 for all q ∈ P . Hence, 〈B(u)− g, q〉Q′,Q ≤ 0, and taking ±q, we infer that
〈B(u) − g, q〉Q′,Q = 0 for all q ∈ Q. Therefore, B(u) = g. Moreover, u minimizes the functional
Ep over p, whence we infer that DEp(u)(h) = 0 for all h ∈ V, i.e., a(u, h) + b(h, p)− f(h) = 0 for
all h ∈ V.
(iii) Assume that (u, p) is a saddle point of L. We have already seen that the left inequality
in (49.29) implies that B(u) = g, i.e., u ∈ Vg. Moreover, taking v ∈ Vg, we can see from the right
inequality in (49.29) that E(u)− E(v) = L(u, p)− L(v, p) ≤ 0.
(iv) Using the above results, we infer that u is the minimizer of E over R2 under the above
constraint if and only if (u, p) := (u1, u2, p) is a saddle point of L(v, q) = E(v) + q(2v1 + 3v2 + 1).
The optimality conditions are

0 = ∂v1L(u, p) = 4u1 − 6 + 2p,

0 = ∂v2L(u, p) = 4u2 + 1 + 3p,

0 = ∂qL(u, p) = 2u1 + 3u2 + 1.

The solution to this linear system is (u1, u2, p) = (1,−1, 1). Hence, the minimizer is u = (1,−1),
and the minimum is E(u) = −3.

Exercise 49.3 (Symmetric operator). (i) Using the symmetry of T , we infer that for all
x, y ∈ X,

(T−1(x), y)X = (T−1(x), TT−1(y))X = (T−1(y), TT−1(x))X = (T−1(y), x)X .

(ii) Let λ ∈ σ(T ). Owing to Corollary 46.18, there is (xn)n∈N in X such that ‖vn‖X = 1 for all
n ∈ N and T (vn) − λvn → 0 as n → ∞. Since T is bijective, λ 6= 0 so that λ−1T−1 is bounded.
This implies that λ−1vn − T−1(vn) → 0 as n → ∞, which shows that λ−1 ∈ σ(T−1). The proof
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for the converse is identical.
(iii) Assume that λ = α + iβ ∈ σ(T ) with β 6= 0. The sesquilinear form tλ(x, y) := ((T −
λIX)(x), y)X is bounded and coercive, this latter property following from

ℜ
(
− itλ(x, x)

)
= β‖x‖2X , ∀x ∈ X.

Hence, for all y ∈ X, there is a unique x ∈ X such that tλ(x, z) = (y, z)X for all z ∈ X owing to
the Lax–Milgram lemma. This implies that (T − λIX)(x) = y showing that T − λIX is bijective.
Hence, λ 6∈ σ(T ).

Exercise 49.4 (Sharp stability). (i) Let v ∈ ker(B) \ {0}. Then T̃ (v, 0) = (v, 0), so that

1 ∈ σp(T̃ ).
(ii) Consider a sequence (xn)n∈N in X such that ‖xn‖X = 1 for all n ∈ N and T̃ (xn)− λxn → 0 as
n→∞. Writing xn := (vn, qn), we infer that (1−λ)vn+A−1B∗(qn)→ 0 and J−1

Q B(vn)−λqn → 0.
This implies that S(qn)− λ(λ− 1)qn → 0. We observe that

(S(qn), qn)Q = (1− λ)2〈A(vn), vn〉V ′,V + δn,

with

δn := 〈B∗(qn) + (1− λ)A(vn), A−1B∗(qn)− (1− λ)vn〉V ′,V ,

and δn → 0 since B∗(qn) + (1− λ)A(vn)→ 0 (since A is bounded) and A−1B∗(qn)− (1 − λ)vn is
bounded in V (since xn is bounded in X). Owing to the coercivity of A and the characterization
of σ(S), we infer that

( ‖b‖2
α(1 − λ)2 + 1

)
‖qn‖2Q ≥

1

α(1− λ)2 (S(qn), qn)Q + ‖qn‖2Q

≥ ‖xn‖2X +
1

α(1 − λ)2 δn.

This shows that lim infn→∞ ‖qn‖Q > 0. Recalling that S(qn)− λ(λ − 1)qn → 0, we conclude that
λ(λ− 1) ∈ σ(S).
(iii) Lemma 49.1 implies that λ(λ− 1) ∈

[
β2

‖a‖ ,
‖b‖2

α

]
. A simple reasoning on the quadratic function

λ 7→ λ(λ − 1) leads to the expected result on σ(T̃ ), recalling that 1 ∈ σ(T̃ ).
(iv) We observe that T̃ is symmetric with respect to the weighted inner product (x, y)X̃ := a(v, w)+
(q, r)Q. Let ‖·‖X̃ be the induced norm in X. Equipping X with this norm, we infer that

‖T̃‖L(X;X) = sup
λ∈σ(T̃ )

|λ| = λ+♯ ,

‖T̃−1‖L(X;X) = sup
λ∈σ(T̃ )

|λ|−1 = (−λ−♭ )−1.

Since T̃ (x) = y with y := (A−1(f), J−1
Q (g)) whenever x := (u, p) solves (49.35), we conclude

that (49.26) holds true.

Exercise 49.5 (Abstract Helmholtz decomposition). (i) Since

‖a‖‖A−1B∗(q)‖2V ≥ 〈B∗(q), A−1B∗(q)〉V ′,V = (S(q), q)Q ≥
β2

‖a‖‖q‖
2
Q
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owing to Lemma 49.1, Lemma C.39 implies that im(A−1B∗) is closed. That V = ker(B) +
im(A−1B∗) results from the fact that the saddle point problem (49.33) has a solution with right-
hand side (f, g) = (A(v), 0) for all v ∈ V. Finally, let v0 ∈ ker(B) and v1 ∈ im(A−1B∗) so that
v1 = A−1B∗(q) for some q ∈ Q. Hence,

a(v0, v1) = 〈A(v0), A−1B∗(q)〉V ′,V = 〈B(v0), q〉Q′,Q = 0.

This proves the a-orthogonality between ker(B) and im(A−1B∗).
(ii) Solving b(v, p) = f(v) for all v ∈ V amounts to B∗(p) = f in V ′. Since both forms vanish on
ker(B), it is enough to assert that 〈B∗(p), v1〉V ′,V = 〈f, v1〉V ′,V for all v1 ∈ im(A−1B∗). Therefore,
we have for all q ∈ Q,

(S(p), q)Q = 〈BA−1B∗(p), q〉Q′,Q = 〈B∗(p), A−1B∗(q)〉V ′,V = (f,A−1B∗(q)〉V ′,V .

This proves the equivalence.

Exercise 49.6 (Maxwell’s equations). (i) We obtain a weak formulation of the problem by
testing the equations with smooth vector fields v and smooth scalar fields q (recall that we can
work here with real-valued functions and fields since ν and κ are real numbers):





∫

D

(κ∇×A·∇×v) dx−
∫

∂D

(κ(∇×A)×n)·v ds+
∫

D

νv·∇φdx =

∫

D

f ·v dx,
∫

D

νA·∇q dx−
∫

∂D

(νA·n)q ds = 0.

We now apply the boundary conditions assuming that the test functions satisfy v|∂Dd
×n = 0 and

q|∂Dd
= 0, which leads to





∫

D

(κ∇×A·∇×v) dx +

∫

D

νv·∇φdx =

∫

D

f ·v dx,
∫

D

νA·∇q dx = 0.

We can make sense of the above informal argument by assuming A,v ∈ Vd and φ, q ∈ Qd where

Vd := {v ∈H(curl;D) | γc(v)|∂Dd
= 0},

Qd := {q ∈ H1(D) | γg(q)|∂Dd
= 0},

where the boundary condition in Vd means that
∫
D
(v·∇×w−(∇×v)·w) dx = 0 for all w ∈H1(D)

s.t. γg(w)|∂Dd
∈ H̃ 1

2 (∂Dd). We equip Vd with the norm of H(curl;D) (see the proof of Theo-
rem 43.1) and Qd with the norm of H1(D). Then, Vd is a closed subspace ofH(curl;D) and Qd is
a closed subspace of H1(D). We introduce the bilinear forms a(A,v) :=

∫
D(κ∇×A·∇×v) dx and

b(A, q) :=
∫
D νA·∇q dx, and the linear form ℓ(v) :=

∫
D f ·v dx. The above problem is reformulated

as follows: Find A ∈ Vd and φ ∈ Qd such that

a(A,v) + b(v, φ) = ℓ(v) ∀v ∈ Vd,

b(A, q) = 0 ∀q ∈ Qd.

(ii) Let v ∈ ker(B), i.e., 0 =
∫
D
νv·∇q dx for all q ∈ Qd. Taking q arbitrary in C∞

0 (D) and since

ν is constant, we infer that ∇·v = 0 in D. If v ∈ H1(D), we infer that for all φ ∈ H̃ 1
2 (∂Dn), we

have ∫

∂Dn

(v·n)φds =
∫

∂D

(v·n)φ̃ds =
∫

D

(
v·∇l(φ̃) + (∇·v)l(φ̃)

)
dx = 0 + 0 = 0,
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where φ̃ is the zero extension of φ to ∂D and l(φ̃) is a lifting of φ̃ in Qd. The above identity implies
that γg(v)|∂Dn

·n = 0.
(iii) We are going to use the Babuška–Brezzi theorem to prove the well-posedness of the mixed for-
mulation, that is, we have to prove (49.36) and (49.37). Since we have ‖∇×v‖2

L2(D) ≥ ℓ−2
D c2‖v‖2

L2(D)

for all v ∈ ker(B), we infer that

‖∇×v‖2L2(D) ≥
c2

1 + c2
(‖∇×v‖2L2(D) + ℓ−2

D ‖v‖2L2(D)) =
c2ℓ−2

D

1 + c2
‖v‖2H(curl;D).

This shows that a(v,v) ≥ c2ℓ−2
D κ

1+c2 ‖v‖2H(curl;D) for all v ∈ ker(B), which proves (49.36).

Since |∂Dd| > 0, we equip Qd with the norm ‖q‖Qd
:= |q|H1(D). Let q be a nonzero member of Qd.

Letting vq := ν−1∇q, we verify that γc(vq)|∂Dd
= 0 and ν‖vq‖H(curl;D) ≤ |q|H1(D) = ‖q‖Qd

(note
that vq is curl-free since ν is constant). The definition of vq implies that b(vq, q) =

∫
D
νvq·∇q dx =

‖∇q‖2
L2(D) = ‖q‖2Qd

, which, in turn, gives

sup
w∈Vd

|b(w, q)|
‖w‖H(curl;D)

≥ |b(vq, q)|
‖vq‖H(curl;D)

=
‖q‖2Qd

‖vq‖H(curl;D)
≥ ν‖q‖Qd

.

This proves (49.37). In conclusion, the weak mixed problem is well-posed.
(iv) Recall that

Vh = {vh ∈H(curl;D) | ψc
K(vh|K) ∈ NNNk,3, ∀K ∈ Th; vh|∂Dd

×n = 0},
Qh = {qh ∈ H1(D) | ψg

K(qh|K) ∈ P̂ , ∀K ∈ Th; qh|∂Dd
= 0}.

Here, P̂ is either Pk+1,3 or Qk+1,3 depending on the shape of the cells. Recalling the commuting
properties stated in Lemma 16.16, we have ∇qh ∈ H(curl;D) and ψc

K(∇qh|K) ∈ NNNk,3 for all
qh ∈ Qh. Moreover, the boundary condition qh|∂Dd

= 0 implies that ∇qh|∂Dd
×n = 0 for all

qh ∈ Qh. Hence, ∇Qh ⊂ Vh.
(v) The discrete mixed problem posed in Vh×Qh consists of seeking Ah ∈ Vh and φh ∈ Qh such
that

a(Ah,vh) + b(vh, φh) = ℓ(vh), ∀vh ∈ Vh,
b(Ah, qh) = 0 ∀qh ∈ Qh.

Proving the well-posedness of this discrete problem can be done by proving that a is coercive on
the discrete space

ker(Bh) := {vh ∈ Vh | b(vh, qh) = 0, ∀qh ∈ Qh}.
Since we have assumed that ∂Dd = ∂D, this is exactly the coercivity statement made in Theo-
rem 44.6 under the form of a discrete Poincaré–Steklov inequality, i.e., a is coercive on ker(Bh)
with a coercivity constant that is uniform w.r.t. the mesh size. We also need to prove that the
discrete counterpart of the inf-sup condition (49.37) holds true. Let qh be a nonzero member of Qh.
Letting vh := ν−1∇qh, we have already verified that vh ∈ Vh. Moreover, ν‖vh‖H(curl;D) ≤ ‖qh‖Qd

,
and proceeding as in Step (iv), we infer that

sup
wh∈Vh

|b(wh, qh)|
‖wh‖H(curl;D)

≥ ν‖qh‖H1(D).

In conclusion, the discrete mixed problem is well-posed.
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Mixed finite element
approximation

Exercises

Exercise 50.1 (Algebraic setting). Let A :=
(

1
√
2√

2 0

)
and B := (1, 0)T. Show that

inf
V∈ker(B)

sup
W∈ker(B)

WTAV
‖W‖ℓ2(R2)‖V‖ℓ2(R2)

< inf
V∈R2

sup
W∈R2

WTAV
‖W‖ℓ2(R2)‖V‖ℓ2(R2)

.

(Hint : one number is equal to 0 and the other is equal to 1.)

Exercise 50.2 (Saddle point problem). Let V,Q be Hilbert spaces and let a be a symmetric,
coercive, bilinear form. Consider the discrete problem (50.2) and the bilinear form t(y, z) :=
a(v, w) + b(w, q) + b(v, r) for all y := (v, q), z := (w, r) ∈ X := V×Q. Let Xh := Vh×Qh and
consider the linear map Ph ∈ L(X ;Xh) such that for all x ∈ X, Ph(x) ∈ Xh is the unique
solution of t(Ph(x), yh) = t(x, yh) for all yh ∈ Xh. Equip X and Xh with the norm ‖(v, q)‖X̃ :=

(‖v‖2a + ‖q‖2Q)
1
2 with ‖v‖2a := a(v, v). (i) Prove that ‖Ph‖L(X;X) ≤ c̃h :=

(4
‖b‖2

α +1)
1
2 +1

(4
β2
h

‖a‖+1)
1
2 −1

. (Hint : use

Proposition 49.8.) (ii) Prove that ‖u− uh‖2a + ‖p− ph‖2Q ≤ c̃2h(infvh∈Vh ‖u− uh‖2a + infqh∈Qh ‖p−
qh‖2Q). (Hint : see the proof of Theorem 5.14.)

Exercise 50.3 (Error estimate). (i) Prove directly the estimate (50.7a) with c′1h replaced by

c′′1h := (1 + ‖a‖
αh

)(1 + ‖b‖
βh

). (Hint : consider zh ∈ Vh s.t. Bh(zh) := Bh(uh − vh) with vh ∈ Vh
arbitrary.) (ii) Assume that V is a Hilbert space, ker(Bh) ⊂ ker(B), and g := 0. Prove that

‖u− uh‖V ≤ ‖a‖
αh

infvh∈ker(Bh) ‖u− vh‖V .

Exercise 50.4 (Bound on A and B). (i) Prove Proposition 50.12. (Hint : observe that (AU)TY =
a(Rϕ(U),Rϕ(Y)).) (ii) Let JV ∈ RN×N be the symmetric positive definite matrix with entries
JV,ij := (ϕi, ϕj)X for all i, j ∈ {1:N}. Let ‖·‖ℓ2(RN ) denote the Euclidean norm in RN . Verify

that ‖Rϕ(U)‖V = ‖J
1
2

V U‖ℓ2(RN ) and ‖U‖ℓ2(RN ) = ‖J
− 1

2

V U‖ℓ2(RN ) for all U ∈ RN .
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Exercise 50.5 (Sρ). The goal is to prove the identity (50.17). (i) Verify that A−1
ρ = A−1 −

ρA−1BT(MQ+ρS)−1BA−1. (Hint : multiply the right-hand side by Aρ and develop the product.)
(ii) Infer that Sρ = S − ρS(MQ + ρS)−1S. (iii) Conclude. (Hint : multiply the right-hand side by
ρM−1

Q + S−1.)

Exercise 50.6 (Penalty). (i) Prove Proposition 50.18. (Hint : verify that C(U− Uǫ,P− Pǫ)
T =

(0,−ǫMQPǫ)
T and use Proposition 50.12.) (ii) Replace the mass matrix MQ by the identity

matrix IM times a positive coefficient λ in (50.18). Does the method still converge? Is there any
interest of doing so? Can you think of another choice?

Exercise 50.7 (Inexact Minres and DPG). Let V, Y be Hilbert spaces and B ∈ L(V ;Y ′) be s.t.
β‖v‖V ≤ ‖B(v)‖Y ′ ≤ ‖b‖‖v‖V for all v ∈ V with 0 < β ≤ ‖b‖ < ∞. Set b(v, y) := 〈B(v), y〉Y ′,Y .
Let f ∈ Y ′. Let JY : Y → Y ′ denote the isometric Riesz–Fréchet isomorphism. (i) Show that
the Minres problem minv∈V ‖f − B(v)‖Y ′ has a unique solution u ∈ V. (Hint : introduce the
sesquilinear form a(v, w) := 〈B(v), J−1

Y (B(w))〉Y ′,Y and invoke the Lax–Milgram Lemma.) (ii) Let
{Vh ⊂ V }h∈H and {Yh ⊂ Y }h∈H be sequences of subspaces approximating V and Y, respectively.
Assume that there is β0 > 0 s.t. for all h ∈ H,

inf
vh∈Vh

sup
yh∈Yh

|b(vh, yh)|
‖vh‖V ‖yh‖Y

≥ β0. (50.1)

Let Ih : Yh → Y be the canonical injection and I∗h : Y ′ → Y ′
h. Show that the inexact Minres

problem minvh∈Vh ‖I∗h(f −B(vh))‖Y ′
h
has a unique solution uh ∈ Vh. (Hint : introduce the residual

representative rh := J−1
Yh
I∗h(f − B(uh)) ∈ Vh and show that the pair (uh, rh) ∈ Vh × Yh solves a

saddle point problem.) (iii) Show that the residual representative rh ∈ Yh is the unique solution of
the following constrained minimization problem: minzh∈Yh∩(I∗h(B(Vh)))⊥

1
2‖zh‖2Y − 〈I∗h(f), zh〉Y ′

h,Yh
.

(Hint : see Proposition 49.11.) (iv) Assume now that f ∈ im(B) so that B(u) = f . Prove that
there is c s.t. ‖u−uh‖V ≤ c infwh∈Vh ‖u−wh‖V for all h ∈ H. (Hint : use a Fortin operator.) Note:
since β‖vh‖V ≤ ‖B(vh)‖Y ′ for all vh ∈ Vh, it is natural to expect that the inf-sup condition (50.1)
is satisfied if the subspace Yh ⊂ Y is chosen rich enough. The inexact residual minimization in
a discrete dual norm is at the heart of the discontinuous Petrov–Galerkin (dPG) method; see
Demkowicz and Gopalakrishnan [14], Gopalakrishnan and Qiu [18], Carstensen et al. [10]. The
extension to reflexive Banach spaces is studied in Muga and van der Zee [35].

Solution to exercises

Exercise 50.1 (Algebraic setting). Since A is symmetric, we have

inf
V∈R2

sup
W∈R2

WTAV
‖W‖ℓ2(R2)‖V‖ℓ2(R2)

= |λmin(A)|,

where λmin(A) is the eigenvalue of A with the smallest absolute value. A simple computation
shows that the eigenvalues of A are −1 and 2, so that |λmin(A)| = 1. Moreover, kerB = span{e2}
with e2 := (0, 1)T. But

eT2Ae2 = (0, 1)T(
√
2, 0) = 0.

Hence, we have

inf
V∈ker(B)

sup
W∈ker(B)

WTAV
‖W‖ℓ2(R2)‖V‖ℓ2(R2)

= 0.
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Exercise 50.2 (Saddle point problem). (i) Owing to Proposition 49.8, we infer that

inf
yh∈Xh

sup
zh∈Xh

t(yh, zh)

‖yh‖X̃‖zh‖X̃
=

(4
β2
h

‖a‖ + 1)
1
2 − 1

2
,

sup
y∈X

sup
z∈X

t(y, z)

‖y‖X̃‖z‖X̃
=

(4 ‖b‖2

α + 1)
1
2 + 1

2
.

This implies the bound on ‖Ph‖L(X;X).
(ii) Observing that Xh is pointwise invariant under Ph, we infer that

‖x− xh‖X̃ = ‖(I − Ph)(x)‖X̃ = ‖(I − Ph)(x− yh)‖X̃ ≤ ‖I − Ph‖L(X;X)‖x− yh‖X̃ ,

for all yh ∈ Xh. We conclude observing that ‖I − Ph‖L(X;X) = ‖Ph‖L(X;X).

Exercise 50.3 (Velocity estimate). (i) Let vh ∈ Vh. Owing to the surjectivity of the operator
Bh implied by the inf-sup condition (50.4b), there exists zh ∈ Vh such that Bh(zh) = Bh(uh − vh)
and βh‖zh‖V ≤ ‖Bh(uh − vh)‖Q′

h
. Since

‖Bh(uh − vh)‖Q′
h
≤ sup

qh∈Qh

|b(uh − vh, qh)|
‖qh‖Q

= sup
qh∈Qh

|b(u− vh, qh)|
‖qh‖Q

≤ ‖b‖ ‖u− vh‖V ,

where we used the Galerkin orthogonality property for the second equation in (50.2) (i.e., b(u −
uh, qh) = 0 for all qh ∈ Qh), we infer that

βh‖zh‖V ≤ ‖b‖ ‖u− vh‖V .

Let us set wh := vh + zh. Since uh − wh ∈ ker(Bh), we infer from the inf-sup condition (50.4a)
that

αh‖uh − wh‖V ≤ sup
yh∈ker(Bh)

|a(uh − wh, yh)|
‖yh‖V

= sup
yh∈ker(Bh)

|a(uh − u, yh) + a(u− wh, yh)|
‖yh‖V

= sup
yh∈ker(Bh)

|b(yh, p− ph) + a(u− wh, yh)|
‖yh‖V

,

where we used the Galerkin orthogonality property for the first equation in (50.2). The rest of the
proof is identical to that of Lemma 50.2.
(ii) Set V0 := ker(B). Let Ph : V0 → ker(Bh) mapping u ∈ V0 to the unique solution uh ∈ ker(Bh)
of a(uh − u,wh) = 0 for all wh ∈ ker(Bh). Then ker(Bh) is pointwise invariant under Ph, and

‖Ph‖L(V0;V0) ≤ ‖a‖
αh

. To conclude, we observe that

‖u− uh‖V = ‖(I − Ph)(u)‖V = ‖(I − Ph)(u− vh)‖V ≤ ‖I − Ph‖L(V0;V0)‖u− vh‖V ,

for all vh ∈ ker(Bh) and that ‖I − Ph‖L(V0;V0) = ‖Ph‖L(V0;V0) (see the proof of Theorem 5.14).



266 Chapter 50. Mixed finite element approximation

Exercise 50.4 (Bound on A and B). (i) Let U,Y ∈ RN and set uh := Rϕ(U) and yh := Rϕ(Y).

Using the hint, we infer that (AU)TY
‖Rϕ(Y)‖V = a(uh,yh)

‖yh‖V , so that (50.11a) follows from the inf-sup and

boundedness conditions on a. The proof of (50.11b) is similar since (BTP)TY = (BY)TP = b(yh, ph)
where ph = Rψ(P).
(ii) We observe that

‖Rϕ(U)‖2V = (Rϕ(U),Rϕ(U))V = (JV U)TU = (J
1
2

V U)T(J
1
2

V U) = ‖J
1
2

V U‖2ℓ2(RN ),

proving the first identity. The second identity results from

‖J
1
2

V U‖ℓ2(RN ) = sup
Y∈RN

(J
1
2

V U)TY

‖Rϕ(Y)‖V
= sup

Y∈RN

UTY

‖Rϕ(J − 1
2

V Y)‖V

= sup
Y∈RN

UTY

‖Y‖ℓ2(RN )

= ‖U‖ℓ2(RN ).

Exercise 50.5 (Sρ). (i) A direct calculation shows that

(A+ ρBTM−1
Q B)(A−1 − ρA−1BT(MQ + ρS)−1BA−1) = I + ρBTM−1

Q BA−1

− ρBT(MQ + ρS)−1BA−1 − ρ2BTM−1
Q S(MQ + ρS)−1BA−1.

The last term on the right-hand side is transformed as follows:

ρ2BTM−1
Q S(MQ + ρS)−1BA−1 = ρBTM−1

Q (−MQ +MQ + ρS)(MQ + ρS)−1BA−1

= −ρBTM−1
Q BA−1 + ρBT(MQ + ρS)−1BA−1.

Hence,
(A+ ρBTM−1

Q B)(A−1 − ρA−1BT(MQ + ρS)−1BA−1) = I.
Similarly, one proves that (A−1 − ρA−1BT(MQ + ρS)−1BA−1)(A+ ρBTM−1

Q B) = I.
(ii) Multiplying the above relation by B on the left and by BT on the right, we obtain Sρ =
S − ρS(MQ + ρS)−1S.
(iii) Following the hint, we obtain

(S−1 + ρM−1
Q )(S − ρS(MQ + ρS)−1S)

= I + ρM−1
Q S − ρ(MQ + ρS)−1S − ρ2M−1

Q S(MQ + ρS)−1S
= I + ρM−1

Q S − ρM−1
Q (MQ + ρS)(MQ + ρS)−1S

= I.

The other identity is proved similarly.

Exercise 50.6 (Penalty). (i) Subtracting (50.18) from (50.9) yields

A(U− Uǫ) + BT(P− Pǫ) = 0,

B(U− Uǫ) + ǫMQPǫ = 0.

Using the inequalities (50.11a) and (50.11b) in the first equation yields

‖Rψ(P− Pǫ)‖Q ≤
1

βh
‖BT(P− Pǫ)‖ℓ2ϕ =

1

βh
‖A(U− Uǫ)‖ℓ2ϕ ≤

‖a‖
βh
‖Rϕ(U− Uǫ)‖V .
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Multiplying the first equation by U − Uǫ and using the coercivity of a together with the second
equation, we infer that

αh ‖Rϕ(U− Uǫ)‖2V ≤ (U− Uǫ)
TA(U− Uǫ) = (U− Uǫ)

TBT(Pǫ − P)

= (B(U− Uǫ))
T(Pǫ − P) = −ǫ(MQPǫ)

T(Pǫ − P)

= − ǫ(MQ(Pǫ − P))T(Pǫ − P)− ǫ(MQP)
T(Pǫ − P)

≤ − ǫ(MQP)
T(Pǫ − P) ≤ ǫ‖Rψ(Pǫ − P)‖Q‖Rψ(P)‖Q.

Combining the above two inequalities yields (50.20).
(ii) The first estimate in the proof of Proposition 50.18 is unchanged:

‖Rψ(P− Pǫ)‖Q ≤
‖a‖
βh
‖Rϕ(U− Uǫ)‖V .

The second estimate becomes

αh‖Rϕ(U− Uǫ)‖2V ≤ −ǫλ(IMP)T(Pǫ − P) ≤ ǫλ‖Pǫ − P‖ℓ2(RM )‖P‖ℓ2(RM).

Let µmin be the smallest eigenvalue ofMQ. We have

µmin‖Q‖2ℓ2(RM ) ≤ QTMQQ = ‖Rψ(Q)‖2Q.

This implies that
αh‖Rϕ(U− Uǫ)‖2V ≤ ǫλµ−1

min‖Rψ(Pǫ − P)‖Q‖Rψ(P)‖Q.
We infer that

αhβh
‖a‖ ‖Rϕ(U− Uǫ)‖V +

αhβ
2
h

‖a‖2 ‖Rψ(P− Pǫ)‖Q ≤ ǫλµ−1
min‖Rψ(P)‖Q.

The method still converges when ǫ → 0, but to obtain a convergence rate close to ǫ, one should
set λ = µmin. If the mesh sequence is quasi-uniform, Proposition 28.6 shows that µmin ∼ hd.
Hence, one should choose λ ∼ hd. This method is interesting since it does not involveM−1

Q . More
precisely, (50.19) can be rewritten as

(
A+

1

λǫ
BTB

)
Uǫ = F+

1

λǫ
BTG.

For instance, if the mass matrixMQ can be lumped, which is the case for P1 and Q1 continuous
finite elements, one could also use the lumped mass matrix instead of hdI.

Exercise 50.7 (Inexact Minres and DPG). (i) Let us set E : V → R s.t. E(v) := 1
2‖f−B(v)‖2Y ′

for all v ∈ V. We have

E(v) =
1

2
〈f −B(v), J−1

Y (f −B(v))〉Y ′,Y .

Since the sesquilinear form a(v, w) := 〈B(v), J−1
Y (B(w))〉Y ′,Y is Hermitian and coercive, u mini-

mizes E over V iff a(u,w) = 〈f, J−1
Y (B(w))〉Y ′,Y for all w ∈ V. Owing to the Lax–Milgram lemma,

this problem admits a unique solution u ∈ V. Notice in passing that we have shown that u ∈ V is
the unique solution to the normal equation

B∗J−1
Y B(u) = B∗J−1

Y (f).
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In what follows, we are going to construct an approximation of u.
(ii) Let us set Eh : Vh → R s.t. Eh(vh) :=

1
2‖I∗h(f −B(vh))‖2Y ′

h
. We have

Eh(vh) =
1

2
〈f −B(vh), IhJ

−1
Yh
I∗h(f −B(vh))〉Y ′,Y ,

so that uh ∈ Vh is characterized by the Euler equations

〈f −B(uh), IhJ
−1
Yh
I∗hB(wh)〉Y ′,Y = 0, ∀wh ∈ Vh.

Since J−1
Yh

is selfadjoint, these equations amount to

〈B∗(Ih(rh)), wh〉V ′,V = 0, ∀wh ∈ Vh.

Moreover, the definition of rh implies that for all yh ∈ Yh,

(rh, yh)Y = 〈JYh(rh), yh〉Y ′
h,Yh

= 〈f −B(uh), Ih(yh)〉Y ′,Y

= 〈I∗hf, yh〉Y ′
h
,Yh − 〈I∗hB(uh), yh〉Y ′

h
,Yh .

Thus, the pair (uh, rh) ∈ Vh × Yh solves the following saddle point problem

(rh, yh)Y + 〈I∗h(B(uh)), yh〉Y ′
h,Yh

= 〈I∗h(f), yh〉Y ′
h,Yh

, ∀yh ∈ Yh,
〈B∗(Ih(rh)), wh〉V ′,V = 0, ∀wh ∈ Vh.

Since we have 〈I∗h(B(vh)), yh〉Y ′
h
,Yh = b(vh, yh) for all (vh, yh) ∈ Vh×Yh, the inf-sup condition (50.1)

implies that the above problem is well-posed.
(iii) Let us set Gh : Yh → R s.t. Gh(zh) := 1

2‖zh‖2Y − 〈I∗h(f), zh〉Y ′
h,Yh

. We have established in
Proposition 49.11 that rh minimizes Gh in the subspace

(I∗h(B(Vh)))
⊥ = {zh ∈ Yh | b(vh, zh) = 0, ∀vh ∈ Vh}

if and only if there is a unique Lagrange multiplier uh ∈ Vh such that the pair (rh, uh) ∈ Yh × Vh
is the unique solution to the above saddle point problem.
(iv) Recall that Lemma 26.9 shows that the inf-sup condition (50.1) implies the existence of a

Fortin operator Πh : Y → Yh s.t. b(vh, y −Πh(y)) = 0 for all vh ∈ Vh and ‖Πh‖L(Y ;Yh) ≤ ‖b‖
β0

. We
have

β ‖u− uh‖V ≤ sup
y∈Y

|b(u− uh, y)|
‖y‖Y

.

Using that B(u) = f , we obtain

b(u− uh,Πh(y)) = 〈B(u− uh), Ih(Πh(y))〉Y ′,Y

= 〈f −B(uh), Ih(Πh(y))〉Y ′,Y

= 〈I∗h(f −B(uh)),Πh(y)〉Y ′
h,Yh

= (J−1
Yh

(I∗h(f −B(uh))),Πh(y))Y

= (rh,Πh(y))Y .

Let wh be arbitrary in Uh. We have

b(u− uh, y) = b(u− uh, y −Πh(y)) + b(u− uh,Πh(y))
= b(u− wh, y −Πh(y)) + (rh,Πh(y))Y .
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This implies that

β ‖u− uh‖V ≤ ‖b‖(1 + ‖Πh‖L(Y ;Yh))‖u− wh‖V + ‖Πh‖L(Y ;Yh)‖rh‖Y .

Moreover, we have

‖rh‖2Y = 〈I∗hB(u − uh), rh〉Y ′
h
,Yh = 〈I∗hB(u − wh), rh〉Y ′

h
,Yh ,

where we used the second equation of the saddle point problem. This shows that

‖rh‖Y ≤ ‖b‖ ‖u− wh‖V .

Putting everything together proves the quasi-optimal error estimate

β ‖u− uh‖V ≤ ‖b‖
(
1 + 2‖Πh‖L(Y ;Yh)

)
inf

wh∈Vh
‖u− wh‖V .
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Chapter 51

Darcy’s equations

Exercises

Exercise 51.1 (Compactness). Let D := (0, 1)3 be the unit cube in R3. Show that the embed-
ding H0(div;D) →֒ L2(D) is not compact. (Hint : let

φ1,n(x1, x2, x3) :=
1

nπ
sin(nπx2) sin(nπx3),

φ2,n(x1, x2, x3) :=
1

nπ
sin(nπx3) sin(nπx1),

φ3,n(x1, x2, x3) :=
1

nπ
sin(nπx1) sin(nπx2),

for all n ≥ 1, set vn := ∇×φn, and prove first that (vn)n≥1 weakly converges to zero in L2(D)
(see Definition C.28), then compute ‖vn‖L2(D) and argue by contradiction.)

Exercise 51.2 (Neumann condition). Prove Proposition 51.3. (Hint : for the surjectivity of
the divergence, solve a pure Neumann problem.)

Exercise 51.3 (Integration by parts). Let H1
d(D) andHn(div;D) be defined in §51.1.3. Prove

that
∫
D
(∇q·ς + q∇·ς) dx = 0 for all q ∈ H1

d(D) and all ς ∈ Hn(div;D). (Hint : observe that

γg(q)|∂Dn
∈ H̃ 1

2 (∂Dn).)

Exercise 51.4 (Primal, dual formulations). Prove Proposition 51.7.

Exercise 51.5 (Primal mixed formulation). Consider the problem: Find p ∈ H1(D) such

that −∆p = f and γg(p) = g with f ∈ L2(D) and g ∈ H 1
2 (∂D). Derive a mixed formulation of

this problem with unknowns (p, λ) ∈ H1(D)×H− 1
2 (∂D) and show that it is well-posed. (Hint : set

b(v, µ) := 〈µ, γg(v)〉∂D and observe that B = γg : H1(D)→ H
1
2 (∂D).) Recover the PDE and the

boundary condition. Note: this method is introduced in Babuška [2].

Exercise 51.6 (Fortin operator). Justify Remark 51.14. (Hint : use arguments similar to those
of the proof of Lemma 51.10.)

Exercise 51.7 (Inf-sup condition). The goal is to prove the inf-sup condition (51.23) using the
canonical Raviart–Thomas interpolation operator. (i) Do this by using elliptic regularity. (Hint :
solve a Dirichlet problem.) (ii) Do this again by using the surjectivity of ∇· :H1(D)→ L2(D).
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Exercise 51.8 (Error estimate). (i) Prove that

‖σ − σh‖H(div;D) ≤ c′1 inf
ςh∈Vh

‖σ − ςh‖H(div;D),

‖p− ph‖L2(D) ≤ c′3 inf
ςh∈Vh

‖σ − ςh‖H(div;D) + 2 inf
qh∈Qh

‖p− qh‖L2(D),

with c′1 := (1 +
λ♯
λ♭
)(1 + 1

β ) and c′3 :=
c′1

λ♭β
′
L2

. (ii) Assuming that σ ∈ Hr(D), ∇·σ ∈ Hr(D), and

p ∈ Hr(D) with r ∈ (0, k + 1], prove that

‖σ − σh‖H(div;D) ≤ c hr(|σ|Hr(D) + |∇·σ|Hr(D)),

‖p− ph‖L2(D) ≤ c hr(|σ|Hr(D) + |∇·σ|Hr(D) + |p|Hr(D)).

(Hint : use the commuting projection J d
h .)

Exercise 51.9 (Box scheme). Let d

:= λ0Id, λ0 > 0, and enforce the boundary condition
γg(p) = 0. Let Vh := P d

0 (Th)×P cr
1,0(Th), where P cr

1,0(Th) is the Crouzeix–Raviart space defined

in (36.8). Let Wh := P b
0 (Th)×P b

0 (Th). Consider the bilinear form ah : Vh×Wh → R defined
by ah(vh, wh) := λ−1

0 (σh, τh)L2(D) + (∇·σh, qh)L2(D) + (∇hph, τh)L2(D) with vh := (σh, ph) and
wh := (τh, qh) (see Definition 36.3 for the broken gradient ∇h). (i) Prove that dim(Vh) = dim(Wh)

and that there is α > 0 s.t. for all vh ∈ Vh and all h ∈ H, α‖vh‖Vh ≤ supwh∈Wh

|ah(vh,wh)|
‖wh‖Wh

with

‖vh‖2Vh := λ−1
0 ‖σh‖2H(div;D) + λ0‖∇hph‖2L2(D) and ‖wh‖2Wh

:= λ−1
0 ‖τh‖2L2(D) + λ0ℓ

−2
D ‖qh‖2L2(D).

(Hint : test with (σh+λ0∇hph, 2ph+ ℓ2Dλ
−1
0 ∇·σh), where (σh, ph) is the L

2-orthogonal projection
of (σh, ph) onto Wh.) (ii) Consider the discrete problem: Find uh ∈ Vh such that ah(uh, wh) =
(f , τh)L2(D) + (g, qh)L2(D) for all wh ∈ Wh. Show that this problem is well-posed, prove a quasi-
optimal error estimate, and show that the error converges to zero with rate h if the exact solution
is smooth enough. (Hint : use Lemma 27.5.) Note: the scheme has been introduced in Croisille
[12] to approximate (51.1). It is a Petrov–Galerkin scheme with only local test functions.

Solution to exercises

Exercise 51.1 (Compactness). Let vn := ∇×φn with

φn(x1, x2, x3) :=
1

nπ



sin(nπx2) sin(nπx3)
sin(nπx3) sin(nπx1)
sin(nπx1) sin(nπx2)


 , ∀n ≥ 1.

We obtain

vn =



sin(nπx1)(cos(nπx2)− cos(nπx3))
sin(nπx2)(cos(nπx3)− cos(nπx1))
sin(nπx3)(cos(nπx1)− cos(nπx2))


 .

We have vn ∈ C∞(D) and vn|∂D·n = 0, so that vn ∈ H0(div;D). Moreover, ‖vn‖L2(D) = (32 )
1
2

and ∇·vn = 0, so that ‖vn‖H(div;D) = (32 )
1
2 . This means that the sequence (vn)n≥1 is bounded in

H0(div;D). Let us prove that the sequence (vn)n≥1 converges weakly to zero in L2(D). For all
φ ∈ C∞

0 (D), we have

(vn,φ)L2(D) = −(φn,∇·φ)L2(D) → 0 as n→∞.
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Let now w ∈ L2(D). Owing to Theorem 1.38, for all ǫ > 0, there is φ ∈ L2(D) s.t.

‖w − φ‖L2(D) ≤ ǫ

. Writing (vn,w)L2(D) = (vn,φ)L2(D)+(vn,w−φ)L2(D) and using the Cauchy–Schwarz inequality

to bound the second term, we infer that lim supn→∞ |(vn,w)L2(D)| ≤ (32 )
1
2 ǫ, and since ǫ > 0 is

arbitrary, we conclude that limn→∞(vn,w)L2(D) = 0. We have thus shown that the sequence
(vn)n≥1 converges weakly to zero in L2(D). We can now prove that the embedding H0(div;D) →֒
L2(D) is not compact. If the embedding were compact, there would exist a subsequence (vnk)k≥1

strongly converging to some v ∈ L2(D). But strong convergence implies weak convergence, so that

v = 0, and ‖vnk‖L2(D) = (32 )
1
2 with strong convergence would also imply ‖v‖L2(D) = (32 )

1
2 > 0,

which is a contradiction.

Exercise 51.2 (Neumann condition). There are only two differences with the proof of Propo-
sition 51.1. The first one concerns the divergence operator which now maps from H0(div;D) to
L2
∗(D) (owing to the divergence theorem). To prove that this operator is surjective, let q ∈ L2

∗(D)
and let us solve the pure Neumann problem φ ∈ H1(D) such that ∆φ = q and

∫
D
φdx = 0. Then

ςq = ∇φ has all the expected properties. The second difference concerns the boundary condition
which is now a simple consequence of γd(σ) = γd(σ0) + γd(σn) = an.

Exercise 51.3 (Integration by parts). Observe that

∫

D

(∇q·ς + q∇·ς) dx = 〈γd(ς), γg(q)〉∂D .

We obtain γg(q)|∂Dn
∈ H̃ 1

2 (∂Dn) since its zero-extension to ∂D is γg(q) (since q ∈ H1
d(D)) which

is in H
1
2 (∂D). This implies that

〈γd(ς), γg(q)〉∂D = 〈γd(ς)|∂Dn
, γg(q)|∂Dn

〉∂Dn ,

and this last quantity vanishes since ς ∈Hn(div;D).

Exercise 51.4 (Primal, dual formulations). Let p ∈ H1
0 (D) solve (51.15) and define σ :=

d

−1(f − ∇p). Since
∫
D
(∇p·τ + p∇·τ ) dx = 0 for all τ ∈ H(div;D), the first equation of (51.6)

is satisfied. Moreover, we infer that
∫
D
σ·∇q dx = −

∫
D
gq dx for all q ∈ H1

0 (D), implying that
∇·σ = g so that the second equation of (51.6) is satisfied. Let now (σ, p) ∈ H(div;D)×L2(D)
solve (51.6). Then ∇·σ = g and taking a divergence-free test function τ in the first equation
of (51.6) shows that (51.17) is satisfied. Finally, let σ ∈ H(div;D) with ∇·σ = g solve (51.17),
and let p ∈ L2(D) be s.t.

∫
D p∇·τ dx =

∫
D(d

−1σ − f)·τ dx for all τ ∈ H(div;D) (note that
the right-hand side vanishes if τ is divergence-free). Since ∇· : H(div;D) → L2(D) is surjective
owing to Lemma 51.2, p is well defined, and its definition implies that the first equation of (51.6)
is satisfied. The second one follows from ∇·σ = g. Since ∇p = f − d

−1σ, the energy identity
results from

E♯(p) = −
1

2

∫

D

∇p·d·∇p dx = −1

2

∫

D

(ς − df)·d−1·(ς − df) = E♭(σ).

Exercise 51.5 (Primal mixed formulation). The weak mixed formulation is





Find p ∈ V := H1(D) and λ ∈ Q := H− 1
2 (∂D) such that

a(p, q) + b(q, λ) = f(q), ∀q ∈ V,
b(p, µ) = g(µ), ∀µ ∈ Q,
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with a(p, q) :=
∫
D
∇p·∇q dx, b(v, µ) := 〈µ, γg(v)〉∂D , f(q) :=

∫
D
fq dx, and g(µ) := 〈µ, g〉∂D.

All these forms are bounded. Moreover, the reflexivity of H
1
2 (∂D) implies that B = γg, so that

ker(B) = ker(γg) = H1
0 (D) owing to Theorem 3.10. Hence, the bilinear form a is coercive on

ker(B). Furthermore, B is surjective still by Theorem 3.10, so that the well-posedness follows from
Theorem 49.13. The second equation in the weak mixed formulation implies that 〈µ, γg(p)−g〉∂D =

0 for all µ ∈ H− 1
2 (∂D), so that we recover the boundary condition γg(p) = g a.e. on ∂D, and the

PDE follows by taking q arbitrary in H1
0 (D) in the first equation.

Exercise 51.6 (Fortin operator). Let us verify the two properties stated in Lemma 26.9(i)
with W := H(div;D), Wh := P d

k (Th), V := L2(D), and Vh := P b
k (Th). The operator Πh maps

from H(div;D) to P d
k (Th) as required. Moreover, we infer that for all qh ∈ P b

k (Th) and all
v ∈H(div;D),

∫

D

qh∇·Πh(v) dx =

∫

D

qh∇·(J d
h ((∇·)†(Ibh(∇·v)))) dx

=

∫

D

qhJ b
h (Ibh(∇·v)) dx

=

∫

D

qhIbh(∇·v) dx

=

∫

D

qh∇·v dx,

since ∇·J d
h = J b

h (∇·), P b
k (Th) is pointwise invariant under J b

h , and qh is in P b
k (Th). In addition,

using the stability of all the operators, one can see that ‖Πh(v)‖H(div;D) ≤ c‖∇·v‖L2(D).

Exercise 51.7 (Inf-sup condition). (i) Let qh ∈ Qh. Let φ ∈ H1
0 (D) solve ∆φ = qh and set

ςqh := ∇φ. Elliptic regularity implies that ςqh ∈Hs(D) with s > 1
2 , i.e., ςqh ∈ V̌ d(D), where the

space V̌ d(D) is defined in Lemma 19.6 (with p := 2). This means that ςqh is in the domain of the
interpolation operator Idh . Moreover, we have for all K ∈ Th,

‖IdK(ςqh|K)‖L2(K) ≤ c(‖ςqh|K‖L2(K) + hsK |ςqh|K |Hs(K)).

Summing over the mesh cells and since hK is bounded by the diameter of D, we infer that

‖Idh(ςqh)‖L2(D) ≤ c‖ςqh‖Hs(D) ≤ c′‖q‖L2(D).

We can now conclude as in the proof of Lemma 51.10, but this time we take ς∗h = Idh(ςqh).
(ii) Let again qh ∈ Qh. We use the hint to infer that there is ςqh ∈ H1(D) such that ∇·ςqh = qh
and ‖ςqh‖H1(D) ≤ c‖q‖L2(D). Since

‖IdK(ςqh|K)‖L2(K) ≤ c(‖ςqh|K‖L2(K) + h1K |ςqh|K |H1(K))

for all K ∈ Th, we can now conclude as in Step (i).

Exercise 51.8 (Error estimate). (i) The error bound on σ follows from Corollary 50.5 since
‖a‖ = λ♯, α = λ♭, ker(Bh) ⊂ ker(B), and we use Remark 50.6 to bound the norm of the Fortin

operator by ‖b‖
β = 1

β . For the primal variable, we proceed as in the proof of Theorem 51.16 and
use the bound on the dual variable.
(ii) To bound the best-approximation error on the dual variable, we use the commuting projection
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J d
h and Theorem 23.12 to infer that

‖σ − J d
h (σ)‖H(div;D) ≤ ‖σ − J d

h (σ)‖L2(D) + ‖∇·σ − J b
h (∇·σ)‖L2(D)

≤ c
(

inf
ςh∈P d

k (Th)
‖σ − ςh‖L2(D) + inf

φh∈Pb
k (Th)

‖∇·σ − φh‖L2(D)

)
,

and we conclude invoking Corollary 22.9 (with p := 2 and x ∈ {d, b}).
Exercise 51.9 (Box scheme). (i) We observe that

dim(Vh) = Nf +N i
f = (d+ 1)Nc = dim(Wh),

where Nf is the number of mesh faces, N i
f the number of mesh interfaces, and Nc the number of

mesh cells. Let vh := (σh, ph) ∈ Vh. Following the hint, we infer that

ah(vh, wh) = λ−1
0 (σh,σh + λ0∇hph)L2(D) + (∇·σh, 2ph + ℓ2Dλ

−1
0 ∇·σh)L2(D)

+ (∇hph,σh + λ0∇hph)L2(D)

= λ−1
0 (σh,σh)L2(D) + ℓ2Dλ

−1
0 ‖∇·σh‖2L2(D) + λ0‖∇hph‖2L2(D)

+ 2(∇·σh, ph)L2(D) + (σh,∇hph)L2(D) + (∇hph,σh)L2(D)

= λ−1
0 (‖σh‖2L2(D) + ℓ2D‖∇·σh‖2L2(D)) + λ0‖∇hph‖2L2(D)

+ 2(∇·σh, ph)L2(D) + 2(σh,∇hph)L2(D)

= λ−1
0 (‖σh‖2L2(D) + ℓ2D‖∇·σh‖2L2(D)) + λ0‖∇hph‖2L2(D),

since (∇·σh, ph)L2(D) = (∇·σh, ph)L2(D), (σh,∇hph)L2(D) = (σh,∇hph)L2(D) and

(∇·σh, ph)L2(D) + (σh,∇hph)L2(D) =
∑

F∈Fh
(σh·nF , [[ph]])L2(F ) = 0,

owing to the fact that the normal component of σh is continuous across F and takes a constant
value on F and that

∫
F [[ph]] ds = 0 by definition of the space P cr

1,0(Th). Since (σ − σh)|K =
1
d (∇·σh)(x−xK), where xK is the barycenter of K for all K ∈ Th, we infer that there is a uniform
constant c > 0 such that ‖σh‖2L2(D) + ℓ2D‖∇·σh‖2L2(D) ≥ c(‖σh‖2L2(D) + ℓ2D‖∇·σh‖2L2(D)). This
shows that

ah(vh, wh) ≥ min(1, c) ‖vh‖2Vh , ∀vh ∈ Vh.
Finally, we have

‖wh‖2Wh
= λ−1

0 ‖σh + λ0∇hph‖2L2(D) + λ0ℓ
−2
D ‖2ph + ℓ2Dλ

−1
0 ∇·σh‖2L2(D) ≤ c ‖vh‖2Vh ,

where we used that ‖σh‖L2(D) ≤ ‖σh‖L2(D), ‖ph‖L2(D) ≤ ‖ph‖L2(D), and the discrete Poincaré–

Steklov inequality Ccr
ps ℓ

−1
D ‖ph‖L2(D) ≤ ‖∇hph‖L2(D) (see Lemma 36.6). This proves the expected

inf-sup condition on the bilinear form ah. Notic e that ‖·‖Vh defines a norm on Vh owing to the
discrete Poincaré–Steklov inequality.
(ii) Since the linear spaces Vh and Wh have the same dimension, the above inf-sup condition
implies that the problem of finding uh ∈ Vh such that ah(uh, wh) = (f , τh)L2(D) + (g, qh)L2(D)

for all wh ∈ Wh, is well-posed. To establish an error estimate, we use Lemma 27.5. Let us set
V♯ := (H(div;D)×H1

0 (D)) + Vh which we equip with the norm

‖v‖2V♯ := λ−1
0 ‖σ‖2H(div;D) + λ0‖∇hp‖2L2(D).
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Notice that (27.5) holds true with c♯ := 1, i.e., ‖vh‖V♯ ≤ ‖vh‖Vh for all vh ∈ Vh. It remains to
bound the consistency error. For all (vh, wh) ∈ Vh×Wh, we have

〈δh(vh), wh〉W ′
h,Wh

:= (f , τh)L2(D) + (g, qh)L2(D) − ah(vh, wh)
= λ−1

0 (σ − σh, τh)L2(D) + (∇p−∇hph, τh)L2(D) + (∇·σ −∇·σh, qh)L2(D)

≤ c ‖(σ, p)− (σh, ph)‖V♯‖wh‖Wh
,

where we used the Cauchy–Schwarz inequality and the discrete Poincaré–Steklov inequality for the
third term on the right-hand side. Owing to Lemma 27.5, we infer that there is a c s.t. for all
h ∈ H,

‖(σ, p)− (σh, ph)‖V♯ ≤ c inf
(σ′
h,p

′
h)∈Vh

‖(σ, p)− (σ′
h, p

′
h)‖V♯ .

If the solution is smooth enough, we can use the approximation properties of finite elements to
infer that

λ
− 1

2
0 (‖σ − σh‖L2(D) + ℓD‖∇·(σ − σh)‖L2(D)) + λ

1
2
0 ‖∇h(p− ph)‖L2(D)

≤ c h
(
λ
− 1

2
0 (|σ|H1(D) + ℓD|∇·σ|H1(D)) + λ

1
2
0 |p|H2(D)

)
,

that is, the error converges to zero with rate h.
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Potential and flux recovery

Exercises

Exercise 52.1 (Hybridization). Consider the discrete problem (52.4). (i) Let Q̃h := Qh×Λh
and B̃h : V hy

h → Q̃′
h s.t. 〈B̃h(τh), (qh, µh)〉Q̃′

h,Q̃h
:= bh(τh, qh) + ch(τh, µh) for all τh ∈ V hy

h and

(qh, µh) ∈ Q̃h. Prove that B̃∗
h is injective. (Hint : integrate by parts and use the degrees of freedom

of the RTRTRTk,d element.) (ii) Prove that (52.4) admits a unique solution.

Exercise 52.2 (Crouzeix–Raviart). Assume that d|K and g|K are constant over each mesh
cell K ∈ Th. Let ∇h denote the broken gradient (see Definition 36.3). Let P cr

1,0(Th) be the
nonconforming Crouzeix–Raviart finite element space with homogeneous Dirichlet conditions (see
(36.8)) and let pcrh ∈ P cr

1,0(Th) solve
∫
D
(d∇hpcrh )·∇hqcrh dx =

∫
D
gqcrh dx for all qcrh ∈ P cr

1,0(Th). Let
xK be the barycenter of K for all K ∈ Th. Define

σh|K := −(d∇pcrh )|K + d−1g|K(x− xK)|K ,

ph|K := pcrh (xK) + d−2|K|−1g|K(d−1(x− xK),x− xK)L2(K).

(i) Prove that σh ∈ P d
0 (Th). (Hint : compute

∫
F [[σh]]·nFϕcr

F ds with ϕcr
F the Crouzeix–Raviart

basis function attached to F .) (ii) Prove that
∫
D
(qcrh ∇·τh+∇hqcrh ·τh) dx = 0 for all qcrh ∈ P cr

1,0(Th)
and all τh ∈ P d

0 (Th). (iii) Prove that the pair (σh, ph) solves (51.21) for k := 0 and f := 0. (Hint :
any function τh ∈ P d

0 (Th) is such that τh|K = τK + d−1(∇·τh)|K(x− xK), where τK is the mean
value of τh on K.)

Exercise 52.3 (Post-processed potential). Let k ≥ 0. Consider the simplicial Raviart–Thomas
elementRTRTRTk,d. Assume that it is possible to find a polynomial spaceMk,k′ so that for allm ∈Mk,k′ ,
ΠQK (m) = ΠΛ∂K (m) = 0 implies that m = 0 for all K ∈ Th. Prove that (∇m, τ )L2(K) = 0 for all
τ ∈ RTRTRTk,d implies that m = 0. (Hint : integrate by parts and use the degrees of freedom in RTRTRTk,d.)
Let now mnc

h be the post-processed potential from the dual mixed formulation (52.2). Show that
‖∇mnc

h ‖L2(K) ≤ c‖d−1σh− f‖L2(K) for all K ∈ Th. (Hint : use norm equivalence on the reference
element, then (52.13); see also Vohraĺık [45, Lem. 5.4].)

Exercise 52.4 (Bound (52.19)). Prove (52.19). (Hint : use Theorem 34.19.)

Exercise 52.5 (Inverse inequality). Prove (52.20). (Hint : consider the dual mixed formula-
tion of (52.17) and introduce the post-processed variable mnc

z , use (52.13), accept as a fact that
‖mnc

z ‖L2(Dz) ≤ chDz
‖∇hmnc

z ‖L2(Dz), and bound traces of mnc
z using Lemma 12.15.)
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Exercise 52.6 (Prager–Synge equality). Let u ∈ H1
0 (D) be such that −∆u = f in L2(D).

Let uh ∈ H1
0 (D), and let σ∗ ∈H(div;D) be such that ∇·σ∗ = f . Prove that ‖∇(u− uh)‖2L2(D) +

‖∇u+ σ∗‖2
L2(D) = ‖∇uh + σ∗‖2

L2(D). (Hint : compute (∇(u − uh),∇u+ σ∗)L2(D).)

Solution to exercises

Exercise 52.1 (Hybridization). (i) Let (qh, µh) ∈ ker(B̃∗
h), i.e., bh(τh, qh) + ch(τh, µh) = 0 for

all τh ∈ V hy
h . Integrating by parts in each mesh cell K ∈ Th, we infer that

∑

K∈Th

∫

K

∇qh|K ·τh dx+

∫

∂K

(µh|∂K − qh|K)(τh·nK) ds = 0.

Since ∇qh|K ∈ PPPk−1,d for all K ∈ Th and (µh|F − qh|K) ◦ TF ∈ Pk,d−1 for all F ∈ FK , we can use

the degrees of freedom of the RTRTRTk,d element and choose τh ∈ V hy
h to obtain

∑

K∈Th

(
‖∇qh‖2L2(K) + h−1

K ‖µh|∂K − qh|K‖2L2(∂K)

)
= 0.

This implies that qh is piecewise constant and that µh|∂K = qh|K on the boundary of each mesh
cell. Since µh vanishes on the boundary faces, we infer that qh vanishes on all the mesh cells having
a boundary face and that µh vanishes on all the faces of those cells. We can repeat the argument
for the cells sharing an interface with those cells, and we can move inward and reach all the cells
in Th by repeating this process a finite number of times. This proves that qh = 0 and µh = 0.
Hence, B̃∗

h is injective.
(ii) The discrete problem (52.4) is a finite-dimensional saddle point problem. The bilinear form

a is coercive on V hy
h ×V

hy
h and the bilinear form b̃h associated with the operator B̃h on V hy

h ×Q̃h
(i.e., b̃h(τh, (qh, µh)) := 〈B̃h(τh), (qh, µh)〉Q̃′

h,Q̃h
) satisfies a discrete inf-sup condition owing to the

injectivity of the adjoint operator B̃∗
h established in Step (i). Hence, the discrete problem (52.4)

admits a unique solution.

Exercise 52.2 (Crouzeix–Raviart). (i) Let F ∈ F◦
h and let DF be composed of the points in

the two cells such that F := ∂Kl∩∂Kr. Observe from the definition of σh that σh·nF ′ is piecewise
constant on each face F ′ ⊂ ∂DF and that ∇·σh|K = g|K . Following the hint, we infer that

∫

F

[[σh]]·nFϕcr
F ds =

∫

Kl∪Kr
∇·(σhϕcr

F ) dx

=

∫

Kl∪Kr
((∇·σh)ϕcr

F + σh·∇ϕcr
F ) dx

=

∫

Kl∪Kr
(gϕcr

F −∇pcrh ·d·∇ϕcr
F ) dx = 0,

since
∫
F ′ σh·nFϕcr

F ds = 0 (because ϕcr
F has zero mean value on each face F ′ ⊂ ∂DF ) and

∫
K′(x−

xK′)·∇ϕcr
h dx = 0 (because ∇ϕcr

h is piecewise constant). Observing that both [[σh]]·nF and ϕcr
F

are constant on F , we infer that [[σh]]·nF = 0. Since, by its definition, σh ∈ P d,b
0 (Th), we conclude

that σh ∈ P d
0 (Th).



Part XI. PDEs in mixed form 279

(ii) We integrate by parts in each cell K ∈ Th. This yields
∫

D

(qcrh ∇·τh +∇hqcrh ·τh) dx =
∑

F∈F◦
h

∫

F

τh·nF [[qcrh ]]F ds+
∑

F∈F∂h

∫

F

τh·nF qcrh ds,

since the normal component of τh is single-valued at interfaces. To conclude that the right-hand
side is zero, we observe that the normal component of τh is constant on all the faces, whereas
[[qcrh ]]F and qcrh|F have zero mean value on all F ∈ F◦

h and F ∈ F∂h , respectively.
(iii) Since σh ∈ P d

0 (Th) satisfies ∇·σh = g, it remains to show that the weak form of Darcy’s law
is satisfied. Let τh ∈ P d

0 (Th). We infer that

∫

K

ph∇·τh dx =

∫

K

pcrh (xK)∇·τh dx+

∫

K

d−2g|K(x− xK)·(d−1(x− xK))∇·τh dx

=

∫

K

pcrh ∇·τh dx+

∫

K

d−1g|K(x− xK)·(d−1(τh − τK)) dx

=

∫

K

pcrh ∇·τh dx+

∫

K

d−1g|K(x− xK)·(d−1τh) dx

=

∫

K

pcrh ∇·τh dx+

∫

K

(σh + d∇pcrh )·(d−1τh) dx,

where we used the definition of ph and the fact that g and ∇·τh are constant on K in the first
line, that

∫
K p

cr
h dx = pcrh (xK), ∇·τh is constant on K, and the hint in the second line, and that

g is constant on K and the definition of σh in the third line. Summing over K ∈ Th and using
Step (ii), we infer that

∫
D ph∇·τh dx =

∫
K τh·(d−1σh) dx.

Exercise 52.3 (Post-processed potential). Letm ∈ Mk,k′ and let us assume that (∇m, τ )L2(K) =
0 for all τ ∈ RTRTRTk,d. Integrating by parts, we infer that

0 = (∇m, τ )L2(K) = −(m,∇·τ )L2(K) + (m, τ ·nK)L2(∂K)

= −(ΠQK (m),∇·τ )L2(K) + (ΠΛ∂K (m), τ ·nK)L2(∂K),

since ∇·τ ∈ Pk,d = QK and τ ·nK is a piecewise polynomial of degree at most k on the faces in
∂K. Subtracting the mean value mK := 1

|K|
∫
K m dx and using the divergence theorem, we obtain

with m′ := m−mK ,

0 = −(ΠQK (m′),∇·τ )L2(K) + (ΠΛ∂K (m
′), τ ·nK)L2(∂K).

Let us consider a function τ ∈ RTRTRTk,d such that τ ·nK = 0. Integrating by parts again, we infer
that ∇ΠQK (m′) = 0 since this function is in PPPk−1,d and moments in K against functions in PPPk−1,d

are possible the degrees of freedom in RTRTRTk,d once those attached to faces have been set to zero.
Since m′ has zero-mean value in K and ΠQK preserves this property, we infer that ΠQK (m

′) = 0.
We now obtain that 0 = (ΠΛ∂K (m

′), τ ·nK)L2(∂K), and choosing now τ to have arbitrary normal
component on each of the faces in ∂K, we infer that ΠΛ∂K (m

′) = 0. We can now use the assumption
on ΠQK and ΠΛ∂K to infer that m = mK , i.e., m is constant.
Mapping to the reference element and using norm equivalence, we infer that there is a constant c
s.t. for all K ∈ Th and all h ∈ H,

‖∇m‖L2(K) ≤ c sup
τ∈RTRTRTk,d

|(∇m, τ )L2(K)|
‖τ‖L2(K)

.
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Let nowmnc
h be the post-processed potential from the dual mixed formulation (52.2). Using (52.13),

we infer that

‖∇mnc
h ‖L2(K) ≤ c sup

τ∈RTRTRTk,d

|(∇mnc
h , τ )L2(K)|
‖τ‖L2(K)

= c sup
τ∈RTRTRTk,d

|(d−1σh − f , τ )L2(K)|
‖τ‖L2(K)

≤ ‖d−1σh − f‖L2(K).

Exercise 52.4 (Bound (52.19)). Recalling the notation in Corollary 34.14, the key point is that,
upon defining

ηvK′(ph) := hK′‖g +∇·(d∇ph)‖L2(K′),

η̃sK′(ph) :=

( ∑

F ′∈FK′∩F̌◦
K

hF ′‖[[d∇ph]]‖2L2(F ′)

) 1
2

,

the bound (52.18) can be rewritten as follows, where c > 0 only depends on the regularity of the
mesh sequence:

c ‖σ∗
h + d∇ph‖L2(K) ≤

∑

K′∈ŤK

(ηvK′(ph) + η̃sK′(ph)).

We can now use Theorem 34.19 to bound the right-hand side: the oscillation terms from Defi-
nition 34.17 reduce to ωv

K′ = hK′‖g − Ibl (g)‖L2(K′) (with lv := l ≥ k − 1) and ωs
K′ = 0 (with

ls := k − 1) since d is piecewise constant, and only the cells in Tz need to be considered when
bounding η̃sK′(ph) since only jumps across interfaces in F̌◦

K are involved.

Exercise 52.5 (Inverse inequality). Following the hint, let mnc
z be the post-processed variable

from the dual mixed formulation of (52.17). If z ∈ V◦
h, m

nc
z has zero mean value in Dz, and both σ∗

z

and IIId,bl (fz) have zero normal component on ∂Dz (recall that fz = −ψzd∇ph, that ψz vanishes

at ∂Dz, and that IIId,bl preserves zero normal components). If z ∈ V∂h , mnc
z has zero moments up to

order l on all faces located in ∂Dz ∩ ∂D, and both σ∗
z and IIId,bl (fz) have zero normal component

on all faces located in ∂Dz \ ∂D. Owing to (52.13), we infer that

‖σ∗
z −IIId,bl (fz)‖2L2(Dz)

= (IIId,bl (fz)− σ∗
z,∇hmnc

z )L2(Dz).

Integrating by parts and using the above properties on ∂Dz as well as

∇·(IIId,bl (fz)− σ∗
z) = Ibl (∇·fz − gz)

on each cell in Dz, we infer that

‖σ∗
z −IIId,bl (fz)‖2L2(Dz)

=− (Ibl (∇·fz − gz),mnc
z )L2(Dz)

+
∑

F ′∈F◦
z

∫

F ′

[[mnc
h (IIId,bl (fz)− σ∗

z)]]·nF ′ ds.

Recalling that the jump of mnc
h has zero moments up to order l, that the normal component of

IIId,bl (fz) − σ∗
z in each cell in Dz is a polynomial of order at most l, and that [[σ∗

z ]]·nF ′ = 0, we
infer that ∫

F ′

[[mnc
h (IIId,bl (fz)− σ∗

z)]]·nF ′ ds = ({mnc
h }, [[IIId,bl (fz)]]·nF ′)L2(F ′).
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We now bound (Ibl (∇·fz−gz),mnc
z )L2(Dz) and ({mnc

h }, [[IIId,bl (fz)]]·nF ′)L2(F ′) using Cauchy–Schwarz
inequalities. We use the inequality ‖mnc

z ‖L2(Dz) ≤ chDz
‖∇hmnc

z ‖L2(Dz) given in the hint (this bro-
ken Poincaré–Steklov inequality can be proven along the lines of Exercise 22.3), and we combine it
with the multiplicative trace inequality from Lemma 12.15 and the regularity of the mesh sequence
to infer that

‖mnc
z ‖L2(F ′) ≤ c h

1
2

F ′‖∇hmnc
z ‖L2(Dz).

Using the stability result from Exercise 52.3, we can bound ‖∇hmnc
z ‖L2(Dz) by ‖σ∗

z−IIId,bl (fz)‖L2(Dz).
This leads to

c ‖σ∗
z −IIId,bl (fz)‖L2(Dz) ≤ hDz

‖Ibl (∇·fz − gz)‖L2(Dz) +
∑

F ′∈F◦
z

h
1
2

F ′‖[[IIId,bl (fz)]]·nF ′‖L2(F ′),

with c > 0, and we conclude using the L2-stability of Ibl , the fact that the normal components of

IIId,bl (fz) are L
2-orthogonal projections of those of fz, and the regularity of the mesh sequence.

Exercise 52.6 (Prager–Synge equality). (∇(u − uh),∇u + σ∗)L2(D) = 0 follows from inte-
gration by parts since (u − uh) ∈ H1

0 (D) and ∇·(∇u + σ∗) = −f + f = 0. As a result, we
have

‖∇uh + σ∗‖2L2(D) = ‖∇(u− uh)− (∇u+ σ∗)‖2L2(D)

= ‖∇(u− uh)‖2L2(D) + ‖∇u+ σ∗‖2L2(D).

This proves the assertion.
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Chapter 53

Stokes equations: Basic ideas

Exercises

Exercise 53.1 (∇· is surjective). LetD ⊂ R2 be a domain of class C2. Prove that∇· :H1
0 (D)→

L2
∗(D) is continuous and surjective. (Hint : construct v ∈H1

0 (D) such that v = ∇q+∇×ψ, where
q solves a Poisson problem, ψ solves a biharmonic problem, and ∇×ψ := (∂2ψ,−∂1ψ)T.)

Exercise 53.2 (de Rham). Let D be a bounded open set in Rd and assume that D is star-shaped
with respect to an open ball B ⊂ D. Prove that the continuous linear forms on W 1,p

0 (D) that

are zero on ker(∇·) are gradients of functions in Lp
′

∗ (D). (Hint : use Remark 53.10 and the closed
range theorem.)

Exercise 53.3 (L2-estimate). Prove Theorem 53.19 directly, i.e., without invoking Lemma 50.11.

Exercise 53.4 (Projection). Let (Vh0, Qh)h∈H be a sequence of pairs of finite element spaces.
Let p ∈ [1,∞] and let p′ ∈ [1,∞] be s.t. 1

p +
1
p′ = 1. Let ΠZh : Qh → Zh be an operator, where Zh is

a finite-dimensional subspace of Lp(D). Assume that there are β1, β2 > 0 such that for all h ∈ H,
supvh∈Vh0

|
∫
D
qh∇·vh dx|

|vh|W1,p(D)
≥ β1‖qh − ΠZh (qh)‖Lp′(D) for all qh ∈ Qh and supvh∈Vh0

|
∫
D
qh∇·vh dx|

|vh|W 1,p(D)
≥

β2‖qh‖Lp′(D) for all qh ∈ Zh. (i) Show that ΠZh is bounded uniformly w.r.t. h ∈ H. (ii) Show that

the (Vh0, Qh) pair satisfies an inf-sup condition uniformly w.r.t. h ∈ H.

Exercise 53.5 (Spurious mode for the (QQQ1,Q1) pair). (i) Let K̂ := [0, 1]2 be the unit square.
Let âij := ( i2 ,

j
2 ), for all i, j ∈ {0:2}. Show that the quadrature

∫
K̂
f(x̂) dx̂ ≈ ∑i,j wijf(âij),

where wij := 1
36 (3i(2 − i) + 1)(3j(j − 2) + 1) (wij := 1

36 for the four vertices of K̂, wij := 1
9 for

the four edge midpoints, and wij := 4
9 at the barycenter of K̂) is exact for all f ∈ Q2. (Hint :

write the Q2 Lagrange shape functions in tensor-product form and use Simpson’s rule in each
direction.) (ii) Consider D := (0, 1)2 and a mesh composed of I×I squares, I ≥ 2. Consider the
points alm := ( l2I ,

m
2I ) for all l,m ∈ {0:2I}. Let ph be the continuous, piecewise bilinear function

such that ph(a2k,2n) := (−1)k+n for all k, n ∈ {0:I}. Show that ph is a spurious pressure mode
for the (QQQ1,Q1) pair (continuous velocity and pressure).
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Solution to exercises

Exercise 53.1 (∇· is surjective). Let g ∈ L2
∗(D) and let qg ∈ H1

∗ (D) := {v ∈ H1(D) |
∫
D
v dx =

0} be such that
∆qg = g, ∂nqg|∂D = 0.

The elliptic regularity theory for the Laplace operator implies that there is a constant c so that
‖qg‖H2(D) ≤ c‖g‖L2(D). Let n := (n1, n2)

T be the outward unit normal at the boundary and

define the unit tangent vector τ := (−n2, n1)
T. Owing to the boundedness statement from Theo-

rem 3.10(iii) applied componentwise to ∇qg (with p := 2), we infer that ∇qg|∂D ∈ H
1
2 (∂D), i.e.,

τ ·∇qg|∂D ∈ H
1
2 (∂D) (recall that the boundary of D is of class C2). Let ψ ∈ H2(D) be such that

∆2ψg = 0, ψg|∂D = 0, ∂nψg|∂D = τ ·∇qg|∂D.

Let us show that there is c so that ‖ψg‖H2(D) ≤ c‖g‖L2(D) for all g ∈ L2
∗(D). Invoking the

surjectivity statement from Theorem 3.16(i), there exists φg ∈ H2(D) so that φg|∂D = 0 and
∂nφg|∂D = τ ·∇qg|∂D, and there is c s.t. ‖φg‖H2(D) ≤ c‖τ ·∇qg‖

H
1
2 (∂D)

for all g ∈ L2
∗(D). Hence,

we have (the value of c can change at each occurrence)

‖φg‖H2(D) ≤ c ‖τ ·∇qg‖H 1
2 (∂D)

≤ c ‖∇qg‖
H

1
2 (∂D)

≤ c ‖qg‖H2(D) ≤ c ‖g‖L2(D).

This shows that ‖φg‖H2(D) ≤ c‖g‖L2(D). The definitions of ψg and φg imply that

∆2(ψg − φg) = −∆2φg, (ψg − φg)|∂D = 0, ∂n(ψg − φg)|∂D = 0.

