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Chapter 1

Lebesgue spaces

Exercises

Exercise 1.1 (Measurability). Let W be a nonmeasurable subset of D := (0,1). Let f: W — R
be defined by f(z) :=11if z € D\W and f(x) := 0if 2z € W. (i) Is f measurable? (ii) Assume
that there is a measurable subset V' C W s.t. [V/| > 0. Compute sup,cp f(z), esssup,cp f(2),
inf.ep f(z), essinfep f(x). (iii) Is f a member of L>°(D)? (iv) Assume now that W has zero
measure (hence, W is measurable). Compute infzep f(x) and essinfep f(x).

Exercise 1.2 (Measurability and equality a.e.). Prove Corollary 1.11. (Hint: consider the
sets A, :== {w € D| f(x) > r} and B, := {x € D|g(x) > r} for all » € R, and show that
By = (A, N (A:\By)) U (Br\Ar).)

Exercise 1.3 (Lebesgue’s theorem). Let D := (—1,1). Let (f,)nen be a sequence of functions
in L'(D) and let g € L'(D). Assume that f, — f a.e. in D. Propose a counterexample to show
that the assumption “|f,,| < g a.e. for all n € N” cannot be replaced by “f,, < g a.e. for all n € N”
in Lebesgue’s dominated convergence theorem.

Exercise 1.4 (Compact support). Let D := (0,1) and f(x) := 1 for all z € D. What is the
support of f in D? Is the support compact?

Exercise 1.5 (Pointwise limit of measurable functions). Let D be a measurable set in R
Let f, : D — R for all n € N be real-valued measurable functions. (i) Show that limsup,,cy fn
and lim inf,, ¢y f,, are both measurable. (Hint: recall that limsup,,cy fn(2) = inf,ensupys,, fr(x)
and liminf,ey f(2) := sup,,cy infr>, fr(z) for all @ € D). (ii) Let f : D — R. Assume that
fu(x) = f(=) for every @ € D. Show that f is measurable. (iii) Let f : D — R. Assume that
fu(x) = f(x) for a.e. & € D. Show that f is measurable.

Exercise 1.6 (Operations on measurable functions). The objective of this exercise is to
prove Theorem 1.6. Let f: D — R and g : D — R be two measurable functions and let A € R. (i)
Show that Af is measurable. (Hint: use Lemma 1.9). (ii) Idem for |f]. (iii) Idem for f + g. (iv)
Idem for fg. (Hint: observe that fg = 3(f+9)* — 2(f — 9)%)
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Solution to exercises

Exercise 1.1 (Measurability). (i) Since the set {x € D | f(x) < 1} = W is not measurable,
Lemma 1.9 implies that f is not measurable.
(ii) We have

sup f(z) =1,
zeD
esssup f(z) =1,
z€D
Inf f(z) =0,
eiselgff(:v) =0.

(iii) Although esssup,cp |f(z)| =1 < oo, the function f is not a member of L (D) since it is not
measurable.
(iv) Since we now assume that |W| =0, i.e., f =1 a.e. in D, we have

20 =0
eisellr)lff(:v) =1

Exercise 1.2 (Measurability and equality a.e.). Following the hint, let A, := {x € D | f(x) >
r} and B, := {x € D | g(x) > r} for all » € R. By assumption, the set A, is measurable. We
observe that A,\B, C {x € D| f(z) # g(x)} and B,\A, C {x € D| f(z) # g(x)}. Hence,
|A\Br|* = 0 and |B,\A,|* = 0. This means that A,\B, and B\ A4, are measurable (see Exam-
ple 1.4). After observing that B, N A, = A, N (A, \B,)¢ and B, N AS = B\ A,, we finally have
B, = (A, N (A \B,)°) U (B:\A4,). This shows that B, is measurable since the sets 4,, (4,\B;)¢,
and B, \A, are measurable. Hence, g is measurable owing to Lemma 1.9.

Exercise 1.3 (Lebesgue’s theorem). The sequence {f,,},>1 such that f,(x) := —2n if |z] < %
and f,(z) := 0 otherwise is such that f, — 0 a.e. in D and f, < 0 € LY(D), but f,, does not
converge to 0 in L'(D) since || fnl/1(p) = 1.

Exercise 1.4 (Compact support). We have {z € D | f(z) # 0} = D. The slight subtlety here
is that the closure of D in D is D itself. Hence, the support of f in D is D. Note that D is not

compact since it is not a closed set in R (the limit point of the sequence {},>1 does not belong
to D).

Exercise 1.5 (Pointwise limit of measurable functions). (i) Using the hint, we have for all
rxeD,

limsup fp(z) < ¢ <= inf sup fr(x) <c
neN neNg>p

1
<~ Vj>1, In>0, supfe(x)<c+-
k>n J

1
< Vj>1,In>0,Vk>n, fr(lx)<c+-
J

—aeNUN{vedlfw=<es ).

7>1n>0k>n J
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This proves that

{weD|hmsupfn } ﬂUﬂ{y€D|f (y) <c+= }

7>1n>0k>n

Hence, the function limsup,cy fn is measurable. The proof that liminf,cn f,, is a measurable
function is similar.
(ii) Saying that f,(x) — f(x) for every & € D means that

1irrrll€s§1p fu(x) = f(2) = liminf £, (x)

for every @ € D. We conclude from Step (i) that f is measurable.
(ili) Let S C D be such that S := {x € D | f(x) = limsup, ¢y fn(x) = liminf,en fr(x)}. By
assumption, we have |S¢| = 0. Moreover, we have

S={x e D] limsup fp(x) = limeierlffn(:B) = f(x)}
neN n
C{x e D| f(x) =limsup f,(x)}.

Hence, {x € D | f(x) # limsup f,,(x)} C S¢. This means that the function f and limsup f,, coin-
cide almost everywhere. Corollary 1.11 implies that f is measurable since lim sup f;, is measurable.

Exercise 1.6 (Operations on measurable functions). (i) There is nothing to prove if A = 0.
Assume now that A > 0. For all » € R, we have

{xeD|A(x)>r}={xe D] f(x)>r/\}.

Hence, {x € D | A\f(x) > r} is measurable. The reasoning for A < 0 is similar. We conclude that
Af is measurable by invoking Lemma 1.9.
(ii) For all r € R, we have

{geD||f(@)]>r}={zeD|fl@)>r}{J{zecD]|f(@)<-r}

Hence, {x € D | |f(x)| > r} is measurable (recall that the union of two measurable sets is mea-
surable). We conclude by using Lemma 1.9.

(ii) Recall that if f(x) > r — g(x), there exists ¢ € Q such that f(x) > g > r — g(x). Then, for all
r € R, we have

{zeD[(f+9)(@)>r}={xecD]|f(x)>r—-g®)}

=J{zeD|f@) >qgn{zeD|gx)>r—q}
qeqQ

Since any countable union of measurable sets is measurable, Lemma 1.9 implies that f + ¢ is
measurable.

(ii) Let us notice that fg = 3(f +g)* — 4(f — g)*. Hence, Theorem 1.14 combined with (i) implies
that fg is measurable.
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Chapter 2

Weak derivatives and Sobolev
spaces

Exercises

Exercise 2.1 (Lebesgue point). Let a € R. Let f : R — R be defined by f(z) := 0 if 2 < 0,
f(0):=a, and f(x):=1if 2 > 0. Show that 0 is not a Lebesgue point of f for all a.

Exercise 2.2 (Lebesgue differentiation). The goal is to prove Theorem 2.2. (i) Let h € H (the
sign of h is unspecified). Show that R(z,h) := w — f(x) = %f;+h(f(t) — f(x))dt. (ii)
Conclude.

Exercise 2.3 (Lebesgue measure and weak derivative). Let D := (0,1). Let Co be
the Cantor set (see Example 1.5). Let f : D — R be defined by f(z) := z if # € Cw, and
f(x) =2 -5z if x € Cx. (i) Is f measurable? (Hint: use Corollary 1.11.) (ii) Compute
sup,ep f(x), esssup,ep f(x), infrep f(x), essinfrep f(x), and || f||pe(py. (iii) Show that f is
weakly differentiable and compute 9, f(z). (iv) Compute f(z) — [; 0:f(t)dt for all z € D. (iv)
Identify the function f¢ € C°(D) that satisfies f = f° a.e. on D? Compute f°(x) — fow o f(t)dt
for all z € D.

Exercise 2.4 (Weak derivative). Let D := (—1,1). Prove that if u € L{ (D) has a second-
order weak derivative, it also has a first-order weak derivative. (Hint: consider ¢ () := [* (o(t) —

cep(t)) dt for all ¢ € C§°(D), with ¢, := [, ¢dx, p e C§°(D), and [, pdx =1.) B

Exercise 2.5 (Clairaut’s theorem). Let v € L{ (D). Let o, 8 € N? and assume that the weak
derivatives 0%v, 9%v exist and that the weak derivative 9%(9°v) exists. Prove that 9°(9%v) exists

and 9% (0%v) = 9%(0%v).

Exercise 2.6 (Weak and classical derivatives). Let k € N, k > 1, and let v € C*(D). Prove
that, up to the order k, the weak derivatives and the classical derivatives of v coincide.

Exercise 2.7 (H'(D)). (i) Let D := (=1,1) and u : D — R s.t. u(z) := |2/ — 1. Determine
whether u is a member of H(D;R). (ii) Let uy € C((—1,0];R) and uz € C*([0,1); R) and assume
that u;(0) = u2(0). Let u be such that u_q0) = u1 and u(,1) = u2. Determine whether u is a
member of H'(D;R). Explain why u ¢ H'(D;R) if u1(0) # u2(0).
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Exercise 2.8 (Broken seminorm). Let D be an open set in R%. Let {Dy,..., D, } be a partition
of D as in Remark 2.13. (i) Show that (Vv)|p, = V(v|p,) for all i € {1:n} and all v € wli(D).
(ii) Let p € [1,00) and v € WP(D). Show that Dic(i:n} VD {;Vl,p(Di) = |U|€V1,p(D). (iii) Let
s €(0,1), p € [1,00), and v € W*P(D). Prove that } ..,y |v|p, {;Vs,p(Di) < |v|€vs,p(D).

Exercise 2.9 (W*?). Let D be a bounded open set in R%. Let € (0,1]. Show that C%(D;R) <
W#P(D;R) for all p € [1,00) if s € [0, ).

Exercise 2.10 (Unbounded function in H'(D)). Let D := B(0, 1) C R? be the ball centered

at 0 and of radius 3. (i) Show that the (unbounded) function u(z) := In(~In(||z|/,2)) has weak

partial derivatives. (Hint: work on D\B(0,€) with e € (0,4), and use Lebesgue’s dominated
convergence theorem.) (ii) Show that u is in H'(D).

Exercise 2.11 (Equivalent norm). Let m € N, m > 2, and let p € [1,00). Prove that the norm
o]l == (llv]l%, + fgp|v|€vm,p(D))% is equivalent to the canonical norm in WP (D). (Hint: use the
Peetre-Tartar lemma (Lemma A.20) and invoke the compact embeddings from Theorem 2.35.)

Solution to exercises
Exercise 2.1 (Lebesgue point). Let r > 0. We have

1" 1 /Y 1

" 1
— t) —aldt = — dt + — 1l—aldt == 1—al).
5o | 180 —alat =g [ jalat+ 5o [ = alat = 5(al+11-a)

Since 1 (|a|+ |1 —al) > 1 for all a € R, this proves that & [ | f(t) — a| dt cannot converge to zero
a | 0. Hence, 0 is not a Lebesgue point of f.

Exercise 2.2 (Lebesgue differentiation). (i) Let € R. We have

F(x+h)—F(z) 1 ["th
: ‘E/x F(t)dt,

for all h € H. We infer that

x+h x+h
R = [ fOd-f@ = [ (0 - fa)a

(ii) We want to prove that we have |w — f(x)] = 0 as h — 0, for every Lebesgue point

z of f,ie., R(xz,h) — 0. Recalling that the sign of h is unspecified and using the above expression
for R(x,h), we have

1 x+h 1 x+h

Bawl <o [ 1O -f@ld<ig, [

h] o [£(t) = f(z)|dt,

which shows that limj,_, |R(z,h)| = 0 since = is a Lebesgue point of f. Hence, F is strongly
differentiable at .
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Exercise 2.3 (Lebesgue measure and weak derivative). (i) Yes, f is measurable according
to Corollary 1.11, since f(x) =z for a.e. x € D.
(ii) We have

sup f(z) =max | sup x, sup (2—5z)| =2,
€D 2€D\Coso x€C

esssup f(z) = sup x =1,
xeD 2€D\Coo

inf = mi inf inf (2-5 =-3
ing 70 =min (gt = it 2=50)) =3
inf = inf =0
GBI = B =0
[fllzo=(p) = esssup|f(z)] = sup || =1.
z€D 2€D\Coso

(iii) For all ¢ € C*°(D), we have

/Df(x)am¢(x)dx:/Dacaw(b(:v)dx:/D—Mx)dx.

Hence, f is weakly differentiable and 9, f(x) =1 for a.e. z € D.
(iv) For all x € D\Cs, we have

f(x)—/owatf(t)dtzx—:vzo.

For all x € C, we have

f(a:)—/Ozatf(t)dt—2—5:c—:c—2—6:17.

Hence, the fundamental theorem of calculus for f holds true only a.e. on D.

(v) We have f(z) = z for a.e. x € D, hence f°(x) = x. (Observe that, in accordance with
Theorem 2.26 with d = 1 and all p = 1, we indeed have f¢ € C°(D).) Since 9;f° = 0;f a.e. in D,
the fundamental theorem of calculus implies that

0

re@) - [ o=@ - [ =0 o,
0
Exercise 2.4 (Weak derivative). Let p € C3°(D) with [, pdz = 1. For all ¢ € C§°(D), the

function ¢ in the hint is in C§°(D) and 8,1 = ¢ — c,p with ¢, == [}, ¢ da. Letting v := d,,u and
Cy = [ udypdz, we have

/u@wgodxz/ uamwdx—i—cg,cp:/ vipde + ¢, C)
D D D

=/ v(x) /x (p(y) = cop(y)) dy dz + ¢, C,
D

-1

- /D (/yl”(w) dw) (¢(y) = cop(y)) dy + c,C,.
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Setting C) := C, — [}, (fyl v(z) dx) p(y) dy, we thus have

/Duaxwdx:/D (/ylv(x)d:r> w(y)dy+C;/Dsﬂ(y)dy,

which shows that uw has a weak first-order derivative.

Exercise 2.5 (Clairaut’s theorem). Let ¢ € C5°(D). Using Clairaut’s theorem for ¢, we infer
that

(—1)‘“'/ 8O‘v8ﬁ<pdx:/ vao‘(aﬁ@)dx
D D
:/ 085(80‘@)dx:(—1)m|/ 2Pvd®pd,
D D

where we used the definition of 9%v (and 0°p € C5°(D)) and 9%v (and 9%¢ € C$°(D)). Using the
definition of 9%(9%v), the above identity shows that

/ao‘vﬁﬁgpdx:(—l)w/ 9%(0%v)p dz,
D D

for all ¢ € C$°(D), which, in turn, implies that the weak derivative 9°(9“v) exists and that this
weak derivative is indeed equal to 0% (0%v).

Exercise 2.6 (Weak and classical derivatives). Let a € N¢ be a multi-index of length |a| < k.
Let (0%v)e1, (0%v)ywxk denote the classical and weak derivatives, respectively. For all ¢ € C5°(D),
integrating by parts the classical derivative (there are no boundary terms since ¢ has compact
support), we infer that

[ @ apds = (-0 [ worods = [ @0 apds
D D D

and we conclude by invoking the vanishing integral theorem (Theorem 1.32).

Exercise 2.7 (H'(D)). (i) Let us set D := (—1,1). We have u € L?(D). Let us determine
whether u has a weak derivative and whether the weak derivative is in L?(D). Let ¢ € C§°(D).
We observe that

[N

1 0 1
/ u(a:)(?m(b(a:)d:c:/ ((—z) —1)8x¢(x)dx—|—/0 (x% —1)0;¢(x) do

—1 —1

0 1 1 1
. / 3(a)b(a) dr — §(0) / 824 g(a) da + $(0)
0

-1

where w(x) := %|x|%sgn(x) with

(2) -1 ifx <0,
sgn(x) =
& 1 otherwise.
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Since w € L?(D), we infer that uw € H*(D).

oy 1

(i) Since u1 € L*((~1,0)), uz € L*((0,1)) and lull2(py = (Hulﬂ%z((fl,o)) + HU2H%2((0,1)))2, we
infer that u € L?(D). Let ¢ € C§°(D). Using that uy € C((—1,0]), uz € C1([0,1)), and setting
v(x) :=wuy(z) if <0 and v(z) := uz(x) otherwise, we infer that

0 0
/Du(x)amqﬁ(:v)dx:/ ul(x)6w¢(x)dx+/ us ()0, p(x) dz

-1 -1

_ /D w(@)d(z) dz + $(0)(u1 (0) — u2(0))
—- [ vt
D

since u1(0) = uz(0). We infer that d,u = v which is in L?(D). Hence, u € H* (D). If u1(0) # u2(0),
we infer from Example 2.5 that there is no function w € Li (D) s.t. [,vpdz = ¢(0) for all
¢ € C§°(D). Hence, u & H' (D).

Exercise 2.8 (Broken seminorm). (i) Let v € Wlicl (D). Let k € {1:d}, let i € {1:n}, and let
¢ € C§°(D;). Letting ¢ denote the zero-extension of ¢ to D, we have

/ (Bkv)wigod:v:/ Bkvc,bdx:—/ v@kgédx:—/ v|p, O du,

K3 i

which shows that (Oyv)|p, = Ok(v|p,)-
(ii) The identity is a direct consequence of (Vv)|p, = V(v|p,) since

) son = 3 IV S (Vo)

ie{l:n} ie{l:n} ie{l:n}
9ol

) = 10 o)-
(iii) The definition of W*? (D) implies that
lv(x) —v(y)l”
|’U|€VS,P(D) :/ pid dz dy

2 —yll2

> [ / e dy

i€{l:n}je{l:n}

[v(x y)|”
= Z / / sp+d drdy = Z [01an (D,

ie{l:n} yH ie{l:n}

Exercise 2.9 (W*P). Notice first that C®%(D) < L*>(D) since o > 0. Then C*%(D) — LP(D)
since D is bounded. Let v € C%%(D) and let ¢, be the constant such that |v(z) — v(y)| <
callx —yl|:. Let {p := diam(D). Since D C B(x,{p) for all € D, we infer that

lv(x) —v(y)[?
[Ty, =/ ————a drdy < cf o xdy
wer (D) l — y||s2+ an—yH( o ¢
zdy
//a:ép) |l — ?JH(S a)erd
cg|S(0,1)|£<§‘S>p// r@=P=1 qr de,
D JO

I /\
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where S(0,1) is the unit sphere in R? and |S(0, 1)| is the (d — 1)-dimensional measure of S(0,1).
The integral is finite, i.e., [v|ys.»(py is finite, if and only if s < .

Exercise 2.10 (Unbounded function in H!(D)). (i) First, we observe that u € L?(D). Let
€ € (0,3). Then u is of class C* in D\B(0, €). Using radial coordinates, we set w1 (x) := dju(x) =
%((‘3)) and ws(z) == dyu(x) = 22U for z £ 0. One can verify that w; € L*(D) for i € {1,2}. Let

r1n(r)
¢ € C§°(D). We obtain

/ wipdr = —/ udip da + T(e),
D\B(0,¢) D\B(0,¢)

with T'(e) := faB(o,e)(ei'n)“‘p ds, where n is the unit normal at 9B(0, €) pointing outward and e;
is the unit canonical vector defining the i-th direction. Since |T'(¢)| < 2meIn(—1In(e))||¢| Lo (D), We
infer that T'(e) — 0 as € — 0. Since w; and u are in L'(D), letting ¢ — 0 in the above equality,
we infer using Lebesgue’s dominated convergence theorem that | pWwipdr = — J p udipdx. Since
¢ is arbitrary in C5°(D), we conclude that w; is the weak derivative of u in the i-th direction.
(ii) Let us now show that w; € L?(D) for all i € {1,2}. We have

1 —1n(2)
9 9 - 2 T _ 1 2
Jnliay + sl =2 [ pear=2x [ = g

— 00

< 00.

Exercise 2.11 (Equivalent norm). For every integer n > 0, let B, 4 := {a € N? | |a| = n} and
bn.a := card(B,, 4). Let Y, := [LP(D)]’>¢ be equipped with some product norm. Let us consider
the integer m > 2 and let Y := LP(D)xY,, be equipped with the product norm

p

1 adacsn Dy = [ 1212000y + 687 S lgallln)
a€Bpa

We define the operator A : W™P(D) — Y by A(v) := (v, (0%0)aeB,, ,)- Let Z :=Yix ... xYy 1
be equipped with some product norm. We define 7' : W™P?(D) — Z by

T(’U) = ((8alv)a1651,d7 cee (8am*lv)am7163m71,d)'
The equivalence of norms in finite-dimensional spaces implies that there exists ¢ such that
cllollwmrpy < [A@)ly + 1T W)z,  Yve W™P(D).

Both A and T are linear and bounded. The operator A is injective. The operator T is compact since
the embedding W™?(D) < W™ ?(D) is compact for all m’ € {1:m—1} owing to the compact
embeddings from Theorem 2.35. Then the assertion follows from Lemma A.20.



Chapter 3

Traces and Poincaré inequalities

Exercises

Exercise 3.1 (Scaling). Let D C R? be a Lipschitz domain. Let A > 0 and D :=\"'D. (i) Show
that D and D have the same Poincaré-Steklov constant in (3.8). (ii) Same question for (3.11).

Exercise 3.2 (Poincare—Steklov, 1D). Let D :=(0,1) and u e C! (D;R). Prove the following
bounds: (i) [JullFzp) < )12, 2(py if w(0) = 0. (Hint: u(z) = [; u'( (ii) ||ul|- () <

\/ig||u’||2L ) if u(0) = u(1) = 0. (Hint: as above, but distinguish whether = € (O orze(3,1))
(iii) ||u||%2(D) < %||u’||%2(D) + u? with u = fo udx. (Hint: square the 1dent1ty u( ) — u(y) =
[2a'(t)dt.) (iv) max, 5 |[u(z)[* < 2u(1)? + 2||u/(|72py- (Hint: square u() )+ i

(v) max, .5 |[u(@)[* < 2(||ullF2(p) + [0/ 72(py)- (Hint: prove that u(z)? < 2u( ) +2Hu’||L (D) and
integrate over y € D.)

Exercise 3.3 (Fractional Poincaré—Steklov). (i) Prove (3.10). (Hint: write [, [v(z)—vp|Pdz =
Jp |DI7P | [ (v(z) — v(y)) dy['dz.) (i) Prove that [v—vp |wre(p) < €5 "[0lwen(p) for all 7 € (0, 5]
and all s € (0,1).

Exercise 3.4 (Zero-extension in W, "*(D)). Let p € [1,00). Let D be an open set in R%. Show
that W, ?(D) < WHP(D) and |l wr.pmay < [Jullwiepy for all u € W, P (D).

Exercise 3.5 (Integral representation). Let v : [0,00) — R be a continuous function with
bounded derivative, and let w : [0,00) — R be such that w(z) = L [F(v (x))dt. (i)
Show that |w(z)| < % where M = sup,c(o,o) [Ozv(2)]. (i) Estlmate w(O) (111) Show that
O (tw(t)) = —t@tv( ). (iv) Prove that v(z) — v(0) = —w(x) — [, @dt. (Hint: observe that

v(z) —v(0) = [y 1 (t0yv(t)) dt, use (iii), and integrate by parts.) (v) Prove the following integral
representation formula (see Grisvard [20, pp. 29-30]):

v(O):v(x)—i—%/o(( — o dt+/ / ) dt dy.

Exercise 3.6 (Trace inequality in W*?, sp > 1). Let s € (0,1), p € [1,00), and sp > 1. Let
a > 0 and F be an open bounded subset of R?~1. Let D := Fx(0,a). Let v € C1(D)NC°(D). (i)



12 Chapter 3. Traces and Poincaré inequalities

Let y € F. Using the integral representation from Exercise 3.5, show that there are ¢i(s,p) and
ca(s,p) such that

1 s—1
[0(y, 0)] < a™7[[o(y, )lzr0.0) + (e1(8,) + c2ls,p))a” 7 [0(Y, )lwer 0.a)-
(ii) Accept as a fact that there is ¢ (depending on s and p) such that

v(xg—1,2a) — v(Ta—1,Yd)"
/ // - 1|acd _yd|£p+1 1 34) dzy ... dzg—1dzadys < clvfwsr(p)-

Prove that [[v(.,0)| ey < ¢ (a*EHvHLp(D) + a57%|v|ws,p(D)). Note: this shows that the trace
operator v& : C'(D) N C°(D) — LP(F) is bounded uniformly w.r.t. the norm of W*?(D) when
sp > 1. This means that v& can be extended to W*P(D) since C*(D)NCY(D) is dense in W*P (D).

Solution to exercises
Exercise 3.1 (Scaling). (i) Consider the mapping % : D — D s.t. ¥(Z) := A\z. We have
1 (x) = A, Let J be the Jacobian matrix of ¢, i.e., J = Ay and J=! = A~ (where I is
the identity matrix in R9*?). Let v € WP(D) and set §(%) := v(¢(x)) for all Z € D. We infer
that (V3)(F) = A(Vo)(#(&)) and

IVl 0 =2 [ V@I ldes3 ] de =27 [ [Vo(@)|P da.

Hence, V9| 1,p5) = 7%HV’UHL;7(D) Moreover, using that |D| = A~%|D|, we infer that

= 15 4= ),
Up=-—= [ 0dx vldet(J71)|dz = v
Ppls 1D v

15 - 35117, 5, = /D (v = up)?det@ ] de = Ao — vp |17, .

Assume that (3.8) holds true for all v € WP(D). Using that 5 = A~'/p, we obtain

Hence, we have

CP37P|"‘~) - QDHLP(D) = /\_%Cps,pHv - QDHLP(D)
< A5 Lplvlwi(py
= Al_%gﬁ)‘_l+% |1~’|W1,p(D)
= £D|77|W1,p([))7

which proves the assertion.
(ii) The proof for (3.11) is similar.

Exercise 3.2 (Poincaré—Steklov, 1D). Let u € C'(D;R).
(i) Assume that that u(0) = 0. Then we have

r)| = ‘/Om u'(t) dt‘ < /Ow |u(t) dt

([ df)é ([[wora) <o,



Part . ELEMENTS OF FUNCTIONAL ANALYSIS 13

e 1
This implies that ||u||2L2(D) < (Jy xdx)”u’H%z(D) = 2|3, (py if u(0) = 0.
(ii) Assume that u(0) = u(l) = 0. If =z € (0,
xﬂwwm@a.ﬁmMﬂxﬁxe(al)wehweh(ﬂ (1—2)%[[u']| 2(3,1)- We infer that

1 1
fulleipy = [ e+ [ u(w?ar
0 1

2

), the above argument shows that |u(z)| <

l\.’)l)—l

1 1
S ||u/||%2(07%)/ xdx + ||U/||%2(%)1)‘/1 (1 — (E) dz
2
< 5 (12203, + 103, 1)) HI
(iii) Let us set u := fol udz. After squaring the equation u(z) = [Y/(t) dt, we obtain

u(@)® + u(y)? — 2u(y)u(z) = /y u'(t)dt < Jy = | [/ [1Z2(p).-

This, in turn, implies that

[ fpersene | fsorss- ] somiris

<Ny [ [ - aldzdy,
DJD
A direct computation shows that

// d:vdy—l—// dxdy—2// dxdy—2||u||L2 —2@2,
and that
1 Yy 1
//|y—x|dxdy:/ (/ (y—x)dx—i—/ (:E—y)dx) dy
pJp 0 y

1, 1 ) 2 1
— 1—y)?)dy == = =.
/0(2y+2( y)7)dy =3

We conclude that
1
2/|ullF2(py — 2u* < EHU‘/H%Q(D)?

which proves the assertion.
(iv) Let z € D = [0, 1]. Recalling that u(x) )+ [ u/(t) dt, we obtain

u(z)? = <u(1) + /j u/(t) dt> < 2u(1)* 42 (/lz u'(t) dt>2

< 2u(1)? + 22|72 py < 20(1)? + 2[4 |72y,

2

which proves that max, 5 |u( )|2 < 2u2( ) + 2Hu'H2
(v) Similarly, we have u(x) )+ f t)dt. Proceedmg as above, we obtain

(u(y) + /ym ' (t) dt) < 2u(y)® +2 (/j ' (t) dt>2

< 2u(y)? + 2ly — 2|[W/ |2 p) < 2u()? + 22 ()

2

u(z)?
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This implies that

u@? [ dy<2 [ u@Pdy+ 2 e [ v
D D D

and we conclude that max 5 |u(z)]* < 2||u||2 )+ 2||u’HL2(D)

Exercise 3.3 (Fractional Poincaré—Steklov). (i) Following the hint, we observe that

/ lo(@) — vpPda = / D17 | [ () - v(y)) dy| da
D D D
< [ o1 ) =yl f+_)|ll yln P dy | de

P va—yH 2
P
o

v s+4)
< [ [ ([ w0 o

where p' := L5 Using that ||@ — yl|; < {p for all @,y € D, we infer that

P
7

|v(x) —v(y)” (s+2)p o\ 7
ool < [ 017 [ e (s [ e =02
s+ |\
— s+4)p P
< ol ()P p</D£D P dy)

— £z d d
< [0 | DI PIDIF 62 < [0l ) €251 DI

Wsp(D)*D

1
Hence, v~ vplluro) < € (1) Iohwes o,
(ii) Using the deﬁnltlons and ||z — y|2 < €p for all ,y € D, we have

[v(@) — v(y)l”

v—vpl? = |v|? =/
| —DlWTwP(D) | |WTwP(D) pJp Hm yHTp+d

v(@) — v(y)P .
-/ / W e — w7 do dy

<€

dz dy

s—r P|U|WS »(D)"
This concludes the proof.
Exercise 3.4 (Zero-extension in W, ?(D)). Let u € Wy (D). By definition, there is a sequence

(tn)nen in C§°(D) such that u, — uin WHP(D). For all p € C5°(R?) and all i € {1:d}, we observe
that

/ ﬁ@icpdx:/ udjpdzr = lim unOipdr = — lim Oiupp dx
Rd D n—oo |p n—oo [p

- /D Orup Az < 11050l o) |21l 1o )

< Gullzeoyllell Lo (reys
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where p’ € (1,00] is the conjugate of p. This shows that the linear form ¢ — [, 40;¢ dz is bounded
in L?' (R%). Since L (R?) = (LP(RY))Y, we infer that d;a € LP(R?). Since i € {1:d} is arbitrary,
this implies that @ € WHP(R?), i.e., u € lep(D). Finally, the estimate |||y 1.p ey < [[ullw1r (D)
results from the above bound.

Exercise 3.5 (Integral representation). (i) Any time we see a quantity like v(t) — v(z), we

must think of the fundamental theorem of calculus, i.e., v( f 0.v(z) dz. We have
1 x x t
|w(x)| = = / (v(t) — v(x)) dt’ =- / 0.v(2) dzdt’
T 1Jo
S /81} Ydz| dt < — / / |0.v(2)] dz dt
M
< — / / dzdt = —/ x—t)dt = (x ——xz)

Hence, |w(z)| < 22 for all z € [0, 00).
(ii) The estimate |w(z)| < 2Z shows that |w(0)| < 0, meaning that w(0) = 0.
(iii) Upon observing that tw fo —v(t)) dz and recalling that the fundamental theorem

of calculus implies that
t
o ([ 1¢ra:) = 5o
0

we have
A(tw(t)) = 6,5/0 (v(z) —w(t))dz = 6,5/0 v(z)dz — O¢(v(t)t)
=(t) —v(t) — tow(t) = —tow(t).

Hence, 0, (tw(t)) = —topv(t).
(iv) Following the hint, we infer that

thereby proving that v(z) — v(0) = — [ Tw(t) dt — w(z).

(v) The integral representation is obtained by replacing w(t) and w(z) in the above identity.

Exercise 3.6 (Trace inequality in WP, sp > 1). The identity from Exercise 3.5 gives

o0 =0 + 5 [ ) o) [ [ o) - vl dry

0
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Using Hélder’s inequality repeatedly, we infer that

1 /¢ a1
! / o(y,2) dz < a3 oy, )l L.
0

a

1 1 s 1

T / g,0)) e < exs,) 2oy, o0,
1 1
/ / o2 / —v y7 )) di dy de < 02(8 p) |U(y7 ')|WS'P(O,a)7

p—1 p—1
where cl(s p) = (pé’sjrll) (S{’H;A) " ea(s,p) = (pfsjrll) Sppill) ! p(s+pl)71' Using that v(y,0) =
1 fo 0) dz, we infer that

1 a1
(Y, 0)] < a”?[lo(y, )llLro,a) + (c1(s,p) + c2(s,p))a”" 7 [v(y, )lwer(0,0)-
(i) Using the inequality (o + 8)? < 2°7 (Ja|? + |B|P), we infer that

_1 sl
lv(;,0)l oy < c(a™ 7 ||lv]|le(py + @ » I(v)),

o) 7/// [v(€a—1,7a) — v(Ta—1,ya)|P dzy ... deg_i dzg dy,.

|Tq — ya|*PT!

where

The rest of the proof consists of proving that there is a constant ¢ such that I(v) < clv|wes.r(px(0,a))-
This is actually (a slightly modified version of) Lemma 4.33 in [13, p. 200].
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Distributions and duality in
Sobolev spaces

Exercises

Exercise 4.1 (Distributions). Let D be an open set in R%. Let v be a distribution in D. (i)
Let ¢ € C°°(D). Show that the map C§°(D) > ¢ — (v,¢y) defines a distribution in D (this
distribution is usually denoted by ). (ii) Let o, 8 € N%. Prove that 0%(0°v) = 9%(0%v) in the
distribution sense.

Exercise 4.2 (Dirac measure on a manifold). Let D be a smooth bounded and open set in
RY. Let u € C%(D;R) and assume that ujpp = 0. Let @ be the extension by zero of u over R
Compute V-(Vi) = 011u + ... + Ogqu in the distribution sense.

Exercise 4.3 (P.V. 1). Let D := (—1,1). Prove that the linear map 7" : C§°(D) — R defined by
(T, p) := lim._,g flw|>|6| 1o(x)dx is a distribution.

Exercise 4.4 (Integration by parts). Prove the two identities in (4.8) by using the divergence
formula [, V-¢dz = [, (¢-n)ds for all ¢ € C'(D).

Exercise 4.5 (Definition (4.11)). Verify that the right-hand side of (4.11) is independent of the
choice of w(l). (Hint: consider two functions wq,ws € WP (D) s.t. v8(wq) = v8(wq) = I and
use the density of C§°(D) in Wy ? (D).)