The solution to this problem is such that ‖∆(ψg − φ)‖L2(D) ≤ ‖∆φg‖L2(D). This indeed results
from

‖∆(ψg − φg)‖2L2(D) = (∆(ψg − φg),∆(ψg − φg))L2(D)

= (∆2(ψg − φg), ψg − φg)L2(D)

= −(∆2φg, ψg − φg)L2(D) = −(∆φg ,∆(ψg − φg))L2(D),

and the assertion follows from the Cauchy–Schwarz inequality. Moreover, since (ψg − φg)|∂D = 0,
the elliptic regularity theory implies that

‖ψg − φg‖H2(D) ≤ c ‖∆(ψg − φg)‖L2(D) ≤ c ‖∆φg‖L2(D) ≤ c ‖g‖L2(D).

Invoking the triangle inequality and the bound ‖φg‖H2(D) ≤ c‖g‖L2(D) shows that there is c,
uniform w.r.t. g ∈ L2

∗(D), such that ‖ψg‖H2(D) ≤ c‖g‖L2(D). Let us now consider the field

vg := ∇qg +∇×ψg,

where ∇×ψg = (∂2ψg,−∂1ψg)T. We have ∇·vg = g and

vg·n = ∂nqg + (n1∂2ψg − n2∂1ψg) = 0 + τ ·∇ψg = ∂τψg = 0.

Moreover, we have

vg·τ = τ ·∇qg + (−n2∂2ψg − n1∂1ψg) = τ ·∇qg − ∂nψg = 0.

In conclusion, ∇·vg = g, vg|∂D = 0, and there is c, uniform w.r.t. g ∈ L2
∗(D), s.t. ‖vg‖H1(D) ≤

‖qg‖H2(D) + ‖ψg‖H2(D) ≤ c‖g‖L2(D).
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Exercise 53.2 (de Rham). Consider the weak gradient operator ∇ : Lp
′

∗ (D) → W−1,p′(D).
One readily sees that −∇ = (∇·)∗. Since ∇· is surjective owing to Remark 53.10, the closed range
theorem implies that [ker(∇·)]⊥ = im(∇).
Exercise 53.3 (L2-estimate). Let (ξ, φ) ∈ Vd×Q be the solution to the adjoint problem with
source term u− uh, i.e.,

a(v, ξ) + b(v, φ) =

∫

D

(u− uh)·v dx, b(ξ, q) = 0, ∀(v, q) ∈ Vd×Q.

Taking v := u−uh, q := p−ph, and using the Galerkin orthogonality property, i.e., a(u−uh, ξh)+
b(ξh, p− ph) = 0 for all ξh ∈ Vh0 and b(u− uh, φh) = 0 for all φh ∈ Qh, we obtain

‖u− uh‖2L2(D) = a(u− uh, ξ) + b(u− uh, φ)
= a(u− uh, ξ − ξh)− b(ξh, p− ph) + b(u− uh, φ− φh)
= a(u− uh, ξ − ξh) + b(ξ − ξh, p− ph) + b(u− uh, φ− φh)
≤ ‖a‖ |u− uh|H1(D)|ξ − ξh|H1(D)

+ ‖b‖ |ξ − ξh|H1(D)‖p− ph‖L2(D) + ‖b‖ |u− uh|H1(D)‖φ− φh‖L2(D).

We infer that

‖u− uh‖2L2(D) ≤
(
|u− uh|H1(D) +

‖b‖
‖a‖‖p− ph‖L2(D)

)

×
(

inf
ξh∈Vh0

‖a‖ |ξ− ξh|H1(D) + inf
φh∈Qh

‖b‖ ‖φ− φh‖L2(D)

)
,

and the approximation properties of finite elements imply that

‖u− uh‖2L2(D) ≤ c
(
‖u− uh‖H1(D) +

‖b‖
‖a‖‖p− ph‖L2(D)

)

× hs(‖a‖ |ξ|H1+s(D) + ‖b‖ |φ|Hs(D)).

The conclusion follows from the regularity pickup estimate

‖a‖ |ξh|H1+s(D) + ‖b‖ |φ|Hs(D) ≤ c ℓ1−sD ‖u− uh‖L2(D).

Exercise 53.4 (Projection). Let qh be an arbitrary function in Qh.
(i) Hölder’s inequality implies that

c ‖qh‖Lp′(D) ≥ sup
vh∈Vh0

|
∫
D qh∇·vh dx|
|vh|W 1,p(D)

≥ β1‖qh −ΠZh (qh)‖Lp′(D).

Hence, ‖ΠZh (qh)‖Lp′(D) ≤ ‖ΠZh (qh)− qh‖Lp′(D) + ‖qh‖Lp′(D) ≤ ( cβ1
+ 1)‖qh‖Lp′(D).

(ii) We have

sup
vh∈Vh0

|
∫
D
qh∇·vh dx|

|vh|W 1,p(D)
≥ sup

vh∈Vh0

|
∫
D
ΠZh (qh)∇·vh dx|
|vh|W 1,p(D)

− sup
vh∈Vh0

|
∫
D
(qh −ΠZh (qh))∇·vh dx|
|vh|W 1,p(D)

≥ β2‖ΠZh (qh)‖Lp′(D) − c ‖qh −ΠZh (qh)‖Lp′(D),

where we used Hölder’s inequality and ‖∇·vh‖Lp(D) ≤ c|vh|W 1,p(D) to bound the last term. But
we also have

sup
vh∈Vh0

|
∫
D
qh∇·vh dx|

|vh|W 1,p(D)
≥ β1‖qh −ΠZh (qh)‖Lp′(D).
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The above two inequalities imply that

sup
vh∈Vh0

|
∫
D qh∇·vh dx|
|vh|W 1,p(D)

≥ β1β2
c+ β1

‖ΠZh (qh)‖Lp′(D).

This, in turn, implies that

(
c+ β1
β1β2

+
1

β1

)
sup

vh∈Vh0

∫
D qh∇·vh dx
|vh|W 1,p(D)

≥ ‖ΠZh (qh)‖Lp′(D) + ‖qh −ΠZh (qh)‖Lp′(D) ≥ ‖qh‖Lp′(D),

which shows that (Vh0, Qh) satisfies a uniform inf-sup condition.

Exercise 53.5 (Spurious mode for the (QQQ1,Q1) pair). (i) Let θ̂ij be the Q2 Lagrange shape
function associated with the node âij := ( i2 ,

j
2 ), i, j ∈ {0:2}. This shape function can be repre-

sented as θ̂ij(x̂) := pi(x̂1)qj(x̂2), where x̂ := (x̂1, x̂2)
T and pi, qj are univariate quadratic polyno-

mials. Using Simpson’s rule yields

∫

K̂

θ̂ij(x̂) dx̂ =

(∫ 1

0

pi(x̂1) dx̂1

)(∫ 1

0

qj(x̂2) dx̂2

)

=
1

36
(pi(0) + 4pi(

1
2 ) + pi(1))(qj(0) + 4qj(

1
2 ) + qj(1))

=
1

36


 ∑

l∈{0:2}
(3l(2− l) + 1)pi(

l
2 )




 ∑

m∈{0:2}
(3m(2−m) + 1)qj(

m
2 )




=
∑

l,m∈{0:2}
wlmθ̂ij(âlm) = wij ,

where wlm := 1
36 (3l(2− l) + 1)(3m(2−m) + 1). The conclusion follows readily since (θ̂ij)i,j∈{0: 2}

is a basis of Q2.
(ii) Let us first observe that ph(a2k+1,2n) = 1

2 ((−1)k+n + (−1)k+1+n) = 0 for all k ∈ {0:I−1}
and all n ∈ {0:I}. Similarly, ph(a2k,2n+1) = 0 for all k ∈ {0:I} and all n ∈ {0:I−1}, and
ph(a2k+1,2n+1) = 0 for all k ∈ {0:I − 1} and all n ∈ {0:I−1}. Let ϕij be a global shape function
(for the Q1 Lagrange element) associated with the node a2i,2j , for all i, j ∈ {1:I−1} (recall that
I ≥ 2 by assumption). It suffices to show that

∫
D
(∇·ϕij)ph dx = 0. Since (∇·ϕij)ph is piecewise

in the polynomial space Q2,2, the function ϕij is supported in the four cells sharing a2i,2j and
since ∇·ϕij(a2(i±1),2(j±1)) = 0, the quadrature from Step (i) yields

∫

D

(∇·ϕij)ph dx =
(−1)i+j
36N2

(
4(∇·ϕij)(a2i,2j)− (∇·ϕij)(a2(i−1),2j)

− (∇·ϕij)(a2(i+1),2j)− (∇·ϕij)(a2i,2(j−1))− (∇·ϕij)(a2i,2(j+1))
)
.

Symmetry arguments show that (∇·ϕij)(a2i,2j) = 0, (∇·ϕij)(a2(i−1),2j) + (∇·ϕij)(a2(i+1),2j) = 0
and (∇·ϕij)(a2i,2(j−1))+(∇·ϕij)(a2i,2(j+1)) = 0. Hence,

∫
D(∇·ϕij)ph dx = 0 for all i, j ∈ {1:I−1}.

This shows that ph is a spurious pressure mode.
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Stokes equations: Stable pairs (I)

Exercises

Exercise 54.1 (Mini element). Show that the Fortin operator Πh constructed in the proof of
Lemma 54.5 is of the form Πh(v) := IIIavh0(v) +

∑
K∈Th

∑
i∈{1:d} γ

i
K(v)bKei, for some coefficients

γiK(v) to be determined. Here, {ei}i∈{1:d} is the canonical Cartesian basis of Rd.

Exercise 54.2 (Bubble⇔Stabilization). Consider the mini element defined in §54.2 and assume
that the viscosity µ is constant over D. Recall that Vh0 := V 1

h0 ⊕Bh and Qh := P g
1 (Th) ∩ L2

∗(D)
with V 1

h0 := PPPg1,0(Th). Let (uh, ph) be the solution to the discrete Stokes problem (53.14). (i) Show

that a(vh, bh) = 0 for all vh ∈ V 1
h0 and all bh ∈ Bh. (ii) Set uh := u1

h + u
b
h ∈ Vh0. Show that

a(u1
h,vh) + b(vh, ph) = F (vh), ∀vh ∈ V 1

h0. (54.1)

(iii) Let bK := b̂◦TK be the bubble function onK ∈ Th. Let {ei}i∈{1:d} be the canonical Cartesian

basis of Rd. Let SK ∈ Rd×d be defined by SKij := 1∫
K
bK dx

a(bKej , bKei) for all i, j ∈ {1:d}. Let

ubh|K :=
∑

i∈{1:d} c
i
KeibK . Show that cK = (SK)−1(FK −∇ph|K), where F iK := 1∫

K
bK dx

F (bKei),

for all i ∈ {1:d}. (iv) Set ch(ph, qh) :=
∑

K∈Th∇qh|K(SK)−1∇ph|K
∫
K
bK dx and Rh(qh) :=∑

K∈Th ∇qh|K(SK)−1FK
∫
K
bK dx. Show that the mass conservation equation becomes

b(u1
h, qh)− ch(ph, qh) = G(qh)−Rh(qh), ∀qh ∈ Qh. (54.2)

Note: since (SK)−1 scales like µ−1h2K , ch(ph, qh) behaves like
∑

K∈Th
h2
K

µ

∫
K ∇qh·∇ph dx, and

Rh(qh) scales like
∑
K∈Th

h2
K

µ

∫
K ∇qh|K ·FK dx. This shows that, once the bubbles are eliminated,

the system (54.1)-(54.2) is equivalent to a stabilized form of the Stokes system for the (PPP1,P1)
pair; see Chapters 62 and 63.

Exercise 54.3 (Singular vertex). Let K ⊂ R2 be a quadrangle and let z be the intersection of
the two diagonals of K. Let K1, . . . ,K4 be the four triangles formed by dividing K along its two
diagonals (assume that K1 ∩K3 = {z} and K2 ∩K4 = {z}). (i) Let φ be a scalar field continuous
over K and of class C1 over the triangles K1, . . . ,K4. Prove that

∑
i∈{1:4}(−1)in·∇φ|Ki(z) = 0

for every unit vector n. (ii) Let v be a vector field continuous over K and of class C1 over the
triangles K1, . . . ,K4. Prove that

∑
i∈{1:4}(−1)i∇·v|Ki(z) = 0. (iii) Assume that v is linear over

each triangle. Show that the four equations
∫
Ki
∇·v dx = 0 for all i ∈ {1:4} are linearly dependent.
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Exercise 54.4 (PPP1-iso-PPP2,P1). Consider the setting of Lemma 54.12 with the (PPP1-iso-PPP2,P1) pair
in dimension three. (i) Let K ∈ Th. Let VK be the set of the vertices of K. LetMK be the mid-
points of the six edges of K. LetM1

K be the set of the two midpoints that are connected to create
the 8 new tetrahedra. LetM2

K be the set of the remaining midpoints. Let Vh0 be the PPP1 velocity
space based of Th/2. Find the coefficients α, β, γ so that the following quadrature is exact for all
wh ∈ Vh0:

∫
K wh dx = |K|(α∑z∈VK wh(z) + β

∑
m∈M1

K
wh(m) + γ

∑
m∈M2

K
wh(m)). (Hint :

on a tetrahedron K ′ with vertices {z′}z′∈VK′ , the quadrature
∫
K′ wh dx = |K ′|∑z′∈VK′

1
4wh(z

′)
is exact on PPP1.) (ii) Prove Lemma 54.12 for the (PPP1-iso-PPP2,P1) pair in dimension three for all
p ∈ (1,∞). (Hint : adapt the proof of Lemma 54.8.)

Solution to exercises

Exercise 54.1 (Mini element). A direct calculation shows that

γiK =

∫
K
(vi − Ig,avh0 (vi)) dx∫

K bK dx
,

for all i ∈ {1:d} and all K ∈ Th.

Exercise 54.2 (Bubble⇔Stabilization). (i) Since the mesh is affine, the function e(vh) is linear
over each cell K ∈ Th for all vh ∈ V 1

h0. Hence, we have

1

2µ
a(vh, bh) =

∑

K

∫

K

e(vh):e(bh) dx =
∑

K

∫

K

e(vh):∇bh dx

=
∑

K

−
∫

K

∇·(e(vh))·bh dx = 0.

(ii) Since the bilinear form a is symmetric, the above argument gives a(ubh,vh) = a(vh,u
b
h) = 0.

The assertion follows readily.
(iii) Let K ∈ T . Testing the momentum conservation equation against the function bKei, we
obtain

∑

j∈{1:d}
a(bKej , bKei)c

j
K = a(ubh, bKei) = a(uh, bKei)

= −b(bKei, ph) + F (bKei)

= −
∫

K

bK∂iph dx+ F (bKei).

Dividing by
∫
K bK dx, we obtain SKcK = (−∇ph|K + FK). This proves the assertion.

(iv) The mass conservation equation gives for all qh ∈ Qh,

G(qh)− b(u1
h, qh) = b(ubh, qh) =

∑

K∈Th

∫

K

bKcK ·∇qh dx

=
∑

K∈Th
∇qh|K(SK)−1(−∇ph|K + FK)

∫

K

bK dx.
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Using the notation

ch(ph, qh) :=
∑

K∈Th
∇qh|K(SK)−1∇ph|K

∫

K

bK dx,

Rh(qh) :=
∑

K∈Th
∇qh|K(SK)−1FK

∫

K

bK dx,

the mass conservation equation becomes

b(u1
h, qh)− ch(ph, qh) = G(qh)−Rh(qh).

Exercise 54.3 (Singular vertex). Without loss of generality, assume that the enumeration of the
triangles K1, . . . ,K4 is done counter-clockwise. Let τ1 be a unit vector aligned with the diagonal,
say ∆1, separating K1 and K4, and K2 and K3. Likewise, let τ2 be a unit vector aligned with
the diagonal, say ∆2, separating K1 and K2, and K3 and K4. Let φ ∈ C0(K;R) and assume that
φi := φ|Ki ∈ C1(Ki;R). We have

τ1·∇φ1 = τ1·∇φ4, τ1·∇φ3 = τ1·∇φ2, on ∆1,

τ2·∇φ4 = τ2·∇φ3, τ2·∇φ2 = τ2·∇φ1, on ∆2.

Since z ∈ ∆1 ∩∆2, we infer that

−τ1·∇φ1(z) + τ1·∇φ2(z)− τ1·∇φ3(z) + τ1·∇φ4(z) = 0,

−τ2·∇φ1(z) + τ2·∇φ2(z)− τ2·∇φ3(z) + τ2·∇φ4(z) = 0.

Let n = ατ1 + βτ2 be any unit vector in R2 (recall that τ1 and τ2 are linearly independent).
Combining the above two equations, we infer that

−n·∇φ1(z) + n·∇φ2(z)− n·∇φ3(z) + n·∇φ4(z) = 0,

i.e.,
∑

i∈{1: 4}(−1)in·∇φi(z) = 0.

(ii) We can now apply this result to the Cartesian components of the vector field v using n = ex
and n = ey. Let us set vi := v|Ki and let vxi , v

y
i be the two Cartesian components of vi. We have

0 =
∑

i∈{1:4}
(−1)i∂xvxi (z) +

∑

i∈{1: 4}
(−1)i∂yvyi (z) =

∑

i∈{1: 4}
(−1)i∇·vi(z).

(iii) If we assume that v is piecewise linear, then ∇·vi is constant over Ki, i.e.,
∫
Ki
∇·vi dx =

|Ki|∇·vi(z). Hence,
∑

i∈{1:4}(−1)i|Ki|−1
∫
Ki
∇·vi dx = 0, which shows that the four equations∫

Ki
∇·vi dx = 0 for all i ∈ {1:4} are linearly dependent.

Exercise 54.4 (PPP1-iso-PPP2,P1). We assume that d = 3.
(i) Let TK/8 be the collection of the eight tetrahedra created by dividing K. Notice that the eight

tetrahedra are not all similar, but they all have the same volume 1
8 |K|. The following holds true

for all wh ∈ Vh0:
∫

K

wh dx =
|K|
8

1

4

∑

K′∈TK/8

( ∑

z∈VK′

wh(z)

)
.
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We observe that the vertices in VK belong to only one cell in TK/8, the midpoints inM1
K belong

to 2+4 = 6 cells in TK/8, and the midpoints inM2
K belong to 2+2 = 4 cells in TK/8. Rearranging

the summations leads to the quadrature

∫

K

wh dx =
|K|
32

( ∑

z∈VK
wh(z) + 6

∑

m∈M1
K

wh(m) + 4
∑

m∈M2
K

wh(m)

)
.

Hence, we have α = 1
32 , β = 3

16 , γ = 1
8 .

(ii) Let p ∈ (1,∞). We proceed as in the proof of Lemma 54.8. Let Th be the pressure mesh and
Th/2 be the velocity mesh. Let us number all the internal mesh edges of Th from 1 to N i

e. Consider

an oriented edge Ei with i ∈ {1:N i
e}, and denote its two endpoints by z±i and its midpoint by

mi. Set li := ‖z+i − z−i ‖ℓ2 and τi := l−1
i (z+i − z−i ), so that li is the length of Ei and τi is the

unit tangent vector orienting Ei. Let qh be a function in Qh and let sgn be the sign function. Let
vh ∈ Vh0 be (uniquely) defined by prescribing its global degrees of freedom in Vh0 as follows:





vh(aj) := 0 if aj is a mesh vertex,

vh(mi) := −lp
′

i sgn(∂τiqh)|∂τiqh|p
′−1τi if Ei 6⊂ ∂D,

vh(mi) := 0 if Ei ⊂ ∂D,

where ∂τiqh := τi·∇qh denotes the tangential derivative of qh along the oriented edge Ei. Note
that vh(mi) depends only on the values of qh on Ei. Let K ∈ Th. Using that ∇qh|K is constant
over each cell in Th, and since Qh is H1-conforming, we infer that

∫

D

qh∇·vh dx = −
∫

D

vh·∇qh dx = −
∑

K∈Th
∇qh|K ·

∫

K

vh dx

= −
∑

K∈Th
|K|
( ∑

mi∈M1
K

3
16vh(mi)·∇qh(mi) +

∑

mi∈M2
K

1
8vh(mi)·∇qh(mi)

)

≥
∑

K∈Th

1
8 |K|

∑

mi∈K
|∂τiqh(mi)|p

′

lp
′

i ≥ c
∑

K∈Th
hp

′

K‖∇qh‖p
′

Lp
′(K)

.

The last inequality results from the fact that li ≥ chK owing to the regularity of the mesh sequence,
and that every tetrahedron K ∈ Th has at least three edges in D, i.e., the quantities |∂τiqh(mi)|,
wheremi spans the midpoints of the edges of K that are not in ∂D, control ‖∇qh‖ℓ2 . Finally, the
inverse inequality from Lemma 12.1 (with r := p, l := 1, m := 0) together with Proposition 12.5
implies that for all K ∈ Th,

|vh|pW 1,p(K) ≤ c h
−p
K |K|

∑

m∈MK

‖vh(m)‖pℓ2 ,

and since li ≤ chK , we have ‖vh(m)‖ℓ2 ≤ chp
′

K‖∇qh‖p
′−1
ℓ2 . Since p(p′ − 1) = p′, combining these

bounds shows that |vh|pW 1,p(K) ≤ ch
p′

K‖∇qh‖
p′

Lp
′(K)

for all K ∈ Th. This proves that

sup
vh∈Vh0

|
∫
D
qh∇·vh dx|

|vh|W 1,p(D)
≥ c

( ∑

K∈Th
hp

′

K‖∇qh‖p
′

Lp
′(K)

) 1
p′

.

We conclude by applying Lemma 54.3.



Chapter 55

Stokes equations: Stable pairs (II)

Exercises

Exercise 55.1 (Local mass balance). Let uh ∈ Vh0 and g ∈ L2
∗(D) satisfy

∫
D qh∇·uh dx =∫

D
qhg dx for all qh ∈ P b

k,∗(Th). Show that
∫
K
(ψg
K)−1(q)∇·uh dx =

∫
K
(ψg
K)−1(q)g dx for all

q ∈ Pk,d and all K ∈ Th with ψg
K(q) := q ◦ TK . (Hint : use that

∫
D
∇·uh dx =

∫
D
g dx = 0.)

Exercise 55.2 ((PPP2,Pb0)). Complete the proof of Lemma 55.8. (Hint : to show that the assump-
tion (ii) from Lemma 54.2 is met, prove that

∫
F
(v −Π2h(v)) ds = 0 for all F ∈ F◦

h using Simp-
son’s quadrature rule; to show that the assumption (iii) is met, show first that |Π2h(v)|W 1,p(K) ≤
ch

1
p−1

K

∑
F∈F◦

K
‖v‖Lp(F ) and then invoke the multiplicative trace inequality (12.16).)

Exercise 55.3 ((QQQk,Qb
k−1)). (i) Justify Lemma 55.23 for k := 2 by constructing a counterexample.

(Hint : given an interior vertex of a uniform Cartesian mesh, consider the patch composed of
the four square cells sharing this vertex, and find an oscillating pressure field using (ii) from
Exercise 54.3.) (ii) Generalize the argument for all k ≥ 2.

Exercise 55.4 ((PPPcr1 ,P
b
0)). Justify the claim in Remark 55.19. (Hint : see the proof of Theo-

rem 36.11.)

Exercise 55.5 ((PPP2,Pb1), HCT mesh). Using the notation from the proof of Lemma 55.14, the

goal is to prove that im(B̂)⊥ = span(1Û ). Let ẑ1 := (0, 0), ẑ2 := (1, 0), ẑ3 := (0, 1), ẑ4 := (13 ,
1
3 ).

Consider the triangles K̂1 := conv(ẑ1, ẑ2, ẑ4), K̂2 := conv(ẑ2, ẑ3, ẑ4), and K̂3 := conv(ẑ3, ẑ1, ẑ4).

Let p ∈ P b
1 (Û) with the reference macroelement Û := {K̂1, K̂2, K̂3}, and set

p1 := p|K̂1
(ẑ1), p2 := p|K̂1

(ẑ2), p3 := p|K̂1
(ẑ4),

q1 := p|K̂2
(ẑ2), q2 := p|K̂2

(ẑ3), q3 := p|K̂2
(ẑ4),

s1 := p|K̂3
(ẑ3), s2 := p|K̂3

(ẑ1), s3 := p|K̂3
(ẑ4).

Let m̂14 := 1
2 (ẑ1 + ẑ4), m̂24 := 1

2 (ẑ2 + ẑ4), m̂34 := 1
2 (ẑ3 + ẑ4). Let u ∈ P g

2,0(Û) and set

(u7, v7)
T := u(m̂14), (u8, v8)

T := u(m̂24), (u9, v9)
T := u(m̂34), (u10, v10)

T := u(ẑ4). (i) Show (or
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accept as a fact) that

∫

K̂1

p∇·u dx̂ = (−u7 + u8 + 4v7 + 2v8)p1

+ (−u7 + u8 + v7 + 5v8)p2 + (−2u7 + 2u8 − v7 + v8 + 3v10)p3.

(Hint : compute the P2 shape functions on K̂1 associated with the nodes m̂14, m̂24, and ẑ4.) (ii)

Let TK̂2
: K̂1 → K̂2, TK̂3

: K̂1 → K̂3 be the geometric mappings s.t.

TK̂2
(x̂) := ẑ2 +

(
−1 −1
1 0

)
(x̂− ẑ1), TK̂3

(x̂) := ẑ3 +

(
0 1
−1 −1

)
(x̂− ẑ1).

Verify that TK̂i maps the vertices of K̂1 to the vertices of K̂i for i ∈ {2, 3}. (iii) Compute the

contravariant Piola tranformations ψd
K̂2

(v) and ψd
K̂3

(v). (iv) Compute
∫
K̂i
p∇·u dx̂ for i ∈ {2, 3}.

(Hint : use Steps (i) and (iii), and
∫
K̂i
q∇·v dx̂ =

∫
K̂1
ψg
Ki

(q)∇·(ψd
Ki

(v)) dx̂ (see Exercise 14.3(i)).)

(v) Write the linear system corresponding to the statement (B̂(u), p)L2(Û)
:=
∫
Û
p∇·u dx̂ = 0 for

all u ∈ P g
2,0(Û), and compute im(B̂)⊥.

Exercise 55.6 (Macroelement partition). Reprove Corollary 55.3 without invoking the par-
tition lemma (Lemma 55.1). (Hint : see Brezzi and Bathe [7, Prop.4.2].)

Exercise 55.7 (Macroelement, continuous pressure). Let the assumptions of Proposition 55.5
hold true. (i) Show that there are c1, c2 > 0 s.t.

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ c1βD‖qh‖Q − c2
( ∑

U∈Uh
h2U |qh|2H1(U)

) 1
2 ,

for all qh ∈ Qh and all h ∈ H. (Hint: use the quasi-interpolation operator IIIavh0 and proceed as in
the proof of Lemma 54.3.) (ii) Setting qhU := 1

|U|
∫
U
qh dx, show that there is c s.t. |qh|U |H1(U) ≤

c‖qh − qhU‖L2(Û) for all U ∈ Uh and all h ∈ H. (Hint : use Lemma 11.7 and the affine geometric

mapping TU : Û → U .) (iii) Prove Corollary 55.5. (Hint : use Remark 55.4. See also Brezzi and
Bathe [7, Prop 4.1].)

Solution to exercises

Exercise 55.1 (Local mass balance). Let q ∈ Pk,d and K ∈ Th. Let us define qh ∈ P b
k (Th)

by setting qh|K := q ◦ T−1
K and qh|K′ = 0 if K ′ 6= K. Let qh := 1

|D|
∫
D
qh dx. This gives

qh − qh ∈ P b
k,∗(Th), so that by assumption we have

∫

D

(qh − qh)∇·uh dx =

∫

D

(qh − qh)g dx.

But the compatibility condition
∫
D
g dx = 0 and the homogeneous Dirichlet condition enforced on

uh imply that
∫

D

qh∇·uh dx = qh

∫

D

∇·uh dx = 0 = qh

∫

D

g dx =

∫

D

qhg dx.
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Hence, we have

∫

K

(q ◦ T−1
K )∇·uh dx =

∫

D

qh∇·uh dx =

∫

D

qhg dx =

∫

K

(q ◦ T−1
K )g dx,

which proves the assertion.

Exercise 55.2 ((PPP2,Pb0)). Let us verify that the assumptions (i)–(iii) from Lemma 54.2 are met
with the operators Π1h,Π2h defined in the proof of Lemma 55.8. Recall that this operators map
from V :=W 1,p

0 (D) to Vh0 := P g
2,0(Th). The operator Π2h is linear, so that the assumption (i) is

met. Let us show that it is also the case for the assumption (ii). Let F ∈ F◦
h . Since Π2h(v)|F is

quadratic on F , we can apply Simpson’s quadrature rule to infer that

∫

F

Π2h(v) ds =
|F |
6

(
Π2h(v)(z1,F ) + 4Π2h(v)(mF ) +Π2h(v)(z2,F )

)

=
2|F |
3

Π2h(v)(mF ) =

∫

F

v ds,

where {z1,F , z2,F } are the two endpoints of F and mF is the barycenter of F . Consider now
K ∈ Th and let F◦

K be the collection of the mesh interfaces that are faces of K. The above identity
implies that ∫

K

∇·(v −Π2h(v)) dx =
∑

F∈F◦
K

∫

F

(v −Π2h(v))·nK ds = 0,

where nK is the unit outward normal to K. Since Qh is composed of piecewise constant pressures,
we infer that for all qh ∈ Qh,

b(v −Π2h(v), qh) =
∑

K∈Th
qh|K

∫

K

∇·(v −Π2h(v)) dx = 0.

Hence, the assumption (ii) from Lemma 54.2 also holds true. Let us now turn our attention to the
assumption (iii). We define the real numbers

c1h := sup
v∈V

‖Π1h(v)‖V
‖v‖V

, c2h := sup
v∈V

‖Π2h(v −Π1h(v))‖V
‖v‖V

.

Owing to the W 1,p
0 -stability of Iavh0 (see Theorem 22.14) and recalling that Π1h := IIIavh0, we infer

that c1h is bounded uniformly w.r.t. h ∈ H. Moreover, the inverse inequality from Lemma 12.1
(with r := p, l := 1, m := 0) together with Proposition 12.5, the regularity of the mesh sequence,
Hölder’s inequality, and the multiplicative trace inequality (12.16) implies that for all K ∈ Th (the
value of c changes at each occurrence),

|Π2h(v)|W 1,p(K) ≤ c h−1
K |K|

1
p

∑

F∈F◦
K

‖Π2h(v)(mF )‖ℓ2

≤ c h
2
p−2

K

∑

F∈F◦
K

‖v‖L1(F ) ≤ c h
2
p−2

K

∑

F∈F◦
K

|F | 1p′ ‖v‖Lp(F )

≤ c h
1
p−1

K

∑

F∈F◦
K

‖v‖Lp(F ) ≤ c
(
h−1
K ‖v‖Lp(K) + |v|W 1,p(K)

)
.
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This bound combined with the approximation properties of IIIavh0 (see Theorem 22.14) yields

|Π2h(v −Π1h(v))|W 1,p(K) ≤ c
(
h−1
K ‖v −Π1h(v)‖Lp(K) + |v −Π1h(v)|W 1,p(K)

)

≤ c′ |v|W 1,p(DK),

where DK is the set of the points composing the mesh cells that have a nonempty intersection
with K. Owing to the regularity of the mesh sequence, we conclude by summing over the mesh
cells that |Π2h(v−Π1h(v))|W 1,p(D) ≤ c|v|W 1,p(D), i.e., c2h is also uniformly bounded w.r.t. h ∈ H.
This shows that the assumption (iii) from Lemma 54.2 is also met, and this completes the proof.

Exercise 55.3 ((QQQk,Qb
k−1)). Let D be a rectangle and let Th be a uniform Cartesian mesh of

D. Let h ∈ H be the meshsize. Let K̂ := (0, 1)2 be the reference square. We assume that all the

geometric transformations TK : K̂ → K ∈ Th are homotheties, i.e., using the conventions defined
in Table 21.1, we have TK(x̂) = z1,K + hx̂ for all x̂ ∈ K̂, where z1,K is the bottom left vertex of
K.
(i) Let p̂(x̂) := 4(x̂− 1

2 )(ŷ− 1
2 ). Note that p̂ takes the alternating values ±1 at the four vertices of

K̂. Let ph be the Q1-discontinuous pressure field s.t. ph|K := p̂ ◦T−1
K = (ψg

K)−1(p̂) for all K ∈ Th.
We are going to show that ph is a spurious pressure mode. Let vh be a continuous Q2 velocity
field with zero trace on ∂D. We have

∫
K(∇·vh)ph dx =

∫
K̂
(∇·v̂)p̂ dx̂, where v̂ := ψd

K(vh) and ψ
d
K

is the contravariant Piola transformation. Since the function (∇·v̂)p̂ is a polynomial in Q3, we can
apply the tensor-product version of Simpson’s rule to obtain

∫

K

(∇·vh)ph dx =
h2

36

∑

l∈{1: 4}
∇·vh|K(zl,K)ph|K(zl,K),

where z1,K , . . . , z4,K are the four vertices of K. (Recall that all the cells have the same surface h2

since we assumed that the mesh is uniform.) Let now z be an internal vertex in the mesh and let
K1, . . . ,K4 be the four cells sharing z. Assume that the cells are enumerated counter-clockwise
around z and that K1 is the top right cell. We infer that TKi(ẑi) = z for all i ∈ {1:4}. The
definition of ph implies that ph|Km(z) = (−1)m, so that reasoning as in Exercise 54.3(ii) gives

∑

m∈{1:4}
∇·vh|Km(z)ph|Km(z) =

∑

m∈{1:4}
(−1)m∇·vh|Km(z) = 0.

If z is a boundary vertex, but not a corner, a similar argument shows that

∑

m∈{1,2}
(−1)m∇·vh|Km(z) = 0,

where K1,K2 are the two cells sharing z, and again ph|Km(z) = ±(−1)m. Moreover, it is clear
that ∇·vh(z) = 0 if z is a corner vertex since vh|∂D = 0. Finally, using

∫

D

(∇·vh)ph dx =
h2

36

∑

K∈Th

∑

l∈{1: 4}
∇·vh|K(zl,K)ph|K(zl,K)

=
h2

36

∑

z∈Vh

∑

m∈{1:mz}
∇·vh|Km(z)ph|Km(z)

= 0,
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where mz ∈ {1, 2, 4} is the number of mesh cells sharing z, we conclude that ph is a spurious
pressure mode.
(ii) If k is even, the spurious pressure mode ph is a Qk−1-discontinuous field s.t. ph|K = (ψg

K)−1(p̂)
for all K ∈ Th, where

p̂(x̂) :=
∏

i∈{1:k−1}
(x̂− x̂i)

∏

j∈{1:k−1}
(ŷ − x̂j),

where (x̂1, . . . , x̂k−1) are the interior Gauss–Lobatto nodes for the quadrature over (0, 1) that is
exact for the polynomials of degree (2k − 1). Whenever k is odd, we first define a Qk−1 reference
field p̂ as above using the interior Gauss–Lobatto nodes. Then we enumerate the mesh cells with
two indices as Ki,j , i ∈ I, j ∈ J , where z1,Ki,j := (ih, jh), and we define the spurious pressure
field by setting ph|Ki,j := (−1)i+j p̂ ◦ TKi,j . This way, we still have that for every interior mesh
vertex z shared by the cells K1, . . . ,K4, ph|Km(z) = (−1)mck, where ck =

∏
i∈{1:k−1} x̂

2
i , with the

same modifications as above when the mesh vertex z lies at the boundary.

Exercise 55.4 ((PPPcr1 ,P
b
0)). It is straightforward to adapt the error estimate from Theorem 53.17

to the present nonconforming setting by proceeding as in §36.3 to handle the discrete bilinear form
ah.

Exercise 55.5 ((PPP2,Pb1), HCT mesh). (i) The P1 shape functions on K̂1 associated with the
vertices ẑ1, ẑ2, and ẑ4 are, respectively,

θ1(x, y) = 1− x− 2y, θ2(x, y) = x− y, θ4(x, y) = 3y.

The P2 shape functions on K̂1 associated with the nodes m̂14, m̂24, and ẑ4 are, respectively,

ψ7(x, y) = 12y(1− x− 2y), ψ8(x, y) = 12y(x− y), ψ10(x, y) = 3y(6y − 1).

We have p|K̂1
= p1θ1+p2θ2+p3θ3 and u|K̂1

= (u7, v7)
Tψ7+(u8, v8)

Tψ8+(u10, v10)
Tψ10. The rest

of the computation can be done by hand or by using any symbolic comping software:

∫

K̂1

p∇·u dx̂ = (−u7 + u8 + 4v7 + 2v8)p1

+ (−u7 + u8 + v7 + 5v8)p2

+ (−2u7 + 2u8 − v7 + v8 + 3v10)p3.

(ii) We have TK̂2
(ẑ1) = ẑ2, TK̂2

(ẑ2) = ẑ3, TK̂2
(ẑ4) = ẑ4, and TK̂3

(ẑ1) = ẑ3, TK̂3
(ẑ2) = ẑ1,

TK̂3
(ẑ4) = ẑ4.

(iii) Using the expressions for JK̂2
and JK̂3

, we obtain

ψd
K̂2

(v) = det(JK̂2
)J−1

K̂2

(
u
v

)
=

(
v

−u− v

)
,

ψd
K̂3

(v) = det(JK̂3
)J−1

K̂3

(
u
v

)
=

(
−u− v
u

)
.

(iv) Using the above results and the hint, we make the change of variables p → q, 7 → 8, 8 → 9,
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u→ v, v → −u− v, and obtain

∫

K̂2

p∇·u dx̂ =

∫

K̂1

ψg

K̂2
(p)∇·(ψd

K̂2
(u)) dx̂

= (−v8 + v9 + 4(−u8 − v8) + 2(−u9 − v9)q1
+ (−v8 + v9 + (−u8 − v8) + 5(−u9 − v9))q2
+ (−2v8 + 2v9 − (−u8 − v8) + (−u9 − v9) + 3(−u10 − v10))q3

= (−4u8 − 2u9 − 5v8 − v9)q1
+ (−u8 − 5u9 − 2v8 − 4v9)q2

+ (u8 − u9 − 3u10 − v8 + v9 − 3v10)q3.

Similarly, making the change of variables p→ s, 7→ 9, 8→ 7, u→ −u− v, v → u, we obtain

∫

K̂3

p∇·u dx̂ =

∫

K̂1

ψg

K̂3
(p)∇·(ψd

K̂3
(u)) dx̂

= (u9 + v9 + (−u7 − v7) + 4u9 + 2u7)s1

+ ((u9 + v9) + (−u7 − v7) + u9 + 5u7)s2

+ ((2u9 + 2v9) + (−2u7 − 2v7)− u9 + u7 + 3u10)s3

= (u7 + 5u9 − v7 + v9)s1

+ (4u7 + 2u9 − v7 + v9)s2

+ (−u7 + u9 + 3u10 − 2v7 + 2v9)s3.

(v) The identity (B̂(u), p)L2(Û) = 0 for all u ∈ P g
2,0(Û) is equivalent to UTBP = 0 with the vectors

U := (u7, u8, u9, u10, v7, v8, v9, v10)
T ∈ R8,

P := (p1, p2, p3, q1, q2, q3, s1, s2, s3)
T ∈ R9,

and the matrix B ∈ R8×9 s.t.

B :=




−1 −1 −2 0 0 0 1 4 −1
1 1 2 −4 −1 1 0 0 0
0 0 0 −2 −5 −1 5 2 1
0 0 0 0 0 −3 0 0 3
4 1 −1 0 0 0 −1 −1 −2
2 5 1 −5 −2 −1 0 0 0
0 0 0 −1 −4 1 1 1 2
0 0 3 0 0 −3 0 0 0




.

One can verify that the matrix B has full row rank and that ker(B) = span((1, . . . , 1)T). Hence

im(B̂)⊥ = span(1Û ).

Exercise 55.6 (Macroelement partition). Let qh ∈ Qh. For all U ∈ Uh, we set qU :=
1
|U|
∫
U qh dx and qh :=

∑
U∈U qU1U . Proceeding as in the proof of Corollary 55.3, we infer that

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ sup
vh∈V 1

h0

|b(vh, qh)|
‖vh‖V

≥ β1h‖qh − qh‖Q,
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with V 1
h :=

∑
U∈Uh Vh0(U). Moreover, we have

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

− sup
vh∈Vh0

|b(vh, qh − qh)|
‖vh‖V

≥ β2h‖qh‖Q − ‖qh − qh‖Q,

since ‖∇·vh‖L2(D) ≤ ‖v‖V = |v|H1(D). We infer that

( 1

β1h
+ 1
)

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ β2h‖qh‖Q.

In conclusion, we obtain

(
1

β1h
+

1

β2h

( 1

β1h
+ 1
))

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ ‖qh‖Q + ‖qh − qh‖Q ≥ ‖qh‖Q.

This proves the assertion.

Exercise 55.7 (Macroelement, continuous pressure). (i) Owing to the inf-sup condition
(53.9), there exists βD > 0 such that for all qh ∈ Qh, there is v(qh) ∈ V := H1

0 (D) such that
|b(v(qh),qh)|
‖v(qh)‖V

≥ βD‖qh‖Q. Let qh ∈ Qh. Recalling that IIIavh0 is the Rd-valued version of the H1
0 -

conforming quasi-interpolation operator introduced in §22.4.2, we have

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ |b(III
av
h0(v(qh)), qh)|

‖IIIavh0(v(qh))‖V

≥ c |b(III
av
h0(v(qh)), qh)|
‖v(qh)‖V

≥ c |b(v(qh), qh)|‖v(qh)‖V
− c |b(III

av
h0(v(qh))− v(qh), qh)|
‖v(qh)‖V

≥ c βD‖qh‖Q − c
|b(IIIavh0(v(qh))− v(qh), qh)|

‖v(qh)‖V
.

Using that Qh is H1-conforming and since we are enforcing the homogeneous Dirichlet boundary
condition on the velocity over the entire boundary ∂D, one integration by parts together with the
Cauchy–Schwarz inequality and the approximation properties of IIIavh0 gives

|b(IIIavh0(v(qh))− v(qh), qh)| =
∣∣∣
∑

K∈Th

∫

K

(IIIavh0(v(qh))− v(qh))·∇qh dx
∣∣∣

≤ c
∑

K∈Th
hK |v(qh)|H1(K)|qh|H1(K)

≤ c ‖v(qh)‖V
( ∑

K∈Th
h2K |qh|2H1(K)

) 1
2

.

Since hK ≤ hU for all K ∈ U , we have

|b(IIIavh0(v(qh))− v(qh), qh)|
‖v(qh)‖V

≤ c
( ∑

U∈Uh
h2U |qh|2H1(U)

) 1
2

.
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(ii) Denoting qhU := 1
|U|
∫
U
qh dx, using the affine geometric mapping TU : Û → U , and invoking

the shape-regularity of the macroelement partition, we have

hU |qh|H1(U) = hU |qh|U − qhU |H1(U) ≤ c hU‖J−1
U ‖| det(JU )|

1
2 |q̂h − qhU |H1(Û),

where q̂h := qh|U ◦ TU (see Lemma 11.7). Since infh∈H maxU∈Uh card{K ⊂ U} < ∞ implies that
span{qh|U ◦ TU} is a finite-dimensional space, we invoke the equivalence of norms and infer that

hU |qh|U |H1(U) ≤ c hU‖J−1
U ‖|det(JU )|

1
2 ‖q̂h − qhU‖L2(Û),

where c is uniform w.r.t. h ∈ H (because the dimension of span{qh|U ◦TU} is bounded from above
uniformly w.r.t. h ∈ H). Invoking again Lemma 11.7, we obtain

hU |qh|U |H1(U) ≤ c hU‖J−1
U ‖‖qh − qhU‖L2(U).

Since the geometric mapping TU is affine, we have hU‖J−1
U ‖ ≤ c (see (11.3)), and we conclude that

for all U ∈ Uh,

|qh|U |H1(U) ≤ c ‖qh − qhU‖L2(U).

(iii) Combining the results of Steps (i) and (ii) shows that

c1

( ∑

U∈Uh
‖qh|U − qhU‖2L2(U)

) 1
2

+ sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ c2βD‖qh‖Q.

Now, we invoke Remark 55.4 and observe that

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ sup
vh∈V 1

h0

|b(vh, qh)|
‖vh‖V

≥ β1h
( ∑

U∈Uh
‖qh|U − qhU‖2L2(U)

) 1
2

,

with V 1
h0 :=

∑
U∈Uh Vh0(U). Combining the above two bounds shows that

( c1
β1h

+ 1
)

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V

≥ c2βD‖qh‖Q.

In conclusion, the inf-sup condition (55.1) holds uniformly w.r.t. h ∈ H if

inf
h∈H

β1h := inf
h∈H

min
U∈Uh

β1h > 0.



Chapter 56

Friedrichs’ systems

Exercises

Exercise 56.1 (Robin condition). Show how to enforce the Robin boundary condition γu −
σ·n = 0 on ∂D (with γ ∈ L∞(∂D) and γ ≥ 0 a.e. on ∂D) in the framework of §56.2.2.

Exercise 56.2 (Linear elasticity). Consider the linear elasticity model from §42.1. Verify that
s − 1

d+θ tr(s)Id = µ(∇u +∇uT) with θ := 2µ
λ and that 1

2∇·(s + s

T) + f = 0. Write this system

using Friedrichs’ formalism. (Hint : identify s ∈ Rd×d with a vector s ∈ Rd2 by setting s[ij] := sij

with [ij] := d(j − 1) + i for all i, j ∈ {1:d}.) Verify (56.1a)-(56.1b) and that the upper left block
of K, say Kss, is positive definite. What happens in the incompressible limit λ→∞?

Exercise 56.3 (Positivity, locality). (i) Reprove Theorem 56.9 by replacing the assumption
made on K by those stated in Remark 56.12. (ii) Let D := (0, a)×(−1, 1), a > 0, and let K :

L2(D) → L2(D) be such that K(v)(x, y) := v(x, y) − σ
2

∫ +1

−1
v(x, ξ) dξ with σ ∈ [0, 1). Assuming

X := 0, prove that K satisfies the assumptions from Remark 56.12.

Exercise 56.4 (Wave equation). Consider the wave equation ∂2v
∂t2 − ∂2v

∂x2 = f inD := (0, 1)×(−1, 1)
with the boundary conditions ∂v

∂t (t,±1) = 0 for all t ∈ (0, 1) and ∂v
∂t (0, x) = ∂v

∂x(0, x) = 0 for all
x ∈ (−1, 1). Recast this problem as a Friedrichs’ system and identify the boundary fields N and
M. (Hint : set u := e−λt(∂v∂t ,

∂v
∂x ) with λ > 0.)

Exercise 56.5 (Partial positivity). Assume that there is an orthogonal projection operator
P ∈ Cm×m (i.e., PT = P and P2 = P) such that

K +KT −X ≥ 2µ0P a.e. in D, (56.1a)

sup
w∈L

|(A(v), w)L|
‖w‖L

≥ α‖(Im − P)(v)‖L − λ‖P(v)‖L for all v ∈ V0, (56.1b)

‖P(w)‖L ≥ γ‖(Im − P)(w)‖L for all w ∈ Ṽ0 s.t. Ã(w) = 0, (56.1c)

with µ0 > 0 α > 0, γ > 0, λ, and Ṽ0 := ker(M∗ + N). (i) Assume (56.1a), (56.1b), (56.27), and
(56.1). Prove that A : V0 → L is an isomorphism. (Hint : adapt the proof of Theorem 56.9.) (ii)
Verify (56.1a) for Darcy’s equations with µ := 0 and a Dirichlet boundary condition on p. (Hint :
use a Poincaré–Steklov inequality.)
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Exercise 56.6 ((bnb1) for Darcy and Maxwell). (i) Prove the condition (bnb1) for Darcy’s
equations with Dirichlet or Neumann condition. (Hint : use the test function w := (τ , q) :=
(σ + d∇p, p+ µ−1∇·σ).) (ii) Do the same for Maxwell’s equations with the condition H×n = 0
or E×n = 0. (Hint : use the test function w := (e, b) := (e−iθ(E − i 1σ∇×H), eiθ(H + 1

ωµ∇×E))

where θ := π
4 .)

Exercise 56.7 (Boundary operator for Darcy and Maxwell). (i) Verify that M defined
in (56.35) satisfies (56.27) and that it can be used to enforce a Dirichlet boundary condition on
p. (Hint : use Theorem 4.15.) How should M be modified to enforce a Neumann condition? (ii)
Verify that M defined in (56.36) satisfies (56.27) and that it can be used to enforce the boundary

condition H×n = 0. (Hint : use the surjectivity of traces from H1(D) onto H
1
2 (∂D) and (4.11).)

How should M be modified to enforce the boundary condition E×n = 0?

Exercise 56.8 (Separation assumption). Let D := {(x1, x2) ∈ R2 | 0 < x2 < 1 and |x1| < x2}
with β := (1, 0)T. Let V := {v ∈ L2(D) | β·∇v ∈ L2(D)}. Verify that the function u(x1, x2) := xα2
is in V for α > −1, but u|∂D ∈ L2(|β·n|; ∂D) only if α > − 1

2 .

Exercise 56.9 (Semi-norm |·|M). Let V be a complex Hilbert space, N,M ∈ L(V ;V ′), and
let V0 := ker(M − N). Assume N = N∗ and ℜ(〈M(v), v〉V ′,V ) ≥ 0 for all v ∈ V. Let |v|2M :=
ℜ(〈M(v), v〉V ′,V ) for all v ∈ V. Prove that |〈N(v), w〉V ′,V | ≤ |v|M |w|M for all v, w ∈ V0.

Solution to exercises

Exercise 56.1 (Robin condition). We can take

M :=

[
Od×d n

−nT 2γ

]
,

so that

M−N = 2

[
Od×d Od×1

−nT γ

]
, M+N = 2

[
Od×d n

O1×d γ

]
.

Then (56.7a) holds true since γ ≥ 0 a.e. on ∂D. To see that (56.7b) is satisfied, one can write
(τ , q) = (γvn, v) + (τ − γvn, 0) and observe that (γvn, v) ∈ ker(M− N ) and (τ − γvn, 0) ∈
ker(M +N ).

Exercise 56.2 (Linear elasticity). Taking the trace of s − 1
d+θ tr(s)Id = µ(∇u + ∇uT), we

infer that θ
d+θ tr(s) = 2µ∇·u, so that s = 2µ

θ (∇·u)Id + 2µ
2 (∇u +∇uT), which coincides with the

constitutive law (42.3) since θ = 2µ
λ . Since s is symmetric, we also infer that 1

2∇·(s+ s

T) = ∇·s =

−f owing to (42.1). Using the suggested identification between s ∈ Rd×d and s ∈ Rd2 , the above
PDEs can be cast into Friedrichs’ formalism by setting m := d2 + d and

K := (2µ)−1

[
Kss Od2×d

Od×d2 Od×d

]
, Ak :=


Od2×d2 Ek

(Ek)T Od×d


 , k ∈ {1:d},

with Kss ∈ Rd2×d2 s.t. Kss[ij][kl] := δikδjl− 1
d+θ δijδkl and Ek ∈ Rd

2×d s.t. Ek[ij],l := − 1
2 (δikδjl+δilδjk),

where the δ’s are Kronecker symbols. Assumption (56.1a) holds true since all the fields are constant
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(so that X = Om×m). Assumption (56.1b) holds true since Ak is symmetric. Finally, we observe
that

2µ(Ksss, s)ℓ2(Rd2) =
θ

d+ θ
‖s‖2ℓ2(Rd×d) +

d

d+ θ
‖s− d−1 tr(s)Id‖2ℓ2(Rd×d).

In the incompressible limit, θ → 0 and the full control on s is lost, and only the control on the
deviatoric part s− d−1 tr(s)Id remains.

Exercise 56.3 (Positivity, locality). (i) Defining the formal adjoint by Ã(v) = K∗(v)− Xv −
A1(v), the results in Lemma 56.8 still hold true owing to the following identity:

(A(v), v)L = 1
2 (A(v), v)L + 1

2 (A(v), v)L = 1
2 (A(v), v)L + 1

2 (v, Ã(v))L + 1
2 (N(v), v)V ′,V

= 1
2 (A(v), v)L + 1

2 (v,K
∗(v)−Xv −A1(v))L + 1

2 (N(v), v)V ′,V

= 1
2 (A(v), v)L + 1

2 (v,K
∗(v)−Xv +K(v)−A(v))L + 1

2 (N(v), v)V ′,V

= 1
2 (A(v), v)L − 1

2 (A(v), v)L + 1
2 (v, (K

∗ +K)(v)−Xv)L + 1
2 (N(v), v)V ′,V

= 1
2 (A(v), v)L − 1

2 (A(v), v)L + 1
2 ((K

∗ +K)(v)−Xv, v)L + 1
2 (N(v), v)V ′,V .

The rest of the proof of Theorem 56.9 is unchanged.
(ii) Notice that K is a bounded operator on L2(D) (apply the triangle inequality and the Cauchy–
Schwarz inequality). Moreover, we have

(K(v), w)L2(D) =

∫ a

0

∫ +1

−1

v(x, y)w(x, y) dxdy − σ

2

∫ a

0

∫ +1

−1

∫ +1

−1

v(x, ξ)w(x, y) dξ dxdy

=

∫ a

0

∫ +1

−1

v(x, y)w(x, y) dxdy − σ

2

∫ a

0

∫ +1

−1

∫ +1

−1

v(x, y)w(x, ξ) dξ dxdy

=

∫ a

0

∫ +1

−1

v(x, y)

(
w(x, y) − σ

2

∫ +1

−1

w(x, ξ) dξ

)
dxdy = (v,K(w))L2(D).

Hence, K = K∗, i.e., K is self-adjoint. Using the inequality

∣∣∣∣
∫ +1

−1

v(x, y)
1

2

∫ +1

−1

v(x, ξ) dξ dy

∣∣∣∣ =
1

2

(∫ +1

−1

v(x, ξ) dξ

)2

≤
∫ +1

−1

v(x, ξ)2 dξ,

we infer that

((K +K∗)(v), v)L2(D) = 2(K(v), v)L2(D)

≥ 2‖v‖2L2(D) − 2σ‖v‖2L2(D) = 2(1− σ)‖v‖2L2(D),

and this proves the statement with µ0 := 1− σ.

Exercise 56.4 (Wave equation). We obtain

K :=

[
λ 0
0 λ

]
, At :=

[
1 0
0 1

]
, Ax :=

[
0 −1
−1 0

]
,

and the source term is (e−λtf, 0)T, so that the properties (56.1) hold true. Moreover, we have

N :=

[
nt −nx
−nx nt

]
,
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where n := (nt, nx)
T is the outward unit normal to D. On the side {t = 0, x ∈ (−1, 1)} where

n = (−1, 0)T, we can take M := −N enforcing the conditions ∂v
∂t = ∂v

∂x = 0. On the sides
{x = ±1, t ∈ (0, 1)} where n = (0,±1)T, we can take

M := ±
[
0 −1
1 0

]

so as to enforce the condition ∂v
∂t = 0. On the side {t = 1, x ∈ (−1, 1)} where n = (1, 0)T, we can

takeM := N so that no condition is enforced. We see that the properties (56.7) hold true in all
the cases.

Exercise 56.5 (Partial positivity). (i) We outline the differences with respect to the proof of
Theorem 56.9. Concerning (bnb1), let v ∈ V0. Proceeding as before, using (56.1a), and using
that P is an orthogonal projection operator gives µ0‖P(v)‖2L ≤ ℜ

(
a(v, v)

)
. Owing to the triangle

inequality and (56.1b), we infer that

µ0‖P(v)‖2L ≤
ℜ((A(v), v)L)
‖v‖L

‖v‖L

≤ |(A(v), v)L|‖v‖L
(‖P(v)‖L + ‖(Im − P)(v)‖L)

≤ sup
w∈L

|(A(v), w)L|
‖w‖L

((
1 +

λ

α

)
‖P(v)‖L +

1

α
sup
w∈L

|(A(v), w)L|
‖w‖L

)
,

yielding

µ
1
2
0 ‖P(v)‖L ≤ c1 sup

w∈L

|(A(v), w)L|
‖w‖L

,

with c1 :=
(

(1+ λ
α )2

µ0
+ 2

α

) 1
2

. Owing to (56.1b), we infer that

µ
1
2
0 ‖v‖L ≤ c2 sup

w∈L

|(A(v), w)L|
‖w‖L

,

with c2 := c1(1+
λ
α )+

1
αµ

1
2
0 . The rest of the proof of (bnb1) proceeds as before. Concerning (bnb2),

let w ∈ L be such that a(v, w) = 0 for all v ∈ V0. Proceeding as before, we infer successively that
Ã(w) = 0, w ∈ Ṽ0, and 0 = ℜ

(
(Ã(w), w)L

)
≥ µ0‖P(w)‖2L, so that P(w) = 0. Invoking (56.1c), we

conclude that w = 0.
(ii) We set P(σ, p) := (σ, 0). Moreover, V0 = Ṽ0 = H(div;D)×H1

0 (D) since a Dirichlet condition
is enforced on p, so that we can use the Poincaré–Steklov inequality Cps‖p‖L2(D) ≤ ℓD‖∇p‖L2(D)

for all p ∈ H1
0 (D). Then (56.1b) follows from Cpsℓ

−1
D ‖p‖L2(D) ≤ ‖d−1σ+∇p‖L2(D)+‖d−1σ‖L2(D),

‖d−1σ+∇p‖L2(D) ≤ supw∈L
|(A(v),w)L|

‖w‖L , and ‖d−1σ‖L2(D) ≤ λ−1
♭ ‖σ‖L2(D), whereas (56.1c) follows

from Cpsℓ
−1
D ‖q‖L2(D) ≤ λ−1

♭ ‖τ‖L2(D) with d

−1τ +∇q = 0.

Exercise 56.6 ((bnb1) for Darcy and Maxwell). (i) For Darcy’s equations, we take (τ , q) :=
(σ + d∇p, p+ µ−1∇·σ). We observe that ‖(τ , q)‖L is bounded by ‖(σ, p)‖V and that

(A(σ, p), (τ , q))L = (dσ,σ)L2(D) + (d∇p,∇p)L2(D) + (µ−1∇·σ,∇·σ)L2(D) + (µp, p)L2(D),

since (σ,∇p)L2(D) + (∇·σ, p)L2(D) = (σ·n, p)L2(∂D) = 0 owing to the boundary condition. This
allows us to control all the terms composing the graph norm ‖(σ, p)‖V .
(ii) For Maxwell’s equations, we take the test function

(e, b) := (e−iθ(E − i
1

σ
∇×H), eiθ(H +

1

ωµ
∇×E)),
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where θ := π
4 . We first observe that ‖(e, b)‖L is bounded by ‖(E,H)‖V . Recalling that µ̃ := ωµ,

ie−iθ = eiθ, and ieiθ = −e−iθ, we have

(A(E,H), (e, b))L = eiθ(σ‖E‖2L2(D) + µ̃‖H‖2L2(D))

+ e−iθ(µ̃−1‖∇×E‖2L2(D) + σ−1‖∇×H‖2L2(D))

+ 2ℜ
(
eiθ
(
(H ,∇×E)L2(D) − (∇×H ,E)L2(D)

))
.

The last term vanishes owing to the boundary condition. This gives
√
2ℜ ((A(E,H), (e, b))L) = σ‖E‖2L2(D) + µ̃‖H‖2L2(D) + µ̃−1‖∇×E‖2L2(D) + σ−1‖∇×H‖2L2(D).

This allows us to control all the terms composing the graph norm ‖(E,H)‖V .
Exercise 56.7 (Boundary operator for Darcy and Maxwell). (i) (56.7a) holds true since
M is skew-symmetric. Moreover, we have

〈(M −N)(σ, p), (τ , q)〉V ′,V = −2〈τ ·n, p〉∂D,
〈(M +N)(σ, p), (τ , q)〉V ′,V = 2〈σ·n, q〉∂D.

Hence, (56.7b) follows from (σ, p) = (σ, 0) + (0, p), (σ, 0) ∈ ker(M − N), and (0, p) ∈ ker(M +
N). Moreover, if (σ, p) ∈ ker(M − N), then 〈τ ·n, p〉∂D = 0 for all τ ∈ H(div;D). Owing to

Theorem 4.15, the normal trace operator γd : H(div;D) → H− 1
2 (∂D) such that γd(τ ) = τ ·n is

surjective. Since τ is arbitrary in H(div;D), we conclude that p|∂D = 0. Finally, a Neumann
condition can be enforced with the operator

〈M(σ, p), (τ , q)〉V ′,V := −〈σ·n, q〉∂D + 〈τ ·n, p〉∂D.

(ii) (56.27a) (and (56.7a)) holds true since M is skew-symmetric. Moreover, we have

〈(M −N)(E,H), (e, b)〉V ′,V =

∫

D

∇·(2eiθH×e) dx,

〈(M +N)(E,H), (e, b)〉V ′,V =

∫

D

∇·(2e−iθE×b) dx.

Hence, (56.27b) (and (56.7b)) follows from (E,H) = (E,0) + (0,H), (E,0) ∈ ker(M −N), and
(0,H) ∈ ker(M + N). Moreover, if (E,H) ∈ ker(M − N), then 2eiθ

∫
D∇·(H×e) dx = 0 for all

e ∈ H(curl;D). Let φ ∈ H 1
2 (∂D). Owing to the surjectivity of the trace operator from H1(D)

onto H
1
2 (∂D) applied componentwise, we infer that there is e ∈ H1(D) ⊂ H(curl;D) such that

e|∂D = φ. Using (4.11), we obtain

〈H×n,φ〉∂D =

∫

D

(
H ·∇×φ− (∇×H)·φ

)
dx = −

∫

D

∇·(H×φ) dx = 0.

Since φ is arbitrary in H
1
2 (∂D), we infer that H×n = 0 in H− 1

2 (∂D). Finally, the condition
E×n = 0 can be enforced with the operator

〈M(E,H), (e, b)〉V ′,V := −
∫

D

∇·(e−iθE×b+ eiθH×e) dx.

Exercise 56.8 (Separation assumption). We have

‖u‖2L2(D) =

∫ 1

0

x2α2

∫ x2

−x2

dx1 dx2 = 2

∫ 1

0

x2α+1
2 dx2.
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Hence, ‖u‖L2(D) < ∞ if and only if α > −1. Moreover, ‖β·∇u‖L2(D) = 0. Hence, u ∈ V iff

α > −1. Finally, observing that |β·n| = 1√
2
and dl =

√
2 dx2 on ∂D±, we infer that

‖u‖2L2(|β·n|;∂D) =

∫

∂D

u2|β·n| dl = 2
1√
2

√
2

∫ 1

0

x2α2 dx2.

The integral is finite iff α > − 1
2 .

Exercise 56.9 (Semi-norm |·|M). Notice first that

〈N(v), w〉V ′,V = 〈v,N∗(w)〉V ′′,V ′ = 〈N∗(w), v〉V ′,V = 〈N(w), v〉V ′,V .

Hence, 〈N(v), v〉V ′,V ∈ R for all v ∈ V. Let t ∈ R, let v, w ∈ V0. We have

0 ≤ ℜ(〈M(v + tw), v + tw〉V ′,V ) = 〈N(v + tw), v + tw〉V ′,V

= 〈N(v), v〉V ′,V + t〈N(v), w〉V ′,V + t〈N(w), v〉V ′,V + t2〈N(w), w〉V ′,V

= 〈N(v), v〉V ′,V + 2tℜ
(
〈N(v), w〉V ′,V

)
+ t2〈N(w), w〉V ′,V .

Since this quadratic polynomial in t takes nonnegative values, its discriminant is negative, which
implies that

ℜ
(
〈N(v), w〉V ′,V

)
≤ 〈N(v), v〉

1
2

V ′,V 〈N(w), w〉
1
2

V ′,V

= ℜ
(
〈N(v), v〉

1
2

V ′,V

)
ℜ
(
〈N(w), w〉

1
2

V ′,V

)

= ℜ
(
〈M(v), v〉

1
2

V ′,V

)
ℜ
(
〈M(w), w〉

1
2

V ′,V

)
= |v|M |w|M .

There is nothing to prove if 〈N(v), w〉V ′,V = 0. Instead, if 〈N(v), w〉V ′,V 6= 0, we multiply v

by 〈N(v), w〉V ′,V /|〈N(v), w〉V ′,V | in the above formula, and we obtain the expected bound, i.e.,
|〈N(v), w〉V ′,V | ≤ |v|M |w|M for all v, w ∈ V0.



Chapter 57

Residual-based stabilization

Exercises

Exercise 57.1 (Least-squares). Write the LS approximation and the resulting error estimate
for the advection-reaction, Darcy’s, and Maxwell’s equations (for simplicity assume that u ∈
Hk+1(D;Cm) and hide the scaling factors in the generic constant c).

Exercise 57.2 (Transport in 1D). Consider the LS approximation using Pk Lagrange finite
elements, k ≥ 1, of the one-dimensional transport problem u′ = f in D := (0, 1) with u(0) = 0
and f ∈ Hk(D). Prove the optimal L2-error estimate ‖u− uh‖L2(D) ≤ chk+1|f |Hk(D). (Hint : use
a duality argument.)

Exercise 57.3 (Duality argument for Darcy). Consider the LS approximation of Darcy’s
equations with homogeneous Dirichlet conditions on p in the mixed-order case k := kσ−1 = kp ≥ 1,
i.e., Vh0 := P g

k+1(Th)×P
g
k,0(Th). Assume that µ := 0, d−1 := κId with κ ∈ W 1,∞(D), and that full

elliptic regularity holds true for the Laplacian. The goal is to prove the error bound ‖p−ph‖L2(D) ≤
chk+1(|σ|Hk+2(D) + |p|Hk+1(D)); see Pehlivanov et al. [38]. Let Ih have optimal approximation
properties in P g

k+1(Th), and let ΠE

h : H1
0 (D) → P g

k,0(Th) be the elliptic projection such that

for all q ∈ H1
0 (D), (∇(q − ΠE

h(q)),∇qh)L2(D) = 0 for all qh ∈ P g
k,0(Th) (see §32.4). (i) Setting

eh := (Ih(σ) − σh,ΠE

h(p) − ph), prove that ‖eh‖V ≤ c(‖Ih(σ) − σ‖H(div;D) + ‖ΠE

h(p) − p‖L2(D)).
(Hint : use coercivity and the Galerkin orthogonality property.) (ii) Show that ‖p − ph‖L2(D) ≤
chk+1(|σ|Hk+2(D) + |p|Hk+1(D)). (Hint : use a Poincaré–Steklov inequality and Exercise 32.1.)

Exercise 57.4 (SUPG). Assume that hK ≤ βKµ
−1
0 min(1, 12

µ2
0

µ2
∞
) for all K ∈ Th with µ∞ :=

‖K‖L∞(D). Prove that the same error estimate as in the GaLS approximation is obtained by consid-
ering the following discrete problem: Find uh ∈ Vh0 such that asupgh (uh, wh) = (f, wh+ τA1(wh))L
for all wh ∈ Vh0 with the SUPG-stabilized sesquilinear form asupgh (vh, wh) := (A(vh), wh)L +
(A(vh), τA1(wh))L. (Hint : bound (A(vh), τKvh)L and use Lemma 57.6 to establish coercivity.)

Exercise 57.5 (Boundary penalty). (i) Prove that (57.33c) and (57.33d) are equivalent. (Hint :
consider the Hermitian and skew-Hermitian parts ofMF .) (ii) Verify that the boundary penalty
operators defined in Example 57.18 for Darcy’s equations and in Example 57.19 for Maxwell’s
equations satisfy (57.33). (Hint : direct verification.)
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Solution to exercises

Exercise 57.1 (Least-squares). For the advection-reaction equation, the LS approximation
amounts to seeking uh ∈ Vh0 such that

∫

D

(µuh + β·∇uh)(µwh + β·∇wh) dx =

∫

D

f(µwh + β·∇wh) dx,

for all wh ∈ Vh0. Assuming u ∈ Hk+1(D) yields the error estimate

‖u− uh‖L2(D) + ‖β·∇(u− uh)‖L2(D) ≤ c hk|u|Hk+1(D).

For Darcy’s equations, the LS approximation amounts to seeking uh := (σh, ph) ∈ Vh0 such that

∫

D

d∗(d
−1σh +∇ph)·(d−1τh +∇qh) dx

+

∫

D

µ−1
∗ (µph +∇·σh)(µqh +∇·τh) dx =

∫

D

µ−1
∗ f(µqh +∇·τh) dx,

for all wh := (τh, qh) ∈ Vh0. Assuming σ ∈Hk+1(D) and p ∈ Hk+1(D) yields

‖σ − σh‖H(div;D) + ‖p− ph‖H1(D) ≤ c hk|(σ, p)|Hk+1(D)×Hk+1(D).

For Maxwell’s equations, the LS approximation amounts to seeking uh := (Eh,Hh) ∈ Vh0 such
that

∫

D

σ−1
∗ (σEh −∇×Hh)·(σeh −∇×bh) dx

+

∫

D

µ̃−1
∗ (iωµHh +∇×Eh)·(−iωµbh +∇×eh) dx =

∫

D

σ−1
∗ j·(σeh −∇×bh) dx,

for all wh := (eh, bh) ∈ Vh0. Assuming (E,H) ∈Hk+1(D)×Hk+1(D) yields

‖E −Eh‖H(curl;D) + ‖H −Hh‖H(curl;D) ≤ c hk|(E,H)|Hk+1(D)×Hk+1(D).

Exercise 57.2 (Transport in 1D). The discrete problem amounts to seeking uh ∈ Vh0 such
that

∫
D
u′hw

′
h dt =

∫
D
fw′

h dt for all wh ∈ Vh0 with

Vh0 := {vh ∈ C0(D) | ∀i ∈ {0:I−1}, vh|[xi,xi+1] ∈ Pk | vh(0) = 0}.

Consider the adjoint solution ζ ∈ H1
0 (D) such that −ζ′′ = u− uh. We have

‖u− uh‖2L2(D) =

∫

D

(u− uh)′ζ′ dt =
∫

D

(u− uh)′(ζ − Ih0(ζ))′ dt,

where we used the Galerkin orthogonality property and the fact that the Lagrange interpolant of
ζ, Ih0(ζ), is in Vh0. Using the Cauchy–Schwarz inequality, the approximation properties of Ih0,
and the fact that |ζ|H2(D) = ‖u−uh‖L, we infer that ‖u−uh‖L2(D) ≤ ch‖(u−uh)′‖L2(D). Finally,

since f ∈ Hk(D), we have u ∈ Hk+1(D) with |u|Hk+1(D) = |f |Hk(D), and (57.7) implies that

‖(u− uh)′‖L2(D) ≤ chk|f |Hk(D).
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Exercise 57.3 (Duality argument for Darcy). (i) Proposition 57.1 implies that

α2‖eh‖2V ≤ als(eh, eh) = als(ηh, eh),

owing to the Galerkin orthogonality property, where ηh := (Ih(σ)− σ,ΠE

h(p)− p). Writing

eh := (eσh, e
p
h), ηh := (ησh , η

p
h),

we obtain

α2‖eh‖2V ≤
∫

D

(κησh +∇ηph)·(κeσh +∇eph) dx+

∫

D

(∇·ησh)(∇·eσh) dx

=

∫

D

(κ2ησh ·eσh +∇ηph·κeσh + κησh ·∇eph + (∇·ησh)(∇·eσh)) dx

=

∫

D

(κ2ησh ·eσh +∇ηph·κeσh −∇·(κησh)e
p
h + (∇·ησh)(∇·eσh)) dx,

where we used the definition of the elliptic projection and integrated by parts the term involving
∇eph. Using the Cauchy–Schwarz inequality and the smoothness assumption on κ, we obtain

α2‖eh‖2V ≤ c(‖Ih(σ)− σ‖H(div;D) + ‖ΠE

h(p)− p‖L2(D))‖eh‖V ,
and the expected bound follows.
(ii) Using the approximation properties of Ih and since kσ = k + 1, we infer that

‖Ih(σ)− σ‖H(div;D) ≤ chk+1|σ|Hk+2(D).

Since we are assuming that full elliptic regularity holds true for the Laplacian, Exercise 32.1 shows
that ‖ΠE

h(p)− p‖L2(D) ≤ chk+1|p|Hk+1(D). Hence,

‖eh‖V ≤ chk+1(|σ|Hk+2(D) + |p|Hk+1(D)).

Using the triangle inequality and the Poincaré–Steklov inequality, we infer that

‖p− ph‖L2(D) ≤ ‖p−ΠE

h(p)‖L2(D) + ‖ΠE

h(p)− ph‖L2(D)

≤ ‖p−ΠE

h(p)‖L2(D) + C−1
ps ℓD‖∇(ΠE

h(p)− ph)‖L2(D)

≤ ‖p−ΠE

h(p)‖L2(D) + C−1
ps ℓD‖eh‖V ,

and we conclude using the approximation properties of ΠE

h and the above bound on ‖eh‖V .
Exercise 57.4 (SUPG). Using Young’s inequality and the assumption on hK , we infer that for
all vh ∈ Vh0,

|(A(vh), τKvh)L| ≤
1

2
‖τ 1

2A(vh)‖2L +
1

2
‖τ 1

2Kvh‖2L ≤
1

2
‖τ 1

2A(vh)‖2L +
1

2
µ0‖vh‖2L.