Solution to exercises

Exercise 4.1 (Distributions). (i) Let K be a compact subset of the open set D. Since v
is a distribution, there exist ¢ € R and p € N (both depending on K) such that |(v,¢)| <
€ Max|q|<p (é\gl 00 Lo (K)) for all ¢ € C5°(D) (i.e., ¢ is a smooth function with compact support
in K). Let p € C*(D) and ¢ € C5°(D). Since o € CP(D) and supp(pp) C K, we have ¢ €
C{(D). The product rule implies that there exists ¢’ depending on p such that [|0%(1¢)|| L (k) <
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¢’ max|g|<|q| (E‘gl||8/31/1HL00(K))HBO‘cpHLoo(K) for all a s.t. |a| < p. For all ¢ € C§°(D), we infer that
(o0l < e max (¢5110° (W)l <o)

< ¢c max max /181168 o N
loo|<p |8 <|ex |( 1673l L= )” ol Loe (i)

< e max (05110%9| L (x0)) max [|0%¢] Lo (),
1BI<p la|<p

thereby proving that the linear map C§°(D) 3 ¢ — (v,1p) € R is a distribution.
(ii) Let o, B € N Let ¢ € C5°(D). Using Clairaut’s theorem for ¢, we infer that

(=D, (9%)) = (=D (w, 0%(8%))
= (- 1>'a‘+'ﬂ‘<v 9°(0%9)) = (=1)l1(@%v, (9%¢))
= (0°(0"). ¢).

Hence, 0% (0%v) = 0%(0°v), which is Clairaut’s theorem for distributions.

(07(0%0), ) =

Exercise 4.2 (Dirac measure on a manifold). We use the notation A := V-(V). By definition,
we have

(At, p) = (U, 0119+ ...+ Odap) = / aV-(Ve)dr = / uV-(Vo)dz
R4 D
= —/ Vu-Vedr = / V-(Vu)pdx —/ (n-Vu)pds
D D oD
= Aupda —/ (n-Vu)pds.
Rd oD

Hence, we have proved that Au = Au— (Vu-n)dgp, where dgp is the Dirac measure whose support
is OD. Note: one can make sense of the notation (n-Vu)dgp by smoothly extending n and u over
R? and by reasoning as in Exercise 4.1(i) with p := 0.

Exercise 4.3 (P.V. 1). Let € > 0. We have

/|x|>|5|%sp(x)dx:/;%‘P(x)dw'i‘/eléw(ﬂc)dx

- _ /76 In(|z|)¢’ (z) doz + o(—€) In(e) — / In(2)¢ (x) dz — o(€) In(e)

-1
1
= /1 L1, —ou(eny In(lz)¢’ (2) dz + (p(—€) — ¢(e)) In(e),
where 1g is the indicator function of the set £Z. We notice that

[(e(=€) = @(e)) In(e)] < [|¢"[| L€ In(e).

Moreover, the sequence ]l‘( 1,—e)u(e,1) In(|z])¢’ (x) converges a.e. in D to In(|z|)¢’(x), and we also
have Ty _eyu(e,1) In(|z|)o’ (z) < 1n(|x|) '(z) € L*(D). Lebesgue’s dominated convergence implies
that

Too)=lim [ Lo@)de=- / In(|z])¢'(z) de,

=0 Sjz)>1e T -1
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i.e., the limit process with respect to € is well defined. Moreover, we have

1
(Tl =| [ atnlle) = 05/ (0) ] < " @) o,

thereby proving that T is indeed a distribution. Notice that we have actually proved that T =

(?x(%), which makes sense after all.

Exercise 4.4 (Integration by parts). The identity (4.8a) follows from the divergence formula
for ¢ by using ¢ := vxw (since V-(vxw) = (Vxv)w — v-Vxw) and ¢n = (vxw)xn =
—(vxn)-w), whereas the identity (4.8b) follows from the divergence formula for ¢ by using ¢ := vq
(since V-(vq) = v-Vq + (V-v)q and ¢-n = (v-n)q).

Exercise 4.5 (Definition (4.11)). Let v € Z°?(D). Following the hint, let w;,w; € W' (D)
be s.t. y8(w;) = v&(wy) = I. Then w; — wy € Wy (D). Invoking a density argument, let
(¢pn)nen be a sequence in C°(D) converging to wy — ws in Wol’p/ (D). Then we have

O:/ ’U-VqundSC—/ &n-Vxvde.
D D

Passing to the limit n — oo yields
0= / v-Vx(w; —wsy)de — / (w1 — ws)-Vxvdz.
D D

Hence, (v¢(v),v8(w1))op = (7°(v),¥8(w2))ap, which establishes the claim.
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Chapter 5

Main ideas and definitions

Exercises

Exercise 5.1 (Linear combination). Let § € R™"*"! be an invertible matrix. Let (K, P,¥)
be a finite element. Let X := {&;},en with dofs &; := Zi/e/\/ S;ioy for all i+ € N. Prove that
(K, P,%) is a finite element. Write the shape functions {,},ea and verify that the interpolation
operator does not depend on S, i.e., Zx (v)(x) = I (v)(x) for all v € V(K) and all z € K.

Exercise 5.2 (Modal finite element). (i) Let (K, P,¥) and (K,P,%) be two modal finite
elements. Let {¢ }ien, {fi}ieN, be the two bases of P s.t. the dofs in ¥ and 3 are given by
oi(p) = |K|7 (G, p)r2(krey and ;(p) = |K|7(Ci.p)r2(krey for all i € N, Prove that the
interpolation operators I3 and f? are identical. (ii) Prove that (p, Z¢ (v) — v)2(x;re) = 0 for all
p € P. (iii) Let M be defined by (5.12), and let M%; := |K|(0;,0;) 2 (x;rey for all i,5 € N,
where {0;};ca are the shape functions associated with (K, P,%). Prove that M? = M~1,

Exercise 5.3 (Variation on Py). Let K :=[0,1], P := Py, and X := {07,02,03} be the linear
forms on P s.t. o1(p) := p(0), o2(p) :=2p(3) — p(0) — p(1), o3(p) := p(1) for all p € P. Show that
(K, P,Y) is a finite element, compute the shape functions, and indicate possible choices for V(K).

Exercise 5.4 (Hermite). Let K :=[0,1], P := P3, and ¥ := {01, 02,03, 04} be the linear forms
on P s.t. o1(p) := p(0), o2(p) :== p'(0), o3(p) := p(1), oa(p) := p'(1) for all p € P. Show that
(K, P,Y) is a finite element, compute the shape functions, and indicate possible choices for V(K).

Exercise 5.5 (Powell-Sabin). Consider K := [0, 1] and let P be composed of the functions that
are piecewise quadratic over the intervals [0, %] U [%, 1] and are of class C! over K, i.e., functions
in P and their first derivatives are continuous. Let ¥ := {01, ...,04} be the linear forms on P s.t.
o1(p) := p(0), oa(p) :== p'(0), o3(p) := p(1), oa(p) := p/(1). Prove that the triple (K, P,X) is a

finite element. Verify that the first two shape functions are

1-2t2  ifte|o,d], t(1—3t) ifte]o,3],
91(15): 2 5 1 [1 2] og(t): 1( 2 Z 1 [1 2]
(1—1t)? iftel$,1], 11—t ifte[i, 1],

and compute the other two shape functions. Note: a two-dimensional version of this finite element
on triangles has been developed in [39].
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Exercise 5.6 (Lebesgue constant for Lagrange element). Prove that the Lebesgue constant
AN defined in Example 5.15 is equal to |Z% | c(coxy)- (Hint: to prove [Tk || zcoxy = AV,
consider functions {v;}ien taking values in [0,1] s.t. > ;o\ % = 1in K and v;(a;) = d;; for all
i,jeN.)

Exercise 5.7 (Lagrange interpolation). Let K := [a,b] and let p € [1,00). (i) Prove that
HUHLOO(K) (b—a) " # [l ogrey + (0 — @) 77|V oy for all v € WEP(K) (Hint: use v(x) —

= [Jv/(t)dt for all v € C'(K), where |v(y)| := min.ck |v(z)|, then use the density of
Cl( ) in Wlp( ).) (ii) Prove that WP(K) embeds continuously in C°(K). (iii) Let Zk be
the interpolation operator based on the linear Lagrange finite element using the nodes a and
b. Determine the two shape functions and prove that 7% can be extended to W1P(K). (iv)
Assuming that w € W'P(K) is zero at some point in K, show that |[wl|pex) < (b— a)||w'|| o(x)-
(v) Prove the following estimates: [|(v — Z (v)) || Lr(x) < (b — a)[|v” || Le(x)s v = T (W)l Lo (x) <
(b= )I(v — %)) Loy, 1T Iotiey < 10/ oy, Tor all p € (1, 00] and all v & WP (K).

Exercise 5.8 (Cross approximation). Let X,Y be nonempty subsets of R and f: XxY — R
be a bivariate function. Let N := {1:ng,} with ng, > 1, and consider ng, points {z;}icn in X
and ng, points {y;}jen in Y. Assume that the matrix F € R™2 %"k with entries Fy; := f(x;,y;) is
invertible. Let ZCA(f) : X xY — R be s.t. ZOA(f)(z,y) = Zi,je/\/(]:_-r)ijf(‘r7 yi)f(xi,y). Prove
that Z4(f) (@, yx) = f(2,yx) for all z € X and all k € N, and that Z°A(f)(zx, y) = f(ak,y) for
ally €Y and all k € NV.

Exercise 5.9 (Riesz—Fréchet in finite dimension). Let V be a finite-dimensional complex
Hilbert space. Show that for every antilinear form A € V', there is a unique v € V s.t. (v,w)y =
<A,w>v/7v for all w € V, with H’U”V = ||A||V/

Solution to exercises

Exercise 5.1 (Linear combination). We use Remark 5.3. Let p € P be such that &;(p) = 0 for
all i € N/. The matrix S being invertible, we infer that o;(p) = 0 for all i € N/, so that p = 0 since
(K, P,X) is a finite element.

The shape functions are such that 6; = Zj/eN(SfT)jj'oj' since

= Z Z Siir (ST 1) 0 ( Z Z Siir (87T 57610

EN ' EN EN G EN

- Z Szz 1’ - 51]

=

As a result, we infer that for all v € V(K) and all ¢ € K,

Tr()(x) =Y & =D DD S S iy (v)0 ()

€N iEN VEN j eEN
=3 Sujpoa (@) = Y 0w (v)0s (@) = Ik (v)().
'eEN G EN EN

Exercise 5.2 (Modal finite element). (i) Since {(;}icn is a basis of P, there are real numbers
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Sij, i,7 € N, such that ¢; = > jen Sij¢;- Hence, we have

&i(p) = | K| (G p) 12 (xm)
= Z Sii | K171 (¢ ) Lo (cime) = Z Sijo;(p)

JEN JEN

We conclude by invoking the result from Exercise 5.1.
(ii) Let {0;}icar be the shape functions of (K, P,X). For all the basis functions ¢;, we have

(G IR W), Q2 (rerey = D, 0i(0)(C,00) L2 (remay = D 0i(0)| Ko (6;)

iEN iEN
- 0’1(’0)|K| - (Cla U)Lz(K;Rq)'

This implies that (p, TR (v) — v,p)2(kre) = 0 for all p € P.
(iil) Using the definitions, we have

(MOM)U = Z |K|_1(9i7ek)LQ(K;Rq)|K|_1(<k7<j)L2(K;RQ)

keN

= |K|~ 1( i Z Ok K|~ (Crr G5) 12 KRQ))L?(K:R”
keN

= K7 (0 Y taon((y)
= L2(K;R9)

= |K[710i, &) L2 (csmey = 05(0i) = 4.

Exercise 5.3 (Variation on P3). Observe that dimPy = 3 = card 3. Let p(x) € P2 be such that
o1(p) = o2(p) = o3(p) = 0. Then p(0) = p(1) = 0, which implies that 0 = 2p() — p(0) — p(1) =
2p(3), i-e., p(0) = p(1) = p(3) = 0. This, in turn, implies that p vanishes identically. One verifies
that the shape functions are 64 (z) = 1 — z, 02(z) = 2x(1 — x), O3(x) = 2. Possible choices for the

domain of the interpolation operator are C°(K) and H*(K) with s > 1.

Exercise 5.4 (Hermite). We use Remark 5.3. First, we have dim P = card ¥ = 4. Moreover, if
p € P is such that o;(p) = 0 for all i € {1:4}, we infer that both ¢? and (¢ — 1)? divide p. Since p
is of degree < 3, p vanishes identically.

A direct computation shows that

O1(t) = 2t +1)(t —1)%,  6a(t) = t(¢
03(t) = (3 - 2t)¢*, 0a(t) = (t — )

For instance, (t — 1)? divides 6; since 6;(1) = 0 and 0 (1) = 0. Then 6;(t) = (at + b)(t — 1)?, and
the coefficients a and b are determined by the conditions 1 = 6,(0) = b and 0 = 67(0) = a — 2b.
Note that by symmetry, we have 03(t) = 01(1 —t) and 04(t) = —02(1 — t). Possible choices for the
domain of the interpolation operator are V(K) := C*(K) or V(K) := H?(K).

Exercise 5.5 (Powell-Sabin). We use Remark 5.3. First, we have dim P = card ¥ = 4. More-
over, if p € P is such that oi(p) = 0 for all i € {1:4}, we infer that pjg 1) = at? and Pt = b(1—t)?
for some real numbers a,b. The C'-matching condition at ¢ = % leads to @ = b and 2a = —2b,
whence a = b = 0. By symmetry, we have 03(t) = 01(1 —t) and 04(t) = —02(1 — 1).
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Exercise 5.6 (Lebesgue constant for Lagrange element). Let us prove that [|Zz || z(co(x)) <
AN, For all v € C°(K), we observe that

Tk W)(@)] < Y lo(a:)]|6i(x)| < (Z |9i(fv)|> [vllcoc),

iEN 1EN

which proves the expected bound. Let us prove the reverse bound. Using the hint, we define the

function
ngn (x0))¥j(x),
JEN

where @ is a point in K where the function ;- [0;(z)| is maximal. Owing to the properties of
the functions {1 }scnr, we infer that ||vol/co(xy = 1, and by construction, we obtain

IZk (vo)llcogrey > Tk (vo) (o) = [05(xo)| = AV,
JEN

The functions {; };en can be taken to be the one-dimensional hat basis functions associated with
the P;-Lagrange finite element. Assume that the set {a;}icar contains the interval endpoints,
ie, K = [ai,a,,]. Let ¢; : K — [0,1] be the piecewise affine function s.t. 1;(x) = —-=

a;—a;_1
if x € [a;—1,a;] (and i > 1), ¥;(x) = % if x € [a;,a;41] (and i < ng,), and ¥(x) = 0
otherwise. By construction, t; takes values in [0, 1] and ;(a;) = d;;. Moreover, the function
> icn Yi(z) is affine in each interval [a;,a;,1] and takes the value 1 at the two endpoints for
all j € {l:ing,—1}. Hence, > ;.\ %i(x) = 1. Finally, if {a;}icx does not contain the interval
endpoints, the function ¢ (resp., ¥, ) is extended by the constant value 1 on the left of a; (resp.,

right of a,,_, ).

Exercise 5.7 (Lagrange interpolation) (i) Let v € CY(K) and let y € K be such that
|v(y)] = minex |v(2)]. Since v(x) = ) + fm ‘(t)dt for all z € K, we infer using Holder’s
inequality that
_1
[o(@)] < [o)] + (b —a)' "7 [Vl Lo xc)-
Moreover, integrating the inequality |v(y)| < |v(z)| with respect to z € K, we obtain (b —
a)%|v( ) < vl zr(x)- We infer that

_1 1
o@)| < (b= a) 7 [lolleoy + (0= a) 7 o), Vo€ K.

Let now v € WHP(K). Let (v,)nen be a sequence in C*°(K) converging to v € W1P(K). Then,

up to a subsequence, (v,),en converges to v a.e. in K, so that we can pass to the limit in the

above inequality written for v, and infer the expected bound.

(i) Let (v,)nen be a sequence in C*(K) converging to v € WHP(K). Owing to the bound derived

above, we infer that (v,)nen is a Cauchy sequence for the uniform norm. This sequence thus

converges to some o € C°(K). That v = 0 a.e. in K results from the fact that [, (v —0)pdt =0

for all ¢ € C§°(int(K)), as can be inferred by passing to the limit in [, v, dt and using the

convergence of (v, )nen in WHP(K) and in CY(K).

(iii) The two shape functions are 0y (t) = g_;z and 0;(t) = £=2. The extension of Zf; to W'?(K)

is a direct consequence of (ii).

(iv) Proceeding as in (i) with y € K such that w(y) = 0, one can prove that |w(z)|? < (b —
a)P~Hw'||7, (k) for all z € K. Integrating this inequality with respect to z € K yields the

expected bound
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(v) Let v € W2P(K). The function w := (v —Zk(v))" is in WHP(K), and it vanishes at some point
in K since (v—7%(v)) is in C'(K) and vanishes at the two endpoints. Applying the bound derived
in Step (iv) and observing that w” = v” since Zy (v) is affine, we infer that ||(v — Zk (v))'|| Lo (k) <
(b—a)|lv"||Lr(x)- By a similar reasoning, applying the bound derived in Step (iv) to the function
wi=v=T} (v) leads to [0 =Tk (v) | oy < (b= ) [(0=TR(0))' | o) Since (T (v)" = 2=,
we finally infer that

1(Zk () | e ) < (b= )%*
(b—a)r!

Exercise 5.8 (Cross approximation). We only prove the first statement, the proof for the
second one being similar. We observe that

(b) = v(a)l

v
(=)' "2 V| ogrey = 10l oic

IN

TN y) = > (F Difla,y) fanm) = > FalF i fla,y)
€N i,JEN
- Z Sikf(@,y5) = f(x,yk)-
JEN

Exercise 5.9 (Riesz—Fréchet in finite dimension). Let m := dim(V'). Let K := ker(A4). The
rank nullity theorem implies that dim (/) = m—1. Hence, K is one-dimensional, i.e., there exists
q €V s.t. K+ = span{q} and ||q||[v = 1. For all w € V, we have w = (w, q)vq + k with k € K*.
We infer that

(Aw)iviv = (A, (w,Qvq)vrv + (A kv v
= (w, Qv (A, q)v' v = (g w)v(A, Qv v = (A Qv va),w)v

Denoting v := (4,q)y+ vq, we have thus shown that (A, w)y, v = (v,w)y for all w € V. The
equality of norms follows from

()| {4 w)v vl

= AV/
Tolv 5% Ty~ 4

[vllv = sup
weV

Finally, the uniqueness of v € V is established by contradiction. If there were distinct vy, v € V s.t.
(v1,w)y = (A, wyyr v = (v2,w)y for all w € V, we would have (v1 — ve,w)y = 0, and considering
w = v — v leads to the expected contradiction.
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Chapter 6

One-dimensional finite elements
and tensorization

Exercises

Exercise 6.1 (Integrated Legendre polynomials). Let k > 2 and set ]P’,(co) ={pelP|p£l) =

0}. Show that a basis for IP’,(CO) are the integrated Legendre polynomials {fil Li(s)ds}ieqr:k—1}-
Prove (6.6). (Hint: consider moments against polynomials in P,,,_o and the derivative at t = 1.)

Exercise 6.2 (Gauss—Lobatto). The goal of this exercise is to prove Proposition 6.6. (i) Prove
that kg = 2m —3. (Hint: for all p € Py,,_3, m > 3, write p = p1 (1 —t2)L}, _, +p2 with p; € P, _3

and pg € Pp,_1.) (ii) Prove that wy = wy, = % (Hint: compute fil L, _(t)(1+t)L;,_(t)dt
using the quadrature and by integrating by parts.) (iii) Assume m > 3 and let [ € {2:m—1}. Prove
that LI, _5(&) = (1—=m)Ly—1(&) and (1—&)LY, 1 (&) +m(m—1)Ly,—1(&) = 0. (Hint: use (6.3).)
Let £; € P,,_3 be the Lagrange interpolation polynomial s.t. £;(§;) = d;5, for all [, j € {2:m—1}
(i.e., & and &, are excluded). Prove that £;(t) = L,’;L;él(t)m (Hint: compare the degree
of the polynomials, their roots, and their value at &;.) FinaH; prove (6.11). (Hint: integrate the
polynomial £i(t)(1 — )Ly, _5(t).) (iv) Let [[pl| := 30,c i,y win(§)?. Verify that [|-[|¢ defines a

norm on Py, with k := m — 1, and prove that ||p||z2(x) < [plle < (2252)7 ||p]lL2(x) for all p € Py,

with K := (—1,1). (Hint: write p = pr—1 + ALj with pp_1 € Py_1 and A € R, and compute
1Pl22 10, and [pl12.)

Exercise 6.3 (Gauss—Radau). The goal is to prove Proposition 6.7. (i) Prove that kg = 2m—2.
(Hint: for all p € Poy,,—o, write p = p1(Ly, — Lyp—1) + p2 with p; € P9 and py € Pp—1.) (ii)
Prove that w, = 2. (Hint: integrate the polynomial MI’%—N”) (iii) Assume
m > 2 and let I € {1:m—1}. Prove that L] (&) = —L),_1(§). (Hint: use (6.3a) and (6.3b).)
Let £; € Py,—2 be the Lagrange interpolation polynomial s.t. £;(;) = d;; for all [,j € {1:m—1}

(i.e., & is excluded). Prove that £;(t) = L”(Ll(t_)t_)éfg)(t) _2L1£:i(&). (Hint: compare the degree

of the polynomials, their roots, and their value at &.) Finally prove (6.12). (Hint: integrate the
polynomial £;(¢)(1 —¢)L],_1(¢).)

m—1

Exercise 6.4 (Inverse trace inequality). Let K :=[—1,1]%. Let m > 3 and let {&}ic(1.m) be
the Gauss-Lobatto (GL) nodes in [~1,1]. Set I,, 4 := {1...m}? and Igl)d = {2:(m — 1)}<. For
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any « € I, 4, let a, € K be the node with Cartesian coordinates (aq); 1= &, for all i € {1:d}.
The set (@a)acr,, , consists of the tensorized GL nodes in K. Let k := m — 1 and define the
polynomial space Q) , := {q € Q.4 | g(an) =0, Vo € I? ,}, i.e., polynomials in Qf , vanish at all
the tensorized GL nodes that are located inside K. Prove that '

2d K|

1
2
< =" (94 lyd-1 11
llvllz2x) < <k(k+1)( + %) |6K|> llvllz20k),

for all v € Qf ;. (Hint: use Exercise 6.2.)

Exercise 6.5 (Lagrange mass matrix). Let M € R"»*"h he the mass matrix with entries

M;j = fil Ega_]l(t)ﬁ‘[ja_]l(t) dt for all 4,5 € N. Prove that M = (VTV)~1, where V € R"sn " g
2i—1
2

the (generalized) Vandermonde matrix with entries V;; 1= ( )%Li,l(aj). (Hint: see Proposi-

tion 5.5.)

Exercise 6.6 (Canonical hybrid element). Prove Proposition 6.10. (Hint: use Remark 5.3.)
Compute the shape functions when p; := Jll_"l1 foralll € {1:k—1}. (Hint: consider the polynomials

JE0 T for all 1 € {1:k—1}, and JO )

Exercise 6.7 (Qx,q Lagrange). Prove Proposition 6.14. (Hint: observe that any polynomial
q € Qg q is such that q(x) = Zide{o:k} ¢iy(®1, ..., xq—1)zy and use induction on d.)

Exercise 6.8 (Bicubic Hermite). Let K be a rectangle with vertices {z; }1<i<4, P := Qg3,2, and
Y = {p(2i), 02, 0(2:), 00, p(2i), 02 ., 0(2i) }1<i<a. Show that (K, P,¥) is a finite element. (Hint:
write p € Q32 in the form p(x) = >, o1,y %ij0i(21)0;(22), where {01,...,64} are the shape
functions of the one-dimensional Hermite finite element; see Exercise 5.4.)

Exercise 6.9 (Face unisolvence). Prove Lemma 6.15. (Hint: use the hint from Exercise 6.7.)

Solution to exercises

Exercise 6.1 (Integrated Legendre polynomials). The space ]P’,(CO) has dimension k£ — 1. Set

0,(t) = ffl Li(t")dt’ for all I € {1:k—1}. These functions are in ]P’,(CO) since 6;(—1) = 0 by
construction and 6;(1) = 0 by the orthogonality property of Legendre polynomials. It remains to
show that the functions {0;(t)}ie(1.x—1) are linearly independent. Assume that } ;.. 1y cu6;
vanishes identically. Taking the derivative, we infer that (1:k—1} a;L; vanishes identically,
which implies oy = 0 for all [ € {1:k—1}.
Since both sides of (6.6) are polynomials of order (m+1) vanishing at £1, it is enough to prove that
both polynomials have the same moments against polynomials in P,,_o and that their derivative
at t = 1 coincides. For all u € P,,_o, we observe that
L 1=t (ut)dt =0
_% 71( - ) mfl( ):u() — Y%

and integration by parts leads to

/11 </t1 Lin(s) ds) p(t)dt = — /11 Lin(t) (/tl 1(s) ds) ds =0,
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since the integrated Legendre polynomial vanishes at +1 and since ffl wu(s)ds is in Pp,—1. Fur-
thermore, considering the derivative at ¢ = 1, that of the left-hand side of (6.6) is L,,(1) = 1,
whereas that of the right-hand side is —5-(—2).J" | (1) = 1. This completes the proof.

2m

Exercise 6.2 (Gauss—Lobatto). (i) We already know from Lemma 6.4 that m—1 < kg < 2m—1.
Ifm=2thenm—1=2m—3and kg > 2m—3. If m > 3, let p € Py,,,_3 and using the Euclidean
li

polynomial division, write p = p;(1 — t2)L}, _, + p2 with p; € P,,_3 and ps € P,,_;. Integrating
by parts, we infer that

| ma=2r od == [ @0 -£) Lo a o

—1

since (p1(£)(1 — t2))/ is in P,,_o. Therefore, we obtain

[ o= [ mod= 3 wme) = ¥ @,

-1 le{l:m} le{l:m}

where we used that p2(§) = p(§) for all I € {1:m}. Hence, kg > 2m — 3 for all m > 3 as well. For
all m > 2, the quadrature is not of higher order since it does not integrate exactly the polynomial
(1 —t%)(L.,_,)* which is of degree (2m — 2) (the quadrature approximates its integral by zero).
(ii) Following the hint, we observe that the polynomial L/, | (¢)(14¢)L}, ,(t) is of degree (2m—3),
so that it is integrated exactly by the quadrature. Since this polynomial is nonzero only at &, = 1,
we infer that

1 2 2
| 00+ 00 = 2L, (1) =
1

Moreover, integrating by parts leads to

/_ L (00 + 0L (1)t = 2L (DL a (1) = m(m = 1),

since the polynomial (L, ;(£)(1 + t))/ is of degree (m — 2). Combining the above two identities
proves that w,, = ﬁ The proof that w; = m is similar and consists of using the
polynomial L’ _,(¢t)(1 —¢)L!, _,(t) (one can also invoke a symmetry argument).

(iii) Let m > 3 and ! € {2:m—1}. Applying (6.3a) at t = & with the index m—1 yields § L,,—1(&) =
Ly—2(&) since L. _1(&) = 0. Applying (6.3b) leads to (m — 1)Ly—2(§) + &L, (&) = 0.
Combining these two equalities, we infer that L! (&) = (1 — m)Ly—1(&). Applying (6.3¢)
at t = & with the index m — 1 finally yields (1 — &)L, _1(&) + m(m — 1)Ly,—1(&) = 0 since

L;nfl(gl) =0.

Let us now consider the two polynomials £;(¢) and Lim 1 () L @ These polynomials are of

=& Ly
degree (m — 3), they vanish at the (m — 3) interior Gauss—Lobatto nodes except at & where they
take the common value 1. Hence, these two polynomials coincide identically.
Let us finally prove (6.11). Since the polynomial £;(t)(1 — t)L!,_o(t) is of degree (2m —
5), it is integrated exactly by the quadrature. Using the quadrature and the identity £;(t) =

L'Im.fl(t) 1 :
—ice T @) Ve infer that

ALI(=1) Ly, _»(=1)
m(m — 1)

(m—=1)(m—2)

(1+ &)Ly, 1 (&)

1
/_ L)1 = 0Ll 5(0)dt = (1 = §) i 5 (6) +

=w(l1-&)L,, (&) +
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where we used that £;(—1) = — L;'”bl:él_l) — @y together with the fact that L, (=1L _,(-1)=
m—1

—2m(m—1)*(m—2). Moreover, since the polynomial (£;(t)(1 —t))/ is of degree (m—3), integrating
by parts and using the L2-orthogonality property of L,,_» leads to

/1 Li(t)(1 =)L), _o(t)dt = —2L;(=1)Ly—2(—1)
1

m(m —1)

T+ &)L (&)

Combining the above two equalities leads to
2(m —1)
I+ &)Ly, (&)

We conclude using the identities L], (&) = —(m — 1)Ly,—1(&) and (1 — &)L _1 (&) = —m(m —
) Lm-1(&)-

(iv) Let k := m — 1. To prove that ||-||¢ defines a norm on Py, we need to prove that (p,q)e :=
Zle{l;m} wip(&)q(&) is an inner product on P,. The only nontrivial property is definiteness.
Assume that ||p||l¢ = 0. Since all the weights are positive, we have p(§) = 0 for all [ € {1:m}.
Hence, p = 0 since p vanishes at m = k + 1 distinct points and p € Pg. Let now p € Py. Following
the hint, let us write p = prp_1 + ALy with pgx—1 € Pr_1 and A € R. The L?-orthogonality of
Legendre polynomials implies that

wi(l =&)Ly, _o(&) =

1
2
(02 dt + N2 .
PO dE N

Ipl172x) = / (pr—1(t) + ALg(t))* dt = /

—1 —

Since p?_, is of degree 2k — 2 = 2m — 4 and the quadrature is of order 2m — 3, we infer that

f_llpk_l(t)2 dt = ||px—1]|Z. Moreover, owing to (6.11), we infer that ||L[|7 = 2. Hence, we have

k
2k +1

11122y = llpr—1lIF + A2 L I3

In addition, since the polynomial py_1(¢)Ly(t) is of degree 2k — 1 = 2m — 3, we infer that 0 =
S k1 () Li(t) At = Y g1y wipk—1 ()L (&), so that

IpllE = wilpe-1(&) + AL(&))* = [lpe-1llF + NI LxIZ.
le{l:m}

Combining the above two equalities proves the assertion.

Exercise 6.3 (Gauss—Radau). (i) We already know from Lemma 6.4 that m—1 < kg < 2m—1.
Let p € Py,—2 and write p = p1(Lyy — Lim—1) + p2 with p1 € P9 and py € Pp,—1. Owing to
the L2-orthogonality of the Legendre polynomials, the fact that the quadrature is at least of order
(m — 1), and the definition of the Gauss—Radau nodes (which implies that p(&) = pa2(&) for all
I € {1:m}), we infer that

1 1
/p(f)de/lpz(t)dtZ Yo owp(@) = Y ww&)

-1 - le{l:m} le{l:m}

Hence, kg > 2m — 2. The quadrature is not of higher order since it does not integrate exactly the

() —Lm-1(t))?
t—1

polynomial (Lm which is of degree (2m — 1) (the quadrature approximates its integral
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by zero).
(ii) The polynomial ML' _1(t) is of degree (2m — 3), so that it is integrated exactly by
the quadrature. Since this polynomial vanishes at all the Gauss—Radau nodes except at &, = 1,

using I’Hopital’s rule we infer that

m2(m —1)
—

JREUEZSUR

. i1 mo1(t) dt = wp (L7, (1) = L7, 1 (1)) Ly, (1) = wm

Ly(t)—Lm—1(t) )/
t

Moreover, since the polynomial ( is of degree (m — 2), integrating by parts leads to

1 1
Lp(t) — L1 (¢ L (t) — L1 (t
/ ®) 1()L;n_1(t)dt: ®) 1()Lm,l(t) =m—1.
1 t—1 t—1 .
Combining the above two equalities shows that w,, = %

(iii) Assume m > 2 and let [ € {1:m—1}. Applying (6. 3a) at t = & and since Ly, (§) = Lim—1(§),
we infer that L (¢ — 1)L}, (&) = (& —1)Lm(&). Proceeding similarly with (6.3b) leads to L1, (&) =
mLm (&) + &L, _1(&). Combining the above two equalities proves that L, (§) = —L),_1(&).

Let us prove that £;(t) = L”El(?;)(Lt’jgll)(t) 72L1,7§l @y Both functions are polynomials of degree
m—1

(m — 2), they vanish at the (m — 2) interior Gauss—Lobatto nodes except at & where they take the

common value 1 since L] (&) — L, _1(&) = —2L),_1(&), as we just showed above. Hence, these

two polynomials coincide identically.

Let us finally prove (6.12). Since the polynomial £;(¢)(1 —¢)L], ;(¢) is of degree (2m — 3), it
is integrated exactly by the quadrature. Using the quadrature, we infer that

/ L)1~ D)L (1)t = w1 — &)L ().

—1

Moreover, since the polynomial (El(t)(l — t))l is of degree (m — 2), integrating by parts in time
and using the L2-orthogonality property of L,,_; leads to

L L)1 =)L), (t)dt = =2L;(=1)Lyp—1(—1)
Lyp(-1)—Ly-1(—-1) 1-¢

=TT e e @ ety
1-g 1
1+§l ml(él)

where we used the above expression for £;(t) and that L,,(—1) = (—=1)™. Combining the above
two equalities proves the assertion.

Exercise 6.4 (Inverse trace inequality). Using the norm equivalence from Exercise 6.2, ex-



32 Chapter 6. One-dimensional finite elements and tensorization

tended to R? by tensorization, we obtain

”UH%Q(K) < Z wav(aa)?® = Z Z wav(aq)?

Otelk,d ie{l:d} acly g

a; €{1,k+1}
2
== P D VRN 01 CH KT,
i€{l:d} 2€lkq J#i
a;e{1: k+1}
d—1
2 1 ,
< RETT) E: <2+_E) [vlZ2({oi=21})

ie{l:d}

2 1 d—1
— 2
i (241) Pl

with w, = Hje{l:d} Wa,; -

Exercise 6.5 (Lagrange mass matrix). Let k := ng, — 1. Since the set { L., }meo: 1) is a basis
of Py, letting o, (p) := p(a;j_1) for all j € N, the generalized Vandermonde matrix with entries

Vi = Uj((m;l )%Li_l) is invertible. Owing to Proposition 5.5, we infer that

=Y 0 (U5 L,

JEN

Hence, we have

1
My, = / @l @ ar

S 0 (B A [ peaonewa
m,leN -1

= > WV iV il = (VIVT)
m,leN

Exercise 6.6 (Canonical hybrid element). For k = 1, the dofs define a Lagrange finite element.
For k > 2, we observe that dim(Px) = k+ 1 = card X and that a polynomial p € Py verifying
o1(p) = 0 for all I € {0:k} is such that p(+1) = 0, so that p(t) = (1 —t2)q(t) with ¢ € Pr_5. Taking
the moment of p against ¢ yields ¢ = 0.