Let us denote by aglh the discrete sesquilinear form associated with the GaLS approximation and
let ‖·‖Vh0 be the stability norm defined in (57.13). This gives

ℜ
(
asupgh (vh, vh)

)
= ℜ

(
aglh (vh, vh)

)
− ℜ

(
(A(vh), τKvh)L

)
≥ 1

2
‖vh‖2Vh0 ,

owing to Lemma 57.6 and the above bound on the nonsymmetric term. Furthermore, the consis-
tency error resulting from asupgh can be estimated by proceeding as in the proof of Lemma 57.7.
We conclude that the same error estimate is obtained. As a conclusion, GaLS is more stable than
SUPG, and the price that SUPG has to pay for artificially breaking the symmetry of the stabilized
sesquilinear form is to require that the meshsize is small enough.
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Exercise 57.5 (Boundary penalty). (i) Let us prove that (57.33c) implies (57.33d) (the proof
for the converse is similar). LetM±

F := 1
2 (MH

F ±MF ) be the Hermitian and skew-Hermitian parts
ofMF . We observe that

|((Mbp
F +NF )y, z)L(F )| = |((MF + S∂F +NF )y, z)L(F )|

≤ |((M+
F + S∂F )y, z)L(F )|+ |((M−

F +NF )y, z)L(F )|
≤ |y|Mbp

F
|z|Mbp

F
+ |(y, (M−

F −NF )z)L(F )|
≤ 2|y|Mbp

F
|z|Mbp

F
+ |((Mbp

F −NF )z, y)L(F )|

≤ 2|y|Mbp
F
|z|Mbp

F
+ cβ

1
2

Kl
‖y‖L(F )|z|Mbp

F
,

where we used the triangle inequality to pass to the second line, the fact that (M+
F + S∂F ) is Her-

mitian and positive semidefinite and the Hermitian symmetry of NF to pass to the third line, we
have added and subtracted (M+

F + S∂F ) and proceeded similarly to pass to the fourth line, and we

used (57.33c) to pass to the fifth line. We conclude by observing that |y|Mbp
F
≤ cβ

1
2

Kl
‖y‖L(F ) owing

to (57.33b).
(ii) In both cases, (57.33b) is obvious, so that it remains to prove (57.33a) and (57.33c) (since (57.33d)
is equivalent to (57.33c)). Consider Example 57.18. Then v := (σ, p) ∈ ker(MF − NF ) implies
that p = 0, so that v ∈ ker(S∂F ). Hence, v ∈ ker(Mbp

F −NF ). Moreover, we have with w := (τ , q),

((Mbp
F −NF )v, w)L(F ) = (τ ·n, p)L2(F ) + α(q, p)L2(F ) ≤ c ‖w‖L(F )‖p‖L2(F )

and ‖p‖L2(F ) = α−1|p|Mbp
F
. Consider now Example 57.19. Then v := (E,H) ∈ ker(MF − NF )

implies that H×n = 0, so that v ∈ ker(S∂F ). Hence, v ∈ ker(Mbp
F −NF ). Moreover, we have with

w := (h, e),

((Mbp
F −NF )v, w)L(F ) = (e,H×n)L2(F ) + α(h×n,H×n)L2(F )

≤ c ‖w‖L(F )‖H×n‖L2(F ),

and ‖H×n‖L2(F ) = α−1|H |Mbp
F
.
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Fluctuation-based stabilization (I)

Exercises

Exercise 58.1 (Simplified setting). Consider the setting of Remark 58.1 and assume that (58.7)
holds true. Let Jh(vh) := h

βAh(vh) for all vh ∈ Vh. (i) Prove (58.4b). (ii) Prove (58.4c).

Exercise 58.2 (Local bounds for CIP). The goal of this exercise is to prove Lemma 58.4.
(i) Let c1 ≤ c′1 be positive real numbers. Let a1, a2 be two positive real numbers such that
c1a1 ≤ a2 ≤ c′1a1. Verify that there are positive constants c2, c

′
2, only depending on c1 and

c′1, such that c2 min(a1, b) ≤ min(a2, b) ≤ c′2 min(a1, b) for any positive real number b. (Hint :
distinguish the four possible cases.) (ii) Assume (58.19). Prove that there is c such that τK ≤
cmin

K′∈Ť (2)
K

τK′ for all K ∈ Th and all h ∈ H. (Hint : use Step (i) and the regularity of the mesh

sequence.) (iii) Prove (58.20). (Hint : use Step (ii), ‖φ‖L∞(DK) ≤ max
L∈Ť (2)

K

τL, and ‖φ−1‖L∞(K) ≤
maxK′∈ŤK τ

−1
K′ .)

Exercise 58.3 (Full gradient). Prove (58.21) for CIP with (58.25).

Exercise 58.4 (1D advection, CIP). Let D := (0, 1), f ∈ L∞(D), and a nonuniform mesh Th of
D with nodes {xi}i∈{0:I+1} and local cells Ki+ 1

2
:= [xi, xi+1] of size hi+ 1

2
:= xi+1−xi, ∀i ∈ {0:I}.

Let hi := 1
2 (hi− 1

2
+ hi+ 1

2
), ∀i ∈ {1:I}, be the length scale associated with the interfaces. Let

Vh := {vh ∈ P g
1 (Th) | vh(0) = 0}. Let β 6= 0. Consider the problem β∂xu = f , u(0) = 0.

(i) Write the CIP formulation for the problem using (58.25) and let uh ∈ Vh be the discrete
solution. (ii) Show that the discrete problem has a unique solution. (iii) Let uh :=

∑
i∈{1: I+1} Uiϕi

and U0 := 0. Write the equation satisfied by Ui−2, . . . ,Ui+2, ∀i ∈ {2:I−1}. (iv) Simplify the
equation by assuming that the mesh is uniform and interpret the result in terms of finite differences.
(Hint : compare the CIP stabilization with the second-order finite difference approximation of
|β|h3∂xxxxu.) Note: the term |β|h3∂xxxxu is often called hyperviscosity in the literature.



310 Chapter 58. Fluctuation-based stabilization (I)

Solution to exercises

Exercise 58.1 (Simplified setting). (i) Using the definitions and since h ≤ ℓD, we have

τ−
1
2 ‖Jh(vh)‖L = τ

1
2 ‖Ah(vh)‖L

≤ β− 1
2 h

1
2 ‖A1(vh)−Ah(vh)‖L + τ

1
2 ‖A1(vh)‖L

≤ c β− 1
2h

1
2 (β

1
2h−

1
2 |vh|S + βℓ−1

D ‖vh‖L) + τ
1
2 ‖A1(vh)‖L

≤ τ 1
2 ‖A1(vh)‖L + c (|vh|S + µ

1
2
0 ‖vh‖L).

This proves (58.4b).
(ii) We have

2τ‖A1(vh)‖2L = τ(A1(vh), A1(vh)− τ−1Jh(vh))L + τ(A1(vh)− τ−1Jh(vh), A1(vh))L

+ τ(A1(vh), τ
−1Jh(vh))L + τ(τ−1Jh(vh), A1(vh))L

≤ 2τ‖A1(vh)‖L‖A1(vh)− τ−1Jh(vh)‖L + 2ℜ
(
(A1(vh),Jh(vh))L

)
.

Invoking Young’s inequality and since τ−1Jh(vh) := Ah(vh), we infer that

1

2
τ‖A1(vh)‖2L = ℜ(A1(vh),Jh(vh))L +

1

2
τ‖A1(vh)−Ah(vh)‖2L

≤ ℜ(A1(vh),Jh(vh))L + c τ(βh−1|vh|2S + β2ℓ−2
D ‖vh‖2L)

≤ ℜ(A1(vh),Jh(vh))L + c (|vh|2S + µ0‖vh‖2L),

since µ0 ≥ βℓ−1
D . This shows that

1

2max(1, c)
τ‖A1(vh)‖2L ≤ ℜ(A1(vh),Jh(vh))L + µ0‖vh‖2L + |vh|2S ,

i.e., (58.4c) holds true.

Exercise 58.2 (Minima). (i) We distinguish four cases.

1) min(a1, b) = min(a2, b). Then the expected bound holds true with c2 := 1 and c′2 := 1.

2) min(a1, b) = b and min(a2, b) = a2. Then the expected bound holds true with c2 := c1 and
c′2 := 1.

3) min(a1, b) = a1 and min(a2, b) = b. Then the expected bound holds true with c2 := 1 and
c′2 := c′1.

4) min(a1, b) = a1 and min(a2, b) = a2. Then the expected bound holds true with c2 := c1 and
c′2 := c′1.

(ii) Let K ∈ Th and let K ′ be arbitrary in Ť (2)
K . The regularity of the mesh sequence implies that

hK ≤ chK′ . Moreover, the assumption (58.19) on the grading of the coefficients {βK}K∈Th implies
that β−1

K ≤ cβ−1
K′ . Hence, β

−1
K hK ≤ cβ−1

K′ hK′ . Owing to Step (i) we infer that τK ≤ c′τK′ . Taking

the infimum over K ′ ∈ Ť (2)
K proves the assertion.

(iii) Let us prove (58.20a). Let K ∈ Th. The definition of φ implies that

‖φ‖L∞(DK) ≤ max
L∈Ť (2)

K

τL.
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Let L ∈ Ť (2)
K . Then τL ≤ cτK owing to Step (ii) since K ∈ Ť (2)

L . Moreover, still owing to
Step (ii), we have τK ≤ cminK′∈ŤK τK′ . Combining the above bounds shows that ‖φ‖L∞(DK) ≤
cminK′∈ŤK τK′ . This proves (58.20a).
Let us now prove (58.20b). The definition of φ implies that

‖φ−1‖L∞(K) ≤ max
K′∈ŤK

τ−1
K′ .

Moreover, owing to Step (ii) we have

max
K′∈ŤK

τ−1
K′ ≤ max

K′∈Ť (2)
K

τ−1
K′ ≤ c τ−1

K .

This shows that (58.20b) holds true.

Exercise 58.3 (Full gradient). Owing to the triangle inequality, we infer that

∑

F∈F◦
h

τFhF ‖[[A1(vh)]]F ‖2L(F ) ≤ 2
∑

F∈F◦
h

τFhF ‖[[A1(vh)]]F ‖2L(F ) + τFhF ‖[[(A1 −A1)(vh)]]F ‖2L(F )

≤ 2
∑

F∈F◦
h

τFhF ‖[[A1(vh)]]F ‖2L(F ) + c µ0‖vh‖2L,

where we bounded the second term on the right-hand side by invoking the triangle inequality to
bound the jump, the fact that the fields {Ak}k∈{1:d} are piecewise Lipschitz with LA ≤ cµ0, a

discrete trace inequality, an inverse inequality, and the fact that τF ≤ cmin(τKl , τKr) and µ0 ≤ τ−1
K .

Concerning the first term on the right-hand side, we use the assumption that the fields {Ak}k∈{1:d}
are continuous over D to infer that

∑

F∈F◦
h

τFhF ‖[[A1(vh)]]F ‖2L(F ) ≤
∑

F∈F◦
h

τFβ
2
FhF ‖[[∇vh]]F ‖2L(F ),

with βF := max(βKl , βKr ). Finally, we have

βF τF ≤ max(βKl , βKr)max(β−1
Kl
hKl , β

−1
Kr
hKr)

≤ c hF max(βKl , βKr)min(βKl , βKr)
−1 ≤ c′ hF ,

where we used the regularity of the mesh sequence and the assumption on the variations of β which
implies that max(βKl , βKr) ≤ cmin(βKl , βKr). We conclude that

∑

F∈F◦
h

τFhF ‖[[A1(vh)]]F ‖2L(F ) ≤ c
∑

F∈F◦
h

βFh
2
F ‖[[∇vh]]F ‖2L(F ).

This proves the assertion.

Exercise 58.4 (1D advection, CIP). (i) The CIP formulation consists of seeking uh ∈ Vh s.t.
∫

D

vhβ∂xuh dx+
∑

i∈{1:I}
|β|h2i [[∂xuh]][[∂xvh]] =

∫

D

fvh dx, ∀vh ∈ Vh.

(ii) We establish uniqueness. Assume f = 0. Then, using vh := uh, we obtain

0 =

∫

D

1

2
β∂xu

2
h dx+

∑

i∈{1: I}
|β|h2i [[∂xuh]]2 =

1

2
βuh(1)

2 +
∑

i∈{1: I}
|β|h2i [[∂xuh]]2.
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This implies that [[∂xuh]] = 0 for all i ∈ {1:I}. Hence, ∂xuh is constant over D since uh is
piecewise linear. We conclude that ∂xuh = 0 because ∂xuh

∫
D
vh dx = 0 for all vh ∈ Vh. Hence,

uh(x) = uh(0) = 0 for all x ∈ D, thereby proving uniqueness. Existence follows from the fact that
the trial and test spaces have the same dimension (they are actually identical).
(iii) Let us now use the shape function ϕi as a test function, for all i ∈ {2:I−1}. We obtain

∫

D

fϕi dx =

∫ xi

xi−1

ϕiβ
Ui − Ui−1

hi− 1
2

dx+

∫ xi+1

xi

ϕiβ
Ui+1 − Ui

hi+ 1
2

dx

+ |β|h2i−1

(
Ui − Ui−1

hi− 1
2

− Ui−1 − Ui−2

hi− 3
2

) 1

hi− 1
2

+ |β|h2i
(
Ui+1 − Ui

hi+ 1
2

− Ui − Ui−1

hi− 1
2

)(
− 1

hi+ 1
2

− 1

hi− 1
2

)

+ |β|h2i+1

(
Ui+2 − Ui+1

hi+ 3
2

− Ui+1 − Ui

hi+ 1
2

) 1

hi+ 1
2

.

Since
∫ xi
xi−1

ϕi dx = hi− 1
2
and

∫ xi+1

xi
ϕi dx = hi+ 1

2
, this gives

∫

D

fϕi dx = β
Ui+1 − Ui−1

2

+ |β|h2i−1

(
Ui − Ui−1

hi− 1
2

− Ui−1 − Ui−2

hi− 3
2

) 1

hi− 1
2

+ |β|h2i
(
Ui+1 − Ui

hi+ 1
2

− Ui − Ui−1

hi− 1
2

)(
− 1

hi+ 1
2

− 1

hi− 1
2

)

+ |β|h2i+1

(
Ui+2 − Ui+1

hi+ 3
2

− Ui+1 − Ui

hi+ 1
2

) 1

hi+ 1
2

.

(iv) Assuming that the mesh is uniform, we obtain

1

h

∫

D

fϕi dx = β
Ui+1 − Ui−1

2h
+
|β|
h

(
(Ui − 2Ui−1 + Ui−2)

− 2(Ui+1 − 2Ui + Ui−1) + (Ui+2 − 2Ui+1 + Ui)
)
.

The term β Ui+1−Ui−1

2 is the second-order finite difference approximation of β∂xu. The term
|β|
h ((Ui − 2Ui−1 + Ui−2) − 2(Ui+1 − 2Ui + Ui−1) + (Ui+2 − 2Ui+1 + Ui)) is the second-order fi-
nite difference approximation of |β|h3∂xxxxu. This shows that the CIP formulation amounts to
approximating the solution to the perturbed equation β∂xu+ |β|h3∂xxxxu = f .



Chapter 59

Fluctuation-based stabilization
(II)

Exercises

Exercise 59.1 (Inf-sup condition). Consider the setting of §59.1 and assume that the functions
in Bh vanish on ∂D. Prove that there is α > 0 such that for all rh ∈ Rh and all h ∈ H,

α(‖rh‖Vh + µ
− 1

2
0 ‖A1(rh)‖L) ≤ sup

wh∈Vh

|abph (rh, wh)|
‖wh‖Vh

,

with abph defined in (58.3) and ‖vh‖2Vh := µ0‖vh‖2L + 1
2 |vh|2M + |vh|2S∂ for all vh ∈ Vh. (Hint : use

the coercivity of abph to control ‖rh‖Vh , and use that the fields {Ak}k∈{1:d} are piecewise Lipschitz

together with (59.4) to control µ
− 1

2
0 ‖A1(rh)‖L.)

Exercise 59.2 (Full gradient). Prove (59.9) for the choice of slpsh in Example 59.4.

Exercise 59.3 (SGV). Prove Lemma 59.7.

Solution to exercises

Exercise 59.1 (Inf-sup condition). Let us set

ρh := sup
wh∈Vh

|a(rh, wh)|
‖wh‖Vh

.

Let rh ∈ Rh. The coercivity property of abph and the fact that Rh ⊂ Vh imply that ‖rh‖Vh ≤ ρh.
Considering the first-order operator A1 defined in Proposition 58.5, recalling that the fields Ak are
piecewise Lipschitz, and using an inverse inequality, we obtain that

‖(A1 −A1)(rh)‖L(K) ≤ c µ0‖rh‖L(K),
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for all K ∈ Th. Since (A1(rh))|K ∈ GK , the assumption (59.4) implies that

‖A1(rh)‖L(K) ≤ γ−1 sup
bK∈BK

|(A1(rh), bK)L(K)|
‖bK‖L(K)

≤ γ−1 sup
bK∈BK

|(A1(rh), bK)L(K)|
‖bK‖L(K)

+ c µ0‖rh‖L(K).

Since Bh =
⊕

K∈Th BK , taking a supremum over functions in Bh is achieved by taking suprema
over functions in BK independently for all K ∈ Th. This implies that there is c > 0 s.t. for all
h ∈ H,

c µ
− 1

2
0 ‖A1(rh)‖L ≤ sup

bh∈Bh

|(A1(rh), bh)L|
µ

1
2
0 ‖bh‖L

+ µ
1
2
0 ‖rh‖L.

Since (A1(rh), bh)L = abph (rh, bh)− (Krh, bh)L owing to the assumption that functions in Bh vanish
on ∂D, we infer that

c µ
− 1

2
0 ‖A1(rh)‖L ≤ sup

bh∈Bh

|abph (rh, bh)|
µ

1
2
0 ‖bh‖L

+ µ
1
2
0 ‖rh‖L.

We conclude by observing that µ
1
2
0 ‖bh‖L = ‖bh‖Vh and Bh ⊂ Vh.

Exercise 59.2 (Full gradient). We observe that

‖τ 1
2κgh(A1(vh))‖L(K) ≤

∑

k∈{1:d}
τ

1
2

K‖AkKκgh(∂kvh)‖L(K)

≤ c τ
1
2

KβK‖κgh(∇vh)‖L(K),

for all K ∈ Th, where we used the linearity of κgh, the triangle inequality, and the bound ‖AkK‖ℓ2 ≤
βK .

Exercise 59.3 (SGV). We have to prove that the bilinear form ssgvh (vh, wh) defined in (59.19)
satisfies the design conditions (58.4).
(1) Let us first prove that (58.4a) holds true. Using an inverse inequality and the inequality
βKτK ≤ hK , we obtain

|ssgvh (vh, vh)| ≤ c
∑

K∈Th
τK‖κrh(vh)‖2L(K).

Now, we use the local stability of κrh (which follows from ‖πr
h(vh)‖L(K) ≤ c‖vh‖L(D̃K), see (59.16))

and the regularity of the mesh sequence to infer that

|ssgvh (vh, vh)| ≤ c
∑

K∈Th
τ−1
K ‖vh‖2L(D̃K)

≤ c′ ‖τ− 1
2 vh‖2L.

(2) We now prove that (59.17) holds true and then invoke Proposition 59.6 to establish (58.4b)-
(58.4c). The triangle inequality implies that

‖τ 1
2κrh(A1(vh))‖L ≤ ‖τ

1
2κrh(A1(vh))‖L + ‖τ 1

2κrh((A1 −A1)(vh))‖L.



Part XII. First-order PDEs 315

Using the local L-stability of κrh, the Lipschitz continuity of the fields Ak, the fact that LA ≤ cµ0

and τK ≤ µ−1
0 , an inverse inequality, and the regularity of the mesh sequence, we obtain (as usual,

the value of c changes at each occurrence)

‖τ 1
2κrh((A1 −A1)(vh))‖2L ≤ c

∑

K∈Th
τK‖(A1 −A1)(vh)‖2L(D̃K)

≤ c
∑

K∈Th
τKL

2
Ah

2
K‖∇vh‖2L(K)

≤ c
∑

K∈Th
τKL

2
A‖vh‖2L(K) ≤ c µ0‖vh‖2L.

Hence, ‖τ 1
2κrh(A1(vh))‖L ≤ ‖τ

1
2κrh(A1(vh))‖L + cµ

1
2
0 ‖vh‖L for all vh ∈ Vh. We have proved that

(59.17) holds true, and Proposition 59.6 implies that (58.4b) and (58.4c) also hold true.
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Chapter 60

Discontinuous Galerkin

Exercises

Exercise 60.1 (Upwind flux). Consider the advection equation µu + β·∇u = f . Let F :=

∂Kl ∩ ∂Kr ∈ F◦
h . Let Φ̂stb

F (uh) := β·nF {uh} + 1
2 |β·nF |[[uh]]. Show that Φ̂stb

F (uh) = (β·nF )uh|Kl
if β·nF ≥ 0 and Φ̂stb

F (uh) = (β·nF )uh|Kr otherwise.

Exercise 60.2 (S◦F ). Verify that the jump penalty operators from §60.3.3 verify (60.21).

Exercise 60.3 (Absolute value). (i) Show that a suitable choice for the jump penalty operator
is S◦F = |NF | where |NF | is the unique Hermitian positive semidefinite matrix such that |NF |2 =
NH

FNF = N 2
F . (Hint :

∣∣wHNF v
∣∣ ≤

∣∣wH|NF |v
∣∣.) (ii) Verify that

∣∣∣∣∣

[
Od×d nF

nT

F 0

]∣∣∣∣∣ =
[
nF⊗nF 0

0T 1

]
,

∣∣∣∣∣∣


 αT

TT O3×3

O3×3 βTTT



∣∣∣∣∣∣
=


 |α|T

TT O3×3

O3×3 |β|TTT


.

Exercise 60.4 (Matrix T). (i) Show that TT = −T. (ii) Show that (TTT)2 = TTT.

Exercise 60.5 (Orthogonal subscales). (i) Prove that astbh is coercive on Vh equipped with the
norm ‖vh‖2Vh := µ0‖vh‖2L + 1

2 |vh|2Mbp + |[[vh]]|2S◦ . (ii) Assume that the fields Ak are Lipschitz (with

Lipschitz constant LA ≤ cµ0). Assume that u ∈ Vs := Hs(D;Cm) ∩ V, s > 1
2 . Prove that there is

c such that
|〈δh(Ibh(u)), wh〉V ′

h
,Vh | ≤ c ‖u− Ibh(u)‖V♯‖wh‖Vh ,

for all (v, wh) ∈ V♯×Vh and all h ∈ H, where Ibh denotes the L-orthogonal projection onto Vh,
‖v‖2V♭ := µ0‖v‖2L + 1

2 |v|2Mbp + |[[v]]|2S◦ , and ‖v‖2V♯ := ‖v‖2V♭ +
∑
K∈Th βK‖v‖2L(∂K). (Hint : adapt the

proof of Lemma 60.10.) (iii) Prove that ‖u− uh‖V♭ ≤ cφ
1
2 hk+

1
2 |u|Hk+1(D;Cm) using only Steps (i)

and (ii). (Hint : adapt the proof of Lemma 27.8.)
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Solution to exercises

Exercise 60.1 (Upwind flux). By definition, we have

Φ̂stb
F (uh) =

1

2
(β·nF )(uh|Kl + uh|Kr) +

1

2
|β·nF |(uh|Kl − uh|Kr).

Assuming that β·nF ≥ 0, we infer that

Φ̂stb
F (uh) =

1

2
(β·nF )(uh|Kl + uh|Kr) +

1

2
(β·nF )(uh|Kl − uh|Kr)

= (β·nF )
1

2
(uh|Kl + uh|Kr + uh|Kl − uh|Kr) = (β·nF )uh|Kl .

The proof is similar if β·nF ≤ 0.

Exercise 60.2 (S◦F ). In all cases, (60.21b) is obvious.
(1) For the advection-reaction equation, ker(NF ) = {0} = ker(S◦F ) unless β·nF = 0, in which case
ker(NF ) = R = ker(S◦F ). Hence (60.21a) holds true. Moreover, |(NF v, w)L(F )| ≤ α−2|v|S◦

F
|w|S◦

F
,

so that (60.21c) holds true.
(2) For Darcy’s equations, v := (σ, p) ∈ ker(NF ) implies that σ·n = 0 and p = 0. Hence, (60.21a)
holds true. Moreover, we have with w := (τ , q),

(NF v, w)L(F ) = (σ·n, q)L2(F ) + (p, τ ·n)L2(F ).

Since |v|S◦
F
= α1‖σ·nF ‖L2(F ) + α2‖p‖L2(F ), we infer that (60.21c) holds true.

(3) For Maxwell’s equations, v := (E,H) ∈ ker(NF ) implies that H×nF = E×nF = 0. Hence,
(60.21a) holds true. Moreover, we have with w := (e, bh),

(NF v, w)L(F ) = (H×nF , e)L2(F ) + (E,h·nF )L2(F ).

Since |v|S◦
F
= α1‖E×nF ‖L2(F ) + α2‖H×nF ‖L2(F ), we infer that (60.21c) holds true.

Exercise 60.3 (Penalty field by absolute value). (i) Let us verify that S◦F = |NF | ver-
ifies (60.21). (60.21a) is obvious. To prove (60.21b), we use that ‖ |NF | ‖ℓ2 = ‖NF ‖ℓ2. To
prove (60.21c), we use the hint, the Cauchy–Schwarz inequality, and (60.21b).
(ii) A direct calculation shows that

[
Od×d nF

nT

F 0

] [
Od×d nF

nT

F 0

]
=

[
nF⊗nF 0

0T 1

]
=

[
nF⊗nF 0

0T 1

] [
nF⊗nF 0

0T 1

]
.

Moreover, since the matrix 
 αT

TT O3×3

O3×3 βTTT




is block diagonal, we have

∣∣∣∣∣∣


 αT

TT O3×3

O3×3 βTTT



∣∣∣∣∣∣
=


 |αT

TT| O3×3

O3×3 |βTTT|


 =


 |α||T

TT| O3×3

O3×3 |β||TTT|


 .

But TTT is symmetric positive semidefinite. Hence, |TTT| = TTT. This proves the assertion.
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Exercise 60.4 (Matrix T). (i) Let E,H ∈ R3. We have

ETTH = E·(H×n) = −(E×n)·H = −(TE)TH = −ETTTH .

This proves that TT = −T.
(ii) Let E,H ∈ R3. Since TT = −T, we have

ETTTTTTTH = (TE)TTTT(TH)

= ((E×n)×n)·((H×n)×n).

But the vector triple product identity, (a×b)×c = (a·c)b− (b·c)a, shows that

(E×n)×n = (E·n)n−E.

Hence, we have

ETTTTTTTH = ((E·n)n −E)·((H×n)×n)
= −E·((H×n)×n) = (E×n)·(H×n)
= (TE)·(TH) = ETTTTH .

This proves that TTTTTT = TTT.

Exercise 60.5 (Orthogonal subscales). (i) See Step (1) in the proof of Lemma 60.9.
(ii) Setting η := u− Ibh(u) in the proof of Lemma 60.10, we still obtain

〈δh(Ibh(u)), wh〉V ′
h
,Vh = (η, Ãh(wh))L +

1

2
((Mbp +N )η, wh)L(∂D)

+ nh(wh, η) +
∑

F∈F◦
h

(S◦F [[η]], [[wh]])L(F )

=: T1 + T2 + T3 + T4.

The only difficulty lies in bounding T1 since we have not included the term ‖τ 1
2A1h(wh)‖L in the

‖·‖Vh-norm. Since (η,A1h(wh))L = 0 by definition of Ibh , we infer that

|(η,A1h(wh))L| = |(η, (A1h − A1h)(wh))L| ≤ µ
1
2
0 ‖η‖Lµ

− 1
2

0 LA‖wh‖L,

where we used the fact that the fields Ak are Lipschitz and an inverse inequality to estimate
‖∇wh‖L(K). Since LA ≤ cµ0, this gives the expected bound on |〈δh(Ibh(u)), wh〉V ′

h,Vh
|.

(iii) Adapting the proof of Lemma 27.8 where we bound the infimum over vh ∈ Vh by taking vh :=
Ibh(u), and using the stability property from Step (i) together with the consistency/boundedness
property from Step (ii), we infer that

‖u− uh‖V♭ ≤ c ‖u− Ibhu‖V♯ .

Finally, we use the approximation properties of Ibh to derive the error estimate.
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Chapter 61

Advection-diffusion

Exercises

Exercise 61.1 (A priori estimates). Consider the problem (61.1). Assume that dǫ := ǫId,
∇·β = 0, β|∂D = 0, µ := µ0 ≥ 0, and f ∈ H1

0 (D). Let ∇sβ := 1
2 (∇β + (∇β)T) denote the

symmetric part of the gradient of β, and assume that there is µ′
0 > 0 s.t. ∇sβ + µId ≥ µ′

0Id

in the sense of quadratic forms. Prove that |u|H1(D) ≤ (µ′
0 + µ0)

−1|f |H1(D) and ‖∆u‖L2(D) ≤
(4(µ′

0 + µ0)ǫ)
− 1

2 |f |H1(D). (Hint : test the PDE (61.1) with −∆u.) Note: see also Beirão da Veiga
[3], Burman [8].

Exercise 61.2 (Advection-diffusion, 1D). Let D := (0, 1) and let ǫ, b be two positive real
numbers. Let f : D → R be a smooth function. Consider the PDE −ǫu′′ + bu′ = f in D with
the boundary conditions u(0) = 0, u(1) = 0. Consider H1-conforming P1 Lagrange finite elements
on the uniform grid Th with nodes xi := ih, ∀i ∈ {0:I}, and meshsize h := 1

I+1 . (i) Evaluate the

stiffness matrix. (Hint : factor out the ratio ǫ
h and introduce the local Péclet number γ := bh

ǫ .)
(ii) Solve the linear system when f := 1 and plot the solutions for h := 10−2 and γ ∈ {0.1, 1, 10}.
(Hint : the solution U ∈ RI has the form U0 + Ũ with U0

i := b−1ih and Ũi := ̺ + θδi for some
constants ̺, θ, δ.) (iii) Consider now the boundary conditions u(0) = 0 and u′(1) = 0. Write the
weak formulation and show well-posedness. Evaluate the stiffness matrix. (Hint : this matrix is
now of order (I +1).) Derive the equation satisfied by h−1(UI+1−UI), and comment on the limit
values obtained as h→ 0 with fixed ǫ > 0 and as ǫ→ 0 with fixed h ∈ H.
Exercise 61.3 (Artificial viscosity). Consider the model problem (61.1) with d

:= ǫId with
constant ǫ > 0. Assume that u ∈ H2(D). Assume that β is divergence-free and µ > 0 is constant,
and set b := ‖β‖L∞(D). Consider the finite element space Vh := P g

1,0(Th) on a mesh from a
quasi-uniform sequence (for simplicity). Consider the following nonconsistent approximation: Find
uh ∈ Vh such that aǫ(uh, wh) + sh(uh, wh) = (f, wh)L2(D) for all wh ∈ Vh, where sh(vh, wh) :=
1
2 bh(∇vh,∇wh)L2(D) for all vh, wh ∈ P g

1,0(Th). (i) Prove the following error estimate:

µ
1
2 ‖u− uh‖L2(D) + (ǫ

1
2 + (bh)

1
2 )‖∇(u− uh)‖L2(D) ≤ c (ǫ

1
2 + (bh)

1
2 + µ

1
2h+ µ− 1

2 b)h|u|H2(D).

(Hint : use the norms ‖v‖2V♭ := (ǫ+ 1
2bh)‖∇v‖2L2(D)+µ‖v‖2L2(D), ‖v‖2V♯ := (ǫ+ 1

2bh)‖∇v‖2L2(D)+(µ+

2bh−1)‖v‖2L2(D) and adapt the proof of Lemma 27.8.) (ii) Consider the 1D setting of Exercise 61.2

with f := 1. Set Vh := P g
1,0(Th) = span{ϕi}i∈{1:I}, where the ϕi’s are the usual hat basis functions
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in P g
1,0(Th). Let ξ : [0, 1] → R be a smooth function, called bubble function, s.t. ξ(0) = ξ(1) = 0

and ξ ≥ 0. For all i ∈ {1:I}, set ξi(x) := ξ(x−xi−1

h ) if x ∈ [xi−1, xi], ξi(x) := −ξ(x−xih ) if
x ∈ [xi, xi+1], and ξi(x) := 0 otherwise, and set ψi := ϕi + ξi. Let Wh = span{ψi}i∈{1:I}. Prove
that the Petrov–Galerkin formulation using the pair (Vh,Wh) as trial and test spaces is equivalent
to a Galerkin formulation in Vh with the bilinear form augmented by an artificial viscosity term.

(Hint : verify that
∫ xi+1

xi−1
u′hξi dx = h(

∫ 1

0
ξ(x) dx)

∫ xi+1

xi−1
u′hϕ

′
i dx for all i ∈ {1:I}.) Explain how to

choose
∫ 1

0
ξ(x) dx so that the stiffness matrix is always an M -matrix. (Hint : use Exercise 61.2.)

Exercise 61.4 (Bound on consistency term). Prove Lemma 61.7. (Hint : observe that

|n·dǫ∇vh| ≤ λ
1
2

F ‖d
1
2
ǫ ∇vh‖ℓ2(Rd), use that d

1
2
ǫ ∇vh is a piecewise polynomial, and adapt the proof of

Lemma 37.2.)

Exercise 61.5 (Divergence-free advection). (i) Prove (61.27). (Hint : use Lemma 22.3 and
[[ζ0vh]] = [[ζ0]]vh, and bound [[ζ0]] using Lζ.) (ii) Prove (61.28). (Hint : use that ‖ϕh − ζvh‖L2(K) ≤
‖ϕh− ζvh‖L2(K) + ‖(ζ − ζ0)vh‖L2(K).) (iii) Prove that ‖ϕh‖Vh ≤ c‖vh‖Vh . (Hint : bound ‖ζ0vh‖Vh
and ‖ϕh − ζ0vh‖Vh .)

Solution to exercises

Exercise 61.1 (A priori estimates). Following the hint and integrating by parts, we infer that

ǫ‖∆u‖2L2(D) − (β·∇u,∆u)L2(D) + µ0|u|2H1(D) = −(f,∆u)L2(D) = (∇f,∇u)L2(D),

where we used that dǫ = ǫId, u ∈ H1
0 (D), µ := µ0, and f ∈ H1

0 (D). Using that β|∂D = 0, we also
infer that

−(β·∇u,∆u)L2(D) = −
∑

i,j∈{1:d}
(βi∂iu, ∂j∂ju)L2(D)

=
∑

i,j∈{1:d}
((∂jβi)∂iu, ∂ju)L2(D) + (βi∂i(∂ju), ∂ju)L2(D)

=: T1 + T2.

We have T1 = ((∇sβ)∇u,∇u)L2(D). Using that ∇·β = 0 and using again that β vanishes at the
boundary, we obtain that

T2 =
∑

i,j∈{1:d}
(β·∇∂ju, ∂ju)L2(D) =

∫

D

1

2
∇·(β‖∇u‖2) dx = 0.

In summary, we have shown that

ǫ‖∆u‖2L2(D) + ((∇sβ)∇u,∇u)L2(D) + µ0|u|2H1(D) = (∇f,∇u)L2(D).

Our assumption on ∇sβ implies that

ǫ‖∆u‖2L2(D) + (µ′
0 + µ0)|u|2H1(D) ≤ (∇f,∇u)L2(D).

The assertion follows by bounding the right-hand side as in the proof of the a priori estimate (61.5).
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Exercise 61.2 (Advection-diffusion, 1D). (i) The stiffness matrix is given byA = ǫ
h tridiag(−1−

γ
2 , 2,−1 +

γ
2 ).

(ii) Assuming that f := 1, the linear system to be solved is AU = h(1, . . . , 1)T. Since AU0 =
(h, . . . , h, h+γ−1(1− γ

2 ))
T (observe that h(I+1) = 1), we infer that AŨ = (0, . . . , 0, γ−1(γ2 − 1))T.

If γ = 2, then Ũ = 0. Let us assume now that γ 6= 2. Using Ũi = ̺+ θδi, we infer from the rows
{2:I − 1} of the linear system that

(
−1− γ

2

)
+ 2δ +

(
−1 + γ

2

)
δ2 = 0,

so that δ = 1 or δ = 2+γ
2−γ . The first row of the system yields θ = −̺. From the last row of the

system, we finally infer that ǫ
h (1 −

γ
2 )̺(1 − δI+1) = γ−1(γ2 − 1), i.e., b̺(1 − δI+1) = −1. Notice

that δ 6= 1 because we assumed γ = bh
ǫ 6= 0. Hence, −θ = ̺ = −b−1(1− δI+1)−1, that is,

Ũi = −b−1 δi − 1

δI+1 − 1
, δ =

2 + γ

2− γ .

When γ > 2, the components of the vector Ũ oscillate
between positive and negative values. The approximate
solutions for γ ∈ {0.1, 1, 10} obtained with h := 10−2

are plotted on the figure shown here. We observe that
for γ = 10 the approximate solution exhibits spurious
oscillations close to the boundary layer. Instead, the
approximate solutions for γ = 1 and γ = 0.1 match well
the exact solution.

0 10.5

0

1

0.5

1.5

(iii) Setting V := {v ∈ H1(D) | v(0) = 0}, the weak formulation now consists of seeking u ∈ V
such that a(u,w) = ℓ(w) for all w ∈ V. Since

∫ 1

0
bv′v dx = 1

2 bv(1)
2 ≥ 0, the bilinear form a is still

coercive on V. The stiffness matrix is of order (I + 1) and has the following tridiagonal structure:

A =
ǫ

h




c0 c+ 0 . . . 0

c−
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . . c0 c+

0 . . . 0 c− c′0




with c0 := 2, c′0 := 1 + γ
2 , c+ := −1 + γ

2 , and c− := −1− γ
2 . We infer that (ǫ+ bh

2 )(UI+1 − UI) =∫ xI+1

xI
fϕI+1 dx, so that

UI+1 − UI

h
=

2
∫ xI+1

xI
fϕI+1 dx

2ǫ+ bh
.

Hence, UI+1−UI

h → 0 as h → 0 with fixed ǫ > 0, whereas UI+1−UI

h → f(1)
b as ǫ → 0 with fixed

h ∈ H.
Exercise 61.3 (Artificial viscosity). (i) Let us introduce the following stability norm:

‖vh‖2Vh := (ǫ+ 1
2bh)‖∇vh‖2L2(D) + µ‖vh‖2L2(D).
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The coercivity of the discrete bilinear form aǫ + sh on Vh in this norm is straightforward (with
coercivity constant α := 1). Let us set Vs := H2(D) ∩H1

0 (D), V♯ := Vs + Vh, and let us equip the
space V♯ with the following norms:

‖v‖2V♭ := (ǫ+ 1
2bh)‖∇v‖2L2(D) + µ‖v‖2L2(D),

‖v‖2V♯ := (ǫ+ 1
2bh)‖∇v‖2L2(D) + (µ+ 2bh−1)‖v‖2L2(D).

Notice that (27.7) is satisfied with c♭ := 1 (i.e., ‖vh‖V♭ ≤ ‖vh‖Vh on Vh and ‖v‖V♭ ≤ ‖v‖V♯ on V♯).
Recalling Definition 27.3, the consistency error is such that for all vh, wh ∈ Vh,

〈δh(vh), wh〉V ′
h
,Vh = (f, wh)L2(D) − aǫ(vh, wh)− sh(vh, wh)

= aǫ(η, wh) + sh(η, wh)− sh(u,wh),

with η := u− vh. Integrating by parts the advective derivative, we infer that

(β·∇v, wh)L2(D) ≤ ‖v‖L2(D)b‖∇wh‖L2(D) ≤ (2b)
1
2 h−

1
2 ‖v‖L2(D)sh(wh, wh)

1
2 .

This implies that
|aǫ(η, wh)| ≤ ‖η‖V♯‖wh‖Vh .

Moreover, we have
|sh(η, wh)| ≤ sh(η, η)

1
2 sh(vh, vh)

1
2 ≤ ‖η‖V♯‖wh‖Vh .

Integrating by parts, using the Cauchy–Schwarz inequality and the definition of the stability norm
‖·‖Vh , we finally have

|sh(u,wh)| =
1

2
bh|(∆u,wh)L2(D)| ≤

1

2
bh‖∆u‖L2(D)‖wh‖L2(D)

≤ 1

2
µ− 1

2 bh‖∆u‖L2(D)‖wh‖Vh .

Putting the above bounds together, we infer that

‖δh(vh)‖V ′
h
≤ c ‖u− vh‖V♯ +

1

2
µ− 1

2 bh‖∆u‖L2(D).

Adapting the proof of Lemma 27.8, we obtain

‖u− uh‖V♭ ≤ c
(

inf
vh∈Vh

‖u− vh‖V♯ +
1

2
µ− 1

2 bh‖∆u‖L2(D)

)
.

Using the approximation capacity of the discrete space Vh = P g
1,0(Th), we infer that

inf
vh∈Vh

‖u− vh‖V♯ ≤ c (ǫ
1
2 + (bh)

1
2 + µ

1
2h)h|u|H2(D).

Since ‖∆u‖L2(D) ≤ c |u|H2(D), this leads to the expected error bound.
(ii) The Petrov–Galerkin approximation consists of seeking uh ∈ Vh such that

∫ 1

0

ǫu′h(ϕ
′
i + ξ′i) dx+

∫ 1

0

bu′h(ϕi + ξi) dx =

∫ 1

0

f(ϕi + ξi) dx,

for all i ∈ {1:I}. Since u′h is piecewise constant, we infer that
∫ 1

0 ǫu
′
hξ

′
i dx = 0. Moreover, a direct

calculation using again that u′h is piecewise constant shows that

∫ xi+1

xi−1

u′hξi dx = h

(∫ 1

0

ξ(x) dx)

)∫ xi+1

xi−1

u′hϕ
′
i dx.
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Since f := 1 and
∫ 1

0
ξi dx = 0, we finally infer that

∫ 1

0
fξi dx = 0. Hence, uh ∈ Vh is such that

∫ 1

0

(ǫ+ ǫh)u
′
hϕ

′
i dx+

∫ 1

0

bu′hϕi dx =

∫ 1

0

fϕi dx,

where ǫh = bh
∫ 1

0 b(x) dx is an artificial viscosity. To obtain an M -matrix, the condition derived

in Exercise 61.2 is γh ≤ 2 with local Péclet number γh = bh
ǫ+ǫh

, for which a sufficient condition is∫ 1

0
ξ(x) dx ≥ 1

2 .

Exercise 61.4 (Bound on consistency term). Let vh, wh ∈ Vh. Let F ∈ F∂h . Since dǫ is
symmetric positive definite, we have

|n·dǫ∇vh| ≤ (n·dǫn)
1
2 (∇vh·dǫ∇vh)

1
2 = λ

1
2

F ‖d
1
2
ǫ ∇vh‖ℓ2(Rd).

Using the discrete trace inequality h
1
2

F ‖d
1
2
ǫ ∇vh‖L2(F ) ≤ cdt‖d

1
2
ǫ ∇vh‖L2(Kl) (this is legitimate since

d

1
2
ǫ ∇vh is a piecewise polynomial because dǫ is piecewise constant) and the Cauchy–Schwarz in-

equality, we infer that

∣∣∣∣
∫

∂D

(n·dǫ∇vh)wh ds
∣∣∣∣ ≤

( ∑

F∈F∂h

hF ‖d
1
2
ǫ ∇vh‖2L2(F )

) 1
2
( ∑

F∈F∂h

λF
hF
‖wh‖2L2(F )

) 1
2

≤ cdt
( ∑

F∈F∂h

‖d
1
2
ǫ ∇vh‖2L2(Kl)

) 1
2
( ∑

F∈F∂h

λF
hF
‖wh‖2L2(F )

) 1
2

.

The assertion follows by rewriting the summation over F ∈ F∂h as a summation over K ∈ T ∂Dh
and by using the definition of n∂ .

Exercise 61.5 (Divergence-free advection). (i) Proof of (61.27). The Cauchy–Schwarz in-
equality, together with discrete trace and inverse inequalities and ̟0 ≥ 1 show that

|a1(vh, ϕh − ζ0vh)| ≤ c̟
1
2
0 (A1 +A2 +A3)×

( ∑

K∈Th
λ♯,Kh

−2
K ‖ϕh − ζ0vh‖2L2(K)

+ τKδK(β2
Kh

−2
K + λ2♯,Kh

−4
K )‖ϕh − ζ0vh‖2L2(K)

) 1
2

.

We observe that
τKδK(β2

Kh
−2
K + λ2♯,Kh

−4
K ) ≤ βKh−1

K + λ♯,Kh
−2
K ,

where the bound on the first term follows from δK ≤ 1 and the bound on the second term follows

from δK ≤ ρ−1
K PeK with PeK :=

h2
K

τKλ♭,K
. As a result, we obtain

|a1(vh, ϕh − ζ0vh)| ≤ c̟
1
2
0 (A1 +A2 +A3)×

( ∑

K∈Th
(βKh

−1
K + λ♯,Kh

−2
K )‖ϕh − ζ0vh‖2L2(K)

) 1
2

.

Invoking Lemma 22.3 and observing that [[ζ0vh]] = [[ζ0]]vh, [[ζ0]] ≤ chKLζ , we infer that

‖ϕh − ζ0vh‖2L2(K) ≤ c hK
∑

F∈F̌◦
K

h2KL
2
ζ‖vh‖2L2(F ) ≤ c′ h2KL2

ζ‖vh‖2L2(K),
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where we used a discrete trace inequality and the regularity of the mesh sequence (recall that F̌◦
K

is the collection of the mesh interfaces sharing at least a vertex with K). Using the assumption
L2
ζ max(λ♯,K , βKhK) ≤ µ0, we conclude that

|a1(vh, ϕh − ζ0vh)| ≤ c̟
1
2
0 (A1 +A2 +A3)µ

1
2
0 ‖vh‖L2(D),

which leads to the expected bound.
(ii) Proof of (61.28). The Cauchy–Schwarz inequality and the triangle inequality lead to

|a2(vh, ϕh − ζvh)| ≤ c
(
A2

3 +A2
4 +

∑

K∈Th
τKδK‖∇·(dǫ∇vh)‖2L2(K)

) 1
2

×

( ∑

K∈Th
τ−1
K δ−1

K ‖ϕh − ζvh‖2L2(K) +
∑

F∈F∂h

βKlh
−1
Kl
‖ϕh − ζvh‖2L2(Kl)

) 1
2

.

Using that τKδK‖∇·(dǫ∇vh)‖2L2(K) ≤ c‖d
1
2
ǫ ∇vh‖2L2(K) since τKδKλ♯,Kh

−2
K ≤ 1, we obtain after

rearranging some terms that

|a2(vh, ϕh − ζvh)| ≤ c (A1 +A3 +A4)×
( ∑

K∈Th
max(τ−1

K δ−1
K , βKh

−1
K )‖ϕh − ζvh‖2L2(K)

) 1
2

.

Using the triangle inequality ‖ϕh − ζvh‖L2(K) ≤ ‖ϕh − ζ0vh‖L2(K) + ‖(ζ − ζ0)vh‖L2(K), we bound
the first term using as above and the second one using ‖ζ − ζ0‖L∞(K) ≤ chKLζ. This yields

|a2(vh, ϕh − ζvh)| ≤ c (A1 +A3 +A4)×
( ∑

K∈Th
max(τ−1

K δ−1
K h2K , βKhK)L2

ζ‖vh‖2L2(K)

) 1
2

.

To prove the expected bound, it remains to verify that

max(τ−1
K δ−1

K h2K , βKhK)L2
ζ ≤ µ0.

The bound βKhKL
2
ζ ≤ µ0 follows from the assumption on Lζ . Let us consider τ

−1
K δ−1

K h2KL
2
ζ . Using

the definition of δK , we obtain

τ−1
K δ−1

K h2KL
2
ζ = max(τ−1

K h2KL
2
ζ , λ♯,KL

2
ζ).

The second argument verifies λ♯,KL
2
ζ ≤ µ0 by assumption on Lζ . Using the definition of τK , we

finally have

τ−1
K h2KL

2
ζ = max(βKh

−1
K , µ0)h

2
KL

2
ζ = max(βKhKL

2
ζ, µ0h

2
KL

2
ζ) ≤ µ0,

since we assumed that βKhKL
2
ζ ≤ µ0 and hKLζ ≤ 1.

(iii) Let us prove that ‖ϕh‖Vh ≤ c‖vh‖Vh . The triangle inequality yields ‖ϕh‖Vh ≤ ‖ζ0vh‖Vh +
‖ϕh − ζ0vh‖Vh , and since ζ0 is piecewise constant, we have ‖ζ0vh‖Vh ≤ ζ♯‖vh‖Vh . Using inverse
inequalities, we finally infer that

‖ϕh − ζ0vh‖2Vh ≤
∑

K∈Th

(
λ♯,Kh

−2
K + βKh

−1
K + µ0

)
‖ϕh − ζ0vh‖2L2(K),

and we conclude as above.
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Stokes equations: Residual-based
stabilization

Exercises

Exercise 62.1 (Pressure gradient). Assume (62.14). Prove an inf-sup condition similar to
(62.14) using the norm ‖(vh, qh)‖2Y +

h

:= ‖(vh, qh)‖2Yh +
∑

K∈Th µ
−1h2K‖∇qh‖2L2(K). (Hint : use an

inverse inequality.)

Exercise 62.2 (Inf-sup partner). The objective of this exercise is to reprove the inf-sup con-
dition (62.14) by identifying an inf-sup partner for all (vh, qh) ∈ Yh as suggested in Remark 25.10.
(i) Prove that there is ρ ∈ (0, 1) s.t. th((vh, qh), ((1 − ρ)vh + ρwh, (1 − ρ)qh)) ≥ η‖(vh, qh)‖2Yh
with wh := IIIuhd(wqh) and wqh defined in (62.16). (Hint : use (62.15) and the bounds on T2,T3

from the proof of Lemma 62.3.) (ii) Show that the inf-sup condition (62.14) is satisfied with a
constant γ0 depending on ρ, βD, η, and the constant cw introduced in (62.18), i.e., ‖(wh, 0)‖Yh ≤
cwµ

1
2 |wqh |H1(D). (Hint : identify an appropriate inf-sup partner for (vh, qh) and use Remark 25.10.)

Exercise 62.3 (Approximation). Let |·|S be the GaLS stabilization seminorm, i.e., |·|2S = |·|2Sr+
|·|2Sp + |·|2Sn . Let (η, ζ) ∈ (H2(D)×H1(D))∩ Y be s.t. r(η, ζ)|∂Dn

n = 0. (i) Prove that |(η, ζ)|S ≤
ch(µ

1
2 |η|H2(D) + µ− 1

2 |ζ|H1(D)). (ii) Prove that |(η − IIIuhd(η), ζ − Iph(ζ))|S ≤ ch(µ
1
2 |η|H2(D) +

µ− 1
2 |ζ|H1(D)). (Hint : use (62.24).) (iii) Estimate |(IIIuhd(η), Iph(ζ))|S .

Exercise 62.4 (Inf-sup condition on th). Assume that ∂D = ∂Dd so that Vd := H1
0 (D).

Reprove (62.14) by accepting as a fact (see Exercise 63.2) that there is β0 > 0 s.t. for all h ∈ H
and all qh ∈ Qh,

β0 µ
− 1

2 ‖qh‖L2(D) ≤ sup
wh∈Vhd

|b(wh, qh)|
µ

1
2 |wh|H1(D)

+ |qh|Sgp + |qh|Sp ,

with |qh|2Sgp :=
∑

F∈F◦
h

h3
F

µ ‖[[∇hqh]]·nF ‖2L2(F ) for all qh ∈ Qh. (Hint : use that b(wh, qh) =

th((vh, qh), (wh, 0)) − a(vh,wh) − sh((vh, qh), (wh, 0)) for all vh ∈ Vhd, and prove that |qh|2Sgp ≤
c
(
|(vh, qh)|2Sr + µ|vh|2H1(D)

)
.)
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Solution to exercises

Exercise 62.1 (Pressure gradient). Invoking an inverse inequality, we have hK‖∇qg‖L2(K) ≤
c‖qh‖L2(K) for all K ∈ Th. This implies that

‖(vh, qh)‖Yh ≤ ‖(vh, qh)‖Y +
h
≤ c+ ‖(vh, qh)‖Yh ,

for all (vh, qh) ∈ Yh. Therefore, we have

c−1
+ γ0‖(vh, qh)‖Y +

h
≤ γ0‖(vh, qh)‖Yh ≤ sup

(wh,rh)∈Yh

th((vh, qh), (wh, rh))

‖(wh, rh)‖Yh

≤ sup
(wh,rh)∈Yh

th((vh, qh), (wh, rh))

‖(wh, rh)‖Y +
h

,

that is, th satisfies the inf-sup condition (62.14) with the constant c−1
+ γ0.

Exercise 62.2 (Inf-sup partner). (i) By linearity, we have

th((vh, qh), ((1 − ρ)vh + ρwh, (1− ρ)qh)) =
(1− ρ)th((vh, qh), (vh, qh)) + ρth((vh, qh), (wh, 0)).

Using (62.15) and 1− ρ > 0, we have

th((vh, qh), ((1 − ρ)vh + ρwh, (1− ρ)qh)) = (1− ρ)th((vh, qh), (vh, qh)) + ρth((vh, qh), (wh, 0))

≥ α(1 − ρ)
(
µ|vh|2H1(D) + |(vh, qh)|2S

)

+ ρ
(
µ−1‖qh‖2L2(D) − T2 − T3

)
,

where T2,T3 are defined in the proof of Lemma 62.3. Using the bounds on T2,T3 from this proof
and ρ > 0, we infer that

th((vh, qh), ((1− ρ)vh + ρwh, (1− ρ)qh)) ≥ α(1− ρ)
(
µ|vh|2H1(D) + |(vh, qh)|2S

)
+ ρµ−1‖qh‖2L2(D)

− ρc23
(
µ|vh|2H1(D) + |(vh, qh)|2S

) 1
2µ− 1

2 ‖qh‖L2(D),

for some constant c23. Applying Young’s inequality leads to

th((vh, qh), ((1 − ρ)vh + ρwh, (1− ρ)qh))
≥
(
α(1 − ρ)− 1

2ρc
2
23

)(
µ|vh|2H1(D) + |(vh, qh)|2S

)
+ 1

2ρµ
−1‖qh‖2L2(D).

Taking ρ := α
2α+c223

, we obtain α(1− ρ)− 1
2ρc

2
23 = 1

2α, so that

th((vh, qh), ((1 − ρ)vh + ρwh, (1 − ρ)qh)) ≥ η‖(vh, qh)‖2Yh ,

with η := 1
2 min(α, ρ).

(ii) The triangle inequality and ρ ∈ (0, 1) lead to

‖((1− ρ)vh + ρwh, (1− ρ)qh)‖Yh ≤ (1− ρ)‖(vh, qh)‖Yh + ρ‖(wh, 0)‖Yh ,

and since
‖(wh, 0)‖Yh ≤ cwµ

1
2 |wqh |H1(D) ≤ cwβ−1

D µ− 1
2 ‖qh‖L2(D),
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we infer that

‖((1− ρ)vh + ρwh, (1− ρ)qh)‖Yh ≤
(
(1− ρ) + ρcwβ

−1
D

)
‖(vh, qh)‖Yh .

Using Remark 25.10, we conclude that ((1− ρ)vh+ ρwh, (1− ρ)qh) is a suitable inf-sup partner of
(vh, qh), and the inf-sup condition (62.14) is satisfied with

γ ≥ βDη

βD(1− ρ) + ρcw
,

where the value of ρ is fixed in Step (i).

Exercise 62.3 (Approximation). Let (η, ζ) ∈
(
H2(D)×H1(D)

)
∩ Y be s.t. r(η, ζ)|∂Dn

n = 0.
Recall that |·|2S = |·|2Sr + |·|2Sp + |·|2Sn .
(i) We estimate |(η, ζ)|Sr as follows:

|(η, ζ)|2Sr = ̟r
∑

K∈Th
µ−1h2K‖∇h·r(η, ζ)‖2L2(K)

≤ c
∑

K∈Th
h2K

(
µ|η|2H2(K) + µ−1|ζ|2H1(K)

)

≤ c h2
(
µ|η|2H2(D) + µ−1|ζ|2H1(D)

)2
.

We have |ζ|Sp = 0 since ζ ∈ H1(D), and |(η, ζ)|Sn = 0 because r(η, ζ)|∂Dn
n = 0. In conclusion,

we have

|(η, ζ)|S ≤ c h
(
µ

1
2 |η|H2(D) + µ− 1

2 |ζ|H1(D)

)
.

(ii) We estimate |(η−IIIuhd(η), ζ−Iph(ζ))|Sr by bounding the three seminorms. Concerning |·|Sr , the
definition of the stabilizing bilinear form srh in (62.10a) and the approximation properties (62.24)
lead to

|(η −IIIuhd(η), ζ − Iph(ζ))|2Sr ≤ c
∑

K∈Th
µ−1h2K‖∇h·r(η −IIIuhd(η), ζ − Iph(ζ))‖2L2(K)

≤ c
∑

K∈Th
h2K

(
µ|η −IIIuhd(η)|2H2(K) + µ−1|ζ − Iph(ζ)|2H1(K)

)

≤ c h2
(
µ|η|2H2(D) + µ−1|ζ|2H1(D)

)2
.

Concerning |·|Sp , we use the triangle inequality to bound the jump norm by the norms of the traces
from both sides, the definition of the stabilizing bilinear form sph in (62.10b), the multiplicative trace
inequality (12.16), the regularity of the mesh sequence, and the approximation property (62.24b)
to infer that

|ζ − Iph(ζ)|2Sp =
∑

F∈F◦
h

̟p hF
µ
‖[[ζ − Iph(ζ)]]‖2L2(F ) ≤ c µ−1

∑

K∈Th
hK‖ζ − Iph(ζ)‖2L2(∂K)

≤ c′µ−1
∑

K∈Th
‖ζ − Iph(ζ)‖L2(K)(‖ζ − Iph(ζ)‖L2(K) + hK |ζ − Iph(ζ)|2H1(K))

≤ c′′ µ−1h2|ζ|2H1(D).
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Concerning |·|Sn , we invoke similar arguments to obtain

|(η −IIIuhd(η), ζ − Iph(ζ))|2Sn =
∑

F∈Fn
h

̟n hF
µ
‖r(η −IIIuhd(η), ζ − Iph(ζ))n‖2L2(F )

≤ c µ−1
∑

K∈T n
h

hK
(
µ‖∇(η −IIIuhd(η))‖L2(∂K) + ‖ζ − Iph(ζ)‖L2(∂K)

)2

≤ c′ h2
(
µ|η|2H2(D) + µ−1|ζ|2H1(D)

)2
.

Hence, we have

|(η −IIIuhd(η), ζ − Iph(ζ))|S ≤ c h
(
µ

1
2 |η|H2(D) + µ− 1

2 |ζ|H1(D)

)
.

(iii) By using the triangle inequality, we conclude that

|(IIIuhd(η), Iph(ζ))|S ≤ c h
(
µ

1
2 |η|H2(D) + µ− 1

2 |ζ|H1(D)

)
.

Exercise 62.4 (Inf-sup condition on th). Let (vh, qh) ∈ Yh. Let us set

S := sup
(wh,rh)∈Yh

|th((vh, qh), (wh, rh))|
‖(wh, rh)‖Yh

.

Using the hint and the inequality

β0 µ
− 1

2 ‖qh‖L2(D) ≤ sup
vh∈Vhd

|b(vh, qh)|
µ

1
2 |wh|H1(D)

+ |qh|Sgp + |qh|Sp ,

with β0 > 0, we infer that

β0 µ
− 1

2 ‖qh‖L2(D) ≤ sup
wh∈Vhd

|th((vh, qh), (wh, 0))− a(vh,wh)− sh((vh, qh), (wh, 0))|
µ

1
2 |wh|H1(D)

+ |qh|Sgp + |qh|Sp

≤ T1 + T2 + T3 + |qh|Sgp + |qh|Sp ,

where

T1 := sup
wh∈Vhd

|th((vh, qh), (wh, 0))|
µ

1
2 |wh|H1(D)

,

T2 := sup
wh∈Vhd

|a(vh,wh)|
µ

1
2 |wh|H1(D)

,

T3 := sup
wh∈Vhd

|sh((vh, qh), (wh, 0))|
µ

1
2 |wh|H1(D)

.

Since ∂Dd = ∂D by assumption, we have sh = srh + sph (i.e., snh := 0), so that

‖(vh, qh)‖2Yh = µ|vh|2H1(D) +
1

µ
‖qh‖2L2(D) + |(vh, qh)|2Sr + |qh|2Sp .

Invoking an inverse inequality, we infer that

‖(wh, 0)‖2Yh = µ|wh|2H1(D) + |(wh, 0)|2Sr ≤ c µ|wh|2H1(D).
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This implies that T1 ≤ cS. Moreover, the boundedness of the bilinear form a implies that T2 ≤
2µ

1
2 |vh|H1(D). Finally, since we have sh((vh, qh), (wh, 0)) = srh((vh, qh), (wh, 0)) and |(wh, 0)|Sr ≤

cµ
1
2 |wh|H1(D), we infer that T3 ≤ c|(vh, qh)|Sr . Putting these bounds together yields

µ−1‖qh‖2L2(D) ≤ c
(
S2 + µ|vh|2H1(D) + |(vh, qh)|2Sr + |qh|2Sgp + |qh|2Sp

)

= c
(
S2 + µ|vh|2H1(D) + |(vh, qh)|2S + |qh|2Sgp

)
.

Invoking a discrete trace inequality, an inverse inequality, and the regularity of the mesh sequence,
we infer that (the value of c changes at each occurrence)

|qh|2Sgp =
∑

F∈F◦
h

h3F
µ
‖[[∇hqh]]·nF ‖2L2(F ) ≤ c

∑

K∈Th

h2K
µ
‖∇hqh‖2L2(K)

≤ c
∑

K∈Th

h2K
µ

(
‖∇·r(vh, qh)‖2L2(K) + µ2‖∇·e(vh)‖2L2(K)

)

≤ c
(
|(vh, qh)|2Sr + µ‖e(vh)‖2L2(K)

)

≤ c
(
|(vh, qh)|2Sr + µ|vh|2H1(D)

)
.

As a result, we have

µ−1‖qh‖2L2(D) ≤ c
(
S2 + µ|vh|2H1(D) + |(vh, qh)|2S

)
.

Recalling (62.15), i.e.,
α
(
µ|vh|2H1(D) + |(vh, qh)|2S

)
≤ S‖(vh, qh)‖Yh ,

we obtain ‖(vh, qh)‖2Yh ≤ c(S2 + S‖(vh, qh)‖Yh), and we conclude as usual by invoking Young’s
inequality.
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Chapter 63

Stokes equations: Other
stabilizations

Exercises

Exercise 63.1 (Coercivity, CIP). Prove Lemma 63.2. (Hint : see the proofs of Lemma 37.2
and Lemma 37.3.)

Exercise 63.2 (Inf-sup condition on b, CIP). Prove the inf-sup condition (63.13) on b. Here,
we do not assume that Qh isH

1-conforming, that is, the pressure space is either P g
kp
(Th) or P b

kp
(Th).

(Hint : use the identities for µ−1h2‖∇hqh‖2L2(D) and µ
−1‖qh‖2L2(D) from the proof of Lemma 63.3.)

Exercise 63.3 (Galerkin orthogonality, dG). Prove the Galerkin orthogonality for the stabi-
lized dG formulation from §63.2, i.e., th((u, p), (wh, rh)) = ℓh(wh, rh) for all (wh, rh) ∈ Yh.

Exercise 63.4 (Integration by parts for bh, dG). Let bh be defined in (63.19). Prove the
identity (63.27). (Hint : [[ab]] = {a}[[b]] + [[a]]{b} at all the interfaces.)

Exercise 63.5 (dG fluxes). Derive local formulations of the discrete problem using the fluxes
from Remark 63.7. (Hint : proceed as in §38.4.)

Exercise 63.6 (Inf-sup conditions, dG). Assume that ∂D = ∂Dd. (i) Prove the inf-sup
condition (63.29) on bh. (Hint : use (63.26).) (ii) Using the inf-sup condition on bh, prove again
the inf-sup condition on th. (Hint : use the identity (63.28).)

Solution to exercises

Exercise 63.1 (Proof of Lemma 63.2). Let T ∂Dh be the collection of the mesh cells having at
least one boundary face, i.e., T ∂Dh :=

⋃
F∈F∂h {Kl}. Let us set D∂ := int

(⋃
K∈T ∂Dh K

)
. Proceeding

as in the proof of Lemma 37.2, we obtain

|nh(vh,wh)| ≤ n
1
2

∂ cdt(2µ)
1
2 ‖e(vh)‖L2(D∂)|wh|Su .
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This, in turn, implies that

ah(vh,vh) + suh(vh,vh) ≥ (x◦)2 + (x∂)2 − 2n
1
2

∂ cdtx
∂y +̟uy2,

with x◦ := (2µ)
1
2 ‖e(vh)‖L2(D\D∂), x

∂ := (2µ)
1
2 ‖e(vh)‖L2(D∂ ), and y := |vh|Su . We then infer

(63.8) by proceeding as in the proof of Lemma 37.3.

Exercise 63.2 (Inf-sup condition on b, CIP). Let qh ∈ Qh and set B := supvh∈Vh

|b(vh,qh)|
‖vh‖Vh

.

Let us set
wh := µ−1h2J g,av

h (∇hqh),
where J g,av

h is the H1-conforming averaging operator from §22.2. Since ∂Dd = ∂D, integrating
by parts gives

µ−1h2‖∇hqh‖2L2(D) = µ−1h2(∇hqh − J g,av
h (∇hqh),∇hqh)L2(D) + b(wh, qh)

+
∑

F∈F◦
h

([[qh]]nF ,wh)L2(F ) =: T1 + T2 + T3.

Reasoning as in the proof of Lemma 63.3, and in particular using that ‖wh‖Vh ≤ cµ− 1
2h‖∇hqh‖L2(D),

we infer that
|T1 + T3| ≤ c(|qh|Sgp + |qh|Sp)µ− 1

2h‖∇hqh‖L2(D).

Moreover, we have
|T2| ≤ B‖wh‖Vh ≤ cBµ− 1

2h‖∇hqh‖L2(D).

Combining these two bounds leads to

µ− 1
2h‖∇hqh‖L2(D) ≤ c (B+ |qh|Sgp + |qh|Sp).

Moreover, let wqh ∈ Vd be the function introduced in (62.16), i.e.,

∇·wqh = −µ−1qh, βD|wqh |H1(D) ≤ µ−1‖qh‖L2(D),

with βD > 0. Letting wh := IIIg,avh (wqh) ∈ Vh, we have

µ−1‖qh‖2L2(D) = (∇hqh,wqh −wh)L2(D) + b(wh, qh)

+
∑

F∈F◦
h

([[qh]]nF ,wh −wqh)L2(F ) =: T1 + T2 + T3.

Reasoning as in the proof of Lemma 63.3 and using the above bound on µ− 1
2h‖∇hqh‖L2(D) readily

yields
µ− 1

2 ‖qh‖L2(D) ≤ c (B+ |qh|Sgp + |qh|Sp),

which is the expected estimate on µ− 1
2 ‖qh‖L2(D).

Exercise 63.3 (Galerkin orthogonality, dG). Using the boundary condition r(u, p)|Fn = 0
for all F ∈ Fn

h , and using that r(u, p)n is continuous across the mesh interfaces, we have

ℓh(wh, rh) = ℓ(wh, rh) = (∇·r(u, p),wh)L2(D) + (∇·u, rh)L2(D)

= (s(u), eh(wh))L2(D) − (∇h·wh, p)L2(D) + (∇·u, rh)L2(D)

+
∑

F∈F◦
h∪Fd

h

({r(u, p)}nF , [[wh]])L2(F ).
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Using that [[u]]F = 0 for all F ∈ F◦
h ∪Fd

h , s
p
h(p, qh) = 0 for all qh ∈ Qh, and snh((u, p), (wh, rh)) = 0

for all (wh, rh) ∈ Yh, we infer that

ℓh(wh, rh) = (s(u), eh(wh))L2(D) −
∑

F∈F◦
h∪Fd

h

({s(u)}nF , [[wh]])L2(F )

−
∑

F∈F◦
h∪Fd

h

({s(wh)}nF , [[u]])L2(F ) + suh(u,wh)

− (∇h·wh, p)L2(D) +
∑

F∈F◦
h∪Fd

h

([[wh]]·nF , {p})L2(F )

+ (∇h·u, rh)L2(D) −
∑

F∈F◦
h∪Fd

h

([[u]]·nF , {rh})L2(F )

= ah(u,wh + suh(u,wh) + bh(wh, p)− bh(u, rh)
= th((u, p), (wh, rh)).

We have thus proved that th((u, p), (wh, rh)) = ℓh(wh, rh).

Exercise 63.4 (Integration by parts for bh, dG). Integrating by parts elementwise, we have

bh(vh, qh) = − (∇h·vh, qh)L2(D) +
∑

F∈F◦
h∪Fd

h

([[vh]]·nF , {qh})L2(F )

= (vh,∇hqh)L2(D) −
∑

K∈Th
(vh|K ·nK , qh|K)L2(∂K)

+
∑

F∈F◦
h∪Fd

h

([[vh]]·nF , {qh})L2(F ),

recalling that the jump and average operators return the actual value at boundary faces. We
observe that

∑

K∈Th
(vh|K ·nK , qh|K)L2(∂K) =

∑

F∈F◦
h

([[vhqh]]·nF , 1)L2(F ) +
∑

F∈Fd
h∪Fn

h

(vh·n, qh)L2(F )

=
∑

F∈F◦
h

([[vh]]·nF , {qh})L2(F ) +
∑

F∈F◦
h

({vh}·nF , [[qh]])L2(F )

+
∑

F∈Fd
h∪Fn

h

(vh·n, qh)L2(F ),

where the second equality follows by using the hint. Combining the above two identities gives

bh(vh, qh) = (vh,∇hqh)L2(D) −
∑

F∈F◦
h

({vh}·nF , [[qh]])L2(F ) −
∑

F∈Fn
h

(vh·n, qh)L2(F )

= (vh,∇hqh)L2(D) −
∑

F∈F◦
h
∪Fn

h

({vh}·nF , [[qh]])L2(F ),

using again the above convention on the jump and average operators associated with the boundary
faces. This proves the expected identity.

Exercise 63.5 (dG fluxes). Let K ∈ Th, let 1K be the indicator function of K, and let ξ ∈ PPPku .
Let us use (ξ1K , 0) as a test function in the discrete problem. We obtain

(f , ξ)L2(K) = ah(uh, ξ1K) + bh(ξ1K , ph) + suh(uh, ξ1K) + snh((uh, ph), (ξ1K , 0)).
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Since [[ξ1K ]]F = ǫK,F ξ and (LlF (v),qh)L2(D) = (v, {qh}nF )L2(F ), for all v ∈ L2(F ), all qh ∈
P b
l (Th;Rd×d), and all F ∈ Fh, we have

ah(uh, ξ1K) = (sh(uh), e(ξ))L2(K) − nh(uh, ξ1K)− nh(ξ1K ,uh)
= (sh(uh), e(ξ))L2(K) −

∑

F∈FK∩(F◦
h∪Fd

h)

({sh(uh)}nF , ǫK,F ξ)L2(F )

−
∑

F∈FK∩(F◦
h∪Fd

h)

(LlF ([[uh]]), 2µe(ξ))L2(K),

bh(ξ1K , ph) = − (ph,∇·ξ)L2(K) +
∑

F∈FK∩(F◦
h∪Fd

h)

({ph}, ǫK,Fξ·nF )L2(F )

= − (phI, e(ξ))L2(K) +
∑

F∈FK∩(F◦
h
∪Fd

h
)

({phI}nF , ǫK,F ξ)L2(F ),

suh(uh, ξ1K) =
∑

F∈FK∩(F◦
h∪Fd

h)

̟u 2µ

hF
([[uh]], ǫK,F ξ)L2(F ),

and

snh((uh, ph), (ξ1K , 0)) =
∑

F∈FK∩Fn
h

̟n hF
µ

(rh(uh, ph)n,−(2µ)e(ξ)n)L2(F )

= −
∑

F∈FK∩Fn
h

2̟nhF (L
l
F (rh(uh, ph)n), e(ξ))L2(K).

Recalling the definition of the global lifting

Llh(uh, ph) :=
∑

F∈F◦
h∪Fd

h

LlF ([[uh]]) +
∑

F∈Fn
h

̟n hF
µ
LlF (rh(uh, ph)n),

and the definition of the discrete total stress tensor r̃lh(uh, ph) := rh(uh, ph) + 2µLlh(uh, ph), this
leads to

−(r̃lh(uh, ph), e(ξ))L2(K) +
∑

F∈FK
ǫK,F (Φ

u
F (uh, ph), ξ)L2(F ) = (f , ξ)L2(K),

with the flux

Φu
F (uh, ph) :=

{
{rh(uh, ph)}nF +̟u 2µ

hF
[[uh]] if F ∈ F◦

h ∪ Fd
h ,

0 if F ∈ Fn
h .

Let now ζ ∈ Pkp and let us use (0, ζ1K) as a test function in the discrete problem. We obtain

(g, ζ)L2(K) = − bh(uh, ζ1K) + sph(ph, ζ1K) + snh((uh, ph), (0, ζ1K)).

Using the identity (63.27), we observe that

−bh(uh, ζ1K) = − (uh,∇ζ)L2(K) +
∑

F∈FK∩(F◦
h∪Fn

h)

({uh}·nF , ǫK,F ζ)L2(F ),
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sph(ph, ζ1K) =
∑

F∈FK∩F◦
h

̟p hF
µ

([[ph]], ǫK,F ζ)L2(F ),

and

snh((uh, ph), (0, ζ1K)) =
∑

F∈FK∩Fn
h

̟n hF
µ

(rh(uh, ph)n, ζn)L2(F ).

Altogether, we obtain

−(uh,∇ζ)L2(K) +
∑

F∈FK
ǫK,F (Φ

p
F (uh, ph), ζ)L2(F ) = (g, ζ)L2(K),

with the flux

Φp
F (uh, ph) :=





{uh}·nF +̟p hF
µ [[ph]] if F ∈ F◦

h ,

0 if F ∈ Fd
h ,

uh·n+̟n hF
µ n

T
rh(uh, ph)n if F ∈ Fn

h .

Exercise 63.6 (Inf-sup conditions, dG). (i) Let qh ∈ Qh\{0}. Let wqh ∈ Vd be the function
introduced in (62.16), i.e.,

∇·wqh = −µ−1qh, βD|wqh |H1(D) ≤ µ−1‖qh‖L2(D),

with βD > 0. Let wh := IIIbh(wqh) be the L2-orthogonal projection of wqh onto Vh. Recall that

‖v −IIIbh(v)‖L2(K) + hK |IIIbh(v)|H1(K) ≤ chK |v|H1(K),

for all K ∈ Th and all v ∈H1(K). Let us set B := supvh∈Vh

|bh(vh,qh)|
‖vh‖Vh

. Recall that we have shown

in (63.26) that

µ−1‖qh‖2L2(D) = bh(wh, qh) +
∑

F∈F◦
h

([[qh]]nF , {wh −wqh})L2(F ) =: T1 + T2,

where we used that ∂Dn = ∅ to drop the subset Fn
h in T2. We also used that ku ≥ kp to establish

that (∇hqh,wqh)L2(D) = (∇hqh,wh)L2(D). Owing to (63.25), we infer that

|T1| ≤ B‖wh‖Vh ≤ cBµ− 1
2 ‖qh‖L2(D).

Using the Cauchy–Schwarz inequality and since h
− 1

2

F ‖wh−wqh‖L2(F ) ≤ c|wqh |H1(K) for allK ∈ Th
and all F ∈ FK , we have

|T2| ≤ c |qh|Spµ
1
2 |wqh |H1(D) ≤ c′ |qh|Spµ− 1

2 ‖qh‖L2(D).

Putting everything together leads to the expected inf-sup condition (63.29) on bh.

(ii) Let (vh, qh) ∈ Yh and set S := sup(wh,rh)∈Yh
|th((vh,qh),(wh,rh))|

‖(wh,rh)‖Yh
. Recall that we have

α
(
‖vh‖2Vh + |qh|2Sp

)
≤ S‖(vh, qh)‖Yh ,
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with α > 0 and where we dropped the contribution from snh since ∂Dn = ∅. Using the hint (i.e.,
the identity (63.28)) and the inf-sup condition on bh yields

c µ− 1
2 ‖qh‖L2(D) ≤ sup

wh∈Vh

|bh(wh, qh)|
‖wh‖Vh

+ |qh|Sp

= sup
wh∈Vh

|th((vh, qh), (wh, 0))− ah(vh,wh)− suh(vh,wh)|
‖wh‖Vh

+ |qh|Sp

≤ sup
wh∈Vh

|ah(vh,wh) + suh(vh,wh)|
‖wh‖Vh

+ S+ |qh|Sp ≤ c ‖vh‖Vh + S+ |qh|Sp ,

where we used the boundedness of ah + suh in the second line (which follows by using the Cauchy–
Schwarz inequality and a discrete trace inequality to bound nh) to infer that

sup
wh∈Vh

|ah(vh,wh) + suh(vh,wh)|
‖wh‖Vh

≤ c ‖vh‖Vh ,

and the fact that ‖(wh, 0)‖Yh = ‖wh‖Vh (since ∂Dn = ∅) to infer that

sup
wh∈Vh

|th((vh, qh), (wh, 0))|
‖wh‖Vh

≤ S.

Putting everything together leads to ‖(vh, qh)‖2Yh ≤ c(S2 + S‖(vh, qh)‖Yh), and we conclude by
invoking Young’s inequality.



Chapter 64

Bochner integration

Exercises

Exercise 64.1 (Strong measurability). Prove the statement made in Example 64.8. (Hint :
use Theorem 1.17.)

Exercise 64.2 (Bochner integral). Let f : J → V be a Bochner integrable function and let
(fn)n∈N be a countable sequence of simple functions satisfying the assumptions of Definition 64.11.
(i) Show that

∫
J fn(t)dt has a limit when n→∞. (Hint : prove that it is a Cauchy sequence.) (ii)

Show that if (fn)n∈N and (gn)n∈N are two sequences of simple functions satisfying the assumptions
of Definition 64.11, then limn→∞

∫
J fn(t)dt = limn→∞

∫
J gn(t)dt.

Exercise 64.3 (Lp(J ;V )). Let f be a Bochner integrable function. (i) Prove that ‖
∫
J f(t)dt‖V ≤∫

J ‖f(t)‖V dt. (ii) Prove that Lp(J ;V ) →֒ L1(J ;V ). (iii) Let (fn)n∈N be a sequence in L1(J ;V )
s.t. (fn(t))n∈N converges to f(t) in V and ‖fn(t)‖V ≤ g(t) with g ∈ L1(J ;R) for a.e. t ∈ J. Show
that f ∈ L1(J ;V ) and (fn)n∈N converges to f in L1(J ;V ).

Exercise 64.4 (Lq((0, 1);Lp(0, 1))). Let p ∈ [1,∞). Let J := (0, 1) and g : J → Lp(D) with
D := (0, 1) be defined by g(t) := 1(0,t) for all t ∈ J. (i) Show that g is almost separably valued.
(ii) Show that g is weakly measurable. (iii) Let q ∈ [1,∞]. Show that g ∈ Lq(J ;V ) and compute
‖g‖Lq(J;V ).

Exercise 64.5 (Constants). Let V be a Banach space and f ∈ L1
loc(J ;V ). Assume that f is

weakly differentiable and ∂tf = 0. Show that there is a ∈ V such that f(t) = a a.e. t ∈ J. (Hint :
see the proof of Lemma 2.11.)

Exercise 64.6 (Linear map). Prove Lemma 64.34.

Exercise 64.7 (Xp,q(J ;V,W )). Prove that Xp,q(J ;V,W ) is a Banach space.

Exercise 64.8 (Continuous embedding). Let J := (0, T ), T > 0. The goal is to prove that

Xp,q(J ;V,W ) →֒ C0(J ;W ). Let u ∈ Xp,q(J ;V,W ). Set v(t) := ∂tu(t) and w(t) :=
∫ t
0
v(τ) dτ . (i)

Show that w ∈ C0(J ;W ). (Hint : use Lebesgue’s dominated convergence theorem.) (ii) Let ρ(τ) :=

ηe
− 1

1−|τ|2 if |τ | ≤ 1 and ρ(τ) := 0 otherwise, with η s.t.
∫
R
ρ(τ) dτ = 1. Let 0 < s < t < T and let

N be the smallest integer s.t. N ≥ max(1s ,
1

T−t ). Define ρn(τ) := nρ(nτ) for all n ≥ N . Consider



340 Chapter 64. Bochner integration

the sequence of smooth functions φn(τ) :=
∫ τ
0
(ρn(s− ξ) − ρn(t− ξ)) dξ. What is limn→∞ φn(τ)?

(Hint :
∫
R
ρn(s − ξ)f(ξ) dξ → f(s) for a.e. s and all f ∈ L1(R).) (iii) Show that δn(s, t) :=∫ 1

−1 ρn(y)(u(s−
y
n )−u(t−

y
n )) dy = −

∫ T
0 v(τ)φn(τ) dτ . (iv) Compute limn→∞ δn(s, t). (Hint : pass

to the limit in the above equality and accept as a fact that limn→∞
∫ 1

−1
ρ(τ)f(s − τ

n ) dτ = f(s)

for a.e. s and all f ∈ L1(J ;B), where B is either V or W.) (v) Prove that u ∈ C0(J ;W ) and

u ∈ C0, q−1
q (J ;W ) if q > 1.

Exercise 64.9 (Time derivative of product). Let α ∈ C1(J ;R) and u ∈ Xp,q(J ;V,W ). Show
that ∂t(αu) = u∂tα+ α∂tu (see Definition 64.35).

Solution to exercises

Exercise 64.1 (Strong measurability). Let i ∈ {1:I}. Since ψi is integrable and reasoning
on the positive and negative parts of ψi, we infer from Theorem 1.17 that there exists a sequence
of scalar-valued simple functions (gi,n)n∈N such that limn→∞ gi,n(t) = ψi(t) for a.e. t ∈ J. After
observing that the sum of two simple functions is still a simple function, we conclude that fn(t) :=∑
i∈{1: I} gi,n(t)ϕi is a V -valued simple function. Therefore, we have for a.e. t ∈ J,

lim
n→∞

‖f(t)− fn(t)‖V ≤ lim
n→∞

∑

i∈{1:I}
|ψi(t)− gi,n(t)|‖ϕi‖V

≤
∑

i∈{1: I}
lim
n→∞

|ψi(t)− gi,n(t)|‖ϕi‖V = 0,

showing that f is strongly measurable.

Exercise 64.2 (Bochner integral). (i) Let zn :=
∫
J
fn(t)dt. Lemma 64.2 implies that

‖zm − zn‖V ≤
∫

J

‖fm(t)− fn(t)‖V dt

≤
∫

J

(‖fm(t)− f(t)‖V + ‖fn(t)− f(t)‖V ) dt

=

∫

J

‖fm(t)− f(t)‖V dt+
∫

J

‖fn(t)− f(t)‖V dt.

For all ǫ > 0, there is N(ǫ) such that
∫
J ‖fm(t) − f(t)‖V dt +

∫
J ‖fn(t) − f(t)‖V dt ≤ ǫ for all

m,n ≥ N(ǫ) by assumption. This proves that (zn)n∈N is a Cauchy sequence. Hence, there exists
z ∈ V s.t. zn → z as n→∞ since V is complete.
(ii) Let (fn)n∈N and (gn)n∈N be two sequences of simple functions satisfying the assumptions of
Definition 64.11. Lemma 64.2 implies that

∥∥∥∥
∫

J

fn(t)dt−
∫

J

gn(t)dt

∥∥∥∥
V

≤
∫

J

‖fn(t)− gn(t)‖V dt

≤
∫

J

‖fn(t)− f(t)‖V dt+
∫

J

‖gn(t)− f(t)‖V dt.

The assumptions of Definition 64.11 imply that

0 ≤ lim sup
n→∞

∥∥∥∥
∫

J

fn(t)dt−
∫

J

gn(t)dt

∥∥∥∥
V

≤ 0,
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which proves the statement.

Exercise 64.3 (Lp(J ;V )). (i) Let (fn)n∈N be a countable sequence of simple functions converging
to f . Invoking the triangle inequality, Lemma 64.2, and again the triangle inequality, we infer that

∥∥∥∥
∫

J

f(t)dt

∥∥∥∥
V

≤
∥∥∥∥
∫

J

(f(t)− fn(t))dt
∥∥∥∥
V

+

∥∥∥∥
∫

J

fn(t)dt

∥∥∥∥
V

≤
∥∥∥∥
∫

J

(f(t)− fn(t))dt
∥∥∥∥
V

+

∫

J

‖fn(t)‖V dt

≤
∥∥∥∥
∫

J

(f(t)− fn(t))dt
∥∥∥∥
V

+

∫

J

‖fn(t)− f(t)‖V dt+
∫

J

‖f(t)‖V dt.

The conclusion follows from

lim
n→∞

∥∥∥∥
∫

J

(f(t)− fn(t))dt
∥∥∥∥
V

= 0, lim
n→∞

∫

J

‖f(t)− fn(t)‖V dt = 0,

which are consequences of the definition of f being Bochner integrable.
(ii) Since the function φ : J ∋ t 7−→ ‖f(t)‖V ∈ R is integrable and J is bounded, we have

‖f‖L1(J;V ) := ‖φ‖L1(J) ≤ |J |
p−1
p ‖φ‖Lp(J) =: |J | p−1

p ‖f‖Lp(J;V ),

which proves the statement for p ∈ [1,∞). The case p =∞ follows from the inequality

‖f‖L1(J;V ) := ‖φ‖L1(J) ≤ ‖φ‖L∞(J) =: ‖f‖L∞(J;V ).

(iii) We first show that the function f is strongly measurable. For all k ∈ N, there is nk ∈ N s.t.
‖f(t)− fnk(t)‖V ≤ (k + 1)−1, and since fnk is strongly measurable, there is a simple function of
the form

∑
l∈{1:mk} vl1Al(t) s.t.

∥∥∥∥fhk(t)−
∑

l∈{1:mk}
vl1Al(t)

∥∥∥∥
V

≤ (k + 1)−1.

Then the sequence of simple functions (
∑

l∈{1:mk} vl1Al(t))k∈N converges simply to f . Applying

Lebesgue’s dominated convergence theorem in L1(J ;R) to the sequence of functions (‖fn‖V )n∈N,
i.e., ‖fn(t)‖V → ‖f(t)‖V and ‖fn(t)‖V ≤ g(t) for a.e. t ∈ J, we infer that ‖f‖V is in L1(J ;R).
Hence, f is Bochner integrable and f ∈ L1(J ;V ). Applying again Lebesgue’s dominated conver-
gence theorem to the sequence (‖fn − f‖V )n∈N, i.e., ‖fn(t) − f(t)‖V → 0 and ‖fn(t) − f(t)‖V ≤
g(t) + ‖f(t)‖V for a.e. t ∈ J, we infer that

∫
J
‖fn(t) − f(t)‖V dt → 0 as n→ ∞. This proves that

(fn)n∈N converges to f in L1(J ;V ).

Exercise 64.4 (Lq((0, 1);Lp(0, 1))). (i) g is almost separably valued since V := Lp(D) is separable
for all p ∈ [1,∞) (see e.g., Brezis [6, Thm. 4.13].
(ii) Identifying (Lp(D))′ with Lp

′

(D) (with the convention that p′ = ∞ for p = 1; see, e.g., [6,
Thm. 4.11]), we have

〈w, g(t)〉(Lp)′,Lp =

∫

D

w(x)g(t)(x) dx =

∫ t

0

w(x) dx,

for all w ∈ (Lp(D))′ = Lp
′

(D). The function J ∋ t 7→
∫ t
0 w(x) dx is measurable since it is

continuous. Hence, g is weakly measurable.
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(iii) We infer from Pettis measurability theorem (Theorem 64.4) that g is strongly measurable. To

conclude, we have to prove that
∫ 1

0
‖g(t)‖qV dt < ∞ if q ∈ [1,∞) and ess supt∈(0,1) ‖g(t)‖V < ∞ if

q =∞. We have ‖g(t)‖V = ‖g(t)‖Lp(0,1) = t
1
p , and for all q ∈ [1,∞), we have

∫

J

‖g(t)‖qV dt =
∫ 1

0

t
q
pdt =

p

q + p
.

Hence, ‖g‖Lq(J;V ) = ( p
q+p )

1
q <∞. We also have ‖g‖L∞(J;V ) = 1 <∞.

Exercise 64.5 (Constants). We follow the proof of Lemma 2.11. Let ρ ∈ C∞
0 (J ;R) be s.t.∫

J
ρ dx = 1, and set cρ :=

∫
J
f(ξ)ρ(ξ) dξ ∈ V. Let ϕ be an arbitrary function in C∞

0 (J ;R) and set

cϕ :=
∫
J
ϕ(ξ) dξ. The function ψ(t) :=

∫ t
0
(ϕ(ξ) − cϕρ(ξ)) dξ is in C∞

0 (J ;R) by construction, and
we have ∂tψ(t) = ϕ(t) − cϕρ(t). Since

∫
J
f(t)∂tψ(t)dt = −

∫
J
(∂tf(t))ψ(t)dt = 0 by assumption,

we infer that
∫

J

f(t)ϕ(t)dt =

∫

J

f(t)(∂tψ(t) + cϕρ(t))dt = cϕ

∫

J

f(t)ρ(t)dt = cρ

∫

J

ϕ(t) dx.

Hence,
∫
J(f(t)− cρ)ϕ(t)dt = 0 for all ϕ ∈ C∞

0 (J ;R). Corollary 64.28 shows that f = cρ.

Exercise 64.6 (Linear map). Let v ∈ L1
loc(J ;V ) and assume that v is weakly differentiable in

L1
loc(J ;V ).
Let us first verify that K(v) ∈ L1

loc(J ;W ). Let J0 be a compact subset of J. Then 1J0v ∈
L1(J ;V ), and Corollary 64.14 implies that K(1J0v) ∈ L1(J ;W ) which proves that K(v) is inte-
grable on J0 since K(v)(t) = K(v(t)) = K(1J0(t)v(t)) = K(1J0v)(t) for a.e. t ∈ J0.

Let us now prove that K(v) is weakly differentiable with ∂t(K(v)) = K(∂tv). Let φ ∈ C∞
0 (J).

We have φ∂tv ∈ L1(J ;V ) because ∂tv ∈ L1
loc(J ;V ) and φ is compactly supported in J. Ow-

ing to Corollary 64.14, we infer that K(φ∂tv) ∈ L1(J ;W ). But the linearity of K implies that
φ(t)K(∂tv(t)) = K(φ(t)∂tv(t)) = K(φ∂tv)(t) for a.e. t ∈ J . Hence, we have

∫

J

φ(t)K(∂tv(t))dt =

∫

J

K(φ(t)∂tv)(t)dt = K
(∫

J

φ(t)∂tv(t)dt
)

= K
(
−
∫

J

v(t)∂tφ(t)dt
)
= −

∫

J

K(v(t)∂tφ(t))dt

= −
∫

J

K(v(t))∂tφ(t)dt.

This proves that K(v) is weakly differentiable with ∂t(K(v)) = K(∂tv).

Exercise 64.7 (Xp,q(J ;V,W )). Let us consider a Cauchy sequence (vn)n∈N in Xp,q(J ;V,W ).
Then vn → v in Lp(J ;V ) and ∂tvn → w ∈ Lq(J ;W ). Let φ ∈ C∞

0 (J ;R). We have
∫
J φ(t)vn(t)dt→∫

J
φ(t)v(t)dt in V since

∥∥∥∥
∫

J

φ(t)(vn(t)− v(t))dt
∥∥∥∥
V

≤ ‖φ‖C0(J;R)‖vn − v‖L1(J;V )

≤ ‖φ‖C0(J;R)T
1− 1

p ‖vn − v‖Lp(J;V ).

As a result, we have

−
∫ T

0

φ′(t)v(t)dt ← −
∫ T

0

φ′(t)vn(t)dt =
∫ T

0

φ(t)∂tvn(t)dt→
∫ T

0

φ(t)w(t)dt.

We conclude that ∂tv = w, so that v ∈ Xp,q(J ;V,W ).
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Exercise 64.8 (Continuous embedding). (i) Observe first that the definitions of v and w imply

that v ∈ Lq(J ;W ) and w(t) ∈ W for all t ∈ J since ‖w(t)‖W ≤ ‖v‖L1(J;W ) ≤ T
q−1
q ‖v‖Lq(J;W ).

Let t ∈ J and tn ∈ J be such that tn → t as n → ∞. Let Jn be the interval (t, tn) or (tn, t), and
let 1Jn be the indicator function of Jn. We have

‖w(tn)− w(t)‖W =

∥∥∥∥
∫ tn

t

v(τ) dτ

∥∥∥∥
W

=

∫

J

1Jn‖v(τ)‖W dτ.

The sequence 1Jn(τ)‖v(τ)‖W converges a.e. to 0 and ‖1Jnv‖W ≤ ‖v‖W . Hence, Lebesgue’s dom-
inated convergence theorem implies that ‖w(tn) − w(t)‖W → 0 as tn → t, thereby proving that
w ∈ C0(J ;W ). Notice in passing that if q > 1, we also have

‖w(s)− w(t)‖W =

∥∥∥∥
∫ s

t

v(τ) dτ

∥∥∥∥
W

≤
(∫ s

t

dτ

) q−1
q

‖v‖Lq(J;W )

≤ |s− t|1− 1
q ‖v‖Lq(J;W ),

which shows that w in C0,1− 1
q (J ;W ).

(ii) Let us evaluate limn→∞ φn(τ). Let 1(0,τ) be the indicator function of (0, τ). We have

φn(τ) =

∫ +∞

−∞
(ρn(s− ξ)− ρn(t− ξ))1(0,τ)(ξ) dξ.

It is a standard result about mollifiers that
∫ +∞
−∞ ρn(s− ξ)f(ξ) dξ converges to f(s) for a.e. s and

all f ∈ L1(R). Hence, we have

lim
n→∞

φn(τ) = 1(0,τ)(s)− 1(0,τ)(t) = 1(s,t)(τ), ∀τ 6∈ {s, t}.

(iii) Observe first that the definition of δn(s, t) makes sense since 0 ≤ s − y
n ≤ t − y

n ≤ T for all
y ∈ [−1, 1], because we have assumed that n ≥ N ≥ max(1s ,

1
T−t ) and 0 < s < t < T . Up to two

changes of variable, we have

δn(s, t) =

∫ 1

−1

ρ(y)(u(s− y

n
)− u(t− y

n
)) dy

=

∫

J

(ρn(s− z)− ρn(t− z))u(z) dz.

Since φ′n(τ) = ρn(s− τ)− ρn(t− τ), we infer that

δn(s, t) =

∫

J

φ′n(τ)u(τ) dτ.

Notice that φn is in C∞
0 (R;R). By definition of v(τ) := ∂tu(τ) (see Definition 64.29), we have

δn(s, t) =

∫

J

φ′n(τ)u(τ) dτ := −
∫

J

φn(τ)v(τ) dτ.

(iv) We observe that

∥∥∥∥δn(s, t) +
∫ t

s

v(τ) dτ

∥∥∥∥
W

≤
∫

J

|φn(τ)− 1(s,t)(τ)|‖v(τ)‖W dτ.
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We now apply Lebesgue’s dominated convergence theorem and conclude that

lim
n→∞

δn(s, t) = −
∫ t

s

v(τ) dτ = w(s) − w(t).

Notice that we also have
lim
n→∞

δn(s, t) = u(s)− u(t),

since
∫ 1

−1
ρ(y)u(s− y

n ) dy → u(s) as n→∞ (recall that u ∈ Lp(J ;V ) →֒ L1(J ;V )).
(v) The above argument shows that w and u differ by a constant, i.e., there is a ∈ W such that
u = w + a a.e. on J. This proves that u ∈ C0(J ;W ) since we have already established that

w ∈ C0(J ;W ). Actually, we have also established that u ∈ C0, q−1
q (J ;W ) if q > 1.

Exercise 64.9 (Time derivative of product). Let φ ∈ C∞
0 (J ;R). Observing that αu ∈

L1
loc(J ;V ), we have

∫

J

u(t)α(t)∂tφ(t)dt =

∫

J

u(t)∂t(α(t)φ(t))dt −
∫

J

u(t)φ(t)∂tα(t)dt.

Since C∞
0 (J) is dense in C1

0 (J), we can apply (64.3) for every test function in C1
0 (J) (just apply

Lebesgue’s dominated convergence theorem). By abusing the notation and identifying u with its
image by the canonical injection mapping from V to W, we have

∫

J

u(t)α(t)∂tφ(t)dt = −
∫

J

(∂tu(t))α(t)φ(t)dt −
∫

J

u(t)φ(t)∂tα(t)dt

= −
∫

J

(α(t)∂tu(t) + u(t)∂tα(t))φ(t)dt,

which proves that ∂t(αu) = u∂tα+ α∂tu.
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Weak formulation and
well-posedness

Exercises

Exercise 65.1 (Lp-integrability of A(u)). Let u ∈ Lp(J ;V ) and let A(u) be defined in (65.6).
Prove that A(u) ∈ Lp(J ;V ′) with ‖A(u)‖Lp(J;V ′) ≤M‖u‖Lp(J;V ). (Hint : use Theorem 64.12.)

Exercise 65.2 (Ultraweak formulation). Write the ultraweak formulation for the heat equa-
tion.

Exercise 65.3 (Gronwall’s lemma). Let J := (0, T ), T > 0. Let α, β, u ∈ L1(J ;R) be s.t.

αβ, βu ∈ L1(J ;R), β(t) ≥ 0, and u(t) ≤ α(t) +
∫ t
0 β(r)u(r) dr for a.e. t ∈ J . (i) Prove that

v(t) := e−
∫ t
0
β(r) dr

∫ t
0
β(r)u(r) dr is inW 1,1(J ;R). (ii) Prove that v(t) ≤

∫ t
0
α(r)β(r)e−

∫ r
0
β(s) ds dr.

(iii) Prove that

u(t) ≤ α(t) +
∫ t

0

α(s)β(s)e
∫
t
s
β(r) dr ds. (65.1)

(Hint : use Step (ii) and
∫ t
0
β(r)u(r) dr = v(t)e

∫ t
0
β(r) dr.) (iv) Assume now that α is nondecreasing,

i.e., α(r) ≤ α(t) for a.e. r, t ∈ J s.t. r ≤ t. Prove that for a.e. t ∈ J,

u(t) ≤ α(t)e
∫ t
0
β(r) dr. (65.2)

(v) Assume that β is constant and α ∈ W 1,1(J). Prove that for a.e. t ∈ J, u(t) ≤ α(0)eβt +∫ t
0
α′(r)eβ(t−r) dr. Note: owing to the assumption β(t) ≥ 0, Gronwall’s lemma can be used to show

that the function u has at most exponential growth in time, but it cannot be used to show that
u has exponential decay. However, if the assumption u(t) ≤ α(t) +

∫ t
0
β(r)u(r) dr is replaced by

the stronger assumption u′(t) ≤ α′(t) + β(t)u(t), then u(t) ≤ e
∫
t
0
β(r) dru(0) +

∫ t
0 α

′(r)e
∫
t
r
β(s) ds dr

regardless of the sign of β.

Exercise 65.4 (Exponentially decaying estimate). (i) Prove the a priori estimate (65.17).
(Hint : adapt the proof of Lemma 65.10 by considering the test function (0, w) ∈ Y with w(t) :=

e2
t
ρu(t) and the time scale ρ := 2

ι2L,V
α .) (ii) Assuming that f ∈ L∞((0,∞);V ′), prove that

lim supt→∞ ‖u(t)‖L ≤ ιL,V
α ‖f‖L∞((0,∞);V ′). (Hint : use (65.17).)
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Solution to exercises

Exercise 65.1 (Lp-integrability of A(u)). Assume first that p ∈ [1,∞). Owing to (65.5b), we
infer the bound

(∫

J

‖A(t)(u(t))‖pV ′dt

) 1
p

≤M
(∫

J

(u(t))‖pV dt
) 1
p

=M‖u‖Lp(J;V ).

Bochner’s theorem (Theorem 64.12) implies that A(u) ∈ Lp(J ;V ′) since A(u) is strongly measur-
able. A similar argument applies if p =∞.

Exercise 65.2 (Ultraweak formulation). The ultraweak formulation for the heat equation
leads to the trial space

Xuw := L2(J ;H1
0 (D))

and to the test space

Yuw := {w ∈ L2(J ;H1
0 (D)) | ∂tw ∈ L2(J ;H−1(D)), w(T ) = 0}.

The corresponding forms are

buw(v, w) :=

∫

J

(
〈v(t),−∂tw(t)〉 + (κ(t)∇v(t),∇w(t))L2(D)

)
dt,

ℓuw(w) := (u0, w(0)L2(D) +

∫

J

〈f(t), w(t)〉dt.

Exercise 65.3 (Gronwall’s lemma). (i) Let us consider the function

v(t) := e−
∫ t
0
β(r) dr

∫ t

0

β(r)u(r) dr.

The assumptions imply that v is continuous on J . The weak derivative of v is

v′(t) = β(t)

(
u(t)−

∫ t

0

β(r)u(r) dr

)
e−

∫
t
0
β(r) dr.

The assumptions imply that v′ ∈ L1(J ;R) (notice that βu ∈ L1(J ;R)), thereby showing that
v ∈W 1,1(J ;R).
(ii) Observing that v(0) = 0, the above computation shows that

v(t) =

∫ t

0

β(r)

(
u(r)−

∫ r

0

β(s)u(s) ds

)
e−

∫ r
0
β(s) ds dr,

which, in turn, implies that

v(t) ≤
∫ t

0

α(r)β(r)e−
∫
r
0
β(s) ds dr,

since β(t) ≥ 0 for a.e. t ∈ J.
(iii) We follow the hint. The definition of v implies that

∫ t

0

β(r)u(r) dr = v(t)e
∫ t
0
β(r) dr,
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and Step (ii) implies that

∫ t

0

β(r)u(r) dr ≤ e
∫
t
0
β(r) dr

∫ t

0

α(r)β(r)e−
∫
r
0
β(s) ds dr

=

∫ t

0

α(r)β(r)e−
∫ r
t
β(s) ds dr,

observing that αβ ∈ L1(J ;R) by assumption. This, in turn, implies the expected inequality: For
a.e. t ∈ J,

u(t) ≤ α(t) +
∫ t

0

α(r)β(r)e
∫
t
r
β(s) ds dr.

(iv) Assume now that α is nondecreasing, i.e., α(r) ≤ α(t) for a.e. r, t ∈ J s.t. r ≤ t. The above
inequality implies that

u(t) ≤ α(t)
(
1 +

∫ t

0

β(r)e
∫
t
r
β(s) ds dr

)

= α(t)

(
1−

∫ t

0

d

dr

(∫ t

r

β(s) ds
)
e
∫ t
r
β(s) ds dr

)

= α(t)

(
1−

∫ t

0

d

dr

(
e
∫ t
r
β(s) ds

)
dr

)
.

We can now conclude that for a.e. t ∈ J, we have

u(t) ≤ α(t)e
∫ t
0
β(r) dr.

(v) Let us apply Step (iii) assuming that β is constant and α ∈ W 1,1(J). We obtain for a.e. t ∈ J,

u(t) ≤ α(t) +
∫ t

0

α(r)βeβ(t−r) dr

= α(t) −
∫ t

0

α(r)
d

dr
eβ(t−r) dr

= α(t) − α(t) + α(0)eβt +

∫ t

0

α′(r)eβ(t−r) dr

= α(0)eβt +

∫ t

0

α′(r)eβ(t−r) dr.

Exercise 65.4 (Exponentially decaying estimate). (i) Let t ∈ (0, T ]. Following the hint,

let us consider the function w ∈ L2(J ;V ) s.t. w(t) := e2
t
ρ u(t). We first observe that ∂tw(τ) :=

2
ρe

2 τρ u(τ) + e2
τ
ρ ∂tu(τ) for all τ ∈ (0, t). Invoking Lemma 64.40 (integration by parts in time over

the interval (0, t)), we infer that

∫ t

0

〈∂tu(τ), w(τ)〉V ′,V dτ = −1

ρ

∫ t

0

e2
τ
ρ ‖u(τ)‖2L dτ +

1

2
e2

t
ρ ‖u(t)‖2L −

1

2
‖u0‖2L.

Using the boundedness of the embedding V →֒ L and the definition of ρ gives

1

ρ
‖u(τ)‖2L =

α

2ι2L,V
‖u(τ)‖2L ≤

α

2
‖u(τ)‖2V .
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Hence, we have

∫ t

0

〈∂tu(τ), w(τ)〉V ′,V dτ ≥ −α
2

∫ t

0

e2
τ
ρ ‖u(τ)‖2V dτ +

1

2
e2

t
ρ ‖u(t)‖2L −

1

2
‖u0‖2L.

The coercivity property (65.5c) implies that

1

2
e2

t
ρ ‖u(t)‖2L −

1

2
‖u0‖2L +

1

2
α

∫ t

0

e2
τ
ρ ‖u(τ)‖2V dτ

≤
∫ t

0

〈∂tu(τ), w(τ)〉V ′,V dτ + α

∫ t

0

e2
τ
ρ ‖u(τ)‖2V dτ

≤
∫ t

0

〈∂tu(τ), w(τ)〉V ′,V dτ +

∫ t

0

e2
τ
ρ 〈A(τ)(u(τ)), u(τ)〉V ′,V dτ

=

∫ t

0

〈∂tu(τ), w(τ)〉V ′,V dτ +

∫ t

0

〈A(τ)(u(τ)), w(τ)〉V ′,V dτ.

Moreover, we have

∫ t

0

〈∂tu(τ) +A(τ)(u(τ)), w(τ)〉V ′,V dτ = b(u, (0, w)) = ℓ((0, w))

=

∫ t

0

〈f(τ), w(τ)〉V ′,V dτ

≤
∫ t

0

e2
τ
ρ ‖f(τ)‖V ′‖u(τ)‖V dτ

≤
∫ t

0

e2
τ
ρ
(1
2
α‖u(τ)‖2V +

1

2α
‖f(τ)‖2V ′

)
dτ

=
1

2
α

∫ t

0

e2
τ
ρ ‖u(τ)‖2V dτ +

1

2α

∫ t

0

‖e τρ f(τ)‖2V ′ dτ,

where we used Young’s inequality in the last bound. Putting everything together, we conclude
that

1

2
e2

t
ρ ‖u(t)‖2L −

1

2
‖u0‖2L ≤

1

2α

∫ t

0

‖e τρ f(τ)‖2V ′ dτ,

and rearranging the terms leads to the a priori estimate (65.17).
(ii) Since f ∈ L∞((0,∞);V ′), taking square roots in the a priori estimate (65.17) and recalling
that Jt := (0, t), we infer that

‖u(t)‖L ≤ e−
t
ρ ‖u0‖L + α− 1

2 ‖e− t−·
ρ f‖L2(Jt;V ′)

≤ e− t
ρ ‖u0‖L + α− 1

2 ‖e−2 t−·
ρ ‖

1
2

L1(Jt)
‖f‖L∞(Jt;V ′)

≤ e− t
ρ ‖u0‖L +

ιL,V
α
‖f‖L∞(Jt;V ′),

since ‖e−2 t−·
ρ ‖L1(Jt) =

∫ t
0
e−2 t−sρ ds = ρ

2 (1 − e
−2 tρ ) ≤ ρ

2 =
ι2L,V
α . The conclusion is straightforward

since limt→∞ e−
t
ρ = 0.
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Semi-discretization in space

Exercises

Exercise 66.1 (L2(J ;V )-estimate using elliptic projection). Use the notation from §66.3.1.
Assume that the elliptic projection is time-independent and set η(t) := u(t)−ΠE

h(u(t)) for all t ∈ J.
Prove that

‖u− uh‖L2(J;V ) ≤ ‖η‖L2(J;V ) +
1

α
‖∂tη‖L2(J;V ′) +

2√
α
‖η(0)‖L.

(Hint : use the error equation (66.12).)

Exercise 66.2 (Naive C0(J ;L)-estimate). Use the proof of Theorem 66.7 to derive an upper
bound on ‖u − uh‖C0(J;L). (Hint : integrate (66.10) in time over the interval Js := (0, s) for all

s ∈ (0, T ].) Assuming smoothness, is the convergence rate of this error estimate optimal for the
heat equation? What is the term that limits the convergence rate?

Exercise 66.3 (Theorem 66.9). Prove the error estimate (66.15). (Hint : see Exercise 65.4.)

Exercise 66.4 (Lemma 66.17). Let ΠE

h(t) ∈ L(H1
0 (D);Vh) be defined in (66.11) for the time-

dependent heat equation. Let u ∈ H1(J ;H1
0 (D)) and set η(t) := u(t) − ΠE

h(t;u(t)) for a.e. t ∈ J.
(i) Prove that

|∂tη(t)|H1(D) ≤ |∂tu(t)−ΠE

h(t; ∂tu(t))|H1(D) + ρ−1M
′

α
|η(t)|H1(D).

(ii) Prove (66.21). (Hint : use the adjoint problem a(t; v, ξ(t)) = (δh(t), v)L2(D) for all v ∈ H1
0 (D),

with δh(t) := ∂t(Π
E

h(t;u(t)))−ΠE

h(t; ∂tu(t)) for a.e. t ∈ J, and show that

‖δh(t)‖2L2(D) = a(t; δh(t), ξ(t)− wh) + ȧ(t; η(t), wh − ξ(t)) + ȧ(t; η(t), ξ(t)),

for all wh ∈ Vh.) (iii) Show that ‖ΠE

h(t;u(t))‖H1(J;Vh) ≤ c(α,M, M
′

ρ )‖u‖H1(J;V ) for all u ∈
C∞(J ;V ) and all h ∈ H.



350 Chapter 66. Semi-discretization in space

Solution to exercises

Exercise 66.1 (L2(J ;V )-estimate using elliptic projection). Using the test function wh :=
eh(t) for all t ∈ J in the error equation (66.12), integrating over time, and invoking Young’s
inequality gives

α‖eh‖2L2(J;V ) ≤
1

α
‖∂tη‖2L2(J;V ′) + ‖eh(0)‖2L,

where we dropped ‖eh(T )‖2L on the left-hand side. Dividing by α, taking the square root, using
that ‖eh(0)‖L ≤ 2‖η(0)‖L, and invoking the triangle inequality yields the assertion.

Exercise 66.2 (Naive C0(J ;L)-estimate). Integrating (66.10) in time over the interval Js :=
(0, s) for all s ∈ (0, T ), we infer that

‖eh(s)‖2L ≤
1

α
‖∂tη +A(t)η‖2L2(Js;V ′) + ‖eh(0)‖2L,

where we dropped the term α‖eh‖2L2(Js;V ) on the left-hand side. We now bound the right-hand

side by replacing Js by the full time interval J, then we exploit that s is arbitrary in (0, T ] on the
left hand-side (and the bound for s = 0 is obvious). We infer that

‖eh‖2C0(J;L)
≤ 1

α
‖∂tη +A(t)η‖2L2(J;V ′) + ‖eh(0)‖2L.

Taking the square root, observing that ‖∂tη + A(t)η‖L2(J;V ′) ≤ ‖∂tη‖L2(J;V ′) +M‖η‖L2(J;V ) and
since ‖eh(0)‖L ≤ ‖η(0)‖L, we infer that

1√
α
‖eh‖C0(J;L) ≤

1

α
‖∂tη‖L2(J;V ′) +

M

α
‖η‖L2(J;V ) +

1√
α
‖η(0)‖L.

Invoking the triangle inequality for u− uh = η − eh shows that

1√
α
‖u− uh‖C0(J;L) ≤

1

α
‖∂tη‖L2(J;V ′) +

M

α
‖η‖L2(J;V ) +

2√
α
‖η‖C0(J;L).

The second term on the right-hand side is the one that gives a convergence rate that is not optimal
for smooth solutions of the heat equation. Indeed, this term typically decays as O(hr), whereas
the other terms on the right-hand side decay as O(hr+1).

Exercise 66.3 (Theorem 66.9). We take vh(t) := ΠE

h(u(t)) for all t ∈ J, i.e., we work with the

error equation (66.12). Let us consider the test function wh(t) := e2
t
ρ eh(t) for all t ∈ J . Then we

can proceed as in Exercise 65.4 and invoke exactly the same arguments, leading to the bound

‖eh(t)‖L ≤
1√
α
‖e− t−·

ρ ∂tη‖L2(Jt;V ′) + e−
t
ρ ‖eh(0)‖L.

We conclude by invoking the bound ‖eh(0)‖L ≤ ‖η(0)‖L and the triangle inequality on u − uh =
η − eh.
Exercise 66.4 (Lemma 66.17). (i) Recalling (66.19), and using the coercivity of a and the
boundedness of ȧ, we infer that

α |∂t(ΠE

h(t;u(t))) −ΠE

h(t; ∂tu(t))|H1(D) ≤ sup
wh∈Vh

|a(t; ∂t(ΠE

h(t;u(t)))−ΠE

h(t; ∂tu(t)), wh)|
|wh|H1(D)

= sup
wh∈Vh

|ȧ(t; η(t), wh)|
|wh|H1(D)

≤ ρ−1M ′|η(t)|H1(D).
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Dividing by α and invoking the triangle inequality for

∂tη(t) = (∂tu(t)−ΠE

h(t; ∂tu(t)))− (∂t(Π
E

h(t;u(t)))−ΠE

h(t; ∂tu(t)))

proves the claim.
(ii) Let us set δh(t) := ∂t(Π

E

h(t;u(t))) − ΠE

h(t; ∂tu(t)). Considering the dual problem suggested in
the hint, we infer that

‖δh(t)‖2L2(D) = a(t; δh(t), ξ(t))

= a(t; δh(t), ξ(t)− wh) + a(t; δh(t), wh)

= a(t; δh(t), ξ(t)− wh) + ȧ(t; η(t), wh)

= a(t; δh(t), ξ(t)− wh) + ȧ(t; η(t), wh − ξ(t)) + ȧ(t; η(t), ξ(t)),

for all wh ∈ Vh, where we used (66.19) in the third line. Invoking the boundedness of a for the
first term, that of ȧ for the second term, and (66.20) for the third term, we infer that

‖δh(t)‖2L2(D) ≤
(
M |δh(t)|H1(D) + ρ−1M ′|η(t)|H1(D)

)
|ξ(t)− wh|H1(D)

+ ρ−1M ′′|η(t)|H1−s(D)|ξ(t)|H1+s(D).

Taking the infimum over wh ∈ Vh and using the approximation properties of finite elements, we
obtain

‖δh(t)‖2L2(D) ≤
(
c hs

(
M |δh(t)|H1(D) + ρ−1M ′|η(t)|H1(D)

)

+ ρ−1M ′′|η(t)|H1−s(D)

)
|ξ(t)|H1+s(D).

The elliptic regularity property |ξ(t)|H1+s(D) ≤ csmoα
−1ℓ1−sD ‖δh(t)‖L2(D) leads to

‖δh(t)‖L2(D) ≤ c α−1ℓ1−sD

(
hs
(
M |δh(t)|H1(D) + ρ−1M ′|η(t)|H1(D)

)

+ ρ−1M ′′|η(t)|H1−s(D)

)
.

Since |δh(t)|H1(D) ≤ ρ−1M ′

α |η(t)|H1(D) as established in Step (i), we infer that

‖δh(t)‖L2(D) ≤ c ρ−1α−1ℓ1−sD

(
hs
(
1 +

M

α

)
M ′|η(t)|H1(D)

)
+M ′′|η(t)|H1−s(D)

)
.

Since ‖η(t)‖L2(D) ≤ cMα hsℓ1−sD |η(t)|H1(D), the Riesz–Thorin theorem (Theorem A.27) implies that

|η(t)|H1−s(D) ≤ c
(
M
α

)s
hs

2

ℓ
s(1−s)
D |η(t)|H1(D). Hence, we obtain

‖δh(t)‖L2(D) ≤ c ρ−1hs
2

ℓ1−s
2

D cκ|η(t)|H1(D),

with cκ :=
(
1 + M

α

)
M ′

α +
(
M
α

)sM ′′

α . Finally, the claim follows by applying the triangle inequality
to ∂tη(t) = −δh(t) + (∂tu(t)−ΠE

h(t; ∂tu(t))).
(iii) Let u ∈ C∞(J ;V ). Using the coercivity of the bilinear form a, we have

α ‖∂tΠE

h(t;u(t))‖2V ≤ a(t; ∂tΠE

h(t;u(t)), ∂tΠ
E

h(t;u(t)))

≤ a(t; ∂tΠE

h(t;u(t))−ΠE

h(t; ∂tu), ∂tΠ
E

h(t;u(t))) + a(t; ΠE

h(t; ∂tu), ∂tΠ
E

h(t;u(t))).
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Using the identity (66.19) in Lemma 66.16 and the boundedness of the bilinear forms a and ȧ, we
infer that

α‖∂tΠE

h(t;u(t))‖2V ≤ ȧ(t;u(t)−ΠE

h(t;u(t)), ∂tΠ
E

h(t;u(t))) + a(t; ΠE

h(t; ∂tu), ∂tΠ
E

h(t;u(t)))

≤ M ′

ρ
‖u(t)−ΠE

h(t;u(t))‖V ‖∂tΠE

h(t;u(t))‖V +M‖ΠE

h(t; ∂tu)‖V ‖∂tΠE

h(t;u(t))‖V .

Hence, we have

α‖∂tΠE

h(t;u(t))‖V ≤
M ′

ρ
‖u(t)−ΠE

h(t;u(t))‖V +M‖ΠE

h(t; ∂tu)‖V

≤ M ′

ρ

(
1 +

M

α

)
‖u(t)‖V +

M2

α
‖∂tu(t)‖V .

From this estimate and the Bochner theorem, we infer that

∂tΠ
E

h(t;u(t)) ∈ L2(J ;Vh),

i.e., ΠE

h(t;u(t)) ∈ H1(J ;Vh), and since 1 ≤ M
α , we have

‖∂tΠE

h(·;u)‖L2(J;Vh) ≤
M2

α2

(2M ′

ρM
‖u‖L2(J;V ) + ‖∂tu‖L2(J;V )

)
.

This implies that ‖ΠE

h(t;u(t))‖H1(J;Vh) ≤ c(α,M, M
′

ρ )‖u‖H1(J;V ).
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Implicit and explicit Euler
schemes

Exercises

Exercise 67.1 (Incremental Gronwall’s lemma). Let γ ∈ R, γ > −1. Let (an)n∈N τ
, (bn)n∈Nτ

be two sequences of real numbers s.t. (1 + γ)an ≤ an−1 + bn for all n ∈ Nτ . Prove that an ≤
a0

(1+γ)n +
∑

k∈{1:n}
bk

(1+γ)n−k+1 for all n ∈ Nτ . (Hint : by induction.) Note: it is common to use

the above estimate together with the inequality 1
1+γ ≤ e−

γ
2 for γ ∈ (0, 1). The reader is referred

to Exercise 68.3 for a discrete form of the Gronwall using an assumption that is weaker than
requesting that (1 + γ)an ≤ an−1 + bn.

Exercise 67.2 (Inf-sup condition). Let Xhτ := (Vh)
N+1 and Yhτ := Vh×(Vh)N . Define

‖φh‖V ′
h
:= supvh∈Vh

|(φh,vh)L|
‖vh‖V for all φh ∈ Vh and consider the following norms:

‖vhτ‖2Xhτ :=
1

α
‖vNh ‖2L + ‖vhτ‖2ℓ2(J;V )+

1

αM
‖δτvhτ‖2ℓ2(J;V ′

h)
+
τ

α
‖δτvhτ‖2ℓ2(J;L),

‖yhτ‖2Yhτ :=
1

α
‖y0h‖2L + ‖y1hτ‖2ℓ2(J;V ),

with (δτvhτ )
n := 1

τ (v
n
h − vn−1

h ), for all vhτ ∈ Xhτ and all yhτ := (y0h, y1hτ ) ∈ Yhτ . Define the
bilinear form bτ : Xhτ×Yhτ → R s.t.

bτ (vhτ , yhτ ) := (v0h, y0h)L +
∑

n∈Nτ
τ
(
((δτvhτ )

n, yn1h)L + an(vnh , y
n
1h)
)
.

Assume that a is symmetric. The goal is to prove the following inf-sup condition:

inf
vhτ∈Xhτ

sup
yh∈Yhτ

|bτ (vhτ , yhτ )|
‖vhτ‖Xhτ ‖yhτ‖Yhτ

≥ α
( α
M

) 1
2

. (67.1)

(i) Let Anh : Vh → V ′
h be s.t. 〈Anh(zh), wh〉V ′

h,Vh
:= an(zh, wh) for all zh, wh ∈ Vh and all

n ∈ Nτ . Consider the test function whτ := (w0h, w1hτ ) ∈ Yhτ with w0h := v0h and wn1h :=
(Anh)

−1((δτvhτ )
n) + vnh for all n ∈ Nτ . Prove that bτ (vhτ , whτ ) ≥ α‖vhτ‖2Xhτ . (Hint : use that
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(Anh)
−1 is coercive on V ′

h with constant M−1, see Lemma C.63.) (ii) Prove that ατ‖wn1h‖2V ≤
Mτ‖vnh‖2V + τ

α‖(δτvhτ )n‖2V ′
h
+ ‖vnh‖2L − ‖vn−1

h ‖2L + τ2‖(δτvhτ )n‖2L. (Hint : use the boundedness of

(Anh)
−1 on V ′

h with constant α−1.) (iii) Conclude. Note: let T1 := τ‖δτuhτ‖2ℓ2(J;L) and consider

the bound on T1 given in Lemma 67.3. Let T2 := 1
M ‖δτuhτ‖2ℓ2(J;V ′

h)
and consider the bound on T2

given by the inf-sup condition (67.1) (see Exercise 71.8). If the functions (∂tu(tn))n∈Nτ are smooth

in space for all n ∈ Nτ , one expects that T2 ≈ ι2L,V
M ‖δτuhτ‖2ℓ2(J;L) =

ρ
2τ

α
MT1 with the time scale

ρ := 2
ι2L,V
α . Hence, T2 ≫ T1 if ρ≫ τ , i.e., controlling T2 is more informative than just controlling

T1.

Exercise 67.3 (Implicit-explicit scheme). Let (V, L ≡ L′, V ′) be a Gelfand triple. Let B ∈
L(V ;L) and A ∈ L(V ;V ′) be two operators. Assume that A is V -coercive with 〈A(v), v〉V ′,V ≥
α‖v‖2V for all v ∈ V, and that ‖v‖L ≤ ιL,V ‖v‖V . Let c be s.t. c ≥ max(‖B‖L(V ;L), ‖B∗‖L(L;V ′)).

Let u0 ∈ V and f ∈ C0(J ;V ′). Consider the model problem ∂tu(t) +A(u)(t) + B(u)(t) = f(t) in
L2(J ;V ′), and u(0) = u0. (i) Let ν > 0, β ∈ W 1,∞(D), u0 ∈ L2(D), and f ∈ C0(J ;H−1(D)).
Show that the time-dependent advection-diffusion equation ∂tu − ν∆u + β·∇u = f , u|∂D = 0,
u(0) = u0 fits the above setting, i.e., specify the spaces V, L, the operators A, B, and the constants
α, c in this case. (ii) Let fn := f(tn) for all n ∈ Nτ . Consider the following scheme: u0 := u0 and
for all v ∈ V and all n ∈ Nτ ,

(un − un−1, v)L + τ〈A(un), v〉V ′,V + τ(B(un−1), v)L = τ〈fn, v〉V ′,V .

Prove that if 2
cιL,V
α ≤ 1, then

‖un‖2L + ατ‖un‖2V ≤ ‖un−1‖2L +
1

2
ατ‖un−1‖2V + 2

τ

α
‖fn‖2V ′ .

(iii) Assume that (B(v), v)L ≥ 0 for all v ∈ V, and that the time step satisfies the bound τ ≤ 1
2
α
c2
.

(We no longer assume that 2
cιL,V
α ≤ 1.) Prove that

‖un‖2L + ατ‖un‖2V ≤ ‖un−1‖2L +
1

2
ατ‖un−1‖2V +

τ

α
‖fn‖2V ′ .

Solution to exercises

Exercise 67.1 (Incremental Gronwall’s lemma). We proceed by induction. For n = 1, we
have a1 ≤ a0

(1+γ)1 + b1
(1+γ) which is exactly the formula that we want to prove. Let us assume that

an ≤ a0
(1+γ)n +

∑
k∈{1:n}

bk
(1+γ)n−k+1 , for some n ∈ Nτ , n < N . We have

an+1 ≤
an

1 + γ
+
bn+1

1 + γ

≤ a0
(1 + γ)n(1 + γ)

+
bn+1

1 + γ
+

∑

k∈{1:n}

bk
(1 + γ)n−k+2

≤ a0
(1 + γ)n+1

+
∑

k∈{1:n+1}

bk
(1 + γ)n−k+2

.

Exercise 67.2 (Inf-sup condition). Let vhτ ∈ Xhτ and let us set whτ := (w0h, w1hτ ) ∈ Yhτ
with w0h := v0h and wn1h := (Anh)

−1((δτvhτ )
n) + vnh for all n ∈ Nτ . Notice that Anh is self-adjoint
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by assumption.
(i) A straightforward calculation shows that

bτ (vhτ , whτ ) = ‖v0h‖2L +
∑

n∈Nτ

(
(vnh − vn−1

h , wn1h)L + τan(vnh , w
n
1h)
)

= ‖v0h‖2L +
∑

n∈Nτ

(
2(vnh − vn−1

h , vnh )L + τ〈Anh(vnh), vnh 〉V ′
h,Vh

+ τ−1〈vnh − vn−1
h , (Anh)

−1(vnh − vn−1
h )〉V ′

h
,Vh

)
.

Using the coercivity of Anh on Vh (with constant α) and the coercivity of (Anh)
−1 on V ′

h (with
constant M−1 owing to Lemma C.63), and using the identity (67.9) yields

bτ (vhτ , whτ ) ≥ ‖v0h‖2L +
∑

n∈Nτ

(
‖vnh‖2L − ‖vn−1

h ‖2L + ‖vnh − vn−1
h ‖2L

+ ατ‖vnh‖2V +
1

Mτ
‖vnh − vn−1

h ‖2V ′
h

)
≥ α‖vhτ‖2Xhτ .

(ii) Another straightforward computation using the coercivity of Anh , its boundedness on Vh (with
constant M), the boundedness of (Anh)

−1 on V ′
h (with constant α−1), and the self-adjointness of

Anh shows that

ατ‖wn1h‖2V ≤ τ〈Anh(wn1h), wn1h〉V ′
h
,Vh

≤ τ−1〈vnh − vn−1
h + τAnh(v

n
h), (A

n
h)

−1(vnh − vn−1
h ) + τvnh 〉V ′

h,Vh

≤Mτ‖vnh‖2V +
1

ατ
‖vnh − vn−1

h ‖2V ′
h
+ ‖vnh‖2L − ‖vn−1

h ‖2L + ‖vnh − vn−1
h ‖2L

=Mτ‖vnh‖2V +
τ

α
‖(δτvhτ )n‖2V ′

h
+ ‖vnh‖2L − ‖vn−1

h ‖2L + τ2‖(δτvhτ )n‖2L.

(iii) Summing the estimate from Step (ii) over n ∈ Nτ , we obtain

α‖whτ‖2Yhτ = ‖w0h‖2L +
∑

n∈Nτ
ατ‖wn1h‖2V

≤M‖vhτ‖2ℓ2(J;V ) +
1

α
‖∂τvhτ‖2ℓ2(J;V ′

h)
+ τ‖∂τvhτ‖2ℓ2(J;L) + ‖vNh ‖2L.

Hence, α
M ‖whτ‖2Yhτ ≤ ‖vhτ‖2Xhτ since α ≤M , and the assertion follows.

Exercise 67.3 (Implicit-explicit scheme). (i) Let ν > 0, β ∈W 1,∞(D). The time-dependent
advection-diffusion equation ∂tu − ν∆u + β·∇u = f for a.e. (x, t) ∈ D×J, fits the proposed
framework with L := L2(D), V := H1

0 (D). The operator A : H1
0 (D) → H−1(D) is s.t. A(v) :=

−ν∆v, and the operator B is s.t. B(v) := β·∇v. Let us equip V with the H1-seminorm, i.e.,
‖v‖V := ‖∇v‖L2(D). Then the coercivity constant of A is α := ν. Moreover, we have

‖B(v)‖V ′ = sup
w∈V

〈β·∇v, w〉V ′,V

‖w‖V
= sup
w∈V

−(v,β·∇w)L − ((∇·β)v, w)L
‖w‖V

≤ (‖β‖L∞(D) + ιL,V ‖∇·β‖L∞(D))‖v‖L,
i.e., ‖B∗‖L(L;V ′) ≤ ‖β‖L∞(D) + ιL,V ‖∇·β‖L∞(D). Moreover, we have ‖B(v)‖L ≤ ‖β‖L∞(D)‖v‖V ,
i.e., ‖B‖L(V ;L) ≤ ‖β‖L∞(D). Hence, we can take c := ‖β‖L∞(D) + ιL,V ‖∇·β‖L∞(D).
(ii) Let us test the discrete equation with 2τun. We obtain

‖un‖2L + ‖un − un−1‖2L − ‖un−1‖2L + 2ατ‖un‖2V + 2τ(B(un−1), un)L ≤ 2τ‖fn‖V ′‖un‖V ,
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where we used the V -coercivity of A. As a result, we infer that

‖un‖2L + 2ατ‖un‖2V ≤ ‖un−1‖2L + 2τ‖fn‖V ′‖un‖V + 2τ‖un−1‖V ‖B∗(un)‖V ′

≤ ‖un−1‖2L + 2
τ

α
‖fn‖2V ′ +

1

2
ατ‖un‖2V + 2τc‖un−1‖V ‖un‖L

≤ ‖un−1‖2L + 2
τ

α
‖fn‖2V ′ +

1

2
ατ‖un‖2V + 2τcιL,V ‖un−1‖V ‖un‖V

≤ ‖un−1‖2L + 2
τ

α
‖fn‖2V ′ +

1

2
ατ‖un‖2V + 2τ

c2ι2L,V
α
‖un−1‖2V +

1

2
ατ‖un‖2V .

Rearranging the terms, we obtain

‖un‖2L + ατ‖un‖2V ≤ ‖un−1‖2L + 2τ
c2ιL,V
α
‖un−1‖2V + 2

τ

α
‖fn‖2V ′ .

Owing to the assumption 2
c
2ι2L,V
α ≤ 1

2α, we infer that

‖un‖2L + ατ‖un‖2V ≤ ‖un−1‖2L +
1

2
ατ‖un−1‖2V + 2

τ

α
‖fn‖2V ′ ,

which is the expected inequality.
(iii) Let us now assume that (B(v), v)L ≥ 0 for all v ∈ V. Testing again the discrete equation with
2τun, we obtain

‖un‖2L + ‖un − un−1‖2L − ‖un−1‖2L + 2ατ‖un‖2V + 2τ(B(un−1), un − un−1)L

+ 2τ(B(un−1), un−1)L ≤ 2τ‖fn‖V ′‖un‖V .

Since (B(un−1), un−1)L ≥ 0 by assumption, rearranging the terms, and applying Young’s inequality
to the right-hand side, we infer that

‖un‖2L + ‖un − un−1‖2L − ‖un−1‖2L + 2ατ‖un‖2V
≤ 2τ‖fn‖V ′‖un‖V − 2τ(B(un−1), un − un−1)L

≤ τ

α
‖fn‖2V ′ + ατ‖un‖2V + τ2‖B(un−1)‖2L + ‖un − un−1‖2L.

After simplification, we obtain

‖un‖2L + ατ‖un‖2V ≤ ‖un−1‖2L + τ2‖B(un−1)‖2L +
τ

α
‖fn‖2V ′ .

The expected estimate follows by using the boundedness of B and the assumption τc2 ≤ 1
2α.



Chapter 68

BDF2 and Crank–Nicolson
schemes

Exercises

Exercise 68.1 (Heat equation). Write the error estimates for the heat equation using the BDF2
time discretization in the setting of Remark 68.8.

Exercise 68.2 (Inverse inequality on Ah). Prove (68.22). (Hint : observe that ‖Ah(vh)‖L =

maxwh∈Vh
|(Ah(vh),wh)L|

‖wh‖L and use the boundedness of a.)

Exercise 68.3 (Discrete Gronwall’s lemma). The objective of this exercise is to prove the
following discrete Gronwall’s lemma. Let (γn)n∈Nτ , (an)n∈Nτ , (bn)n∈Nτ , (cn)n∈Nτ be sequences
of real numbers. Let B ∈ R. Assume that

γn ∈ (0, 1), an ≥ 0, bn ≥ 0, (68.1a)

an +
∑

l∈{1:n}
bl ≤

∑

l∈{1:n}
γlal +

∑

l∈{1:n}
cl +B, (68.1b)

for all n ∈ Nτ . Then we have

an +
∑

l∈{1:n}
bl ≤

∑

l∈{1:n}
cl

∏

µ∈{l:n}

1

1− γµ
+B

∏

µ∈{1:n}

1

1− γµ
. (68.2)

(i) Let dn :=
∑

l∈{1:n} γlal+
∑
l∈{1:n}(cl− bl)+B− an and let Sn := dn+ an+

∑
l∈{1:n} bl. Show

that Sn(1 − γn) ≤ Sn−1 + cn for all n ≥ 2. (Hint : observe that an ≤ Sn.) (ii) Show by induction
that Sn ≤

∑
l∈{1:n} cl

∏
µ∈{l:n}

1
1−γµ + B

∏
µ∈{1:n}

1
1−γµ . Conclude. (Hint : (68.1b) means that

dn ≥ 0.) Note: if one replaces the assumption (68.1b) by the assumption (1 + γ)an ≤ an−1 + cn
which implies (68.1b) with bl := 0, B := a0, and γl := −γ for all l ∈ {1:n}, the incremental
Gronwall lemma from Exercise 67.1 leads to the same bound on an as (68.2). The incremental
Gronwall lemma only requires that γ > −1, whereas the discrete Gronwall lemma requires that
γl ∈ (0, 1) (i.e., γ ∈ (−1, 0) if one sets γl := γ).
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Exercise 68.4 (Variant on BDF2). The objective of this exercise is to revisit the stability
argument for BDF2 proposed in Thomée [43, p. 18]. Consider the setting introduced in §68.2 and
the scheme (68.1). (i) Show that for all k ≥ 2

(32u
k
h − 2uk−1

h + 1
2u

k−2
h , ukh)L = ‖ukh‖2L − ‖uk−1

h ‖2L − 1
4 (‖ukh‖2L − ‖uk−2

h ‖2L)
+ ‖ukh − uk−1

h ‖2L − 1
4‖ukh − uk−2

h ‖2L.

(ii) Prove that
∑

k∈{2:n} ‖ukh‖2L−‖uk−1
h ‖2L− 1

4 (‖ukh‖2L−‖uk−2
h ‖2L) = 3

4‖unh‖2L− 1
4‖un−1

h ‖2L− 3
4‖u1h‖2L+

1
4‖u0h‖2L, and that

∑

k∈{2:n}
‖ukh − uk−1

h ‖2L − 1
4‖ukh − uk−2

h ‖2L ≥ 1
2‖unh − un−1

h ‖2L − 1
2‖u1h − u0h‖2L.

(iii) Show that

(u1h − u0h, u1h)L +
∑

k∈{2:n}
(32u

k
h − 2uk−1

h + 1
2u

k−2
h , ukh)L

≥ 3
4‖unh‖2L − 1

4‖un−1
h ‖2L − 1

4‖u1h‖2L − 1
4‖u0h‖2L.

(iv) Assuming that fk ∈ L for all k ∈ Nτ , show that

3‖unh‖2L − ‖un−1
h ‖2L +

∑

k∈{1:n}
4τα‖ukh‖2V ≤ ‖u0h‖2L + ‖u1h‖2L +

∑

k∈{1:n}
4τ‖fk‖L‖ukh‖L.

(v) Letting m ∈ {0:n} be the index s.t. ‖umh ‖L := ‖uhτ‖ℓ∞(J;L), show that

2‖uhτ‖ℓ∞(J;L) ≤ ‖u0h‖L + ‖u1h‖L +
∑

k∈{1:n}
4τ‖fk‖L.

(vi) Conclude that ‖uhτ‖ℓ∞(J;L) ≤ ‖u0h‖L + τ
2 ‖f1‖L +

∑
k∈{1:n} 2τ‖fk‖L.

(vii) Modify the argument to account for fk ∈ V ′ instead of fk ∈ L for all k ≥ 2, and f1 = f1
V ′+f1

L,
where f1

V ′ ∈ V ′ and f1
L ∈ L, and prove that

‖uhτ‖2ℓ∞(J;L2)
≤ 5

2
‖u0h‖2L + 6τ2‖f1

L‖2L +
∑

k∈{1:n}

τ

α
‖f̃k‖2V ′ .

Exercise 68.5 (Variant of Crank–Nicolson scheme). Consider the following variant of the
Crank–Nicolson scheme: after setting u0h := PVh(u0), we construct the sequence of functions
uhτ := (unh)n∈Nτ ∈ (Vh)

N such that

(unh − un−1
h , wh)L +

1

2
τ
(
an(unh, wh) + an−1(un−1

h , wh)
)
= τ〈f̌n− 1

2 , wh〉V ′,V ,

for all wh ∈ Vh and all n ∈ Nτ , with an(·, ·) := a(tn; ·, ·), an−1(·, ·) := a(tn−1; ·, ·), and f̌n−
1
2 :=

1
2 (f(tn) + f(tn−1)) ∈ V ′. Assume that f ∈ C0(J ;L) and that the restriction (68.20) on the time

step holds true. Prove again the bound (68.21) on ‖unh‖2L with f̌k−
1
2 in lieu of fk−

1
2 on the right-

hand side. (Hint : adapt the proof of Lemma 68.12 by starting from the identity unh+
1
2τA

n
h(u

n
h) =

un−1
h − 1

2τA
n−1
h (un−1

h ) + f̌n−
1
2 .) Note: deriving an ℓ2(J ;V )-stability estimate as in Lemma 68.9 is

more delicate with this variant of the Crank–Nicolson scheme.
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Solution to exercises

Exercise 68.1 (Heat equation). Using the estimate (68.10) from Theorem 68.4 and the ap-
proximation properties of the finite element space Vh, we infer that there is c s.t. for all h ∈ H, τ ,
α, and M ,

‖uτ − uhτ‖ℓ2(J;V ) ≤ c
(

1√
α
τ2‖∂ttu‖C0(J1;L)

+
ρ

ιL,V
τ2‖∂tttu‖L2(J;L)

+ hr
( 1√

α
‖u0‖Hr(D) +

M

α
|uτ |ℓ2(J;Hr+1(D))

+
ρ

ιL,V
|∂tu|L2(J;Hr(D))

))
.

Notice that the error estimates in space can be localized over the mesh cells. If in addition the
bilinear form a is time-independent and τ ≤ 1

ρ , the estimate (68.15) from Theorem 68.7 gives

‖unh − u(tn)‖L ≤ c hr+s
(
‖u(tn)‖Hr+1(D)

+ c1

(
e−

tn
8ρ ‖u0‖Hr+1(D) +

√
ρ‖e− tn−·

8ρ ∂tu‖L2((0,tn);Hr+1(D))

))

+ c2 τ
2
(
e−

tn
8ρ ‖∂ttu‖C0(J1;L)

+
√
ρ‖e− tn−·

8ρ ∂tttu‖L2((0,tn);L)

)
.

Exercise 68.2 (Inverse inequality). Lt vh ∈ Vh. Using the definition of Ah, we have

‖Ah(vh)‖L = max
wh∈Vh

|(Ah(vh), wh)L|
‖wh‖L

= max
wh∈Vh

|a(vh, wh)|
‖wh‖L

≤M‖vh‖V max
wh∈Vh

‖wh‖V
‖wh‖L

= ι−1
L,V cinv(h)M‖vh‖V ,

whence the assertion.

Exercise 68.3 (Discrete Gronwall’s lemma). (i) Using the definition of Sn, we have Sn =
B +

∑
l∈{1:n} γlal +

∑
l∈{1:n} cl, i.e.,

Sn − Sn−1 = γnan + cn.

But Sn = dn + an +
∑

l∈{1:n} bl ≥ an, since dn ≥ 0 and bl ≥ 0 by the assumptions (68.1b) and

(68.1a), respectively. Using that 0 ≤ γn and 0 ≤ an ≤ Sn, owing to (68.1a), we infer that

Sn(1 − γn) ≤ Sn−1 + cn.

(ii) For s = 1, we have

S1 = a1 + b1 + d1 = γ1a1 + c1 +B ≤ γ1S1 + c1 +B,

since γ1 ≥ 0. Hence, S1 ≤ c1
1−γ1 + B 1

1−γ1 , which is the expected result. Assume now that n ≥ 2

and that the induction assumption holds true for n − 1. The inequality Sn(1 − γn) ≤ Sn−1 + cn
implies that

Sn ≤
cn

1− γn
+

∑

l∈{1:n−1}
cl

1

1− γn
∏

µ∈{l:n−1}

1

1− γµ
+B

1

1− γn
∏

µ∈{1:n−1}

1

1− γµ

≤
∑

l∈{1:n}
cl

∏

µ∈{l:n}

1

1− γµ
+B

∏

µ∈{1:n}

1

1− γµ
,
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thereby proving that Sn ≤
∑

l∈{1:n} cl
∏
µ∈{l:n}

1
1−γµ + B

∏
µ∈{1:n}

1
1−γµ for all n ∈ Nτ . This

estimate, in turn, proves (68.2) since Sn ≥ an +
∑

l∈{1:n} bl because the assumption (68.1b) is
equivalent to dn ≥ 0 for all n ∈ Nτ .
Exercise 68.4 (Variant on BDF2). (i) We write

3

2
ukh − 2uk−1

h +
1

2
uk−2
h = 2(ukh − uk−1

h )− 1

2
(ukh − uk−2

h ).

Then we use the identity (a− b, a)L = 1
2‖a‖2L + 1

2‖a− b‖2L − 1
2‖b‖2L to obtain the expected result.

(ii) The first identity is just a telescoping sum. For the second inequality, we use the Cauchy–
Schwarz and Young’s inequalities as follows:

− 1

4
‖ukh − uk−2

h ‖2L = −1

4
‖ukh − uk−1

h ‖2L −
1

2
(ukh − uk−1

h , uk−1
h − uk−2

h )L

− 1

4
‖uk−1

h − uk−2
h ‖2L ≥ −

1

2
‖ukh − uk−1

h ‖2L −
1

2
‖uk−1

h − uk−2
h ‖2L.

The telescoping sum argument leads to the expected result.
(iii) Using (u1h − u0h, u1h)L = 1

2‖u1h‖2L + 1
2‖u1h − u0h‖2L − 1

2‖u0h‖2L together with the two identities
established in Step (ii), we obtain

(u1h − u0h, u1h)L +
∑

k∈{2:n}
(32u

k
h − 2uk−1

h + 1
2u

k−2
h , ukh)L

≥ 1
2‖u1h‖2L + 1

2‖u1h − u0h‖2L − 1
2‖u0h‖2L + 3

4‖unh‖2L − 1
4‖un−1

h ‖2L
− 3

4‖u1h‖2L + 1
4‖u0h‖2L + 1

2‖unh − un−1
h ‖2L − 1

2‖u1h − u0h‖2L
≥ 3

4‖unh‖2L − 1
4‖un−1

h ‖2L − 1
4‖u1h‖2L − 1

4‖u0h‖2L.

(iv) Using u1h and unh as the test functions in (68.1) together with the coercivity of an and the
Cauchy–Schwarz inequality, the lower bound from Step (iii) gives

3‖unh‖2L − ‖un−1
h ‖2L +

∑

k∈{1:n}
4τα‖ukh‖2V ≤ ‖u0h‖2L + ‖u1h‖2L +

∑

k∈{1:n}
4τ‖fk‖L‖ukh‖L.

(v) Letting m ∈ {1:n} be the index s.t. ‖umh ‖L := ‖uhτ‖ℓ∞(J;L), we obtain

3‖umh ‖2L ≤ ‖umh ‖2L + (‖u1h‖L + ‖u0h‖L +
∑

k∈{1:n}
4τ‖fk‖L)‖umh ‖L.

This proves the expected bound.
(vi) Using the estimate ‖u1h‖2L ≤ ‖u0h‖L‖u1h‖L + τ‖f1‖L‖u1h‖L (which follows by using again the
test function u1h in the first implicit Euler step and the coercivity of a1), we infer that ‖u1h‖L ≤
‖u0h‖L + τ‖f1‖L. Combined with the estimate from Step (v), this leads to the expected bound.
(vii) To account for fk ∈ V ′ (instead of fk ∈ L), for all k ≥ 2, and f1 := f1

V ′ + f1
L with f1

V ′ ∈ V ′

and f1
L ∈ L, we modify the argument from Step (iv) as follows:

3‖unh‖2L − ‖un−1
h ‖2L +

∑

k∈{1:n}
4τα‖ukh‖2V ≤ ‖u0h‖2L + ‖u1h‖2L

+ 4τ‖f1
L‖L‖u1h‖L +

∑

k∈{1:n}
4τ‖f̃k‖V ′‖ukh‖V .
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Using the inequalities 4τ‖f1
L‖L‖u1h‖L ≤ ‖u1h‖2L + 4τ2‖f1

L‖2L together with 4τ‖f̃k‖V ′‖ukh‖V ≤
4τα‖ukh‖2V + τ

α‖f̃k‖2V ′ for all k ∈ Nτ gives

3‖unh‖2L − ‖un−1
h ‖2L ≤ ‖u0h‖2L + 2‖u1h‖2L + 4τ2‖f1

L‖2L +
∑

k∈{1:n}

τ

α
‖f̃k‖2V ′ .