Let us verify that the shape functions are

tott) = 1 000,
Bt) = —— (1 =) I (1), Vie {1k -1},
Cl—1,1,1

0u(0) = 31+ DI ()

Clearly, 01,(0p) = 0(1) = 0 and

00(00) = fo(—1) = EU2710 (1) = (—1)F T (—1)F T = 1
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Moreover, for all [ € {1:k — 1}, we have

— 1
o1(60) = % /+ (1 —t)J2° (1) I, (t) dt.

—1

But J11;11 € Pr_os = span{J&’O, .. .,J,ifz} so that g;(6p) = 0. In conclusion, o;(6y) = ;o for all
[ € {0:k}. A similar argument shows that o;(0;) = &, for all I € {0:k}. Let | € {1:k—1}. Then
we have 0 (0;) = 01(0;) = 0 by definition. Moreover, for any I’ € {1:k — 1}, we infer that

1 +1 Cl—
ou(fr) = ——— / (1 —t)270 () JE () dt = ﬁézuuil.
—1,1, 71 — 44

Hence, 0'1(91/) = 51/_]1. In Conclusion, 0'1(91/) =y for all e {Ok}

Exercise 6.7 (Qiq Lagrange). Since cardY® = dim(Qgq) = (k + 1)?, we have to verify that
a polynomial ¢ € Q4 vanishing at all the Q4 Lagrange nodes vanishes identically. We do this
by induction on d. The assertion holds true for d = 1 (where Pr1 = Qp1). Let now d > 2.
Using the hint, we have q(x) = 3=, c(0.5} %ia (21, - xg-1)z. Consider the face {xq = 2} of
the cuboid K. This face is a cuboid in R4~!, and the Qr,q-Lagrange nodes located on this face are
the Qg q—1-Lagrange nodes of this face. Let b; := (b; 1, .. ., bi)d)T be one of these nodes. Let us set
Bi := (bi1,..-,bia—1)". Since the function z4 Zide{O:k} i, (Ei)xfld is in Qg1 and vanishes at
(k+1) distinct nodes in [z, 2], it is identically zero. This shows that all the functions ¢;, vanish
at all the Lagrange nodes of the face. By the induction hypothesis, all these functions vanish
identically.

Exercise 6.8 (Bicubic Hermite). First, we have card¥ = dim(Qz2) = 16. Thus, it re-
mains to show that if p € Q32 is such that all its dofs vanish, then p = 0. Writing p in
the form p(x) = >, ic1.4y Vijti(21)0;(z2) where {61,...,04} are the shape functions of the
one-dimensional Hermite finite element, we first infer using the dofs associated with the values
of p and its first-order derivatives that v;; = 0 if ¢ € {1,3} or j € {1,3}. Moreover, since
92 ,.p(x) = 2 ijeqi:ay Y0 (x1)0}(22), we infer using the dofs associated with the values of the

second-order derivatives of p that y22 = 724 = Y42 = ya4 = 0. In conclusion, we have shown that
p=0.

Exercise 6.9 (Face unisolvence). Without loss of generality, we consider the face F' contained
in the plane {zq = z; }. Let {a;}icn» be the Lagrange nodes located on F. It is clear that if
pr = 0, then o;(p) := p(a;) = 0 for all i € Np. Let us prove the converse. Let us denote by
a; € R?! the point with Cartesian components (a; 1, ...,a;4-1), where (a;1,...,a;q) are the
Cartesian components of a;. Note that a; 4 = 2, since a; is on F'. Let p € Qg 4 and assume that
p(a;) = 0 for all i € Np. Since p can be written as p(x) = > c(o.qy ¢ (21, - -+, Ta—1)(Ta — z7 )
where ¢; € Qg q4—1, the condition p(a;) = 0, for all i € Np, implies that go(a;) for all i € Np.
Consider the cuboid F' := H;l;ll [z;,z;r] in R%-L. Consider the dofs X := {0:(q) = q(@;) }iens-
From Proposition 6.14, we know that (ﬁ,@k,d_l, f]) is a finite element, so that we can conclude
that go = 0. This, in turn, implies that pjp = 0.
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Chapter 7

Simplicial finite elements

Exercises

Exercise 7.1 (Lagrange interpolation). Let Zx be the P; Lagrange interpolation operator on
a simplex K. Prove that || Zx (v)||co(x) < ||v]lcox) for all v € CV(K). (Hint: use the convexity of
K and recall that K is closed.) Does this property hold true for Py Lagrange elements?

Exercise 7.2 (Geometric identities). Prove the statements in Remark 7.6. (Hint: use the
divergence theorem to prove (7.1).)

Exercise 7.3 (Barycentric coordinates). Let K be a simplex in R?. (i) Prove that \;(x) =

1- %nmﬂ.-(m — z;) for all x € K and all 7 € {0:d}, and that V\; = —%n;{m. (ii) For all

x € K, let K;(x) be the simplex obtained by joining @ to the d vertices z; with j # ¢. Show that
K;(x ees .

Ni(z) = . |f(<|)|' (iii) Prove that [, Aide = ZA5|K| for all i € {0:d}, and that [, Aids = }|F]

for all j € {0:d} with j # i, and ny Aids = 0. (Hint: consider an affine mapping from K to the
unit simplex.) (iv) Prove that if h € RY satisfies DA;(h) = 0 for all i € {1:d}, then h = 0.

Exercise 7.4 (Space Py ). (i) Give a basis for Py 4 for d € {1,2,3}. (ii) Show that any polynomial
p € P.q can be written in the form p(z1,...,2q) = r(z1,...,24-1) + xaq(x1, ..., xq), with unique
polynomials r € Py 4—1 and ¢ € Py_1 4. (iii) Determine the dimension of Py 4. (Hint: by induction
on d.) (iv) Let K be a simplex in R%. Let F, be the face of K opposite to the vertex zg.
Prove that if p € Py 4 satisfies pjp, = 0, then there is ¢ € Pr_14 s.t. p = Aog. (Hint: write
the Taylor expansion of p at z4 and use (7.2) with z4 playing the role of zy.) (v) Prove that
{Ag”...)\gd | Bo+ ...+ Ba =k} is a basis of Py 4.

Exercise 7.5 (Nodes of simplicial Lagrange FE). Let K be a simplex in R?, and consider the
set of nodes {a;};cn with barycentric coordinates (%, ces %), Yig, ... iq € {0:k} with ig + ...+
iqg = k. (i) Prove that the number of nodes located on any one-dimensional edge of K is (k + 1)
in any dimension d > 2. (ii) Prove that the number of nodes located on any (d — 1)-dimensional
face of K is the dimension of Py 4_1. (iii) Prove that if & < d, all the nodes are located on the
boundary of K.

Exercise 7.6 (Hierarchical basis). Let k£ > 1 and let {6y, ..., 0;} be a hierarchical basis of P, ;.
Let {Xo, ..., Aq} be a basis of P; 4 and assume that ); : R? — R is surjective for all i € {0:d} (i.e.,
\; is not constant). (i) Show that the functions (mapping R? to R) {6y(\;), ..., 0k()\;)} are linearly
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independent for all i € {0:d}. (Hint: consider a linear combination »2;c .5y c0i(Ai) € Py g and
prove that the polynomial 37, .y w6y € Pr,1 vanishes at (k+ 1) distinct points.) (ii) Show that
the functions (mapping R? to R) from the set Sk 4 := {0a; (A1) - .- 00, (Ma) | (1, ... aq) € N |a| <
k} are linearly independent. (Hint: by induction on d.) (iii) Show that (Sk,q)k>0 is a hierarchical
polynomial basis, i.e., Sk,q C Skt1,4 and S 4 is basis of Py 4. (Note: the (d + 1) vertices of K do
not play here the same role.)

Exercise 7.7 (Cubic Hermite triangle). Let K be a triangle with vertices {zg, z1, 2z2}. Set 3 :=
{p(2:), 0u,0(2:), Oz, p(Zi) bo<i<a U {p(ak)}, where ar is a point inside K. Show that (K, P52, )
is a finite element. (Hint: show that any p € P35 for which all the dofs vanish is identically zero
on the three edges of K and infer that p = cA\gA1 A2 for some ¢ € R.)

Exercise 7.8 (P, 4 canonical hybrid FE). Compute the shape functions of the Py 4 canonical
hybrid finite element for the unit simplex for d = 1 and d = 2 (provide an expression using the
Cartesian coordinates and another one using the barycentric coordinates).

Exercise 7.9 (P, Lagrange). Using the Lagrange nodes defined as in Proposition 7.11, give
the expression of the P4 » Lagrange shape functions in terms of the barycentric coordinates.

Exercise 7.10 (Quadratic Crouzeix—Raviart). Let K be the unit simplex. Let a € (0,1).
Let g1 := (,0), g2 := (1 — ,0), g3 :== (1 —a, ), g4 := (o, 1 — @), g5 := (0,1 — ), g6 := (0, ).
(i) Compute A\o(gj)? + Ai(gj)? + A2(gj)? for all j € {1:6}, where \g, A1, A2 are the barycentric
coordinates of K. (ii) Let 0; € L(P22;R) be defined by o;(p) := p(g;) for all p € Py, and
J€{1:6}. Let ¥ := {0} }cq1:6}- Is the triple (K, P2 2,%) a finite element? (iii) Let F;, i € {0:2},
be one of the three faces of K. Let T, : [—1,1] — F; be one of the two affine mappings that realize
a bijection between [—1, 1] and F;. Let {qo, ¢1} be a basis of Py 1. Let waiyr € L(P22;R), i € {0:2},
k € {0:1}, be defined by wa; ik (p) := ﬁ Ir. (QkOTF_'il)pdS for all p € Pa . Let ¥ := {w;},c(0:5}-
Is the triple (K,P3 2, X) a finite element? (Hint: consider the points Tw, (&x), i € {0:2}, k € {0:1},
where &, & are the two nodes of the Gauss—Legendre quadrature of order 3, then use Step (ii).)

Solution to exercises

Exercise 7.1 (Lagrange interpolation). Since K is convex and closed and since Zx (v) is affine,
Tk (v) reaches its extrema at a vertex of K, where its value coincides with that of v. This property
fails for piecewise quadratic functions since the basis functions can take negative values.

Exercise 7.2 (Geometric identities). It suffices to prove that the family {ng|r,}icf1:qy is
linearly independent. Let h € R? be s.t. Zie{l:d} hing r, = 0. Taking the ¢%(R%)-inner product
with (z; — 2z0) and observing that ngr,-(z; — 20) = 617-M we infer that h; = 0 for all ¢ € {1:d}.

[Fif
Let us now prove (7.1) Let h € R%. We observe that

O:/ V-hdx:/ h-ngds
K oK

Z |Filh-ngp, = h- Z |Eilnkr |

i€{0:d} i€{0:d}



Part II. INTRODUCTION TO FINITE ELEMENTS 37

yielding the first geometric identity. For the second one, integration by parts yields for all hy, ho €
R,

|K|h1-h2:/ V(hi-x)hydo = Y
K i€{0:d}

> |El(hicr)(hangr)
i€{0:d}

/. (hi-x)(hank|p,)ds

hi | > |Fil(er —ex) @ nip, | -ho,
i€{0:d}

where we used that V(h;-x) = hq, the definition of ¢p,, and the first geometric identity to introduce
cx. Since the vectors hy, ho are arbitrary in R?, we infer the second geometric identity.

Exercise 7.3 (Barycentric coordinates). (i) Since )\; is affine and constant on Fj, its gradient
is constant and collinear to ng|g,. Using A;(2z;) = 1, we infer that \;(x) = 1 — cing|p,-(T — 2;).
We obtain ¢; by using that |K| = L|F[(ngp-(z; — z;)) for all j # i. The expression for the
gradient follows immediately.

(ii) The function IK&&T)‘ is in Py 4 and coincides with X;(z) at the (d + 1) vertices of K, so both
functions coincide everywhere. Another way to look at this problem consists of observing that

Yicqi:ay (i — Z0)Ai(®) = @ — 20, e,

Z1,1 — 20,1 --- Zd,1 — 20,1 )\1(33) T1 — 20,1
. . . - . )
21,4 — 20,d  --- Zdd—20d) \Ai(x) Td — %0,d
where (21, ..., 2. q4) are the Cartesian coordinates of z;. Cramer’s rule implies that
Ni() = det(z1 — z0,..., & — 20,...,2d — 20)
i =
det(z1 — 20, ..., 24 — 20)
where (21 — 20, ..., — 20, ..., 24— 20) is the matrix with the column vectors z; — 2o, ...,  — 2o,
..., Zq — 2o with the vector  — z( in the i-th column. Since |K| = |det(z1 — 20, ..., 24 — 20)| and
|K;(x)| = |det(z1 — z0,...,& — 20, ..., 24 — 20)|, we infer that \;(x) = %

(iii) Consider an affine transformation, say Tk, mapping K to the unit simplex, say K. Then
f rAidr = % f P A; dZ and ); is the barycentric coordinate associated with the vertex Ty (z;) in
K. A direct computation shows that |K| = 4 and [z X dZ = (dil)!. Hence, [, \idz = 75 |K].
The proof for the integral of \; on the faces of K is similar.

(iv) Writing h := 5" hj(z; — zo), we infer that for all 7, j € {1:d},

je{1:d}

D/\Z(h) = Z th)\i(zj — Zo)

je{1:d}
- Z hj(Ai(z5) = Ai(20)) = Z hjdij = hi,
je{1:d} je{1:d}

since \; is affine, \;(2;) = d;; and A;(z9) = 0. Hence, h = 0.
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Exercise 7.4 (Space Py 4). (i) For d = 1, a basis is
{1,z,2%}.

For d = 2, a basis is
2 2
{1,(E1,(E2,(E1,ZC1ZC2,I2}.

For d = 3, a basis is
2 2 2
{15Ilv'rQ;I:iaIlv'rlIQ;IlIZi;I25I2I35I3}'

(ii) Writing « := (o, ag) with o’ € N¢~1 for a multi-index o € N? and writing = := (2', z4) with
x' € R4 for & € R%, we have

p(ilt) = Z aax™ + Z aax™

a€Ay, q,0q=0 a€Ay q,0q>1
= Z a(alyo)(:n/)o‘ + x4 Z alg_i_pyd.’lt'a ,
a'€Ag a1 BEAL_1,4
where in the second sum we introduced the multi-index ~4 := (0,...,0,1) € N%. This means that

p(x) = r(x') + xqq(x) with r € Py q_1 and g € Px_1 4. Uniqueness of r and ¢ results from the fact
that if » + x4q vanishes identically, then taking x4 = 0 first yields r = 0 so that x4q = 0, whence
we infer that ¢ = 0.

(i) For d = 1, dimPy 1 = (k+ 1) = (lerl) Assume that for d > 2, dimPy 41 = (kgiil). For
kE=1,dimP; 4= (d+1) = (1;‘1) since there is at most one nonzero index ¢ for j € {1:d}. Owing
to Step (ii), we have dim Py, g = dim Py, 41 + dimPy_4 4, so that

. k+d—1 k+d—1 k+d
dlrn]P)kﬁd: d—1 + d = d .

(iv) Writing (7.2) with 24 playing the role of z, we infer that h := & —za = >, . g1y Ai(@) (2 —
z4) for all x € R?. Writing the Taylor expansion of p at z4 of order k, we infer that

p@)=pz)+ Y D k)= Y D) (bR,
le{1:k} le{t:k}

since p(z4) = 0. Let M; := {0:d — 1}'. Using the multilinearity of the Fréchet derivative, we infer
that

D'p(za)(h, ..., h) = > Ao XNy Qs

HEM,
where €, = D'p(za)(zu, — Zd,- -+, 2, — Zd) is a real number. Since P, = 0, we infer that
D'p(zq) (2, — Zdy - - - s 24, — 24) = 0 if all the indices p1, . . .,y are not zero, because D'p(z4)(2,, —

Zd,..., %y — Z4) is a tangential derivative along Fj in this case. Let M} = {p € M;|3j, €
{1:1}, pj, = 0}. The above argument implies that

D'p(za)(h,...sh) = > N A Q=20 > | T M | Q-

HEM HEMT \J#iu
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Hence, p = \oq with ¢ = Zle{l:k} l—l!zuer (H#ju /\M) ., and since the barycentric coordi-
nates are affine functions, we infer that ¢ € Py_; 4.
(v) It suffices to prove linear independence since

card({(Bo, -+, Ba) € N1 | By + ...+ Ba = k}) = <k _]: d) = dim(Py,a).

Assume that 35 1g,..5, )\go e /\gd = 0. Restricting this function to the face Fy where \¢ vanishes
identically and using induction on d, we infer that ug,. s, = 0 whenever 8y = 0. If k = 1, we
infer that uyg...0Ao vanishes identically, so that p19..0 = 0. If kK > 2, we can factor out Ay and use
induction on £ to conclude that pug,..g, = 0 for all 55 > 1.

Exercise 7.5 (Nodes of simplicial Lagrange FE). (i) Consider a one-dimensional edge of K.
There are two distinct integers ji, jo € {0:d} such that this edge connects the vertices z;, and z;,.
Then the nodes located on the edge correspond to setting i; := 0 for all j € {0:d} \ {j1,72}. In
other words, such nodes correspond to the choices ji,jo € {0:d} and j; + j2 = k, and there are
(k + 1) such choices.

(ii) Consider now a (d — 1)-dimensional face of K. There is an integer j € {0:d} such that all the
E+d—-1

d—1 ) choices for these nodes,

nodes located on this face are such that i; = 0, and there are (

which is the dimension of Py 4—1.
(i) Assume k < d. This means that at least one index i;, for j € {0:d}, vanishes. Then the
corresponding node is located on the (d — 1)-dimensional face of K opposite to the vertex z;.

Exercise 7.6 (Hierarchical basis). (i) Let ap,...,ar € R and assume that agfo(N\i(x)) +
oot agfp(Ni(z)) = 0 for all © € RY Let p,...7; be (k + 1) distinct real numbers. Since
X RY 5 Ris surjective, there are (k + 1) points xg,...x) in R4 such that Xi(x;) = 2y for all
1 € {0:k}. Hence, agbfo(x;) + ...+ agbi(z;) =0 for all I € {0:k}. This means that the polynomial
apbo + ... + agby € Ppq vanishes at (k + 1) distinct points. Hence, this polynomial vanishes
identically. Since {fo, ..., 0k} is a basis of Py 1, we infer that ag = ... = ay, = 0.

(ii) We prove the statement by induction over d > 1. The statement has been proved for d =1 in
Step (i). Assume now that d > 2. Recall the set Ay 4 from §7.3. Let {aa}aca, , and assume that

D> e, (Mi(2)) . 00,(Na(x) =0, VR

aGAk,d

We infer that

0= 3 @) x [ S dabe,(Mi(@). b0, (i (@) |

aqg€{0:k} lalg—1<k—aq
with |alg—1 = a1 + ...+ ag_1. Since {\g... g} is a basis of Py 4, there are zo, ..., 2zq € R? such
that
x = Z zihi(z), Va € RY,
i€{0:d}
and this representation is unique. Let y1,...,y4—1,2 be d arbitrary real numbers and let « :=

ZaT + ) ic(1.q-1y Zi¥i- Then A (x) =y1,..., Aa—1(®) = ya—1, Aa(x) = x. We infer that

0= Z Oy (JJ) X Z aaba, (yl) s ead—l(yd—l) )

ag€{0:k} lalg—1<k—aq
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for all z € R. Since {6o, ..., 0k} is a basis of Py 1, we conclude that

0= Z aaoal (yl) s 9060171 (ydfl)v

ai+...tag_1<k—ag

for all (y1,...ya—1) € R¥! and all ag € {0:d}. Let H be the affine hyperplane passing through
the points zg,...,24—1 and let T : R4~ 5 H be such that

T(y) =z + Z yi(zi_zo)—<1_ Z %)zo—i- Z YiZi.

ie{l:d—1} ie{l:d—1} ie{l:d—1}

The identity @ = >, (. 4y 2iAi(x) obtained above implies that Ao(T'(y)) = 1 — > ;c1.q-13 ¥i
and \;(T'(y)) = y; for all i € {1:d—1} (note in passing that A\¢(T'(y)) = 0). Let us set Ai(y) =
Ai(T(y)). It is clear that the set {Xo,...,Aq—1} is linearly independent. Moreover, this set has
cardinality d = dim Py 4_1, so that {Xo, ..., A¢—1} is a basis of P; 4—;. Finally, the above argument
shows that

0= Z aaeal (:\1 (y)) cee ead—l (:\dfl(y»a

|ala—1<k—aq

for all (y1,...y4-1) € R and all ag € {0:d}. The induction hypothesis implies that a, = 0.
(iii) We have proved in Step (ii) that Sy g is linearly independent. Moreover, card(Sq) =
card(Ag,q) = (kzd) = dim(PPy,q). Hence, Sk.q is a basis of Py 4. Finally, it is clear that S, 4 C
Sk+1,d, 1.e., S,q is a hierarchical basis of Py, 4.

Exercise 7.7 (Cubic Hermite triangle). We first observe that card¥ = dimP3 2 = 10. Let
p € P32 be such that all its dofs vanish. Restricting p to the face F; of K, i € {0,1,2}, we obtain
a polynomial in P3 ; that vanishes at the two endpoints as well as its derivative. Hence, p vanishes
identically on Fj. Using the result for Fy implies that p = A\ogo with go € P2 2. Since gy vanishes
identically on Fy, go = Ai1¢q1 with g1 € Py 2, and reasoning similarly for F3 yields p = cAoA1 A2 for
some ¢ € R. Evaluating p at the interior point ax for which all the barycentric coordinates are
nonzero, we infer that ¢ = 0.

Exercise 7.8 (P2 4 canonical hybrid FE). (i) Let us start with the unit simplex in dimension

one, i.e., K := [0,1]. Let us set zyp := 0 and 21 := 1. Let 6y(z) := (1 — z)(1 4+ ax). Observe

that 6p(z9) = 1 and 0y(z1) = 0. We now compute a so that fol Oo(z)dz = 0 (here we take

Po := span{1}). Then 1 — % +a(3 — 1) = 0 gives a = —3. Hence, fo(x) = (1 — z)(1 — 3x).

Similarly, by symmetry, we have 61 (z) = (32 — 2) (just replace z by 1 — 2 in the expression of

Oo(x)). For the third shape function, we have 02(z) = ax(1—=x). The constraint a fol z(l—z)de =1
11

gives a(5 — 5) = 1. Hence, @ = 6 and 63(x) = 62(1 — x). In terms of the barycentric coordinates

Xo(z) := 1 —z and A\ (x) := z, we obtain

Oo =X0(3X0 —2), 61 =XM(BA\ —2), 0 =06\
(ii) Here, we take again Py := span{1l}. Let us set zo := (0,0), z1 := (1,0), and z2 := (0, 1).
Setting fo(x) := (1 — 21 — x2)(1 + awz + brz), we observe that [, 6o(z)dz = 0, O(z1) = 0,
0o(z2) =0, and 6p(z9) = 1. We must also have sz Oo(z)dz =0 = fol(l —x1)(1+axy)dz;. Hence,
a = —3. Similarly, we infer that b = —3, which proves that 0y(x) = (1 —21 —22)(1 —3z1 —3z2). By

symmetry, we obtain 0 (x) = x1(3z1 — 2) (replace 1 — 21 — x2 by 21, or just do the computation)
and Oz(x) = x2(3xz2 — 2) (replace 1 — 1 — x3 by 2, or just do the computation). We now
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compute 03(x) = axqxe with the constraint ﬁ fFo Os(x)dx = 1. Hence, afol z1(1 —z1)dzy =1,
which gives a = 6, i.e., O03(x) = 6x122. By symmetry, we obtain 04(x) = 6x2(1 — z1 — x2) and
Os(x) = 621 (1 —2x1 —x2). In terms of the barycentric coordinates A\g(x) := 1 —x1 — 22, A\ (x) = 271,
and \a(x) := xo, we obtain

B0 = Xo(Bho —2), 61 =X (3N —2), 02 = A2(3)\2 —2),
93 = 6)\1/\2, 94 = 6)\0/\2, 6‘5 = 6/\0)\1.

Exercise 7.9 (P,. Lagrange). Let us use the notation from Proposition 7.11, that is, the

Lagrange nodes are defined by a. := 2o + G- (21 — 20) + (22 — 20) with a = (a1, 2) and

0 < a3 +a < 4. Let )\; be the barycentric coordinate associated with the vertex z; for all
1 € {0,1,2}. Then the shape functions associated with the vertices are

fo0() = $ho(ANo — 3)(2ho — (A — 1),
Iao(@) = Thi(AN —3)(2A ~ (AN — 1),
Oo.a(x) = %)\2(4/\2 —3)(2A2 — 1)(4N2 — 1).
Those associated with the first edge (connecting z1 to z2) are
01 () = ?Amml S — 1),
O22(x) = A A2 (4N — 1)(4X2 — 1),
br.5(x) = 13—6A1A2(2A2 S )4 — 1),
Those associated with the second edge (connecting z2 to zg) are
fo3(@) = S Aoda(Zha — 1)(4 — 1),
Oo.2(x) = 4XoA2(4No — 1)(4A2 — 1),
o () — ?Ammo S 1) (x — 1).
Those associated with the third edge (connecting zg to z1) are
br.0(x) = 2—6/\0/\1(2)\0 S )4 — 1),
O2.0(x) = 4XoA1(4ho — 1)(4N — 1),
f0(2) = S Ao (2 = 1)(4 — 1),
Finally, those associated with the three internal Lagrange nodes are

6‘171(113) = 32/\0/\1/\2 (4/\0 — 1),
6‘271(113) = 32/\0/\1/\2 (4/\1 — 1),
9172(.’13) = 32AOA1A2 (4A2 — 1)

Exercise 7.10 (Quadratic Crouzeix—Raviart). (i) We observe that

Mo(95)* + M(g;)” + da(g)® =o” + (1 — ), Vje{1:6}.
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(ii) Since the nonzero polynomial g(x) = \o(z)? + A (x)? + Xa(z)? — o + (1 — a)? is such that

oj(q) = 0 for all j € {1:6}, we conclude that the unisolvence property does not hold. Hence,

(K,P39,%) is not a finite element.

(iil) Let & := —@, 1= \/Tg be the two nodes of the Gauss—Legendre quadrature of order 3

and let wg = wy := 1 be the corresponding weights (see Table 6.1). Let as;1r := TF, (). Setting
= 2(&+1), we have ay = (@,0), a5 = (1—a,0), ap = (1-a, @), a1 = (o, 1—a), a3 = (0,1— ),
az = (0,a). Let p(x) := Xo(x)? + A1 ()? + Xa(x)? — a? + (1 — «)?. From Step (ii), we infer that
p(a;) =0 for all j € {0:5}. Since the quadrature is of order three, this shows that

1
woitk(p) = E(Wop(a2i+o) +wip(azi+1)) =0,

for all 4 € {0:2} and all k£ € {0:1}. Hence, the triple (K,P22,X) is not a finite element.



Chapter 8

Meshes

Exercises

Exercise 8.1 (Curved triangle). Consider the Py transformation of a triangle shown in the
upper right panel of Figure 8.1. Consider a geometric node of K that is the image of the midpoint
of an edge of K. Show that the tangent vector to the curved boundary at this node is collinear to
the vector formed by the two vertices of the corresponding curved edge. (Hint: use the properties
of the Lagrange Py shape functions.)

Exercise 8.2 (Euler relations). Let 7;, be a matching mesh in R? composed of polygons all
having v vertices. (i) Show that 2N, — N2 = vN.. (ii) Combine this result with the Euler
relations to show that N, ~ UL_QNV and N, ~ UL_QNV for fine enough meshes where Nf = Nea <
min(Ny, Ne, Ne).

Exercise 8.3 (Connectivity arrays j_cv, j_ce). Write admissible connectivity arrays j_cv and
j—ce for the following mesh where the face enumeration is identified with large circles and the cell
enumeration with squares.

Exercise 8.4 (Connectivity array j_geo). Define a connectivity array j_geo for the following
mesh such that the determinant of the Jacobian matrix of Tk is positive for all the cells.

o

6

Exercise 8.5 (Geometric mapping). Let z1 := (0,0), 22 := (1,0), 23 := (0,1), z4 := (3,1).
Consider the triangles K7 := conv(z1, 22, 24), Ko := conv(za, 23, 24), and K3 := conv(zs, z1, 24).
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(i) Construct the affine geometric mappings Tk, : K1 — Ko and Tk, : K1 — K3 s.t. Tk, (21) = 22,
Tr,(z4) = z4, and Tx,(21) = 23, Tk, (24) = z4. (Hint: Tk, is of the form Ty, (x) = zo +Jx, (x —
z1).) (i) Compute det(Jx,)J ;. and det(J,)J L. Note: the transformation v — det(Jx)J ' voTx
is called contravariant Piola transformation; see (9.9¢).

Solution to exercises

Exercise 8.1 (Curved triangle). To fix the ideas, consider the enumeration of the nodes in K
as depicted in the central panel of Figure 8.2, and consider the tangent vector to the boundary of
K at the node ag = Tk (ag). This tangent vector is collinear to Z?:l a;0z, 1@-(&6), and owing to
the properties of the shape functions of the Lagrange Py finite element, we infer that —0z, 151 (ag) =
0z, 12)\2 (ag) # 0, whereas we have 0z, 121\1 (ag) = 0 for all ¢ € {3,4,5,6}. Hence, the tangent vector is
colinear to 0z, s (ag)(az — aq).

Exercise 8.2 (Euler relations). (i) Separating all the mesh cells, we obtain vN. edges (since
the boundary of each polygon consists of v faces), and this number is equal to 2N, — N since
each edge leads to two edges except the boundary edges, i.e., vN. = 2N, — N2.

(ii) Combined with the Euler relations N. = N, — N, +1 — I and N2 = N2, we infer that

”TQNC =N, — %Nva + I —1, so that N, ~ %N\, for fine meshes. Finally, N, ~ %NC ~ ﬁN\,.

Exercise 8.3 (Connectivity arrays j_cv,j_ce). One possibility is the following connectivity
arrays:

1 2 6 10 2 1
6 8 4 8§ 5 11
jecv=15 8 6], jece=|11 4 9
4 8 3 7T 6 8
2 56 4 10 3

Any permutation of the indices in each line is also legitimate, provided the same permutation is
applied to j_cv and j_ce.

Exercise 8.4 (Connectivity array j_geo). The following array j_geo is such that the determi-
nant of Tk is positive for all the cells:

1 2 6 12 7 14
6 8 4 10 11 18
jgeo=1[]5 8 6 18 13 16
4 8 3 17 9 10

2 5 6 13 12 15

It is possible to apply in each line any cyclic permutation to the indices of the first three columns
and applying the same permutation to the indices of the last three columns.

Exercise 8.5 (Geometric mapping). (i) The geometric mapping Tk, is necessarily of the form
a b
Tk, (x) =z + Ik, (@ — 21), Ik, = (c d) :

since it is affine and Tk, (21) = z2. The requirements T, (z2) = z3 and Tk, (z4) = z4 (this is the
only possibility since Tk, maps the vertices of K; to the vertices of K5) lead to

)6 D-CD-6Go-(

=]
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Hence, we obtain
T — -1 -1
=1 o)

TK%(m) :z3+JK3(w_zl)7 JKS = (

Similarly, let us set
a b
c d

Observing that Tk, (z2) = 21 and Tk, (2z4) = 24, we infer that
D6 )-6 -0 )
0 1
ey = (—1 —1) '
1
1

Hence, we obtain

0

(ii) We have det(Jk,) = 1 and J]I_(i = (_1

det(Jx,) I (Z) = (—uv— v) '

-1 -1
1 0

det(J e, ), <Z> - <_uu_ U) '

B >, so that

Similarly, we have det(Jx,) = 1 and J;}i = ( ); so that
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Finite element generation

Exercises

Exercise 9.1 (Canonical hybrid element). Consider an affine geometric mapping Tk and
the pullback by Tk for x. Let (K, P,X) be the canonical hybrid element of §7.6. Verify that
Proposition 9.2 generates the canonical hybrid element in K. Write the dofs.

Exercise 9.2 (Line measure). (i) Prove Lemma 9.12 for line measures. (Hint: the change
| Tk (@+h7) Tk (2)]l 2

in line measure is %(w) = limy, 0 e s .) (i) Assume that d = 2. Show that
4

|det(JK)|||J;(Tﬁ||p(Rz) = ||IJxT||s2(m2) for any pair of unit vectors (n,7) that are orthogonal.

Exercise 9.3 (Surface measure). (i) Let Tp := Ty p - F— Fand @ € F. Let Jp(Z) €

R4*(4=1) be the Jacobian matrix representing the (Fréchet) derivative DTr(Z). Let gr(Z)
Jr@)"Ip@) € RE-DX(-1) he the surface metric tensor at Z. Prove that \/det(gr(Z)) =
|det(J )| || T 7l|g2- (Hint: use that ds = \/det(gr(z))ds.) (i) Let K :={(1,72,73) € R3[| 0 <
T1,29,T3, T1 + T2 + T3 < 1} be the unit simplex in R3. Let Tk (Z) := (Z1, 72,77 + 73 — 23)". Let
F be the face {Z3 =0} and F := TK(ﬁ). Compute Jr, Ji, gr and verify the identity proved in
Step (i).

Exercise 9.4 (Sobolev spaces). Prove that ¢ is a bounded isomorphism from H'(K) to
HY(K), that ¥ is a bounded isomorphism from H (curl; K) to H(curl; K), and that % is a
bounded isomorphism from H (div; K) to H (div; K).

Exercise 9.5 (Transformation of cross products). Let A be a 3x3 invertible matrix. Prove
that A~T(xxy) = det(A)~!(AzxAy) for any vectors =,y € R3.

Exercise 9.6 ((9.15b)). Prove (9.15Db).

Solution to exercises

Exercise 9.1 (Canonical hybrid element). Let {/im } e {1:ne,} De abasis of Pr_21, {Cn}me ity

~

be a basis of Py_3 9, and {7/)m}me{1:n;’h} be a basis of Py_43. Let K = Tk (K). For the vertex
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dofs, we have with z = Tk (2),
2(v) =0z(voTk) = (vo Tk)(2) = v(2),

for all i € {0:d}. For the edge dofs, letting E = Tk (E), we observe that

o 1 I
) =5, 00 T) = o [ (00 Ti) o o T3 )l

—|l [ 00T (o T3 o Tty 0 Tl

(ftm © ) dl,
= 37 e T

for all m € {1:n% }, where Tk p := Tk o Tz maps R to the line in R* supporting the edge E.
Proceeding similarly for the face dofs and setting F := Tk (F), we infer that

1 _
Ton() = T /F PG 0 Ticly) ds

for all m € {1:n£h}, where we have set Tk r 1= Tk o T which maps R? to the plane in R?
supporting the face F. For the cell dofs, we finally find that

1
7o) = /K Pt o T2 da

for all m € {1:ng, }.

Exercise 9.2 (Line measure). (i) Let E be an edge of K and let Z be a point in the interior of
E. There is no ambiguity to define a unit vector tangent to E at x, say 7 T (note that there are two
choices for 7). Let E := Tk (E). The change in line measure between E and E is by definition

d_ | T (% + hT) — Tk (2)]] 2
dl h—0 AT g2

Using the definition of the Fréchet derivative, we have

di ~n | dl HDTK( )(AT)|[ 2
— T lle| =
dl no0 (A7 2
< |y ITc(@ + %) ~ Tue(@) - DT @)W | _
h—0 ||hT||22

Hence, dl = ||J 7| di.