Moreover, using the test function u1h in the first implicit Euler step, the coercivity of a1 and the
Cauchy–Schwarz inequality leads to

1

2
‖u1h‖2L −

1

2
‖u0h‖2L +

1

2
‖u1h − u0h‖2L + τα‖u1h‖2V ≤ τ‖f1

L‖L‖u1h‖L + τ‖f1
V ′‖V ′‖u1h‖V .

Using Young’s inequalities on the right-hand side and discarding the nonnegative term 1
2‖u1h−u0h‖2L

from the left-hand side, we infer that

1

2
‖u1h‖2L + τα‖u1h‖2V ≤

1

2
‖u0h‖2L +

1

4
‖u1h‖2L + τ2‖f1‖2L + τα‖u1h‖2V +

τ

4α
‖f̃1‖2V ′ ,

which gives ‖u1h‖2L ≤ 2‖u0h‖2L + 4τ2‖f1‖2L + τ
α‖f̃1‖2V ′ . Hence, we have

3‖unh‖2L − ‖un−1
h ‖2L ≤ 5‖u0h‖2L + 12τ2‖f1

L‖2L +
∑

k∈{1:n}

2τ

α
‖f̃k‖2V ′ .

Using the same argument as in Step (v) leads to the expected bound.

Exercise 68.5 (Variant of Crank–Nicolson scheme). For all n ∈ Nτ , let us define the linear
operator Anh : Vh → Vh by setting (Anh(vh), wh)L := a(tn; vh, wh) for all vh, wh ∈ Vh, and let us set

f̌
n− 1

2

h := PVh(f̌n−
1
2 ). Then the modified Crank–Nicolson scheme can be rewritten as

unh +
1

2
τAnh(u

n
h) = un−1

h − 1

2
τAn−1

h (un−1
h ) + f̌

n− 1
2

h .

Squaring this equality, we obtain

‖unh‖2L + τan(unh, u
n
h) +

1

4
τ2‖Anh(unh)‖2L

= ‖un−1
h ‖2L − τan−1(un−1

h , un−1
h ) +

1

4
τ2‖An−1

h (un−1
h )‖2L

+ 2τ(un−1
h , f̌

n− 1
2

h )L − τ2(An−1
h (un−1

h ), f̌
n− 1

2

h )L + τ2‖f̌n−
1
2

h ‖2L.

Proceeding as in the proof of Lemma 68.12, we infer that

‖unh‖2L + ατ‖unh‖2V +
τ2

4
‖Anh(unh)‖2L ≤ ‖un−1

h ‖2L +
τ2

4

1 + 2τ
ρ

‖An−1
h (un−1

h )‖2L +
7

2
τρ‖f̌n−

1
2

h ‖2L.

This estimate takes again the form (1 + γ)an ≤ an−1 + bn with an := ‖unh‖2L + τ2

4(1+γ)‖Anh(unh)‖2L
and bn := 7

2τρ‖f̌
n− 1

2

h ‖2L. We can now conclude as before.
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Chapter 69

Discontinuous Galerkin in time

Exercises

Exercise 69.1 (Integral identities). Prove the identities (69.11). (Hint : use that the Gauss–
Radau quadrature is of order 2k.)

Exercise 69.2 (Equivalence with Radau IIA IRK). Prove the converse assertion in Lemma
69.11. (Hint : show that

Rτ (uhτ )(t) = un−1
h + τ

∑

j∈{1:k+1}

1

2

∫ T−1
n (t)

−1

Lj(ξ) dξ
(
fh(tn,j)−Ah(tn,j)(un,jh )

)
,

for all t ∈ Jn.)
Exercise 69.3 (Poincaré in time). Let n ∈ Nτ and H be a Hilbert space. Show that
‖v‖2L2(Jn;H) ≤ 2τ‖v(t+n−1)‖2H + τ2‖∂tv‖2L2(Jn;H) for all v ∈ H1(Jn;H). (Hint : use that v(t) =

v(t+n−1) +
∫ t
tn−1

∂tvdt for all t ∈ Jn.)

Exercise 69.4 (Time reconstruction). (i) Show that the definition of Rτ given in Remark 69.9
is equivalent to Definition 69.5. (ii) Show that the two definitions of θk+1 given in Remark 69.9

are identical. (Hint : set δ(s) := (−1)k

2 (Lk − Lk+1) −
∏
l∈{1:k+1}

ξl−s
ξl+1 and prove that δ(−1) = 0

and
∫
Ĵ
δ′(s)q(s) ds = 0 for all q ∈ Pk(Ĵ ;R).) (iii) Let (V, L ≡ L′, V ′) be a Gelfand triple. Let

R̂ : Pk(Ĵ ;R) → Pk+1(Ĵ ;R) be s.t. R̂(q) := q − q(−1)θk+1. Let Rn : Pk(Jn;R) → Pk+1(Jn;R) be
s.t. Rn(v) =

∑
q∈{1:k+1} VqR̂(ψq) ◦T−1

n for all v :=
∑

q∈{1:k+1} Vqψq ◦T−1
n and all n ∈ Nτ , where

{ψq}q∈{1:k+1} is a basis for Pk(Ĵ ;R). Accept as a fact that ‖v‖L∞(Jn;V ′) ≤ 22−
1
p ‖∂tRn(v)‖Lp(Jn;V ′)

for all p ∈ [1,∞] and all v ∈ Pk(Jn;V ′) (see Holm and Wihler [27, Prop. 1]). Prove that

‖v‖L2(Jn;L) ≤ (2τ)
1
2 ‖∂tRn(v)‖

1
2

L2(Jn;V ′)‖v‖
1
2

L2(Jn;V ) for all v ∈ Pk(Jn;V ) and all n ∈ Nτ . (Hint :

‖φ‖2L ≤ ‖φ‖V ′‖φ‖V for all φ ∈ V.)
Exercise 69.5 (dG(1)). Assume that a is time-independent. (i) Verify that the dG(1) scheme
amounts to

( 9
8M 3

8M
− 9

8M 5
8M

)(
Un,1

Un,2

)
+ τ

( 3
4AUn,1
1
4AUn,2

)
=

( 3
2MUn−1

− 1
2MUn−1

)
+ τ

(3
4F

n,1

1
4F

n,2

)
,
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and Un = Un,2, where Un,1 and Un,2 are the coordinate vectors of the discrete solution at tn−1+
1
3τ

and at tn, respectively. (Hint : use the Lagrange interpolation polynomials associated with the two
Gauss–Radau nodes ξ1 := − 1

3 and ξ2 := 1.) (ii) Using the same notation as above, write the
scheme in IRK form. (Hint : see (69.22) and (69.24).)

Exercise 69.6 (IRK final stage). The objective of this exercise is to prove the assertions
made in Remark 69.13. (i) Show that for every s-stage IRK scheme, the update unh is given by
unh = α0u

n−1
h +

∑
p∈{1:s} αpu

n,p
h , where αp :=

∑
q∈{1:s} bq(a

−1)qp, α0 := 1 −∑p∈{1:s} αp, and

(a−1)pq are the coefficients of the inverse of the Butcher matrix (apq)p,q∈{1:s}. (ii) Show that for
the Radau IIA IRK scheme, αp = 0 for all p ∈ {0:s− 1} and αs = 1.

Exercise 69.7 (Πkτ ). (i) Prove the uniform stability of Πkn in L∞(Jn;Z) with Z ⊆ L. (Hint : map

to the reference interval Ĵ .) Prove (69.27). (Hint : accept as a fact that the standard polynomial
approximation properties in Sobolev spaces extend to Bochner spaces.) (ii) Build the operator
Πkn with Z := V ′ as in Remark 69.17. (Hint : use the Riesz–Fréchet operator Jrf : L2(Jn;V ) →
(L2(Jn;V ))′ = L2(Jn;V

′).) Adapt the identity in Lemma 69.16 to the case Z := V ′. (Hint : invoke
the integration by parts formula (64.7).) Prove a stability estimate for Πkn in L∞(Jn;V

′). (iii) Let
Πh ∈ L(V ;Vh). Show that δ := Πkτ (Πh(v)) − Πh(Π

k
τ (v)) = 0 for all v ∈ H1(J ;V ). (Hint : show

that δ(tn) = 0 for all n ∈ N τ and that
∫
Jn
(δ, q)Ldt = 0 for all q ∈ Pk−1(Jn;Vh) and all n ∈ Nτ .)

Exercise 69.8 (Symmetrization). Let R̂ be defined in Exercise 69.4(iii). (i) Prove that Bpq =∫ 1

−1 R̂(ψq)′ψp ds, (B + BT)pq = ψq(−1)ψp(−1) + ψq(1)ψp(1), (BTM−1B)pq =
∫ 1

−1 R̂(ψq)′R̂(ψp)′ ds
for all p, q ∈ {1:m}. (Hint : use Exercise 28.1.) (ii) Set Ŝ♭ :=

1
τ (MA−1M)⊗ (BTM−1B)+τA⊗M.

Prove that VTŜ♭V ≤ VTŜV ≤ 2VTŜ♭V for all V ∈ RIm. (Hint : note that VT(M ⊗ B)V =
YT(A−1 ⊗M−1)Z with Y := (A ⊗M)V and Z := (M⊗ B)V and apply the Cauchy–Schwarz and

Young’s inequalities.) (iii) Verify that Ŝ is the stiffness matrix associated with the minimization of
the residual norm ‖A−1

h (∂tRn(vhτ ))+vhτ‖2L2(Jn;Vh)
. (Hint : use again Exercise 28.1.) (iv) Compute

the matrix Ŝ for k := 1. (Hint : see Exercise 69.5.)

Solution to exercises

Exercise 69.1 (Integral identities). (69.11a) follows from the fact that the discrete measure
µgr
k+1(dt) samples at the interpolation nodes of Igrk , and (69.11b) follows from (69.11a) once we

observe that
∫
J
(p, Igrk (w))Ldt =

∫
J
(p, Igrk (w))L µ

gr
k+1(dt) because the quadrature is of order 2k.

Exercise 69.2 (Equivalence with Radau IIA IRK). Let uhτ ∈ Xhτ := P b
k (Jτ ;Vh) and

assume that {un,ih := uhτ (tn,i)}i∈{1:k+1} solves (69.22) with s := k+1 for all n ∈ Nτ . Let us define
vhτ ∈ P g

k+1(Jτ ;Vh) by setting vh(0) := uhτ (0) and for all t ∈ Jn,

vhτ (t) = un−1
h + τ

∑

j∈{1:k+1}

1

2

∫ T−1
n (t)

−1

Lj(ξ) dξ
(
fh(tn,j)−Ah(tn,j)(un,jh )

)
.

Observe that vhτ ∈ P b
k+1(Jτ ;Vh) since Li ∈ Pk(Ĵ ;R). Moreover, vhτ (t

+
n−1) = un−1

h = Rτ (uhτ )(tn−1)

and (69.22) together with (69.23) implies that vhτ (tn,i) = un,ih = Rτ (uhτ )(tn,i) for all i ∈ {1:k+1}
since T−1

n (tn,j) = ξj for all j ∈ {1:k + 1}. This proves that vhτ = Rτ (uhτ ) ∈ P g
k+1(Jτ ;Vh). We
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then infer that

∂tRτ (uhτ )(tn,i) = τ
∑

j∈{1:k+1}

1

2

2

τ
Lj(T−1

n (tn,i))
(
fh(tn,j)−Ah(tn,j)(un,jh )

)

= fh(tn,i)−Ah(tn,i)(un,ih ).

This shows that uhτ solves (69.20). Proposition 69.7 shows that uhτ solves (69.16).

Exercise 69.3 (Poincaré in time). The assumption v ∈ H1(Jn;H) implies that v has a contin-
uous representative in C0(Jn;H) (see Lemma 64.37 and Remark 64.38). Using the hint, we have
for all t ∈ Jn,

v(t) = v(t+n−1) +

∫ t

tn−1

∂tvdt.

The triangle inequality followed by the Cauchy–Schwarz inequality yields

‖v(t)‖H ≤ ‖v(t+n−1)‖H +

∫ t

tn−1

‖∂tv‖Hdt

≤ ‖v(t+n−1)‖H + (t− tn−1)
1
2

(∫ t

tn−1

‖∂tv‖2Hdt

) 1
2

.

Young’s inequality and the fact that (tn−1, t) ⊂ Jn imply that

‖v(t)‖2H ≤ 2‖v(t+n−1)‖2H + 2(t− tn−1)‖∂tv‖2L2(Jn;H).

The result follows by integrating this inequality over Jn.

Exercise 69.4 (Time reconstruction). (i) Assume that Rτ is defined as in Remark 69.9 with
θk+1(s) :=

∏
l∈{1:k+1}

ξl−s
ξl+1 . Then, for all n ∈ Nτ , we haveRτ (vhτ )(t+n−1) = vhτ (t

+
n−1)−vhτ (t+n−1)+

vhτ (tn−1) = vhτ (tn−1). Moreover, for all l ∈ {1:k + 1}, we have Rτ (vhτ )(tn,l) = vhτ (tn,l). Hence,
we obtain the same operator as in Definition 69.5.

(ii) Let us set ξk+1 := (−1)k

2 (Lk − Lk+1) and δ := ξk+1 − θk+1. By definition, δ vanishes at
s = −1. Moreover, since the Gauss–Radau quadrature using (k + 1) points is of order 2k (see

Proposition 6.7), we infer that for all q ∈ Pk(Ĵ ;R),
∫

Ĵ

θk+1(s)q
′(s) ds =

∑

l∈{1:k+1}
ωlθk+1(ξl)q

′(ξl) = 0.

In addition, we have
∫
Ĵ
ξk+1(s)q

′(s) ds = 0 owing to the L2-orthogonality of the Legendre poly-
nomials which implies that

∫
Ĵ
Lk(s)q

′(s) ds = 0 =
∫
Ĵ
Lk+1(s)q

′(s) ds. Using integration by parts

and the fact that δ(1) = ξk+1(1)− ξk+1(1) = 0− 0 = 0 (recall that Lk(−1) = (−1)k), we infer that
∫

Ĵ

δ′(s)q(s) ds = −
∫

Ĵ

δ(s)q′(s) ds+
[
δ(s)q(s)

]1
−1

= 0.

Since δ′ is in Pk(Ĵ ;R) and q is arbitrary in Pk(Ĵ ;R), the above identity shows that δ is constant,
and since δ(−1) = 0 as shown above, we conclude that δ vanishes identically.
(iii) Let v ∈ L2(Jn;V ). Recall that V →֒ L ≡ L′ →֒ V ′. Combining the hint with the Cauchy–
Schwarz inequality in time leads to

‖v‖L2(Jn;L) ≤ ‖v‖
1
2

L2(Jn;V ′)‖v‖
1
2

L2(Jn;V ).
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This implies that

‖v‖L2(Jn;L) ≤ τ
1
4 ‖v‖

1
2

L∞(Jn;V ′)‖v‖
1
2

L2(Jn;V ).

Applying the inverse estimate from [27] with p := 2 leads to

‖v‖L∞(Jn;V ′) ≤ 2τ
1
2 ‖∂tRn(v)‖L2(Jn;V ′).

Combining these bounds proves the claim.

Exercise 69.5 (dG(1)). (i) The Gauss–Radau nodes are ξ1 := − 1
3 and ξ2 := 1 and the corre-

sponding weights are ω1 := 3
2 , ω2 := 1

2 (see Table 6.1). The Lagrange interpolation polynomials
are

L1(s) =
3

4
(1 − s), L2(s) =

3

4

(
s+

1

3

)
.

Using these two polynomials, we have

(ψ1(−1), ψ2(−1)) = (32 ,− 1
2 ), (ψ1(1), ψ2(1)) = (0, 1),

and the matrices B,M ∈ R2×2 become

B =

(
9
8

3
8

− 9
8

5
8

)
, M =

(
3
4 0

0 1
4

)
.

This leads to the assertion on the dG(1) time-stepping scheme:

(
9
8M 3

8M
− 9

8M 5
8M

)(
Un,1

Un,2

)
+ τ

(
3
4AUn,1
1
4AUn,2

)
=

(
3
2MUn−1

− 1
2MUn−1

)
+ τ

(
3
4F

n,1

1
4F

n,2

)
,

and we set Un := Un,2.
(ii) Using (69.24), we now write the scheme in IRK form as follows:

(MUn,1

MUn,2

)
+ τ

( 5
12A − 1

12A
3
4A 1

4A

)(
Un,1

Un,2

)
=

(MUn−1

MUn−1

)
+ τ

( 5
12F

n,1 − 1
12F

n,2

3
4F

n,1 + 1
4F

n,2

)
,

and we set Un := Un,2. Notice that the two linear systems are indeed equivalent.

Exercise 69.6 (IRK final stage). (i) Recalling (69.22), let us set yi :=
1
τ (u

n,i
h − un−1

h ), zj :=

fh(tn,j)−Ah(tn,j)(un,jh ), so that we have

yi =
∑

j∈{1:s}
aijzj, ∀i ∈ {1:s}.

This implies that

zi =
∑

j∈{1:s}
(a−1)ijyj, ∀i ∈ {1:s}.

Recalling that unh := un−1
h + τ

∑
j∈{1:s} bj

(
fh(tn,j)−Ah(tn,j)(un,jh )

)
, we infer that

unh := un−1
h + τ

∑

j∈{1:s}
bjzj = un−1

h +
∑

j∈{1:s}
bj

∑

i∈{1:s}
(a−1)jiτyi

= un−1
h

(
1−

∑

i∈{1:s}

∑

j∈{1:s}
bj(a

−1)ji

)
+

∑

i∈{1:s}
un,ih

∑

j∈{1:s}
bj(a

−1)ji.
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This shows that
unh = α0u

n−1
h +

∑

p∈{1:s}
αpu

n,p
h ,

where αp :=
∑

q∈{1:s} bq(a
−1)qp, α0 := 1 −∑p∈{1:s} αp, and (a−1)pq are the coefficients of the

inverse of the Butcher matrix (apq)p,q∈{1:s}.
(ii) In the case of the Radau IIA IRK scheme, we have bp = asp for all p ∈ {1:s}. We infer that

αp =
∑

q∈{1:s}
bq(a

−1)qp =
∑

q∈{1:s}
asq(a

−1)qp = δsp,

for all p ∈ {1:s}. As a result, we have αp = 0 for all p ∈ {1:s−1} and αs = 1. Finally, this implies
that α0 = 1− 1 = 0.

Exercise 69.7 (Πkτ). (i) To prove the uniform stability of Πkn in L∞(Jn;Z), we define Π̂k :

H1(Ĵ ;Z)→ Pk(Ĵ ;Z) s.t. for all v̂ ∈ H1(Ĵ ;Z),

Π̂k(v)(1) = v̂(1),∫

Ĵ

(Π̂k(v̂)− v̂, q̂)Ldt = 0, ∀q̂ ∈ Pk−1(Ĵ ;Z).

This gives

‖Π̂k(v̂)‖L∞(Ĵ;Z) ≤ ĉ
(
‖v̂(1)‖Z + sup

q̂∈Pk−1(Ĵ;Z)

|
∫
Jn
(Π̂k(v̂), q̂)Ldt|
‖q̂‖L2(Ĵ;Z)

)

≤ ĉ′ ‖v̂‖L∞(Ĵ;Z),

where ĉ, ĉ′ are generic constants that can depend on k. Since we have Πkn(v) = Π̂k(v ◦ T−1
n ), the

uniform stability of Πkn in L∞(Jn;Z) follows readily.
We now prove the approximation property (69.27). Let v ∈ W k+1,∞(J ;Z). Since Πkτ leaves

Pgk(Jτ ;Z) pointwise invariant and is stable in L∞(J ;Z) uniformly w.r.t. τ , we infer that

‖v −Πkτ (v)‖L∞(J;Z) = inf
qτ∈P

g
k(Jτ ;Z)

‖v − q +Πkτ (q − v)‖L∞(J;Z)

≤ c inf
qτ∈P

g
k(Jτ ;Z)

‖v − q‖L∞(J;Z).

The expected estimate follows from standard polynomial approximation properties extended to
Bochner Sobolev spaces.
(ii) Let v ∈ H1(Jn;V

′). We want to build Πkn(v) ∈ Pk(Jn;V ′) s.t.

Πkn(v)(tn) = v(tn),∫

Jn

〈Πkn(v)− v, q〉V ′,V dt = 0, ∀q ∈ Pk−1(Jn;V ).

Let Jrf : L2(Jn;V ) → (L2(Jn;V ))′ = L2(Jn;V
′) be the Riesz–Fréchet map associated with the

Hilbert space L2(Jn;V ) (see Theorem C.24). Since Pk−1(Jn;V ) is a closed subspace of L2(Jn;V ),
the L2(Jn;V )-orthogonal projection Θnk−1 : L2(Jn;V )→ Pk−1(Jn;V ) is well defined. Let us set

Θ̃nk−1 := Jrf ◦Θnk−1 ◦ (Jrf)−1 : L2(Jn;V
′)→ L2(Jn;V

′).
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For all q ∈ Pk−1(Jn;V ), we have

∫

Jn

〈Θ̃nk−1(v), q〉V ′,V dt =

∫

Jn

〈Jrf(Θnk−1((J
rf)−1(v))), q〉V ′,V dt

=

∫

Jn

(Θnk−1((J
rf)−1(v)), q)V dt

=

∫

Jn

((Jrf)−1(v), q)V dt =

∫

Jn

〈v, q〉V ′,V dt.

We then observe that for all v ∈ H1(Jn;V
′), the definition

Πkn(v)(t) := (v(tn)− Θ̃nk−1(v)(tn))Lk(t) + Θ̃nk−1(v)(t), ∀t ∈ Jn,

satisfies all of the above requirements. Moreover, by invoking the integration by parts for-
mula (64.7), the identity in Lemma 69.16 becomes

∫

Jn

〈∂t(v −Πkτ (v)), yhτ 〉V ′,V dt− ([[Πkτ (v)]]n−1, yhτ (t
+
n−1))L = 0,

for all v ∈ H1(J ;V ), all yhτ ∈ Xhτ , and all n ∈ Nτ . Finally, let us derive a stability estimate on
Πkn in L∞(Jn;V

′). We first notice that

‖Θ̃nk−1‖L(L2(V ′);L2(V ′)) = ‖Θnk−1 ◦ (Jrf)−1)‖L(L2(J;V ′);L2(J;V ))

≤ ‖(Jrf)−1‖L(L2(Jn;V ′);L2(J;V )) = 1.

Moreover, reasoning as above shows that there exists c s.t. for all v ∈ H1(Jn;V
′),

‖Πkn(v)‖L∞(Jn;V ′) ≤ c‖v‖L∞(Jn;V ′).

(iii) Let v ∈ H1(J ;V ). We observe that Πkτ (Πh(v)) and Πh(Π
k
τ (v)) are both in P b

k (Jτ ;Vh). There-
fore, the assertion is established provided we show that

Πkτ (Πh(v))(tn) = Πh(Π
k
τ (v))(tn), ∀n ∈ N τ ,∫

Jn

(Πkτ (Πh(v))−Πh(Π
k
τ (v)), q)Ldt = 0, ∀q ∈ Pk−1(Jn;Vh), ∀n ∈ Nτ .

By definition of Πkτ , we have for all n ∈ N τ ,

Πkτ (Πh(v))(tn) = Πh(v)(tn) = Πh(v(tn)) = Πh(Π
k
τ (v)(tn)) = Πh(Π

k
τ (v))(tn).

Moreover, for all q ∈ Pk−1(Jn;Vh) and all n ∈ Nτ , since the duality between V an V ′ is an
extension of the L-inner product, we have

∫

Jn

(Πkτ (Πh(v)), q)Ldt =

∫

Jn

(Πh(v), q)Ldt =

∫

Jn

〈v, (Πh)∗(q)〉V,V ′dt,

where (Πh)
∗ : Vh → V ′. Since (Πh)

∗(q) ∈ Pk−1(Jn;V
′), we infer that

∫

Jn

〈v, (Πh)∗(q)〉V,V ′dt =

∫

Jn

〈Πkτ (v), (Πh)∗(q)〉V,V ′dt =

∫

Jn

(Πh(Π
k
τ (v)), q)Ldt.

This completes the proof.
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Exercise 69.8 (Symmetrization). (i) We have

∫ 1

−1

R̂(ψq)′ψp ds =
∫ 1

−1

(ψq − ψq(−1)θk+1)
′ψp ds

=

∫ 1

−1

ψ′
qψp ds− ψq(−1)

∫ 1

−1

θ′k+1ψp ds

=

∫ 1

−1

ψ′
qψp ds+ ψq(−1)ψp(−1) = Bpq ,

where we integrated by parts and used that
∫ 1

−1
θk+1r ds = 0 for all r ∈ Pk−1(Ĵ ;R), θk+1(−1) = 1,

and θk+1(1) = 0 to pass from the second to the third line. Furthermore, we have

(B+ BT)pq =

∫ 1

−1

(ψ′
qψp + ψ′

pψq) ds+ 2ψq(−1)ψp(−1)

= ψq(−1)ψp(−1) + ψq(1)ψp(1),

since ψ′
qψp + ψ′

pψq = (ψqψp)
′. Finally, the identity

(BTM−1B)pq =

∫ 1

−1

R̂(ψq)′R̂(ψp)′ ds

has been shown in Exercise 28.1 with the operator Z : Pk(Ĵ ;R)→ Pk(Ĵ ;R) s.t. Z(r) = (R̂(r))′.
(ii) From Step (i), we observe that the matrix (B + BT) is (symmetric) positive semidefinite.
Indeed, setting Ψ(±1) = (ψ1(±1), . . . , ψk+1(±1))T ∈ Rk+1, we have (B+BT) = Ψ(−1)⊗Ψ(−1)T+
Ψ(1)⊗Ψ(1)T and XT(B+ BT)X = (XTΨ(−1))2 + (XTΨ(1))2. Moreover, the matrixM is positive
definite. This implies thatM⊗ (B + BT) is symmetric positive semidefinite. After noticing that

Ŝ− Ŝ♭ =M⊗ (B+BT), we then infer that VTŜ♭V ≤ VTŜV. Since the matrixM is symmetric and
since the matrix A⊗M is symmetric positive definite, the Cauchy–Schwarz inequality followed by
Young’s inequality applied to Y := (A⊗M)V and Z := (M⊗ B)V implies that

V
T(M⊗ (B+ BT))V = 2VT(M⊗ B)V

= 2VT(A⊗M)(A−1 ⊗M−1)(M⊗ B)V
= 2YT(A−1 ⊗M−1)Z

≤ τYT(A−1 ⊗M−1)Y + τ−1ZT(A−1 ⊗M−1)Z

= τVT(A⊗M)V + τ−1
V
T((MA−1M)⊗ BTM−1B))V

= V
T
Ŝ♭V.

Hence, we have

VT
ŜV = VT

Ŝ♭V + VT(M⊗ (B+ BT))V ≤ 2VT
Ŝ♭V.

(iii) We have

Sjq,ip =

∫

Jn

(∂tRn(ϕjψq) +Ah(ϕjψq), ϕiψp)Ldt

= (A−1
h (∂tRn(ϕjψq)) + ϕjψq, ϕiψp)L2(Jn;Vh),
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for all i, j ∈ {1:I} and all p, q ∈ {1:m}. Moreover, the mass matrix of the inner product
(·, ·)L2(Jn;Vh) is A⊗ τM. We conclude by invoking the result of Exercise 28.1.
(iv) For k := 1, an explicit computation shows that

BTM−1P =

( 27
4 − 9

4

− 9
4

7
4

)
, B+ BT =

( 9
4 − 3

4

− 3
4

5
4

)
.

In conclusion, the preconditioned symmetric dG(1) system matrix takes the following form:

Ŝ = 1
τ (MA−1M)⊗

( 27
4 − 9

4

− 9
4

7
4

)
+M⊗

( 9
4 − 3

4

− 3
4

5
4

)
+ τA

( 3
4 0

0 1
4

)
.



Chapter 70

Continuous Petrov–Galerkin in
time

Exercises

Exercise 70.1 (Interpolation operators). (i) Let Iglk−1 be the Lagrange interpolation operator
defined in (70.2) using Z := L. Prove that

∫

J

(p, Iglk−1(w))Ldt =

∫

J

(p, w)L µ
gl
k (dt), (70.1a)

∫

J

(v, Iglk−1(w))L µ
gl
k (dt) =

∫

J

(v, w)L µ
gl
k (dt), (70.1b)

for all p ∈ P b
k (Jτ ;L) and all v, w ∈ L2(J ;L). (ii) Let Z ⊆ L. Prove that the restriction of Iglk−1 to

P g
k (Jτ ;Z) coincides with the L2(J ;Z)-orthogonal projection onto P b

k−1(Jτ ;Z). (iii) Prove (70.5).

Exercise 70.2 (Equivalence with KB IRK). Prove the converse assertion in Lemma 70.5.(
Hint : show that uhτ (t) = un−1

h + τ
∑

j∈{1:k}
1
2

∫ T−1
n (t)

−1
Lj(ξ) dξ

(
fh(tn,j) − Ah(tn,j)(un,jh )

)
for all

t ∈ Jn and all n ∈ Nτ .
)

Exercise 70.3 (Butcher simplifying assumptions). Let s ∈ N \ {0} and let {ci}i∈{1:s} be s

distinct points in [0, 1]. Let ξi := 2ci − 1 and Li(ξ) :=
∏
j∈{1:s}\{i}

ξ−ξj
ξi−ξj for all i ∈ {1:s}. Let

aij :=
1
2

∫ 2ci−1

−1 Lj(ξ) dξ, bi := 1
2

∫ 1

−1 Li(ξ) dξ for all i ∈ {1:s}. (i) Show that the set {ξi, 2bi}i∈{1:s}
is a quadrature of order kQ ≥ s − 1 over the interval [−1, 1] (see Definition 6.4). (Hint : observe

that p =
∑

i∈{1:s} p(ξi)Li for all p ∈ Ps−1(Ĵ ;R).) (ii) Show that for all q ∈ {1:s},
∑

j∈{1:s}
aijc

q−1
j =

cqi
q
, ∀i ∈ {1:s},

∑

j∈{1:s}
bjc

q−1
j =

1

q
.

(Hint : integrate
(
1+ξ
2

)q−1
over (−1, ξi) for all i ∈ {1:s} and over (−1, 1).) (iii) Assuming that

kQ ≥ s, show that for all j ∈ {1:s},
∑

i∈{1:s}
bic

q−1
i aij =

bj
q
(1− cqj), ∀q ∈ {1:kQ−s+1}.
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(Hint : integrate the polynomial
(
1+ξ
2

)q−1 ∫ ξ
−1 Lj(ξ) dξ over (−1, 1).) Note: these formulae are

called Butcher’s simplifying assumptions in the ODE literature (see Butcher [9, Thm. 7], Hairer
et al. [25, §II.6], [24, §IV.5, Thm. 5.1], see also the order conditions stated in Theorem 78.5).

Exercise 70.4 (cPG(k)). Assume that a is time-independent. (i) Use the IRK formalism and the
tableaux in (70.15) to write the algebraic form of cPG(1) and cPG(2). (Hint : use the coefficients
{αi}i∈{0:s}.) (ii) Write again the cPG(1) and cPG(2) schemes in algebraic form using the formalism
described in §70.3.2 and the bases from Remark 70.16. (Hint : for k := 1, it is of the form
(2M+ τA)Un,1 = 2MUn−1 + τFn,1 and Un = 2Un,1 − Un−1, whereas for k := 2, it is of the form

(
3
2

2
√
3−3
2

− 2
√
3+3
2

3
2

)(
MUn,1

MUn,2

)
+
τ

2

(
AUn,1
AUn,2

)
=

( √
3MUn−1 + τ

2F
n,1

−
√
3MUn−1 + τ

2F
n,2

)
,

and Un := Un−1 −
√
3(Un,1 − Un,2).)

Exercise 70.5 (Πkτ and Πh commute). Let Πh ∈ L(V ;Vh). Show that Πkτ (Πh(v)) = Πh(Π
k
τ (v))

for all v ∈ H1(J ;V ). (Hint : use Remark 70.10 and prove that Πh commutes with Ξb
k−1 by

introducing (Πh)
∗ ∈ L(Vh;V ′).)

Solution to exercises

Exercise 70.1 (Interpolation operators). (i) The identity (70.1b) follows from the fact that
the discrete measure µgl

k (dt) samples at the interpolation nodes of Iglk−1, and the identity (70.1a)
follows from (70.1b) once we observe that

∫
J
(p, Iglk−1(w))Ldt =

∫
J
(p, Iglk−1(w))L µ

gl
k (dt) because

the quadrature is of order (2k − 1).
(ii) Since the quadrature is of order (2k−1), we have for all vτ ∈ P g

k (Jτ ;Z) and all yτ ∈ P b
k−1(Jτ ;Z),

∫

J

(Iglk−1(vτ ), yτ )Ldt =

∫

J

(Iglk−1(vτ ), yτ )L µ
gl
k (dt) =

∫

J

(vτ , yτ )Ldt.

This proves the assertion.
(iii) Let us prove (70.5). Let v ∈ H1(J ;L) and yτ ∈ P b

k−1(Jτ ;L). We observe that by construction

Igl+k (v) coincides with v at the Gauss–Legendre nodes {tn,l}l∈{1:k} over each time interval Jn for
all n ∈ Nτ . Hence, we have

∫

J

(v, yτ )Lµ
gl
k (dt) =

∫

J

(Igl+k (v), yτ )Lµ
gl
k (dt).

But since (Igl+k (v), yτ )L ∈ P2k−1(Jτ ;R), the quadrature is exact, and we have
∫

J

(v, yτ )Lµ
gl
k (dt) =

∫

J

(Igl+k (v), yτ )Ldt.

Exercise 70.2 (Equivalence with KB IRK). Assume that {un,lh }l∈{1:s} solves (70.12) with

s := k and unh is given by (70.13) for all n ∈ Nτ . Let uhτ ∈ P g
k (Jτ ;Vh) be s.t. uhτ (tn) := unh for all

n ∈ N τ , and {uhτ(tn,l) := un,lh }l∈{1:k} for all n ∈ Nτ . Let us define vhτ ∈ P b
k (Jτ ;Vh) by setting

for all t ∈ Jn and all n ∈ Nτ ,

vhτ (t) := un−1
h + τ

∑

j∈{1:k}

1

2

∫ T−1
n (t)

−1

Lj(ξ) dξ
(
fh(tn,j)−Ah(tn,j)(un,jh )

)
.
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Observe that indeed vhτ ∈ P b
k (Jτ ;Vh) since Lj ∈ Pk−1(Ĵ ;R) for all j ∈ {1:k}. Moreover, (70.12)

together with (70.11) implies that vhτ (tn,i) = un,ih for all i ∈ {1:k}. Similarly, (70.13) together
with (70.11) implies that vhτ (tn) = unh. Finally, vhτ (t

+
n−1) = un−1

h . These arguments prove that

vhτ = uhτ ∈ P g
k (Jτ ;Vh). Recalling that T−1

n (t) = 2 t−tn−1

τ − 1, we obtain for all i ∈ {1:k},

∂tuhτ (tn,i) = τ
∑

j∈{1:k}

1

2

2

τ
Lj(T−1

n (tn,i))
(
fh(tn,j)−Ah(tn,j)(un,jh )

)

= fh(tn,i)−Ah(tn,i)(un,ih ).

This shows that uhτ solves the cPG(k) scheme (70.9).

Exercise 70.3 (Butcher simplifying assumptions). (i) Recall that the polynomials {Li}i∈{1:s}
are the Lagrange polynomials associated with the nodes {ξi}i∈{1:s}. Hence they form a basis of

Ps−1(Ĵ ;R). This implies that for all p =
∑

i∈{1:s} p(ξi)Li ∈ Ps−1(Ĵ ;R), we have

∫ 1

−1

p(ξ) dξ =
∑

i∈{1:s}
p(ξi)

∫ 1

−1

Li(ξ) dξ =
∑

i∈{1:s}
2bip(ξi).

This shows that the set {ξi, 2bi}i∈{1:s} is a quadrature of order kQ ≥ s− 1 (see Definition 6.4).
(ii) Since the polynomials {Li}i∈{1:s} are the Lagrange polynomials associated with the nodes

{ξi}i∈{1:s} and they form a basis of Ps−1(Ĵ ;R), we have for all q ∈ {1:s− 1},
(
1 + ξ

2

)q−1

=
∑

j∈{1:s}

(
1 + ξj

2

)q−1

Lj(ξ).

Integrating over (−1, ξi) for all i ∈ {1:s} and using the definition of ci gives

2cqi
q

=
2

q

(
1 + ξi
2

)q
=

∫ ξi

−1

(
1 + ξ

2

)q−1

dξ

=
∑

j∈{1:s}

(
1 + ξj

2

)q−1 ∫ ξi

−1

Lj(ξ) dξ.

Recalling that cj =
1+ξj
2 and aij =

1
2

∫ ξi
−1 Lj(ξ) dξ, we obtain

cqi
q

=
∑

j∈{1:s}
aijc

q−1
j , ∀i ∈ {1:s}.

Now, we integrate over (−1, 1) and get

2

q
=

∫ 1

−1

(
1 + ξ

2

)q−1

dξ =
∑

j∈{1:s}

(
1 + ξj

2

)q−1 ∫ 1

−1

Lj(ξ) dξ.

Recalling that bj =
1
2

∫ 1

−1
Lj(ξ) dξ for all j ∈ {1:s}, we obtain

1

q
=

∑

j∈{1:s}
bjc

q−1
j .
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(iii) Let kQ ≥ s be the order of the quadrature. Let q ∈ {1:kQ−s+1}. Since
(
1+ξ
2

)q−1 ∫ ξ
−1 Lj(ξ) dξ

is a polynomial of degree q + s− 1 ≤ kQ, we infer that

1

4

∫ 1

−1

(
1 + ξ

2

)q−1 ∫ ξ

−1

Lj(ζ) dζ dξ =
1

4

∑

i∈{1:s}
2bi

(
1 + ξi
2

)q−1 ∫ ξi

−1

Lj(ζ) dζ

=
∑

i∈{1:s}
bic

q−1
i aij .

Moreover, integrating by parts, we obtain

1

4

∫ 1

−1

(
1 + ξ

2

)q−1 ∫ ξ

−1

Lj(ζ) dζ dξ = −
1

4

∫ 1

−1

2

q

(
1 + ξ

2

)q
Lj(ξ) dξ

+
1

4

[
2

q

(
1 + ξ

2

)q ∫ ξ

−1

Lj(ζ) dζ
]1

−1

.

Since the degree of
(

1+ξ
2

)q
Lj(ξ) is q + s− 1 ≤ kQ, we infer that

1

4

∫ 1

−1

(
1 + ξ

2

)q−1 ∫ ξ

−1

Lj(ζ) dζ dξ = −
1

4

2

q
cqj2bj +

1

4

2

q
2bj .

In conclusion, we have established that for all j ∈ {1:s},
∑

i∈{1:s}
bic

q−1
i aij =

bj
q
(1− cqj).

Exercise 70.4 (cPG(k)). (i) Let us start with k = s := 1. The corresponding Butcher tableau
in (70.15) gives

MU
n,1 +

1

2
τAUn,1 =MU

n−1 +
1

2
τFn,1,

MUn =MUn−1 + τFn,1 − τAUn,1,

with F
n,1
i := 〈f(tn,1), ϕi〉V ′,V for all i ∈ I and tn,1 := tn−1+tn

2 . We can eliminate the intermediate
state Un,1. Indeed, according to (70.14) and the coefficients {αi}i∈{0:s} given below (70.15) for

s := 1, we have Un = −Un−1+2Un,1. Hence, Un,1 = 1
2 (U

n+Un−1). After inserting this expression
into the first equation, we obtain the Crank–Nicolson time-stepping scheme:

M(Un − U
n−1) +

1

2
τA(Un + U

n−1) = τFn,1.

Now, for k = s := 2, we have (using (70.14) and the coefficients {αi}i∈{0:s} given below (70.15))

MU
n,1 +

1

4
τAUn,1 + 3− 2

√
3

12
τAUn,2 =MU

n−1 +
1

4
τFn,1 +

3− 2
√
3

12
τFn,2,

3 + 2
√
3

12
τAUn,1 +MUn,2 +

1

4
τAUn,2 =MUn−1 +

3 + 2
√
3

12
τFn,1 + τ

1

4
Fn,2,

U
n = U

n−1 −
√
3(Un,1 − U

n,2),
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with F
n,1
i := 〈f(tn,1), ϕi〉V ′,V , F

n,2
i := 〈f(tn,2), ϕi〉V ′,V for all i ∈ {1:I}, and tn,1 := tn−1+tn

2 −
√
3
3 τ ,

tn,2 := tn−1+tn
2 +

√
3
3 τ .

(ii) We now write again the cPG(1) scheme and the cPG(2) scheme in algebraic form using the

formalism described in §70.3.2 and the bases from Remark 70.16. For k := 1, the basis of P1(Ĵ ;R)
is φ0(s) = −s and φ1(s) = 1+ s, whereas the basis of P0(Ĵ ;R) is ψ1(s) = 1. This leads to b11 = 2,
m11 = 1, d1 = 2, α0 = −1, and α1 = 2. Hence, we have

(2M+ τA)Un,1 = 2MUn−1 + τFn,1,

Un = 2Un,1 − Un−1.

The intermediate vector Un,1 can be eliminated, and the cPG(1) scheme takes again the same form
as the Crank–Nicolson scheme, that is,

M(Ûn − Un−1) +
1

2
τA(Ûn + Un−1) = τFn,1.

For k := 2, we have ξ1 := −
√
3
3 , ξ2 :=

√
3
3 , ω1 := 1, ω2 := 1, and the basis functions are

φ0(s) = L2(s) =
1
2 (3s

2 − 1),

φ1(s) = − (
√
3+1)
4 (s+ 1)(3s−

√
3), ψ1(s) = − 1

2
√
3
(3s−

√
3),

φ2(s) =
(
√
3−1)
4 (s+ 1)(3s+

√
3), ψ2(s) =

1
2
√
3
(3s+

√
3).

We obtain

B =

(
3
2

2
√
3−3
2

− 2
√
3+3
2

3
2

)
, M =

(
1
2 0
0 1

2

)
,

and
d1 =

√
3, d2 = −

√
3, α0 = 1, α1 = −

√
3, α2 =

√
3.

This leads to

3

2
MUn,1 +

1

2
τAUn,1 + 2

√
3− 3

2
MUn,2 =

√
3MUn−1 +

1

2
τFn,1,

− 2
√
3 + 3

2
MUn,1 +

3

2
MUn,2 +

1

2
τAUn,2 = −

√
3MUn−1 +

1

2
τFn,2,

U
n = U

n−1 −
√
3(Un,1 − U

n,2).

Notice that the formulae obtained in Steps (i) and (ii) are equivalent.

Exercise 70.5 (Πkτ and Πh commute). Let v ∈ H1(J ;V ). Observe that Πh(v) ∈ H1(J ;V ) so
that Πkτ (Πh(v)) is well defined, and that Πkτ (v) ∈ H1(J ;V ) so that Πh(Π

k
τ (v)) is well defined as

well. Using Remark 70.10, we have

Πkτ (Πh(v)) = Πh(v)(0) +

∫ t

0

Ξb
k−1(∂t(Πh(v))) ds

= Πh(v(0)) +

∫ t

0

Ξb
k−1(Πh(∂tv)) ds,

since Πh commutes with the time derivative. Let us now show that Πh also commutes with Ξb
k−1.

We first observe that ∫

J

〈φ,Ξb
k−1(w) − w〉V ′,V dt = 0,
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for all φ ∈ P b
k−1(Jτ ;V

′) and all w ∈ L2(J ;V ) as a consequence of (69.2). This identity, in turn,
implies that

∫

J

(Ξb
k−1(Πh(v)), qτ )Ldt =

∫

J

(Πh(v), qτ )Ldt =

∫

J

(Πh(v),PVh(qτ ))Ldt

=

∫

J

〈v, (Πh)∗(PVh(qτ ))〉V,V ′dt =

∫

J

〈Ξb
k−1(v), (Πh)

∗(PVh(qτ ))〉V,V ′dt

=

∫

J

(Πh(Ξ
b
k−1(v)),PVh (qτ ))Ldt =

∫

J

(Πh(Ξ
b
k−1(v)), qτ )Ldt,

for all qτ ∈ P b
k−1(Jτ ;L), where we used that PVh(qτ ) ∈ P b

k−1(Jτ ;Vh) and (Πh)
∗(PVh(qτ )) ∈

P b
k−1(Jτ ;V

′). Finally, the above commuting property implies that

Πkτ (Πh(v)) = Πh(v(0)) +

∫ t

0

Πh(Ξ
b
k−1(∂tv)) ds = Πh(Ξ

b
k−1(v)).

This proves the assertion.



Chapter 71

Analysis using inf-sup stability

Exercises

Exercise 71.1 (Time derivative). Let φ ∈ C∞
0 (J ;R) and v ∈ X, i.e., v ∈ L2(J ;V ) and

∂tv ∈ L2(J ;V ′). Show that φv is in X with ∂t(φv)(t) = φ′(t)v(t) + φ(t)∂tv(t). (Hint : use Pettis
theorem and Lemma 64.33.)

Exercise 71.2 (Inf-sup condition). Prove (71.7) with X equipped with the norm ‖v‖2
X̃

:=

‖v‖2L2(J;V )+
γ
α‖∂tv‖2L2(J;V ′)+γ‖v(0)‖2L. (Hint : use integration by parts in time to bound γ‖v(0)‖2L

by ‖v‖2X .)
Exercise 71.3 (Heat equation). Consider the heat equation with unit diffusivity (see Exam-
ple 71.4). Prove that for all v ∈ X,

‖v‖2X = sup
y1∈L2(J;H1

0 )

b(v, (0, y1))
2

‖y1‖2L2(J;H1
0 )

+ ‖v(0)‖2L2.

(Hint : observe that the supremum is reached for y1 := A−1(∂tv) + v.)

Exercise 71.4 (Ultraweak formulation). Equip the space Xuw with the norm ‖v‖Xuw
:=

‖v‖L2(J;V ) and the space Yuw with the norm defined in (71.10). (i) Prove the inf-sup condi-
tion (71.11). (Hint : consider the adjoint parabolic problem ∂wv(t) + A∗(wv)(t) := (v(t), ·)V for
a.e. t ∈ J, with wv(0) := 0, invoke Lemma 71.2, then set w̃v(t) := wv(T − t).) (ii) The rest of the

exercise considers the heat equation with unit diffusivity. Show that supw∈Yuw

buw(v,w)
‖w‖Yuw ≤ ‖v‖Xuw

for all v ∈ Xuw. (Hint : prove first that ‖A−1(∂tw) − w‖2L2(J;H1
0 (D))

= ‖w‖2Yuw
for all w ∈ Yuw.)

(iii) Prove that

‖v‖Xuw = sup
w∈Yuw

buw(v, w)

‖w‖Yuw

, ∀v ∈ Xuw.

(Hint : compute b(v, w̃), where w̃v ∈ Yuw solve the backward-in-time parabolic problem −∂tw̃v −
∆w̃v = −∆v with w̃v(T ) = 0.)

Exercise 71.5 (Norm ‖·‖V ′
h
). Let ‖·‖V ′

h
be defined in (71.13). Let {ϕi}i∈{1:I} be a basis of

Vh and let S ∈ RI×I and M ∈ RI×I be the stiffness and mass matrices s.t. Sij := (ϕj , ϕi)V
andMij := (ϕj , ϕi)L for all i, j ∈ {1:I} (these matrices are symmetric positive definite). For all
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vh ∈ Vh, let V ∈ RI be the coordinate vector of vh in the basis {ϕi}i∈{1:I}, i.e., vh :=
∑

i∈{1: I} Viϕi.

(i) Prove that ‖vh‖V ′
h
= (VTMS−1MV)

1
2 . (Hint : use that ‖vh‖V ′

h
= supW∈RI

W
TMV

(WTSW)
1
2
.) (ii) Let

µ ≥ 0. Prove the following two-sided bound due to Pearson and Wathen [37] (see also Smears
[41]):

1

2
≤ VT(MS−1M+ µS)V

VT(M+ µ
1
2S)S−1(M+ µ

1
2S)V

≤ 2, ∀V ∈ RI .

Exercise 71.6 (Error analysis with ‖·‖Xh). Referring to §71.2 and denoting by uh the solution
to (71.12), let η(t) := u(t) − PVh(u(t)) for a.e. t ∈ J. (i) With the norm ‖·‖Xh defined in (71.15),
prove that |b(η, yh)| ≤

√
2M‖η‖Xh‖yh‖Y for all yh ∈ Yh. (Hint : use that α

γh
≤ M2.) (ii) Prove

the error estimate ‖u − uh‖Xh ≤
(
1 +

√
2M
βh

)
‖η‖Xh , where βh is the constant from the inf-sup

inequality (71.16). (Hint : combine inf-sup stability with consistency and boundedness.)

Exercise 71.7 (C0(J ;L)-estimate using inf-sup stability). (i) Recalling that ‖·‖X is defined

in (71.6a), prove that γ
1
2 ‖v‖C0(J;L2) ≤ ‖v‖X for all v ∈ X. (Hint : see Exercise 71.2.) (ii) As-

sume (71.18). Let c1 :=
√

γ
α and c2 :=

√
ρ
2 , where ρ := 2

ι2L,V
α and ιL,V is the operator norm of

the embedding V →֒ L, i.e., the smallest constant s.t. ‖v‖L ≤ ιL,V ‖v‖V for all v ∈ V. Prove that

β′
hc1‖u− uh‖C0(J;L) ≤ β′

hc1‖η‖C0(J;L) + ‖η(0)‖L + c2‖∂tη‖L2(J;L),

with η(t) := u(t)−ΠE

h(t;u(t)). (Hint : combine Lemma 71.9 with consistency.) (iii) Compare this
estimate with (66.16) in the context of the heat equation.

Exercise 71.8 (Implicit Euler scheme). (i) Let Xhτ := (Vh)
N+1 and Yhτ := Vh×(Vh)N .

Reformulate the implicit Euler scheme (67.3) using the forms

bτ (vhτ , yhτ ) := (v0h, y0h)L +
∑

n∈Nτ
τ
(
((δτvhτ )

n, yn1h)L + an(vnh , y
n
1h)
)
,

ℓτ (yhτ ) := (u0, y0h)L +
∑

n∈Nτ
τ〈fn, yn1h〉V ′,V ,

where (δτvhτ )
n := 1

τ (v
n
h − vn−1

h ). (ii) Assume that the bilinear form a is symmetric at all times.
Prove that

α‖uhτ‖2ℓ2(J;V ) +
1

M
‖δτuhτ‖2ℓ2(J;V ′

h)
+ τ‖δτuhτ‖2ℓ2(J;L) + ‖uNh ‖2L ≤

M

α

( 1
α
‖f‖2ℓ2(J;V ′) + ‖u0‖2L

)
.

(Hint : use the inf-sup condition (67.1).) (iii) Assume that u ∈ C0(J ;V ) ∩ C1(J ;V ′) ∩H2(J ;V ′)
and that PVh is uniformly V -stable (see (71.18)). Prove that

‖δτuhτ − δτuτ‖ℓ2(J;V ′) ≤ ‖PVh‖L(V )
M

α

(√
3
(
M‖ητ‖ℓ2(J;V ) + 2‖∂tη‖L2(J;V ′)

+ τ‖∂ttu‖L2(J;V ′)

)
+
√
α‖e0h‖L

)
,

where (δτuτ )
n := 1

τ (u(tn) − u(tn−1) for all n ∈ Nτ , η(t) := u(t) − vh(t) for all t ∈ J , ητ :=
(η(tn))n∈Nτ , and vh arbitrary in H1(J ;Vh). (Hint : use Step (ii) and Lemma 71.8.)

Exercise 71.9 (Inf-sup for cPG(k)). Complete the proof of Lemma 71.20. (Hint : reason as in
the last step of the proof of Lemma 71.18.)
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Solution to exercises

Exercise 71.1 (Time derivative). Let φ ∈ C∞
0 (J ;R) and v ∈ X. The function J ∋ t 7→

φ(t)v(t) ∈ V is strongly measurable owing to Pettis theorem (Theorem 64.4). Indeed V is a
separable Hilbert space (by assumption), and the function J ∋ t 7→ φ(t)〈v′, v(t)〉V ′,V ∈ R is

Lebesgue measurable for all v′ ∈ V ′. Moreover (
∫
J ‖φ(t)v(t)‖2V dt)

1
2 ≤ ‖φ‖L∞(J;R)‖v‖L2(J;V ). This

shows that φv ∈ L2(J ;V ) (see Definition 64.17).
Let now ψ ∈ C∞

0 (J ;R) and w ∈ V. Since φ(t)ψ′(t) = (φψ)′(t)− φ′(t)ψ(t) for all t ∈ J, we have
∫

J

(w, φ(t)v(t))Lψ
′(t)dt =

∫

J

(w, v(t))L(φψ)
′(t)dt −

∫

J

(w, v(t))Lφ
′(t)ψ(t)dt

=

∫

J

−〈∂tv(t), w〉V ′,V φ(t)ψ(t)dt −
∫

J

(w, v(t))Lφ
′(t)ψ(t)dt

=

∫

J

−〈φ(t)∂tv(t), w〉V ′,V ψ(t)dt −
∫

J

(φ′(t)v(t), w)Lψ(t)dt,

where we used that v has a weak time derivative in L2(J ;V ′) and that the L-inner product is an
extension of the duality between V ′ and V. The above identity together with the characterization
from Lemma 64.33 shows that φv has a weak time derivative in L2(J ;V ′) such that ∂t(φv)(t) =
φ′(t)v(t) + φ(t)∂tv(t).

Exercise 71.2 (Inf-sup condition). Let v ∈ X. Integrating by parts in time and using Young’s
inequality, we infer that

γ‖v(0)‖2L = γ‖v(T )‖2L − 2γ

∫

J

〈∂tv(t), v(t)〉V ′,V dt

≤ γ‖v(T )‖2L +
γ

α
‖∂tv‖2L2(J;V ′) + γα‖v‖2L2(J;V ).

Since γα ≤ 1, this implies that

γ‖v(0)‖2L ≤
1

α
‖v(T )‖2L +

γ

α
‖∂tv‖2L2(J;V ′) + ‖v‖2L2(J;V ) = ‖v‖2X .

Hence, ‖v‖2
X̃
≤ 2‖v‖2X . We conclude that

inf
v∈X

sup
y∈Y

|b(v, y)|
‖v‖X̃‖y‖Y

≥ β̃ > 0,

with β̃ := 1√
2
β, and β is the inf-sup constant in (71.8).

Exercise 71.3 (Heat equation). Let v ∈ X := L2(J ;H1
0 (D)). We have

b(v, (0, y1)) =

∫

J

〈∂tv(t) +A(v(t)), y1(t)〉H−1(D),H1
0 (D)dt

=

∫

J

〈A(A−1∂tv(t) + v(t)), y1(t)〉H−1(D),H1
0 (D)dt

=

∫

J

(∇(A−1(∂tv(t)) + v(t)),∇y1(t))L2(D)dt.

Letting yv := A−1(∂tv) + v ∈ Y1 := L2(J ;H1
0 (D)), this shows that

b(v, (0, y1)) =

∫ T

0

(∇yv,∇y1)L2(D)dt.
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Hence, as claimed in the hint, we have

sup
y1∈L2(J;H1

0 (D))

b(v, (0, y1))

‖y1‖L2(J;H1
0 (D))

= sup
y1∈L2(J;H1

0 (D))

∫
J (∇yv(t),∇y1(t))L2(D)dt

‖y1‖L2(J;H1
0 (D))

= ‖yv‖L2(J;H1
0 (D)).

This gives

b(v, (0, yv)) = ‖yv‖2L2(J;H1
0 (D)) =

(
sup

y1∈L2(J;H1
0 (D))

b(v, (0, y1))

‖y1‖L2(J;H1
0 (D))

)2

.

Moreover, since A is self-adjoint and observing that

〈A(y), z〉H−1(D),H1
0 (D) = (∇y,∇z)L2(D) = (y, z)H1

0 (D), ∀y, z ∈ H1
0 (D),

i.e., A is the Riesz–Fréchet isometry from H1
0 (D) to H−1(D), we have

b(v, (0, yv)) =

∫

J

〈∂tv(t) +A(v(t)), A−1(∂tv(t)) + v(t)〉H−1(D),H1
0 (D)dt

= 2

∫

J

〈∂tv(t), v(t)〉H−1(D),H1
0 (D)dt+

∫

J

〈A(v(t)), v(t)〉H−1(D),H1
0 (D)dt

+

∫

J

〈∂tv(t), A−1(∂tv(t))〉H−1(D),H1
0 (D)dt

= ‖v(T )‖2L2(D) − ‖v(0)‖2L2(D) + ‖v‖2L2(J;H1
0 (D)) + ‖∂tv‖2L2(J;H−1(D))

= ‖v‖2X − ‖v(0)‖2L2(D),

where we used integration by parts in time. This proves the inf-sup identity.

Exercise 71.4 (Ultraweak formulation). (i) Let v ∈ Xuw. Consider the adjoint parabolic
problem ∂wv(t) + A∗(wv)(t) = (v(t), ·)V for a.e. t ∈ J, with the initial condition wv(0) = 0 (this
problem is well-posed owing to Theorem 65.9). Since the operators A and A−1 have the same
coercivity constants as A∗ and A−∗, respectively, and since wv(0) = 0, Lemma 71.2 implies that

β ‖wv‖X ≤ sup
y1∈L2(J;V )

∫
J 〈∂twv(t) +A∗(wv)(t), y1(t)〉V ′,V dt

‖y1‖L2(J;V )

= sup
y1∈L2(J;V )

∫
J
(v(t), y1(t))V dt

‖y1‖L2(J;V )
= ‖v‖L2(J;V ).

Let us now set

w̃v(t) := wv(T − t).

Then w̃v ∈ Yuw and since ∂tw̃v(t) = −∂twv(T − t), we infer that −∂tw̃v(t)+A∗(w̃v)(t) = (v(t), ·)V ,
for a.e. t ∈ J. This implies that buw(v, w̃v) = ‖v‖2L2(J;V ). Since ‖w̃v‖Yuw = ‖wv‖X ≤ β−1‖v‖L2(J;V ),
we conclude that

‖v‖Xuw = ‖v‖L2(J;V ) =
buw(v, w̃v)

‖v‖L2(J;V )
≤ β−1 buw(v, w̃v)

‖w̃v‖Yuw

≤ β−1 sup
w∈Yuw

buw(v, w)

‖w‖Yuw

.



Part XIII. Parabolic PDEs 381

(ii) Let w ∈ Yuw. Using that 〈g, z〉H−1(D),H1
0 (D) = (∇A−1(g),∇z)L2 for all g ∈ H−1(D) and all

z ∈ H1
0 (D), we infer that

‖A−1(∂tw)− w‖2L2(J;H1
0 (D)) =

∫

J

〈∂tw(t) −A(w(t)), A−1(∂tw(t)) − w(t)〉H−1(D),H1
0 (D)dt

= ‖w‖2L2(J;H1
0 (D)) + ‖∂tw‖2L2(J;H−1(D)) + ‖w(0)‖2L2(D) = ‖w‖2Yuw

.

This shows that ‖A−1(∂tw) − w‖L2(J;H1
0 (D)) = ‖w‖Yuw for all w ∈ Yuw. Let now v ∈ Xuw :=

L2(J ;H1
0 (D)). Proceeding as above, we have

buw(v, w) =

∫

J

〈v(t),−∂tw(t)〉H1
0 (D),H−1(D) + (∇v(t),∇w(t))L2(D)dt

=

∫

J

(∇v(t),∇(−A−1(∂tw(t)) + w(t))L2(D)dt.

This implies that for all v ∈ Xuw,

sup
w∈Yuw

buw(v, w)

‖w‖Yuw

≤ ‖v‖L2(J;H1
0 (D)) sup

w∈Yuw

‖ −A−1(∂tw(t)) + w(t)‖L2(J;H1
0 (D))

‖w‖Yuw

.

Hence, supw∈Yuw

buw(v,w)
‖w‖Yuw ≤ ‖v‖L2(J;H1

0 (D)).

(iii) Let v ∈ Xuw := L2(J ;H1
0 (D)), v 6= 0. Let w̃v ∈ Yuw solve the backward-in-time parabolic

problem −∂tw̃v −∆w̃v := −∆v in D×J with homogeneous Dirichlet boundary conditions and the
final condition w̃v(T ) := 0. Setting wv(t) := w̃v(T − t), we observe that wv ∈ X and that wv
satisfies the heat equation ∂twv(t) −∆wv(t) = −∆v(T − t) with the initial condition wv(0) = 0.
Defining f ∈ L2(J ;H−1(D)) s.t. f(t) := −∆v(T − t) for a.e. t ∈ J, we have

∫

J

(
〈∂twv(t), θ(t)〉H−1(D),H1

0 (D) + (∇wv(t),∇θ(t))L2(D)

)
dt =

∫

J

〈f(t), θ(t)〉H−1(D),H1
0 (D)dt,

for all θ ∈ L2(J ;H1
0 (D)). Theorem 65.9 shows that the problem defining wv is well-posed. Hence,

the function w̃v ∈ Yuw is well defined. Since A(v) = −∂tw̃v +A(w̃), i.e., v := −A−1(∂tw̃v) + w̃, we
infer from Step (ii) that buw(v, w̃v) = ‖v‖2L2(J;H1

0 (D))
= ‖A−1(∂t(w̃v))− w̃v‖2L2(J;H1

0 (D))
. Therefore,

we have

‖v‖L2(J;H1
0 (D)) ≥ sup

w∈Yuw

buw(v, w)

‖w‖Yuw

≥ buw(v, w̃v)

‖w̃v‖Yuw

= ‖v‖L2(J;H1
0 (D)).

This proves the inf-sup identity.

Exercise 71.5 (Norm ‖·‖V ′
h
). Note that both matrices S andM are symmetric positive definite.

(i) SinceM and S are both invertible and symmetric, using the hint we infer that

‖vh‖V ′
h
= sup

Z∈RI

ZTMS−1MV

(ZTMS−1SS−1MZ)
1
2

= sup
Z∈RI

ZTMS−1MV

(ZTMS−1MZ)
1
2

.

But the Cauchy–Schwarz inequality implies that

(VTMS−1MV)
1
2 ≤ sup

Z∈RI

ZTMS−1MV

(ZTMS−1MZ)
1
2

≤ (VTMS−1MV)
1
2 ,

whence the result.
Note: we can also prove the result using a Lagrange multiplier technique as presented in §49.3.1.
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Using the hint, we infer that ‖vh‖V ′
h

= VTMW∗, where W∗ ∈ RI solves the following linear
maximization problem under a quadratic constraint:

W∗ = arg max
W∈RI

W
TSW=1

WTMV.

The optimality conditions characterizing the unique solution of the above problem can be formu-
lated by introducing a Lagrange multiplier λ and the Lagrange functional L(W, λ) := WTMV +
1
2λ(W

TSW − 1). The pair (W∗, λ∗) is extremal for L iff (see §49.3.1):

MV+ λ∗SW∗ = 0, W
T

∗SW∗ = 1.

This implies that W∗ = −λ∗S−1MV, and inserting this expression into the constraint WT
∗SW∗ = 1

and using the symmetry of S andM implies that λ∗ = ±(VTMS−1MV)−
1
2 . We conclude that

WT

∗MV = ∓(VTMS−1MV)−
1
2VTMS−1MV = ∓(VTMS−1MV)

1
2 ,

which, in turn, implies that λ∗ must be negative. This completes the proof.
(ii) Let µ ≥ 0. The upper bond follows from the identity

(M+ µ
1
2S)S−1(M+ µ

1
2S) =MS−1M+ 2µ

1
2M+ µS,

and the fact that M is positive definite. To prove the lower bound, we first infer from Step (i)
that for all V ∈ RI ,

(VTMS−1MV)
1
2 = ‖vh‖V ′

h
= sup

W∈RI

VTMW

(WTSW)
1
2

≥ VTMV

(VTSV) 1
2

,

where the last bound follows by taking W := V. Hence, we have

VTMV ≤ (VTMS−1MV)
1
2 (VTSV) 1

2 .

Recalling that ab ≤ 1
2a

2 + 1
2b

2 for every real numbers a, b ∈ R, we infer that

V
T(M + µ

1
2S)S−1(M+ µ

1
2S)V = V

TMS−1MV+ 2µ
1
2V

TMV + µVTSV
≤ 2VTMS−1MV + 2µVTSV,

which proves the lower bound.

Exercise 71.6 (Error analysis with ‖·‖Xh). (i) Let yh ∈ Yh. We have

b(η, yh) = (η(0), y0h)L +

∫

J

〈∂tη(t) +A(η)(t), y1h(t)〉V ′,V dt

=

∫

J

〈∂tη(t) +A(η)(t), y1h(t)〉V ′,V dt

≤
(
‖∂tη‖L2(J;V ′

h)
+M‖η‖L2(J;V )

)
‖y1h‖L2(J;V )

≤
√
2
(
‖∂tη‖2L2(J;V ′

h)
+M2‖η‖2L2(J;V )

) 1
2 ‖yh‖Y

≤
√
2M‖η‖Xh‖yh‖Y ,

where we used that (η(0), y0h)L = 0 in the second line and that 1
M2 ≤ γh

α in the last line. This
proves the assertion. Notice in passing that it is not possible to prove the uniform boundedness of
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b on X×Yh if X is equipped with the ‖·‖Xh-norm unless the initial value of the first argument is
L-orthogonal to Vh.
(ii) Let us set eh(t) := uh(t) − PVh(u(t)) for a.e. t ∈ J. Combining the inf-sup inequality (71.16)
with consistency (Galerkin orthogonality) and boundedness (Step (i)), we infer that

β‖eh‖Xh ≤ sup
yh∈Yh

b(eh, yh)

‖yh‖Y
= sup

yh∈Yh

b(η, yh)

‖yh‖Y
≤
√
2M‖η‖Xh ,

and the error estimate follows from the triangle inequality.

Exercise 71.7 (C0(J ;L)-estimate using inf-sup stability). (i) It suffices to repeat the ar-
gument from Exercise 71.2 by replacing the time integration over J by the time integration over
(t, T ) for all t ∈ [0, T ). We obtain

γ‖v(t)‖2L = γ‖v(T )‖2L − 2γ

∫

(t,T )

〈∂tv(t), v(t)〉V ′,V dt

≤ γ‖v(T )‖2L +
γ

α
‖∂tv‖2L2((t,T );V ′) + γα‖v‖2L2((t,T );V ).

Since γα ≤ 1 and (t, T ) ⊂ J, this implies that

γ‖v(t)‖2L ≤
1

α
‖v(T )‖2L +

γ

α
‖∂tv‖2L2(J;V ′) + ‖v‖2L2(J;V ) = ‖v‖2X ,

and the claim follows by taking the supremum over t ∈ J on the left-hand side (there is nothing
to prove if t = T ).
(ii) Let us set eh(t) := uh(t) − ΠE

h(t;u(t)) and η(t) := u(t)− ΠE

h(t;u(t)) for a.e. t ∈ J (recall that
ΠE

h(t;u(t)) is the elliptic projection operator defined in (66.11)). Using the inf-sup condition from
Lemma 71.9, we infer that

β′
hγ

1
2 ‖eh‖C0(J;L) ≤ β′

h‖eh‖X ≤ sup
yh∈Yh

b(eh, yh)

‖yh‖Y
.

Consistency gives b(eh, yh) = b(η, yh) (this identity is often called Galerkin orthogonality), and the
definition of the elliptic projection implies that

b(eh, yh) = (η(0), y0h)L +

∫

J

〈∂tη(t), y1h(t)〉V ′,V dt.

Since ‖yh‖2Y = 1
α‖y0h‖2L + ‖y1h‖2L2(J;V ), we obtain

β′
hγ

1
2 ‖eh‖C0(J;L) ≤ α

1
2 ‖η(0)‖L + ‖∂tη‖L2(J;V ′).

Denoting by ιL,V the operator norm of the embedding V →֒ L, i.e., the smallest constant s.t.

‖v‖L ≤ ιL,V ‖v‖V for all v ∈ V, we have ‖∂tη‖L2(J;V ′) ≤ ιL,V ‖∂tη‖L2(J;L). Dividing by α
1
2 and

using the triangle inequality, we obtain

β′
h

γ
1
2

α
1
2

‖u− uh‖C0(J ;L) ≤ ‖η(0)‖L + β′
h

γ
1
2

α
1
2

‖η‖C0(J;L) +
ιL,V

α
1
2

‖∂tη‖L2(J;V ′).

This proves the assertion with the time scale ρ := 2
ι2L,V
α .

(iii) In the context of the heat equation (i.e., L := L2(D), V := H1
0 (D), the operator A is time-

independent and self-adjoint), the estimate obtained above is very similar to (66.16). However,
(66.16) is sharper for the following three reasons: (1) it includes weights with exponential decay
in time; (2) the norm involving ∂tη is only integrated over (0, t) and not over J ; (3) the constant
β′
h

√
γ/α is smaller than 1 (because β′

h

√
γ/α ≤ β

√
γ/α ≤ γα ≤ 1).



384 Chapter 71. Analysis using inf-sup stability

Exercise 71.8 (Implicit Euler scheme). (i) Let us set u0h := PVh(u0). It is readily seen that
uhτ := (unh)n∈Nτ ∈ (Vh)

N solves (67.3) if and only if (u0h, uhτ ) =: ũhτ ∈ Xhτ solves

bτ (ũhτ , yhτ ) = ℓτ (yhτ ), ∀yhτ ∈ Yhτ .
(ii) Recall that the norms used the inf-sup condition (67.1) are

‖vhτ‖2Xhτ :=
1

α
‖vNh ‖2L + ‖vhτ‖2ℓ2(J;V )+

1

αM
‖δτvhτ‖2ℓ2(J;V ′

h)
+
τ

α
‖δτvhτ‖2ℓ2(J;L),

‖yhτ‖2Yhτ :=
1

α
‖y0h‖2L + ‖y1hτ‖2ℓ2(J;V ).

We infer from Step (i) and the inf-sup condition (67.1) that

‖ũhτ‖2Xhτ ≤
M

α3
sup

yhτ∈Yhτ

|bτ (ũhτ , yhτ )|2
‖yhτ‖2Yhτ

≤ M

α3
sup

yhτ∈Yhτ

|ℓτ (yhτ )|2
‖yhτ‖2Yhτ

,

and the Cauchy–Schwarz inequality implies that

|ℓτ (yhτ )|2 ≤ (‖f‖2ℓ2(J;V ′) + α‖u0‖2L)‖yhτ‖2Yhτ .
The assertion follows readily.
(iii) Proceeding as in the proof of Theorem 67.6, but using the stability estimate from Step (ii)
(instead of the estimate (67.7) from Lemma 67.3), and keeping only the term related to the time
derivative measured in ℓ2(J ;V ′

h) on the left-hand side, we infer that

1

M
‖δτehτ‖2ℓ2(J;V ′

h)
≤ M

α2
‖gτ‖2ℓ2(J;V ′) +

M

α
‖e0h‖2L,

where gτ := (gn)n∈Nτ ∈ (V ′)N and gn is defined in the proof of Theorem 67.6. Using the bound
on ‖gτ‖2ℓ2(J;V ′) from this proof, we obtain

‖δτehτ‖2ℓ2(J;V ′
h)
≤ M2

α2
3
(
M2‖ητ‖2ℓ2(J;V ) + ‖∂tη‖2L2(J;V ′) + τ2‖∂ttu‖2L2(J;V ′)

)
+
M2

α
‖e0h‖2L.

Taking the square root yields

‖δτehτ‖ℓ2(J;V ′
h)
≤ M

α

√
3
(
M‖ητ‖ℓ2(J;V ) + ‖∂tη‖L2(J;V ′) + τ‖∂ttu‖L2(J;V ′)

)
+
M

α

√
α‖e0h‖L.

The uniform V -stability of the L-orthogonal projection (see Lemma 71.8) gives

‖δτehτ‖ℓ2(J;V ′) ≤ ‖PVh‖L(V )
M

α

(√
3
(
M‖ητ‖ℓ2(J;V ) + ‖∂tη‖L2(J;V ′)

+ τ‖∂ttu‖L2(J;V ′)

)
+
√
α‖e0h‖L

)
.

Furthermore, since η(tn) − η(tn−1) =
∫
Jn
∂tη(s) ds, using the Cauchy–Schwarz inequality, and

recalling that (δτuτ )
n := 1

τ (u(tn)− u(tn−1)), we infer that

‖δτuhτ − δτuτ‖2ℓ2(J;V ′) = τ−2
∑

n∈Nτ
τ
∥∥∥
∫

Jn

∂tη(s) ds
∥∥∥
2

V ′

≤ τ−2
∑

n∈Nτ
τ
( ∫

Jn

‖∂tη(s)‖V ′ ds
)2

≤ τ−2
∑

n∈Nτ
τ2
∫

Jn

‖∂tη(s)‖2V ′ ds

= ‖∂tη‖2L2(J;V ′).
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Using the triangle inequality for

(u(tn)− unh)− (u(tn−1)− un−1
h )

τ
=
η(tn)− η(tn−1)

τ
− (δτehτ )

n

leads to the assertion (notice that ‖PVh‖L(V )
M
α ≥ 1 and recall that ‖e0h‖L ≤ ‖η(0‖L).