(ii) When d = 2, the two statements in Lemma 9.12 are identical. Indeed in this case, ds = dI and
ds = dI. Hence, |det(Jx)| 10 % ’l’Lng(Rz) = ||J&xT||¢2(r2). Another (longer) way to proceed consists
of using the cofactor formula for J." % and do the full computation.

Exercise 9.3 (Surface measure). (i) This is a simple consequence of Lemma 9.12. Since ds =
|det(J )| || " |le2 d8, we infer that indeed

det(gr()) = [det (Jx) T Ile=.
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(ii) Using the definition of Tk, we have

; oo oy [1 4437 407
F = 9 F = =~ = ~2|
9%, 2%, A7 14475
and
1 0 0 1 0 23
Jgk=10 1 0|, detJg)=-1, Jg =1[0 1 2
2%, 2T -1 00 -1

By definition, nz = (0,0, —1)T, so that J;(Tﬁﬁ = (=21, —279,1)T. We conclude that

Vdet(gr (@) = \/1+ 437 + 435 = |det (Jx)| | T Al 2

Exercise 9.4 (Sobolev spaces). The assertions are direct consequences of Lemma 9.6 and the
fact that the geometric mapping Tk has bounded derivatives of any order.

Exercise 9.5 (Transformation of cross products). The key is to remember that the mixed
product of three vectors z-(xxy) is equal to det[z, x, y] where [z, x, y] is the matrix with column
vectors z,x,y. We have
2TA T (xxy) = (A712)-(xxy) = det[A "'z, x, y] = det(A~ [z, Az, Ay])
= det(A™1) det[z, Az, Ay] = det(A) 2T (AxxAy).

This proves the expected identity since z is arbitrary.
Exercise 9.6 ((9.15b)). The following holds true:

[E (085 (75))(@)q() dl = ﬁ(v-@%@)(TK(@)W%@)@)HMEHP ai

E

- [ (@o T Gx7p) @0k (@)l

E

- / (5 (v)-75) @) (0)(@) dl.

E
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Chapter 10

Mesh orientation

Exercises

Exercise 10.1 (Faces in 2D). Let Rz be the rotation of angle 5 in R?. (i) Let A be an inversible
2x2 matrix. Prove that A"TRz = ngA. (i) Prove that ®% (Rz(z)) = Rz (®%(2)) for all
z € R2

Exercise 10.2 (Connectivity arrays j_cv,j_ce). Consider the mesh shown in Figure 10.1,

where the face enumeration is identified with large circles and the cell enumeration is identified
with squares. (i) Write the connectivity arrays j_cv and j_ce based on increasing vertex-index

Figure 10.1: Tllustration for Exercise 10.2.

enumeration. (i) Give the sign of the determinant of the Jacobian matrix of Tk for each triangle.

Exercise 10.3 (Connectivity array j_geo). Consider the mesh shown in Figure 10.2 and based
on the P 5 geometric Lagrange element. (i) Write the connectivity array j_geo based on increasing
vertex-index enumeration. (ii) Give the sign of the determinant of the Jacobian matrix of Tk for
each triangle.

Exercise 10.4 (Orientation of quadrangular mesh). (i) Using the enumeration and the
orientation conventions proposed in this chapter, orient the mesh shown in Figure 10.3, where the
cell enumeration is identified with shaded rectangles. (ii) Give the connectivity array j_geo so that
the mesh orientation is generation-compatible and the determinant of the Jacobian matrix of Tk
is positive for even quadrangles and negative for odd quadrangles.

Exercise 10.5 (Mesh extrusion). (i) Let K be a triangular prism. Denote by e3 the unit vector
in the vertical direction. Let zi, 22, z3 be the three vertices of the bottom triangular face of K,
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Figure 10.3: Tllustration for Exercise 10.4.

and let z4, 25, 26 be the three vertices of its top triangular face, so that the segments [z, Zp+3]
are parallel to e for every p € {1,2,3}. Propose a way to cut K into three tetrahedra. (ii) Let
Th, be a two-dimensional oriented mesh composed of triangles. Let 7, be a copy of T, obtained by
translating 7, in the third direction es, say 7, := T, + e3. Propose a way to cut all the prisms
thus formed to make a matching mesh composed of tetrahedra.

Solution to exercises

Exercise 10.1 (Faces in 2D). (i) Let us set A := (¢ %). We have

s = (5 ) () mm ()

w090

We also have
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This proves the claim.
(ii) Using the above result and the definition of ®% and ®., we obtain

U< Rs (2) |det(Jr)| Rz (Jxz)
@d RE — K—2: 2
) = TR e detn) TR (sl

=Ry (525 ) = Ry (@5

[T 2] e2

Exercise 10.2 (Connectivity arrays j_cv, j_ce). (i) The connectivity arrays are

1 2 6 2 10 1
4 6 8 5 8 11
jecv=14 5 6], jce=|[4 11 9
3 4 8 8§ 6 7
1 5 6 4 10 3

(ii) The signs of the determinants are as follows:

indexof K: 1 2 3 4 5
sign(detJg): — — — — +|°

Exercise 10.3 (Connectivity array j_geo). (i) The following array j_geo is based on increasing
vertex-index enumeration:

126 7 12 14
3 6 8 18 10 11
jgeo=|5 6 8 18 16 13
34 8 17 10 9
15 6 13 12 15

(ii) The signs of the determinants are as follows:

indexof K: 1 2 3 4 5
sign(detJg): — + — — +|°

Exercise 10.4 (Orientation of quadrangular mesh). (i) A generation-compatible orientation
of the edges and faces is as follows:
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The edges belonging to the same connected component of the edge/cell graph are linked by a
dotted curve.

(ii) If one wishes that the determinant of the Jacobian matrix is positive for even quadrangles and
negative for odd quadrangles, the geometric connectivity is as follows:

1 2 6 8
2 8 13 9
6 8 7 9
, 4 10 13 3
JBO= 111 4 5 10
12 11 1 4
1 6 4 7
4 13 7 9]

Note that for each cell K,,, m € {1:6}, j_geo(m, 1) gives the index of the vertex that is the origin
of K,, (such that the two edges sharing it are oriented away from it).

Exercise 10.5 (Mesh extrusion). (i) We first orient the edges of the bottom face using the
increasing vertex-index enumeration. Then one needs to find a strategy to cut the three vertical
faces. The key idea is to use the orientation of the edges of the bottom face. The cutting of
the face whose vertices are (21, 22, 24, 25) is done by connecting z; with zs, i.e., the cut starts
from z; and is done along the vector (z2 — z1) + e3. The cutting of the face whose vertices are
(21, 23, 24, 26) is done by connecting z; with zg, i.e., the cut starts from z; and is done along
the vector (z3 — z1) + es. The cutting of the face whose vertices are (22, 23, 25, 26) is done by
connecting z, with zg, i.e., the cut starts from 22 and is done along the vector (z3 — 2z2) + es.
The proposed cutting produces three tetrahedra, with vertices (21, z4, 25, 26), (21; 22, 25, 26), and
(Zl, Z92,23, 26).

(ii) The key idea is to use the orientation of the edges of 75 to do the cutting of the vertical faces
of the prisms produced by translating 7, in the es direction. Let E be an edge of 7T;, with vertices
Zp, zq and orientation vector 7g, and assume that z, — 2, and T have the same orientation
(notice that if p < g, then z; — z, and T have the same orientation if the increasing vertex-index
enumeration technique is used). Let z, := z, + e3 and z, := 2z, + e3. Then we cut the vertical
face whose vertices are (2, 24, 2r, 25s) by connecting z, with z,, i.e., the cut starts from z, and is
done along the vector 7 + e3. Notice that for the two prisms sharing the same rectangular face,
the proposed strategy provides for a unique way to cut the face in question. As a result, the mesh
of tetrahedra thus formed is a matching mesh.
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Local interpolation on affine
meshes

Exercises

Exercise 11.1 (High-order derivative). Let two integers m,d > 2. Consider the map @ :
{1:d}™ > j — (®1(3),...,P4(3)) € N where ®;(j) := card{k € {1:m} | j, = i} for all i €
{1:d}, so that |®(j)| = m by construction. Let C, 4 := maX,end, |o|=m card{j € {1:d}™ | () =
a}. Let v be a smooth (scalar-valued) function. (i) Show that

1
D™ 0| ., (R, ReR) < Cd Z |0%v|?

aeN? |a|=m

(ii) Show that Cy,,2 = maxo<i<m (') = 2™. (iii) Evaluate Cp, 3 and m € {2,3}. (iv) Show that

d -1
ZaeNdJa‘:m |aav| S ( J’;’fl )HDmvHMyn(Rd,...,Rd;R)'

Exercise 11.2 (Flat triangle). Let K be a triangle with vertices (0,0), (1,0) and (—1,¢€) with
0 < e < 1. Consider the function v(x1,z2) := 2. Evaluate the P; Lagrange interpolant 7 (v)

(see (9.7)) and show that |v — % (v)|mi(x) > € o|lg2(k). (Hint: use a direct calculation of
T (v).)

Exercise 11.3 (Barycentric coordinate). Let K be a simplex with barycentric coordinates
{Niticqo:ay- Prove that [\ilyi.e(x) < pi for all i € {0:d}.

Exercise 11.4 (Bramble—Hilbert). Prove Corollary 11.11. (Hint: use the Bramble-Hilbert/Deny—
Lions lemma.)

Exercise 11.5 (Taylor polynomial). Let K be a convex cell. Consider a Lagrange finite element
of degree k > 1 with nodes {a; };car and associated shape functions {6; };cn. Consider a sufficiently
smooth function v. For all &,y € K, consider the Taylor polynomial of order k and the exact
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remainder defined as follows:

Ti(z,y) = v(@) + Dole)(y — @) + ...+ Z D)y — 2.y~ )

k times

Dk-HU(nw + (1 - n)y)(y —Z,..., Y- $)7
—_———

(k+ 1) times

Ri(v)(@, y) := (k+1)!

so that v(y) = Tk(xz,y) + Ri(v)(z,y) for some n € [0,1]. (i) Prove that v(z) = I (v)(x) —
>ien Bi(v)(x, ai)0; (), where I} is the Lagrange interpolant defined in (9.7). (Hint: interpolate
with respect to y.) (ii) Prove that D™v(x) = D™(Zj (v))(x) — > ;cpr Ri(v)(2, @;) D™6;(x) for
all m < k. (Hint: proceed as in (i), take m derivatives with respect to y at @, and observe
that v(z) = Tx(z,z).) (iii) Deduce that [v — Ik (v)|wm.ee () < cophid!™ m|'U|Wk+1oo(K) with
ci= ﬁc*h’f? DN |§Z—|Wm,oo(f(), where ¢, comes from (11.7b) with s =m and p =

Exercise 11.6 (LP-stability of Lagrange interpolant). Let o € (0,1). Consider the Lagrange
P, shape functions 61 (z) := 1 — « and 6;(z) := x. Consider the sequence of continuous functions
{un}nem (o3 defined over the interval K :=[0,1] as un(z) :=n* = 1if 0 < 2 < L and u,(z) :=
2~ % —1 otherwise. (i) Prove that the sequence is uniformly bounded in LP(0,1) for all p such that
pa < 1. (ii) Compute Z% (uy,). Is the operator Zk stable in the LP-norm? (iii) Is the operator Z%
stable in any L"-norm with r € [1,00)?

Exercise 11.7 (Norm scaling, s ¢ N). Complete the proof of Lemma 11.7 for the case s ¢ N.
(Hint: use (2.6) with s=m+ o0, m:=[s],c:=s—m e (0,1).)

Exercise 11.8 (Morrey’s polynomial). Let U be a nonempty open set in R?. Let k € Nand p €
[1,00]. Let u € W*P(U). Show that there is a unique polynomial ¢ € Py 4 s.t. [;; 0%(u—q)dz =0
for all o € N of length at most k. (Hint: see the proof of Lemma 11.9 and also Morrey [34,
Thm. 3.6.10].)

Exercise 11.9 (Fractional Sobolev norm). Let r € (0,1). Let (7,)nen be an shape-regular
affine mesh sequence and let K be the reference element. Let K be an affine cell in 7,. Using the

notation ¥ := v o Tk, show that there is ¢ such that ||ﬁHHr(f<) < ch;\;% |v| gk for all v € H"(K)
such that [, vdz =0, all K € T, and all h € H. (Hint: use Lemma 3.26.)

Solution to exercises

Exercise 11.1 (High-order derivative). (i) Let by, ..., hy, be vectors in R? such that ||| g2 (gay =
1 for all I € {1:m}. Owing to the Cauchy—Schwarz inequality, we infer that

D™u(hy, .. hw) = > o Y hig b, 000

jre{l:d} Jm€{1 d}

< Z |920)y|?

je{l:d}m™

[N
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As a result, we have

D" 0| 4, (Re,...RER) < Z Z |0%v|* |,

lal=m &(3)=a

where a € N? in the first summation and j € {1:d}™ in the second one.

(ii) For d = 2, a = (I,m — 1) with [ € {0:m} and card{j € {1,2}™ | ®(j) = (I,m — 1)} = (7).

(iii) A direct calculation shows that Cs 3 = 3 (attained, e.g., for (1,1,0)) and C33 = 6 (attained
for a = (1,1,1)).

(iv) Since [0%0| < [|D™0|| pm,, (re,.. rar) for all a € N with |a| = m, the expected bound can be

obtained with C; 4 := card{a € N? | |a| = m} = (dzrffl).

Exercise 11.2 (Flat triangle). We obtain Zj (v) = x1 + 2¢ 'xa, so that [v — IR (v)| g1 (k) =
[ (221 = 1)2 + &) da > 5|K], but |U|%{2(K) = 4|K| is uniformly bounded w.r.t. e.

Exercise 11.3 (Barycentric coordinate). Let i € {0:d}. Let F; be the face of K where \;
vanishes. Let n; be the outward unit normal to F;. Let B be the largest ball that can be inscribed
into K and let px be the diameter of B. Let S; be the point where B is touching F; and let N;
be the point opposite to S; on dB. We have

1> /\(Nz) = /\(Nz) - )\(Sl) = —pK’I’Li'V/\i = pK”v)\i”ﬁ(Rd)u
since A\;(S;) =0, S; = P, + pgn;, \; is affine, and V),; is collinear to n;.

Exercise 11.4 (Bramble-Hilbert). For all 7 € Py g4, |f(v)] = [f(v +7)| < [[flwr+roesy) v +
Tllwrt10(s), that is, [f(v)] < [|fll(wrt1ees)y infrep, , [0+ 7[lwet10(sy- Thus, the assertion follows
from Lemma 11.9.

Exercise 11.5 (Taylor polynomial). (i) Starting from v(y) = Ti(x,y) + Ri(v)(x,y) and
interpolating with respect to y at any fixed * € K leads to

T (0)(y) = Ti(a, y) + Y Ru(v)(@, a:)6i(y),
1EN

since the polynomial Ty (z,y) in y at fixed x is preserved by Z%. Evaluating the above expression
at y = «x yields the assertion since Ty (x, ) = v(x).
(ii) Differentiating m times, m < k, the above expression with respect to y at fixed  leads to

D™(Zk(v)(y) = D" Tr(m,y) + > Ri(v)(w, ;) D™, (y),
1EN

and evaluating the expression at y = @ yields the assertion since D" Ty (x, x) = D" v(x).
(iil) Use the result of Step (ii) together with the triangle inequality and the bound | Ry (v)(x, a;)| <

ﬁh?{+l|v|wk+l,m(1() forallz € K.

Exercise 11.6 (LP-stability of Lagrange interpolant). (i) Observe that [|u,||zr(0,1) < |27 —

IHLP(O,I) S 1+ ||I7a||Lp(071) S 1+ L — < 0 since pa < 1.
(1—pa)?

(ii) Zhun(2) = u,(0)01 () + un(1)02(z) = (n® — 1)(1 — z), so that

[Tkunllzoon = (1% = DI = Dlzro 2 (0 = D3 ooy 2 F0* = 1).
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This proves that |Z; s rr0,1) = (n® — 1)y lun||£o0,1) with v := 1+ —L—, thereby proving
' (1—pa)?

that | Z% || z(pe;pey = $(n® — 1)y~ ! for all n € N\{0}. In conclusion, || Z¢ | z(rrrr) = 00, i.e., T is

not LP stable for all p < é

(iii) Since « is arbitrary in (0, 1), the above result implies that Z% is not L" stable for all r € [1, 00)

in dimension one.

Exercise 11.7 (Norm scaling, s ¢ N). Let ‘ALmJ 4 = {o& € N?||a] = m} be the set of the
multi-indices of length equal to m. We have

|¢K(U)|Ws,p(1?) = Z |0%Y K (v )W”,(K)

aeAf}lyd

By proceeding as in the proof of Lemma 11.7 and using that Tk is affine, we infer that the following
holds true for all a € Al ;:

1070k (0)(@) — 0"V (V) @)lle> < clAxcllez Tl D 1(0°0) (T (@) — (070)(Tie (§)) ]2

BEAL

We infer that

o 10" ¢k (v )—3Q¢K( )Wz oo
0ok iy = [ [ L OIE gz
(8%0)(T, — (0Pv)(Tk (@) I}
< cllAx B M Z [ [ e I gz
5€AH y”
< cllAkc |5 1Tk ll7=" det (T )~ 2||JK|\Up+d
|0%v(x) — 0%v(y) ||V
X Z / ||w |‘Up+d dx dy,
5€AH y
since |2 — gllez = I (@ — )|z > Ik 2" | — ylle2- In conclusion, we have

- —2yp o o+s
[k (0)lyen () < cllA e 1Tk |72 1detTr) 72 [Tl ” vlwer )

1 _ 1
< c||AxlellTx iz ldetTr )77 (Idet@r )|~ 1TxllE) ™ [olwen xc),
which proves the statement. The proof of the other inequality is similar.

Exercise 11.8 (Morrey’s polynomial). We have proved in Lemma 11.9 that the map @y 4 :
Pj.q — RMkd such that <I>k d( fU 0%qdx)aca, , is an isomorphism. Hence, there is a unique
q € Py q such that @y 4(q fU(? wdz)aea, ,, 1 fU(?O‘ u—q)dx =0 for all @ € Ay 4. Note
that the polynomial in quest1on is denoted by 7(u) in the proof of Lemma 11.9.

Exercise 11.9 (Fractional Sobolev norm). Since 7 has zero mean value over K, Lemma 3.26
implies that

~12 — a2 ~2 ~132
”UH r(}?) - HU”L2(f{) + |U| r(}?) < C|U| r(}?)
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Moreover, we have

SEY (a2
ey~ [ [, B

) 1z — ylld“’”

|Kl2// (y)”
= —dzdy
|K? HJK -y ||dJr2

K]
- K

d
JK+2T|’U|%P‘(K)

_d
Hence, ”i)\HHT(IA() < chy |v| g (K), where ¢ depends on the regularity of the mesh sequence.
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Chapter 12

Local inverse and functional
inequalities

Exercises

Exercise 12.1 (¢? vs. ("). Let p,r be two nonnegative real numbers. Let {a;};,c; be a finite
sequence of nonnegative numbers. Set |lallp®ry = (X cr af)% and |laler@ry == Qier ar)r.
(i) Prove that [la|[p®ry < [lallerwry for » < p. (Hint: set 0; := a{/||a||§,‘(R,).) (ii) Prove that

lallermry < card(I)

T llallgr iy for > p.

Exercise 12.2 (LP-norm of shape functions). Let 0k ;, i € N, be a local shape function. Let
p € [1,00]. Assume that (73)nen is shape-regular. Prove that |0 illz»(x) is equivalent to h;l(/p
uniformly w.r.t. K € T, and h € H.

Exercise 12.3 (dof norm). Prove Proposition 12.5. (Hint: use Lemma 11.7.)

Exercise 12.4 (Inverse inequality). (i) Let & > 1, p € [1,00], let K := {(Z1,...,74) €

d -~ -~ o IVollp %
0. 1)%] Xicqi.ay Ti < 1}, and set T == supgep, , Wp(g)
K be a simplex in R? and let px denote the diameter of its largest inscribed ball. Show that
VollLr (k) < /C\k,pp_\/E”UHLP(K) for all v € Py q 0 Tk, where Tk : K — K is the geometric mapping.
(Hint: use (9.8a) and Lemma 11.1.)

. Explain why ¢, is finite. (ii) Let

Exercise 12.5 (Markov inequality). (i) Justify that the constant C3 j in the Markov inequal-
ity (12.7) can be determined as the largest eigenvalue of the stiffness matrix A. (ii) Compute
numerically the constant Cs , for k € {1,2,3}.

Exercise 12.6 (Fractional trace inequality). Prove (12.17). (Hint: use a trace inequality in

~

W=r(K).)

Exercise 12.7 (Mapped polynomial approximation). Let (]? ,ﬁ, 2‘) be a reference finite
element such P4 C P, k € N. Let 7, be a member of a shape-regular mesh sequence. Let

~

Tx(K) =K € Ty, and let (K, Pg, X ) be the finite element generated by the geometric mapping
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Ty and the functional transformation ¢k (v) := Ag(v o Tk). Recall that Px = 1/117(1(18). Show
that there is ¢ s.t.

inI}DfK |’U — q|Wm,p(K) S Ch”l‘{_m|’U|W7‘,p(K), (121)

forallr € [0,k+ 1], all p € [1,00) if r ¢ Nor all p € [1,00] if r € N, every integer m € {0:|r]}, all
veWrP(K), all K € Ty, and all h € H, where the mesh cells are supposed to be convex sets if
r > 1. (Hint: use Lemma 11.7 and Corollary 12.13.)

Exercise 12.8 (Trace inequality). Let U be a Lipschitz domain in R%. Prove that there are
1 1—1

1 (U) and (U sueh that o]l ooy < e1(0) ol oy +e20) V0l oy 10l 5y for all p € 1, 00)
and all v € WHP(U). (Hint: accept as a fact that there exists a smooth vector field N € C*(U)
and ¢o(U) > 0 such that (N-n)j5y > c¢o(U) and ||[N(x)||p2@ey = 1 for all x € U.)

Exercise 12.9 (Weighted inverse inequalities). Let k € N. (i) Prove that H(l—t2)%v'HLz(,171) <
(k(k + 1))%||v|\Lz(_171) for all v € Py1. (Hint: let L, == (%)1/2 Ly, Ly, being the Legendre
polynomial from Definition 6.1, and prove that fil(l —12) (L) () (L)' (t) At = Gpppm(m + 1) for

every integers m,n € {0:k}.) (ii) Prove that |lv[[z2(—11) < (k4 2)[[(1 — t2)%0||L2(_1)1) for all
v € P1. (Hint: consider a Gauss—Legendre quadrature with lg := k + 2 and use the fact that the
rightmost Gauss-Legendre node satisfies &, < cos(%).) Note: see also Verfiirth [44].

Solution to exercises

Exercise 12.1 (¢ vs. {"). (i) We observe that 0; := aj/l|al[j, s € [0,1] and Yierti = L

P
Since £ > 1, we infer that ), ., 07 < >, ;0; = 1. Rearranging the terms leads to the expected
estimate.
(ii) Using Holder’s inequality, we infer that

z -z
ZOZ—% < <Z€f%> (Zp%) §card(I)17£.

icl icl icl
Exercise 12.2 (LP-norm of shape functions). Observe that
»
I%Amm—<%DIWM@V
and use the regularity of the mesh sequence to conclude.
Exercise 12.3 (dof norm). Owing to (12.3), it is sufficient to prove the equivalence for p = cc.

Let vy, = > ,cpn 0k,i(Vn)0K i € Pk. Recalling that O ; = wgl (@) for all i € N, we infer that

lonllLoeimay <D loi(vn)l[|0x ]
iEN

Lo (K R1)
< D lomaon) il nom amay o (o 103l o (2 20
ieN

< Cl”7/};(1”L(Loo(f(;]Rq);Loo(K;Rq)) Z |UK-,i(Uh)|a
€N
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where ¢; = max;en Hé\iHLOO(I?-Rq) only depends on the reference element. Using (11.7b) with [ := 0
and p := oo, we infer that

[vnll Lo (i imay < ellAR ez D lowi(on)l-
iEN

Let us now prove the reverse bound. Let O := ¥k (vy). Since (K,P,X) is a finite element,
> ien |on(Un)| is a norm on P. The equivalence of norms in P implies that there is ¢, depending
only on (K, P, &), such that

3 loscalon)l = 3 55l < ol ey = e2 o (o)l s
iEN €N

= C2||¢K||L(Loo(K;Rq);Loo(;?;Rq)) l|vnl Lo (5 ra)
< Sl Akllelvnll Lo (xira),
where the last bound follows from (11.7a) with [ := 0 and p := co. The conclusion follows from

the fact that ||Ax||s2||A%" |2 is bounded by a constant that only depends on the regularity of the
mesh sequence owing to (11.12).

Exercise 12.4 (Inverse inequality). (i) Since Py, 4 is finite-dimensional, the unit sphere S, =
{V € Py | Ha”m(f() = 1} is compact. Hence, the continuous function v ||V5||Lp(f() attains its

maximum on §p. Since the maximum in question is ¢, by definition, this proves that this real
number is finite.

(ii) Let v € Py goTx. Then v := UOTI;1 € Py 4. Let Jx be the Jacobian of the geometric mapping
Ty . The chain rule (9.8a) implies that Vv = J.TVo. Since Tk is affine, we infer that

_ 1
I90lz000) < 195 e det @) 19511
~ -1 1
< CrpllJx ez |det (T )| ||UHLP(1?)
<G plTx e vl Lo (i) -

Finally, invoking Lemma 11.1 gives ||J5" ||l < Z—E. Since K is the unit simplex and K is convex,

and we have hp = V2 in every space dimension.

Exercise 12.5 (Markov inequality). (i) Let v € Pj1. We can write v(t) = > 0.5y v L (t).

Exploiting the L2-orthonormality of the basis and the definition of the stiffness matrix A, we infer

that
[v'llz2(-1,)  VTAV

vz, VTV

< p(A).

(ii) A direct computation of A for k € {1,2, 3}, respectively, yields

0O 0 0 0

0 0 8g8 0 3 0 421

0 3)° 0015’ 0o 0 15 0 |’
0 21 0 42

with spectral radius 3, 15, and 4341605 51605, respectively.
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Exercise 12.6 (Fractional trace inequality). Let v € W*P(K). Let K € T, be a mesh cell
and F be a face of K. Since the mapping Ty is affine, using the trace theorem (Theorem 3.10) in

~

W#P(K), we infer that

ol il
ey = 51
GE

1
105 )Ly < xnl FI7 (05 )Ly + 105 ) e )

where ¢, ;, can grow unboundedly as sp | 1if p > 1. Using Lemma 11.7, this inequality is rewritten
as

1 1 s
[ollo(ry < Q|17 IKT7 (I0llLer) + 1Tkl 2" [vlwen ()

The conclusion follows from the regularity of the mesh sequence (see (11.3)).

Exercise 12.7 (Mapped polynomial approximation). Let k¥ € N. Let r € [0,k + 1], let
p € [l,00) if r ¢ Norp € [1,00] if r € N, and let m € {0:|r]}. Let v € W"P(K) and set
v :=g(v). Let ¢* € P be s.t. [v— ?|Wm,p(f<) =inf plv— é\lwm,p(f(). We have (the value of ¢
changes at each occurrence)

qiel}jfk [v = qlwmrxy < v — ¢1_<1(QM)|WWP(K) =[x (0) — v (@) |lwmp (k)

_ “1im 1, -
< cllAR e 1517 |det(Tx) 7 b U= Al i)

k,d
_ _ 1<
< c A e TR I 1det @) ¥ [0l )
< cllAklle IAR e 1Tk 1T 12 ol i
< ™ [olwrn i

where we used that 1, (¢*) € Pk in the first line, (11.7b) in the second line, the definition of g*

and P, 4 C P in the third line, Corollary 12.13 in the fourth line, (11.7a) in the fifth line, and the
regularity of the mesh sequence in the last line. This proves (12.1).

Exercise 12.8 (Trace inequality). We first observe that

CO(U)/BU |v|pdx§AU(n-N)|v|pdx:LV- (Nlv|?) da

< [ (TNl + p(N-Fo)oP ) da
U

< L O], 0, + PIVOl Lo [0l

where we set c1(U) := [|[V-IN| (1), used that | N(x)||,2re) = 1 for all x € U, and used Hélder’s
inequality to bound [, ||Vull2|v[P~! dz. The conclusion follows by applying the inequality (a +
b)? < ar +br for all a,b > 0, i.e.,

1
cl(U) » 1 1 1 1-1
lolsr < (23) Iollanco) + 5ea) H 190l ol

Exercise 12.9 (Weighted inverse inequalities). (i) Without loss of generality, assume n < m.
Integrating by parts and since (1 — t2) vanishes at t = +1, we infer that

/(1_t2)(im)’(t)(in)’(t)dt=—/ E(®)((1 = 2)(En) (1)) dt.

-1 —1
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Since ((1 — t2)(Ly) (t))l is a polynomial of degree n whose leading coefficient is equal to that
of L, multiplied by —n(n + 1), the orthonormality of the (normalized) Legendre polynomials
implies that fil(l — 1) (L) (t)(Ly)' (t) dt = Spmm(m +1). As a result, writing any v € Py as
v(t) =D 1eq0: 1) v Li(t), we infer that

1
/(1—t2)|v’(t)|2dt: > v+ 1)

-1 1{0: k}

<k(k+1) Z vf = k(k + 1)”””%2(—1,1)-
le{0:k}

(ii) Since (1 —t2)v? is of degree (2k + 2) and the quadrature is of order 2lg — 1 = 2k + 3, we infer
that

1
[ a-epera= Y w-gner

-1 le{l:lg}

1
>(1-e) Y ww@)?=(1-&,) / o(t)? dt.

le{l:lo}

The conclusion follows from

since sin(z) > 2z for all z € [0, Z].
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Chapter 13

Local interpolation on nonaffine
meshes

Exercises

Exercise 13.1 (Chain rule). Let f € C3(U; W) and g € C3(Wq;Wa), where V, Wy, Wy are
Banach spaces and U is an open set in V. (i) Evaluate the pure derivatives D?(g o f)(x)(h,h) and
D3(go f)(z)(h,h,h) for x € U and h € V. (ii) Rewrite these expressions when f and g map from
R to R.

Exercise 13.2 (Pure derivatives, Qj ¢-polynomials). Let {ei}ie{lzd} be the canonical Carte-
sian basis of R?. Let k > 1. Verify that D**'q(e;,...,e;) = 0 for all i € {1:d} if and only if
q € Qi,q. (Hint: by induction on d.) What is instead the characterization of polynomials in P, 4
in terms of D*F*1¢?

Exercise 13.3 (Lemma 13.5). Complete the proof of Lemma 13.5 by proving (13.9) for all
m < k+ 1. (Hint: use induction on m and the chain rule formula (B.4) applied to T~Y(T(Z)).)

Exercise 13.4 (Tensor-product transformation). Assume the transformation T has the
tensor-product form T(Z) = }_;c(y. 4 tj(Z;)e; for some univariate function ¢;, for all j € {1:d},
where {€;}e(1.ay is the canonical Cartesian basis of R%. (i) Show that (13.15) can be sharpened as

-1 ~
|[on]|Wl,p(f() < cHdet(DT)*leoo(f()||DTHZ|[w]|Wl,p(K). (Hint: recall that [w]yi, k) is a semi-

norm and there exists a uniform constant ¢ so that ¢, [wlin ) < cllwllweex)-) (i) What is the
consequence of this new bound on the error estimate (13.21) under the assumption (13.20)?

Exercise 13.5 (Q;-quadrangles). Prove that det(DT(a;)) = | P;|, where P; is the parallelogram
formed by a;_1, a;, a;+1 (with ag := a4 and a5 := a1). (Hint: see §13.5.)

Exercise 13.6 (Butterfly subdivision algorithm). Consider a mesh composed of four tri-
angles with the connectivity array such that j_geo(1,1:3) := (3,4,5), jgeo(2,1:3) := (0,4,5),
j_geo(3,1:3) :=(1,3,5), jgeo(4,1:3) := (2,3,4). Let m be the midpoint of the edge (23, z4). Let
Zo := (0,0), 21 := (1,0), Z2 := (0,1), 23 := (3, 3), 24 := (0,3), Z5 := (5,0). Consider now the
curved triangle given by the Py geometric mapping T that transforms 2; to z; for all i € {0:5}.
Let {fo,...,fr} € R. Let p € P2 be the polynomial defined by p(2;) := f; for all i € {0:5}. (i)
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Compute p(T~1(m)). (ii) Consider two additional points zs, z7 and two more triangles given by
j-geo(5,1:3) :=(2,3,6), j_geo(6,1:3) := (2,4, 7). Let T” be the Py geometric mapping that trans-
forms z; to z; for all ¢ € {2:7}. Let p’ € Py be defined by p'(2;) := f; for all i € {2:7}. Compute
(Tt (m)) +p'((T")~*(m))). Note: the name of the algorithm comes from the shape of the
generic configuration. The algorithm is used for three-dimensional computer graphics. It allows
the representation of smooth surfaces via the specification of coarser piecewise linear polygonal
meshes. Given an initial polygonal mesh, a smooth surface is obtained by recursively applying the

butterfly subdivision algorithm to the Cartesian coordinates of the vertices; see Dyn et al. [16].

Solution to exercises

Exercise 13.1 (Chain rule). (i) We apply Lemma B.4. For the second-order derivative, the
summation in ! has two terms and we obtain (we omit the point x in the (Fréchet) derivatives of

)
D*(g o f)(x)(h, h) = Dg(f(2))(D*f(h, h)) + D?g(f(2))(Df (h), Df (h)).

For the third-order derivative, the summation in [ has three terms and we obtain

D*(go f)(x)(h,h,h) = Dg(f(x))(D?f(h,h,h))
+3D%g(f(x))(Df(h), D*f(h,h))
+ D3g(f(x))(Df(R), Df(Rh), Df(h)),

where we used Theorem B.3 for the second term on the right-hand side.
(ii) When f and g map from R to R, we obtain

(go f)'(x) = g'(f(@))(f"(x))* + g"(f (),

and

(go f)" (@) =g (F@)(f' (@) +3¢" (f (@) f" ()" (x) + g" (f (@) (f' ().

Exercise 13.2 (Pure derivatives, Qy 4-polynomials). A direct verification shows that any
polynomial g € Qy, 4 verifies D*+1lg(x)(e;,...,e;) = 0 for all i € {1:d}. Conversely, assume that
q is such that D**lg(x)(e;,...,e;) = 0 for all i € {1:d}. We proceed by induction on d. If
d =1, then g € Q1. For d > 2, writing « = (z’, z4) and fixing &, we infer that the (k4 1)-th
derivative of the function x4 — g(2’,x4) is zero, so that there are functions go(x'), ..., qx(x’) s.t.
a(x) = 3, neq0: k) Gm(®" )Ty Since we have for all j < d,

0=D"q(z)(ej,....e;) = Z DF g (') (ej, - ., ),
me{0:k}
and the monomials {z/}'} are linearly independent, we infer that

D, (x)(ej,...,e;) =0,  Vje€{l:d-1}.

By the induction hypothesis, we have ¢, € Q,4—1, so that ¢ € Qi 4. By proceeding as above,
we finally show that ¢ € Py 4 if and only if D**1qg = 0, that is, D¥T1q(hy,..., hgy1) = 0 for all
hl,...,hk+1 S R,
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Exercise 13.3 (Lemma 13.5). Let m € {1:k}. We are going to use the following induction
hypothesis: For all n < m, there is c¢_, only depending on k,cy,...,c, so that |[D*"(T~1)| <
c_n||D(T~1)||™. The case m = 1 has been proved in Lemma 13.3 with c_; := (1 — ¢;)~!. The
assumption has been shown to hold true for m = 2 in the proof of Lemma 13.5. Let us now
show that it also holds true for m + 1. Applying the chain rule formula (B.4) to the identity
Z =T (T (z)) and using the triangle inequality, we obtain

1D T Y| < e(m) Y IDHTY)]

le{l:m}
X > DT D@ H|"™ .. [ DT DT )™
1<ri+...+r=m+1
<c(m) | DTN S DT > DT ... [[D"T.

le{l:m} 1<ri+..4rj=m+1

We now use that |[D"T|| < é.||DT| with the convention & := (1 + ¢;) and &, := ¢, for r >
2 (see (13.5) and (13.8)). We also use that ||D(T~1)|| = |[(DT)"!|| and invoke the induction
assumption. We infer that

DT < e(m)l| DT )|
x Y eaDE@T Y| DT)! > Cry o Cry

le{l:m} 1<ri+...4+r;=m+1
< c(m) ||D(T )™+ Z c_ k! Z Cry « v Cry
le{l:m} 1<ri+...4r=m+1

Setting c_ (1) = c(m) Ele{l;m}c,ml > i<rit. 4r=m41 Cri -+ Gy, proves the assertion.
Exercise 13.4 (Tensor-product transformation). (i) When T has a tensor-product form, we

obtain D"T(Z)(e;,...,e;) = tgr)(xi)ei for all i € {1:d}. Therefore, using the chain rule, we now
infer that

IDwoT)@)g<c Y [(D"w)(T(@)lq
me{0:1}

X > DT (Z)|g ... | D™ T(Z)|g.
1<ri+4...4rm=l
The expected estimate readily follows.
(ii) The error estimate (13.21) under the assumption (13.20) becomes
L m l—m
[0 = Zic(0)lwon(r) < e AP 6™ | DT [0l oo -
Note that such an error estimate cannot hold under the assumption (13.19) (think of £ =1 = 1,
d =2, and v = 12 for which [v]y1, gy = 0).

Exercise 13.5 (Q;-quadrangles). Consider the (Fréchet) derivative DT at a; which corresponds
to T3 = To = 0. Then DT'(Z) = (az — a1,a4 — a1). Taking into account the orientation of the
enumeration of vertices leads to the expected result.

Exercise 13.6 (Butterfly subdivision algorithm). (i) Let us set m := T!(m). Using the
following expression of the Py shape functions:

Bo = Mo(2h0 — 1), 61 = (20 — 1), By = Aa(2Xg — 1),
O3 = 41 o, B4 = X3\, 05 = 4o\,



70 Chapter 13. Local interpolation on nonaffine meshes

together with Ao(772) = 1, A (m) = 1, Ao (m) = 1, we obtain

PR) = S f0) = —gfo— gh+ 3 fs+ 3hi+ 1

(ii) Similarly, we have

=

__ 1 1 1 1 1
(m) = —§f6 - gf? + §f3 + §f4 + Zf2'
We infer that
1 N 1 _ 1 1 1 l 1 _ 1 _ 1
2(p(m) +p'(m)) = _16f0 _16f1 + 8f2 + 2f3 + 2f4+ 8f5 _16f6 —16f7-

The generic configuration is shown in the right panel of Figure 13.1. The mesh mapped to the
reference space is shown in the left panel of Figure 13.1.

. ; 6

o3

ot
[
—

Figure 13.1: Illustration for Exercise 13.6.
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H (div) finite elements

Exercises

Exercise 14.1 (RT ). (i) Prove that [, 1y k0% dz = cp — ek, where 6% is defined in (14.3),
and cp, ck are the barycenters of F and K, respectively. (Hint: use (14.3) and [, ¢ ds = |F|cp.)
Provide a second proof without using (14.3). (Hint: fix e € RY, define ¢(x) = (z — cr)-e, observe
that V¢ = e, and compute e- [} 0% dz.) (ii) Prove that Y. pcr [F|0%(2) ® np = Iy for all
x € K. (Hint: use (7.1).) (iii) Prove that v(x) = (v)x + (V-v)(x — ck) for all v € RT 4, where
(V) g = ﬁ [ vdx is the mean value of v on K.

Exercise 14.2 (RT,, in 3D). Let d = 3. Let F;, ¢ € {0:3}, be a face of K with vertices
{a,ap,a.} st. ((zg — z7)x(2p — ;) g > 0. (i) Prove that VA, xV), = - and prove
similar formulas for VA;x VA, and VA, xVA,. (Hint: prove the formula in the reference simplex,
then use Exercise 9.5.) (ii) Prove that 68 = —2(\, VA, XV, + A, VA x VA, + A, VA, xV),). Find
the counterpart of this formula if d = 2.

Exercise 14.3 (Piola transformation). (i) Let v € C*(K) and ¢ € C°(K). Prove that
JxaVvde = [R5 (q) V-4 (v)dz. (i) Show that [, v-0dz = ek [z Y5 (v)-Y5(0)dT for all
0 € CY(K).

Exercise 14.4 (Generating RT}, 4). (i) Let c € RY, ¢ € P} 4 and A € R%*4" Show that there is
r € Pr_1 4 such that ¢(Ay + ¢) = ¢(Ay) + r(y). (ii) Defining s(y) := ¢(Ay), show that s € Pﬁd,.
(iii) Prove that (¢%) ! (RTy.4) C RT; 4. (iv) Prove the converse inclusion.

Exercise 14.5 (BDM). Verify that card(X) = dim(Py 4) for d € {2, 3}.

Exercise 14.6 (Cartesian Raviart—-Thomas element). (i) Propose a basis for RTj, and for
RTG; in K := [0,1]%. (ii) Prove (14.15). (iii) Prove Proposition 14.24.



72 Chapter 14. H(div) finite elements

Solution to exercises

Exercise 14.1 (RToq). (i) By definition, we have [, 15 k0% dz = (cx — zp) since [ xdz =

|K|ck. Let us prove that cx — zp = d(cp — ¢k). Since cx = d+r1 ZFG}-K zr, we infer that

d(CF — CK) = Z 4 ald — dCK
F’G]‘—K\{F}
_< Z ZF/>—ZF—dCK
F'eFk

= (d+1)CK—ZF—dCK:CK—ZF.
Hence, we have

1
/ LF7K0§;~dJJ = E(CK — ZF) = Cfp — Ck.
K

For the second proof, let e € R%. Let ¢(x) := (¢ — cr)-e and observe that V¢ = e. This gives

e-/ Gdex:/ GfF-Vqu:v:—/ $V-0". dx + Z /(HfF-nK|F/)¢ds.
K K K F’

F'eFk

. » L . . » b
Owing to Lemma 14.7, 0%%1{ is piecewise constant with 0%~nK|F/ = lFK |FFF\,'

have |K|V-0% = [, V-0% dz = [, 0% ng pds = vp k. We infer that

1 1
e | ¢ Hfdxz——/¢dx+—/¢ds=—c —cp)-e,
Jmian =i [ ot g e —er)

since [, ¢dz = ¢(ck)|K| and [, ¢ds = 0. This implies that [, tp,x0% dz = cp — cx since the
above equality holds true for all e € R
(ii) Let @ € K. We observe that

> |Fl6k(@)@np = Y |Flink0p(@) @ ngp
FeFk FeFk

= Z ﬂ(w—zz)@@nxw
d|K]|
FeFk

||
FeFk

Moreover, we

F
= %(CF —ck) ®@ngr =l
i€F K

where we used the definition of 6%, the first geometric identity in (7.1) to replace = by ck, the
fact that cx — zp = d(cp — ¢k ), and the second geometric identity in (7.1) to conclude.

(iii) Let v € RTg 4. We can write v = a + b(z — cx), where a € R%, b € R, whence we infer
that V-w = bd, i.e., b = éV”U. Moreover, since (& — ¢k ) has zero mean value on K, we infer that
a = (v)k. In conclusion, v = (v)x + L(V-v)(x — ck).

Exercise 14.2 (RTy 4 in 3D). (i) Let us first notice that the assumption that ((z, — 2z,)x (2, —
zr))ng|r, > 0 means that the vectors (2, — 2,), (24 — 2r), (2i — 2,) form a right-handed triple.



Part III. FINITE ELEMENT INTERPOLATION 73

~

Let us do the computation in the reference simplex. Let 2, := 0, 2, — 2, := (1,0,0)", 2, — 2, :=
(0,1,0)T, and Z; — 2, := (0,0,1)7. Then A, = Z1, Ay = 2, VA, = (1,0,0)7, and A, = (0,1,0)T.
This implies that VA,x VA, = (0,0,1) = Z;—2,.. Since 6|K| = 1, we infer that VA, x VA, = %F]A{E\T'
Let us now prove the formula in K. Let Tk be the affine mapping that transforms (2, 2y, 2, 2;)
into (zp, 24, 2r, 2;). Let Jx be the Jacobian matrix of Tx. Observe that det(Jx) > 0 since
(Zp — 2), (g — %), (2o — 2) and (2, — 2), (24 — 2), (2; — 2,) form two right-handed triples.
Owing to Exercise 9.5, we infer that

VA XV, = (T VA X (T VA,) = det(Tx )Tk (VA, X VA,)

zi— 2 zi— 2
=det(J " )Jx =" =det(Jx) ' ==,
Jx) 6% (k) 6F
which proves that VA,xV)\, = zél—Kz( since det(Jx) = % By circular permutation on the
indices (p, ¢, ) (which does not change the orientation of K), we also have VA;x VA, = zél_Kzf and

VAxVA, = Z20

ii) Recall that 8f = Z=2¢ and that
EI Y

T =z = Ap()(2p — 21) + A () (2 — 21) + Ar(@) (20 — 2:).
It follows immediately from Step (i) that
0! (z) = =2\, () VA X VA, 4 Mg () VA, XV, + A (2) VA, XV ,).

Exercise 14.3 (Piola transformation). (i) This identity follows from (9.8¢), i.e., V-v(z) =
7dcc(JL(§))v"/’?<(”)(5)-
(ii) We prove the second identity as follows:

/ v-0dr = /A (voTk)(0oTk)|det(Jx)|dz
K K

:EK/;(det(JK)Ji_(lvOTK)-(J};OOTK)d/:Z?\
K

— o /K P (0) 45 (6) 2.

Exercise 14.4 (Generating RTj ;). (i) Let ,¢ € R? and consider the polynomial ¢(z) :=
2 laj=d @i . 2g". We have

qg(x+c) = Z ao(r1 + 1) .o (2g + cq)?
| =d

= > aa(@ft (@) (@5 + ralza)),

loe|=d

where r; € Py, 1,4 for all i € {1:d}. We infer that

g@+e)= Y anrft ... 2" +Hx) = q(@) + t(z),

where t € P;,_; 4. Replacing by Ay, we obtain

q(Ay + ) = q(Ay) + t(Ay).



74 Chapter 14. H(div) finite elements

But defining r such that r(y) = t(Ay), we have r € Py_1 4.
(ii) Let
o
pi(y) = Z Aijy;
je{1:d'}
This polynomial is homogeneous of degree «;. Moreover, the product of a homogeneous polynomial

of degree «; with a homogeneous polynomial of degree «; is a homogeneous polynomial of degree
a; + o. Hence, the polynomial

9(Ay) = Y aap1(y) .- pa(y)
jal=d

is homogeneous of degree a1 + ...+ ag = |o| = k.
(iii) Let Tk () := Jx@ + b with J € R*? and bx € R?. Let v be a member of (15 )1 (RT}.4).
Then, 9% (v) = p+ 27 with p € Py 4 and 7 € ]P’I,j)d, yielding

IRDPUPOR 1 P PN
v = (Pk) (P +Zq) = WJK(POTK1 +(29) o T ).

Using = J ' (x — bx), we have
GoT' =Gy e —I'bx) = qUx @) +7,
where 7 € Pi_1 4, and we have shown that go J;(l € ]P)I,f)d. Hence, we have

1

_ 1~ 71y _
U—S—f—det(JK)JKJK w(Goly ) =s+at,

where s € P 4 and t € Pl,id. We conclude that (1% )1 (RTx,q) C RT 4.
(iv) The converse inclusion follows from a dimension argument.

Exercise 14.5 (BDM). For d = 2, we have card(X) = 3(k+ 1)+ (k—1)(k+1) = (k+1)(k+2) =
dim(Py ). For d = 3, we have card(X) =41 (k+1)(k+2)+ (k- 1)(k+1)(k+2) = 3(k+ 1)(k+
2)(k + 3) = dim(Py 3).
Exercise 14.6 (Cartesian Raviart-Thomas element). (i) A basis for RTg, is
{(8): (), (%), ()}

whereas a basis for RTg 5 is

1 0\ [0\ [z 0 0

1(@)- () (). () () (5)

0/"\o/)’\1 0 0 3
(ii) Let v1 € Qg41,k,... k S0 that vi(x) = EaeAl,k,d agx?t ... xy?, where Ay g g = {(a1,...,q) €
N oy < k+1,09,...,aq < k}. Hence, 0jvi(z) = D a aaalx?ﬁl c.xy" € Qp,q. The same

reasoning on the other indices implies that V-(RT} ;) C Q4. Let us prove that vjgny €

Qk,a—10 Tgl for all v € RTIE,d' We do the proof for ny = e;, which means that z; is constant
over H. Hence, we have

— _ aq a2 Qg 1 5d1
Vg Ny = Vg = g (aqai")xy® ... xyt = g byt ...y,
Q€A ka BEBL,a
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where By = {(B1,...,Ba-1) € N1 | B1,...,B4-1 < k}. Let Ty : R¥™! — H be defined by
Tu(yi,-- o yi—1) = (1,91, -,Yd—1). Then Tgl(w) = (22,...,24). Let us define the function
q(y) == Zﬂelﬁk,d bﬁyfl . ygdl. Then Vg nH = qo Tgl where ¢ € Qg,q—1.
(iii) Observe first that

card(¥) = dk(k 4+ 1)1 +2d(k + 1) = d(k + )41 (k 4 2) = dim(RTY).
Let v € RT} be such that o(v) = 0 for all o € 3. The assumption af)m(v) =0, for all i € {1:2d}
and all m € {1:nf, }, together with the fact that v nE € Qra oTEil, implies that vz, -np, = 0.
This, in turn, implies that v can be rewritten as v = (z1(1 — z1)r1,...,24(1 — z4)rq)", where
r:=(r1,...,74)" is a member of Q14 . kX...xQx  rr—1. Then the assumption Uf)m(v) =0
for all i € {1:d} and all m € {1:n$ } implies that [, v-rdz = 0, which, in turn, leads to r = 0,
thereby proving that v = 0.
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Chapter 15

H (curl) finite elements

Exercises

Exercise 15.1 (S1 4). (i) Prove that for all g € Sy 4, there is a unique skew-symmetric matrix Q
s.t. g(x) = Qz. (ii) Propose a basis of S 4. (iii) Show that q € S; 3 if and only if there is b € R?
such that g(x) = bx.

Exercise 15.2 (Cross product). (i) Prove that (Ab)x (Ac) = A(bxc) for every rotation matrix
A € R3*3 and all b,c € R3. (Hint: use Exercise 9.5.) (ii) Show that (axb)xc = (a-c)b — (b-c)a.
(Hint: (axb)i = egi;a;b; with Levi-Civita tensor g;;; see also the proof of Lemma 9.6.) (iii)
Prove that —(bxn)xn + (b-n)n = b if n is a unit vector.

Exercise 15.3 (Ng3). (i) Prove (15.4). (Hint: verify that tg-VA, = 1 and tg-V, = —1.) (ii)
Prove that v = (v)x + 5(Vxv)x(x — ck) for all v € Ny 3, where (v)f is the mean value of v on
K and ck is the barycenter of K. (Hint: Vx(bxx) = 2b for b € R3.) (iii) Let 6% be the shape
function associated with the edge £ € k. Let F' € Fi with unit normal ny | pointing outward
K. Prove that (0%) rxng|r = 0 if E is not an edge of F', and fF 0L xngpds =g r(ce — cr)
otherwise, where cg is the barycenter of £/, cr that of F', and 1 r = —1if ng | pxtg points outward
F, g r = 1 otherwise. (Hint: use Lemma 15.15 and Exercise 14.1(ii).) (iv) Let Fg collect the two
faces sharing E € k. Prove that fK 0%, dx = % ZFeFE tg.r(cr—ckg)x(cg—cp). (Hint: take the
1

inner product with an arbitrary vector e € R? and introduce the function ¢ (x) := jex(x — cx).)

Exercise 15.4 (Rotated RT} 2). Prove Lemma 15.9. (Hint: observe that Rz (Py.2) = Py2 and
S/H_LQ = Rg (iL‘)]P’I];IQ)

Exercise 15.5 (Hodge decomposition). Prove that for all k € N,
Pri1,a =Npg @ V}P’&Zd.

(Hint: compute Ny 4N V]IDI,;I+27d, and use a dimension argument.)

Exercise 15.6 (Face element). We use the notation from the proof of Lemma 15.15. Let
F e Fi. Let Tk : S2 5 F be an affine bijective mapping. Let Jp be the Jacobian matrix of Tp.
Let v € Ny 3 and let © := JL(I3 — np®@np)(voTr). Show that © € Ny o. (Hint: compute §' ()
and apply the result from Exercise 14.4.)
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Exercise 15.7 (Geometric mapping T4). Let A be an affine subspace of R? of dimension
le{l:d—1},d > 2. Let a € A and let Py(x) := a + IIa(x — a) be the orthogonal projection
onto A, where IT4 € R™4. (i) Let n € R? be such that n-(z —y) = 0 for all z,y € A (we say
that n is normal to A). Show that lIyn = 0. Let t € R? be such that a +t € A (we say that ¢ is
tangent to A). Show that T4 (¢) = ¢. (ii) Let ¢ € Py; and let G(x) := ¢(T ' oPa(x)). Compute
Vg. (iii) Show that there are ¢1,...,%; tangent vectors and ¢, ..., ¢ polynomials in Py ; such that
Vi(x) =3 e qs(T ' (z))t, for all z € A. (iv) Let ¢ be a tangent vector. Show that there is

u € Py such that ¢-Vi(x) = u(Tgl(w)).

Exercise 15.8 (Cartesian Nédélec element). (i) Propose a basis for Ny ;. (ii) Prove Proposi-
tion 15.23. (Hint: accept as a fact that any field v € NE_B annihiliating all the edge and faces dofs
defined in (15.17) satisfies vjpxnp = 0 for all F' € F; then adapt the proof of Lemma 15.16 by
using the RT 5 finite element defined in §14.5.2.)

Solution to exercises

Exercise 15.1 (S1,4). (i) Let g € S1,4. Since g is homogeneous of degree 1, there is a unique dxd
matrix Q such g(x) = Qz. Then, g € Sy 4 if and only if 2"Qx = 0 for all z € R%, which means that
the quadratic form .. 4y Qiiz? + Yizieqr:ay(Qij + Qji)ziz; vanishes for all @ € RY. Hence,
Q is skew-symmetric. We have established that there is a one-to-one correspondence between the

members of §; 4 and the dxd skew-symmetric matrices.

(i) Consider the @ skew-symmetric matrices Q%, for all i,j € {1:d} with i # j, defined by
ZJZ = 5;”»514‘— dk;01; (the only nonzero _entries of Q" are Qjj = 1 and Q}; = —1). Then, setting

q" (x) := QY x, we have shown that {q" }; je{1.4},i; is @ basis of §y 4.

(ii) Let us now focus on the case d = 3. The above definitions show that ¢'?(z) = —e3x=,
q*3(z) = —e;xx and ¢3! (x) = —eaxx. Hence, for all q(x) = B3q'%(x) + 1% (x) + B2q3  (x) €
Si 3, we have g(x) = bxax, where b := —(1e1 — faes — Bses.

Exercise 15.2 (Cross product). (i) Using Exercise 9.5, we obtain
(Ab)x (Ac) = det(A) A~ T(bxe) = A(bxc),

since det(A) =1 and A~T = A.
(ii) We have (using summation for repeated indices)

((axb)xc)k = _Ciaikjalfljmbm
= —¢i by (8imOrr — 0itOkm )
= (a-¢)b, — (b-c)ay,

since €ikj€jm = OimOkl — 0itOkm.-
(iii) We apply the formula derived in Step (ii) using n-n = 1.

Exercise 15.3 (Ng3). (i) Since tg = 24 — 2, (2 — 2p)-VAg = A\g(2q) — A¢(2p) = 1, and similarly
(2g — 2p)-VAp = —1, we infer that [, 0% -tpdl = [,(A, + Ag) dl = |E| showing that 0% (0%) = 1.
Consider now an edge E’ with E’ # E. Then, at least one vertex z, or 2z, is not in E’, say z, ¢ E'.
This implies that A\, = 0 in £’ and that tg,-V\, = 0. Hence, 0%, (68%) = 0.

(ii) Let v € Ng 3. Then v = a + bx(xz — ck) with a,b € R?, and since ¢y is the barycenter of
K, we infer that a = (v)k. Furthermore, using the hint yields that Vxwv = 2b. In conclusion,
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v={(v)k + 2(Vxv)x(z — ck).

(iii) The assertion (8%)|p xng|p = 0 if E is not an edge of F' is a direct consequence of Lemma 15.15
since the three dofs of 6%, attached to F' vanish. Assume now that E is an edge of F'. Observing
that

Opxngir =g rRz (0% — (0 nk i p)nk|F),

where Rz is the rotation by 7 in the hyperplane parallel to F', and recalling that Rz (0% —
(0% nk i p)ngr) o Tr is in RTy 2, we can use Exercise 14.1(ii) to infer that fF 0L xng pds =
LE,F(CE — CF).

(iv) Using the hint, we obtain that

/ede_/ (Vxap)- /¢ Vx05)dr — Y / (ni|rx0%)4 ds.
FeFk

The first term on the right-hand side vanishes since ) has zero mean value on K and Vx#6§, is
constant on K. Since the summation in the second term reduces to F' € Fg owing to Step (iii),
we infer that

/Oc dr = — Z / ’I’I,K|F><0E)’l,bd5— T+ To,
FeFE
with

-y / (nk|px0%)-P(cr)ds

FeFEr

Z / (ng|Fx0%)- (¥ —P(cr))ds

FeFE
Since 1 (cp) is constant, we can use Step (iii) to evaluate Ty, so that

1
El = 5 Z LE,F(CE — CF)'(6><(CF — CK))
FeFg

= % Z tg,re-((cr — cx)x(ce — cr)).

FeFg
Let us finally prove that T = 0. Since 1 — 1(cr) has zero mean value on F, we can write
= 3 [ s @ = Op(em) (6 —bernds — S [ 1nds
Fere FcFg

Since 0% (x) — 6% (cp) = bx(x — cF) for some b € R? and since ¥ (z) —(cr) = sex(z —cr), we
obtain that

Ir = 5 (ngpx(bx(z — cr)))-(ex(z — cr))

wly—lwl»—t

(nkrb)(z — cp)-(ex(z —cr)) =0,

since nk|p-(z — cr) = 0.
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Exercise 15.4 (Rotated RT}, 2). We observe that R:Pj 5 =Py 5. Moreover, we have

+1 k+1 l U, k+2— l
0=xq= § 41,174 + § 42,11 Ty
1e{0:k+1} le{0:k+1}

This implies that g1 x+1 = 0, ¢20 = 0, and ¢1; = —q2,41 for all I € {0:k}. Hence, ¢1 = xar
and o = —xqr with r» = Zle{o:k} ql_’l:rllzzrgfl € ]P)I,fg. This shows that Syy12 = (R%m)Pﬁz. We
conclude that Ny » = Rz (RT 2).

Exercise 15.5 (Hodge decomposition). Let v € Ni 4N V]P’I,fw)d, so that v = Vp where
D E Pgﬂ,d' Observe that Vp € ]PI,;IJrLd and x-Vp(x) = (k+2)p(x). The assumption v = Vp € N 4
and the property Vp € ]P’E_H’d imply that x-Vp(x) = 0, which can be true only if p = 0. Hence,
v = 0. We conclude by using a dimension argument, since we have

dim(Ny, q) + dim(VP}, 5 o) = dim(Ng q) 4+ dim(P}, 5 4)

_ (k+d+ 1) (k+d+1)!
Skl d-DYk+2)  (k+2)(d-1)!
(k+d+1)!
m :dlm(Pk+17d).

Exercise 15.6 (Face element). By definition, we have v = r 4+ q where r € P, 3 and ¢ € ]P’I,j+1)3
satisfies y q(y) = 0. Let [Ip := I3 — nr@np. Let ¥ € R2. We have

§'0(y) =y Iple(vo Tr)(Y)
=g Jper(Tr(9)) + (Jry) ' Tlrq(Tr(Y))
=g Iper(Te(9)) + (JrY) Trq(Te(y) — Te(0g2) + Tr(0g2))
=g JEpr(Tr(9)) + Jry) ' rq(Jr(Y) + Tr(0g2)).

We now invoke the result from Exercise 14.4 componentwise: there is ¢ € Py, 2 such that q(Jp(y) +
Tr(0r2)) = q(Ir(y)) + t(y). Setting 5(y) := y JpIlp(r(Tr(y)) + t(y)) where § € Pyi1 2, and
observing that (Jry) np = 0 for all g, we obtain

7'9(y) =35y) + Jry) "a(Jr(y)) = 3(y).
Since ¥ € Pyy1 2, we have the decomposition ¥ = 7 + ¢ where # € Py, 2 and q € ]P1k{+1,2- We have

y'o(m) =9 7(9) + 7' 4() = 5(y) € Pryr2,
but §'7(y) € Pry12 and ¥'q(y) € ]Plk{+2)2. Hence, 9'q(y) = 0 for all g, which proves that
Ve Nk)g

Exercise 15.7 (Geometric mapping T4). (i) These are elementary results in linear algebra. Let
ti,...,t be a basis of A —a. Let ny41,...,n4 be a basis of span{ty,...,#}. Let n be a normal
vector. Let © := a+n. Then Py(x)—a =14 (x—a) = 14(n). Observe that 0 = ny-(Pa(x)—a) =
ngIl4(n), for every normal vector n, for all s € {{+1:d}. Note also that ts-(Pa(x) —x) = 0
for every tangent vector ¢, for all s € {1:d}, i.e.,, 0 = ts-(a + Ia(n) — x) = ts-(—n + Ma(n)) =
ts 114 (n). Hence, IT4(n) is orthogonal to span{ti,...,¢;} @ span{n;;1,...,nq} = R? meaning
that IT4(n) = 0. Let t be a tangent vector and let © = a + ¢, so that @ € A by definition. Hence,



Part III. FINITE ELEMENT INTERPOLATION 81

t=x—a=Ps(x)—a=Ts(x—a) =T4(t).
(ii) Let h € R%. We use the Fréchet derivative notation and apply the chain rule. This gives

Dg(z)(h) = Dq(T;" o Ps())(D(T; " o Pa(x))(h))
= Dq(T, ' o Pa(x)) (DT " (Pa(x))(DPa(z)(h))).

Note that DPa(z)(h) = Il4(h) and DT, ' (x')(h') = J,;'h/ for all 2’ € A and all b’ € R?. We
identify the Fréchet derivatives of ¢ and g with the gradients, so that

Vi(z)-h = Dg(z)(h) = Vq(Ty " o Pa(x))-(J3 Ta(h))
=TA(J; V(T o Pa(x)))-h,  VheR%

Hence, we have
Vi(x) = (I V(T " o Pa(x)), Vo eR7

(iii) Let n any normal vector. We have
n-Vq(@) = nIy (T, V(T o Pa(@)) = Ta(n)-J, Va(T; " o Pa()) = 0,

since we have already proved that II4(n) = 0. Hence, V§(xz) € span{ty,...,¢;}. Moreover, since
Py(xz) =z for all x € A, we have

Vi(w) =4I, Ve(Ty ' (2), VoeA

Hence, V(x) is an [-variate R%valued polynomial of degree at most k. The above two arguments
show that there exist ¢1,...,q € P4 such that

Vi(x) = Z qs(Ty H(x))ts, Vo € A.
se{l:1}
(iv) Let t be a tangent vector. The above arguments show that there is u € Py ; such that
tVi(z) =Ty (z), VxeA

Exercise 15.8 (Cartesian Nédélec element). (i) A basis for Ng; is

{(wzws) (Ig(l—wg)) ((1—12)13> ( (1— m)(l 13))
o, 0 ) 0 5
0 0 0
0 0 0
(stl) s (Is(lle)) s ((1*13)11) , ( (1— acg)(l 1 )
0 0 0
0 0 0 0
0 0 0 0 )
(wlwz) ’ (il(l—wz)) ’ ((1—11)12) ’ ((1—%)(1—12)) }

(ii) Observe first that card(X) = 3k*(k + 1)+ 12k(k+1) +12(k+1) = 3(k +1)(k +2)* = dim N 5.
It remains to show that any field v € N5 that annihilates all the dofs defined in (15.17) vanishes
identically. Owing to the hint, we already know that vjgx xnx = 0.

(ii.a) Let us first prove that w := Vxwv = 0. The definition of the polynomial spaces NE,3 and
]R'IIE_’3 implies that w € Qp41,56XQp k+1,5 X Qh ko kt1 = RTE.B- Thus, we are going to show that
w = 0 by invoking Proposition 14.24, i.e., by showing that w annihilates all the dofs defined
n (14.16). First, we observe that the normal component of w vanishes on 9K since vjgx xnx = 0.
Therefore, w annihilates all the face dofs in (14.16). Let j € {1:d} and let {¢jm}mefi:ne,}
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be a basis of Qu;,ap,0; With aj = k — 1 and oy = k if j° # j. Let {vk; = |Fjle;}jeq1:a}
be the vectors orienting K, where {e;};c(1.4y is the canonical Cartesian basis of R<. Setting
@jom = VK j¥m j, we have [l w-¢j,dr = [, v-V X de since vjgx xng = 0. Since we have
VXPjm =D jci1.ay €iTim With 15 € Qg, g, g, With 8; = k and B; = k — 1 if j' # j, we infer
from (15.17¢) that [, v-VX@; , dz = 0. In conclusion, w annihilates all the cell dofs of the RT}
finite element as well. Hence, w = 0.

(ii.b) Since the field v € NE,:; is curl-free, there is ¢ € Q41,3 such that v = Vgq. The property
vjgx XNk = 0 implies that ¢ is constant on 9K, and without loss of generality, we assume that
qoxx = 0. If k = 0, this implies that ¢ = 0, so that it remains to consider the case k > 1. In
this situation, there is § € Qx_1,3 such that ¢ = bg with b := Hie{l;d} 2;(1 — ;). Let us write
q = Yaes,_,, 0z with B3 = {a € N*[a; € {0:k=1}, Vi € {1:d}}. We consider the
a€By_1s ﬁaaxlwo‘. We have r € Qg x—1,5k—1 so that (15.17c) implies that
Sy v-(exr)dz = 0. Since v = Vg, V-(e1r) = ¢, and qpx = 0, we infer that

O:/ v~(elr)d:1::—/ bg? du,
K K

which proves that ¢ vanishes identically. In conclusion, we have shown that v = 0. This completes
the proof.

polynomial r(x) := 3



Chapter 16

Local interpolation in H(div) and
H (curl) (I)

Exercises

Exercise 16.1 (V4(K)). Show that V4(K) defined in (16.2) can be used in the commuting
diagram of Lemma 16.2 after replacing L'(K) by W*~1P(K). (Hint: use Theorem 3.19.)

Exercise 16.2 (Z3). Prove that the estimate (16.6) holds true for all r € [1,k + 1], » € N,
every integer m € {0:|r]}, and all p € [1,00). Prove that (16.7) holds true for all » € [0, k + 1],
r & N, every integer m € {0:|r]}, and all p € [1,00). (Hint: combine W™P-stability with
Corollary 12.13.)

Exercise 16.3 (de Rham). Prove that the leftmost diagram in Lemma 16.16 commutes. (Hint:
verify that VZ% (v) — Z§,(Vv) annihilates all dofs in Ny, 4.)

Exercise 16.4 (Poincaré operators). Assume that K is star-shaped with respect to a point
a € K. Let f and g be smooth functions on K. Define P8(g)(x) := (x —a)- fol gla+t(x—a))dt,
Pe(g)(x) := —(xz —a)x fol gla+t(x —a))dt (if d = 3), and Pi(f)(z) := (x — a) fol fla+t(x—
a))t?~ldt. Verify that (i) VP8(g) = g if 0;g; = 0;g; for all 4,7 € {1:d}; (ii) VxP°(g) = g if
Vg = 0; (iii) V-PA(f) = /.

Exercise 16.5 (Koszul operator). (i) Let v € Pﬁd with d = 3. Prove that V(z-v)—xx(Vxv) =
(k4 1)v and —Vx(xxv) + xz(V-v) = (k+ 2)v. (Hint: use Euler’s identity from Lemma 14.3.)
(ii) Prove that Py g = VPii1,d ® (@ xPi_1,4) = VXPpi1.q ® (xPr_1,4). (Hint: establish first these
identities for homogeneous polynomials.) Note: defining the Koszul operators 8(v) := x-v and
k°(v) := —xxwv for vector fields and k%(v) := xv for scalar fields, one has x8(Vq) = kq (Euler’s
identity) and V-(k9(¢)) = (k + d)q for all ¢ € P}, and V(k8(q)) + k°(Vxq) = (k + 1)q and
Vx(k°(q)) + k4 (V-q) = (k+2)q for all g € P} ;; see [1, Sec. 3.2].

Exercise 16.6 (V-RT;, and VxNg3). (i) Prove that V-RT, 4 = Py 4. (Hint: prove that
V- : &Py g — Pi g is injective using Lemma 14.3.) (ii) Let us set RT‘gz:O ={veRTyq|Vwv=
0}. Determine dim(RT{'y=0) for d € {2,3}. (iii) Show that RT{\§=° = VxPy113. (Hint: use
Lemma 14.9.) (iv) Prove that R’]I",gf‘ézo = VxNy, 3. (Hint: use the rank nullity theorem.)
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Exercise 16.7 (VPy114 and VxPyiq3). Let £ € N. (i) Set Pj ; == VPji1,4. Show that
dim(P§ ;) = (*T9™) — 1. (ii) Assume d = 3. Set Py, := VxPii13. Show that dim(P{ ;) =
3(]“;4) - (k'gf’) +1= 3(]“;3) - (k§2) (with the convention that (g) = 0). (Hint: use the exact
cochain complex ]P)()yd —l) Pk+2,d L PkJrl,d K Pk,d L ]P)kflyd L) {0})

Solution to exercises

Exercise 16.1 (V4(K)). Let s < 1 (the case s > 1 is trivial). The proof of Proposition 16.1
shows that after integration by parts, the term [ x(V-w)gdz can be given a weak meaning for
v € V4(K) and q € Py 4. One replaces L'(K) by W*=bP(K) = (Wol_s’p/ (K))" and extends the
domain of TV to W*~12(K), which is legitimate since Wy *? (K) = W'~ (K) owing to (3.5a)
and 1 —s<1-— L.