Exercise 71.9 (Inf-sup for cPG(k)). Let vhτ ∈ Xhτ and recall that yhτ ∈ Yhτ is s.t. yhτ (0) :=
vhτ (0) and yhτ (t) := Iglk−1(A

−1
h (∂tvhτ ) + vhτ )(t) for all t ∈ Jτ . Using the coercivity of Ah at tn,l

for all n ∈ Nτ and l ∈ {1:k+1}, we infer that α‖yhτ‖2Yhτ ≤ ‖vhτ (0)‖2L + T3, where

T3 :=

∫

J

(Ah(yhτ ), yhτ )L µ
gl
k (dt)

=

∫

J

(Ah(A
−1
h (∂tvhτ ) + vhτ ), A

−1
h (∂tvhτ ) + vhτ )L µ

gl
k (dt),

where we used (70.1b). Rearranging the terms and since (∂tvhτ , vhτ )L ∈ P2k−1(Jn;R) for all
n ∈ Nτ , we obtain

T3 =

∫

J

2(∂tvhτ , vhτ )Ldt+

∫

J

(Ah(vhτ ), vhτ )L µ
gl
k (dt)

+

∫

J

(A−1
h (∂tvhτ ), ∂tvhτ )L µ

gl
k (dt).

Using the boundedness of Ah(tn,l) with constant bounded by M , the boundedness of Ah(tn,l)
−1

with constant bounded by 1
α for all n ∈ Nτ and all l ∈ {1:k}, and observing that 2

∫
J
(∂tvhτ , yhτ )Ldt =

‖vhτ (T )‖2L − ‖vhτ (0)‖2L, we finally conclude that ‖yhτ‖2Yhτ ≤
M
α ‖vhτ‖2Xhτ .
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Chapter 72

Weak formulations and
well-posedness

Exercises

Exercise 72.1 (Non-homogeneous Dirichlet condition). Consider the time-dependent Stokes
equations (72.1) with the non-homogeneous Dirichlet condition u = g enforced over the whole
boundary ∂D for all t ∈ J . Assume that

∫
∂D
g·n = 0 for all t ∈ J . Assume that the data f and g

are smooth so that the solution (u, p) is smooth. Assume that there is a smooth lifting ug of the
boundary datum so that ug·n = g on ∂D × J and ∇·ug = 0 on D × J . (i) Write the equations
satisfied by u0 := u− ug. (ii) Verify that

1

2

d

dt
‖u0‖2L2 + 2µ‖e(u0)‖2L2 = (f ,u0)L2 − (∂tug,u0)L2 − 2µ(e(ug), e(u0))L2 .

(iii) Establish a priori bound on u0 of the form d
dt‖u0‖2L2 +2µ‖e(u0)‖2L2 ≤ Φ(T,f ,ug)+

1
T ‖u0‖2L2.

Exercise 72.2 (Space-time de Rham in L2). (i) Show that the operator ∇· : L2(J ;H1
0 (D))→

L2(J ;L2
∗(D)) is surjective. (Hint : invoke Lemma 53.9, Lemma C.44, and Corollary 64.14.) (ii)

Show that S ∈ L2(J ;H−1(D)) satisfies
∫
J
〈S,w〉H−1,H1

0
dt = 0 for all w ∈ L2(J ;V) iff there is

p ∈ L2(J ;L2
∗(D)) s.t.

∫
J
〈S,w〉H−1,H1

0
dt =

∫
J
(p,∇·w)L2dt for all w ∈ L2(J ;H1

0 (D)). (Hint : use
the closed range theorem.)

Exercise 72.3 (Variable viscosity). Assume that µ depends on x ∈ D, and set 0 < µ♭ :=
ess infx∈D µ, µ♯ := ess supx∈D µ < ∞. Consider the mixed weak formulation (72.12). Prove

that µ♭‖u‖2L2(J;V) ≤ 1
4ρ‖f‖2L2(J;L2) +

1
2‖u0‖2L2 with ρ := C−2

kps

ℓ2D
µ♭

, ‖∂tu‖2L2(J;L2) ≤ ‖f‖2L2(J;L2) +

2µ♯‖u0‖2V , and ‖p‖2L2(J;L2) ≤ 1
β2

(
c1‖f‖2L2(J;L2)+c2‖u0‖2V

)
with c1 := ρµ♭(8+2ξ2µ), c2 := ρµ♭µ♯(8+

4ξµ), and ξµ :=
µ♯
µ♭
. (Hint : adapt the proof of Theorem 72.3.)

Exercise 72.4 (Distributional time derivative). Let V →֒ L ≡ L′ →֒ V ′ be a Gelfand

triple. (i) Let v ∈ X(J ;V, V ′). Show that the action of ∂̂tv ∈ H−1(J ;V ′) and of ∂tv ∈ L2(J ;V ′)
coincide on H1

0 (J ;V ). (Hint : use the integration by parts formula from Lemma 64.40.) (ii) Let

v ∈ H1(J ;L). Show that the action of ∂̂tv ∈ H−1(J ;V ′) and of ∂tv ∈ L2(J ;L) coincide on
H1

0 (J ;V ). (Hint : as above.)
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Exercise 72.5 (Space-time de Rham in H−1). (i) Show that the operator∇· : H1(J ;H1
0 (D))→

H1(J ;L2
∗(D)) is surjective. (Hint : proceed as in Exercise 72.2 and use Lemma 64.34.) (ii) Show

that ∇· : H1
0 (J ;H

1
0 (D)) → H1

0 (J ;L
2
∗(D)) is surjective. (Hint : use Step (i) and Lemma 64.37.)

(iii) Prove Lemma 72.8. (Hint : use the closed range theorem.)

Solution to exercises

Exercise 72.1 (Non-homogeneous Dirichlet condition). (i) Using the decomposition u :=
u0 + ug and the properties of the lifting ug, we infer that the governing equations are

∂tu0 − 2µ∇·e(u0) +∇p = f − ∂tug + 2µ∇·e(ug) in D×J,
∇·u = 0 in D×J,
u0 = 0 on ∂D×J,
u0(·, 0) = u0(·)− ug(·, 0) in D.

(ii) Multiplying the momentum equation by u0, integrating over D, using that ∇·u0 = 0 to cancel
the term involving the pressure and that u0 = 0 on ∂D to integrate by parts the terms involving
the divergence of the linearized strain tensor, we obtain the assertion:

1

2

d

dt
‖u0‖2L2 + 2µ‖e(u0)‖2L2 = (f ,u0)L2 − (∂tug,u0)L2 − 2µ(e(ug), e(u0))L2 .

(iii) Invoking the Cauchy–Schwarz inequality and Young’s inequality leads to

1

2

d

dt
‖u0‖2L2 + 2µ‖e(u0)‖2L2 ≤ T

2
‖f − ∂tug‖2L2 +

1

2T
‖u0‖2L2 + µ‖e(ug)‖2L + µ‖e(u0)‖2L.

Rearranging the terms gives

d

dt
‖u0‖2L2 + 2µ‖e(u0)‖2L2 ≤ T ‖f − ∂tug‖2L2 + 2µ‖e(ug)‖2L +

1

T
‖u0‖2L2.

Notice that all the terms have consistent dimensions.

Exercise 72.2 (Space-time de Rham in L2). (i) Owing to Lemma 53.9, the linear operator
∇· : H1

0 (D) → L2
∗(D) is surjective. Then, according to Lemma C.44, this operator has a linear

right inverse. Let us denote by div† the right inverse in question. Thus, there exists c > 0 such that
∇·(div†(r)) = r and ‖div†(r)‖V ≤ c‖r‖L2(D) for all r ∈ L2

∗(D). Let now q ∈ L2(J ;L2
∗(D)). Corol-

lary 64.14 and the linearity of div† : L2
∗(D) → H1

0 (D) imply that div†(q) is Bochner integrable.
Moreover, ‖div†(q(t))‖V ≤ c‖q(t)‖L2(D) for a.e. t ∈ J . We infer that

‖div†(q)‖L2(J;V ) ≤ c ‖q‖L2(J;L2).

In conclusion, ∇·(div†(q(t))) = q(t) for a.e. t ∈ J, and div†(q) ∈ L2(J ;H1
0 (D)). This proves that

∇· : L2(J ;H1
0 (D))→ L2(J ;L2

∗(D)) is surjective.
(ii) Since ∇· : L2(J ;H1

0 (D))→ L2(J ;L2
∗(D)) is surjective, its range is closed. Notice that (∇·)∗ :

L2(J ;L2
∗(D))→ L2(J ;H−1(D)) since (L2

∗(D))′ ≡ L2
∗(D) and (L2(J ;H1

0 (D)))′ = L2(J ;H−1(D))
owing to Lemma 64.20(i). The closed range theorem (Theorem C.35) implies that (ker(∇·))⊥ =
im((∇·)∗) (here, we use the annihilator notation introduced in (C.14a)). Since ker(∇·) = L2(J ;V)
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(indeed, v ∈ L2(J ;V) iff v ∈ L2(J ;H1
0 (D)) and∇·v = 0 in L2(J)) and since our assumption on the

linear form S ∈ L2(J ;H−1(D)) means that S ∈ (ker(∇·))⊥, we infer that there is p ∈ L2(J ;L2
∗(D))

s.t. S = (∇·)∗(p). This means that we have for all w ∈ L2(J ;H1
0 (D)),

〈S,w〉L2(H−1),L2(H1
0 )

= 〈(∇·)∗(p),w〉L2(H−1),L2(H1
0 )

= (p,∇·w)L2(J;L2
∗(D)) =

∫

J

(p(t),∇·w(t))L2dt.

Exercise 72.3 (Variable viscosity). Using the same arguments as in Step (1) of the proof of
Theorem 72.3, we infer that

〈∂tu(t),u(t)〉V′,V + µ♭‖u(t)‖2V ≤
C2

kps

4µ♭ℓ
2
D

‖f(t)‖2L2 .

Using again the same arguments leads to the estimate on ‖u‖L2(J;V). The bound on ‖∂tu‖L2(J;L2)

is derived by repeating the arguments from Step (2) of this proof, the only difference being that
invoking the boundedness of a now yields the estimate

‖∂tun‖2L2(J;L2) ≤ ‖f‖2L2(J;L2) + 2µ♯‖u0‖2V .

Finally, to estimate the pressure, we can still proceed as in Step (3) and use the above estimates
on ‖∂tu‖L2(J;L2) and on ‖u‖L2(J;V). This yields

β‖p(t)‖L2(D) ≤
ℓD
Ckps

(
‖∂tu(t)‖L2(D) + ‖f(t)‖L2(D)

)
+ 2µ♯‖u(t)‖V .

Squaring, using the definition of the time scale ρ, and integrating over time leads to

β2‖p‖2L2(J;L2) ≤ 4ρµ♭
(
2‖f‖2L2(J;L2) + 2µ♯‖u0‖2V

)
+ 8

µ2
♯

µ♭

(
1
4ρ‖f‖2L2(J;L2) +

1
2‖u0‖2L2

)
,

which leads to the expected bound on the pressure after observing that ‖u0‖2L2 ≤ ℓ2D
C2

kps

‖u0‖2V =

µ♭ρ‖u0‖2V and rearranging the terms.

Exercise 72.4 (Distributional time derivative). (i) Let v ∈ X(J ;V, V ′). Since V →֒ V ′,
we have v ∈ L2(J ;V ′) so that it is meaningful to define the distributional time derivative ∂̂tv ∈
H−1(J ;V ′), and we have

〈∂̂tv, w〉H−1(V ′),H1
0 (V ) := −

∫

J

〈v, ∂tw〉V ′,V dt,

for all w ∈ H1
0 (J ;V ). Moreover, since both v and w are in X(J ;V, V ′) and since w(0) = w(T ) = 0

by assumption, the integration by parts formula from Lemma 64.40 implies that
∫

J

〈∂tv, w〉V ′,V dt = −
∫

J

〈v, ∂tw〉V,V ′dt.

This shows that

〈∂̂tv, w〉H−1(V ′),H1
0 (V ) =

∫

J

〈∂tv, w〉V ′,V dt,

for all w ∈ H1
0 (J ;V ). Notice in passing that since the duality product between V ′ and V is an

extension of the L-inner product, we have

〈∂̂tv, w〉H−1(V ′),H1
0 (V ) =

∫

J

〈∂tv, w〉V ′,V dt = −
∫

J

(v, ∂tw)Ldt.
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(ii) A short answer consists of saying that the assertion follows from Step (i) since H1(J ;L) →֒
X(J ;L;L). (Here, the Gelfand triple is simply L →֒ L ≡ L′ →֒ L′.) One can also answer the
question by redoing the proof. Let v ∈ H1(J ;L). Then v ∈ L2(J ;L) →֒ L2(J ;V ′), so that it is

meaningful to define the distributional time derivative ∂̂tv, and we have by definition

〈∂̂tv, w〉H−1(V ′),H1
0 (V ) := −

∫

J

〈v, ∂tw〉V ′,V dt = −
∫

J

(v, ∂tw)Ldt,

for all w ∈ H1
0 (J ;V ) since v ∈ L2(J ;L). Moreover, since the functions v and w are in H1(J ;L) =

X(J ;L,L) and w(0) = w(T ) = 0, the integration by parts formula from Lemma 64.40 implies that
−
∫
J (v, ∂tw)Ldt =

∫
J(∂tv, w)Ldt = (∂tv, w)L2(J;L). In conclusion, we have shown that

〈∂̂tv, w〉H−1(V ′),H1
0 (V ) = (∂tv, w)L2(J;L), ∀w ∈ H1

0 (J ;V ).

Exercise 72.5 (Space-time de Rham in H−1). (i) We consider the right inverse operator
div† : L2

∗(D) → H1(D) introduced in Exercise 72.2. Let q ∈ H1(J ;L2
∗(D)). We have already

shown that div†(q) ∈ L2(J ;H1
0 (D)) where div†(q)(t) = div†(q(t)) for a.e. t ∈ J . Moreover, since

∂tq ∈ L2(J ;L2
∗(D)) by assumption, we also have div†(∂tq) ∈ L2(J ;H1

0 (D)) with

‖div†(∂tq)‖L2(J;V ) ≤ c ‖∂tq‖L2(J;L2).

Finally, using the linearity of div† and Lemma 64.34, we infer that div†(∂tq) = ∂tdiv
†(q). Hence,

we have
‖∂tdiv†(q)‖L2(J;V ) = ‖div†(∂tq)‖L2(J;V ) ≤ c ‖∂tq‖L2(J;L2).

In conclusion, ∇·(div†(q(t))) = q(t) for a.e. t ∈ J, and ‖div†(q)‖H1(J;H1
0 (D)) ≤ c‖q‖H1(J;L2

∗(D))

for all q ∈ H1(J ;L2
∗(D)). Hence, div† : H1(J ;L2

∗(D)) → H1(J ;H1
0 (D)) is a right inverse of

∇· : H1(J ;H1
0 (D))→ H1(J ;L2

∗(D)).
(ii) From the above argument, we deduce that for all q ∈ H1

0 (J ;L
2
∗(D)), there exists v := div†(q) ∈

H1(J ;L2
∗(D)). But ‖v(t)‖V ≤ c‖q(t)‖L2(D), and this inequality holds true for every t ∈ J since

q ∈ C0, 12 (J ;L2
∗(D)) owing to Lemma 64.37. This implies that v(0) = v(T ) = 0. We infer that

v ∈ H1
0 (J ;H

1
0 (D)). We have proved that div† : H1

0 (J ;L
2
∗(D))→ H1

0 (J ;H
1
0 (D)) is a right inverse

of ∇· : H1
0 (J ;H

1
0 (D))→ H1

0 (J ;L
2
∗(D)).

(iii) From Step (ii), we know that the operator ∇· : H1
0 (J ;H

1
0 (D)) → H1

0 (J ;L
2
∗(D)) is surjective

so that its range is closed. Notice that (∇·)∗ : H−1(J ;L2
∗(D)) → H−1(J ;H−1(D)). The closed

range theorem (Theorem C.35) implies that (ker(∇·))⊥ = im((∇·)∗) (here, we use the annihilator
notation introduced in (C.14a)). Furthermore, v ∈ H1

0 (J ;V) iff v ∈ H1
0 (J ;H

1
0 (D)) and ∇·v = 0

in L2(J). Hence, H1
0 (J ;V) = ker(∇·) with ∇· : H1

0 (J ;H
1
0 (D)) → H1

0 (J ;L
2
∗(D)). Since our

assumption on the linear form S ∈ H−1(J ;H−1(D)) means that S ∈ (ker(∇·))⊥, and invoking
the identity (ker(∇·))⊥ = im((∇·)∗), we infer that there is p ∈ H−1(J ;L2

∗(D)) s.t. S = (∇·)∗(p).
This means that we have for all w ∈ H1

0 (J ;H
1
0 (D)),

〈S,w〉H−1(H−1),H1
0 (H

1
0 )

= 〈(∇·)∗(p),w〉H−1(H−1),H1
0 (H

1
0 )

= 〈p,∇·w〉H−1(L2);H1
0 (L

2).
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Monolithic time discretization

Exercises

Exercise 73.1 (Well-posedness). Prove Proposition 73.1. (Hint : adapt the proof of Theo-
rem 72.3.)

Exercise 73.2 (Simplified Gronwall’s lemma). Let a ∈ W 1,1(J ;R), let b ∈ L∞(J ;R), and

let γ > 0. Assume that d
dta(t) ≤ 1

γ a(t) + b(t) for all t ∈ J . Prove that a(t) ≤ e
t
γ
(
a(0) +

min(t, γ)‖b‖L∞(Jt)

)
with J t := (0, t) for all t ∈ J . (Hint : observe that

∫ t
0 e

t−s
γ ds ≤ min(t, γ)e

t
γ .)

Note: this is a simplified form of Gronwall’s lemma; see Exercise 65.3.

Exercise 73.3 (BDF2, Crank–Nicolson). (i) Using the setting described in §68.2 for BDF2,
write the discrete formulation and the algebraic realization of the time-dependent Stokes equations
with the time discretization performed with BDF2. (ii) Same question for the Crank–Nicolson
scheme using the setting described in §68.3. (iii) Same question for the Crank–Nicolson scheme
using the setting described in §73.4.

Solution to exercises

Exercise 73.1 (Well-posedness). One first proves by means of the Cauchy–Lipschitz theorem
that there is a unique uh ∈ H1(J ;Vh) such that

(∂tuh(t),wh)L2 + a(uh(t),wh) = (f(t),wh)L2 ,

in L2(J) for allwh ∈ Vh. Then one infers the existence and uniqueness of the pressure in L2(J ;Qh)
by invoking the inf-sup condition (73.4) and reasoning as in Exercise 72.2.

Exercise 73.2 (Simplified Gronwall’s lemma). Rearranging the terms, we infer that

d

dt

(
e−

t
γ a(t)

)
≤ e− t

γ b(t),
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for all t ∈ J . Integrating from 0 to t gives

a(t) ≤ e tγ a(0) +
∫ t

0

e
t−s
γ b(s) ds ≤ e tγ a(0) +

(∫ t

0

e
t−s
γ ds

)
‖b‖L∞(Jt).

The assertion follows by observing that
∫ t
0 e

t−s
γ ds ≤ te

t
γ on the one hand and that

∫ t
0 e

t−s
γ ds =

γ(e
t
γ − 1) ≤ γe tγ on the other hand.

Exercise 73.3 (BDF2, Crank–Nicolson). (i) For the BDF2 scheme, we first set u0
h := S

v
h(u0, 0),

then we compute (unh, p
n
h) ∈ Vh×Qh for all n ∈ Nτ so that the following holds true: For n = 1,





1

τ
(u1

h − u0
h,wh)L2 + a(u1

h,wh) + b(wh, p
1
h) = (f1,wh)L2 ,

b(u1
h, qh) = 0,

for all (wh, qh) ∈ Vh×Qh, and for all n ≥ 2,




1

2τ
(3unh − 4un−1

h + 3un−2
h ,wh)L2 + a(unh,wh) + b(wh, p

n
h) = (fn,wh)L2 ,

b(unh, qh) = 0,

for all (wh, qh) ∈ Vh×Qh. The algebraic realization of the first time step can be written as follows:
(
M+ τA BT

B OK,K

)(
U1

P1

)
=

(
τF1 +MU0

0

)
, (73.1)

where F1 := ((f1, ϕi)L2)i∈{1: I} and OK,K is the zero matrix in RK×K . The other time steps give
(

3
2M+ τA BT

B OK,K

)(
Un

Pn

)
=

(
τFn +M(2Un−1 − 1

2U
n−2)

0

)
,

where Fn := ((fn, ϕi)L2)i∈{1: I}.

(ii) For the Crank–Nicolson scheme, we first set u0
h := S

v
h(u0, 0), then we compute (unh, p

n− 1
2

h ) ∈
Vh×Qh for all n ∈ Nτ so that the following holds true:





1

τ
(unh − un−1

h ,wh)L2 + a(12 (u
n
h + un−1

h ),wh) + b(wh, p
n− 1

2

h ) = (fn−
1
2 ,wh)L2 ,

b(unh, qh) = 0,

for all (wh, qh) ∈ Vh×Qh. The algebraic realization of the scheme can be written as follows:
(
M+ τ

2A BT

B OK,K

)(
Un

Pn−
1
2

)
=

(
τFn−

1
2 +MUn−1 − τ

2AUn−1

0

)
,

where Fn−
1
2 is the coordinate vector of fn−

1
2 , Pn−

1
2 is the coordinate vector of τp

n− 1
2

h , and p
n− 1

2

h

is the approximation of p(tn − τ
2 ) = p( tn−1+tn

2 ).
(iii) Adopting the point of view from §73.4, we obtain the linear system

(
M+ τ

2A BT

B OK,K

)(
Un,1

Pn,1

)
=

(
MUn−1 + 1

2τF
n− 1

2

0

)
,

and Un = 2Un,1−Un−1, i.e., Un,1 = 1
2 (U

n+Un−1). This is equivalent to the linear system obtained

in Step (ii), once we set Pn−
1
2 := 2Pn,1, which is consistent since Pn−

1
2 approximates τp(tn − τ

2 )
and Pn,1 approximates 1

2τp(tn,1) =
1
2τp(tn − τ

2 ) (recall that c1 = 1
2 ).
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Projection methods

Exercises

Exercise 74.1 (Remark 74.1). Prove the stability estimate in Remark 74.6. (Hint : adapt the
proof of Lemma 74.5.)

Exercise 74.2 (Curl-div-grad identity). Let d ∈ {2, 3}. Show that ‖∇×v‖2
L2(D)+‖∇·v‖2L2(D) =

‖∇v‖2
L2(D) for all v ∈H1

0 (D). (Hint: use −∆v = −∇(∇·v) +∇×(∇×v).)

Exercise 74.3 (Inverse of the Stokes operator). Let V :=H1
0 (D), V ′ =H−1(D), and Q :=

L2
∗(D). The inverse of the Stokes operator S : H−1(D) −→ V := {v ∈ H1

0 (D) | ∇·v = 0} is s.t.
for all f ∈ V ′, S(f) is the unique member of V s.t. the following holds true for all (w, q) ∈ V ×Q:

{
2µ(e(S(f)), e(w))L2(D) − (r,∇·w)L2(D) = 〈f ,w〉V ′,V ,
(q,∇·S(f))L2(D) = 0,

where 〈·, ·〉V ′,V denotes the duality pairing between V ′ and V . Recall that µ‖S(f)‖V + ‖r‖L2 ≤
c‖f‖H−1 for all f ∈ H−1(D) with ‖w‖V := ‖e(w)‖L2(D). We assume that D is such that the
following regularity property holds true: µ|S(f)|H2 + |r|H1 ≤ c‖f‖L2 for all f ∈ L2(D). (i) Show
that 2µ(e(S(v)), e(v))L2 = ‖v‖2

L2 for all v ∈ V. (Hint : recall that the duality pairing 〈·, ·〉V ′,V is
an extension of the L2-inner product.) (ii) Show that for all γ ∈ (0, 1), there is c(γ) such that for
all v in V , 2µ(e(S(v)), e(v))L2 ≥ (1− γ)‖v‖2L2 − c(γ)‖v − v⋆‖2L2 for all v⋆ ∈H. (Hint : integrate

by parts the pressure term.) (iii) Show that the map V ′ ∋ v 7→ |v|⋆ := 〈v,S(v)〉
1
2

V ′,V defines a

seminorm on V ′. Prove that |v|⋆ ≤ (2µ)−
1
2 ‖v‖V ′ for all v ∈ V ′. Note: there does not exist any

constant c so that (2µ)−
1
2 ‖v‖V ′ ≤ c|v|⋆ for all v ∈ H−1(D), i.e., |·|⋆ is not a norm on H−1(D);

see Guermond [21, Thm. 4.1] and Guermond and Salgado [22, Thm. 32]. The inverse of the Stokes
operator is used in Exercise 74.4 to prove Lemma 74.11.

Exercise 74.4 (Lemma 74.11). Consider the perturbed system (74.14), and set e := uε − u
and q := pε − p. (i) Write the PDE system solved by the pair (e, q) and show that

1

2

d

dt
‖∂te‖2L2 + 2µ‖∂te‖2V +

1

2

d

dt
‖∇φε‖2L2 +

1

2
εµ

d

dt
‖∆φε‖2L2

= ε
d

dt
(∇∂tp,∇φε)L2 − ε(∇∂ttp,∇φε)L2 ,
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where we recall that V := H1
0 (D) and ‖v‖V := ‖e(v)‖L2 . (ii) Prove that ‖∇φε(t)‖2

L2 ≤
c(p, T )ε2 for all t ∈ J . (Hint : use Gronwall’s lemma from Exercise 65.3.) Conclude that
‖∇·uε‖2L∞(J;L2(D)) ≤ c(p, T )µ−1ε3. (iii) Show that ‖e − PH(e)‖2L2 = ε2‖∇φε‖2L2 , where the

Leray projection PH is defined in Lemma 74.1. Deduce from the above estimates that ‖u −
uε‖L2(J;L2(D)) ≤ c(p, T )ε2. (Hint : use the lower bound from Step (ii) of Exercise 74.3.)

Exercise 74.5 (Gauge-Uzawa). (i) Write the pressure-correction algorithm in rotational form
using BDF1, p⋆,n := pn−1, and the sequences ũτ ∈ (V )N , uτ ∈ (H)N , φτ ∈ (Q)N , pτ ∈ (Q)N .
(ii) Consider the sequences ṽτ ∈ (V )N , vτ ∈ (V )N , rτ ∈ (Q)N , qτ ∈ (Q)N , ψτ ∈ (Q)N , generated
by the following algorithm (called gauge-Uzawa in the literature, see Nochetto and Pyo [36]): Set
v0 := v0, r

0 := 0, q0 = ψ0 := p(0), then solve for all n ∈ Nτ ,

ṽn − vn−1

τ
− µ∆ṽn +∇qn−1 = fn, ṽn|∂D = 0,

vn + τ∇ψn = ṽn + τ∇ψn−1, ∇·vn = 0, vn|∂D·n = 0,

rn = rn−1 −∇·ṽn, qn = ψn + µrn.

Recalling that (δτψτ )
n := ψn−ψn−1

τ for all n ∈ Nτ , show that the sequences (ṽτ ,vτ , τδτψτ , qτ ) and
(ũτ ,uτ , φτ , pτ ) are equal (i.e., the gauge-Uzawa and the pressure-correction method in rotational
form are identical). (Hint : write qn = qn−1 + ψn − ψn−1 + µ(rn − rn−1).) (iii) Show that for all
n ∈ Nτ ,

‖vn‖2L2 + τ2‖∇ψn‖2L2 + µτ‖rn‖2L2 + ‖ṽn − vn−1‖2L2 +
1

2
µτ‖∇ṽn‖2L2

≤ ‖vn−1‖2L2 + τ2‖∇ψn−1‖2L2 + µτ‖rn−1‖2L2 + ρτ‖fn‖2L2,

with the time scale ρ := 2
C2

ps

ℓ2D
µ . (Hint : test the momentum equation with 2τ ṽn, square the second

equation, square the third equation and scale the result by µτ , and add the results.)

Solution to exercises

Exercise 74.1 (Remark 74.1). Testing (74.2) with 2τ ũn, using the coercivity of the bilinear
form a(v,w) := (s(v), e(w))L2(D) on V , and the algebraic identity (67.9), we obtain

‖ũn‖2L2 − ‖un−1‖2L2 + 4µτ‖ũn‖2V ≤ 2τ(fn, ũn)L2 .

Since
2τ(fn, ũn)L2 ≤ τ

2µ
‖fn‖2V ′ + 2µτ‖ũn‖2V ≤

τρ

2
‖fn‖2L2 + 2µτ‖ũn‖2V ,

where we used Young’s inequality, the bound ‖fn‖V ′ ≤ C−1
kpsℓD‖fn‖L2, and the definition of the

time scale ρ, we infer that

‖ũn‖2L2 − ‖un−1‖2L2 + 2µτ‖ũn‖2V ≤
τρ

2
‖fn‖2L2 .

Using that φn = pn since βq = β1 := 1 for BDF1, we recast (74.4) as un+ τ∇pn = ũn. We square
this identity, integrate over D, and use that un is divergence-free to obtain

‖un‖2L2 + τ2‖∇pn‖2L2 = ‖ũn‖2L2.
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Summing this identity to the above estimate yields

‖un‖2L2 + τ2‖∇pn‖2L2 + 2µτ‖ũn‖2V ≤
τρ

2
‖fn‖2L2 + ‖un−1‖2L2 .

Summing the result over n ∈ Nτ yields the assertion.

Exercise 74.2 (Curl-div-grad identity). Assume first that v ∈ C1
0 (D). Using the integration

by parts formulae (4.8) in the identity

∫

D

−∆v·v dx =

∫

D

(
−∇(∇·v) +∇×(∇×v)

)
·v dx,

we obtain
∫

D

∇v:∇v dx =

∫

D

(∇·v)2 dx+

∫

D

(∇×v)2 dx,

which is the expected identity. This identity is extended to H1
0 (D) by density.

Exercise 74.3 (Inverse of the Stokes operator). (i) Owing to the definition of S(v), we have

2µ
(
e(S(v)), e(v)

)
L2 = (r,∇·v)L2 + ‖v‖2L2,

since the duality pairing 〈·, ·〉V ′,V is an extension of the L2-inner product. This implies that
2µ
(
e(S(v)), e(v)

)
L2 = ‖v‖2L2 for all v ∈ V.

(ii) Assume that v ∈ V :=H1
0 (D). Owing to the definition of S(v), we have for all v⋆ ∈H,

2µ(e(S(v)), e(v))L2 = (r,∇·v)L2 + ‖v‖2L2

= (r,∇·(v − v⋆))L2 + ‖v‖2L2

= −(∇r,v − v⋆)L2 + ‖v‖2L2

≥ −|r|H1‖v − v⋆‖L2 + ‖v‖2L2

≥ −c ‖v‖L2‖v − v⋆‖L2 + ‖v‖2L2

≥ −c(γ) ‖v − v⋆‖2L2 + (1− γ)‖v‖2L2,

for all γ ∈ (0, 1), where the last bound follows from Young’s inequality. This completes the proof
of the assertion.
(iii) For all v,w ∈ V ′ =H−1(D), we have

〈w,S(v)〉V ′,V = 2µ(e(S(v)), e(S(w)))L2 = 〈v,S(w)〉V ′,V .

Hence, the bilinear form V ′×V ′ ∋ (v,w) 7→ 〈w,S(v)〉V ′,V ∈ R is symmetric. This bilinear form

is also positive since 〈v,S(v)〉V ′,V = 2µ‖S(v)‖2V . Hence, the map v 7→ |v|⋆ := 〈v,S(v)〉
1
2

V ′,V

induces a seminorm on V ′ =H−1(D). Notice finally that

|v|2⋆ := 〈v,S(v)〉V ′,V ≤ ‖v‖V ′‖S(v)‖V .

But 2µ‖S(v)‖2V ≤ ‖v‖V ′‖S(v)‖V , so that 2µ‖S(v)‖V ≤ ‖v‖V ′ . Hence, we have

|v|⋆ ≤ (2µ)−
1
2 ‖v‖V ′ .
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Exercise 74.4 (Lemma 74.11). (i) We write e := uε −u and q := pε− p. Subtracting (74.14a)
from (75.1), we find

∂te−∇·s(e) +∇q = 0, e|∂D = 0, e(0) = 0, (74.1a)

∇·e− ε∆φε = 0, n·∇φε|∂D = 0, (74.1b)

ε∂tq = φε − µ∇·e− ε∂tp, q(0) = 0. (74.1c)

Taking the inner product of the time derivative of (74.1a) with ∂te, using the coercivity of the
bilinear form a(v,w) := (s(v), e(w))L2 , and integrating by parts the term involving q, we find

1

2

d

dt
‖∂te‖2L2 + 2µ‖∂te‖2V − (∂tq,∇·∂te)L2 = 0.

Taking the time derivative of (74.1b), multiplying the result by ∂tq, and using (74.1c) gives

−(∂tq,∇·∂te)L2 = −ε(∂tq,∆∂tφε)L2

= −(φε − εµ∆φε − ε∂tp,∆∂tφε)L2

=
1

2

d

dt
‖∇φε‖2L2 +

1

2
εµ

d

dt
‖∆φε‖2L2 − ε(∇∂tp,∇∂tφε)L2

=
1

2

d

dt
‖∇φε‖2L2 +

1

2
εµ

d

dt
‖∆φε‖2L2 − ε d

dt
(∇∂tp,∇φε)L2 + ε(∇∂ttp,∇φε)L2 .

The above two relations lead to

1

2

d

dt
‖∂te‖2L2 + 2µ‖∂te‖2V +

1

2

d

dt
‖∇φε‖2L2 +

1

2
εµ

d

dt
‖∆φε‖2L2

= ε
d

dt
(∇∂tp,∇φε)L2 − ε(∇∂ttp,∇φε)L2 .

(ii) Since e(0) = 0 and q(0) = 0, we also have∇φε(0) = 0 (since ∆φε(0) = 0 and n·∇φε(0)|∂D = 0)
and ∂te(0) = ∇·s(e(0))−∇q(0) = 0. After integrating in time from 0 to t the identity derived in
Step (i) for all t ∈ J, we obtain

1

2
‖∂te(t)‖2L2 +

1

2
‖∇φε(t)‖2L2 +

1

2
εµ‖∆φε(t)‖2L2 + 2µ

∫ t

0

‖∂te(s)‖2V ds

≤ ε‖∇∂tp(t)‖L2‖∇φε(t)‖L2 + ε‖∇∂ttp‖L∞(J,L2)

∫ t

0

‖∇φε(s)‖L2 ds, (74.2)

where we used the Cauchy–Schwarz inequality for the first term on the right-hand side and Hölder’s
inequality for the second term. In particular, (74.2) implies that

1

4
‖∇φε(t)‖2L2 ≤ ε2‖∇∂tp(t)‖2L2 + ε‖∇∂ttp‖L∞(J,L2)

∫ t

0

‖∇φε(s)‖L2 ds.

Invoking the Cauchy–Schwarz inequality in time to bound
∫ t
0
‖∇φε(s)‖L2 ds, followed by Young’s

inequality, we infer that

1

4
‖∇φε(t)‖2L2 ≤ ε2

(
‖∇∂tp(t)‖2L2 + t‖∇∂ttp‖2L∞(J,L2)

)
+

1

4

∫ t

0

‖∇φε(s)‖2L2 ds.

An application of Gronwall’s lemma (see Exercise 65.3) leads to

‖∇φε(t)‖2L2 ≤ c(p, T )ε2,
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for all t ∈ J . Substituting this bound in the right-hand side of (74.2) yields

‖∂te(t)‖2L2 + ‖∇φε(t)‖2L2 + εµ‖∆φε(t)‖2L2 + 2µ

∫ t

0

‖∂te(s)‖2V ds ≤ c(p, T )ε2.

From the above inequality, we obtain immediately

‖∇·uε‖2L∞(J;L2) = ε2‖∆φε‖2L∞(J;L2) ≤ c(p, T )µ−1ε3.

(iii) By definition of the Leray projection PH, we can write e− PH(e) = ∇r with n·∇r|∂D = 0.
Consequently, we have ∇·e = ∆r, and from (74.1b), we infer that r = εφε and

‖e− PH(e)‖2L2 = ‖∇r‖2L2 = ε2‖∇φε‖2L2.

We take the inner product of (74.1a) with S(e), where S is the inverse of the Stokes operator

defined in Exercise 74.3. Recall that |v|⋆ := (v,S(v))
1
2

V ′,V denotes the associated seminorm. Since

the L2-inner product is an extension of the duality between V ′ and V and since S(e) ∈ V, we
obtain

1

2

d

dt
|e|2⋆ + 2µ(e(e), e(S(e)))L2 = 0. (74.3)

In Step (ii) of Exercise 74.3, it is proved that for all γ ∈ (0, 1), there exists c(γ) such that

2µ(e(S(v)), e(v))L2 ≥ (1− γ)‖v‖2L2 − c(γ)‖v − v⋆‖2L2 , ∀v⋆ ∈H.

Using this bound with γ := 1
2 , v := e, and v⋆ := PH(e), and recalling that ‖e − PH(e)‖2

L2 =
ε2‖∇φε‖2L2 , we infer that

1

2

d

dt
|e|2⋆ +

1

2
‖e‖2L2 ≤ 1

2

d

dt
|e|2⋆ + 2µ(e(S(e)), e(e))L2 + c ‖e− PH(e)‖2L2

= c ‖e− PH(e)‖2L2 = c ε2‖∇φε‖2L2.

This bound holds for all t ∈ J, and we have shown in Step (ii) that ‖∇φε(t)‖2L2 ≤ c(p, T )ε2 for all
t ∈ J . This implies that 1

2
d
dt |e|2⋆ + 1

2‖e‖2L2 ≤ c(p, T )ε4. Integrating this inequality in time over J ,
we infer that

|e(T )|2⋆ +
∫

J

‖e(s)‖2L2ds ≤ c(p, T )ε4.

This shows that ‖e‖L2(J;L2) = ‖u− uε‖L2(J;L2) ≤ c(p, T )ε2.

Exercise 74.5 (Gauge-Uzawa). (i) We write the pressure-correction algorithm in rotational
form using BDF1 and p⋆,n := pn−1. We set u0 := u0, p

0 := p(0), then solve for all n ∈ Nτ ,

ũn − un−1

τ
− µ∆ũn +∇pn−1 = fn, ũn|∂D = 0,

un + τ∇φn = ũn, ∇·un = 0, un|∂D·n = 0,

pn = pn−1 + φn − µ∇·ũn.

(ii) The momentum equations in both algorithms are identical if we set vτ := uτ and qτ := pτ .
The projection step in the gauge-Uzawa technique reduces to the projection step in the pressure-
correction method by setting φn := ψn − ψn−1 = τ(δτψτ )

n. Finally, the gauge-Uzawa technique
gives

qn = qn−1 + ψn − ψn−1 + µ(rn − rn−1) = qn−1 + φn − µ∇·ũn,
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so that we recover the pressure update in the pressure-correction algorithm in rotational form.
Hence, up to the appropriate change of variables, the two algorithms are identical.
(iii) Testing the momentum equation in the gauge-Uzawa algorithm with 2τ ṽn yields

‖ṽn‖2L2 + ‖ṽn − vn−1‖2L2 + 2µτ‖∇ṽn‖2L2 − 2τ(∇·ṽn, qn−1)L2

≤ ‖vn−1‖2L2 + 2τ‖fn‖L2‖ṽn‖L2.

We square the second equation, we square the third one and multiply the result by µτ . This gives

‖vn‖2L2 + τ2‖∇ψn‖2L2 = ‖ṽn‖2L2 − 2τ(∇·ṽn, ψn−1)L2 + τ2‖∇ψn−1‖2L2,

µτ‖rn‖2L2 = µτ‖rn−1‖2L2 + µτ‖∇·ṽn‖2L2 − 2µτ(∇·ṽn, rn−1)L2 .

We add the first inequality to the above two identities and obtain

‖vn‖2L2 + τ2‖∇ψn‖2L2 + µτ‖rn‖2L2 + ‖ṽn − vn−1‖2L2 + 2µτ‖∇ṽn‖2L2

≤ ‖vn−1‖2L2 + τ2‖∇ψn−1‖2L2 + µτ‖rn−1‖2L2 + ρτ‖fn‖2L2

+
1

2
µτ‖∇ṽn‖2L2 + µτ‖∇·ṽn‖2L2 + 2τ(∇·ṽn, qn−1 − ψn−1 − µrn−1)L2 ,

where we used the Poincaré–Steklov inequality and Young’s inequality to infer that

2τ‖fn‖L2‖ṽn‖L2 ≤ 2τ
ℓD
Cps

‖fn‖L2‖∇ṽn‖L2 ≤ ρτ‖fn‖2L2 +
1

2
µτ‖∇ṽn‖2L2 .

We now use the equation qn−1 = ψn−1+µrn−1 for all n ∈ Nτ , n ≥ 2, and notice that this equation
also holds true for n = 1 since the initialization enforces q0 = ψ0 and r0 = 0. Using also that
‖∇·ṽn‖L2 ≤ ‖∇ṽn‖L2 (see Exercise 74.2), we obtain

‖vn‖2L2 + τ2‖∇ψn‖2L2 + µτ‖rn‖2L2 + ‖ṽn − vn−1‖2L2 +
1

2
µτ‖∇ṽn‖2L2

≤ ‖vn−1‖2L2 + τ2‖∇ψn−1‖2L2 + µτ‖rn−1‖2L2 + ρτ‖fn‖2L2.
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Artificial compressibility

Exercises

Exercise 75.1 (Lemma 75.1). (i) Prove (75.4). (Hint : test the momentum equation with v and
the mass equation with q, use Lemma 53.9 to bound (q, g)L2 , integrate in time from 0 to t for all
t ∈ J, and integrate by parts in time.) (ii) Prove (75.5). (Hint : use the inf-sup condition on the
bilinear form b together with the bounds derived in Step (i).)

Exercise 75.2 (Lemma 75.2). (i) Let δτk
n := kn−kn−1

τ and δτg
n := gn−gn−1

τ for all n ∈ Nτ .
Prove that ‖δτkτ‖ℓ2(J∗;L2) ≤ ‖∂tk‖L2(J∗;L2). Let Γ(t) :=

1
τ

∫ t
t−τ ∂ξg(ξ) dξ for all t ∈ J∗. Prove that

∂tΓ(t) = 1
τ

∫ t
t−τ ∂ξξg(ξ) dξ for all t ∈ J∗ and that ‖∂tΓ‖L2(J∗∗,L2) ≤ ‖∂ξξg‖L2(J∗;L2). (Hint : use

the Cauchy–Schwarz inequality and Fubini’s theorem.) (ii) Derive the system satisfied by the time

sequences δτuτ := (u
n−un−1

τ )n∈Nτ and δτpτ := (p
n−pn−1

τ )n∈Nτ . (iii) Prove the estimate (75.10).
(Hint : use the inf-sup condition on the bilinear form b and bound δτuτ by adapting the proof
of (75.9).)

Exercise 75.3 (Proposition 75.3). The goal of this exercise is to prove Proposition 75.3. (i)

Let eτ := uτ − πτ (u) and rτ := pτ − πτ (p). Let ψ(t) := 1
τ

∫ t
t−τ (ξ − t + τ)∂ξξu dξ and φ(t) :=

− 1
λ

∫ t
t−τ ∂ξp dξ for all t ∈ J∗. Show that





1

τ
(en − en−1)−∇·s(en) +∇rn = ψn, en|∂D = 0,

1

λ
(rn − rn−1) +∇·en = φn.

(ii) Prove the estimates (75.11) and (75.12). (Hint : use Lemma 75.2.)

Exercise 75.4 (Initialization). Let u0 be the initial velocity, and assume that p(0) is given. Let
t1 := τ . Using the first-order artificial compressibility algorithm (75.6) and Richardson’s extrap-
olation, propose a technique to estimate (∂ttu(t1), ∂ttp(t1)) with O(τ) accuracy, (∂tu(t1), ∂tp(t1))
with O(τ2) accuracy, and (u(t1), p(t1)) with O(τ3) accuracy. (Hint : estimate (u, p) at the times
t1 and t2 := 2τ by using (75.6) with the time steps τ

3 ,
τ
2 , and τ , keeping λ fixed. Conclude by

using finite differences centered at t1 := τ .)
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Solution to exercises

Exercise 75.1 (Lemma 75.1). (i) Testing the momentum equation with v and the mass equation
with q, adding the two results, using the coercivity of the bilinear form a(v,w) := (s(v), e(w))L2

and Young’s inequality to estimate 〈k,v〉V ′,V gives

1

2

d

dt
‖v‖2L2 +

1

2
ǫ
d

dt
‖q‖2L2 + µ‖v‖2V ≤

1

4µ
‖k‖2V ′ + (q, g)L2 . (75.1)

Owing to Lemma 53.9, there exists βD such that for all g ∈ L2
∗(D), there is w(g) ∈ V s.t.

∇·(w(g)) = g and βD‖w(g)‖V ≤ ‖g‖L2(D). We infer that

(q, g)L2 = (q,∇·(w(g))L2

= −(∇q,w(g))L2

= (−k + ∂tv −∇·s(v),w(g))L2

≤ ‖k‖V ′‖w(g)‖V + 2µ‖v‖V ‖w(g)‖V − (∂tv,w(g))L2 . (75.2)

We integrate the above inequality over time from 0 to t for all t ∈ J, and set Jt := (0, t). Let us
first consider the third term on the right-hand side. Integrating by parts in time and using the
property ∂tw(g) = w(∂tg), we obtain

∫ t

0

(∂tv,w(g))L2 ds

= −
∫ t

0

(v,w(∂tg))L2 ds+ (v(t),w(g(t)))L2 − (v(0),w(g(0)))L2

≤ ‖v‖L2(Jt;L2)‖w(∂tg)‖L2(Jt;L2) + ‖v(t)‖L2‖w(g(t))‖L2 + ‖v(0)‖L2‖w(g(0))‖L2

≤ β−1
D

(
ℓ2D
C2

kps

‖v‖L2(Jt;V )‖∂tg‖L2(Jt;L2) + ‖v(t)‖L2
ℓD
Ckps
‖g(t)‖L2 + ‖v0‖L2

ℓD
Ckps
‖g0‖L2

)
,

where we used the Cauchy–Schwarz inequality, the bound Ckps‖v‖L2 ≤ ℓD‖v‖V for all v ∈ V ,
and the above bound on the lifting w. Using this bound in (75.2) yields

∫ t

0

(q, g)L2 ds ≤ β−1
D (‖k‖L2(Jt;V ′) + 2µ‖v‖L2(Jt;V ))‖g‖L2(Jt;L2)

+ β−1
D

(
ℓ2D
C2

kps

‖v‖L2(Jt;V )‖∂tg‖L2(Jt;L2) + ‖v(t)‖L2
ℓD
Ckps
‖g(t)‖L2

+ ‖v0‖L2
ℓD
Ckps
‖g0‖L2

)
.

Integrating (75.1) from 0 to t, using this bound and the time scale ρ := C−2
kps

ℓ2D
µ , we obtain

1

2
‖v(t)‖2L2 +

1

2
ǫ‖q(t)‖2L2 + µ‖v‖2L2(Jt;V )

≤ 1

2
‖v0‖2L2 +

1

2
ǫ‖q0‖2L2 +

1

4µ
‖k‖2L2(Jt;V ′)

+ β−1
D (µ− 1

2 ‖k‖L2(Jt;V ′) + 2µ
1
2 ‖v‖L2(Jt;V ))µ

1
2 ‖g‖L2(Jt;L2)

+ β−1
D

(
µ

1
2 ‖v‖L2(Jt;V )µ

1
2 ρ‖∂tg‖L2(Jt;L2) + ‖v(t)‖L2µ

1
2 ρ

1
2 ‖g(t)‖L2 + ‖v0‖L2µ

1
2 ρ

1
2 ‖g0‖L2

)
.
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Using Young inequalities and since ‖g‖2H1(J;L2) = ‖g‖2L2(J;L2) + ρ2‖∂tg‖2L2(J;L2), we obtain

1

4
‖v(t)‖2L2 +

1

2
ǫ‖q(t)‖2L2 +

1

2
µ‖v‖2L2(Jt;V )

≤ ‖v0‖2L2 +
1

2
ǫ‖q0‖2L2 + c

(
µ−1‖k‖2L2(J;V ′) + µ‖g‖2H1(J;L2)

)
,

where we used that ‖k‖L2(Jt;V ′) ≤ ‖k‖L2(J;V ′), ‖g‖H1(Jt;L2) ≤ ‖g‖H1(J;L2), and that ρ
1
2 ‖g0‖L2 ≤

ρ
1
2 ‖g‖C0(J ;L2) ≤ c‖g‖H1(J;L2). Taking the supremum over t ∈ J and then taking the inequality for
t := T leads to

1

4
‖v‖2L∞(J;L2) +

1

2
ǫ‖q‖2L∞(J;L2) +

1

2
µ‖v‖2L2(J;V )

≤ 2‖v0‖2L2 + ǫ‖q0‖2L2 + c
(
µ−1‖k‖2L2(J;V ′) + µ‖g‖2H1(J;L2)

)
.

This proves the estimate (75.4).
(v) Using the inf-sup condition on the bilinear form b, we infer that

βD‖q‖L2 ≤ sup
w∈V

|b(w, q)|
‖w‖V

= sup
w∈V

|(∂tv,w)L2 + (s(v), e(w)L2 − 〈k,w〉V ′,V |
‖w‖V

≤ ℓD
Ckps

‖∂tv‖L2 + 2µ‖v‖V + ‖k‖V ′ .

Taking the time derivative of the system (75.3) and using the estimate (75.4) for the time deriva-
tives, we infer that

1

ρ
‖∂tv‖2L2(J;L2) = µ

C2
kps

ℓ2D
‖∂tv‖2L2(J;L2) ≤ µ‖∂tv‖2L2(J;V )

≤ 4‖∂tv(0)‖2L2 + 2ǫ‖∂tq(0)‖2L2 + c
(
µ−1‖∂tk‖2L2(J;V ′) + µ‖∂tg‖2H1(J;L2)

)
.

This bound together with the estimate on ‖v‖L2(J;V ) gives

β2
D‖q‖2L2(J;L2) ≤ 3

(
µρ‖∂tv‖2L2(J;L2) + 4µ2‖v‖2L2(J;V ) + ‖k‖2L2(J;V ′)

)

≤ c
(
µρ2
(
‖∂tv(0)‖2L2 + ǫ‖∂tq(0)‖2L2 + µ−1‖∂tk‖2L2(J;V ′) + µ‖∂tg‖2H1(J;L2)

)

+ µ
(
‖v0‖2L2 + ǫ‖q0‖2L2 + ‖k‖2L2(J;V ′) + µ2‖g‖2H1(J;L2)

))
.

Using that

‖g‖2H2(J;L2) = ‖g‖2L2(J;L2) + ρ2‖∂tg‖2L2(J;L2) + ρ4‖∂ttg‖2L2(J;L2)

≤ ‖g‖2H1(J;L2) + ρ2‖∂tg‖2H1(J;L2),

and ‖k‖2H1(J;V ′) = ‖k‖2L2(J;V ′) + ρ2‖∂tk‖2L2(J;V ′), and rearranging the terms proves (75.5).

Exercise 75.2 (Lemma 75.2). (i) We observe that

‖δτkτ‖2ℓ2(J∗;L2) =
∑

l∈{2:N}
τ−1‖kl − kl−1‖2L2 =

∑

l∈{2:N}
τ−1

∥∥∥
∫

Jl

∂tkdt
∥∥∥
2

L2

≤
∑

l∈{2:N}

∫

Jl

‖∂tk‖2L2dt = ‖∂tk‖2L2(J∗;L2).
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Moreover, the function Γ(t) := 1
τ

∫ t
t−τ ∂ξg(ξ) dξ satisfies

∂tΓ(t) =
1

τ
(∂tg(t)− ∂tg(t− τ)) =

1

τ

∫ t

t−τ
∂ξξg(ξ) dξ,

so that we have

‖∂tΓ‖2L2(J∗∗,L2) =

∫

J∗∗

1

τ2

∥∥∥
∫ t

t−τ
∂ξξg(ξ) dξ

∥∥∥
2

L2
dt

≤
∫

J∗∗

1

τ2

(∫ t

t−τ
‖∂ξξg(ξ)‖L2 dξ

)2
dt

≤
∫

J∗∗

1

τ

∫ t

t−τ
‖∂ξξg(ξ)‖2L2 dξdt

≤
∫

J∗

‖∂ξξg(ξ)‖2L2

1

τ

∫ t+(ξ)

t−(ξ)

dt dξ ≤ ‖∂ξξg‖2L2(J∗;L2),

where we used the Cauchy–Schwarz inequality, Fubini’s theorem with t−(ξ) := max(t2, ξ) and
t+(ξ) := min(T, ξ + τ) so that |t+(ξ)− t−(ξ)| ≤ τ for all ξ ∈ J∗.
(ii) By linearity, we observe that the following holds true for all n ∈ Nτ , n ≥ 2 :





1

τ
(δτu

n − δτun−1)−∇·s(δτun) +∇δτpn = δτk
n, δτu

n
|∂D = 0,

1

λ
(δτp

n − δτpn−1) +∇·δτun = δτg
n.

Hence, the pair (δτuτ , δτpτ ) solves the same system as the pair (uτ , pτ ), except that now the
source terms (kτ , gτ ) are replaced by (δτkτ , δτgτ ).
(iii) Using the inf-sup condition on the bilinear form b, we infer that

βD‖pn‖L2 ≤ sup
w∈V

|b(w, pn)|
‖w‖V

= sup
w∈V

|(un−un−1

τ ,w)L2 + (s(un), e(w))L2 − (kn,w)L2 |
‖w‖V

≤ (ρµ)
1
2 ‖un−un−1

τ ‖L2 + 2µ‖un‖V + (ρµ)
1
2 ‖kn‖L2.

This estimate implies that

‖pτ‖2ℓ2(J;L2) ≤ c
(
ρµ‖δτuτ‖2ℓ2(J;L2) + µ2‖uτ‖2ℓ2(J;V ) + ρµ‖kτ‖2ℓ2(J;L2)

)
. (75.3)

It remains to estimate ρµ‖δτuτ‖2ℓ2(J;L2) since a bound on µ2‖uτ‖2ℓ2(J;V ) follows by multiply-

ing (75.9) by µ. Owing to Step (ii), we bound δτuτ by proceeding as in the proof of the esti-
mate (75.9). Recalling the notation J∗ := (t1, T ), J∗∗ := (t2, T ), observing that Γ(tn) = δτg

n for
all n ∈ Nτ , and using the bounds derived in Step (i), we infer that

‖δτuτ‖2ℓ∞(J∗;L2) + µ‖δτuτ‖2ℓ2(J∗;V ) ≤ c e
4T
ρ

(
‖δτu1‖2L2 +

τ

µ
‖δτp1‖2L2 + ρ‖∂tk‖2L2(J∗;L2)

+ µ(T + ρ)‖δτgτ‖2ℓ∞(J∗;L2) + µρ2‖∂ttg‖2L2(J∗;L2)

)
.
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As a result, we have

ρµ‖δτuτ‖2ℓ2(J;L2) = ρµτ‖δτu1‖2L2 + ρµ‖δτuτ‖2ℓ2(J∗;L2)

≤ ρµτ‖δτu1‖2L2 + ρ2µ2‖δτuτ‖2ℓ2(J∗;V )

≤ ρµτ‖δτu1‖2L2 + c e
4T
ρ

(
ρ2µ‖δτu1‖2L2 + ρ2τ‖δτp1‖2L2 + ρ3µ‖∂tk‖2L2(J∗;L2)+

+ ρ2µ2(T + ρ)‖δτgτ‖2ℓ∞(J∗;L2) + µ2ρ4‖∂ttg‖2L2(J∗;L2)

)
,

and the term ρµτ‖δτu1‖2
L2 can be combined with the term ρ2µ‖δτu1‖2

L2 since we assumed τ ≤ 1
4ρ.

Finally, the estimate on the pressure follows by combining the above bound with (75.3).

Exercise 75.3 (Proposition 75.3). (i) We have





1

τ
(en − en−1)−∇·s(en) +∇rn = ψn, en|∂D = 0,

1

λ
(rn − rn−1) +∇·en = φn,

where ψn := ψ(tn) and φ
n := φ(tn) for all n ∈ Nτ , and

ψ(t) := ∂tu(t)−
u(t) + u(t− τ)

τ
=

1

τ

∫ t

t−τ
(ξ − t+ τ)∂ξξu dξ,

φ(t) := − 1

λ

∫ t

t−τ
∂ξp dξ.

Proceeding as in Step (i) of Exercise 75.2 shows that

‖ψτ‖ℓ2(J;L2) ≤ τ‖∂ttu‖L2(J;L2).

Moreover, it is clear that ‖φτ‖ℓ∞(J;L2) ≤ τ
λ‖∂tp‖C0(J;L2). We also have

∂tφ = − 1

λ
(∂tp(t)− ∂tp(t− τ)) = −

1

λ

∫ t

t−τ
∂ξξp dξ,

and proceeding again as in Step (i) of Exercise 75.2, this implies that

‖∂tφ‖L2(J∗;L2) ≤ λ−1τ‖∂ttp‖L2(J;L2).

(ii.a) Since e0 = 0 and r0 = 0, the stability estimate (75.9) implies that

‖eτ‖2ℓ∞(J;L2) + µ‖eτ‖2ℓ2(J;V ) ≤ c e
4T
ρ τ2

(
ρ‖∂ttu‖2L2(J;L2)

+ (T + ρ)µ−1‖∂tp‖2C0(J;L2)
+ µ−1ρ2‖∂ttp‖2L2(J;L2)),

where we used that λ := λ0µ.
(ii.b) Let us now estimate the error on the pressure by invoking the stability estimate (75.10). We
first observe that

∂tψ =
1

τ

∫ t

t−τ
(ξ − t+ τ)∂ξξξu dξ, ∂tφ = − 1

λ

∫ t

t−τ
∂ξξp dξ.
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This implies that

‖∂tψ‖L2(J∗;L2) ≤ τ‖∂tttu‖L2(J;L2), ‖∂tφ‖L2(J∗;L2) ≤
τ

λ
‖∂ttp‖L2(J;L2),

‖δτφτ‖ℓ∞(J∗;L2) ≤
τ

λ
‖∂ttp‖C0(J∗;L2), ‖∂ttφ‖L2(J∗∗;L2) ≤

τ

λ
‖∂tttp‖L2(J∗;L2).

Inserting these estimates in the stability estimate (75.10) implies that

1

µ
‖rτ‖2ℓ2(J;L2) ≤ c e

4T
ρ

(
ρ2‖δτe1‖2L2 +

τ

µ
ρ2‖δτr1‖2L2

+ ρτ2
(
‖∂ttu‖2L2(J;L2) + ρ2‖∂tttu‖2L2(J;L2)

)

+
τ2

µ
(T + ρ)‖∂tp‖2C0(J;L2)

+ ρ2‖∂ttp‖2C0(J∗;L2)

)

+
τ2

µ
ρ2
(
‖∂ttp‖2L2(J;L2) + ρ2‖∂tttp‖2L2(J∗;L2)

))
.

We need to estimate ‖δτe1‖L2 and ‖δτr1‖L2 to conclude. Recall that δτe
1 = e1

τ and δτr
1 = r1

τ
since e0 = 0 and r1 = 0. Using that e0 = 0 and r0 = 0, we have

e1

τ
−∇·(s(e1)) +∇r1 = ψ1, e1|∂D = 0,

r1

λ
+∇·e1 = φ1.

Hence, we have

1

2
‖e1‖2L2 + 2µτ‖e1‖2V − τ(∇·e1, r1)L2 ≤ τ2

2
‖ψ1‖2L2 ,

τ

2λ
‖r1‖2L2 + τ(∇·e1, r1)L2 ≤ τλ

2
‖φ1‖2L2 ,

which gives

1

2
‖e1‖2L + 2µτ‖e1‖2V +

τ

2λ
‖r1‖2L2 ≤ 1

2
τ3
(
‖∂ttu‖2L2(J1;L2) +

1

λ
‖∂tp‖2C0(J1;L2)

)
.

It is a this point that optimality is lost since this estimate implies that τ‖δτe1‖2L + τ
λ‖δtr1‖2L2 ≤

cτ(‖∂ttu‖2L2(J1;L2) +
1
λ‖∂tp‖2C0(J1;L2)

), i.e., the decay is O(τ) instead of O(τ2). In conclusion, we

obtain ‖rτ‖ℓ2(J;L2) ≤ c′(u, p, T )τ
1
2 .

Exercise 75.4 (Initialization). Using the hint, we denote by (ul,γ , pl,γ) the approximation of
the pair (u(tl+γ), p(tl+γ)) using the first-order artificial compressibility algorithm (75.6) with the
time step γτ with γ ∈ { 13 , 12 , 1} and l ∈ {1, 2}. Using Richardson’s extrapolation technique, we
have

ul,
1
3 = u(tl) + c1

τ

3
+ c2

τ2

18
+O(τ3),

ul,
1
2 = u(tl) + c1

τ

2
+ c2

τ2

8
+O(τ3),

ul,1 = u(tl) + c1τ + c2
τ2

2
+O(τ3).
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Similar expressions hold for the pressure. This gives

u(tl) =
9

2
ul,

1
3 − 4ul,

1
2 +

1

2
ul,1 +O(τ3),

p(tl) =
9

2
pl,

1
3 − 4pl,

1
2 +

1

2
pl,1 +O(τ3).

Let us denote for all l ∈ {1, 2},

u(l) :=
9

2
ul,

1
3 − 4ul,

1
2 +

1

2
ul,1,

p(l) :=
9

2
pl,

1
3 − 4pl,

1
2 +

1

2
pl,1.

We obtain the approximations with the expected order as follows:

∂ttu(τ) =
u(2) − 2u(1) + u0

τ2
+O(τ),

∂tu(τ) =
u(2) − u0

τ
+O(τ2),

u(τ) = u(1) +O(τ3),

∂ttp(τ) =
p(2) − 2p(1) + p(0)

τ2
+O(τ),

∂tp(τ) =
p(2) − p(0)

τ
+O(τ2),

p(τ) = p(1) +O(τ3).
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Chapter 76

Well-posedness and space
semi-discretization

Exercises

Exercise 76.1 (Maximality). Let V →֒ L be two real Hilbert spaces with norms ‖·‖V and ‖·‖L.
Let R ∈ L(V ;L). Assume that R is a monotone operator, i.e., ℜ((R(v), v)L) ≥ 0 for all v ∈ V. (i)
Show that if R is maximal monotone (i.e., there is τ0 > 0 s.t. IV + τ0R is surjective), then there

are real numbers c1 > 0 and c2 > 0 s.t. supw∈L
|(R(v),w)L|

‖w‖L ≥ c1‖v‖V − c2‖v‖L for all v ∈ V. (Hint :
show that IV + τ0R is injective with closed image.) (ii) Show that if there are real numbers c1 > 0

and c2 > 0 s.t. supw∈L
|(R(v),w)L|

‖w‖L ≥ c1‖v‖V − c2‖v‖L for all v ∈ V, and c2IL + R∗ : L′ ≡ L → V ′

is injective, then R is maximal monotone. (Hint : consider S(v) := supw∈L
|(R(v)+c2v,w)L|

‖w‖L for all

v ∈ V.) (iii) Assume that IV + τ0R is surjective. Show that the norms ‖v‖L+ τ0‖R(v)‖L and ‖v‖V
are equivalent.

Exercise 76.2 (Lemma 76.8). Revisit the proof of Lemma 76.8 by using Young’s inequality in

the form a(s)φ(s)
1
2 ≤ θa(s)2

4 + φ(s)
θ , where θ is any time scale, and show that the choice θ = T

leads to the sharpest estimate at the final time t = T . (Hint : minimize the function θ 7→ θe
T
θ at

fixed T .)

Exercise 76.3 (Growth and decay in time). Assume that the linear operator −µ♭IL + A ∈
L(V0;L) is maximal monotone where µ♭ ∈ R, µ♭ 6= 0, but there is no constraint on the sign of µ♭.
Let f ∈ C0(R+;L) R+ := [0,∞). (i) Explain why there exists a unique u ∈ C1(R+;V0)∩C0(R+;V0)
solving the problem ∂tu + A(u) = f , u(0) = u0. (ii) Assume now that µ♭ > 0. Show that the
solution to this problem satisfies the following estimate for all t ≥ 0:

‖u(t)‖2L ≤ e−µ♭t‖u0‖2L +
1

µ♭

∫ t

0

e−µ♭(t−s)‖f(s)‖2L ds.

(iii) Assume that µ♭ > 0 and f ∈ C0(R+;L) ∩ L∞((0,∞);L). Show that lim supt→∞ ‖u(t)‖L ≤
µ−1
♭ ‖f‖L∞((0,∞);L).

Exercise 76.4 (Wave equation). Consider the wave equation ∂ttp−∆p = g in D×J with the
initial conditions p(0) = p0 and ∂tp(0) = v0 in D and homogeneous Dirichlet conditions on p at the
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boundary. Assume that g ∈ L2(D), p0, v0 ∈ H1
0 (D), and ∆p0 ∈ L2(D). Show that this problem

fits the setting of the time-dependent Friedrichs’ systems from §76.3. (Hint : introduce v := ∂tp
and q := −∇p.)

Solution to exercises

Exercise 76.1 (Maximality). (i) Since R is maximal monotone, for every f ∈ L, there exists
u(f) ∈ V such that u(f) + τ0R(u(f)) = f . But this u(f) is unique since the monotonicity of
R implies that ‖u(f)‖L ≤ ‖f‖L. Hence, the operator IV + τ0R is bijective. In particular, this
operator is injective and its image is closed, so that owing to Lemma C.39, we infer that there is

α > 0 s.t. supw∈L
|(v+τ0R(v),w)L|

‖w‖L ≥ α‖v‖V for all v ∈ V. This also means that for all v ∈ V,

sup
w∈L

|(τ0R(v), w)L|
‖w‖L

≥ sup
w∈L

|(v + τ0R(v), w)L|
‖w‖L

− sup
w∈L

|(v, w)L|
‖w‖L

≥ α‖v‖V − ‖v‖L.

This shows that supw∈L
|(R(v),w)L|

‖w‖L ≥ ατ−1
0 ‖v‖V − τ−1

0 ‖v‖L for all v ∈ V.
(ii) We now prove the converse. Let us assume that there are real numbers c1 > 0 and c2 > 0 such

that supw∈L
|(R(v),w)L|

‖w‖L ≥ c1‖v‖V − c2‖v‖L for all v ∈ V. Let us set S(v) := supw∈L
|(c2v+R(v),w)L|

‖w‖L
for all v ∈ V. Since R is monotone, we have

S(v) ≥ |(c2v +R(v), v)L|
‖v‖L

=
|c2‖v‖2L + (R(v), v)L|

‖v‖L

≥ c2‖v‖2L + ℜ((R(v), v)L)
‖v‖L

≥ c2‖v‖L.

Moreover, we have

S(v) ≥ sup
w∈L

|(R(v), w)L|
‖w‖L

− c2‖v‖L ≥ c1‖v‖V − 2c2‖v‖L.

Hence, 3S(v) ≥ c1‖v‖V . This shows that the operator T := c2IV + R : V → L is injective with
closed image (here, we use c1 > 0). Since T ∗ is injective (by assumption), this argument shows
that the operator c2IV +R : V → L is bijective. In particular, c2IV +R : V → L is surjective, and
so is the operator IV + c−1

2 R (here, we use c2 > 0). We have shown that the operator is maximal
monotone.
(iii) Using Step (i), we know that there is α > 0 s.t.

τ0‖R(v)‖L ≥ α‖v‖V − ‖v‖L, ∀v ∈ V.

Hence, α‖v‖V ≤ ‖v‖L + τ0‖R(v)‖L. Denoting ιL,V := supv∈V
‖v‖L
‖v‖V (this number is finite since

we assumed that V embeds continuously in L), we also have ‖v‖L + τ0‖R(v)‖L ≤ (ιL,V +
τ0‖R‖L(V ;L))‖v‖V .

Exercise 76.2 (Lemma 76.8). Young’s inequality gives a(s)φ(s)
1
2 ≤ θa(s)2

4 + φ(s)
θ . Hence, we

obtain

φ(t) ≤ θ

4
‖a‖2L2(0,t) + b(t) +

∫ t

0

φ(s)

θ
ds.
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Invoking Gronwall’s lemma (see (65.2) from Exercise 65.3) with α(t) := θ
4‖a‖2L2(0,t) + b(t) and

β(t) := 1
θ shows that for all t ∈ J ,

φ(t) ≤ e tθ
(
θ
4‖a‖2L2(0,t) + b(t)

)
.

In particular, at the final time t = T , we obtain

φ(T ) ≤ e Tθ
(
θ
4‖a‖2L2(J) + b(T )

)
.

The sharpest bound is obtained by minimizing the function θ 7→ θe
T
θ (at fixed T ), and computing

the derivative shows that this function reaches its minimal value at θ = T .

Exercise 76.3 (Growth and decay in time). (i) The Hille–Yosida theorem applied on the time
interval (0, T ), where T is arbitrary, implies that there exists v ∈ C1(R+;V0)∩C0(R+;V0) so that

∂tv − µ♭v +A(v) = eµ♭tf, v(0) = u0.

Hence, we have
∂t(e

−µ♭tv) +A(e−µ♭tv) = f, e−µ♭×0v(0) = 0.

Setting u(t) := e−µ♭tv(t) ∈ C1(R+;V0) ∩ C0(R+;V0) gives the unique solution to

∂tu+A(u) = f, u(0) = u0.

(ii) Let t ∈ R+. Using u to test the equation ∂tu + A(u) = f , which we recall holds true in
C0(R+;L), using that µ♭ > 0 and ℜ

(
A(u), u)L

)
≥ µ♭‖u‖2L, we infer that

1

2

d

dt
‖u(t)‖2L + µ♭‖u(t)‖2L ≤ ‖f(t)‖L‖u(t)‖L ≤

1

2µ♭
‖f(t)‖2L +

µ♭
2
‖u(t)‖2L.

Hence, d
dt‖u(t)‖2L + µ♭‖u(t)‖2L ≤ 1

µ♭
‖f(t)‖2L . We obtain

d

dt
(eµ♭t‖u(t)‖2L) ≤

1

µ♭
eµ♭t‖f(t)‖2L.

Recall that this inequality holds true in C0(R+;R). Integrating it over (0, t), we infer that

‖u(t)‖2L ≤ e−µ♭t‖u0‖2L +
1

µ♭

∫ t

0

eµ♭(s−t)‖f(s)‖2L ds.

(iii) We still assume that µ♭ > 0. Since f ∈ L∞((0,∞);L), taking the square root on both sides
in the above inequality and recalling that Jt := (0, t), we infer that

‖u(t)‖L ≤ e−
µ♭
2 t‖u0‖L + µ

− 1
2

♭ ‖e
1
2µ♭(·−t)f‖L2(Jt;L)

≤ e−
µ♭
2 t‖u0‖L + µ

− 1
2

♭ ‖eµ♭(·−t)‖
1
2

L1(Jt)
‖f‖L∞(Jt;L)

≤ e−
µ♭
2
t‖u0‖L +

1

µ♭
‖f‖L∞(Jt;L),

since ‖eµ♭(·−t)‖L1(Jt) =
∫ t
0 e

µ♭(s−t) ds = 1
µ♭
(1 − e−µ♭t) ≤ 1

µ♭
. The conclusion is straightforward

since limt→∞ e−
µ♭
2 t = 0.
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Exercise 76.4 (Wave equation). Following the hint and setting u := (v, q)T, we obtain ∂tv +
∇·q = g and ∂tq +∇v = 0. Thus, we can rewrite the wave equation as ∂tu + A(u(t)) = f with
f := (g,0) ∈ L := L2(D;Rm), m := d+ 1, and A(u) :=

∑
k∈{1:d}Ak∂ku with

Ak :=

[
0 ek

eTK Od,d

]
, ∀k ∈ {1:d},

where (ek)k∈{1:d} is the canonical basis of Rd. Notice that X = Om,m. The graph space is
V = H1(D)×H(div;D) and since we are enforcing a homogeneous Dirichlet condition on p and
the initial condition p0 is in H1

0 (D), we have v ∈ H1
0 (D). Hence, the solution u is sought in the

space C1(J ;L) ∩ C0(J ;V0) with V0 := H1
0 (D)×H(div;D). Notice that u0 = (v0,−∇p0)T ∈ V0.



Chapter 77

Implicit time discretization

Exercises

Exercise 77.1 (Implicit advection-diffusion). Consider the 1D equation µ∂tu+β∂xu−ν∂xxu =
f in D := (0, 1), t > 0, where µ ∈ R+, β ∈ R, ν ∈ R+, f ∈ L2(D), boundary conditions u(0) = 0,
u(1) = 0, and initial data u0 = 0. Let Th be the mesh composed of the cells [ih, (i + 1)h],
i ∈ {0:I}, with uniform meshsize h := 1

I+1 . Let Vh := P g
1,0(Th) be the finite element space

composed of continuous piecewise linear functions that are zero at 0 and at 1 (see (19.37)). Let
(ϕi)i∈{1: I} be the global Lagrange shape functions associated with the nodes xi := ih for all
i ∈ {1:I}. (i) Write the fully discrete version of the problem in Vh using the implicit Euler time-
stepping scheme. Denote the time step by τ and the discrete time nodes by tn := nτ for all
n ∈ Nτ . (ii) Prove a stability estimate. (Hint : consider the test function 2τunh and introduce the
Poincaré–Steklov constant Cps s.t. Cps‖v‖L2(D) ≤ ℓD‖∂xv‖L2(D) for all v ∈ H1

0 (D).) (iii) Letting

unh :=
∑

i∈{1:I} U
n
i ϕi and Fi :=

1
h

∫
D
fϕi dx for all i ∈ {1:I}, write the linear system solved by the

vector Un := (Uni )i∈{1: I}. (iv) Prove that maxi∈{1:I} Uni ≤ τ
µ maxi∈{1: I} Fi + maxi∈{1: I} U

n−1
i if

ν > |β|h and τ ≥ µh2

3(2ν−|β|h) . (Hint : consider the index j ∈ {1:I} s.t. Unj = maxi∈{1: I} Uni .)

Exercise 77.2 (Bound on ‖ė1h‖L). Prove (77.23). (Hint : use that e0h = 0 and test (77.19) with
n := 1 against wh := e1h.)

Exercise 77.3 (IRK for advection-diffusion). Consider the advection-diffusion problem from
Remark 77.7. Write the time-stepping process in functional and algebraic form using the IRK
formalism from §69.2.4 and §70.1.3.

Exercise 77.4 (Implicit Euler, analysis using PVh). The objective of this exercise is to derive
an ℓ∞(J ;L)-error estimate for the implicit Euler scheme by using the operator PVh instead of the
operator ΠA

h as was done in §77.3. We assume that τ ≤ 1
4ρ. (i) Consider the following scheme:

Given u0h ∈ L, one obtains unh ∈ Vh for all n ∈ Nτ by solving

(unh − un−1
h , wh)L + τah(u

n
h, wh) = τφn(wh), ∀wh ∈ Vh,

with φn ∈ V ′
h. Set φτ := (φn)n∈Nτ ∈ (V ′

h)
N and ‖φτ‖2ℓ2((0,tn);V ′

h♭
)
:=
∑
m∈{1:n} τ‖φm‖2V ′

h♭
with

‖φm‖V ′
h♭

:= supwh∈Vh
|φm(wh)|
‖wh‖V♭

and the norm ‖·‖V♭ is defined as ‖v‖V♭ := ρ−1‖v‖2L + ‖v‖MS (this
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is the definition used in the proof of Theorem 76.19; it differs from (77.16)). Show that for all
n ∈ Nτ ,

‖unh‖L ≤ e
2tn
ρ
(
‖u0h‖L + ‖φτ‖ℓ2((0,tn);V ′

h♭
)

)
.

(Hint : adapt the proof of Lemma 77.2.) (ii) Let enh := unh−PVh(u(tn)) and ηn := PVh(u(tn))−u(tn)
for all n ∈ N τ . Prove that (enh − en−1

h , wh)L + τah(e
n
h, wh) = −τφn(wh) for all wh ∈ Vh, with

φn ∈ V ′
h s.t.

φn(wh) = (ψn +K(ηn)−Xηn, wh)L + sh(PVh(u(tn)), wh)

+
1

2
((Mbp +N )ηn, wh)L(∂D) − (ηn, A1(wh))L,

and ψn := 1
τ

∫
Jn
(∂tu(t)− ∂tu(tn))dt ∈ L. (Hint : see (76.27).) (iii) Let u solve (77.1) and let uhτ

solve (77.10). Assume that u ∈ C2(J ;L) ∩ C0(J ;Hk+1(D;Cm)). Prove that there is c s.t. for all
h ∈ H, all τ > 0, and all n ∈ Nτ ,

‖u(tn)− unh‖L ≤ c e
2tn
ρ

(
τ(ρtn)

1
2 c1(tn;u) +

(
h

1
2 + (

(
tn
ρ

) 1
2 max(ρβ, h)

1
2 hk+

1
2

)
c2(tn;u)

)
,

with c1(tn;u) := ‖∂ttu‖C0([0,tn];L) and c2(tn;u) := |u|C0([0,tn];Hk+1(D;Cm)). (Hint : see the proof of
Theorem 76.19 and use Step (i).)

Solution to exercises

Exercise 77.1 (Implicit advection-diffusion). (i) Let τ be the time step. The fully discrete
version of the problem in Vh using the implicit Euler time-stepping scheme is as follows: set u0h := 0,
then for all n ∈ Nτ find unh ∈ Vh such that

∫

D

(
µ
unh − un−1

h

τ
ϕi + β(∂xu

n
h)ϕi + ν(∂xu

n
h)∂xϕi

)
dx =

∫

D

fϕi dx,

for all i ∈ {1:I}.
(ii) To establish a stability estimate, let us test the equation using 2τunh. This yields

∫

D

(
2µ(unh − un−1

h )unh + 2τβ
1

2
∂x(u

n
h)

2 + 2τν(∂xu
n
h)

2

)
dx = 2τ

∫

D

funh dx.

The term involving β vanishes owing to the boundary conditions. Moreover, using the identity
2(a− b)a = a2 + (a− b)2 − b2 and the Cauchy–Schwarz inequality, this gives

µ‖unh‖2L2 + µ‖unh − un−1
h ‖2L2 − µ‖un−1

h ‖2L2 + 2τν‖∂xunh‖2L2 ≤ 2τ‖f‖L2‖unh‖L2.

Using the inequality 2ab ≤ λa2 + λ−1b2 with λ := νC2
psℓ

−2
D , and dropping the nonnegative term

µ‖unh − un−1
h ‖2L2 on the left-hand side, we have

µ‖unh‖2L2 + 2τν‖∂xunh‖2L2 ≤ µ‖un−1
h ‖2L2 +

τ

νC2
psℓ

−2
D

‖f‖2L2 + τνC2
psℓ

−2
D ‖unh‖L2 .

Invoking the Poincaré–Steklov constant (i.e., Cps‖unh‖L2 ≤ ℓD‖∂xunh‖L2) for the rightmost term,
we infer that

µ‖unh‖2L2 + τν‖∂xunh‖2L2 ≤ µ‖un−1
h ‖2L2 +

τ

νC2
psℓ

−2
D

‖f‖2L2.
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Summing the above inequality over n ∈ Nτ and since Nτ = T , we obtain the following stability
estimate:

µ‖uNh ‖2L2 + ν
∑

n∈Nτ
τ‖∂xunh‖2L2 ≤ µ‖u0h‖2L2 +

T

νC2
psℓ

−2
D

‖f‖2L2.

(iii) The discrete system takes the following form: For all i ∈ {1:I},

µ
h

6τ
(Uni−1 + 4Uni + U

n
i+1) +

β

2
(Uni − U

n
i−1) +

β

2
(Uni+1 − U

n
i )

+
ν

h
(Uni − U

n
i−1) +

ν

h
(Uni − U

n
i+1) = hFi + µ

h

6τ
(Un−1

i−1 + 4Un−1
i + U

n−1
i+1 ).

This can be simplified as follows:

µ
h

6τ
(Uni−1 + 4Uni + Uni+1) +

β

2
(Uni+1 − Uni−1)

+
ν

h
(−Uni−1 + 2Uni − Uni+1) = hFi + µ

h

6τ
(Un−1

i−1 + 4Un−1
i + U

n−1
i+1 ).

(iv) The above equation implies that

µ
h

τ
Uni + µ

h

6τ
(Uni−1 − 2Uni + Uni+1) +

β

2
(Uni+1 − Uni + Uni − Uni−1)

+
ν

h
(−Uni−1 + 2Uni − Uni+1) ≤ hFmax + µ

h

τ
Un−1,max,

where Fmax := maxi∈{1: I} Fi, Um,max := maxi∈{1:I} Umi , m ∈ {n − 1, n}. The above expression
can be rearranged as follows:

µ
h

τ
Uni +

(ν
h
+
β

2
− µh

6τ

)
(Uni − Uni−1) +

(ν
h
− β

2
− µh

6τ

)
(Uni − Uni+1) ≤ hFmax + µ

h

τ
Un−1,max.

Let j ∈ {1:I} be an index such that Unj = Un,max. Writing the above inequality for i := j,

observing that Unj − Unj−1 ≥ 0, Unj − Unj+1 ≥ 0, and since ν
h + β

2 −
µh
6τ ≥ 0 and ν

h −
β
2 −

µh
6τ ≥ 0 if

ν > |β|h and τ ≥ µh2

3(2ν−|β|h) (indeed, this last inequality is equivalent to ν
h ≥

µh
6τ + |β|

2 ), we infer

that

µ
h

τ
U
n,max = µ

h

τ
U
n
j ≤ hFmax + µ

h

τ
U
n−1,max.

This proves the assertion.

Exercise 77.2 (Bound on ‖ė1h‖L). Since e0h = 0, we have ė1h = 1
τ e

1
h. Testing (77.19) with n := 1

against wh := e1h yields

‖e1h‖2L + τ |e1h|2MS ≤ τΛ−
♭ ‖e1h‖2L + τ |(α1, e1h)L|.

Since τΛ−
♭ ≤ τ

2ρ ≤ 1
8 , we infer that

7

8
‖e1h‖2L + τ |e1h|2MS ≤ τ‖α1‖L‖e1h‖L.
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Hence, ‖e1h‖L ≤ 8
7τ‖α1‖L, and it remains to estimate ‖α1‖L. We have

‖α1‖L ≤ ‖η(∂tu)‖C0(J1;L)
+ ρ−1‖η(u)‖C0(J1;L)

+ τ‖∂ttu‖C2(J1;L)

≤ c
((

β
ρ

) 1
2hk+

1
2 c12(u) + τc11(u)

)
.

Hence, we have

‖ė1h‖L ≤ 1
τ ‖e1h‖L ≤ 8

7‖α1‖L ≤ c
(
τc11(u) +

(
β
ρ

) 1
2 hk+

1
2 c12(u)

)
.

The result is proved.

Exercise 77.3 (IRK for advection-diffusion). Let us consider an s-stage IRK scheme defined
by its Butcher coefficients {aij}i,j∈{1:s}, {bi}i∈{1:s}, {ci}i∈{1:s}, and its final stage coefficients
{αi}i∈{0:s} defined in Remark 69.13. Let us set tn,j := tn−1 + cjτ for all j ∈ {1:s} and all
n ∈ Nτ . We then define fh(t) := PVh(f(t)) for all t ∈ J . We also define Ah : Xh → Xh by setting
(Ah(vh), wh)L := 〈D(vh), wh〉X′,X + ah(vh, wh) for all vh, wh ∈ Xh. The time stepping proceeds

as follows. One first sets u0h := PVh(u0), then for all n ∈ Nτ one seeks {un,ih }i∈{1:s} ⊂ Xh solving
the following system of coupled equations:

un,ih − un−1
h = τ

∑

j∈{1:s}
aij
(
fh(tn,j)−Ah(un,jh )

)
,

and the update at tn is obtained by setting unh := α0u
n−1
h +

∑
p∈{1:s} αpu

n,p
h . Let {ϕi}i∈{1:I} be a

basis of Xh. Recalling the mass matrixM ∈ CI×I and the stiffness matrix A ∈ CI×I introduced
in §77.1.2, the algebraic realization of the IRK scheme proceeds as follows: One first lets U0 ∈ CI
be the coordinate vector of PVh(u0). Then, for all n ∈ Nτ , letting Un,p ∈ CI be the coordinate
vector of un,ph for all p ∈ {1:s}, the IRK scheme consists of solving the linear system:



M+ τa11A · · · τa1sA

...
. . .

...
τas1A · · · M+ τassA






Un,1

...
Un,s


 =



Gn,1

...
Gn,s


 ,

with the load vectors defined by Gn,p :=MUn−1+τ
∑
q∈{1:s} apqF

n,q ∈ CI , and F
n,p
i := (fh(tn,p), ϕi)L

for all p ∈ {1:s}. Finally, one sets Un := α0U
n−1 +

∑
p∈{1:s} αpU

n,p.

Exercise 77.4 (Implicit Euler, analysis using PVh). Notice that τ ≤ 1
4ρ implies that τΛ−

♭ <
1
8 < 1, so that the discrete problem is well-posed.
(i) We use wh := unh as the test function, take the real part, invoke the lower bound (77.5) and the
identity (unh − un−1

h , unh)L = 1
2‖unh‖2L − 1

2‖un−1
h ‖2L + 1

2‖unh − un−1
h ‖2L. This gives

1

2
‖unh‖2L + τΛ♭‖unh‖2L + τ |unh|2MS ≤

1

2
‖un−1

h ‖2L + τ |φn(unh)|.

Since |φn(unh)| ≤ ‖φn‖V ′
h♭
‖unh‖V♭ ≤ 1

2‖φn‖2V ′
h♭

+ 1
2‖unh‖2V♭ = 1

2‖φn‖2V ′
h♭

+ 1
2ρ‖unh‖2L + 1

2 |unh|2MS and

since 1
2ρ − Λ♭ ≤ 1

ρ , this gives

1

2
‖unh‖2L +

1

2
τ |unh|2MS ≤

1

2
‖un−1

h ‖2L +
τ

ρ
‖unh‖2L +

1

2
τ‖φn‖2V ′

h♭
.
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Dropping the nonnegative term 1
2τ |unh |2MS from the left-hand side and summing the inequalities

for all m ∈ {1:n} gives

‖unh‖2L ≤ ‖u0h‖2L +
∑

m∈{1:n}

2τ

ρ
‖umh ‖2L +

∑

m∈{1:n}
τ‖φm‖2V ′

h♭
.

We apply the discrete Gronwall lemma from Exercise 68.3 with γ := 2τ
ρ ∈ (0, 1) by assumption,

am := ‖umh ‖2L, bm := 0, cm := τ‖φm‖2V ′
h♭
, and B := ‖u0h‖2L. Since γ ≤ 1

2 by assumption, we have
1

1−γ ≤ e2γ . This completes the proof of the assertion.

(ii) Subtracting (77.1) from (77.10) gives

(enh − en−1
h , wh)L + τ

(
ah(u

n
h, wh)− (A(u(tn), wh)L

)
= −τ(ψn, wh)L,

for all wh ∈ Vh. This implies that

(enh − en−1
h , wh)L + τah(e

n
h, wh) = −τφn(wh),

with
φn(wh) := (ψn, wh)L +

(
ah(PVh(u(tn)), wh)− (A(u(tn)), wh)L

)
.

Proceeding as in the derivation of (76.27), we can rearrange the second term on the right-hand
side to obtain the expected expression for φn(wh).
(iii) We now estimate ‖φn‖V ′

h♭
. Let us denote by (φni )i∈{1: 4} the four antilinear forms composing

φn, i.e.,

φn1 (wh) := (ψn +K(ηn)−Xηn, wh)L, φn1 (wh) := sh(PVh(u(tn)), wh),

φn3 (wh) :=
1

2
((Mbp +N )ηn, wh)L(∂D), φn4 (wh) := −(ηn, A1(wh))L.

Since we assumed that u ∈ C2(J ;L), we have ‖ψn‖L ≤ τ‖∂ttu‖C0(Jn;L)
, and our simplifying

assumption on K and X implies that ‖K(ηn) − Xηn‖L ≤ cρ−1‖ηn‖L. Since ρ−
1
2 ‖·‖L ≤ ‖·‖V♭ ,

invoking the Cauchy–Schwarz inequality gives

‖φn1‖V ′
h♭
≤ ρ 1

2 (τ‖∂ttu‖C0(Jn;L)
+ ρ−1‖ηn‖L)

≤ ρ 1
2 τ‖∂ttu‖C0(Jn;L)

+ c ρ−
1
2 hk+1|u(tn)|Hk+1 ,

where we used the approximation properties of PVh (see Propositions 22.19 and 22.21 and recall
that we are assuming that the mesh sequence is quasi-uniform). The assumption (76.20b) on sh
implies that

‖φn2 ‖V ′
h♭
≤ cβ 1

2hk+
1
2 |u(tn)|Hk+1 .

The assumption (76.19c) onMbp and the approximation properties of PVh imply that

‖φn3 ‖V ′
h♭
≤ cβ 1

2hk+
1
2 |u(tn)|Hk+1 .

Finally, using that |wh|S +
(
β
ℓD

) 1
2 ‖wh‖L ≤ ‖wh‖V♭ , the assumption (76.20c) on sh yields

‖φn4 ‖V ′
h♭
≤ cβ 1

2hk+
1
2 |u(tn)|Hk+1 .

Putting these bounds together yields

‖φn‖V ′
h♭
≤ ρ 1

2 τ‖∂ttu‖C0(Jn;L)
+ c ρ−

1
2 max(ρβ, h)

1
2hk+

1
2 |u(tn)|Hk+1 .
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We can now apply Step (i) and since e0h = 0, we infer that for all n ∈ Nτ ,

‖enh‖L ≤ c e
2tn
ρ

(
τ(ρtn)

1
2 ‖∂ttu‖C0([0,tn];L) + (ρ−1tn)

1
2 max(ρβ, h)

1
2hk+

1
2 |u|C0([0,tn];Hk+1)

)
,

where we used that
∑

m∈{1:n} τ |u(tm)|2Hk+1 ≤ tn|u|2C0([0,tn];Hk+1). The conclusion follows by using

the triangle inequality.



Chapter 78

Explicit time discretization

Exercises

Exercise 78.1 (Order conditions). (i) Consider the linear ODE system ∂tU = ÃU + F̃. Let
p ≥ 1. Prove that

U(tn) =
∑

r∈{0:p}

τr

r!
ÃrU(tn−1) + τGp(tn−1) +O(τp+1), (78.1)

with Gp defined in (78.13). (Hint : verify that ∂rtU = ÃrU + Φr(F̃) for all r ≥ 1, with Φr(F̃) :=∑
q∈{1:r} Ãr−q∂

q−1
t F̃.) (ii) Let F̃ ∈ C∞(J ;CI). Consider the uncoupled ODE system ∂tU = F̃(t).

Let Un−1 := U(tn−1). Let Un be given by the RK scheme. Show that a necessary and sufficient
condition for U(tn) − Un = O(τp+1) is (78.10) with r := 1. (Hint : write a Taylor expansion of
order (p− 1) of F̃(tn,j) for all j ∈ {1:s}.)
Exercise 78.2 (Condition (78.10)). (i) Show that if (78.9a) holds true, then

∑
j∈{1:s} bj(1 −

cj)
mcnj = m!n!

(m+n+1)! for all m,n ∈ N s.t. m + n ≤ p − 1. (Hint : recall that (1 + x)m =
∑
r∈{0:m}

(
m
r

)
xr, 1

n+l+1 =
∫ 1

0
xn+l dx, and

∫ 1

0
(1−x)mxn dx = m!n!

(m+n+1)! .) (ii) Show that if (78.9a)

and (78.9c) hold true, then
∑
i∈{1:s} bi(1 − ci)

m−1aij =
bj
m (1 − cj)

m for all j ∈ {1:s} and all

m ∈ {1:ζ}. (iii) Prove that (78.10) is met for q := 1 if (78.9a) and (78.9b) hold with η := p − 1.
(Hint : show that

∑
j2,...,jr∈{1:s} aj1j2 . . . ajr−1jr = 1

(r−1)!c
r−1
j1

for all r ∈ {2:p}.) (iv) Prove that

(78.10) is met for q := 1 if (78.9a) and (78.9c) hold with ζ := p − 1. (v) Show that (78.10) with
q := 1 is met for all r ∈ {1:p} if (78.9a) holds and (78.9b) and (78.9c) hold with η+ ζ +1 = p (vi)
Show that (78.10) is met for all r ∈ {1:p} and all q ∈ {1:p − r + 1} if (78.9a) holds and (78.9b)
and (78.9c) hold with p ≤ η + ζ + 1.

Exercise 78.3 (Explicit Euler). Revisit the proof of Lemma 78.12 by using the test function
wh := unh instead of wh := un−1

h and assuming that τ ≤ min(λ0τ2(h),
1
2

ρ
1+λ0̟2 ) where ̟ :=

h
β supvh,wh∈Vh

|ah(vh,wh)|
‖vh‖L‖wh‖L . (Hint : use that ah(u

n−1
h , unh) = ah(u

n
h, u

n
h) + ah(u

n−1
h − unh, unh).)

Exercise 78.4 (First-order viscosity). Let (·, ·)V be a semidefinite Hermitian sesquilinear form
in V and let |·|V be the associated seminorm. Assume that ℜ

(
(A(v), v)L

)
≥ 0 and ‖A(v)‖L ≤

β‖v‖L for all v ∈ V. Let Vh ⊂ V and set cinv(h) := maxvh∈Vh
|vh|V
‖vh‖L . Given u0h ∈ Vh, let unh ∈ Vh
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solve 1
τ (u

n
h − un−1

h , wh)L + (A(un−1), vh)L + µ(un−1
h , wh)V = 0, for all wh ∈ Vh and all n ∈ Nτ ,

where µ ≥ 0 is an artificial viscosity parameter yet to be defined (µ can depend on h and τ). (i)
Explain why this scheme can be more attractive than the implicit Euler method with µ := 0. (ii)
Prove that if τ(β+µcinv(h))

2 ≤ 2µ, then ‖unh‖L ≤ ‖u0h‖L for all n ∈ Nτ . (iii) Prove that the above
stability condition can be realized if and only if 2βτcinv(h) ≤ 1, and determine the admissible
range for µ. Note: the constant βτcinv(h) is called Courant–Friedrichs–Levy (CFL) number.

Exercise 78.5 (Explicit Euler, mass lumping). Let β ∈ R, β 6= 0. Consider the equation
∂tu + β∂xu = 0 over D := (0, 1) with periodic boundary conditions. Use the same setting for
the space discretization as in Exercise 77.1. (i) Write the linear system solved by the coordinate
vector (Un1 , . . . ,U

n
I )

T by using the explicit Euler scheme and the Galerkin approximation with
mass lumping. (Hint : use the convention UnI := Un0 , UnI+1 := Un1 , Un−1 := UnI−1.) (ii) Show

that
∑
j∈{1: I}(U

n
j )

2 =
∑
j∈{1: I}(U

n−1
j )2 + λ2

∑
j∈{1: I}(U

n−1
j+1 − U

n−1
j−1 )

2 with λ := βτ
2h . (iii) Let

a := (1 − 2iλ sin(kI 2π)) where k ∈ N and k
I 6∈ N, i2 := −1, and set U0

j := aei
j
I 2kπ for all j ∈ {1:I}.

Compute Unj for all n ∈ Nτ and comment on the result.

Exercise 78.6 (Error equation, RK2). (i) Verify that

u(tn) = u(tn−1) + τ∂tu(tn−1) +
1

2
τ2∂ttu(tn−1) +

1

2
τψn−1,

with ψn−1 := 1
τ

∫
Jn
(tn−t)2∂tttu(t)dt. (Hint : integrate by parts in time.) (ii) Prove (78.26). (Hint :

use the fact that (∂ttu(tn−1), wh)L + (A(∂tu(tn−1)), wh)L = (∂tf
n−1, wh)L for all wh ∈ Vh.)

Exercise 78.7 (ERK schemes, p = 3). Prove Lemma 78.21. (Hint : proceed as in the proof of
Lemma 78.15, use that ‖Ah(wh)‖L ≤ c 1ρ‖wh‖H1 for all wh ∈ Vh, and invoke the H1-stability of

PVh (see Proposition 22.21).)

Solution to exercises

Exercise 78.1 (Order conditions). (i) We verify the hint by induction on r ≥ 1. The assertion
is satisfied for r = 1 since Φ1(F̃) = F̃, so that we indeed have ∂tU = ÃU+Φ1(F̃). Assume that the
assertion is satisfied for some r ≥ 1, and let us show that it holds true for (r + 1). We have

∂r+1
t U = ∂t

(
∂rtU

)
= ∂t

(
ÃrU+Φr(F̃)

)

= Ãr∂tU+
∑

q∈{1:r}
Ãr−q∂qt F̃

= Ãr(ÃU+ F̃) +
∑

q∈{2:r+1}
Ãr+1−q∂q−1

t F̃

= Ãr+1
U+

∑

q∈{1:r+1}
Ãr+1−q∂q−1

t F̃.
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This proves the assertion on the time derivatives of U. The Taylor expansion of order p of U at tn
then becomes

U(tn) = U(tn−1) +
∑

r∈{1:p}

τr

r!
∂rtU(tn−1) +O(τp+1)

= U(tn−1) +
∑

r∈{1:p}

τr

r!

(
ÃrU(tn−1) + Φr(F̃)(tn−1)

)
+O(τp+1)

=
∑

r∈{0:p}

τr

r!
ÃrU(tn−1) + τGp(tn−1) +O(τp+1),

since the definition (78.13) gives

∑

r∈{1:p}

τr

r!
Φr(F̃)(t) =

∑

r∈{1:p}

τr

r!

∑

q∈{1:r}
Ãr−q∂q−1

t F̃(t) = τGp(t).

(ii) By definition, we have

Un = Un−1 + τ
∑

j∈{1:s}
bjF̃(tn,j).

But F̃(tn,j) =
∑
r∈{0:p−1}

(cjτ)
r

r! ∂rt F̃(tn−1) +O(τp). Recalling that ∂r+1
t U = ∂rt F̃, this means that

U
n = U

n−1 + τ
∑

j∈{1:s}
bj

∑

q∈{0:p−1}

(cjτ)
q

q!
∂qt F̃(tn−1) +O(τp+1)

= U
n−1 +

∑

q∈{0:p−1}

τq+1

(q + 1)!
∂q+1
t U(tn−1)

∑

j∈{1:s}
(q + 1)bjc

r
j +O(τp+1)

= Un−1 +
∑

q∈{1:p}

τq

q!
∂qtU(tn−1)

∑

j∈{1:s}
qbjc

q−1
j +O(τp+1).

Hence, we have Un − U(tn) = O(τp+1) iff the above identity coincides with the Taylor expansion
of order p of U(tn) at tn−1. This is true iff

∑
j∈{1:s} qbjc

q−1
j = 1 for all q ∈ {1:p}. This is exactly

(78.10) with r := 1.

Exercise 78.2 (Condition (78.10)). (i) Using (78.9a) and the binomial formula, we obtain

∑

j∈{1:s}
bj(1 − cj)mcnj =

∑

l∈{0:m}

(
m

l

)
(−1)l

∑

j∈{1:s}
bjc

l+n
j

=
∑

l∈{0:m}

(
m

l

)
(−1)l 1

n+ l+ 1
,

where we used that n+ l+ 1 ≤ n+m+ 1 ≤ p to invoke (78.9a). But

∑

l∈{0:m}

(
m

l

)
(−1)l 1

n+ l + 1
=

∑

l∈{0:m}

(
m

l

)
(−1)l

∫ 1

0

xn+l dx

=

∫ 1

0

(1− x)mxn dx =
m!n!

(m+ n+ 1)!
.
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This shows that

∑

j∈{1:s}
bj(1 − cj)mcnj =

m!n!

(m+ n+ 1)!
.

Notice in passing that this proves that the quadrature with the nodes {ci}i∈{1:s} and weights

{bi}i∈{1:s} is at least of order p − 1 since it integrates exactly the Bernstein basis {
(
p−1
m

)
(1 −

x)mxp−1−m}m∈{0:p−1}.
(ii) To prove the second identity, we proceed as above and use (78.9c) to infer that for all j ∈ {1:s}
and all m ∈ {1:ζ},
∑

i∈{1:s}
bi(1 − ci)m−1aij =

∑

r∈{0:m−1}

(
m− 1

r

) ∑

i∈{1:s}
bi(−ci)raij

=
∑

r∈{0:m−1}

(
m− 1

r

)
(−1)r bj

r + 1
(1− cr+1

j )

=
bj
m

∑

r∈{0:m−1}

(
m

r + 1

)
(−1)r(1− cr+1

j )

= − bj
m

∑

r∈{1:m}

(
m

r

)
(−1)r(1− crj) = −

bj
m

∑

r∈{1:m}

(
m

r

)(
(−1)r − (−cj)r)

)

= − bj
m

∑

r∈{0:m}

(
m

r

)(
(−1)r − (−cj)r)

)

= − bj
m
(0− (1− cj)m) =

bj
m
(1− cj)m.

(iii) Let us now show that (78.10) with q := 1 is met for all r ∈ {1:p} if (78.9a) holds and (78.9b)
holds with η := p − 1. For r := 1, (78.10) boils down to

∑
j∈{1:s} bj = 1, which is nothing but

(78.9a) with q := 1. Let now r ∈ {2:p}. Using (78.9b) for all q ∈ {1:r−1} (this is legitimate since
r − 1 ≤ p− 1 = η), we obtain

∑

j2,...,jr∈{1:s}
aj1j2× . . .×ajr−1jr =

∑

j2,...,jr−1∈{1:s}
aj1j2× . . .×ajr−2jr−1

∑

jr∈{1:s}
ajr−1jr

=
∑

j2,...,jr−1∈{1:s}
aj1j2× . . .×ajr−2jr−1cjr−1

=
∑

j2,...,jr−2∈{1:s}
aj1j2× . . .×ajr−3jr−2

1

2
c2jr−2

= . . . =
1

(r − 1)!
cr−1
j1

.

Now, invoking (78.9a) with q := r (this is legitimate since r ≤ p) gives
∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−1jr =

1

r!
.

(iv) Let us now show that (78.10) with q := 1 is met for all r ∈ {1:p} if (78.9a) holds and (78.9c)
holds with ζ := p − 1. For r := 1, (78.10) boils down to

∑
j∈{1:s} bj = 1, which is nothing but
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(78.9a) with q := 1. Let now r ∈ {2:p}. Using (78.9c) (actually the expression from Step (ii) for
all m ∈ {1:r−1}; this is legitimate since r − 1 ≤ p− 1 = ζ), we obtain

∑

j1∈{1:s}

∑

j2,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−1jr =

∑

j2,...,jr∈{1:s}
bj2(1− cj2)aj2j3× . . .×ajr−1jr

=
∑

j3,...,jr∈{1:s}

1

2
bj3(1− cj3)2aj3j4× . . .×ajr−1jr

= . . . =
∑

jr∈{1:s}

1

(r − 1)!
bjr (1− cjr )r−1 =

1

r!
,

where the last identity follows from (78.9a) (actually the expression from Step (i) with m := r− 1
and n := 0; this is legitimate since m+ n+ 1 ≤ r ≤ p).
(v) Let us now show that (78.10) with q := 1 is met for all r ∈ {1:p} if (78.9a) holds and (78.9b)
and (78.9c) hold with η+ ζ+1 = p. The case r := 1 has already been proved, and we have already
established the result if either r−1 ≤ η or r−1 ≤ ζ. Let now r ∈ {2:p} and assume that r−1 > η
and r − 1 > ζ (i.e., r − η ≥ 2 and r − ζ ≥ 2). Using (78.9b) for all q ∈ {1:η}, we obtain

∑

j2,...,jr∈{1:s}
aj1j2× . . .×ajr−1jr =

∑

j2,...,jr−1∈{1:s}
aj1j2× . . .×ajr−2jr−1

∑

jr∈{1:s}
ajr−1jr

= . . . =
∑

j2,...,jr−η∈{1:s}
aj1j2× . . .×ajr−η−1jr−η

1

η!
cηjr−η .

Now, invoking (78.9c) (actually the expression from Step (ii) for all m ∈ {1:r−η−1}; this is
legitimate since r − η − 1 ≤ ζ because r ≤ p = η + ζ + 1) gives

∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−η−1jr−η

1

η!
cηjr−η =

1

η!

1

(r − η − 1)!

∑

jr−η∈{1:s}
bjr−η (1− cjr−η )r−η−1cηjr−η .

We now invoke the result from Step (i) with m := r − η − 1 and n := η. We infer that

∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−η−1jr−η

1

η!
cηjr−η =

1

η!

1

(r − η − 1)!

(r − η − 1)!η!

r!
.

In conclusion, we have proved that

∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−1jr =

1

r!
, ∀r ∈ {1:p}.

Hence, (78.10) with q := 1 is met for all r ∈ {1:p}.
(vi) Let us finally show that (78.10) is met for all r ∈ {1:p} and all q ∈ {1:p−r+1} if (78.9a) holds
and (78.9b) and (78.9c) hold with p ≤ η + ζ + 1. Let r ∈ {1:p}. We are going to consider three
cases: r − 1 ≤ ζ, 1 ≤ ζ ≤ r − 2, and ζ = 0.
Case 1: Assume that r − 1 ≤ ζ. Using first Step (ii) for all m ∈ {1:r−1}, then Step (i) because
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r + q − 2 + 1 ≤ r + p− r + 1− 1 = p, we have

∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−1jr c

q−1
jr

=
∑

j2,...,jr−1∈{1:s}
bj2(1− cj2)aj2j3× . . .×ajr−2jr−1ajr−1jrc

q−1
jr

= . . . =
1

(r − 1)!

∑

jr∈{1:s}
bjr (1− cjr )r−1cq−1

jr

=
1

(r − 1)!

(r − 1)!(q − 1)!

(r + q − 1)!
=

(q − 1)!

(r + q − 1)!
.

Case 2: Assume 1 ≤ ζ ≤ r − 2. Proceeding as above, we have

∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−1jrc

q−1
jr

=
∑

j2,...,jr−1∈{1:s}
bj2(1− cj2)aj2j3× . . .×ajr−2jr−1ajr−1jrc

q−1
jr

= . . . =
1

(ζ − 1)!

∑

jζ+1,...,jr∈{1:s}
bjζ+1

(1 − cjζ+1
)ζajζ+1jζ+2

× . . .×ajr−1jrc
q−1
jr

.

Then, using (78.9b) (because r − ζ − 1 + q− 1 ≤ r− ζ − 2 + p− r+ 1 = p− ζ − 1 ≤ η), we obtain

∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−1jrc

q−1
jr

=
1

ζ!

∑

jζ+1,...,jr∈{1:s}
bjζ+1

(1− cjζ+1
)ζajζ+1jζ+2

× . . .×
∑

jr∈{1:s}
ajr−1jrc

q−1
jr

= . . . =
1

ζ!

∑

jζ+1∈{1:s}
bjζ+1

(1− cjζ+1
)ζ

(q − 1)!

(r − ζ − 1 + q − 1)!
cr−ζ−1+q−1
jζ+1

.

We now conclude by using Step (i) (because ζ + r − ζ − 1 + q − 1 + 1 ≤ r − 1 + p − r + 1 = p),
which gives

∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−1jrc

q−1
jr

=
1

ζ!

(q − 1)!

(r − ζ − 1 + q − 1)!

ζ!(r − ζ − 1 + q − 1)!

(r + q − 1)!
=

(q − 1)!

(r + q − 1)!
.

Case 3: Assume ζ = 0. Proceeding as above and using (78.9b) (because r − 1 + q − 1 ≤ r − 2 +
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p− r + 1 = p− 1 ≤ η + ζ = η) then using (78.9a) (because r − 1 + q − 1 ≤ p− 1 ≤ p), we have
∑

j1,...,jr∈{1:s}
bj1aj1j2× . . .×ajr−1jrc

q−1
jr

=
∑

j1,...,jr−1∈{1:s}
bj1aj1j2× . . .×

∑

jr∈{1:s}
ajr−1jrc

q−1
jr

= . . . =
∑

j1∈{1:s}
bj1

(q − 1)!

(r − 1 + q − 1)!
cr−1+q−1
j1

=
(q − 1)!

(r + q − 2)!

1

(r − 1 + q)

=
(q − 1)!

(r + q − 1)!
.

Exercise 78.3 (Explicit Euler). This time we use the identity (unh − un−1
h , unh)L = 1

2‖unh‖2L −
1
2‖un−1

h ‖2L + 1
2‖unh − un−1

h ‖2L and we observe that ah(u
n−1
h , unh) = ah(u

n
h, u

n
h) + ah(u

n−1
h − unh, unh).

Rearranging the terms, we infer that

‖unh‖2L − ‖un−1
h ‖2L + ‖unh − un−1

h ‖2L ≤
τ

ρ
‖unh‖2L + ρτ‖αn,1‖2L + 2τ |ah(unh − un−1

h , unh)|.

Notice that the first term on the right-hand side is now τ
ρ ‖unh‖2L and no longer τ

ρ‖u
n−1
h ‖2L owing to

our choice of the test function. We need to bound 2τ |ah(unh − un−1
h , unh)| on the right-hand side,

and to this purpose, we can exploit the nonnegative term ‖unh − un−1
h ‖2L on the left-hand side.

Invoking the estimate |ah(vh, wh)| ≤ ̟βh−1‖vh‖L‖wh‖L for all vh, wh ∈ Vh, we obtain

2τ |ah(unh − un−1
h , unh)| ≤ τ ρβ2

λ0h2 ‖unh − un−1
h ‖2L + λ0̟

2 τ
ρ ‖unh‖2L

≤ ‖unh − un−1
h ‖2L + λ0̟

2 τ
ρ‖unh‖2L.

Putting everything together yields

‖unh‖2L − ‖un−1
h ‖2L ≤ (1 + λ0̟

2)
τ

ρ
‖unh‖2L + ρτ‖αn,1‖2L.

We conclude using the discrete Gronwall lemma from Exercise 68.3 with γ := (1+λ0̟
2) τρ ≤ 1

2 by

assumption and using that 1
1−γ ≤ e2γ .

Exercise 78.4 (First-order viscosity). (i) The explicit scheme only requires solving Hermitian
positive definite linear systems, whereas the implicit Euler scheme involves a non-Hermitian linear
system (think of A being the transport operator β·∇u).
(ii) Let us test the equation with τun−1

h . We obtain

1

2
‖unh‖2L −

1

2
‖un−1

h ‖2L −
1

2
‖unh − un−1

h ‖2L + τ(A(un−1
h ), un−1

h )L + τµ|un−1
h |2V = 0.

Taking the real part and multiplying by 2 gives

‖unh‖2L − ‖un−1
h ‖2L + 2τµ|un−1

h |2V ≤ ‖unh − un−1
h ‖2L.

Moreover, testing the equation with τ(unh − un−1
h ) gives

‖unh − un−1
h ‖2L ≤ τ‖A(un−1

h )‖L‖unh − un−1
h ‖L + τµ|un−1

h |V |unh − un−1
h |V

≤ τβ|un−1
h |V ‖unh − un−1

h ‖L + τµ|un−1
h |V |unh − un−1

h |V
≤ τβ|un−1

h |V ‖unh − un−1
h ‖L + τµcinv(h)|un−1

h |V ‖unh − un−1
h ‖L.
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Hence, we have
‖unh − un−1

h ‖L ≤ τ(β + µcinv(h))|un−1
h |V .

We infer that

‖unh‖2L − ‖un−1
h ‖2L + 2τµ|un−1

h |2V ≤ τ2(β + µcinv(h))
2|un−1

h |2V .

Then, provided τ(β + µcinv(h))
2 ≤ 2µ, we have ‖unh‖L ≤ ‖un−1

h ‖L, which readily implies that
‖unh‖L ≤ ‖u0h‖L for all n ∈ Nτ .
(iii) The stability condition is equivalent to

τ(β2 + 2µβcinv(h) + µ2cinv(h)
2)− 2µ = µ2(cinv(h)

2τ) + 2µ(βcinv(h)τ − 1) + β2τ ≤ 0.

The above quadratic function in µ can take negative values if and only if the discriminant is
nonnegative, which gives βτcinv(h) ≤ 1

2 . Let λ := βτcinv(h) be the CFL number. Thus, the
admissible range for µ is

β

cinv(h)

1− λ−
√
1− 2λ

λ
≤ µ ≤ β

cinv(h)

1− λ+
√
1− 2λ

λ
.

Exercise 78.5 (Explicit Euler, mass lumping). (i) A direct computation shows that for
n ∈ Nτ ,

h(Unj − U
n−1
j ) +

τβ

2
(Un−1

j+1 − U
n−1
j−1 ) = 0,

for all j ∈ {0:I}.
(ii) The above computation gives

Unj = U
n−1
j − βτ

2h
(Un−1

j+1 − U
n−1
j−1 ).

Let us set λ := βτ
2h and square the above equation. This yields

(Unj )
2 = (Un−1

j )2 + λ2(Un−1
j+1 − U

n−1
j−1 )

2 − 2λUn−1
j U

n−1
j+1 + 2λUn−1

j U
n−1
j−1 .

Summing over j and using that
∑
j∈{1: I} U

n−1
j U

n−1
j+1 =

∑
j∈{1: I} λU

n−1
j U

n−1
j−1 owing to the periodic

boundary conditions, we obtain

∑

j∈{1: I}
(Unj )

2 =
∑

j∈{1: I}
(Un−1

j )2 + λ2
∑

j∈{1: I}
(Un−1

j+1 − U
n−1
j−1 )

2.

(iii) Let us prove by induction that Unj = an+1ei
j
I 2kπ for all j ∈ {1:I}. This is true for n = 0. By

definition, we have

Unj = U
n−1
j − λ(Un−1

j+1 − U
n−1
j−1 )

= anei
j
I 2kπ − λan(ei j+1

I 2kπ − ei j−1
I 2kπ)

= anei
j
I 2kπ

(
1− λ(ei kI 2π − e−i

k
I 2kπ)

)

= anei
j
I 2kπ

(
(1− 2iλ sin(kI 2π)

)
= an+1ei

j
I 2kπ .

This proves the assertion. Finally, since |a| =
(
1 + 4λ2(sin(kI 2π))

2
) 1

2 > 1, we conclude that
|Unj | = |a|n+1 → ∞ as n → ∞ for all j ∈ {1:I}. Thus, the explicit Euler scheme with mass
lumping is unstable.
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Exercise 78.6 (Error equation, RK2). (i) Integrating by parts in time, we obtain

1
2τψ

n−1 =

∫

Jn

1
2 (t− tn)2∂tttu(t)dt

= −
∫

Jn

(t− tn)∂ttu(t)dt− 1
2τ

2∂ttu(tn−1)

=

∫

Jn

∂tu(t)dt− τ∂tu(tn−1)− 1
2τ

2∂ttu(tn−1)

= u(tn)− u(tn−1)− τ∂tu(tn−1)− 1
2τ

2∂ttu(tn−1).

This proves the assertion.
(ii) Using the result from Step (i), we obtain

(u(tn)− 1
2 (y(tn−1) + u(tn−1)), wh)L

= 1
2 τ(∂tu(tn−1), wh)L + 1

2τ
2(∂ttu(tn−1), wh)L + 1

2τ(ψ
n−1, wh)L,

for all wh ∈ Vh. Moreover, we have

(∂tu(tn−1), wh)L + (A(u(tn−1)), wh)L = (fn−1, wh)L,

(∂ttu(tn−1), wh)L + (A(∂tu(tn−1)), wh)L = (∂tf
n−1, wh)L.

Hence, we have

(∂tu(tn−1), wh)L + τ(∂ttu(tn−1), wh)L + (A(y(tn−1)), wh)L = (fn−1 + τ∂tf
n−1, wh)L.

Putting everything together yields

(u(tn)− 1
2 (y(tn−1) + u(tn−1)), wh)L + 1

2τ(A(y(tn−1)), wh)L

= 1
2τ(∂tu(tn−1), wh)L + 1

2τ
2(∂ttu(tn−1), wh)L + (A(y(tn−1)), wh)L + 1

2τ(ψ
n−1, wh)L

= 1
2τ(f

n−1 + τ∂tf
n−1, wh)L + 1

2τ(ψ
n−1, wh)L.

This completes the proof of (78.26).

Exercise 78.7 (ERK schemes, p = 3). (i) Let ũhτ be the sequence produced by (78.27) with
αn,3 replaced by α̃n,3 := αn,3 + rn,3h . Eliminating the intermediate stages in (78.27), we obtain

ũnh = (IVh − τAh + 1
2τ

2A2
h − 1

6 τ
3A3

h)(ũ
n−1
h ) + τ

(
G3(tn−1) +

1
3r
n,3
h

)
,

where

G3(tn−1) := fn−1
h + 1

2τ
(
∂tf

n−1
h −Ah(fn−1

h )
)
+ 1

6τ
2
(
∂ttf

n−1
h −Ah(∂tfn−1

h ) +A2
h(f

n−1
h )

)
.

(If rn,3h = 0, ũnh exactly reproduces the third-order Taylor expansion of the solution uh(t) at tn;
see (78.1) and (78.13) with p := 3). Moreover, eliminating the intermediate stages in the ERK
scheme leads to

unh = (IVh − τAh + 1
2τ

2A2
h − 1

6τ
3A3

h)(u
n−1
h ) + τ∆n

3 ,

where

∆n
3 := b1fh(tn,1) + b2fh(tn,2) + b3fh(tn,3)

− τAh
(
(b2a21 + b3a31)fh(tn,1) + b3a32fh(tn,2)

)
+ τ2 1

6A
2
h

(
fh(tn,1)

)
,
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and we used b1 + b2 + b3 = 1, b2a21 + b3a31 + b3a32 = 1
2 , b3a32a21 = 1

6 (see Example 78.11).

An induction argument shows that the sequences uhτ and ũhτ coincide if rn,3h is chosen so that

rn,3h := 3(∆n
3 −G3(tn−1)). This is equivalent to setting rn,3h := 3

(
PVh(rn,31 )− τAh(PVh(rn,32 ))

)
with

rn,31 := b1f(tn,1) + b2f(tn,2) + b3f(tn,3)− fn−1 − 1
2τ∂tf

n−1 − 1
6τ

2∂ttf
n−1,

rn,32 := (b2a21 + b3a31)f(tn,1) + b3a32f(tn,2)− 1
2f

n−1 − 1
6τ∂tf

n−1.

This proves the assertion (i) in Lemma 78.21.
(ii) Let us now prove the assertion (ii). Using that

∑
j∈{1: 3} bjc

q−1
j = 1

q for all q ∈ {1:3}, we infer
that

rn,31 =
∑

j∈{1: 3}
bj
(
f(tn,j)− fn−1 − cjτ∂tfn−1 − 1

2c
2
jτ

2∂ttf
n−1
)

=
∑

j∈{1: 3}

1

2
bj

∫ tn,j

tn−1

(tn,j − t)2∂tttf(t)dt.

Moreover, using that b2a21 + b3a31 + b3a32 = 1
2 , b2a21c1 + b3a31c1 + b3a32c2 = 1

6 , we obtain

rn,32 = (b2a21 + b3a31)

∫ tn,1

tn−1

∂tfdt+ b3a32

∫ tn,2

tn−1

∂tfdt− 1
6τ∂tf

n−1

= (b2a21 + b3a31)

∫ tn,1

tn−1

(tn,1 − t)∂ttfdt+ b3a32

∫ tn,2

tn−1

(tn,2 − t)∂ttfdt.

(Notice that altogether we used all the necessary order conditions from Example 78.11.) Using the
L-stability of PVh , the bound ‖Ah(wh)‖L ≤ c 1ρ‖wh‖H1 for all wh ∈ Vh (recall that ρβ ≤ ℓD by

definition of ρ), and the H1-stability of PVh (recall that the mesh sequence is quasi-uniform and
invoke Proposition 22.21), we infer that

‖rn,3h ‖L ≤ 3‖PVh(rn,31 )‖L + 3τ‖Ah(PVh(rn,32 ))‖L
≤ 3‖rn,31 ‖L + c τρ−1‖rn,32 ‖H1(D;Cm).

We can then conclude from the above identities that rn,3h satisfies (78.28).



Chapter 79

Scalar conservation equations

Exercises

Exercise 79.1 (Kružkov entropy pairs). For all k ∈ R, consider the entropy η(v, k) := |v− k|.
Compute the entropy flux associated with this entropy, q(v), with the normalization q(k) := 0.

Exercise 79.2 (Entropy solution). Consider Burgers’ equation with D := R and u0(x) := 0.
(i) What should be the entropy solution to this problem? (ii) Let H be the Heaviside function.
Let a ∈ R and consider u(x, t) := 2aH(x) − aH(x − at

2 ) − aH(x + at
2 ). Draw the graph of u(·, t)

at some time t > 0. (iii) Show that u is a weak solution for all a ∈ R. (iv) Verify that u is not the
entropy solution. (Hint : consider the entropy η(v) := |v|.)

Exercise 79.3 (Entropy solution). Consider Burgers’ equation withD := R and u0(x) := H(x),
where H is the Heaviside function. (i) Verify that u1(x, t) := H(x− 1

2 t) and u2(x, t) := 0 if x < 0,
u2(x, t) :=

x
t , if 0 < x < t, u2(x, t) := 1 if x > t, are both weak solutions. (ii) Verify that u1 does

not satisfy the entropy inequalities, whereas u2 does.

Exercise 79.4 (Average speed). Let f be a scalar Lipschitz flux. Consider the Riemann
problem ∂tu + ∂xf(u) = 0, with initial data (uL, uR), uL 6= uR. Let λmax(uL, uR) be a maximum
wave speed in this problem. Let s := (f(uL) − f(uR))/(uL − uR) be the average speed. Assume
that the interval [uL, uR] can be divided into finitely many intervals where f has a continuous
and bounded second derivative and f is either strictly convex or strictly concave. Prove that
|λmax(uL, uR)| ≥ |s|.

Exercise 79.5 (Maximum speed). Compute λmax(uL, uR) for the two cases (uL, uR) := (1, 2)
and (uL, uR) := (2, 1) with the following fluxes: (i) f(v) := 1

2v
2; (ii) f(v) := 8(v − 1

2 )
3; (iii)

f(v) := −(v − 1)(2v − 3) if v ≤ 3
2 and f(v) := 1

4 (3 − 2v) if 3
2 ≤ v.

Exercise 79.6 (Strong solutions). The goal is to justify Remark 79.13. (i) Show that if u is a
weak solution and u ∈ C1(D×[0, T ∗)), then u is a strong solution in D×[0, T ∗). (ii) Show that if
u is a strong solution, then u is also a weak solution. (iii) Let u be a strong solution to (79.1) and
let (η, q) an entropy pair with η of class C2. Show that (79.10) holds true.

Exercise 79.7 (Method of characteristics). Let D := R, f := fex, and assume that f is
of class C2 and u0 is of class C1. Recall that there exists T ∗ > 0 and a unique s(x, t) solving
x = f ′(u0(s))t + s for all x and all t ∈ [0, T ∗). (i) Show that u(x, t) := u0(s(x, t)) solves (79.1)
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for all t ∈ [0, T ∗). (ii) Let s0 ∈ R. Show that u(x, t) is constant along the straight segment
{x = f ′(u0(s0))t + s0 | t ∈ [0, T ∗]}. (iii) Show that the solution found in Step (i) is the entropy
solution.

Exercise 79.8 (Shock interacting with an expansion wave). Consider Burgers’ equation
with the initial condition u0(x) := −1 if x ∈ (−1, 0) and u0(x) := 0 otherwise. (i) Derive the
weak entropy solution up to the time t = 2. (ii) After the time t = 2, the shock originating from
x = −1 starts interacting with the expansion wave originating from x = 0, leading to a shock
with a nonlinear trajectory. Derive the weak entropy solution for the times t ≥ 2. (Hint : use the
Rankine–Hugoniot condition.) (iii) Verify that “mass” conservation is satisfied, i.e.,

∫
R
u(x, t) dx =∫

R
u0(x) dx = −1 for all t ≥ 0.

Solution to exercises

Exercise 79.1 (Kružkov entropy pairs). By definition, q(u) =
∫ u
k sign(v − k)f ′(v) dv, where

sign(z) = −1 if z < 0 and sign(z) = 1 if z > 0. If u < k, then q(u) = −
∫ u
k f

′(v) dv =∫ k
u
f ′(v) dv = f(k)−f(u) = sign(u− k)(f(u)−f(k)). We obtain the same result if k < u. Hence,

q(u) = sign(u− k)(f(u)− f(k)).

Exercise 79.2 (Entropy solution). Recall that Burgers’ flux is f(v) = 1
2v

2 and Burgers’
equation is ∂tv +

1
2∂xv

2 = 0.
(i) u(x, t) = 0 is clearly a weak solution to this problem. It also trivially satisfies all the entropy
inequalities. Hence, it is the entropy solution.
(ii) Here is the graph of u(·, t) at some t > 0 with a > 0:

−a

u(x, t)

x

at
2

−at
2

a

(iii) One possibility is to verify that ∂tu + ∂x(
1
2u

2) = 0 is satisfied in the sense of distributions.
Let us consider u(x, t) = 2aH(x)− aH(x− at

2 )− aH(x+ at
2 ). For all α ∈ R, let Σ(α) := {(x, t) ∈

R×R+ | x = αt}, and let δΣ(α) be the line Dirac measure defined s.t. 〈δΣ(α), φ〉 :=
∫
R+
φ(αs, s) ds

for all φ ∈ C∞
0 (R×R+). We have ∂tH(x− αt) = −αδΣ(α), so that

∂tu = ∂t

(
2aH(x)− aH(x− at

2
)− aH(x+

at

2
)
)

=
1

2
a2δΣ( a2 )

− 1

2
a2δΣ(− a

2 )
.
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Moreover, we have

u2(x, t) = 4a2H(x) + a2H(x− at

2
) + a2H(x+

at

2
)

− 4a2H(x− at

2
)− 4a2H(x) + 2a2H(x− at

2
)

= − a2H(x− at

2
) + a2H(x+

at

2
),

where we used that H(y1)H(y2) = H(max(y1, y2)). We infer that ∂x(
1
2u

2) = − 1
2a

2δΣ( a2 )
+

1
2a

2δΣ(− a
2 )
. Hence, ∂tu+ ∂x(

1
2u

2) = 0, thereby proving that u is a weak solution.

Another possibility is to verify that (79.7) holds true for all φ ∈ C1
0 (R× R+). We have

∫ ∞

0

∫

R

u∂tφdxdt =

∫

R

∫ ∞

0

u∂tφdt dx

= −a
∫

R−

∫ ∞

− 2x
a

∂tφdt dx+ a

∫

R+

∫ ∞

2x
a

∂tφdt dx

= a

∫

R−

φ(x,− 2x
a ) dx− a

∫

R+

φ(x, 2xa ) dx

=
1

2
a2
∫

R+

φ(−as2 , s) ds−
1

2
a2
∫

R+

φ(as2 , s) ds.

Similarly, we have

∫ ∞

0

∫

R

u2∂xφdxdt = a2
∫

R+

∫ at
2

− at
2

∂xφdxdt

= a2
∫

R+

(
φ(at2 , t)− φ(−at2 , t)

)
dt,

which shows that
∫∞
0

∫
R

(
u∂tφ+ 1

2u
2∂xφ

)
dxdt = 0.

(iv) One way to answer this question is to invoke Theorem 79.10. Since u(x, t) = 0 is an entropy
solution and the entropy solution is unique, u(x, t) = 2aH(x)− aH(x− at

2 )− aH(x+ at
2 ) cannot

be an entropy solution. Another way to answer the question is to exhibit one entropy such that
the corresponding entropy inequality is violated. Let us take η(v) := |v|. Then, the corresponding
entropy flux is q(v) =

∫ v
0
sgn(ξ)ξ dξ = 1

2 |v|v. We have |u(x, t)| = −aH(x− at
2 )+aH(x+ at

2 ). Since
H(y)H(z) = H(z) for y ≤ z, we obtain

|u(x, t)|u(x, t) = 2a2H(x) − a2H(x− at
2 )− a2H(x+ at

2 ) = au(x, t).

We infer that

∂tη(u) + ∂xq(u) =
1

2
a2δ a

2
+

1

2
a2δ− a

2
+ a2δ0 −

1

2
a2δ a

2
− 1

2
a2δ− a

2
= a2δ0.

But ∂tη(u) + ∂xq(u) = a2δ0 is a positive distribution. Hence, the entropy inequality is violated.
(Notice that

∫∞
0

∫
R
(−η(u)∂tφ(x, t) − q(u)∂xφ(x, t)) dxdt = a2

∫∞
0
φ(0, t)dt for every smooth func-

tion compactly supported in R×R+.)

Exercise 79.3 (Entropy solution). (i) Let us look at u1 first. In the distribution sense, we
have ∂tu1 = − 1

2δ(x− 1
2 t), where δ is the Dirac measure, and upon observing that u21 = u1, we also
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have ∂x(
1
2u

2
1) = − 1

2δ(x− 1
2 t). Hence, ∂tu1 + ∂x(

1
2u

2
1) = 0. Let us now look at u2. Upon observing

that u2 is a continuous function in R×R+, we have ∂tu2(x, t) = 0 if x < 0, ∂tu2(x, t) = − x
t2 , if

0 < x < t, ∂tu2(x, 0) = 0 if x > t, and ∂x(
1
2u

2
2(x, t)) = 0 if x < 0, ∂x(

1
2u

2
2(x, t)) =

x
t2 , if 0 < x < t,

∂t(
1
2u

2
2(x, 0)) = 0 if x > t. This proves that ∂tu2 + ∂x(

1
2u

2
2) = 0.

(ii) Let k ∈ (0, 1). Let us consider the Kružkov entropy pair η(u) = |u − k| and q(u) = sign(u −
k)(f(u) − f(k)) = sign(u − k)12 (u

2 − k2) (i.e., q(u) = q(u)ex). Then, for u1, we have η(u) =
|H(x − 1

2 t) − k| = k if x < 1
2 t and η(u1) = |H(x − 1

2 t) − k| = 1 − k if x > 1
2 t. This means that

η(u1) = H(x− 1
2 t)− (2H(x− 1

2 t)− 1)k. This shows that ∂tη(u1) = (− 1
2 + k)δ(x− 1

2 t). Similarly,
we have

q(u1) = sign(u1 − k)
1

2
(u21 − k2) = 1

2 sign(H(x− 1
2 t)− k)(H2(x − 1

2 t)− k2)

=

{
1
2k

2 if x < 1
2 t,

1
2 (1 − k2) if x > 1

2 t.

This means that ∂xq(u1) = (12 − k2)δ(x− 1
2 t)ex. Hence, we have

∂tη(u1) + ∂xq(u1) =
(
− 1

2 + k + 1
2 − k2

)
δ(x− 1

2 t) = k(1− k)δ(x− 1
2 t),

which proves that u1 is not the entropy solution since k(1 − k)δ(x − 1
2 t) is a positive measure for

all k ∈ (0, 1).
We now do the computation for u2. Clearly, ∂tη(u2) + ∂xq(u2) = 0 if x < 0 or t < x. Let us

now assume that 0 < x < t. Then η(u2) = |xt − k| = k − x
t if x < kt and η(u2) = |xt − k| = x

t − k
if x > kt, meaning that ∂tη(u2) = + x

t2 if x < kt and η(u2) = − x
t2 if x > kt. Similarly, q(u2) =

sign(u2 − k)12 (u22 − k2) = − 1
2 (
x2

t2 − k2) if x < kt, and q(u2) =
1
2 (
x2

t2 − k2) if x > kt, meaning that
∂xq(u2) = − x

t2 if x < kt, and q(u2) =
x
t2 if x > kt. Hence, ∂tη(u2) + ∂xq(u2) = 0 a.e. in x and t.

In conclusion, u2 is the entropy solution.

Exercise 79.4 (Average speed). From Theorem 79.15, we know that

λmax(uL, uR) ≥ max(|f
⌣

′(uL)|, |f⌣ ′(uR)|), if uL < uR,

λmax(uL, uR) ≥ max(|f⌢′
(uL)|, |f⌢′

(uR)|), if uL < uR.

Assume that uL < uR. Recall that f⌣(uL) = f(uL) and f⌣(uR) = f(uR). Hence, we have

∫ uR

uL

f
⌣

′(v) dv = f(uR)− f(uL).

Since f
⌣

is convex, f
⌣

′ is an increasing function, and we infer that

f
⌣

′(uR)(uR − uL) ≥
∫ uR

uL

f
⌣

′(v) dv = f(uR)− f(uL) ≥ f⌣ ′(uL)(uR − uL).

This proves that |s| ≤ |λmax(uL, uR)|. Notice in passing that f
⌣

′ is continuous in the neighborhood
of uL and uR since, by assumption, either f

⌣
is locally affine or f

⌣
is locally equal to f and f is of

class C2 in the neighborhood of uL and uR. This argument shows that the quantities f
⌣

′(uR) and
f
⌣

′(uL) are well defined and are bounded. Similarly, if uL > uR, we have

f
⌢′
(uR)(uR − uL) ≤

∫ uR

uL

f
⌢′
(v) dv = f(uR)− f(uL) ≥ f⌢′

(uL)(uR − uL),
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and again |s| ≤ |λmax(uL, uR)|.
Exercise 79.5 (Maximum speed). (i) For f(v) = 1

2v
2 we have: (a) uL < uR and f

⌣
= f , so

that λmax(1, 2) = max(|f ′(1)|, |f ′(2)|) = 2; (b) in this case, the graph of f
⌢

is the line connecting
(2, f(2)) to (1, f(1)), so that λmax(2, 1) =

1
2
4−1
2−1 = 3

2 .

(ii) Assume now that f(v) = 8(v − 1
2 )

3 = (2v − 1)3. For case (a), we have uL < uR and f
is convex on the interval [1, 2], so that we have f

⌣
= f|[1,2]. This implies that λmax(1, 2) =

max(|f ′(uL)|, |f ′(uR)|) = f ′(uR) = 6; (b) uL > uR but f
⌢ 6= f . Over the interval [1, 2], the

graph of f
⌢

is a straight line, so that λmax(1, 2) = |(f(uL)− f(uR))/(uL − uR)| = 26.
(iii) For case (a), we have uL < uR but f

⌣
6= f . In this case , the graph of f

⌣
is the line connecting

(1, f(1)) to (2, f(2)), so that λmax(1, 2) = |(f(uL)− f(uR))/(uL−uR)| = |(0− (− 1
4 ))/(1− 2)| = 1

4 .

In case (b), f
⌢ 6= f . Notice though that f ′(32

−
) = −4 3

2 + 5 = −1 < f
⌢′
(uL) < − 1

2 = f ′(2), that is,
|f⌢′

(uL)| < 1. Moreover, f
⌢′
(uR) = f ′(uR) = 1. Hence, λmax(1, 2) = 1 is a legitimate choice since

1 ≥ max(|f⌢′
(uL)|, |f⌢′

(uR)|).
Exercise 79.6 (Strong solutions). (i) Let u be a weak solution to (79.1) and assume that u ∈
C1(D×[0, T ∗)). Let us first consider φ ∈ C1

0 (D×(0, T ∗)). Integrating (79.7) by parts and applying
the vanishing integral theorem in D×(0, T ∗) (see Theorem 1.32), we infer that u solves (79.1). Let
us now consider φ ∈ C1

0 (D×[0, T ∗)). We infer that
∫
D
φ(x, 0)(u(x, 0)−u0(x)) dx = 0. This implies

that
∫
D ψ(x)(u(x, 0)−u0(x)) dx = 0 for all ψ ∈ C1

0 (D) since one can always find φ ∈ C1
0 (D×[0, T ∗))

such that φ(x, 0) = ψ(x) for all x ∈ D. We conclude that u(x, 0)−u0(x) for all x ∈ D by invoking
again the vanishing integral theorem, but this time in D. Hence, u solves (79.1). All the above
operations are legitimate owing to the assumed smoothness of u.
(ii) Let u ∈ C1(D×[0, T ∗)) be a strong solution to (79.1). Then (79.7) follows by multiplying
(79.1) with φ and integrating by parts. All these operations are legitimate owing to the assumed
smoothness of u.
(iii) Let u ∈ C1(D×[0, T ∗)) be a strong solution to (79.1). Let ψ ∈ C1

0 (D×[0, T ∗);R+) and let
(η, q) be an entropy pair. Assume that η is of class C2. Let φ(x, t) = ψ(x, t)η′(u(x, t)). Notice
that φ ∈ C1

0 (D×[0, T ∗)) because η is of class C2. Multiplying (79.1) by φ and integrating by parts
gives (79.10).

Exercise 79.7 (Method of characteristics). (i) Let us show that u(x, t) = u0(s(x, t)) solves
(79.1) for all t ∈ [0, T ∗). First ∂tu(x, t) = u′0(s(x, t))∂ts(x, t) and ∂xf(u(x, t)) = f ′(u(x, t))∂xu(x, t) =
f ′(u0(s(x, t)))u′0(s(x, t))∂xs(x, t). But the identity x = f ′(u0(s))t+ s implies that

0 = tf ′′(u0(s))u
′
0(s)∂ts+ f ′(u0(s)) + ∂ts,

1 = tf ′′(u0(s))u
′
0(s)∂xs+ ∂xs.

Hence, we have

∂ts =
−f ′(u0(s))

1 + f ′′(u0(s))u′0(s)t
,

∂xs =
1

1 + f ′′(u0(s))u′0(s)t
.

In conclusion, we obtain

∂tu(x, t) + ∂x(f(u(x, t))) = u′0(s(x, t))
−f ′(u0(s))

1 + f ′′(u0(s))u′0(s)t

+ f ′(u0(s(x, t)))u
′
0(s(x, t))

1

1 + f ′′(u0(s))u′0(s)t

= 0.
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(ii) Along the segment {x = f ′(u0(s0))t+ s0 | t ∈ [0, T ∗]}, the function s(x, t) solves

f ′(u0(s0))t+ s0 − f ′(u0(s))t+ s = 0.

But the unique solution to this equation is s(x, t) = s0. Hence, u(x, t) = u0(s(x, t)) = u0(s0), so
that u(x, t) is constant along the straight segment in question.
(iii) Let us show that the solution found in Step (ii) is the entropy solution. Clearly s ∈
C1(D×[0, T ∗)). Hence, u(x, t) = u0(s(x, t)) is also in C1(D×[0, T ∗)). This means that u is a
strong solution to (79.1). We conclude by invoking Remark 79.13.

Exercise 79.8 (Shock interacting with an expansion wave). (i) The Riemann problem
centered at x = −1 leads to a shock moving with speed s = − 1

2 . The Riemann problem centered
at x = 0 leads to an expansion wave, and we have u(x, t) = x

t in the sector {−1 ≤ x
t ≤ 0}. This

construction is valid until the left boundary of this sector catches up with the shock. This happens
at the time t = 2 at the position x = −2.
(ii) For all t ≥ 2, let us describe the trajectory of the shock with the function t 7→ χ(t), where
χ(2) = −2. Let us set

uL(t) := lim
x↑χ(t)

u(x, t) = 0, uR(t) := lim
x↓χ(t)

u(x, t) =
χ(t)

t
.

Since the shock moves at the speed χ′(t), the Rankine–Hugoniot condition leads to

χ′(t) =
f(uR(t)) − f(uL(t))

uR(t)− uL(t)
=
χ(t)

2t
, ∀t ≥ 2.

We infer that χ(t) = −(2t) 1
2 for all t ≥ 2, and the weak entropy solution is such that

u(x, t) =





0 if x ≤ χ(t),
x
t if χ(t) < x ≤ 0,

0 if 0 ≤ x.

(iii) For all t ∈ (0, 2], we have

∫

R

u(x, t) dx =

∫ −t

−1− t
2

−1 dx+
∫ 0

−t

x

t
dx = −1 + t

2
− 1

2

t2

t
= −1,

and for all t ≥ 2 we have

∫

R

u(x, t) dx =

∫ 0

χ(t)

x

t
dx =

1

2

χ(t)2

t
= −1.

We have proved that
∫
R
u(x, t) dx =

∫
R
u0(x) dx for all t ≥ 0.



Chapter 80

Hyperbolic systems

Exercises

Exercise 80.1 (1D linear system). (i) Let u0 ∈ L∞
loc(R). Show that u(x, t) := u0(x − λt) is a

weak solution to the problem ∂tu + λ∂xu = 0, u(x, 0) = u0(x), i.e.,
∫∞
0

∫
R
u(∂tφ + λ∂xφ) dxdt +∫

R
u0(x)φ(x, 0) dx = 0 for all φ ∈ C1

0 (R×R+). (ii) Let u0 ∈ L∞
loc(R;R

m). Consider the one-
dimensional linear system ∂tu + A∂xu = 0, u(x, 0) = u0(x), (x, t) ∈ R×R+, where A ∈ Rm×m is
diagonalizable in R. Give a weak solution to this problem. (iii) Solve the 1D linear wave equation,
i.e., consider A :=

(
0 1
c2 0

)
.

Exercise 80.2 (Linear wave equation). Consider the matrix A(n) :=
(

0 nT

c2n 0

)
, where n is a

unit (column) vector in Rd. Let {v1, . . . ,vd−1} be such that {n,v1, . . . ,vd−1} is an orthonormal
basis of Rd. Show that (c, (1, cn)T), (−c, (1,−cn)T), (0, (0,v1)),. . . , (0, (0,vd−1)) are eigenpairs of
A(n).

Exercise 80.3 (Entropy inequality). Let uǫ be the smooth function satisfying ∂tuǫ+∇·f(uǫ)−
ǫ∆uǫ = 0 in D×R+, uǫ(·, 0) = u0 in D, with ǫ > 0. Let (η, q) be an entropy pair with η ∈
C2(Rm;R). Prove that ∂tη(uǫ) +∇·q(uǫ)− ǫ∆η(uǫ) ≤ 0.

Exercise 80.4 (Convexity). Let σ : T ×E ⊂ R2 → S ⊂ R be a function of class C2 such that
∂eσ(τ, e) > 0 for all (τ, e) ∈ T ×E . (i) Show that there exists a function ǫ : T ×S → E such
that σ(τ, ǫ(τ, s)) = s for all (τ, s) ∈ T ×S and ǫ is of class C2. (ii) Show that ǫ(τ, σ(τ, e)) = e
for all (τ, e) ∈ T ×E . (iii) Show that the following statements are equivalent: (a) The function
ǫ : T ×S → E is strictly convex; (b) The function −σ : T ×E → S is strictly convex. (Hint : recall
that a function φ : X ⊂ Rm → R of class C2 is convex in the open set X iff D2φ(x)(h, h) > 0 for
all h ∈ Rm\{0} and all x ∈ X.)
Exercise 80.5 (Euler). Recall from Example 80.10 the conserved variable u := (ρ,mT, E)T, the
specific internal energy e(u) := E/ρ − 1

2m
2/ρ2, and the function Φ(u) := s(ρ, e(u)), where s is

the specific entropy. (i) Is the function u 7→ e(u) convex? (ii) Set Ψ(u) := −ρΦ(u). It is shown in
Harten et al. [26, §3] that ρ−1K(D2Ψ)KT = −C, where D2Ψ is the Hessian matrix of Ψ and

K :=



1 vT 1

2v
2 + e

0 ρId m

0 0T ρ


 , C :=



∂ρρs+

2
ρ∂ρs 0T ∂ρes

0 −∂esId 0
∂ρes 0T ∂ees


 .
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Verify that K is invertible and C is negative definite. Show that the function u 7→ Ψ(u) is
strictly convex. (iii) Show that the set B := {u | ρ > 0, e(u) ≥ 0} is convex and that the set
Br = {u | ρ > 0, e(u) ≥ 0, Φ(u) ≥ r} is convex for all r ∈ R. (See also Exercise 83.3.) (iv) Let p
be the pressure. Show that ∂ρp(ρ, s) > 0. (Hint : see Exercise 80.4 and recall that dǫ = T ds−p dτ .)
Exercise 80.6 (Wave equation blowup). Consider the linear wave equation in dimension
three, ∂tu + ∇·v = 0, ∂tv + ∇u = 0, with u(x, 0) = u0(‖x‖ℓ2), v(x, 0) = 0. Assume that
u0 ∈ C2(R+;R). (i) Show that u must solve ∂ttu − ∇·∇u = 0. (ii) Let f : R → R be such
that f(s) := s

2u0(s) if s ≥ 0 and f(s) := −f(−s) if s ≤ 0. Let us write r := ‖x‖ℓ2 and

er := x
‖x‖ℓ2

if x 6= 0. Show that u(x, t) = f(r+t)
r + f(r−t)

r and v(x, t) = v(r, t)er , where the

function v(r, t) := − 1
r2

∫ t
0

(
rf ′(r + τ)− f(r + τ) + rf ′(r − τ)− f(r − τ)

)
dτ solves the linear wave

equation. (Hint : use spherical coordinates.) (iii) Compute u(0, t) for t > 0. (iv) Let α ∈ (12 , 1).
Let u0(r) := 0 if 0 ≤ r ≤ 1, u0(r) := (r − 1)α(2 − r)2 if r ∈ [1, 2], and u0(r) := 0 if 2 ≤ r. Show
that u(·, 1) is unbounded but u(·, 1) ∈ H1(R3).

Exercise 80.7 (1D linear wave equation). Consider the 1D linear wave equation ∂tu +

∂xf(u) = 0, where u := (ρ, v)T, f(u) := (ρ0v, p(ρ))
T, p(ρ) := a2

ρ0
ρ, with the constants ρ0 > 0

and a > 0. The purpose of the exercise is to show that the maximum principle does not hold
true on ρ for the linear wave equation. (i) Show that the system is strictly hyperbolic. (ii) Are
the characteristic families genuinely nonlinear or linearly degenerate? (iii) Consider the Riemann
problem with uL := (ρL, vL)

T and uR := (ρR, vR)
T. Express the two eigenvectors in terms of uL

and uR. (iv) Solve the Riemann problem. (Hint : the solution is composed of three constant states
separated by two contact discontinuities; apply the Rankine–Hugoniot condition two times.) (v)
Give a condition on vL − vR and ρL − ρR so that minx∈R ρ(x, t) < min(ρL, ρR). Give a condition
on vL − vR and ρL − ρR so that minx∈R ρ(x, t) > max(ρL, ρR). Note: this exercise shows that in
general the maximum principle does not hold true on ρ for the linear wave equation.