B =

Exercise 16.2 (Z¢%). Let us consider the estimate (16.6). Let 7 € [1,k+ 1], r € N, m € {0:|r]},
and p € [1,00). Notice that |r| > 1. For all m € {1:|r|}, we have W™P(K) — VI(K) (see
(16.2)). Hence, I}i‘f is W™P-gtable. Since m < |r] < k and since Py 4 C RT} 4 is pointwise
invariant under I?{, we infer that

v = T (0)lwma) < ¢ inf |o = glwma ),
q€Py a

and we conclude by invoking Corollary 12.13. If m = 0, we reason similarly by using the fact
that the stability property (16.8) also holds true for r > 1 (because W'P(K) — V4(K)), and
we conclude as above. Finally, the reasoning for the estimate on the divergence is similar since
Lemma 11.18 implies that Z% is W™ P-stable for all m € {0:]r]}.

Exercise 16.3 (de Rham). We first notice that VPy11,4 C Prqg C N 4. Let us prove that
0i(0) = 0 with § = VI%(v) — I%(Vv) for all v € V&(K) and all the dofs {o;}ien of the Ny 4
element. Let E € £k be an edge of K with geometric mapping T and let z,, z, be the end vertices
of E such that tg = z,—z2,. Set 7r := |E| 'tg. Let w,, € Py 1. Using TE'V(MWOTE_l) = u;nOTb?l
and pl, € Py_11 (if k> 1, or pu, = 0 otherwise), together with the definitions of the dofs (7.11a),
(7.11b), and (15.8a), we infer that (denoting pg m = pim o Ty ")

/VIIg((U)-TEMEmdl: {If((v)u;;,m} ! —/ 75V (i 0 Ty V)T (v) di
E Zp E
— (o] = [ o Tt
Zp E

:/ V’U-TE/LE7mdl=/I;((V’U)-TE,U,E)WCU.
E E

Hence, 6 annihilates all the edge dofs of the Ny, 4 element. The proof is similar for the surface and
volume dofs.
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Exercise 16.4 (Poincaré operators). (i) We have
1 1
VPe(g)(x) = /0 gla+t(x—a))dt+ /0 Vg(a +t(x —a))(x —a)tdt
=g(x) — /01 dgla+t(x—a))tdt+ /01 Vg(a +tx—a))(x—a)tdt

1
=g(z)+ /0 (Vg — Vg )(a+tx—a))(x—a)tdt
=g(z),

where we integrated by parts with respect to ¢, used that $g(a + t(x — a)) = Vg'(a + t(z —
a))-(x — a), and that Vg = Vg' by assumption.
(i) Since Vx(¢x1h) = (V1)) — (& V)1p) — (V-§)b + (V) g, we have

VxP%g)(m)z/O VgT(a—i—t(:B—a))-(:n—a)tzdt—2/0 gla+t(x —a))tdt

1 1
=g(x)+ /0 Vg'(a+t(x —a))(x—a)t*dt — /O dg(a+t(x—a))*dt
=g(x),

where we used that V-g =0, V-(x —a) = 3, and (¢-V)(z — a) = 1.
(iii) We have

V-PY(f)(x) = d/l fla+tx—a)t?tdt+ (z — a) /1 Vfla+tx —a))tddt
0 0

— xr) — 1— a r—a d r—a): a r—a d
- f(z) / 4 flat ta — a))rldi 4+ ( >/0 Viatte - a)dt
- f(a).

Exercise 16.5 (Koszul operator). (i) Recall that Vv has components (Vv);; = 0;v; for all
i,j € {1:d}. We have V(z-v) = v + (Vo) Tz and zx(Vxv) = (Vv)Tz — (Vv)z. Thus, V(z-v) —
xx(Vxv) = v + (Vv)z, and applying Euler’s identity to each component of v, we infer that
(Vv)x = (x-V)v = kv. In conclusion, V(z-v) — &x(Vxv) = (k + 1)v. Let us now consider the
second identity. We have Vx(xxv) = z(V-v) — (z-V)v + v — (V-z)v = (V-v) — (x-V)v — 2v.
Hence, we have —Vx(xxv) + ¢(V-w) = (-V)v 4+ 2v = (k + 2)v, where we used again Euler’s
identity to conclude.

(ii) Let us prove that ]P’Ik{)d = V]P’I,jﬂ)d @ :BXPE_I)d. Let v € Pgd. Then ¢ := k%rl:c-v € ]P’I,jﬂ)d and

L Vxw e ]P’E_l) 4- The above identity implies that

W=~

1
Vg+zxw = Tl (V(zwv) —xxVxv) = .

This proves that Pl,i 4 C V]P)I,;IJFL .+ (z X]PI,;EL 4)» and the other inclusion is evident. Moreover, the
sum is direct. Indeed, if v € ]P’gd is s.t. v = V¢ = xxw for some ¢ € ]P’I,jﬂ)d and some w € ]P’Ilj_lﬁl7
then Vxv = 0 and z-v = 0, so that the above identity implies that (k + 1)v = V(x-v) —
xx(Vxv) =0—0 = 0, i.e., v = 0. This establishes that Pﬁd = V]P’I,irl_d <) (ccx]P’Eﬁl_’d), and
by decomposing polynomials into homogeneous components, we conclude that Py g = VP41 4 ®
(xP_1,4). Finally, the proof that Py g = VxPyi1.4 ® (xPk_1.4) is similar.
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Exercise 16.6 (V-RT;,; and VxNg3). (i) Let ¢ € Py 4 be such that V-(zq) = 0. Writing
4= 1cq0:k) q;' with ¢;' € P!, we infer using Lemma 14.3 that 0 = V-(zq) = 210k} (I+d)qf,
so that all the homogeneous polynomials qu vanish. This shows that V- : Py 4 — P} 4 is injective.
Since dim(xPy q) = dim (P q), we infer that V- : Py 4 — Py 4 has full rank. The surjectivity of
V- RTkyd — Pk,d follows from .’B]P)kﬁd C RTkﬁd.

(ii) Using the rank nullity theorem, we infer that dim(RTgf;:O) = dim(RTy 4) — dim(Py 4). Using
Lemma 14.6, we obtain for d = 2 that dim(RT{3=0) = (k + 1)(k +3) — 3(k + 1)(k + 2) =
3(k+1)(k +4), and for d = 3,

dim(RT{3=%) = %(k + 1) (k+2)(k+4) — %(k + 1)(k +2)(k + 3)

%(k 1)k +2)(2k +9).

(iil) The identity RT%“g’ =0 = = VxPj1,3 follows from the hint since RTd“’ =0 c P}, 3 by Lemma 14.9.
We can now compute in a different way the dimension of dlm(R']I'dj}j 0). This gives

k+4 k+5
dim(RT{3=0) = dim(P§,, 5)* _3< ‘?': )—< ‘:: )+1

- %(k 1)k +2)(2k +9).

(iv) We have Vx : N 3 — RTd“’ O since Vxwv € Py 3 C RT3 (see Lemma 15.10) and V-(Vxv) =

0. Moreover, we have already shown that Vxv = 0 implies that v € VP;13. Hence Vx :
Nj3/VPri13 — ]R']I'dlv Y is injective. Now, dim(VPy1.3) = dim(Pg413) — 1, so that

dim(Nk73/VPk+1,3) = dim(Nk 3) — dim(]P)k-i-lﬁ) +1

Lk 1) (k4 3) (k4 4) — %(k+2)(k:+3)(k:+4) +1

»—ll\DI

(k: +1)(k + 2)(2k + 9) = dim(RT}{5=°),

owing to Step (iii). The rank nullity theorem implies that Vx : Ny 3 — R’]I",gf}jzo is surjective.
Exercise 16.7 (VPjy1 4 and VxPyi13). (i) Let V : Priy g — Py 4. The rank nullity theorem
says that dim(ker V) + dim(im V) = dim(Pyy1,4) = (k+;+d). Since dim(ker V) = 1, we have
dim(P§, ;) = dim(im V) = (**179) — 1.
(ii) We have ]P’g)3 = im(Vx). The first equality follows from
dim(]P’%yg) = dim(Pg41,3) — dim(ker V)
) (im V)
= dim(Pg41,3) — dim(Py12,3) + dim(ker V)
) (

k+4 k+5
:dim(]Pk+173 — dim Pk+213)+1—3( _;)— >—( —;)_ >—1,

= dim(Py41,3) — dim

where we used the rank nullity theorem, that ker(Vx) = im(V), the rank nullity theorem again,
and that ker(V) is composed of constant functions. The second equality follows from

dim(]P’%73) = dim(im V) = dim(ker V-)

= dim(Py 3) — dim(im V) = 3 <k ‘?': 3) - <k ; 2),

where we used that im(V x) = ker(V-), the rank nullity theorem, and the surjectivity of V-.
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Local interpolation in H(div) and
H (curl) (IT)

Exercises

Exercise 17.1 (Lifting). Let D := (0,1)2. Let = := (21, 72)" and consider the function ¢(x) :=
L (i) Compute limg,, ;o ¢(x) and lim,, o #(x). (i) Without invoking a trace argument,

[n2 P
ri+xs

prove directly that ¢ ¢ H*(D). (iii) Construct a function 1 € C*°(D;|0,1]) s.t. lim,, o ¢(x) = 0,
limg,+1 ¥ () = 0, lim,, 11 ¥(x) = 0, and lim,, 0¥ (x) = 1.

Exercise 17.2 (Extended face dofs for RT} 4). (i) Let ex r = nrpng|r, €g 5 = NEMNR B
and ef := det(Jx)/|det(Jx)|. Prove that ex r = €z pex. (ii) Prove (17.17). (Hint: show that
LE(Cm o TglF) = L;:{(Qm o T};l) oTy! and use (9.8a).)

Exercise 17.3 (Z5). (i) Let r > 1 and p € (2, 52-]. Prove the stability estimate ||Z (v)||p2(x) <

7 3—-2r
1_1
¢ (Iollzeer + Wiclolergey + hoe o2 2|V x| pogiey) for all v € VE(K). (Hint: use the trace

theorem (Theorem 3.10), the Sobolev embedding theorem (Theorem 2.31), and reason as in the
proof of Theorem 17.5.) (ii) Prove Theorem 17.11. (Hint: proceed as in the proof of Theorem 17.5.)

Exercise 17.4 (Extended edge dofs for Ny, 4). Use the notation from Remark 17.10. (i) Let
w € C'(K) be a smooth function. Prove that ex g g = €x€r p.p where ex = det(Jk)/|det(I k)]
(Hint: apply the Kelvin—Stokes formula (16.15) to the shape function of the lowest-order Nédélec el-
ement associated with E). (ii) Prove (17.28). (Hint: proceed as in Exercise 17.2(ii) and use (9.8b).)

Solution to exercises
Exercise 17.1 (Lifting). (i) We have

li =0 and i =1.
lim, ¢() and  lim ()
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(ii) Using polar coordinates, we have ¢(x) = cos(¢). Hence, V¢(x) = (0, —1 sin(6))T. This implies

that
1
1
|¢)|§I1 // — sin(¢ Tde@ZE/ —dr = o0
4 Jo 7

This proves that ¢ ¢ H'(D).
(iii) The following function satisfies the requirements in the question:

X1 1—{E1
Vat+a3 /(1 —z1)? + a3

One can verify that ¢» € H°(D) for all s € [0, 1).

U(x) = (1—a2).

Exercise 17.2 (Extended face dofs for RTy 4). (i) Since the orientation of the mesh 7y, is
generation-compatible according to Definition 10.3, the unit normal vectors nr and ngz are con-
nected by np = ®% (7 5), and recalling the definition (9.14a) of ®% leads to

1 N
np =éx ————JI Np.
T
Moreover, Lemma 9.11 implies that
1 7TA
nNg\r= _1-/\7"]11( R|F*
1Jx Pz plle

Hence, we have

1

Tk 'ﬁ}? F = NK|F = €K, FNF
”JK nK\FHé? |
1 7TA
T = 1 ng
Ixnple™™ °F
1 T
= eKvFEKEI?,Fi—TA JK 'I’Liﬂﬁ
”JK K|F”€2

= €K, FEK

This proves that ex p = = €KER P
(ii) By definition, we have

= cir [ (VEOVLEG 0TS + (Vo)L G o T )
Now, for all z € F = T (F), we use the definition of LE stated in (17.9). This gives

Lg (Gm o Tielp) (@) = L (Gm 0 T 0 Ty ) ()

= LE(Gn o Ty o Ty 0 Ty ) (T (@)
= LE (G o Te (T (@),
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where we used that Ty, = Tlgl oT L. Owing to (9.8a) and since Jx is constant, we infer that

K|F
V(LE (G 0 T5Y)(&) = V(LE (Gn 0 Tic) 0 Tie) (@)

= T V(LE (G 0 T ) (T (2)).

This, in turn, implies that

(@) = e 5 [ (Vo) VILE G o TZ)) + (VR @ILE (G0 T7)) a2

=€R ﬁ/f( (det(JK)JI_( v“H-II—(V(Lﬁ“((Cm OT[;)IF))

)

+ det(J) (Vo) LE (G © Tice) ) (T (@) 47
=g pen [ (0P o Tk + (o)L (G0 Tih) ) (w) da,
with ef 1= det(Jx)/|det(Ix)|. We conclude using the identity ex r = exep 5 from Step (i).
Exercise 17.3 (Z%). (i) Using Proposition 12.5, AS. := JL, and the regularity of the mesh

sequence, we infer that

31
IZk ()llz2x) < chie  max|o.i(v)].
Proposition 17.9 leads to
3
1Z% (V)| L2(x) < h%( & vl ke +h pHVX”HLr’ yt+h p||v><nKHLp(aK))

Since v € H"(K), r > 3, the trace theorem (Theorem 3.10) implies that vxng € LP(9K) since
p € (2,5%]. The Sobolev embedding theorem (Theorem 2.31) implies that v € L?(K) with

q:= % > p. Reasoning as in the proof of Theorem 17.5, we infer that

_s3 _z2 _3 r_3
by vl Loy + b loxmi ey < (b Jollp2i) + hie 2 [olar )

This leads to

1+3(L -

IZ5% (W) L2(xy < ¢ (ol L2y + Piclvlar () + by ||v><vHLP(K))

which is the expected stability bound.
(ii) We can now conclude by proceeding as in the proof of Theorem 17.5. We combine the stability

bound from Step (i) with the fact that Py 4 is pointwise invariant under Z§,, the fractional Poincaré-
Steklov inequality from Lemma 12.12, and that |v — q|gr(x) = [v|g-(x) and Vx(v — q) = Vxv
for all g € Py 4.

Exercise 17.4 (Extended edge dofs). (i) Let 6% be the shape function of the lowest-order
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Nédélec element associated with the edge E. We have
1
€x,FE = €K, F,EOR(0%) = EK,F,E—/ (0ftp)dl = EK,F,E/ (0%-Tr)dl
E| /e E
= / (OCE'TK,F|E) dl = / (OCE~TK1F) dl
E OF
— [[(Vx6x)mirds = [ 0 (Vx05))-Tncr) ds
F F
- /F det () (VX (0%)) T 1) © Tl T 2 ds
— e [ (Vxwi(63) g5 05
F
where we used the definition of the Ny 4 dofs and of the tangent vectors tg and 7g in the first
line, the definition of ex g and the fact that 6%, has zero tangential component on OF\E in the
second line, the Kelvin—Stokes formula (16.15) and an elementary manipulation in the third line,
the identity (9.8b) and the fact that J}.mpr = ||J-II-<7’LK‘F||£2’I/’\LI’%‘?O I;‘IF in the fourth line, and the

transformation of surface measures in the fifth line. Since 99(0%) is the reference shape function

of the lowest-order Nédélec element associated with the edge E s.t. Tk (F) = E, we conclude using
the same arguments as above that

758 = %7508 Yk (08)) = /ﬁ(VW%("%))-ﬁg@d?,

and putting everything together yields the expected identity.
(i) Let v € V¢(K). By definition, we have 0%, ,, = 0% (¥%(v)) = €z 5 5(T1 + T2) with

5= [ (@) VL (i 0 T3 ") 45
%= [ Whklo)xigp)} VLG (o 0 T3 05

Proceeding as in Step (ii) of Exercise 17.2, we infer that Lg(,um o TEfl) = LE (i 0 TglE) 0Tk, so
that invoking (9.8a) we obtain

VLE (im0 T') = I (VLE (pm © Tie ) © Trc.

Invoking (9.8b), we infer that
T = [ det@0) (T (Vx0) T (VLE (o o T p)) o Tic 2
K
= eK/ (Vxv)-VLE (im0 Ty ') da.
K

Similarly, we have ng(/’Lm o Tél) = I (VLE (tty 0 TglE)) o Tk, and

N 1
Wi (0) x5 = o (Tkv)x (Tknk ) 0 Ty 5
”JKnK\FHé?
= det(Jx) I (wxngp) o Ty 5

HJ-II—('”'K|F||€2
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where we used the definition of 9%, the identity (9.10) on the transformation of unit normals, and
[(Tkngr)(@)|le = |(Tx ﬁglﬁ)(ﬁ)ﬂé}l in the first line, and the identity from Exercise 9.5 in the
second line. Using Lemma 9.12 on the transformation of surface measures, we infer that

JT n _ ~
Ty = /ﬁ ((J%Uxm)ﬂ}-{(v[’g(ﬂm o TKlE))) © TK|ﬁdS
K 2

1 _ _ —~
— [ det(U) o (55 (03 TR (VL (s 0 T ) © T .03
F HJKnK|F||Z2
:eK/(van‘F)-VLg(u,nOTg)lE)ds.
F

Putting everything together and using the identity ex rrp = €exep 55 from Step (i) proves
that (17.28) holds true.
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Chapter 18

From broken to conforming spaces

Exercises

Exercise 18.1 (H (div), H(curl)). Prove Theorem 18.10. (Hint: use (4.8).)
Exercise 18.2 (Discrete Sobolev inequality). (i) Assume d > 3. Prove that |vp| pex) <

ch}(_%HVvth(K) for all v, € P#"(T;,), all K € Ty, and all h € H. (Hint: use Theorem 2.31.)

(ii) Assume d = 2. Prove (18.15). (Hint: let K € T with hg < ‘%D, let x € K and let y

have polar coordinates (r,0) with respect to & with r > 67‘3 and 0 € (0,w), use that vp(x) =

vp(y) — fOT 0pvn(p,8) dp, decompose the integral as for -dp = thK -dp + thK -dp, and bound the
two addends.)

Exercise 18.3 (Orthogonal and oblique projections). (i) Show that Ig? is the L2-orthogonal
projection onto P. (Hint: observe that (p;, @)LQ(IA{,RL}) = |I?|§ij for all 4,5 € N.) (ii) Prove that

Ig( is the oblique projection onto Pxg = wf}l (P) parallel to Q% with Qx := <I>I_<l (ﬁ) (Hint:
use (18.17).) (iii) Show that Px = Qx if the matrix Ak is unitary, i.e., ALAx = AgAL =1,.

Exercise 18.4 (Approximation on faces). Prove (18.28).

Solution to exercises

Exercise 18.1 (H(div), H(curl)). Let v € W1P(T},). Using the hint, we infer for the divergence

that /Dv.vq>dx: > —/KV-(U\K)Q>d:v+ > /F[[U'n]]F‘I’dS’

KeTh FeFy
for all @ € C§°(D), and we infer for the curl that

/’U-VX‘I)CLT: Z / Vx(vjg)-®de + Z /[['vxn]]FAI)dS,
D KeT, VK Fere/F

for all ® € C§°(D). The rest of the proof follows the same arguments as those presented in the
proof of Theorem 18.8.
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Exercise 18.2 (Discrete Sobolev inequality). (i) It suffices to apply the inverse inequal-
ity (12.3) with p := oo and ¢ := 2* := dz_:12 followed by Theorem 2.31.

(ii) Let v, € PE(T;) and let K € T;, be such that hx < 2. Fix x € K. Set ¢ (z) := {y €
&(x) | ly — @[22y > 22}. Let y be arbitrary in €*(x) with polar coordinates (r, #) with respect
to . Since vy (x) = vn(y) — [; Opvn(p,0) dp, we infer that

o () |* < 2Jvn(y))? + 2(11 + I2)?,

with
hi r
I = dpon(p,0)dp,  Ip:= [ d,vn(p,0)dp.
0 hx

Concerning I, let B(x, hik) be the ball of center  and radius hx and set T, := {K' € T, | K'N
(B(x,hi) N&(x)) # 0}, as illustrated in the figure below.

By definition, we have |I;| < hx maxgeT, || V| g (k). Using the inverse inequality (12.3) with
p =00 and ¢ := 2 and the fact that all the mesh cells in T, have a size equivalent to that of K
owing to Proposition 11.6, we infer that

1] < chx max R lIVunllLzcery < Vol Lese,none@))-

Concerning Iy, we employ the Cauchy—-Schwarz inequality to infer that

r 2 r
T
|12|2—</ pépé@pvh(pﬁ)dp) <In <h—>/ 10,00 (p, 0)*pdp,
h K h

K K

and the logarithmic factor is bounded by ln(,‘i—ﬁ). We regroup the above bounds on I; and I and
integrate the inequality for all y € €*(x) to infer that there is ¢ > 0 such that

op
(@) lon (@) < [onap) + 1€ @) Vo2 + I (E) 5 1Venl e,

where we bounded integrals over €(x) by integrals over D and where we used that

op w T
/16 /0 /0 |apvh(p79)|2pdpd9d’l”S(S%)vahH%?(D)
30D

to bound the last term on the right-hand side. The assertion follows by dividing by |€%(z)| which
scales like wé% with w > 0.
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Exercise 18.3 (Orthogonal and oblique projections). (i) Since we have im(Iﬁ?) c P, we
only need to prove that (g, I%(@))LQ(R.R,,) = (@.9) 2oy for all G € P and all 7 € L*(K;RY).
The definition of the dofs implies that for all 4,5 € N,

~ 1 . -
61']‘ = U_j(ei) = @(pjvei)LQ(I?;Rq)'
Let now v € Ll(IA(;Rq) and let ¢ € P. Since {Pj}jen is a basis of ]3, we can write § = Zje/\/ AjDj-
We infer that

~

(Z]\’ Iﬁ? (iD)LQ(I?;Rq) = Z 83 (6) (Z]\, 91')L2(1A(;Rq)
ieEN

1 —~

:Z (pzu )Lz(KRq)( 9')L2(I?;Rq)
ieN' |

1 o~

= Z —\; (pu )L2([A(;Rq)(pj’9i)L2(lA(;]Rq)
i,jEN |K|

:Z)‘ Pi» V)2 (Rirny = (@ 0) 2Ry
JEN

thereby proving the assertion.

(ii) Since im(Ig() C Px, we only need to prove that (¢, Zk (v V)2 (kire) = (4,0)12(k; Ra) | for all
q € Qk and all v € L'(K;R%). Using that Iu is the L2-orthogonal projection onto P that
Dy (q) € P, and the identity (18.17) twice, we infer that

(Q7I ( ))L2(K Re) = ( wK (I%(wK(U))))L%K;Rq)
= (¢ (q), I%(UJK(U)))B([?;RQ
K (U))Lz(f(;Rq) = (q7U)L2(K;RQ)7

thereby proving the assertion.
(iii) If the matrix A is unitary, we have A" = Ag and since |det(Jx)| = 1, we infer that

l¢ € Qx] < [dx(q) € P]
— [|det(Jx)|Ax (g0 Tk) € P]
= [Ag(goTxk) € P]
= [vx(q) € P]
<~ [q€ Px].

This shows that Px = Qx and that Ig( is L?-orthogonal.

Exercise 18.4 (Approximation on faces). Assume that k > 1 and for simplicity that ¢ = 1. Let
v € WHHTP(K). Assume first that 7 € [1,k]. Owing to the multiplicative trace inequality (12.16),
we infer that, with n :=v — Ig((v),

_1 11 1
HVW”LP(F) <c (th |77|W1~P(K) =+ |77|W11x7P(K)|77|€V2’P(K)>'
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Invoking (18.25) with m € {1,2} (note that m < 1+ |r]|) shows that (18.28) holds true in this
case. Let us now assume that r € (%, 1) with p > 1. Let ¢ € 1/1;(1 (P1,4) = Pq,q be arbitrary. We
have

hillvnl\mw) < hg V(v - a)lle(r) + BENIV (T (v) a)llLr(r)
<c(lv— alwre ) + g |vlwrers k) + |I§((v) — q1lwre(x))
<c(lv—alwre) + Riclvlwrsrs ) + v = Zhe () lwre i),
where we used the triangle inequality in the first line, the fractional trace inequality (12.17), that
q1 € P14, and the discrete trace inequality (12.10) in the second line, and the triangle inequality

in the third line. Invoking (12.15) (since ¢; is arbitrary in Py 4) and (18.25) with m := 1 leads
again to (18.28).
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Main properties of the conforming
subspaces

Exercises

Exercise 19.1 (Connectivity classes). Consider the mesh shown in Figure 19.1 and let P§(75)
be the associated finite element space composed of continuous Lagrange P, finite elements. Assume
that the enumeration of the Lagrange nodes has been done with the increasing vertex-index tech-
nique (see (10.10)). (i) What is the domain and the codomain of j_dof? (ii) Identify j_dof!(8)
and j_dof1(13). (iii) Identify 75 and T1o.

Figure 19.1: Tllustration for Exercise 19.1.

Exercise 19.2 (Stiffness, mass, incidence matrices). Let {\,},c(1:n,} be the global shape
functions in P{(7Ty). Let {0 }neq1:n.y be the global shape functions in P§(75). (i) Recall the in-
cidence matrix M® € RNeXMv defined in Remark 10.2. Prove that V), = Zme{l:Nc} MY 6, for
alln € {1:N,}. (Hint: compute oy, (VA,) where {0}, }eq1: n,} is the dual basis of {0, }e1: N0y
i.e., the associated dofs.) (ii) Let A € RM>*N be the Courant stiffness matrix with entries
Aprr 1= fD V-V dz for all n,n' € {1:N,}, and let ' € RNe*Ne be the Nédélec mass matrix
with entries N := [}, 00y da for all m,m’ € {1: Ne}. Prove that A = (M®)TN M,

Exercise 19.3 (Zero trace). (i) Show that o, € Py o(75) for all a € Aj. (ii) Prove Proposi-
tion 19.13.

Exercise 19.4 (Approximability in L”). Let p € [1,00). Prove that limpoinf,, cps(r,) v —

vl r(py = 0 for all v € LP(D). (Hint: by density.)
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Exercise 19.5 (Hermite). Let 7y := {[xi, 2i11]}ic (0. 1} be a mesh of the interval D := (a,b). Re-
call the Hermite finite element from Exercise 5.4. Specify global shape functions {¢; 0, ¢i1 }icfo: 1+1}
in Hy, := {vy, € C*(D) | Vi € {0:1}, vp(z;,0,,,] € P3}. (Hint: consider values of the function or
of its derivative at the mesh nodes.) Can the bicubic Hermite rectangular finite element from
Exercise 6.8 be used to enforce C'-continuity for d = 27

Solution to exercises
Exercise 19.1 (Connectivity classes). (i) We have

jdof : {1:5}x{1:6} — {1:18}.
(ii) Recall that (K, i) € j_dof~!(a) iff j_dof(K,i) = a. Hence, we have
{(3,3),(2,3),(4,3)},
{(5,4),(3,6)}.

(iii) Recall that 7, :={K € T, | 3i € N, j_dof(K,i) = a}. Hence, we have

j_dof1(8)
j_dof1(13)

7—6 = {Klu K27 K37 K5}7
Tio = { K2, K4}
Exercise 19.2 (Stiffness, mass, incidence matrices). (i) Let us first notice that VX, € P§(Ty,)

for all n € {1: Ny }. Since {075, }me(1: N} is the dual basis of {6, }meq1: v}, the assertion is proved
by showing that o2, (VA,) = M2 for all n € {1:N,} and all m € {1: N.}. We have

1
o (V) = W/E (VAp)-tg,, dl,

where tg, is the vector orienting E,, (recall that ||tg,, ||;z = |Em|). Let {z,,2,} be the two
endpoints of E,, so that tg, points from 2z, to z,. We have

T (VAn) = An(2q) = An(2p) = dng = Onp = M3,

mn’

by definition of the incidence matrix M*®". This completes the proof.
(i) Using that VA, =3, 1. n. ) Min0m for all n € {1: Ny}, we infer that for all n,n" € {1: Ny},

A = /D Ve Vaede= > S Mo( /D OOy ) MG,

me{l: Ne} m’€{1: No}

Z Z Mfr\L,nNmm’M;\{/n, = ((MeV)TNMeV)

me{l: N} m’e{1: No}

nn’’

This proves the expected identity.

Exercise 19.3 (Zero trace). (i) Let a € A5. For all @’ € A?, we have 0,/(¢s) = dgar = 0
because {A?, A%} forms a partition of A,. We conclude by invoking (19.38a) and the definition of
B o(Th)-



Part IV. FINITE ELEMENT SPACES 99

(ii) We have already established that the set {¢q}ac4, is linearly independent. Hence, {¢a} e 40
is also linearly independent. For all v € P ((75) C P (Tn), we have

V= Z 04(V)pa + Z 04 (V)¢a;

acA? ac Ay,

but by definition o, (v) = 0 for all a € A? (see Definition 19.11). Hence, v = EaeAg 0a(V)¢a,
thereby showing that {(,}ae 42 is a spanning set. '

Exercise 19.4 (Approximability in L?). Let ¢ > 0. Let [ be as in Corollary 19.8 and set s :=
max(l, k+1). Since W*P(D) is dense in LP(D), there is v, € W*?(D) such that [[v —ve||1r(p) < €
Since Z}(ve) € P£(Tr), the triangle inequality gives

inf v—vpll ey < v = ZF (W)l 1o
’UhEPE('rh,) ” hHL (D) = || h( )HL (D)

< v = vell ooy + Ilve = Tif (ve) L Loy

Owing to Corollary 19.8 with m := 0, we infer that the second term tends to zero as h — 0. Hence,
lim suphﬁo(infvhepkg(n) lv = vn| Lr(py) < €, and the conclusion follows since € is arbitrary.

Exercise 19.5 (Hermite). Let {@}i€{1:4} be the shape functions of the Hermite finite element
on the reference interval [0, 1]; see Exercise 5.4. This yields

03 ;c:_xﬁ ifz e [xi_l,:vi],
pio(@) =901 (7252 ) if @€ o, w1,
0 otherwise,
and
hi,194 (%ﬁ) ifx € [.Ii,l,Ii],
eia(e) = Qs (7252 ) i@ € o, @),
0 otherwise,

with h; = x;41 — x; for all i« € {0:1}. Proceeding as in the proof of Proposition 19.4 shows
that these global shape functions are linearly independent and form a spanning set of the whole
space Hy. Finally, the bicubic Hermite rectangular finite element can indeed be used to enforce
C'-continuity. For instance, consider p € Q3,2 On the face {z1 = 1}, the xo-dependent function
Oz,P|{z,=1} is in P3 1. Owing to the choice of the dofs, its values and x»-derivatives are the same
on both sides of the face.
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Chapter 20

Face gluing

Exercises

Exercise 20.1 (Affine mapping between faces). Let F' := 8Kl NOK, € F; and set F =
Tgll (F) and F, := T_I(F). Prove that the mapping T, := Ty, 'oT, K, |F, is affine. (Hint: let
(K Pgeo, Egeo) be the geometrlc reference Lagrange finite element Observe that the two face
finite elements (F}, P Egeo ,) and (F.,Pg,, . 58

geo,l’ geo,r? “geo, r)

Lagrange finite element (Fd 1 pd-1 5d— 5.

geo » ““geo

can be constructed from the same reference

Exercise 20.2 (Linear maps). Let F, F, G be finite-dimensional vector spaces, let A € L(E; F)
and let T € L£(F;G). Assume that ker(T) C ker(4). Set G := T(E). (i) Prove that there is
A€ L(G;F)st. A= AoT. (Hint: build a right inverse of T' using a direct sum E = E; @ Ey
with ) :=ker(T').) (ii) Show that A is uniquely defined, i.e., does not depend on Es.

Exercise 20.3 (yx,r and Nk ). (i) Prove that Px = } 7 ker(vk ) (nondirect sum of
vector spaces) if and only if there is F' € Fg s.t. i € Nk p for all i € N (ii) Let the face
unisolvence assumption hold true. Let F(K,i) := {F € Fk | ker(yx,r) C ker(ok ;)}. Prove the
following statements: (ii.a) F € F(K,i) iff i € Ng p; (ii.b) F € F(K,i) iff yx 7(0k,i) # 0 where
Ok i is the local shape function associated with the dof i.

Exercise 20.4 (Reference face element). Let F be any face of K. Let P* := y%ﬁ(ﬁ) and let
/\/‘f{ﬁ be the subset of N s.t. mieNA R ker(o ;) = ker(yz p). Recall that this means that there
exists 3’% _ PA 7= Rst. oy = Uﬁi ) ”yA_’A for all ¢ € ./\/f( 7. Assume that ./\/K # is nonempty,
that the triple {F, P*, 5%} with £% := {Uﬁ)i}zeNgﬁ is a finite element, and that there is a linear
bijective map ¢ : P p — P* s.t. Ypto 7%? = V%O Y. Prove that Assumption 20.12 holds
true and Ng p = Nf(ﬁ. (Hint: show that the finite element {F, P¥ ., ¥% p} is generated from
{F, P*, X*} using the map 9p.)

Exercise 20.5 (Permutation invariance). Let S! := [0,1] and consider the bases B; :=
{p1(s) = 1 — s, p2(s) = s} and By = {p1(s) = 1, u2(s) = s}. Are these bases invariant under
permutation of the vertices of .S S17
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Exercise 20.6 (Canonical hybrid element, d = 3). Consider the assumptions made in §20.4.3.
(i) Prove the face unisolvence assumption 20.12. (ii) Let F € Fk. Let T : S — F be an affine
bijective mapping, and let Tk r := TK\FOT 182 5 F. Verify that PK r=Pra OTK  and that
{F, P§ p, X% p} is a two-dimensional canonical hybrid element. (iii) Prove that Pg = Py p =
PE and X% o =X% o =:%%.

Exercise 20.7 (Pg, r). Let K be the unit simplex in R? and let {ﬁi}ie{og} be the faces of K.
Recall that for Py q scalar-valued elements, we have Pg 5 = ng? 7 (Pk,q). (i) Compute a basis of
Pg g for all i € {0:2} assuming that (K,P,X) is the Pl Lagrange element. Is (F}, PK FoIRE)
a ﬁnlte element? (ii) Compute a basis of P 5 for all i € {0:2} assuming that (K P, E) is the Py
Y

Crouzeix—Raviart element. Is (F Pz a finite element?

K, F ’ K.,Fi)
Solution to exercises

Exercise 20.1 (Affine mapping between faces). Let (I? , ﬁgeo, f]geo) be the geometric reference
Lagrange finite element. By assumption, the two face finite elements

(Evpgeol52ggeo7[) and (F cho NEgco 7")
can be constructed from the same reference Lagrange finite element (Fd-! Pgdeol,Egeol). Let
{0} nepra—1 be the reference shape functions of (F4~1 Pgdeol,Egeol), and let {U’n}ne/\/gw be the

reference shape functions of (IA( , ﬁgeo, fgeo). Let Ngeo,i and Ngeo,» be the indices of the geometric
Lagrange nodes from K; and K, on F. These two sets of nodes must be identical, i.e., there
exist two bijective maps j[ N1 Ngeol and j, : N1 — Nyeor such that 9jgeo(ji(n), K1) =
93-geoljr (), K+) and 0, = 1/’gl(n) oTp 1/)J7 (ny o Tp for alln € N1 where Ty Fd=! 5 F) and
T : F Fa-1 F are the two afﬁne geometric mappings which map the vertices of Fa=1 to the

r

vertices of Fl and FT7 respectively. We have for all Z in F [d— L

Ti)n(T5 (@) = Y. G5 geotmic)Um (T5 (&)

mGNgeo,z

= Y Gieeoliitn)kn Vii(n) (T, (2))

neNd—1

Y igeolio(m, k0 Cso ) (T, (@) = T, 5, (Tp, (2)).
neNd—1

This proves that T, r, OTE =Tk, |r.oT5 , ie, lellm oTk, |p. = Tﬁz oTA‘ Hence, TK A oTk,|F,

is affine since T o Tﬁjrl is affine.

Exercise 20.2 (Linear maps). (i) Let F = E; & E3 be one direct-sum decomposition of F
with Fy := ker(7T') (this is always possible since E is finite-dimensional). For all x € E, we write
x = x1 + a2 with 21 € Fy := ker(T) and 22 € Fs. Let T:Ey— T(FE) be such that T(eg) =T(ea)
for all ey € Fy. Let ey € Fy be such that T(ez) = 0. Then ey € ker(T) N Ey = Fy N Ey = {0},
whence e, = 0. This proves that T is injective. Let g € T(E). There is e = e1 + e3 € E such that
T(e) = §. Hence, j = T(e) = T'(ez) = T(ez). This proves that T is surjective. In conclusion, T is
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bijective. Note that T o T~ Y(g) = ToT~(§) =g for all § € T(E) since T~(§) € Ey. Hence, T~
is a right inverse of T. Set A:= Ao T~ : T(E) — F. Using that A(z;) = 0 for all z; € E; since
ker(T') C ker(A), we infer that

(AoT)(z) = (Ao T ' oT)(z) = (AT )(T(22)) = (Ao T " o T)(a2)
= A(z2) = A(z1 + 22) = A(x).

Hence, Ao T = A.

(ii) Let us show that A is uniquely defined, i.c., A does not depend on the choice of Fy in the
direct sum E = E; @ Ey. Let Ay : T(E) = F and Ay : T(E) — F be two maps constructed as
above using two different subspaces Ey. We have AjoT = A= AyoT. Let § € T(FE). Thus, there
is e € E such that T'(e) = g. This implies that

Ay(§) = A1 (T(e)) = (A1 o T)(e) = (A3 0 T)(e) = Ax(T'(e)) = Az(7).
Hence, [11 = 1212.

Exercise 20.3 (yx,r and Nk ). (i) Assume that Px = Y o - ker(vk ). Let us reason
by contradiction and assume that there is i« € N such that i € N K, r for all F € Fg. Since
S /\/K’F implies that ker(w}‘<7F) C ker(ok,;), and since this inclusion holds true for all F' € F,
we obtain P = EFGFK ker(ﬂy}‘()F) C ker(ok ), which contradicts that ok ;(0x ;) = 1. Conversely,
assume that for all ¢ € N, there is F € Fg s.t. i € Nk p, that is, Ox; € ker(v¥ ). Since any
function in Px can be written as a linear combination of the functions 0k ;, we conclude that
Pr =3 per, ker(vi r)-

(ii) Let us assume that the face unisolvence assumption holds true.

(ii.a) Let F' € F(K, i) and assume that 7 is not in Nx p. This implies that ok ;(0x ;) = d;; = 0 for
all j € N r because i € Nk . Recall that the face unisolvence assumption (Assumption (20.12))
says that ker(yx p) = ﬂjeNK,F ker(og ;). Hence, we have 0 ; € ker(yx,r), which, in turn, implies
that O ; € ker(ok ;) because F' € F(K,i). This is absurd. Hence, i € Nk p. Let us assume now
that i € Nk p. Then ker(vx r) = jeni r ker(ok ;) C ker(og;), which implies that F' € F(K1).
(ii.b) Let F € F(K,i) and assume that yx (k) = 0. Then ok ;(0k ;) = 0 because F € F(K,i),
which is absurd. Hence, Vi, #(0k,i) # 0. Assume now that yx r(fk;) # 0, and assume that
F ¢ F(K,i), which owing to the above characterization of F(k,4) means that ¢ ¢ Nk ;. Then
0k,;(0k,:) = d;; = 0 for all j € Nk p, which owing to the face unisolvence assumption implies that
vk, r(0K,;) = 0 which is absurd. Hence, F' € F(K,1).

Exercise 20.4 (Reference face element). The fact that P* = Yr(Px ) follows from
P* = 7}(’3)}?(P) = wF(ﬁ(,F(dJ;{l(P))) = Q/JF(V}((,F(PK)) = "/’F(PIX(,F)'

Let us now show that ./\/f( 7 = Nk.p. Indeed, i € ./V'f( 7 means that there is UlE : PX 5 R st

0; = UﬁZ o 7A 7 Defining oy g« P p = R by ok p; = UA o thp, we obtain for all p € P,

ok.i(p) = 0i(Yx(p)) = 0%, (Vg 5 (VK (p)))
=05, (Wr(k r(P) = ok £, (Vi £ (),

Lalle

so that i € Nk, p. This proves that Nz 5 C Nk r, and the converse inclusion is proved similarly.
Since 0; = 0% OWK 7» we conclude that {F, P§ g, Y% p} is generated from {F, P"7 Ex} using the

Fli
map Y.
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Exercise 20.5 (Permutation invariance). There are two possible permutations of the vertices,
the mappings S;(s) = s (under which the vertices are invariant, and thus invariance of any basis
is trivial) and S2(s) = 1 — s (exchanging the two vertices). The basis B, is left invariant by the
permutation Se since py 0 Sy = po and ps o So = py. This is not the case for the basis B, for
which ps 0 So differs from pq and from ps.

Exercise 20.6 (Canonical hybrid element, d = 3). (i) Let F' € Fx. Let
Nip={i € N'|32(i) € Vr, oK, = 0 ;) },
be the collection of the vertex dofs associated with F, let (if k > 2)
= {i € N|3(E(), m(i) € Er x {1:ng.}, 0K.i = Tpg)mei) b
be the collection of the edge dofs associated with F, and let (if & > 3)
Nk xr =11 €N |3Im(i) e {1: nt Y}, ok = U;—"m(i)}.

We adopt the convention ./\/}F =0 if £k =1 and NIf(F =0 if k < 2. Let us set Ngp =
N nUNE nUNE . We first observe that the set Nk r is nonempty. Moreover, since 7% .(v) :=
KFYNg pYUNK R ; K,F
v, we infer that 7% (v) = 0 implies that o ;(v) = 0 for all i € Nk p, ie., ker(vk p) C
X ker(cg ;). The converse inclusion follows from the proof of Proposition 7.19.
lENK F s
(ii) Let F' € Fi. We have already shown in Lemma 20.5 that P%F = *y%F(PK) = Pk,d71OT;¥71F-
Moreover, let us consider the following linear forms:

oy ri(v) == v(2(i)), Vi € W,Fa
TiralV) = T [ 0 0 Tl ol Vi € A,
U%,F,i(v) = % /F(Cm(z') o TI;,IF)U ds, Vie NIS(.,Fv
where T gy = Ty ps°T . S' — E(i), E(i) := T (E()), and Tg . S' — E(i), and

similarly Tk p = K\FOT S2 — F, F = = T (F), and T : S22 5 F. Smce for all i € Nk
and all x € {v,e,f}, we have o} ;(v) = 0% p;(7k p(v)), the definition (20.10) implies that the
set X% . is exactly the above collection of dofs. Moreover, these expressions show that the triple
{F, Pg p, X% p} is a two-dimensional canonical hybrid element.

(iii) Let F:= 0K;NOK, € Fj. We have already shown in Lemma 20.6 that Py , = P, =: Pp.
To prove that Eth = E’%(NF =: X%, we have to construct a bijective map x;r : Ng, . r = Nk, r
such that Uir,F,sz(i) =0, p,; foralli € Nk, p. Let i € N, p. We distinguish three cases.

(iii.a) Assume that 7 € Ny, . Then z(i) is a vertex of F' so that there is i, € N} p such that
z(i) = z(i,). We set x;,-(¢) := i,, and this gives UKT,F,er(z)( v) = 0%, p;(v) for all v € PZ. Notice
that xi- (N, p) = N, g

(iii.b) Assume i € N, r and consider the associated pair (E (i), m(i)) € € x {1: ngh} Since E(7)
is an edge of F' which is a face of Kl an KT, we can consider the mappmgs Tk, k& 5t E(i)
and Ty, g S — E(i). Since Sy, : K EG) oTKhE(Z S — S is an affine bljectlve mapping,
and since we assumed that the bas1s {Hm}me{l ne,} 18 invariant under permutation of the vertices

of S, there is an index permutation @yt {ling} — {ling,} such that pm, o Sf. = fige (m)-
By definition of N p, there is i, € N p such that E(i,) = E(i) and m(i,) = wlT(m(i)).
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Finally, we set x;,-(7) := i,, and this gives oiﬁF’X”(i) (v) = 0%, p,;(v) for all v € PE. Notice that
Xlr(Nle(l,F) = Nle(T,F'

(iii.c) Assume i € Ny p and let m(i) € {1:nf,} be the associated index. Since S5 := TI;:F o
Tk, F: 52 —5 §2 is an affine bijective mapping, and since we assumed that the basis {Cm}me{l:nf,h}
is invariant under permutation of the vertices of 52, there is an index permutation @i {linl ) —
{1:nf, } such that ¢, 0 S5, = Cws, (m)- Then by definition of N3 p, there is i, € Nj p such that
m(iy) = @y, (m(i)). Finally, we set xur(i) := ir, and this gives 0% (v) = 0%, p,(v) for all
v € P§. Notice that xir (N, p) = Nk, p-

In conclusion, we have built a bijective map xir : Nk, r — Nk, r such that o
for all i € Nk, p.

g — 8
Ko Foxar (1) Ky, Fi

Exercise 20.7 (Pg,r). (i) Let us set @ := (z,y). Recall that No(@) =1—z—y, \(z) = =,
Ai(z) =y, and that FO = {z +y =1}, F! = {x =0}, F? = {y = 0}. We have

~ ~

Ay (@) =0, Mg (@) =2, XNp(x)=1-2

Hence, ao,l(w) =z, aog(w) :=1— z forms a basis of Py 7 . Similarly, we have

XO\E (m) =1l-y, Xl\ﬁl (m) =0, Xz\ﬁl (.’1}) =Y.

Hence, 51,1@) =, qASLQ(:c) =1 —y forms a basis of P 7 - Finally, we have

~ ~ ~

)\O‘E(m) =1-uz, )‘1\?2(58) =z, )\2@2@:) =0.

Hence, ¢2,1(x) := z, ¢22(x) := 1 — 2 forms a basis of P 7 . For Fy, we have Xz 5 = {00,1,00,2}

with G0,2(p) := P(21), G0,2(P) := P(22) for all p € Py f, and the triple (ﬁO’Pf(ﬁo’Ef(ﬁo) is a
finite element. The reasoning for ﬁl and ﬁg is similar.

(ii) Since the polynomial space for the Crouzeix—Raviart element is the same as for the P; Lagrange
element, the bases are those found in Step (i). Since for the Crouzeix—Raviart element, there is

only one dof per face, we have card(X 3 7 ) = 1. For instance, we have

A~

oz 5, (P) = D(5(21 + 22)),

for all p € P% 7 . In conclusion, (E, Pz 5,%% p) is not a finite element since dim(Pg 7) = 2
and card(X 5 ) = 1.
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Chapter 21

Construction of the connectivity
classes

Exercises

Exercise 21.1 (Mesh orientation, NK,F, Xir). Consider the mesh 7, shown in Exercise 19.1.
(i) Orient the mesh by using the increasing vertex-index enumeration technique. (ii) Consider the
corresponding space Pg(Tr). Use the enumeration convention adopted in this chapter for the dofs.
Find the two cells K, K, for the second face of the cell 5 and for the first face of the cell 3. (iii)
Let F be the second face of the cell 5. Identify N5 g, j-dof(5,N5 r), and the map xi.. (iv) Let
F’ be the first face of the cell 3. Identify N3 g/, j_dof(3, N5 /), and the map y,.

Exercise 21.2 (M-dofs). Let K € Ty, let F € Fg, and let M € M,, be a geometric entity s.t.
M C F. Prove that NK,M C NK,F-

. . f . .
Exercise 21.3 (Qy 3 dofs). Determine nY, ,ng,, ny, , nS, for scalar-valued Qy, 3 Lagrange elements.

Solution to exercises

Exercise 21.1 (Mesh orientation, Ny p, xir). (i) Here is a picture showing the orientation
vectors {Te}pee,, {nr}rer, for the mesh in question:

(ii) Recalling the orientation convention of the faces, we have K; = 5 and K, = 1 for the second
face of the cell 5 (this is the face of K5 whose vertices have indices 2 and 6), and we have K; = 3
and K, = 2 or the first face of the cell 3 (this is the face of K3 whose vertices have indices 6 and
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8).
(iii) For the interface F', we have
NS.,F - {17 35 5}7
j-dof(5, N5 r) ={2,6,12}.

To find the map y;,., we first identify
NI,F = {27 35 4}7
j—dOf(lle-,F) - {27 6, 12}7
so that
xir(1) =2, xi:(3) =3, xur(5) =4
(iv) For the interface F’, we have

N&F' = {25374}5
j-dof(3, N3 ) = {6,8,18}.

To find the map xi,, we first identify

NQ,F’ = {25374}5
jdof(1,N5 pr) = {6,8,18},

so that
Xlr(2) = 27 Xlr(?’) = 37 Xlr(4) =4.

Exercise 21.2 (M-dofs). Let i € NM\Nk r, ie., i € Nk p. Assumption 20.12 implies that
Ok i € ker(vk, r). Assume that i € N a. Then ok = ok m,i 0 Vi, and ker(vx r) C ker(vi ar)
by Assumption 21.9. The inclusion ker(vyi r) C ker(yx,ar) means that ox (k) = ox M ©
vr.m (0K i) = 0, which is absurd. Hence, i € Nk . This proves that Nk C Nk .

Exercise 21.3 (Qy3 dofs). We have nY, =1, n8 =k —1if k> 2, nl, = (k—-1)2if k > 2, and
e = (k— 13 if k> 2.



Chapter 22

Quasi-interpolation and best
approximation

Exercises

Exercise 22.1 (F%). Identify the set 7 for the canonical hybrid, Nédélec, and Raviart-Thomas
elements.

Exercise 22.2 (LP-stability). Prove directly, i.e., without using Lemma 22.3, the LP-stability of
J. (Hint: use Proposition 12.5.)

Exercise 22.3 (Poincaré—Steklov in D). The goal is to prove (22.20). Let p € [1, 0], K € Tj,
and v € WHP(Dg) (i) Let K, K, € T sharing an interface F' := 0K; N OK,. Show that

1
(K7 o, = v, | < chilolwiruk,)-

(Hint: observe that |F|_%|QKZ — vk | <llvk, — v, loe(r) + vk, — vk, ||Lp(F), then use the trace
inequality (12.16).) (ii) Prove (22.20). (Hint: use that vp, — Vg = > pnci, I‘g—;ll(yK,, — vy ) for
all K’ € Tx.)

Exercise 22.4 (Polynomial approximation in Dg). Prove that there is ¢ s.t. for all r €
[0,k+ 1], all p € [1l,00) if r ¢ Nor all p € [1,00] if 7 € N, every integer m € {0:|r]}, all
veW™P(Dg), all K € Ty, and all h € H:

inf |v—glwmr(pe) < chi ™ Vlwrr (D) (22.1)
9€Pk a

(Hint: use Morrey’s polynomial as in the proof of Corollary 12.13.)

Exercise 22.5 (Approximation on faces). (i) Prove that

ol
v =Z5 (V)2 r) < chye P [Vlwrn ()

for all p € [1,00), all r € (%,k—i— 1ifp>1lorre[l,k+1]ifp=1,all v € W"P(Dg), all
K € T, all F € Fk, and all h € H (¢ can grow unboundedly as rp | 1 if p > 1). (Hint: use the
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multiplicative trace inequality (12.16) or its fractional version (12.17).) (ii) Assume k& > 1. Prove
that

1
V(v =" ()ller) < chg " [olwrrs ()

forallr € (L k]ifp>Tlorre[lklifp=1,allve WH"P(Dg), all K € Ty, and all h € H.

1
p,
Exercise 22.6 (L*-projection). (i) Prove that (22.42) implies the H'-stability of Py. (Hint:

(va)L2(D-RQ)
WL2men) o g]]
DiR%) Twllzr(pma) y <

L?(D;R?) (this is not the standard norm of the dual space H~"(D;R?) := (Hj(D;R?))"). Prove
that there is ¢ s.t. for every integer r € {1:k + 1}, all v € L?(D;R?), and all h € H,

adapt the proof of Proposition 22.21.) (ii) Set [|y[[«,» := sup,ecpr(

lo = Ph(v) e < " llv = Pr(v)l| 2 (Do)

v = Pro(v)ll -+ (Diray < ¢h"[|v = Pro(v) |l L2(Dira)-
(Hint: use IV (v).)

Exercise 22.7 (Discrete commutator). Let (7,)necn be a shape-regular mesh sequence. The
goal is to prove that there is ¢ s.t. for every integers [ € {0:1} and m € {0:1}, all p € [1, 0], all
v, € PE(Th), all K € Ty, all h € H, and all ¢ in W1Hheo(D),

lgvn — Z5™ (dvn) [lwmo ) < b ™™ onllwro (D) 1Ol (D)

This property provides a useful tool to analyze nonlinear problems; see Bertoluzza [4] and Johnson
and Szepessy [31]. (i) Fix K € Tj,. Let vp,. denote the mean value of vj, in Dg. Prove that

l6vp, = 5™ (dup,lwms iy < A onl LoD 18llwrtioe (D )-

(Hint: use Theorem 22.6 and verify that [[vp, |zr(px) < Vnllzr(Dgy-) (ii) Set mp == vn —vp, .
Prove that

lomn = Zp™ (éna)lwrms iy < chid ™" lonllwer oo 16w (b

(Hint: observe that ¢(z i )nn = L™ (¢(xk )nn) where xk is some point in K, e.g., the barycenter
of K, then use (22.20) to bound n,.) Conclude.

Solution to exercises

Exercise 22.1 (F5). For the canonical hybrid element, the set F5 collects all the mesh interfaces
that have at least a common vertex with K. For Nédélec elements, the set ]:"}’( collects all the
mesh interfaces that have at least a common edge with K. For Raviart-Thomas elements, the set
F¢ collects all the mesh interfaces that are faces of K.

Exercise 22.2 (LP-stability). We prove the result for p = co. The other cases are obtained by
using local inverse inequalities in PP(7,). Using the triangle inequality and the regularity of the
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mesh sequence, we infer that

av ||9K,i||L°°(K;]RQ)
Hjh (Uh)HLOO(K;]RQ) < Z W Z ‘UK/,i/(UmK’)
ieN ? (K’,i")€ak,i

A% e
SCZm Z ‘UK’,i’(Uh\K’)

2 (K'"i")€ax,i

<c Z AL e Z lokr i (Vi)

K'eTk i'eEN

< cllvall e (Dg iR

where we used |0k i/ (Vp /)| < |oKr it (Vn ') — 0Kk i(Vn k)| + |oK,i(Vy k)|, the assumption (22.8),
the inequality [[vn]r|re(mre) < |Vl Lo (D ;re) and Proposition 12.5.

Exercise 22.3 (Poincaré—Steklov in Dg). (i) To prove the hint, we observe that

_1
|EKL _QKT| = |F| pHQKL _QKT”L”(F)
_1
=|F|" 7|k, — vk, + VK, — Uk, |lLe(F),

since v| g, = v|g, in F owing to Theorem 18.8, and we conclude by using the triangle inequality.
We can now bound each of norms |v|x, — vy, ||zr(r), © € {I,7}, using the trace inequality (12.17)
(see also Exercise 12.6) and the fact that |[v — vy, ek < Lhi,|[vlwiex,) (owing to (12.13)

1
Lr(F) < chy, " [vlwir k), and we conclude by

since K is a convex set). This yields ||v|x, — vk,
invoking the regularity of the mesh sequence.
(ii) Let K’ € Tk. Using the hint and the triangle inequality, we observe that
K" )
v =vpllzen < llv=vgolloaen + Y mlyw — v || K7
K"eTk K

For all K" € Tx, we can find a path of mesh cells in Tk linking K’ to K" s.t. any consecutive mesh
cells in the path share a common face. Using Step (i) together with the regularity of the mesh
sequence, we infer that ||[v — v || Lr (k) < chi |vlw1.p(Dy), and the conclusion follows by summing
over K’ € T;, and using the fact that card(7x) is uniformly bounded.

Exercise 22.4 (Polynomial approximation in D). We proceed as in Bramble and Hilbert [5,
Thm. 1], but instead of invoking Morrey [34, Thm. 3.6.11], where the constants may depend on Dy,
we are going to track the constants to make sure that they are independent of Dg . If m = r, there is
nothing to prove. Let us assume that m < r. Let £ € N be such that £ = r—1 if r is a natural number
or ¢ = |r| otherwise (note that 1 < r if r is a natural number since we assumed that 0 < m < r).
In both cases, the integer £ is such that m < ¢ < k. Let Apq = {a € N? | |a| := a1 +...+aq < £},
Note that card(Asq) = dim(Pyq) = (Z‘;d) =: Ny 4. Since the map @y 4 : Prq — RY¢¢ such that
Dy a(q) = (fDK 0%qdx)aca, , is an isomorphism, there is a unique polynomial m¢(v) € Py 4 such
that ®¢q(me(v)) = ([, v dr)aea,  , i€, [p, 0%(v —me(v))dz = 0 for all @ € Agq (this result
is actually stated in Morrey [34, Thm. 3.6.10]).

Since by definition [, 9*(v —m(v))da = 0 for all [a| = m < ¢, we can apply (22.20), ie.,
there is a uniform constant ¢ such that [v — 7 (V) |wm.r(py) < chi|v — T (V)| m+10 (D). We can
repeat the argument if m + 1 < £ since in this case we also have fDK 9% (v — me(v))da = 0 for all
|a] = m 4+ 1 < £. Eventually, we obtain

[0 = T ()l wmn (D) < el ™0 = Te(V)lwen (D).
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If r € N, then £ +1 = r, and we can apply the above argument one last time since fDK 0™ (v —
me(v))dz = 0 for all |a| = ¢, which gives (22.1) because 0%my(v) = 0 for all || = £+ 1. Otherwise,
¢ = |r] and we apply Lemma 3.26 to all the partial derivatives 9*(v — m,(v)) with |a| = ¢,
s=r—|r] € (0,1) and O := Dg; this is legitimate since all these partial derivatives have zero
average over O = D . We infer that there is ¢, uniform with respect to s, p, K, and v, such that

rI—m;r—|7r hd ’
v = me(©) W (D) < el <| 5’;;|> v = 7o () lwro (Do)

Note that |[v — 7e(v)|wre(Dyire) = [Vlwrr(Dy;ray since 0%my(v) is a constant in RY for all [a| = .
We conclude that (22.1) holds true owing to the regularity of the mesh sequence.

Exercise 22.5 (Approximation on faces). (i) Let us assume first that r € [1,k + 1]. We can
invoke the multiplicative trace inequality (12.16). Letting 1 := v — ZV(v), we have

_1 11 1
Inllzecry < C(th Il e (x) + IInIILp{K)Inlévl,p(K))-

The expected bound follows from Theorem 22.6 (with m € {0,1}). Let us now assume that
re (%, 1) with p > 1. Let v be the mean value of v in K. We have

1 av 1 : av
hicllo = Iy (V)| oy < higllv = vllzery + Picllo = ZY () | o (1)

1

<c(llv—=2llLer) + Mg lvlwre k) + hillv — 23 (V)| 2o (F)

< (v = llzeae) + lw =I5 W)l o) + Rk [0lwre )

< I2lv = vy + v = LY ()l e (k) + hiclvlwee k),
where we used the triangle inequality in the first line, (12.16) if r = 1 or (12.17) if » < 1 and the
fact that |v — v|wr» k) = [v|wrr k) since v is constant on K in the second line, the discrete trace
inequality (12.10) (with r := p) in the third line, and the triangle inequality in the fourth line.
We conclude by using the Poincaré-Steklov inequality (12.14) and the approximation properties
of Z&¥ from Theorem 22.6 (with m := 0).
(ii) We proceed as above. If r € [1,k], the desired bound follows from the multiplicative trace
inequality (12.16) and Theorem 22.6 (with m € {1,2}). Otherwise, let us assume r € [%, 1) and
p > 1. Let w be the average over K of Vv. We have

1 av 1 1 -
hiVo = VI ()l e (r) < hicIVO = wllLe(p) + hilw = VIEY (0)l Lo (r)

1
< c([[Vv —wllLex) + Mg lvlwr+io i) + hEllw — VIR (v) || e (r)
< ([|[Vo = wl|Le(x) + llw = VI (0) || Lo () + P |[vlwrir (x)

< C/(2||VU - Q”LP(K) + ||VU - VIZV(U)”L;)(K) + hTI‘(|U|W7‘+1,p(K)).

We conclude using the Poincaré-Steklov inequality (12.14) (componentwise) and the approximation
properties of Z;V from Theorem 22.6 (with m :=1).

Exercise 22.6 (L2-projection). (i) We employ the same arguments as in the proof of Propo-
sition 22.21, except that we use a local inverse inequality and the i~ '-weighted stability prop-
erty (22.42). This yields

[Py ()| a1 (py < [Pr(v =™ (0)|a oy + 10" (v) |1 (o)
< Ph(v — ™ ()|l 2oy + 1 T5™ (0) |11 ()
<cli (v =™ )lr2py + 1Z5™ () 1 (),
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and we conclude by invoking Theorem 22.6.
(ii) For all v € L?(D;R?) and all w € H"(D;RY), we observe that

(v - Ph(v), w)Lz(D;Rq) = (’U - Ph(v), w — IZV(U}))L%D;RL;)
< v = Pu(v)ll2(pira) lw — I3 (w) || 22 (D re)
< |lv = Pu(v)|| L2(Diraych” 1w | e (DiRa)
where we used (22.35), the Cauchy—Schwarz inequality, and Theorem 22.6 (with p := 2 and m := 0).

The proof of the second inequality is almost identical since one has to invoke Z{(w) instead of
Z2¥(w) (and Theorem 22.14).

Exercise 22.7 (Discrete commutator). (i) Owing to Theorem 22.6 (since m < 1+1), we infer
that

||¢QDK _Ilg17av(¢QDK)”Wm*p(K) < Ch};_l_m'(byDKlWl“vP(DK)

= chi' ™ ™|up, e (Do) |6l wi+too (D)

since vp, is constant. We conclude by observing that ||vp, ||zr(py) < |vnllr(py) since, owing to

Holder’s inequality with p’ := ﬁ, we have

_ _ _1
Upx = |Dk| 1/D v dz < [D| 1th”LT’(DK)HlHLP’(DK) = |Dkl| ”thHLP(DK)-
K

(ii) The hint is proved by observing that ¢(xx) is constant and that P¢(7) is pointwise invariant
under Zp*. As a result, letting 7y := ¢ — ¢(xk ), we infer that

lpmn — 3™ (o) lwmor () = 11008 — Z2™ (ngnn) llwm» (k)
< chy ™M Ingmnllwre (pi)

< Ch}?m(H%lILm(DK)||77h||Ww<DK) + |77¢|W1woo(DK>H??hlILP(DK))a

where we used Theorem 22.6 (since m < 1) followed by the Leibniz product rule. One readily ver-
ifies that |’I7¢|W1,oo(DK) = |¢|W1,OO(DK) and that H77¢||Loo(DK) < hK|¢|W1,oo(DK) owing to the fun-
damental theorem of calculus. Moreover, |9 ||r(py) < chi|vnlwie (D) owing to (22.20), and we
have [naw1r (D) = [Unlwir(py)- This yields the expected bound on ||¢nn, — Z™ (¢nn) lwm» (k).
Summing the two bounds and using the triangle inequality yields the assertion.
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Chapter 23

Commuting quasi-interpolation

Exercises

Exercise 23.1 (Star-shaped domain). Assume that 0 € D and that D is star-shaped with
respect to the ball B(0,r) for some r > 0. Verify that the mapping o5 : R? — R such that
p(x) := (1 — 6)x verifies the properties stated in Lemma 23.1.

Exercise 23.2 (Commuting). Prove Lemma 23.3. (Hint: use Lemma 9.6.)

Exercise 23.3 (Translation). Let Ao > 0. Assume that 1) : D — D is a diffeomorphism of
class C" such that |9 (x) — x|,z < ¢ and || Dpx(z) —I|[,2 < & for all @ € D and all A € [0, Ao).
Assume also that gy : @ — @ + t(¢r(x) — ) maps D into D for all ¢ € [0, 1] and all A € [0, \g].
Show that there is ¢ such that || foy)n— f[|Le(py < ¢ M|V f| Lr(py for all X € [0, Xo], all f € WP(D),
and all p € [1,00]. (Hint: assume first that f is smooth, then use Remark 23.8.)

Exercise 23.4 (Approximation). (i) Prove (23.9) for K§ with s € (0,1), p € [1,00). (ii) Prove
the result for s = 1, p € [1,00]. (Hint: use Exercise 23.3.) (iii) Prove (23.9) for £} for x € {c,d,b}.
(Hint: observe that KX(f) = K*KC5(f).)

Exercise 23.5 (Preserving constants). Propose a definition of Ks that preserves constants and
commutes with the differential operators. (Hint: start with K§(f) := K§(f — f = Vf-(x —xp)) +
f+Vf(x—=p), f,Vf denoting mean values over D and xp the barycenter of D.)

Exercise 23.6 (Inverse inequality). Prove (23.19). (Hint: use (23.15b).)

Exercise 23.7 (Approximation with J¢). Let r € [0,k + 1] and p € [1,00]. Let g € W"P(D)
be such that Vxg € W"P(D). Prove that ||g — J5(g)llLrpy < ch”[glwr»(p) and [[Vx(g —
T(@)|lLr(py < ch"|[Vxglwrp(py. (Hint: use Theorem 23.12.)

Exercise 23.8 (Best approximation in L?). We propose an alternative proof of Corollary 22.9
on quasi-uniform meshes. Let h € H be the meshsize of Tj, and set § := eh in (23.4) with € fixed
small enough. Prove that infy, cp, (7,) I f — fallr(Direy < ch™ L5 || fllwrp(Direy for all 7 € [0,k +1],
all p € [1,00), and all f € W"P(D;RY). (Hint: admit as a fact that there is ¢, uniform, s.t.
85| Cs(f)lwer(piray < €(6/€D)!|| fllwtp(Diray for all s > ¢ > 0, then use Zp,0 Ks.)

Exercise 23.9 (Z;7(D) = ker(v°)). Let p € (1,00) and let Zy* (D) := CSO(D)Z P We
want to prove that Zg¥(D) = ker(y¢) with the trace map ¢ : Z“?(D) — W_%’p((?D) s.t.
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(@), 1) = [, o-Vxw(l)dz — [,(Vxv)w(l)dz for all v € ZP(D) and all I € W (ID),
where w(l) € W1P(D) is such that 4 (w(l)) = I (see §4.3). (i) Show that Zy"(D) C ker(v°).
(Hint: K§(w) — w in WhP(D) as § — 0 for all w € WP(D) and 78 : W'P(D) — W%’p,(aD)
is surjective.) (ii) Let v € ker(y). Show that Vxv = Vxv € LP(R?), where for every function v
defined in D, v denotes its zero-extension to R?. (iii) Show that ker(y®) C Zg?(D). (Hint: use
the mollification operator K§ , defined in (23.23).)

Solution to exercises

Exercise 23.1 (Star-shaped domain). The smoothness properties of ¢ are evident, whereas
(23.2) means that (1 — §)D 4 dB(0,r) C D which is nothing but the assumption that D is star-
shaped with respect to the ball B(0,r).

Exercise 23.2 (Commuting). Upon setting T'(x) := @s(x) + (or)y for a fixed y € B(0,1), the
identities in Lemma 23.3 are simple consequences of the chain rule (see Lemma 9.6):

V(foT)(x) = I3 ()(V)(T(x)),
V-(det(I5(x))T5 " (goT)) (@) = det(Js(x))(V-g)(T(x)),
V(35 (2)(goT))(x) = det(Js(2)) I (x)(Vxg)(T(x)).

Exercise 23.3 (Translation). (1) Assume first that f is smooth. Let @ € D and v(t) :=
f(pa(x)) with ¢ € [0,1]. The chain rule implies that v/'(t) = D f(ux(x))(par(x) — @), thereby
showing that

(@) - f(x) = / o () dt = / Df (pir s (&) (9 () — ) .

Assuming that p < oo, we infer that

1
Ifotr = iy < [ 103(@) =2l [ 195 (@) e

1
< [ [ Vs d@)l .
0 D

The assumptions on 9 imply that the mapping py , is invertible and HDu;i llez < 2, |det(Du;é)| <
24, This gives

1
[fovon = fllinip) < ¢ )\p/o /D IV £(2)||%.|det(Dpy })| dz dt,

which finally implies that there is co s.t. || fovx — fllor(py < co M|V flLr(p)- The case p = oo is
treated similarly.