Solution to exercises

Exercise 80.1 (1D linear system). (i) Let φ ∈ C1
0 (R×R+). Using the change of variable

x′ = x− λt, we infer that
∫ ∞

0

∫

R

u(∂tφ+ λ∂xφ) dxdt =

∫ ∞

0

∫

R

u0(x− λt)(∂tφ+ λ∂xφ) dxdt

=

∫ ∞

0

∫

R

u0(x
′)(∂tφ(x

′ + λt, t) + λ∂xφ(x
′ + λt, t)) dx′dt.

Let ψ(x′, t) := φ(x′ +λt, t). We have ∂tψ(x
′, t) := λ∂xφ(x

′ +λt, t) + ∂tφ(x
′ +λt, t). Using Fubini’s

theorem, we obtain
∫ ∞

0

∫

R

u(∂tφ+ λ∂xφ) dxdt =

∫

R

∫ ∞

0

u0(x
′)∂tψ(x

′, t) dx′dt

=

∫

R

u0(x
′)
∫ ∞

0

∂tψ(x
′, t) dx′dt

= −
∫

R

u0(x
′)ψ(x′, 0) dx′

= −
∫

R

u0(x)φ(x, 0) dx.
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(ii) Let A = PDP−1 be the spectral decomposition of A. We have

(∂tu+ PDP−1∂xu = 0)⇐⇒ (∂tP
−1u+ D∂x(P

−1u) = 0).

Setting w := P−1u, the above problem is thus equivalent to solving

∂tw + D∂xw = 0, w(x, 0) = w0(x) := P
−1u0(x).

Let (λ1, . . . , λm) be the eigenvalues of A and (v1, . . . ,vm) be the associated eigenvectors, i.e.,
P = [v1 . . .vm]. Let (w1(x, t), . . . , wm(x, t))T = w(x, t) and (w01(x), . . . , w0m(x))T = w0(x). We
obtain ∂twl + λl∂xwl = 0, wl(x, 0) = w0l(x) for all l ∈ {1:m}. Using Step (i), we infer that
wl(x, t) = w0l(x− λlt) is a weak solution to this problem. We conclude that

u(x, t) =
∑

l′,l′′∈{1:m}
Pll′(P

−1)l′l′′u0l′′(x− λl′ t).

(iii) The eigenpairs of A are (c, (1, c)T) and (−c, (1− c)T), i.e.,

P =

(
1 1
c −c

)
, P−1 =

1

2c

(
c 1
c −1

)
.

Upon defining u0(x) = (u01(x), u02(x))
T, we have

w0(x) = P
−1u0(x) =

1

2c

(
cu01 + u02
cu01 − u02

)
.

Hence, we have

w(x, t) =
1

2c

(
cu01(x − ct) + u02(x− ct)
cu01(x + ct)− u02(x+ ct)

)
,

and since u(x, t) = Pw(x, t), we conclude that

u(x, t) =
1

2c

(
cu01(x − ct) + u02(x− ct) + cu01(x+ ct)− u02(x + ct)

c2u01(x − ct) + cu02(x− ct)− c2u01(x+ ct) + cu02(x+ ct)

)
.

Exercise 80.2 (Linear wave equation). We just verify the statement by doing the computation
for each pair:

A(n)

(
1
cn

)
=

(
c
c2n

)
= c

(
1
cn

)
,

A(n)

(
1
−cn

)
=

(
−c
c2n

)
= −c

(
1
−cn

)
.

Now, let v1, . . . ,vd−1 be such that (n,v1, . . . ,vd−1) is an orthonormal basis of Rd. We have

A(n)

(
0
vl

)
=

(
vl·n
0

)
= 0

(
0
vl

)
, ∀l ∈ {1:d−1}.

Exercise 80.3 (Entropy inequality). Let (uiǫ)i∈{1:m} be the components of uǫ. Let us multiply
the equation ∂tuǫ + ∇·f(uǫ) − ǫ∆uǫ = 0 by the column vector ∇η(uǫ) whose components are
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∂viη(uǫ) for all i ∈ {1:m}. Using that ∂vjqk(v) =
∑

i∈{1:m} ∂viη(v)∂vj (fik(v)), we infer that

0 =
∑

i∈{1:m}
∂viη(uǫ)∂tuiǫ +

∑

i∈{1:m}
∂viη(uǫ)

∑

k∈{1:d}
j∈{1:m}

∂vj (fik(uǫ))∂xkujǫ

− ǫ
∑

i∈{1:m}
∂viη(uǫ)∆uiǫ

= ∂t(η(uǫ)) +
∑

k∈{1:d}

∑

j∈{1:m}
∂vj (qk(uǫ))∂xkujǫ

− ǫ
∑

i∈{1:m}
∇·(∂vi(η(uǫ))∇(uiǫ)) + ǫ

∑

i∈{1:m}
∇(∂vi (η(uǫ))·∇uiǫ

= ∂t(η(uǫ)) +∇·(q(uǫ)) − ǫ∆(η(uǫ)) + ǫ
∑

k∈{1:d}

∑

i,j∈{1:m}
∂vivj (η(uǫ))(∂xkujǫ)(∂xkuiǫ).

For every k ∈ {1:d}, the quantity
∑
i,j∈{1:m} ∂vivj (η(uǫ))(∂xkujǫ)(∂xkuiǫ) is nonnegative since η

is convex, i.e., the matrix ∂vivj (η(uǫ)) is symmetric positive semidefinite. We have thus proved
that

∂t(η(uǫ)) +∇·(q(uǫ))− ǫ∆(η(uǫ)) ≤ 0.

Exercise 80.4 (Convexity). (i) Apply the implicit function theorem.
(ii) The definition of ǫ(τ, s) implies that

σ(τ, ǫ(τ, σ(τ, e))) = σ(τ, e), ∀(τ, e) ∈ T ×E .

But σ being strictly monotone increasing with respect to the second variable, the above identity
implies that ǫ(τ, σ(τ, e)) = e for all (τ, e) ∈ T ×E .
(iii) Let us first prove that (b) implies (a), i.e., we want to prove that the function ǫ is strictly
convex if the function −σ is strictly convex. Let (τ, s) ∈ T ×S. Using the hint, we need to prove
that D2ǫ(τ, s)

(
(τ ′, s′), (τ ′, s′)

)
> 0 for all (τ ′, s′) ∈ R2\{(0, 0)}. Using the Fréchet differential

notation (see Appendix B) and applying the chain rule to the identity σ(τ, ǫ(τ, s)) = s, we obtain

Dσ(τ, ǫ(τ, s))
(
τ ′, Dǫ(τ, s)(τ ′, s′)

)
= s′.

Applying the chain rule again, we obtain

D2σ(τ, ǫ(τ, s))
(
(τ ′, Dǫ(τ, s)(τ ′, s′)), (τ ′, Dǫ(τ, s)(τ ′, s′))

)

+Dσ(τ, ǫ(τ, s))
(
0, D2ǫ(τ, s)((τ ′, s′), (τ ′, s′))

)
= 0.

Using that Dσ(τ, e)(0, h) = ∂eσ(τ, e)h and ∂eσ(τ, e) > 0, we infer that

D2ǫ(τ, s)((τ ′, s′), (τ ′, s′)) = −D
2σ(τ, e)

(
(τ ′, e′), (τ ′, e′)

)

∂eσ(τ, e)
,

with e := ǫ(τ, s) and e′ := Dǫ(τ, s)(τ ′, s′). Since −σ is strictly convex by assumption, the above
identity proves that ǫ is strictly convex. Let us now prove the converse statement. Let (τ, e) ∈ T ×E
and let (τ ′, e′) ∈ R2. Let us set s := σ(τ, e) and s′ := Dσ(τ, e)(τ ′, e′). Reasoning as above, we
obtain

D2σ(τ, e)
(
(τ ′, e′), (τ ′, e′)

)
= −∂eσ(τ, e)D2ǫ(τ, s)

(
(τ ′, s′), (τ ′, s′)

)
.
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This shows that if ǫ is strictly convex, −σ is strictly convex.

Exercise 80.5 (Euler). (i) The function e(ρ,m, E) is clearly not convex since ∂mimie(ρ,m, E) =
−1/ρ2 < 0 for all i ∈ {1:d}.
(ii) The matrix K is upper triangular, and its diagonal entries are nonzero since ρ > 0. Hence K
is invertible. The matrix C is negative definite iff the following matrix is negative definite

C′ :=

(
∂ρρs+

2
ρ∂ρs ∂ρes

∂ρes ∂ees

)
.

Setting σ(τ, e) := s(τ−1, e), we obtain

C′ :=

(
τ4∂ττσ −τ2∂τeσ
−τ2∂τeσ ∂eeσ

)
.

We then infer that C′ is negative definite since the function σ(τ, e) is strictly concave. Hence, C
is negative definite. It is now clear that D2Ψ is positive definite, so that the function Ψ is strictly
convex.
(iii) Let θ ∈ [0, 1] and u0 := (ρ0,m

T
0 , E0)

T and u1 := (ρ1,m
T
1 , E1)

T be two members of the set
B := {u | ρ > 0, e(u) ≥ 0}. Let us set uθ := θu0 + (1 − θ)u1 = (ρθ,m

T

θ , Eθ)
T. Clearly, we have

ρθ = θρ0 + (1− θ)ρ1 > 0. Moreover, we have

(θρ0 + (1 − θ)ρ1)(θE0 + (1− θ)E1) = θ2ρ0E0 + θ(1 − θ)(ρ0E1 + ρ1E0) + (1− θ)2ρ1E1

≥ θ2 1
2
m2

0 + θ(1− θ)(ρ0
ρ1

1

2
m2

1 +
ρ1
ρ0

1

2
m2

0) + (1 − θ)2 1
2
m2

1

≥ θ2 1
2
m2

0 + θ(1− θ)m0·m1 + (1 − θ)2 1
2
m2

1

+ θ(1 − θ)
(
ρ0
ρ1

1

2
m2

1 +
ρ1
ρ0

1

2
m2

0 −m0·m1

)
.

Using that m0·m1 ≤ 1
2 (
ρ1
ρ0
m2

0 +
ρ0
ρ1
m2

1), we infer that

(θρ0 + (1− θ)ρ1)(θE0 + (1− θ)E1) ≥
1

2
(θm0 + (1− θ)m1)

2,

which shows that ρθEθ ≥ 1
2m

2
θ. Since ρθ > 0, we conclude that e(uθ) = Eθ/ρθ − 1

2m
2
θ/ρ

2
θ ≥ 0.

We have thus proved that uθ ∈ B.
Another way to prove the above result consists of observing that u 7→ ρe = ρ(E/ρ− 1

2m
2/ρ2)

is a concave function because D2(ρe)(v,v) = − 1
ρ(

m
ρ a − b)2 for all v := (a, bT, c)T ∈ R×Rd×R.

Let θ ∈ [0, 1] and u0 := (ρ0,m
T
0 , E0)

T, u1 := (ρ1,m
T
1 , E1)

T be two members of the set B. We have

(ρe)(θu0 + (1− θ)u1) ≥ θ(ρe)(u0) + (1− θ)(ρe)(u1) ≥ 0,

which proves that e(θu0 + (1− θ)u1) ≥ 0 because ρ(θu0 + (1− θ)u1) > 0.
To establish the convexity of the set Br, we proceed as above. We first observe that the function
u 7→ ρΦ(u) − ρr is concave. Let θ ∈ [0, 1] and u0 = (ρ0,m

T
0 , E0)

T, u1 = (ρ1,m
T
1 , E1)

T be two
members of the set Br. We have

(ρΦ− ρr)(θu0 + (1− θ)u1) ≥ θρΦ(u0) + (1− θ)ρΦ(u1)− (θρ0 + (1− θ)ρ1)r
≥ θρ0r + (1− θ)ρ1r − (θρ0 + (1− θ)ρ1)r
≥ 0,
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where we used that ρΦ(u0) ≥ ρ0r and ρΦ(u1) ≥ ρ1r. This proves that Φ(θu0 + (1 − θ)u1) ≥ r
because ρ(θu0 + (1 − θ)u1) > 0.
(iv) Using the hint, we have p(τ, s) = −∂τ ǫ(τ, s). With an obvious abuse of notation, we obtain
∂ρp(τ(ρ), s) = − 1

ρ2 ∂τp(τ, s) = 1
ρ2 ∂ττ ǫ(τ, s), and we know that ∂ττ ǫ(τ, s) > 0 since ǫ is strictly

convex. Hence, ∂ρp(τ, s) > 0 for all (τ, s) ∈ (0,∞)×R.
Exercise 80.6 (Wave equation blowup). (i) One can eliminate v by taking the time derivative
of the first equation, taking the divergence of the second equation, and taking the difference between
the results. This yields ∂ttu−∇·∇u = 0.
(ii) Let us compute ∂tv = ∂tv er and ∇u = ∂ru er. Using the chain rule, we have

∂tv = − 1

r2
(
rf ′(r + t)− f(r + t) + rf ′(r − t)− f(r − t)

)
,

∂ru =
1

r2
(
rf ′(r + t)− f(r + t) + rf ′(r − t)− f(r − t)

)
.

Hence, ∂tv + ∂ru = 0, i.e., ∂tv +∇u = 0. Let us compute ∂tu and ∇·v = 1
r2 ∂r(r

2v). We obtain

∂tu =
1

r

(
f ′(r + t)− f ′(r − t)),

1

r2
∂r(r

2v) = − 1

r2

∫ t

0

(
rf ′′(r + τ) + rf ′′(r − τ)

)
dτ

= − 1

r2

[
rf ′(r + τ)− rf ′(r − τ)

]τ=t
τ=0

= − 1

r2
(
rf ′(r + t)− rf ′(r − t)

)
.

Hence, ∂tu+ 1
r2 ∂r(r

2v) = 0, so that ∂tu+∇·v = 0.
(iii) Using that f is odd, we have f(r − t) = −f(t− r) and

u(0, t) = lim
r↓0

(f(r + t)

r
+
f(r − t)

r

)
= lim

r↓0
f(t+ r)− f(t− r)

r
= 2f ′(t).

Recalling that f(t) = t
2u0(t) for all t > 0, we obtain u(0, t) = tu′0(t) + u0(t) for all t > 0.

(iv) We obtain for r = ‖x‖ℓ2 ≤ 1,

2u(x, 1) =
(r + 1)u0(r + 1)

r
− (1− r)u0(1− r)

r
= (r + 1)rα−1(1− r)2,

since u0(1 + r) = rα(1 − r)2 and u0(1 − r) = 0. Hence, limr↓0 u(x, 1) = ∞ because α < 1. The
function u(x, 1) is also nonzero for r ∈ [2, 3] where we have 2u(x, 1) = r−1(r − 1)(r − 2)α(3− r)2.
Therefore, we have

∇u(x, 1) = (rα−2 +O(rα−1))er,

for r = ‖x‖ℓ2 ≤ 3 and ∇u(x, 1) = 0 for r ≥ 3. Hence, we obtain

|u|2H1(R3) =

∫ 1

0

r2(α−2)+2 dr +

∫ 1

0

r2(α−1)+2 dr + c.

The quantity |u|2H1(R3) is bounded since α > 1
2 , i.e., 2(α− 2) + 2 > −1.
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Exercise 80.7 (1D linear wave equation). (i) We have d = 1, n = ex, and

A(n) =

(
0 ρ0
a2

ρ0
0

)
.

There are two distinct eigenvalues λ1 = −a, λ2 = a with corresponding eigenvectors r1 = (ρ0,−a)T
and r2 = (ρ0, a)

T. The eigenvalues being distinct, A(n) is diagonalizable. This proves that the
system is strictly hyperbolic.
(ii) The two characteristic families are linearly degenerate since Dλ1(u) = 0 and Dλ2(u) = 0 for
all u ∈ R2.
(iii) Let us express uL and uR in terms of the two eigenvectors. We have uL = α1r1 + α2r2 with

α1 =
aρL − ρ0vL

2aρ0
, α2 =

aρL + ρ0vL
2aρ0

.

Similarly, uR = β1r1 + β2r2 with

β1 =
aρR − ρ0vR

2aρ0
, β2 =

aρR + ρ0vR
2aρ0

.

(iv) Since the two characteristic families are linearly degenerate, the solution to the Riemann
problem is composed of three constant states separated by two contact discontinuities moving at
speed −a and a. Let u∗ be the middle state. The Rankine–Hugoniot condition implies that

f(uL)− f(u∗) = A(n)(uL − u∗) = −a(uL − u∗),

f(u∗)− f(uR) = A(n)(u
∗ − uR) = a(u∗ − uR).

This, in turn, implies that there are µ1, µ2 ∈ R such that uL − u∗ = µ1r1 and u∗ − uR = µ2r2.
Hence, we have

µ1r1 + µ2r2 = uL − uR = α1r1 + α2r2 − β1r1 − β2r2.
Since the two eigenvectors are linearly independent, this implies that

µ1 = α1 − β1, µ2 = α2 − β2.

Thus, we have
u∗ = β1r1 + β2r2 + (α2 − β2)r2 = β1r1 + α2r2.

In conclusion, we have

ρ∗ =
aρR − ρ0vR

2a
+
aρL + ρ0vL

2a
=
a(ρR + ρL) + ρ0(vL − vR)

2a
,

v∗ = −aρR − ρ0vR
2ρ0

+
aρL + ρ0vL

2ρ0
=
a(ρL − ρR) + ρ0(vL + vR)

2ρ0
.

The solution is given by

u(x, t) =





uL if x ≤ −at,
u∗ if −at < x ≤ at,
uR if at < x.

(v) We have ρ∗ < min(ρL, ρR) if

min(ρL, ρR) >
a(ρR + ρL) + ρ0(vL − vR)

2a
=
ρR + ρL

2
+
ρ0(vL − vR)

2a
,
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which can be rewritten as

ρ0(vL − vR)
2a

< min(ρL, ρR)−
ρR + ρL

2
= −1

2
|ρL − ρR|.

Similarly, we have ρ∗ > max(ρL, ρR) if

max(ρL, ρR) >
a(ρR + ρL) + ρ0(vL − vR)

2a
=
ρR + ρL

2
+
ρ0(vL − vR)

2a
,

which can be rewritten as

ρ0(vL − vR)
2a

> max(ρL, ρR)−
ρR + ρL

2
=

1

2
|ρL − ρR|.

In conclusion, we have ρ∗ < min(ρL, ρR) if ρ0(vL − vR) < −a|ρL − ρR| and ρ∗ > max(ρL, ρR) if
ρ0(vL − vR) > a|ρL − ρR|.
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First-order approximation

Exercises

Exercise 81.1 (1D approximation). Consider the one-dimensional problem ∂tu+∇·f(u) = 0
with D := (−1, 1) and f(v) := f(v)ex. Let I ∈ N, I ≥ 3, and consider the mesh Th composed of
the cells [xi, xi+1] for all i ∈ {1:I−1}, such that −1 =: x1 < · · · < xI := 1, with hi := xi+1 − xi.
Let P g

1 (Th) be the finite element space composed of continuous piecewise linear functions on Th.
(i) Compute ci,i−1 and ni,i−1 for all i ∈ {2:I}, ci,i and mi for all i ∈ {2:I−1}, and ci,i+1

and ni,i+1 for all i ∈ {1:I−1}. (ii) Assuming that f is convex, compute λmax(ni,i−1,U
n
i ,U

n
i−1),

λmax(ni−1,i,U
n
i−1,U

n
i ), λmax(ni,i+1,U

n
i ,U

n
i+1), and λmax(ni+1,i,U

n
i+1,U

n
i ). (iii) Compute dni,i−1

and dni,i+1. (iv) Justify (81.11).

Exercise 81.2 (Symmetry). Let i ∈ A◦
h. (i) Show that cij = −cji for all j ∈ I(i). (ii) Show

that λmax(nij ,U
n
i ,U

n
j )‖cij‖ℓ2 = λmax(nji,U

n
j ,U

n
i )‖cji‖ℓ2 .

Exercise 81.3 (Average matrix). Let A ⊂ Rm and f ∈ Lip(A;Rm×d) with components

(fkl)k∈{1:m},l∈{1:d}. Let uL,uR ∈ Rm and consider the matrix Akk′ :=
∫ 1

0 ∂vk′ (f·n)k(uR+ θ(uL−
uR)) dθ. (i) Show that (f(uL)−f(uR))·n = A(uL−uR). (ii) Assume from now on thatm := 1 and
set A := A, i.e., we are working with scalar equations. Compute A if uL 6= uR, limuR→uL A and
limuL→uR A assuming that f is C1. (iii) Under which conditions do we have |A| = λmax(n, uL, uR)
if f is either convex or concave? (Hint : see §79.2.) (iv) Take dnij := |A| in (81.9) with n := nij ,
uL := Uni , and uR := Unj . Prove that Theorem 81.8 still holds true if τ is small enough.

Exercise 81.4 (Entropy glitch). Consider the one-dimensional problem ∂tu +∇·(f(u)ex) = 0
with D := (−1, 1) and data u0(x) := −1 if x ≤ 0 and u0(x) := 1 otherwise. Let I ∈ N\{0}
be an even number, and consider the mesh Th composed of the cells [xi, xi+1], i ∈ {1:I−1},
such that −1 =: x1 < · · · < xI := 1 and x I

2
≤ 0 < x I

2+1. Let hi := xi+1 − xi. Let P g
1 (Th)

be the finite element space composed of continuous piecewise linear functions on Th. (i) Take
dnij := ‖cij‖ℓ2|(f(Uni )− f(Unj ))/(Uni −Unj )| if Uni 6= Unj and dnij := ‖cij‖ℓ2 |f ′(Uni )| otherwise. Prove
that Theorem 81.8 still holds true if τ is small enough. (ii) Consider Burgers’ flux f(u) := 1

2u
2ex.

Take u0h(x) :=
∑

i∈Ah U
0
iϕi(x) with U0

i := −1 if i ≤ 1
2I and U0

i := 1 if i ≥ 1
2I + 1. Using the

above definition of dnij , show that the scheme (81.9) gives unh = u0h for any n ≥ 0. Comment on
this result.
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Solution to exercises

Exercise 81.1 (1D approximation). (i) We have ci,i−1 = − 1
2ex and ni,i−1 = −ex for all

i ∈ {2:I}, ci,i = 0 and mi =
hi−1+hi

2 for all i ∈ {2:I−1}, and ci,i+1 = 1
2ex and ni,i+1 = ex for all

i ∈ {1:I−1}.
(ii) Since the function f = ex·f is convex, we have

λmax(ex, uL, uR) =

{∣∣∣f(uL)−f(uR)
uL−uR

∣∣∣ if uL > uR,

max(|f ′(uL)|, |f ′(uR)|) otherwise.

Since ni−1,i = ex, we obtain

λmax(ni−1,i,U
n
i−1,U

n
i ) =

{∣∣∣ f(U
n
i−1)−f(Uni )
Uni−1−Uni

∣∣∣ if Uni−1 > Uni ,

max(|f ′(Uni−1)|, |f ′(Uni )|) otherwise.

Since ni,i−1 = −ex so that ni,i−1·f = −f is a concave function, we have

λmax(ni,i−1,U
n
i ,U

n
i−1) =

{∣∣∣ f(U
n
i−1)−f(Uni )
Uni−1−Uni

∣∣∣ if Uni−1 > Uni ,

max(|f ′(Uni−1)|, |f ′(Uni )|) otherwise.

We observe that λmax(−ex,Uni−1,U
n
i ) = λmax(ex,U

n
i ,U

n
i−1). Using the above relations with the

index i shifted by 1, we finally infer that

λmax(ni,i+1,U
n
i ,U

n
i+1) =

{∣∣∣ f(U
n
i+1)−f(Uni )
Uni+1−Uni

∣∣∣ if Uni > Uni+1,

max(|f ′(Uni+1)|, |f ′(Uni )|) otherwise,

and

λmax(ni+1,i,U
n
i+1,U

n
i ) =

{∣∣∣ f(U
n
i )−f(Uni+1)

Uni −Uni+1

∣∣∣ if Uni > Uni+1,

max(|f ′(Uni )|, |f ′(Uni+1)|) otherwise.

(iii) The above computations show that

dni,i−1 =
1

2

{∣∣∣ f(U
n
i−1)−f(Uni )
Uni−1−Uni

∣∣∣ if Uni−1 > Uni ,

max(|f ′(Uni−1)|, |f ′(Uni )|) otherwise,

dni,i+1 =
1

2

{∣∣∣f(U
n
i+1)−f(Uni )
Uni+1−Uni

∣∣∣ if Uni > Uni+1,

max(|f ′(Uni+1)|, |f ′(Uni )|) otherwise.

(iv) In the case of the linear transport equation, we have f(u) = βu, so that f ′(u) = β. Hence,
dni,i−1 = dni,i+1 = |β|. Using that

U
n+1
i = U

n
i +

τ

2mi
(f(Uni−1)− f(Uni+1)) +

τ

mi
dni,i−1(U

n
i−1 − U

n
i ) +

τ

mi
dni,i+1(U

n
i+1 − U

n
i ),

we obtain

U
n+1
i = U

n
i +

τ

2mi
β(Uni−1 − U

n
i+1) +

τ

2mi
|β|(Uni−1 − U

n
i ) +

τ

2mi
|β|(Uni+1 − U

n
i )

= Uni +
τ

2mi
(β + |β|)(Uni−1 − Uni ) +

τ

2mi
(|β| − β)(Uni+1 − Uni ).
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This is (81.11).

Exercise 81.2 (Symmetry). (i) Since i ∈ A◦
h, we have ϕi|∂D = 0, so that integrating by parts,

we infer that

cij =

∫

D

ϕi∇ϕj dx = −
∫

D

ϕj∇ϕi dx = −cji.

(ii) The identity cij = −cji implies that nij = −nji. This shows that up to the change of variable
x → −x, the Riemann problem with flux f·nij and data (uL,uR) has the same solution as the
Riemann problem with flux f·nji and data (uR,uL). This implies that the maximum wave speeds
in the two Riemann problems are identical.

Exercise 81.3 (Average matrix). (i) Let us define ψ(θ) := f(uR + θ(uL −uR))·n. Let (f·n)k,
for all k ∈ {1:m}, be the components of f·n and let (uL − uR)k′ , for all k′ ∈ {1:m}, be the
components of uL − uR. Using the chain rule, we have

∂θψk(θ) =
∑

k′∈{1:m}
∂vk′ (f·n)k(uR + θ(uL − uR))(uL − uR)k′ .

This proves that

(f(uL)− f(uR))·n =

∫ 1

0

∂θψk(θ) dθ

=
∑

k′∈{1:m}

(∫ 1

0

∂vk′ (f·n)k(uR + θ(uL − uR)) dθ
)
(uL − uR)k′

= A(uL − uR).

(ii) Let us take m := 1 from now on. Then A := A is a scalar. From Step (i), we infer that A =
(f(uL)−f(uR))·n

uL−uR if uL 6= uR. Moreover, limuL→uR A = (f ·n)′(uR) and limuR→uL A = (f ·n)′(uL).
(iii) Let f

⌣
and f

⌢
be the lower and upper convex envelopes of f ·n over the interval conv(uL, uR),

respectively. Notice first that A = f
⌣

′ if f(v)·n is concave and A = f
⌢′

if f(v)·n is convex. In
conclusion, if f(v)·n is convex, we have |A| = λmax(n, uL, uR) only if uL > uR, and, if f(v)·n is
concave, we have |A| = λmax(n, uL, uR) only if uL < uR. The solution to the Riemann problem is
a shock in both cases.
(iv) Let us set Aij :=

f(Uj)·nij−f(Ui)·nij
Uj−Ui

if Uj 6= Ui and Aij := f ′(Ui)·nij otherwise. Let dnij :=

max(|Aij |‖cij‖ℓ2 , |Aji|‖cji‖ℓ2) in (81.9). We obtain

mi
U
n+1
i − Uni

τ
=
∑

j∈I(i)

(
− f(Unj )·cij + dnijU

n
j

)

=
∑

j∈I(i)\{i}

(
(f(Uni )− f(Unj ))·nij‖cij‖ℓ2 + dnij(U

n
j − Uni )

)

=
∑

j∈I(i)\{i}
(dnij −Aij‖cij‖ℓ2)(Unj − Uni ).

This, in turn, implies that

U
n+1
i =

(
1−

∑

j∈I(i)\{i}

τ

mi
(dnij −Aij‖cij‖ℓ2)

)
U
n
i +

∑

j∈I(i)\{i}

τ

mi
(dnij −Aij‖cij‖ℓ2)Unj .
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Provided τ is small enough so that 1 −∑j∈I(i)\{i}
τ
mi

(dnij − Aij‖cij‖ℓ2) ≥ 0, we have a convex

combination, because dnij − Aij‖cij‖ℓ2 ≥ 0 by definition of dnij . This means that U
n+1
i is in the

convex hull of {Unj }j∈I(i). In conclusion, the local maximum principle holds true.

Exercise 81.4 (Entropy glitch). (i) The statement is proved in the solution of Exercise 81.3.
(ii) Let us consider the approximate initial data u0h :=

∑
i∈Ah U

0
iϕi(x) with U0

i := −1 if i ≤ 1
2I

and U0
i := 1 if i ≥ 1

2I + 1. Let n ≥ 0. The definition for the update U
n+1
i is

U
n+1
i = Uni +

τ

2mi
(f(Uni−1)− f(Uni+1)) +

τ

mi
dnii−1(U

n
i−1 − Uni ) +

τ

mi
dnii+1(U

n
i+1 − Uni ),

for all i ∈ {2:I−1}, whereas Un1 = −1 and UnI = 1. It is clear that U1
i = U0

i for all i ≤ I
2 − 1 and

all I2 + 2 ≤ i. For i = I
2 , we have

U0
I
2−1

= −1, U0
I
2
= −1, U0

I
2+1

= 1,

giving

f(U0
I
2+1

)− f(U0
I
2−1

) =
1

2
(1− 1) = 0,

d0I
2 ,
I
2−1

=
1

2
|f ′(U0

I
2
)| = 1

2
, d0I

2 ,
I
2+1

= 0.

Hence, U1
I
2

= U0
I
2

. Similarly, for i = I
2 + 1, we have

U0
I
2
= −1, U0

I
2+1

= 1, U0
I
2+2

= 1,

giving

f(U0
I
2+2

)− f(U0
I
2
) =

1

2
(1− 1) = 0,

d0I
2+1, I2

= 0, d0I
2+1, I2+2

=
1

2
|f ′(U0

I
2+1

)| = 1

2
.

Hence, U1
I
2+1

= U0
I
2+1

. In conclusion, u1h = u0h, so that unh = u0h, for all n ≥ 0. This shows that

the numerical solution is a stationary discontinuity, whereas it should be an approximation of an
expansion wave. Hence, the method does not converge to the entropy solution.
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Higher-order approximation

Exercises

Exercise 82.1 ((α−β) vs. Butcher representation). (i) Consider the ERK scheme de-
fined by the Butcher tableau (82.11), i.e., the matrix A ∈ Rs×s and the vector b ∈ Rs. Con-

sider the matrix A :=

(
A 0
bT 0

)
of order (s + 1), with 0 := (0, . . . , 0)T ∈ Rs. Set u(i) :=

un + τ
∑

j∈{1: i−1} aijkj for all i ∈ {1:s}, where aij are the entries of the matrix A. Consider

the vectors U := (u(1), . . . , u(s), un+1)T and F(U) := (L(tn + c1τ, u
(1)), . . . , L(tn + csτ, u

(s)), 0)T.
Show that U = unE + τAF(U) with E := (1, . . . , 1)T ∈ Rs+1. (ii) Consider the scheme defined
by the (α-β) representation (82.6) with γk := ck+1 for all k ∈ {0:s−1}. Let a and b be the
(s+ 1)×(s+ 1) strictly lower triangular matrices with entries ai+1,k+1 := αik, bi+1,k+1 := βik for
all 1 ≤ k + 1 ≤ i ≤ s. Show that (I − a)E = E1 with E1 := (1, 0, . . . , 0)T ∈ Rs+1. (iii) Consider
the vectors W := (w(0), . . . , w(s))T, F(W) := (L(tn + c1τ, w

(0)), . . . , L(tn + csτ, w
(s−1)), 0)T. Show

that W = unE + τ(I − a)−1
bF(W). (iv) Compute the matrices a, b, and (I − a)−1

b for the
SSPRK(2,2) scheme. Note: this exercise shows that given the (α-β) representation (82.6), there is
only one associated Butcher tableau. But given a Butcher tableau, there may be more than one
(α-β) representation since the factorization A = (I− a)−1

b may be nonunique.

Exercise 82.2 (Quadratic approximation). (i) Give the expression of the reference shape

functions for the Lagrange element (K̂,P2,1, {σ̂1, σ̂2, σ̂3}) where K̂ := [0, 1], σ̂1(p̂) := p̂(0), σ̂2(p̂) :=

p̂(12 ), σ̂3(p̂) := p̂(1). (ii) Compute the reference mass matrix MK̂ with entries
∫
K̂
θ̂i(x̂)θ̂j(x̂) dx̂.

(iii) Compute the lumped reference mass matrix M K̂ . What should be the sum of the entries of

M K̂? (iv) Let D := (0, 1). Let Ne ≥ 1, I := 2Ne+1, and let 0 =: x1 < . . . < xI := 1. Consider the
mesh Th composed of the cells Km := [x2m−1, x2m+1], ∀m ∈ {1:Ne}. Let hm := x2m+1 − x2m−1.
Let P g

2 (Th) be the H1-conforming space based on Th using quadratic polynomials. Give the
expression of the global shape functions of P g

2 (Th) associated with the Lagrange nodes {xi}i∈Ah
with Ah := {1:I}. (v) Give the coefficients of the consistent mass matrix. (vi) Give the coefficients
of the lumped mass matrix. What should be the sum of the entries ofML? (vii) Is it possible to use
the above Lagrange basis together with the theory described in §81.1.2 to approximate hyperbolic
systems? (viii) Is it possible to apply Corollary 81.9 and Corollary 81.15?

Exercise 82.3 (Quadratic Bernstein approximation). Consider the following reference shape
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functions on K̂ := [0, 1]:

θ̂1(x̂) := (1− x̂)2, θ̂2(x̂) := 2x̂(1− x̂), θ̂3(x̂) := x̂2.

(i) Show that {θ̂1, θ̂2, θ̂3} is a basis of P2,1. Show that these functions satisfy the partition of

unity property and that p̂(x̂) = p̂(0)θ̂1(x̂) + p̂(12 )θ̂2(x̂) + p̂(1)θ̂3(x̂) for all p̂ ∈ P1,1. (ii)-(viii) Redo
Questions (ii)-(viii) of Exercise 82.2 with the above reference shape functions.

Exercise 82.4 (Gap estimates). The objective is to prove Lemma 82.10. (i) Let UL,n+1 be
the update given by (81.9) with the low-order graph viscosity dLij . Consider the auxiliary states

U
n

ij :=
1
2 (U

n
j + Uni )− (f(Unj )− f(Uni ))· cij

2dL,nij
defined in the proof of Theorem 81.8 for all j ∈ I(i),

and set U∗,n
i := 1

γni

∑
j∈I(i)\{i}

2τdL,nij
mi

U
n

ij . Show that

U
n+1
i = (1− γni )Uni + γni U

∗,n
i +

τ

mi

∑

j∈I(i)\{i}
(dnij − dL,nij )(Unj − Uni ).

(ii) Using that U∗,n
ij ≤ U

M,n
i , dnij ≤ dL,nij , and U

M,n
i − U

m,n
i 6= 0, show that

U
n+1
i ≤ U

M,n
i + (Um,n

i − U
M,n
i )

(
(1 − θni )(1 − γni )− θni

τ

mi

∑

j∈I(i−)

(dL,nij − dnij)
)
.

(iii) Using that dnij ≥ dL,nij ψni and ψni ≥ 0, prove the upper bound in (82.23). (iv) Prove the lower
bound in (82.23).

Solution to exercises

Exercise 82.1 ((α−β) vs. Butcher representation). (i) Using the notation from (82.12), we
set

u(1) := un

u(i) := un + τ
∑

j∈{1: i−1}
aijkj , ∀i ∈ {2:s}.

Then we have ki = L(tn + ciτ, u
(i)) for all i ∈ {1:s}. This implies that

u(i) = un +
∑

j∈{1: i−1}
aijL(tn + cjτ, u

(j)), ∀i ∈ {1:s},

un+1 = un +
∑

i∈{1:s}
τbiL(tn + ciτ, u

(i)).

Let us define the vectors

U := (u(1), . . . , u(s), un+1)T,

F(U) := (L(tn + c1τ, u
(1)), . . . , L(tn + csτ, u

(s)), 0)T.
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Setting E := (1, . . . , 1)T ∈ Rs+1, the above identities can be rewritten as

U = unE+ τAF(U).

(ii) The identity (I− a)E = E1 is a consequence of
∑

j∈{1: i−1} αij = 1 for all i ∈ {1:s}.
(iii) LetW := (w(0), . . . , w(s))T, F(W) := (L(tn+c1τ, w

(0)), . . . , L(tn+csτ, w
(s−1)), 0)T. The scheme

(82.6) is equivalent to
W = unE1 + aW + τbF(W).

The identity (I− a)E = E1, in turn, implies that W = unE+ τ(I − a)−1
bF(W).

(iv) For the SSPRK(2,2) method, we have

a =



0 0 0
1 0 0
1
2

1
2 0


 , b =



0 0 0
1 0 0
0 1

2 0


 ,

leading to

(I− a)−1 =



1 0 0
1 1 0
1 1

2 1


 , (I− a)−1

b =



0 0 0
1 0 0
1
2

1
2 0


 .

We recover the leftmost Butcher tableau in (82.13).

Exercise 82.2 (Quadratic approximation). (i) We have

θ̂1(x̂) = (1 − x̂)(1 − 2x̂), θ̂2(x̂) = 4x̂(1− x̂), θ̂3(x̂) = x̂(2x̂− 1).

(ii) We have

MK̂ =
1

15




2 1 − 1
2

1 8 1
− 1

2 1 2


 .

(iii) Recall that the entries of M K̂ are mK̂,iδij , where mK̂,i
:=
∑

j∈N mK̂,ij and N := {1, 2, 3}.
This yields

M K̂ =
1

6



1 0 0
0 4 0
0 0 1


 .

Owing to the partition of unity, we have mK̂,i =
∑
j∈N

∫
K̂
θ̂iθ̂j dx̂ =

∫
K̂
θ̂i dx̂. Hence, the sum of

the entries of M K̂ is
∑
i∈N mK̂,i =

∑
i∈N

∫
K̂
θ̂i dx̂ = |K̂| = 1. This is indeed the result that we

have obtained above.
(iv) Setting x̂ := x−x2m−1

hm
, we have

ϕ2m−1|Km(x) = θ̂1(x̂), ϕ2m|Km(x) = θ̂2(x̂), ϕ2m+1|Km(x) = θ̂3(x̂).

(v) Let mij denote the generic coefficient of the mass matrix. We have

m11 =
2

15
h1, m12 =

1

15
h1, m13 = − 1

30
h1.

For all m ∈ {1:Ne}, we have

m2m,2m−1 =
1

15
hm, m2m,2m =

8

15
hm, m2m,2m+1 =

1

15
hm.
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If Ne ≥ 2, then we have for all m ∈ {2:Ne},

m2m−1,2m−3 = − 1

30
hm−1, m2m−1,2m−2 =

1

15
hm−1,

m2m−1,2m−1 =
2

15
(hm−1 + hm),

m2m−1,2m =
1

15
hm, m2m−1,2m+1 = − 1

30
hm.

Finally, we have

m2Ne+1,2Ne−1 = − 1

30
hNe , m2Ne+1,2Ne =

1

15
hNe , m2Ne+1,2Ne+1 =

2

15
hNe .

(vi) Let mi denote the generic diagonal coefficient of the lumped mass matrix. We have

m1 =
1

6
h1.

For all m ∈ {1:Ne}, we have

m2m =
2

3
hm.

If Ne ≥ 2, then we have for all m ∈ {2:Ne},

m2m−1 =
1

6
(hm−1 + hm).

Finally, we have

m2Ne+1 =
1

6
hNe .

Using the partition of unity, the sum of all the entries of the lumped mass matrix M is equal to∑
i∈Ah

∑
j∈Ah

∫
D ϕiϕj dx =

∑
i∈Ah

∫
D ϕi dx = |D| = 1. This is indeed what we have obtained

since

∑

i∈Ah
mi =

1

6
h1 +

1

6
hNe +

∑

m∈{2:Ne}

1

6
(hm−1 + hm) +

∑

m∈{1:Ne}

2

3
hm

=
(2
3
+

1

3

) ∑

m∈{1:Ne}
hm = |D|.

(vi) It is possible to use the above Lagrange basis together with the theory described in §81.1.2 to
approximate hyperbolic systems because the coefficients of the lumped mass matrix are positive
(see (81.5)). This is the only required condition.
(viii) It is not possible to apply Corollary 81.9 and Corollary 81.15 because the shape functions
can take negative values.

Exercise 82.3 (Quadratic Bernstein approximation). (i) Assume that there are a1, a2, a3
s.t. a1θ̂1(x̂) + a2θ̂2(x̂) + a3θ̂3(x̂) = 0 for all x̂ ∈ K̂. Then

a3x̂
2 − 2a2x̂

2 + a1x̂
2 + 2a2x̂− 2a1x̂+ a1 = 0,

i.e., a3 − 2a2 + a1 = 0, 2a2 − 2a1 = 0, and a1 = 0. This immediately implies that a1 = 0, a2 = 0,
and a3 = 0. Hence, the functions θ̂1, θ̂2, θ̂3 are linearly independent. Finally, we verify that

θ̂1(x̂) + θ̂2(x̂) + θ̂3(x̂) = (x̂+ 1− x̂)2 = 1, ∀x̂ ∈ K̂,
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thereby proving the partition of unity property. Let now p̂ ∈ P2,1. There are a1, a2, a3 s.t.

p̂ = a1θ̂1(x̂)+ a2θ̂2(x̂)+ a3θ̂3(x̂). Then p̂(0) = a1, p̂(
1
2 ) =

1
4a1+

1
2a2+

1
4a3, and p̂(1) = a3. Assume

now that p̂ ∈ P1,1. Then p̂(12 ) = 1
2 (p̂(0) + p̂(1)) = 1

2 (a1 + a3), i.e.,
1
4a1 +

1
2a2 +

1
4a3 = 1

2 (a1 + a3).
This implies that a2 = 1

2 (a1 + a3) = p̂(12 ). Hence, for all p̂ ∈ P1,1, we have

p̂(x̂) = p̂(0)θ̂1(x̂) + p̂(12 )θ̂2(x̂) + p̂(1)θ̂3(x̂).

(ii) We have

MK̂ =
1

5



1 1

2
1
6

1
2

2
3

1
2

1
6

1
2 1


 .

(iii) We have

M K̂ =
1

3



1 0 0
0 1 0
0 0 1


 .

Clearly,
∑

i∈N M K̂,ii = |K̂| = 1 as expected.

(iv) Setting x̂ := x−x2m−1

hm
, we have

ϕ2m−1|Km(x) = θ̂1(x̂), ϕ2m|Km(x) = θ̂2(x̂), ϕ2m+1|Km(x) = θ̂3(x̂).

(v) Let mij denote the generic coefficient of the mass matrix. We have

m11 =
1

5
h1, m12 =

1

10
h1, m13 =

1

30
h1.

For all m ∈ {1:Ne}, we have

m2m,2m−1 =
1

10
hm, m2m,2m =

2

15
hm, m2m,2m+1 =

1

10
hm.

If Ne ≥ 2, then we have for all m ∈ {2:Ne},

m2m−1,2m−3 =
1

30
hm−1, m2m−1,2m−2 =

1

10
hm−1,

m2m−1,2m−1 =
1

5
(hm−1 + hm),

m2m−1,2m =
1

10
hm, m2m−1,2m+1 =

1

30
hm.

Finally, we have

m2Ne+1,2Ne−1 =
1

30
hNe , m2Ne+1,2Ne =

1

10
hNe , m2Ne+1,2Ne+1 =

1

5
hNe .

(vi) Let mi denote the generic diagonal coefficient of the lumped mass matrix. We have

m1 =
1

3
h1.

For all m ∈ {1:Ne}, we have

m2m =
1

3
hm.
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If Ne ≥ 2, then we have for all m ∈ {2:Ne},

m2m−1 =
1

3
(hm−1 + hm).

Finally, we have

m2Ne+1 =
1

3
hNe .

Clearly,
∑

i∈Ah mi = |D| as expected.
(vi) It is possible to use the above basis together with the theory described in §81.1.2 to approximate
hyperbolic systems because the coefficients of the lumped mass matrix are positive; see (81.5). This
is the only required condition.
(viii) It is possible to apply Corollary 81.9 and Corollary 81.15 because the shape functions are
nonnegative.

Exercise 82.4 (Gap estimates). (i) Let us denote by UL,n+1 the update given by (81.9) with
the low-order graph viscosity dLij . Subtracting (81.9) from (82.17), we obtain for all i ∈ Ah,

U
n+1
i = U

L,n+1
i +

τ

mi

∑

j∈I(i)
(dnij − dL,nij )(Unj − Uni ).

Introducing the auxiliary states U
n

ij :=
1
2 (U

n
j +Uni )− (f(Unj )−f(Uni ))· cij

2dL,nij
as defined in the proof

of Theorem 81.8, we have the identity (81.14), i.e.,

U
L,n+1
i = Uni

(
1−

∑

j∈I(i)\{i}

2τdL,nij
mi

)
+

∑

j∈I(i)\{i}

2τdL,nij
mi

U
n

ij .

An important property of the auxiliary states is that U
n

ij ∈ [Um,n
i ,UM,n

i ] (see Lemma 79.18 and

Remark 79.19). Owing to the definition of γni and dL,nii , we have γni :=
∑

j∈I(i)\{i}
2τdL,nij
mi

, so that

U
∗,n
i :=

1

γni

∑

j∈I(i)\{i}

2τdL,nij
mi

U
n

ij

is a convex combination of {Unij}i∈I(i). Hence, U∗,n
i ∈ [Um,n

i ,UM,n
i ]. Thus, we have U

L,n+1
i =

(1− γni )Uni + γni U
∗,n
i , and this, in turn, implies that

U
n+1
i = (1− γni )Uni + γni U

∗,n
i +

τ

mi

∑

j∈I(i)\{i}
(dnij − dL,nij )(Unj − Uni ).

(ii) Using that U∗,n
ij ≤ U

M,n
i , we infer that

U
n+1
i ≤ U

M,n
i + (Uni − U

M,n
i )(1− γni ) +

τ

mi

∑

j∈I(i)\{i}
(dnij − dL,nij )(Unj − U

n
i ).

Then, using that dnij ≤ dL,nij by definition, the above inequality gives

U
n+1
i ≤ U

M,n
i + (Uni − U

M,n
i )(1− γni ) +

τ

mi

∑

j∈I(i−)

(dL,nij − dnij)(Uni − Unj )

≤ U
M,n
i + (Uni − U

M,n
i )(1− γni ) +

τ

mi

∑

j∈I(i−)

(dL,nij − dnij)(Uni − U
m,n
i ).
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Now, using that U
M,n
i − U

m,n
i 6= 0 and that Uni is in the convex hull of UM,n

i and U
m,n
i , we have

Uni = θni U
M,n
i + (1 − θni )Um,n

i , where θni ∈ [0, 1] has been defined in (82.20). Hence, Uni − U
m,n
i =

−θni (Um,n
i − U

M,n
i ) and Uni − U

M,n
i = (1 − θni )(Um,n

i − U
M,n
i ). With these definitions, the above

inequality is rewritten

U
n+1
i ≤ U

M,n
i + (Um,n

i − U
M,n
i )

(
(1 − θni )(1 − γni )− θni

τ

mi

∑

j∈I(i−)

(dL,nij − dnij)
)
.

(iii) Using that dnij ≥ dL,nij ψni and ψni ≥ 0, we infer that −dnij ≤ −dL,nij ψni , which, in turn, implies
the following inequalities:

U
n+1
i ≤ U

M,n
i + (Um,n

i − U
M,n
i )

(
(1− θni )(1− γni )− θni (1− ψni )

τ

mi

∑

j∈I(i−)

dL,nij

)

= U
M,n
i + (Um,n

i − U
M,n
i )

(
(1− θni )(1− γni )− θni (1 − ψni )12γ

−,n
i

)
,

by definition of γ−,ni .
(iv) The other estimate is obtained similarly. More precisely, using that U∗,n

i ≥ U
m,n
i , we infer that

U
n+1
i ≥ U

m,n
i + (UM,n

i − U
m,n
i )(1 − γni ) +

τ

mi

∑

j∈I(i+)

(dnij − dL,nij )(UM,n
i − U

n
i )

≥ U
m,n
i + (UM,n

i − U
m,n
i )

(
θni (1− γni )− (1− ψni )(1 − θni )12γ

+,n
i

)
,

by definition of γ+,ni .
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Chapter 83

Higher-order approximation and
limiting

Exercises

Exercise 83.1 (Dispersion error). Let u(x, t) be a smooth function satisfying ∂tu + β∂xu =
0, x ∈ D := (0, 1), t > 0, where β ∈ R. Let I ∈ N\{0} and consider the uniform mesh Th
composed of the cells [xi, xi+1], ∀i ∈ {1:I−1}, with size h := 1

I−1 = xi+1 − xi. Let P g
1 (Th) be

the finite element space composed of continuous piecewise linear functions on Th and let {ϕi}i∈Ah ,
Ah = {1:I}, be the associated global Lagrange shape functions. (i) Compute the coefficients
of the consistent mass matrix, M, and the coefficients of the lumped mass matrix, M. (ii)
Keep the time continuous and write the Galerkin approximation using the lumped mass matrix
of the Cauchy problem (with the boundary condition equal to the initial condition as above) for
a test function ϕi, ∀i ∈ A◦

h = {2:I−1}. (iii) Let ILh (u) be the Lagrange approximation of u.
Using Taylor expansions, estimate (informally) the leading term in the consistency error RL

i (t) :=
1∫

D
ϕi dx
M∂tu(xi, t) +

∫
D(β∂xILh (u))ϕi dx, ∀i ∈ A◦

h. (iv) Keep the time continuous and write the

Galerkin approximation using the consistent mass matrix of the Cauchy problem for a test function
ϕi, ∀i ∈ A◦

h. (v) Using Taylor expansions, estimate (informally) the leading term in the consistency
error Ri(t) :=

1∫
D
ϕi dx

∫
D

(
∂t(ILh (u)) + β∂x(ILh (u))

)
ϕi dx, ∀i ∈ A◦

h. (Hint : u(xi ± h, t) = u(xi) ±
h∂xu(x, t) +

1
2h

2∂xxu(xi, t)± 1
6h

3∂xxxu(xi, t) +
1
24h

4∂xxxxu(xi, t)± 1
120h

5∂xxxxxu(xi, t) +O(h6).)

Exercise 83.2 (FCT counterexample). Consider 1D Burgers’ equation, f(u) := f(u)ex,
f(u) := 1

2u
2, D := (−1, 1), with initial data u0(x) := −1 if x ≤ 0 and u0(x) := 1 otherwise. Let

I ≥ 3 be an odd number, and consider the (nonuniform) mesh Th composed of the cells [xi, xi+1],
where the nodes xi, ∀i ∈ Ah := {1:I}, are such that −1 =: x1 < · · · < xI := 1 and xI′ ≤ 0 < xI′+1

with I ′ := I+1
2 . Let P g

1 (Th) be the finite element space composed of continuous piecewise linear
functions on Th and let {ϕi}i∈Ah be the associated global Lagrange shape functions. (i) Compute
ci,i−1, ci,i, ci,i+1, and mi for all i ∈ A◦

h := {2:I−1}. (ii) Let u0h :=
∑
i∈Ah U

0
iϕi(x) with U0

i := −1
if i ≤ I ′ and U0

i := 1 if i > I ′. Compute the Galerkin solution at t := τ using the lumped mass

matrix, say uH,1h . (iii) What is the maximum wave speed in the Riemann problem with the data

(−1, 1)? (iv) Compute the low-order solution at t := τ , say uL,1h . (v) Using the notation of the
FCT limiting, compute aij for all i ∈ A◦

h and all j ∈ I(i) := {i − 1, i, i + 1}. (vi) Show that
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ℓij = 1 for all i ∈ A◦
h and all j ∈ I(i). (vii) Does the approximate solution converge to the entropy

solution?

Exercise 83.3 (Quasiconcavity). (i) Let B ⊂ Rm be a convex set. Show that a function
Ψ : B → R is quasiconcave iff for every finite set {Ui}i∈I ⊂ B and all numbers {θi}i∈I ⊂ [0, 1]
with

∑
i∈I θi = 1, one has Ψ(

∑
i∈I θiUi) ≥ mini∈I Ψ(Ui). (ii) Let A ⊂ Rm be a convex set. Let

φ : A → R be a quasiconcave function. Let z ∈ Rm, and let L : A → R be defined by L(u) := z·u
for all u ∈ A. Let φ : A → R be a continuous function. Let B := {u ∈ A | L(u) > 0} and
assume that B 6= ∅. Assume that ψ : B → R defined by ψ(u) := L(u)φ(u) is concave. Prove
that φ|B : B → R is quasiconcave. (A first example for the Euler equations is B := A = {u ∈
Rm | ρ > 0} with L(u) := ρ, φ(u) := e(u) := ρ−1E − 1

2ρ
−2m2, where e(u) is the specific internal

energy. Another example is B := A = {u ∈ Rm | ρ > 0, e(u) > 0}, φ(u) := Φ(u), where Φ(u) is
the specific entropy.)

Exercise 83.4 (Harten’s lemma). (i) Consider the following scheme for scalar conservation
equations Un+1

i = Uni −Cni−1(U
n
i −Uni−1)+D

n
i (U

n
i+1−Uni ) for all i ∈ Z. Assume that 0 ≤ Cni , 0 ≤ Dn

i ,
Cni +D

n
i ≤ 1 for all i ∈ Z. Let |V|TV :=

∑
i∈Z |Vi+1−Vi| be the total variation of V ∈ RZ. Prove that

the above algorithm is total variation diminishing (TVD), i.e., |Un+1|TV ≤ |Un|TV. (ii) Consider
the method described in (81.9)-(81.10) in dimension one. Assume that I(i) = {i− 1, i, i+ 1} and
that the mesh is infinite in both directions. Show that the method can be put into the above form

and satisfies the above assumptions if 4τ supi∈Z
|dnii|
mi
≤ 1. (Hint : see Exercise 79.4.)

Exercise 83.5 (Lax–Wendroff). Let u be a smooth solution to the scalar transport equation
∂tu+ a∂xu = 0 with a ∈ R+. (i) Using finite Taylor expansions, show that u(x, tn+1) = u(x, tn)−
τa∂xu(x, tn) +

a2τ2

2 ∂xxu(x, tn) +O(τ3). (ii) Consider now the time-stepping algorithm consisting

of setting u0 := u0 and for all n ≥ 0, un+1(x) := un(x) − τa∂xun(x) + a2τ2

2 ∂xxu
n(x). What is

the (informal) order of accuracy of this method with respect to τ? (iii) Let Th be a uniform mesh
in D := (0, 1) with grid points xi := (i − 1)h, ∀i ∈ Ah := {1:I}, h := 1

I−1 . Let {ϕi}i∈Ah be
the piecewise linear Lagrange shape functions associated with the grid points {xi}i∈Ah . Let xi
be an interior node, i.e., i ∈ A◦

h := {2:I−1}. Write the equation corresponding to the Galerkin
approximation using the lumped mass matrix of the equation un+1(x) = un(x) − τa∂xun(x) +
a2τ2

2 ∂xxu
n(x) with homogeneous Neumann boundary conditions using the test function ϕi, where

both un+1 and un are approximated in P g
1 (Th) := span{ϕi}i∈Ah . (iv) What is the (informal)

order of accuracy of this method with respect to τ and h? (v) Let uL,n+1
h :=

∑
i∈Ah U

L,n+1
i ϕi be

the first-order approximation of u using (81.9)-(81.10). Show that miU
n+1
i = miU

L,n+1
i + aτ

2 (λ −
1)(Uni+1 − Uni ) +

aτ
2 (λ − 1)(Uni−1 − Uni ), where γ := aτ

h . Note: the scheme is now ready for FCT
limiting. Actually, there exists in the literature a plethora of limiting techniques (like FCT) that,
after applying the limiter, make the scheme TVD in the sense of Exercise 83.4; see Sweby [42].
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Solution to exercises

Exercise 83.1 (Dispersion error). (i) Letmij :=
∫
D
ϕiϕj dx be the coefficients of the consistent

mass matrixM for all i, j ∈ Ah := {1:I}. We have

mij = 0 if |i− j| ≥ 2,

m11 =
1

3
h, m12 =

1

6
h,

mii−1 =
1

6
h, mii =

4

6
h, mii+1 =

1

6
h, ∀i ∈ A◦

h = {2:I−1},

mI,I+1 =
1

6
h, mI+1,I+1 =

1

3
h.

Let mi :=
∫
D ϕi dx =

∑
j∈Ah mij be the diagonal coefficients of the lumped mass matrix M for

all i ∈ Ah (all the off-diagonal coefficients are zero). We have

m1 =
1

2
h, mi = h, ∀i ∈ A◦

h, mI+1 =
1

2
h.

(ii) We have I(i) = {i − 1, i, i + 1} for all i ∈ A◦
h, and recalling Example 81.5, we have ci,i−1 =

− 1
2ex and ci,i+1 = 1

2ex, where ex is the unit vector orienting R. The Galerkin approximation of

the Cauchy problem using the lumped mass matrix M is formulated as follows: Find uh(t) :=∑
i∈Ah Uj(t)ϕj such that

h∂tUi(t) +
1

2
(Ui+1(t)− Ui−1(t)) = 0, ∀i ∈ A◦

h,

with U1(t) and UI(t) prescribed by the boundary condition coming from the initial condition.
(iii) By definition, we have

RL
i (t) = h∂tu(xi, t) +

1

2
(u(xi+1, t)− u(xi−1, t)),

for all i ∈ A◦
h. Using xi±1 = xi ± h and the Taylor expansion

u(xi ± h, t) = u(xi)± h∂xu(x, t) +
1

2
h2∂xxu(xi, t)±

1

6
h3∂xxxu(xi, t) +

1

24
h4∂xxxxu(xi, t) +O(h5),

we infer that

RL
i (t) =(∂tu+ β∂xu)(xi, t) + β

h2

6
∂xxxu(xi, t) +O(h4).

In conclusion, we have RL
i (t) = β h

2

6 ∂xxxu(xi, t)+O(h4). The leading term of the consistency error
at xi is second-order in h and proportional to a third-order partial derivative of u with respect to
x.
(iv) The Galerkin approximation of the Cauchy problem using the consistent mass matrix M is
formulated as follows: Find vh(t) :=

∑
i∈Ah Uj(t)ϕj such that

1

6
h
(
∂tUi−1(t) + 4∂tUi(t) + ∂tUi+1(t)

)
+

1

2
(Ui+1(t)− Ui−1(t)) = 0,
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for all i ∈ A◦
h.

(v) Using the definition of the mass matrix, we have

1

h

∑

j∈{i−1: i+1}
mij∂tu(xj , t) = ∂tu(xi, t) +

1

6

(
∂tu(xi−1, t)− 2∂tu(xi, t) + ∂tu(xi+1, t)

)
.

Using Taylor expansions shows that

∂tu(xi ± h, t) = ∂tu(xi)± h∂xtu(x, t) +
1

2
h2∂xxtu(xi, t)

± 1

6
h3∂xxxtu(xi, t) +

1

24
h4∂xxxxtu(xi, t) +O(h4),

whence we infer that

1

h

∑

j∈{i−1: i+1}
mij∂tu(xj , t) = ∂tu(xi, t) +

h2

6
∂txxu(xi, t) +

h4

72
∂txxxxu(xi, t) +O(h6)

= ∂tu(xi, t)− β
h2

6
∂xxxu(xi, t)− β

h4

72
∂xxxxxu(xi, t) +O(h6).

By using again that

u(xi ± h, t) = u(xi)± h∂xu(x, t) +
1

2
h2∂xxu(xi, t)±

1

6
h3∂xxxu(xi, t)

+
1

24
h4∂xxxxu(xi, t)±

1

120
h5∂xxxxxu(xi, t) +O(h6),

we infer that

1

h

∑

j∈{i−1: i+1}
mij∂tu(xj , t) + β

u(xi+1, t)− u(xi−1, t)

2h

= ∂tu(xi, t) + β∂xu(xi, t)− β
1

180
h4∂xxxxxu(xi, t) +O(h6).

This shows that Ri(u) = β 1
180h

4∂xxxxxu(xi, t) +O(h6). The consistency error is fourth-order in h
at the interior grid points. This means that the Galerkin approximation using the consistent mass
matrix is superconvergent at the interior grid points, which is not the case when the lumped mass
matrix is used.

Exercise 83.2 (FCT counterexample). (i) We have ci,i−1 = − 1
2ex, ci,i = 0 and ci,i+1 = 1

2ex,

mi =
hi+hi+1

2 . The equation for Un+1
i is

U
n+1
i = Uni +

τ

2mi
(f(Uni−1)− f(Uni+1)) +

τ

mi
dni,i−1(U

n
i−1 − Uni ) +

τ

mi
dni,i+1(U

n
i+1 − Uni ),

with the convention that Un1 := −1 and UnI := 1.
(ii) Let UH,1 be the Galerkin solution at t1 := τ which is, by definition, obtained by solving the
above equation with d1ij = 0. Since f(U0

i−1)− f(U0
i+1) = 0 for all i ∈ {0:2N}, we obtain

UH,1 = U0.

(iii) The entropy solution is an expansion wave. The maximum wave speed is max(f ′(−1), f ′(1)) =
1. See also Example 79.17.
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(iv) Let us compute the low-order solution UL,1. It is clear that U
L,1
i = U0

i for all i < I ′ and
all i > I ′ + 1. We have U0

I′−1 = −1, U0
I′ = −1, U0

I′+1 = 1, and f(U0
i+1) − f(U0

i−1) = 0 for all

i ∈ {I ′, I ′ + 1}. Note also that dL,0I′,I′+1 = dL,0I′+1,I′ = 1
2 since the maximum wave speed in the

Riemann problem with the data (−1, 1) is 1. We infer that

U
L,1
I′ = U0

I′ +
τ

m′
I

dI′,I′+1(U
0
I′+1 − U0

I′) = −1 +
τ

m′
I

,

U
L,1
I′+1 = U0

I′+1 +
τ

mI′+1
dI′+1,I′(U

0
I′ − U0

I′+1) = 1− τ

mI′+1
.

(v) In the FCT notation, we have

mI′U
H,1
I′ = mI′U

L,1
I′ −

τ

2
(U0

I′+1 − U
0
I′)

mI′+1U
H,1
I′+1 = mI′+1U

L,1
I′+1 −

τ

2
(U0

I′ − U
0
I′+1).

This means that aI′,I′+1 = − τ2 (U0
I′+1 − U0

I′) = −τ and aI′+1,I′ = − τ2 (U0
I′ − U0

I′+1) = τ .
(vi) Let us now compute the limiter coefficient ℓI′,I′+1 with Umax

I′ = Umax
I′+1 = 1 and Umin

I′ = Umin
I′+1 =

−1. We evaluate the FCT coefficients as follows:

P+
I′ = 0, P−

I′ = −τ, P+
I′+1 = τ, P−

I′+1 = 0,

Q+
I′ = 2mI′ − τ, Q−

I′ = −τ, Q+
I′+1 = τ, Q−

I′+1 = −2mI′+1 + τ,

R+
I′ = 1, R−

I′ = 1, R+
I′+1 = 1, R−

I′+1 = 1,

which gives ℓI′,I′+1 = 1. Hence, U1 = UH,1, so that U1 = U0 since UH,1 = U0. (vii) In conclusion,
u1h = u0h, i.e., u

n
h = u0h for all n ≥ 0. This proves that the numerical solution is a stationary

discontinuity, whereas the entropy solution of the problem is an expansion wave. Hence, the
method does not converge to the entropy solution.

Exercise 83.3 (Quasiconcavity). (i) Assume that Ψ : B → R is quasiconcave. Let {Ui}i∈I ⊂ B
and {θi}i∈I ⊂ [0, 1] with

∑
i∈I θi = 1. Taking λ := mini∈I Ψ(Ui), the upper level set Lλ(Ψ) is

convex. Since Ui ∈ Lλ(Ψ) for all i ∈ I, we infer that
∑
i∈I θiUi ∈ Lλ(Ψ). This proves that

Ψ(
∑
i∈I θiUi) ≥ λ = mini∈I Ψ(Ui). Conversely, assume that for all {Ui}i∈I ⊂ B and {θi}i∈I ⊂

[0, 1] with
∑

i∈I θi = 1, one has Ψ(
∑

i∈I θiUi) ≥ mini∈I Ψ(Ui). Let λ ∈ R and consider the upper
level set Lλ(Ψ). If Lλ(Ψ) is empty, there is nothing to prove. Otherwise, let U1,U2 ∈ Lλ(Ψ)
and let t ∈ [0, 1]. Then our assumption with I := {1, 2}, θ1 := t, θ2 := 1 − t implies that
Ψ(tU1 + (1− t)U2) ≥ min(Ψ(U1),Ψ(U2)) ≥ λ. Hence, tU1 + (1 − t)U2 ∈ Lλ(Ψ). This proves the
convexity of Lλ(Ψ), and therefore the quasiconcavity of Ψ.
(ii) Let λ ∈ R and Lλ := {u ∈ B | φ(u) ≥ λ} and Gλ := {u ∈ B | ψ(u)−λL(u) ≥ 0}. Let u ∈ Lλ.
We have ψ(u) = L(u)φ(u) ≥ L(u)λ because L(u) > 0. Hence, u ∈ Gλ. Conversely, let u ∈ Gλ.
Then ψ(u) = L(u)φ(u) ≥ L(u)λ implies that φ(u) ≥ λ because L(u) > 0 (recall that u ∈ Gλ
implies that u ∈ B). This proves that Lλ = Gλ. The function ψ(u)−λL(u) is concave since ψ(u)
is concave and L is linear. Hence, Gλ is convex since it is the zero upper level set of ψ(u)−λL(u)
and B is convex. This proves that Lλ is convex for all λ ∈ R. Hence, φ|B is quasiconcave.

Exercise 83.4 (Harten’s lemma). We have

U
n+1
i = Uni − Cni−1(U

n
i − Uni−1) +Dn

i (U
n
i+1 − Uni ),

U
n+1
i+1 = U

n
i+1 − Cni (Uni+1 − U

n
i ) +Dn

i+1(U
n
i+2 − U

n
i+1).
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Taking the difference, we obtain

U
n+1
i+1 − U

n+1
i = U

n
i+1 − U

n
i − Cni (Uni+1 − U

n
i ) + Cni−1(U

n
i − U

n
i−1)

+Dn
i+1(U

n
i+2 − U

n
i+1)−Dn

i (U
n
i+1 − U

n
i ).

Rearranging the terms, we infer that

U
n+1
i+1 − U

n+1
i = (Uni+1 − Uni )(1− Cni −Dn

i ) + Cni−1(U
n
i − Uni−1) +Dn

i+1(U
n
i+2 − Uni+1).

We take the absolute value on both sides and use the given assumptions 0 ≤ Cni , 0 ≤ Dn
i ,

Cni +Dn
i ≤ 1 to infer that

|Un+1
i+1 − U

n+1
i | ≤ |Uni+1 − Uni |(1 − Cni −Dn

i ) + Cni−1|Uni − Uni−1|+Dn
i+1|Uni+2 − Uni+1|.

Summing over the index i ∈ Z, we obtain

∑

i∈Z

|Un+1
i+1 − U

n+1
i | ≤

∑

i∈Z

|Uni+1 − U
n
i |(1− Cni −Dn

i ) +
∑

i∈Z

Cni−1|Uni − U
n
i−1|

+
∑

i∈Z

Dn
i+1|Uni+2 − Uni+1|

≤
∑

i∈Z

|Uni+1 − Uni |(1− Cni −Dn
i ) +

∑

i∈Z

Cni |Uni+1 − Uni |

+
∑

i∈Z

Dn
i |Uni+1 − U

n
i |

=
∑

i∈Z

|Uni+1 − Uni |.

This proves that
∑
i∈Z |Un+1

i+1 − U
n+1
i | ≤∑i∈Z |Uni+1 − Uni |.

(ii) Recalling that ci,i−1 + ci,i + ci,i+1 = 0 and that di,i−1 + di,i + di,i+1 = 0, the scheme (81.9)-
(81.10) can be put into the following form:

U
n+1
i = Uni + τ

mi

(
(f(Uni )− f(Uni−1))·ci,i−1 − dni,i−1(U

n
i − Uni−1)

)

+ τ
mi

(
(f(Uni )− f(Uni+1))·ci,i+1 + dni,i+1(U

n
i+1 − U

n
i )
)

= Uni − τ
mi

(
− f(Uni )−f(Uni−1)

Uni −Uni−1
·ci,i−1 + dni,i−1

)
(Uni − Uni−1)

+ τ
mi

(f(Uni )−f(Uni+1)

Uni+1−Uni
·ci,i+1 + dni,i+1

)
(Uni+1 − Uni )

)
.

Thus, Un+1
i = Uni − Cni−1(U

n
i − Uni−1) +Dn

i (U
n
i+1 − Uni ) with

Cni−1 := τ
mi

(
− f(Uni )−f(Uni−1)

Uni −Uni−1
·ci,i−1 + dni,i−1

)
,

Dn
i := τ

mi

(
− f(Uni+1)−f(Uni )

Uni+1−Uni
·ci,i+1 + dni,i+1

)
.

Recall that cij := ex
∫
D ϕi∂xϕj dx. Let us set f(v) := f(v)ex and nij := cij/‖cij‖ℓ2 . Recalling

Exercise 79.4, we know that λmax(nij ,U
n
i ,U

n
i−1) ≥ |

f(Uni )−f(Uni−1)

Uni −Uni−1
|. Thus, we have

dni,i−1 ≥ ‖ci,i−1‖λmax(nij ,U
n
i ,U

n
i−1) ≥ ‖ci,i−1‖ ×

∣∣∣f(U
n
i )−f(Uni−1)

Uni −Uni−1

∣∣∣.
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Hence, Cni−1 ≥ 0. We prove similarly that Dn
i ≥ 0. The same argument shows that

Cni +Dn
i ≤ 2 τ

mi
(dni+1,i + dni,i+1) = 4 τ

mi
dni+1,i ≤ 4 τ

mi
|dni,i| ≤ 1.

Exercise 83.5 (Lax–Wendroff). (i) Let us start by observing that ∂tu = −a∂u and ∂ttu =
−a∂x(∂tu) = a2∂xxu. Using a finite Taylor expansion with respect to t, we infer that

u(x, tn+1) = u(x, tn) + τ∂tu(x, tn) +
τ2

2 ∂ttu(x, tn) +O(τ3)
= u(x, tn)− τa∂xu(x, tn) + a2τ2

2 ∂xxu(x, tn) +O(τ3).

(ii) The local truncation error is O(τ3), but after 1
τ time steps, the error is (informally) O(τ2).

Hence, the scheme is (informally) second-order accurate in time.
(iii) Let us set unh(x) :=

∑
i∈Ah U

n
i ϕi and un+1

h (x) :=
∑

i∈Ah U
n+1
i ϕi. We observe that mi :=∫

D ϕi dx = h. After integrating by parts the second-order derivative, we obtain

miU
n+1
i = miU

n
i − aτ

∑

i∈Ah
Unj

∫

D

ϕi∂xϕj dx−
a2τ2

2

∑

i∈Ah
Unj

∫

D

∂xϕi∂xϕj dx

= miU
n
i −

aτ

2
(Uni+1 − U

n
i−1) +

a2τ2

2h
(Uni+1 − 2Uni + U

n
i−1).

The boundary terms have been removed to account for the homogeneous Neumann boundary
conditions.
(iv) Since we did not change anything on the time stepping, the (informal) accuracy in time is τ2.
The approximation in space being exact for linear solutions, the (informal) order of accuracy in
space is h2. Hence, the method is (informally) second-order accurate.
(v) Using the computation done in Example 81.5, we obtain

miU
L,n+1
i = miU

n
i − aτ(Uni − Uni−1).

Upon introducing the quantity γ = aτ
h , we infer that

miU
n+1
i = miU

n
i − aτ(Uni − Uni−1)−

aτ

2
(Uni+1 − 2Uni + Uni−1) +

a2τ2

2h
(Uni+1 − 2Uni + Uni−1)

= miU
L,n+1
i +

aτ

2
(λ − 1)(Uni+1 − 2Uni + Uni−1)

= miU
L,n+1
i +

aτ

2
(λ − 1)(Uni+1 − Uni ) +

aτ

2
(λ− 1)(Uni−1 − Uni ).
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