(2) If f is not smooth, we deduce from Remark 23.8 that there exists a sequence of smooth
functions converging to f in W1?(D), i.e., for all € > 0, there is a smooth function f. such that
If = fellLo(py < € and ||V fellLo(p) < 2|V flLr(p). We infer that

Ifow = FllLooy < I(F = Feowall ooy + [l feoror = fell ooy + IIfe = fllLoo)
< ce+ 2coM ||V fllLr(p) + €

The conclusion follows readily since € is arbitrary.
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Exercise 23.4 (Approximation). (i) Let f € W*P(D) with s € (0,1) and p € [1,00). We
estimate K§(f) — f in LP(D) as follows:
P

IS = My = [ | [ o PO s(a) + () — (@) do| e

¢ |/ (ps(@) + (0r)y) — f(x)[" Py — 27 da
) /<o o es(a) + (6r)y — 2|5 lls (@) + (Or)y — x|z dw dy.

Let us make the change of variables

B(0,1) 3y~ z=@s(x) + (6r)y € ps(D) +6rB(0,1) C D.

Observe that the Jacobian of this transformation is bounded from above by dr and

lps() + (or)y — @[lez < [lps(®) — (|2 + 07|yl < cd.

Hence, we have

sp+d | s
IKS() = Ml < corriae [ [ HE o wn*’*d " dndz < ¢8| f i)
(i) Assume now s = 1 and p € [1,00). Let f € W1P(D). By proceeding as above, we infer that

IKE() = £12 0 / / \F(ps(@) + (r)y) — F(@)]? dedy.

Let us fix y € B(0,1) and define the mapping ¥5 : D 3 & — @s(x) + (dr)y € ¢s(D)+ drB(0,1) C
D. We observe that

lths(x) — @l < [l@s(@) — x> + Or|ylle < 6,

D5 () =12 = [[Deps(a) —Il|e2 < 6,

and x+t(¢Ys(x)—x) = x+t(ps(x)+ory—x) € D, i.e., ;s satisfies the assumptions of Exercise 23.3.
We infer that [}, |f(es(x) + (67)y) — f(x)[” dz < c61’||VfHLp (py- We conclude that [|K3(f) —

fllzepy < col|VfllLrpy. The case s = 1, p = oo is treated similarly.
(iii) The definition (23.4) implies that ICZ;‘(f) = K*K§(f) for all x € {c,d,b}. Hence, we have

IC5(f) = fllzr(pray < IKKF(f) = K*(f)|Lr(Dira) + [K*(f) = fllzr(Dira)
<KX poe (pirax oy 15 () = fllze(Dira)y + 1K = Il Lo (piraxay | f | Lo (Dire)
< (8| flwsr(psra)y + €5 6|l Il o(Dira))
<cly 555( (1l 2o DRQ)+€D|f|WSP(DRq))

Since § < £p, this implies that [[K5(f) — fllzr(p) < clp°0%|| fllwer(p)-

Exercise 23.5 (Preserving constants). Let us assume that f € Z%P(D). Let us consider
K§(f)=K5(f—f-V[f(x—xp))+[+V[(x—xp) as suvggested in the hint, vyherei = ‘—11)‘ Jp fdz
and Vf = ﬁ In ?f dz. Tt is clear that if f = f, then K§(f) = f = f, i.e., K§ preserves constant
fields. Moreover, K5(f) € C*°(D;R). Notice also in passing that

IK5(f) = fllepy < IK5(F = f = Vf(x —xp)) = (f = f =V (x —xD))|Lp)
<clp'ollf = f = V(& —axp)|wisn)
< clp'8(If = flwrew) + oVl Lo))-
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The Poincaré-Steklov inequality implies that [|[K§(f) — f zo(p) < ¢8| flwin(p)-
Let us now modify K§. Using that Vo K§ = K50V, we have

VKS(f) = K§(Vf = V) + V.

Using that Vx(Axx) = 2A for all A € R?, the above identity suggests to take the following
alternative definition for §:

K5(g) == K§(g — g — $Vxgx(x — p)) + g + $Vxgx(z — p).

Using g = Vf in this definition, we obtain Vlég(f) = ICg(Vf), Le., the expected commutation
holds true for all f € Z®P(D). Notice that K§(g) € C*>(D;R3) and K§ preserves constant
fields. Proceeding as for K%, we note in passing that we can also prove that ||K§(g) — gllLr(p) <

C5|9|W1~P(D)- 3
Let us continue with VxK¢$(g) where g € Z¢P(D). Using that (Vx)o K§ = K%o(Vx), we have

VxK§(g) = K§(Vxg — Vxg) + Vxg.
Using that V-(Ax) = dA for all A € R?, the above identity suggests to take
Kig = Ki(g—g - iV-g(@ - zp)) + g+ ;Vg(x - zp).

Using g = Vxh in this definition, we obtain V xlﬁg (h) = l@g (Vxh), i.e., the expected commutation
holds true. Notice that K¢(g) € C>(D;R3) and K¢ preserves constant fields. Proceeding as for
K%, we can also prove that ||[K$(g) — gllz»(p) < cdlg|lwir(p).

Let us continue with V-K¢(g) where g € Z4?(D). Using that (V-)o K¢ = KPoV-, we have

V-K5(g) = K5(V-g —Vg) +Vg.
Since we have reached the end of the de Rham diagram, we can set
K3 (f) = K3(f =)+ 1.

This gives V-l@g(g) = K2(V-g), i.e., the expected commutation holds true. Notice that l@?(f) €
C*(D;R) and K¥ preserves constant fields. Proceeding as for K%, we can also prove that [|K2(f)—

fHLP(D) < C5|f|W1,p(D).

Exercise 23.6 (Inverse inequality). Let € K. Since the function p is bounded, we infer that

ks @le e [ (s @) + da)y)ln du
B(0,1)
The condition (23.15b) implies that

1K ()@l < 5 W /D 1£(2) e d

—d 3 —d -1
SCEminhK |DK| prHLP(DK;]Rq)-
We conclude using the regularity of the mesh sequence.

Exercise 23.7 (Approximation with J°). Owing to the commuting property from Theo-
rem 23.12, we infer that

IVx(g = T (@)llzr(p) < IVxg — T5 (Vxg)llLo(p)-

Using the best-approximation result from Theorem 23.12 for x = ¢ and x = d, and invoking
Corollary 22.9 yields the desired bound.
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Exercise 23.8 (Best approximation in LP). Let f € LP(D;RY) and consider the smallest
integer I such that W'?(D;R%)) < V*(D) and | > k + 1. The triangle inequality leads to

If = TR (DI Le(irey < f = K5 ()l Le(pime) + 1K5(F) = Ti (K5 (M)l r (Do)

We can bound |K5(f) — Z; (K5 (f)) | Lr(psray by using the inverse inequality provided in the hint
and Corollary 19.8 for x = g, Corollary 19.9 for x = ¢ or Corollary 19.10 for x = d:

|\’C§(f)—1?f( J(f) Lp D]RQ) Z HICX ( ( ))”Lp (K;Ra)

KeTy

<c Z Z hmp“CX( ) Wm.p (K;R4)

KeTh me{k+1:1}

<c Z hmpvcx( ) Wm.p(D;Ra)
me{k+1:1}

< Cé Tp”f”er Rq)arp Z hmp(sfmp’
mée{k+1:1}

which gives [|KC5(f) — Zi (K5 ()|l e (piray < clp A7 || fllwrp(pira)y since 6 = eh and € is fixed. In
conclusion, we have
If = (K5 (F)le(psray < 1f = K5()lle(Diray + clp B[ fllwro(Dira)
<07 + RO fllwrr(pira),

which gives the desired result (since § = eh and e is fixed).

Exercise 23.9 (Z;"(D) = ker(y%)). (i) Let v € Z{?(D). By definition, there is a sequence
of smooth functions (v, )nen in C§°(D) converging to v in ZP(D). Let I be any function in
W (OD). Since & is surjective, there is a function w(l) € WHP(D) such that v&8(w(l)) = L.
Let 6 > 0 and let us consider K§(w(l)). Since v, is compactly supported, we have

OZ/DV-(ICE(w(l))xvn)dx
:/ vn-vX(K§(w(1)))dx_/ (KE(w(1)))-V xv, da.
D D

Both integrals on the right-hand side converge as 6 — 0 and n — oo. We infer that
H(w),l) = / v-Vxw(l)de — / w-Vxv(l)dz =0,
D D

for every function I in W%’p,(aD). In conclusion, v € ker(y¢). Hence, Zy*(D) C ker(y°).
(i) Let v € ker(y°). Let us show that ¥ has a weak curl in LP(R?). Let ¢ € C5°(R%). By
definition, we have

(Vxﬁ,d)):/ 5-Vx¢dx=/ v-Vx@pdz.
Rd

D

Using that v € ker(y¢), the above equality implies that

<V><17,¢>>=/ v-qubd:v:/ $Vxvdr= [ ¢Vxvda.
D D Rd
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This proves that ¥ has a weak curl in LP(R?) such that Vxv = Vxv. We have thus shown that
v e Z°P(D) = {w € LP(D) | Vxv € LP(R%)}.

(iii) We can now apply the hint. According to Theorem 23.18 and Corollary 23.19, the sequence
(K§o(v))s>0 converges to v in ZP(D) (recall that we have established in Step (ii) that v €
Z?(D)). This proves that v € ZJ(D) since K§o(v) € C5°(D) (see Lemma 23.16). This shows
that ker(v¢) C Zg?(D).



Chapter 24

Weak formulation of model
problems

Exercises
Exercise 24.1 (Forms) Let D := (0,1). Which of these maps are linear or bilinear forms on
L*(D)xL*(D): a1(f,g) := [p(f+g+1)dx, as(f,9) = [pa(f—g)dx, as(f, ) := [, (1+2?)fgdz,

as(f,g) = fD(f+g)2dx”

Exercise 24.2 ((Non)-uniqueness). Consider the domain D in R? whose definition in polar
coordinates is D := {(r,0) | r € (0,1), 6 € (Z,0)} with o € (—1,—3). Let 9Dy := {(r,0) | r =
1,0 € (Z,0)} and 9Dy := 9D\OD;. Consider the PDE —Aw = 0 in D with the Dirichlet conditions
u = sin(af) on 9D and u = 0 on dD2. (i) Let ¢1 := r*sin(af) and ¢y := r~*sin(af). Prove
that 1 and @9 solve the above problem. (Hint: in polar coordinates Ay = %& (rorp) + T%(?gggp.)
(ii) Prove that ¢1 and ¢, are in L*(D) if o € (=1,—3). (iii) Consider the problem of seeking
u € H*(D) s.t. u = sin(ad) on dD1, v =0 on 9D, and [, Vu-Vv = 0 for all v € Hj(D). Prove
that (g solves this problem, but ¢; does not. Comment.

Exercise 24.3 (Poisson in 1D). Let D := (0,1) and f(x) := ﬁ Consider the PDE
—0,((1 + sin(z)?)0,u) = f in D with the Dirichlet conditions u(0) = u(1) = 0. Write a weak
formulation of this problem with both trial and test spaces equal to Hg(D) and show that the

linear form on the right-hand side is bounded on H{ (D). (Hint: notice that f(z) = 1 + =)
Exercise 24.4 (Weak formulations). Prove Propositions 24.2 and 24.3.

Exercise 24.5 (Darcy). (i) Derive another variation on (24.12) and (24.14) with the functional
spaces V = W := H(div; D)x L?(D). (Hint: use Theorem 4.15.) (ii) Derive yet another variation
with the functional spaces V := L?(D)x L*(D) and W := H(div; D)x H}(D).

Exercise 24.6 (Variational formulation). Prove that u solves (24.7) if and only if © minimizes
over H}(D) the energy functional

&(v) ::%/ |Vv|2dx—/ fodz,

(Hint: show first that €(v + tw) = €(v) +t{ [, Vo-Vwdz — [, fwdz} + 1¢* [, [Vw|? dz for all
v,w € HY(D) and all t € R.)
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Exercise 24.7 (Derivative of primitive). Prove (24.18). (Hint: use Theorem 1.38 and Lebesgue’s
dominated convergence theorem.)

Exercise 24.8 (Biharmonic problem). Let D be an open, bounded, set in R? with smooth
boundary. Derive a weak formulation for the biharmonic problem

A(Au) = f in D, u=0,u=0 on 9D,

with f € L?(D). (Hint: use Theorem 3.16.)

Solution to exercises

Exercise 24.1 (Forms). The map a; is neither linear nor bilinear since a1(0,0) = |D| # 0. The
map az is linear (not bilinear). The map ag is bilinear (not linear). The map a4 is neither linear

(a4(1,0) = |D| # %a4(2,0) = 4|D|) nor bilinear (a4(1,0) # 0).

Exercise 24.2 ((Non)-uniqueness). (i) Direct verification.

(i) We have @2 € L*°(D) since o < 0, whereas 1 is in L?(D) if 2a+1 > —1, i.e., if a > —1.
(iii) One verifies that ¢ € H'(D) provided 2(—a — 1) +1 > —1, i.e., @ < 0, which is indeed
satisfied. The same argument shows that 1 ¢ H'(D). This shows that by going from L?(D) to
the smaller space H'(D), the nonuniqueness of the solution observed in Step (ii) disappears.

Exercise 24.3 (Poisson in 1D). We take ¢ € C§°(D), test the equation with ¢, and integrate
by parts. This yields

1 1
/Od(x)(’?muawcpdx:/() f(z)p(z) da,

with d(x) := 1 + sin(z)?. Notice that fol f(z)p(z) dz is unambiguously defined since f is of class
C* and bounded on the support of . We now want to pass to the limit and want to make sense
of this integral when the test function is in Hg (D). We have

[ rotoras - / (L) v

O (In(z) —In(1 — ) p(z) dx

0
= —/ (In(z) — In(1 — z)) Opp(x) da.
0
Hence, g(z) = In(z) — In(1 — ) is the weak derivative of f. Since g € L?(D), the integral

— J"Ol g()0,¢(x) dz makes sense for all ¢ € H}(D). In conclusion, the weak formulation consists
of seeking u € H} (D) such that

1 1
/ d(x)0pudyv dz = _/ gOozv de, Vv € Hy (D).
0 0

Exercise 24.4 (Weak formulations). (i) Consider Proposition 24.2. Taking the test function
(7,0) with 7 arbitrary in C§°(D) shows that o + Vp = 0 a.e. in D. Take next the test function
(0,q) with ¢ arbitrary in C§°(D) to infer that V.o = f a.e. in D. The boundary condition is
explicitly enforced in the space for p.
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(ii) Consider now Proposition 24.3. The PDE o + Vp = 0 a.e. in D is recovered as before. Take
next the test function (0, ¢) with ¢ arbitrary in C§°(D) to infer that o has a weak divergence in
L?(D) and that V-0 = f a.e. in D. The boundary condition on p is explicitly enforced.

Exercise 24.5 (Darcy). (i) Taking the functional spaces V = W := H (div; D)x L?(D) leads to
the following weak formulation:

Find u := (o, p) € V such that
JploT —pV-r —¢V-o)de = — [, fqdx, VYw:=(T,q) € W.

(ii) Taking the trial space V := L?(D)x L?*(D) and the test space W := H (div; D)x H3(D) leads
to the following weak formulation:

Find w := (o, p) € V such that
JploT —pV-T —0-Vq)dz = [, fgdz, Yw:=(T,q) € W.

Exercise 24.6 (Variational formulation). The expanded formula for &(v + tw) is established
by developing the various terms and reordering them as zeroth-, first- and second-order terms in
w. Let u solve (24.7). Taking v := u and ¢ := 1 in the expanded formula leads to €(u +w) > €(u)
for all w € H(D). This implies that u minimizes ¢ over Hg(D). Conversely, assume that u
minimizes ¢ over Hi(D). Let w € H(D). The right-hand side of the expanded formula is a
second-order polynomial in ¢ that is minimal at ¢ = 0. Hence, the derivative of this polynomial
vanishes at ¢ = 0, which amounts to fD Vu-Vwdz — fD fwdz = 0. Since w is arbitrary in H}(D),
u solves (24.7).

Exercise 24.7 (Derivative of primitive). We use a density argument. Since C§°(D) is dense
in L1(D), there is a sequence (fy)nen in C§°(D) that converges to f in L'(D) and such that
Il fullov oy < 2l fllLi(py- Let ¢ € C5°(D). It is clear that

‘/Olfnd)ds—/olfd)ds

Likewise ([ fnds)¢'(z) — (f; fds)¢/(x) a.e. in D, and

1
< (sup |6(x))) / \fu — flds 0.
zeD 0

1
< 21¢/(2) / |flds.

o [ " fuds

Lebesgue’s dominated convergence theorem implies that

/01(/01fnds) dx—)//fds (z)da.

Passing to the limit in the relation

[ ras)otoas == [t

Exercise 24.8 (Biharmonic problem). Theorem 3.16 shows that

yields (24.18).

V= HZ(D) ={ve H*D) | v = d,v = 0 on OD}.
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Multiplying by a test function v € C§°(D), integrating over D, and using twice Green’s formula
along with the boundary conditions leads to the following weak formulation:

Find v € V such that
Jp AvAwdz = [, fwdz, YweV.

If u solves the above weak formulation, taking w € C§°(D) shows that Au has a weak Laplacian
in L?(D), and since f € L?(D), we infer that A(Au) = f a.e. in D. The boundary conditions on
u are explicitly enforced in V.
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Main results on well-posedness

Exercises

Exercise 25.1 (Riesz—Fréchet). The objective is to prove the Riesz—Fréchet theorem (Theo-
rem C.24) by using the BNB theorem. Let V' be a Hilbert space with inner product (-,-)y. (i)
Show that for every v € V, there is a unique Ji(v) € V' s.t. (JiF(v),w)yr v = (v,w)y for all
w € V. (ii) Show that Ji' : V/ — V is a linear isometry.

Exercise 25.2 (Reflexivity). Let V, W be two Banach spaces such that there is an isomorphism
A e L(V;W). Assume that V is reflexive. Prove that W is reflexive. (Hint: consider the map
Ao JyoA~L)

Exercise 25.3 (Space Vg). Let V be a set and assume that V has a vector space structure over
the field C. By restricting the scaling Av to A € R and v € V, V has also a vector space structure
over the field R, which we denote by Vg (V and Vi are the same sets, but they are equipped with
different vector space structures); see Remark C.11. Let V'’ be the set of the bounded anti-linear
forms on V' and V{ be the set of the bounded linear forms on V. Prove that the map I : V' — Vg
such that for all £ € V', I(¢)(v) := R(¢(v)) for all v € V, is a bijective isometry. (Hint: for ¢ € Vg,
set £(v) := ¥(v) + i (iv) with i2 = —1.)

Exercise 25.4 (Orthogonal projection). Let V' be a Hilbert space with inner product (-, )y
and induced norm ||-||y. Let U be a nonempty, closed, and convex subset of V. Let f € V. (i)
Show that there is a unique u in U such that ||f — ullv = minyey [|f — vllv. (Hint: recall that
1la—1b)? = 3(c—a)*> + 3(c — b)?> — (c — 3(a + b))? and show that a minimizing sequence is a
Cauchy sequence.) (ii) Show that u € U is the minimizer if and only if R((f — u,v —u)y) < 0
for all v € U. (Hint: proceed as in the proof of Proposition 25.8.) (iii) Assuming that U is a
(nontrivial) subspace of V, prove that the unique minimizer is characterized by (f —u,v)y = 0 for
all v € U, and prove that the map Il : V' 5 f = u € U is linear and ||y || zov,0y = 1. (iv) Let a
be a bounded, Hermitian, and coercive sesquilinear form (with £ := 1 for simplicity). Let £ € V.
Set &(v) := 2a(v,v) — £(v). Show that there is a unique u € V' such that &(u) = min,ey €(v) and

2
that u is the minimizer if and only if R(a(u,v —u) — (v —u)) > 0 for all v € U.

Exercise 25.5 (Inf-sup constant). Let V be a Hilbert space, U a subset of V, and W a closed
subspace of V. Let 8 := inf,cy sup,ew m (i) Prove that g € [0,1]. (ii) Prove that
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_ ITw (u) [l v
B = inf,ecu Mullv

(iii) Prove that |ju — Iy (u)|ly < (1 — 22 ||lully. (Hint: use the Pythagorean identity.)

, where IIyy is the orthogonal projection onto W. (Hint: use Exercise 25.4.)

Exercise 25.6 (Fixed-point argument). The goal of this exercise is to derive another proof of
the Lax—Milgram lemma. Let A € £(V;V) be defined by (A(v),w)y = a(v,w) for all v,w € V
(note that we use an inner product to define A). Let L be the representative in V of the linear form
¢ € V'. Let A be a positive real number. Consider the map Ty : V — V s.t. Ty (v) := v—A{(A(v)—L)
for all v € V. Prove that if A is small enough, |7x(v) — Tx(w)|lv < pallv — w||v for all v,w € V
with px € (0,1), and show that (25.6) is well-posed. (Hint: use Banach’s fixed-point theorem.)

Exercise 25.7 (Coercivity as necessary condition). Let V be a reflexive Banach space
and let A € L£(V;V’) be a monotone self-adjoint operator; see Definition C.31. Prove that A
is bijective if and only if A is coercive (with £ := 1). (Hint: prove that R((A(v),w)y/v) <

(A(),0) 2y (Alw),w) 2, for all v,w € V)

Exercise 25.8 (Darcy). Prove that the problem (24.14) is well-posed. (Hint: adapt the proof
of Proposition 25.18.)

Exercise 25.9 (First-order PDE). Prove that the problem (24.21) is well-posed. (Hint: adapt
the proof of Proposition 25.19.)

Exercise 25.10 (T-coercivity). Let VW be Hilbert spaces. Prove that (BNB1)-(BNB2) are
equivalent to the existence of a bijective operator T' € L(V; W) and a real number > 0 such
that R(a(v, T(v))) > nllv||? for all v € V. (Hint: use Jy', (A~1)*, and the map J& from the
Riesz—Fréchet theorem to construct T'.)

Exercise 25.11 (Sign-changing diffusion). Let D be a Lipschitz domain D in R? partitioned
into two disjoint Lipschitz subdomains D1 and Ds. Set ¥ := 0D1N0 D5, each having an intersection
with 0D of positive measure. Let xi1,kx2 be two real numbers s.t. k1 > 0 and ko < 0. Set
k(x) == k1 1p, (2)+kolp, (x) for allz € D. Let V := Hj(D) be equipped with the norm || Vo| £2(p).
The goal is to show that the bilinear form a(v, w) := [, KVv-Vw satisfies conditions (BNB1)-(BNB2)
on VxV; see Chesnel and Ciarlet [11]. Set V,, := {v|p,, |v € V} for all m € {1,2}, equipped
with the norm ||va||Lz(Dm) for all v, € V,,, and let 7y, be the traces of functions in V,, on
Y. (i) Assume that there is S1 € L(Vi;V2) s.t. v,2(51(v1)) = 70,1(v1). Define T : V. — V s.t.
for all v € V, T(v)(z) := v(z) if x € Dy and T(v)(x) := —v(x) + 251 (v|p,)(z) if & € Dy. Prove
that T € £(V) and that T is an isomorphism. (Hint: verify that T o T = Iy, the identity in
V.) (ii) Assume that = > H5’1||%(V )~ Prove that the conditions (BNB1)-(BNB2) are satisfied.
2 1,V2

(Hint: use T-coercivity from Remark 25.14.) (iii) Let Dy := (—a,0)x(0,1) and D5 := (0,b)x(0,1)
with a > b > 0. Show that if {4 ¢ [1, ], (BNB1)-(BNB2) are satisfied. (Hint: consider the map
Sy € L(Vi; Vo) st Si(vi)(z,y) == vi(—%,y) for all v; € Vi, and the map Sy € L(V2; V1) s.t.
Sa(v2)(x,y) := va(—x,y) if x € (—b,0) and Saz(v2)(z,y) := 0 otherwise, for all vy € V5.)

Solution to exercises

Exercise 25.1 (Riesz—Fréchet). (i) For every v € V, consider the linear form ¢, € V' defined
by £,(w) := (v,w)y for all w € V. Since (-,-)y is an inner product, we have

lollv = sup (v, w)v| _ - €y (w)]
wew Jwllv  wev [Jw]lv
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Hence, ¢, € V' for all v € V. Let us define the bilinear form a(f,w) := (f,w)y+ v for all f € V' and
all w € V. We need to prove that for all v € V, there is a unique Ji"(v) € V' s.t. a(J3" (v),w) =
£, (w) for all w € V. We do this by means of the BNB theorem, i.e., we verify the two assumptions
of this theorem. We have

I fIlv: = sup I(f, w)v',v| — sup la(f, w)|

[|wllv wev  |wllv

Hence, (25.11a) holds true:

inf sup _lalf,w)l =
1V wev [ fllvellwllv

Next, assume that a(f,w) = 0 for all f € V'. Then (f,w)y v = 0 for all f € V'. Owing to

Corollary C.14, we infer that

[(f,w)vvl
1f1lv

This proves that w = 0. Hence, (25.11b) holds true as well.

(ii) J§" : V' = V is clearly linear. We have proved in Step (i) that

. a(f,w Ly(w
15 ()| = sup la(f, w)| sup £y (w)]
wev fwllv wev [Jwllv

|lw|yv = sup =0.
fev’

= [lvllv-

Hence, Ji¥ : V' — V is an isometry.

Exercise 25.2 (Reflexivity). Let us prove that A** o Jyy 0o A=t = Jy. Let w € W. We observe
that

(A (Jy (A7 (W), w'Yywor wr = (Jy (A7 (w), A" (w)))vrr v
Ax(w'), A= H(w))vr,v
' AATH (w)wr w

W wywrw = (Jw(w), w )wr wr,

(
=
= (w
=

for all w' € W'. Hence, A**(Jy (A~ (w))) = Jw(w) in W', which proves that A** o Jyo A~ = Jy.
Since A is an isomorphism, A** is also an isomorphism (see Corollary C.52). Moreover, Jv is an
isomorphism since V is reflexive. Hence, Jy is an isomorphism, which proves the reflexivity of W.

Exercise 25.3 (Space Vr). The operator I(¢) maps onto R and is linear since I(¢)(tv) =
R(L(tv)) = R(tb(v)) = tR(L(v)) = tI(£)(v) for all t € R and all v € V. Moreover, I({) is bounded
since

() (v)| = [R(L())| < [€@)] < v llvllv,

for all v € V; so that |[I(£)|lyy < [[¢[|v+. Furthermore, the map I is injective. Assuming indeed
that I(¢) = 0, i.e.,, R(¢(v)) = 0 for all v € V, the hypothesis I({) = 0 implies that 0 = I(¢)(iv) =

R(l(iv)) = (—l(( )) = S(¢(v)) since iv € V. Hence, I(¢) = 0 implies that R({(v)) = 0 and
S(L(v)) = 0. This proves that ¢(v) = 0 for all v € V. Hence, £ = 0. Let us now prove that I is
surjective. Let ¢ € V} and consider the map ¢: V — C s.t.

L(v) =Y (v) + i(iv), Yv e V.
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(Recall that 1 is only R-linear.) By construction, I(¢) = 1, and the map £ : V — C is antilinear.
Indeed, let A € C and write A = p + iv with p, v € R. We infer that

L(Aw) = Y(pw + ivw) + i (ipw — vw)
= p(w) + vib(i) + it ) — v (w)
= p(W(w) +i(iw)) — iv (Y(w) + i (iw)) = X(v),

for all w € V, where we used the R-linearity of ¢. Let us finally show that [[£[lv: < [[¢]ly;. Let

v €V bes.t. £(v) #0 and set \ := égz) € C. We have

[€(v)] = A" () = LA 1) = (A o) + (I ),

but since 9 takes values in R, we infer that ¥ (iA\~'v) = 0, so that |¢(v)| = (A~ 1v). This implies
that
)] < [l A ollv = llellvgllvllv,

since |A| = 1. The proof is complete.

Exercise 25.4 (Orthogonal projection). (i) Let (un)nen be a minimizing sequence in U. A
direct calculation shows that

1 1
i =l = S = wallt + 515 = w2 = 17 = 4+ )
1 1
< S = wallt + 515 = wnl?

which shows that (u,)nen is a Cauchy sequence in V. Since V' is a Hilbert space and U is closed,
its limit, say u, is in U, and by construction, v is a minimizer. Uniqueness follows from the above
formula since considering for u, and u,, two minimizers gives

1
If - (un+um)||v _”f_unH%/'i‘EHf_um”Qa

if u,, and u,, are distinct, which is a contradiction with the fact that u,, and wu,, are minimizers.
(ii) We proceed as in the proof of Proposition 25.8 with €(v) := ||f — v||}. Let u be such that
¢(u) = minyey €(v). Let ¢ € [0,1]. The formula (25.10) becomes

E(u + tw) = E(u) — 2R((f — u, w)y) + 2| w]|%.

For all v € U and all t € [0,1], take w := v — u and observe that u + tw € U by convexity
of U. Hence, €(u + tw) > &(u) for all ¢t € [0,1]. Since p(t) := &(u + tw) is a polynomial in ¢
and p(t) > p(0) for all ¢ € [0,1], we infer that its derivative at ¢ := 0 is nonnegative, yielding
—R((f —u,v —u)y) = p'(0) > 0 for all v € U. Conversely, if u € U satisfies this property,
evaluating €(u + tw) with w := v —u at t := 1 yields €(v) > €(u) for all v € U.

(iii) When U is a subspace of V, (v — u) spans U, so that the characterization becomes R((f —
u,v)y) < 0 for all v € U, and since the same inequality is verified for {v for all £ € C with
|€] = 1, we infer that (f — u,v)y = 0 for all v € U. The linearity of the map ITyy results from this

characterization, which also yields

T (O = 115 = I = Tw (NI

for all f € V, showing that ||l | z(v.y < 1. Equality is attained on the elements of U (unless
U = {0}, in which case ||l zv,oy = 0).
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(iv) All of the above can be extended by replacing the old functional || f —v]|?, by the new functional
€(v). In particular, we have

i — % < 2t — st — ) = 2 € (1)~ () — E( (1t + ).

8 8 2 2
Exercise 25.5 (Inf-sup constant). (i) That 8 > 0 follows from its definition, and that g <1
follows from the Cauchy—Schwarz inequality.
(ii) The properties of the orthogonal projection imply that ||y (u)|ly = sup,cw |(|1|‘7"U“ﬁ)v"|. Let
indeed r be the right-hand side. Taking w := IIy (u) in the supremum and since (u, Ty (u))y =
[ITIy (w)]|3,, we infer that ||TIy (u)||y < 7. Moreover, since (u,w)y = (Ily (u),w)y for all w € W,
the Cauchy—Schwarz inequality implies that |(u,w)y| < ||y (u)|v]w|lv. Hence, r < [Ty (u)||v,
and we conclude that equality holds true.
(iil) Step (ii) shows that ||IIy (u)|lyv > Bllu|lv for all u € U. Owing to the Pythagorean identity,
we infer that

lu—Tw (W)} = [lull} = w3 < (1= 8)]ully
Exercise 25.6 (Fixed-point argument). We observe that
IT5(v) = Ta(w)[[% = [I(v — w) = AA(v — w)|[}
= [lo — wll} = 22R(€a(v — w,v — w)) + N[ A(v — w)|}
< (=2 a+ Mallf v )llv — wlf5-

Taking A := m yields 1 =2 a+M|al[f .y =1 — (Mﬁ)z € (0,1). The above bound shows

that the map T) is a contraction. Owing to Banach’s fixed-point theorem, there exists a unique
u € V such that Th(u) = u, which is equivalent to u solving (25.6).

Exercise 25.7 (Coercivity as necessary condition). Assume that A is monotone and self-
adjoint (so that (Ay,y)y v takes real values for all y € V). Let v,w € V. For all t € R, we infer
that
O S <A('U =+ tw), (U —+ tw)>V',V

= (A(v), v)vr,v + 2R((A(v), w)v,v) + 12 (Aw), Wy v
The right-hand side is a second-order polynomial in ¢ taking only nonnegative values. We infer that
R((A(w),w)yrv) < (A(v),v}%///%‘/(A(w),w}%//,%V. Assume now that A is bijective. The condition
(BNB1) implies that there is a real number a > 0 such that for all v € V,
[(A©), wwewl _ o ROAR), wwrw)

l[wllw weWw [[wl[w

afjvlly < sup
weW

Using the above bound on R((A(v),w)v ) yields

1
3 (Aw), w)iy w 3 3
allvlly < (A(v),v){ y sup < <A(U)=U>\%/,v||A||g(v-v/)-
wew  [lwllw ’
Hence, coercivity holds true with constant HAHf(v-v/) and £ = 1.

Exercise 25.8 (Darcy). We verify conditions (BNB1)-(BNB2) for the bilinear form

a(0,p), (7,q)) = /D (o7 + Vpr + 0-Va) da,
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for the functional spaces V = W := L?(D)x H3(D). Owing to the Poincaré-Steklov inequality for
p, we equip these spaces with the norm ||(o,p)|lv = {||0'||2 )+ ||VpHL2 D) }1/2. Set

S a((o,p), (7, Q))'

sup
(1,9)€V H("',(J)”V

We have
HUH%Q(D) =a((o,p), (0, —p)) <S|/(e,p)lv,
IVPlZ2(m) = al(o,p), (Vp,—p)) < 2S||(a,p)v,

so that (BNB1) holds true. Let now (7,¢) € V be such that a((o,p), (7,¢)) =0 for all (o,p) € V.
Testing with (o,p) = (7,—q) yields ||T||%2(D) = 0, so that 7 = 0. Moreover, testing with
(o,p) := (Vq, —q) yields ||VqH2Lz(D) =0, so that ¢ = 0. Hence, (BNB2) holds true.

Exercise 25.9 (First-order PDE). Let D := (0,1). We verify conditions (BNB1)-(BNB2) for

the bilinear form
(v,w) := / —w dt,

and the functional spaces V := {v € H(D) | v(0) = 0} and W := L?(D) equipped with the norms
[[v]|v = || Zllz2(py (this is legitimate owing to the Poincaré-Steklov inequality) and ||w|w :=
lwll L2y, respectively. We first observe that
dv | fp G Wdt| la(v, w)|
Vv = || a7 2 = Sup — = Su TR
|| H || dt ||L (D) GL Hw||L2 welv Hw”W

so that (BNB1) holds true. Let now w € W be such that fl d”w dt = 0 for all v € V. Taking first
v € C§°(D), we infer that w has a weak derivative such that dw = 0. Hence, w is constant on D.
Taking v := t shows that w = 0, i.e., (BNB2) holds true.

Exercise 25.10 (T-coercivity). Assume the existence of a bijective operator T' € L(V; W) and
a real number 7 > 0 such that R(a(v,T(v))) > n||v||? for all v € V. The condition (BNB1) holds
true with o := m since for all v € V' with v # 0, we have

R(a(v, T(v)))

TT(0)w
al\v,w

< sup Ly ol
o e o

nllvlli < R(av, T(v))) < 1T ()llw

Let us show that the condition (BNB2) also holds true. Considering w € W such that a(v,w) =0
for all v € V, the bijectivity of T implies that there is v,, € V with T'(v,,) = w. Taking v,, leads
to 0 = a(vy, w) = a(vy, T'(vy)), so that 0 = R(a(vy, T(vy))) > nllve||3. Hence, v, = 0, so that
w = 0.

Conversely, let us assume that (BNB1)-(BNB2) hold true. Then A € £(V;W’) is an isomorphism
and A~' € L(W’; V). Let us consider (A~1)* € L(V';W"). Set T := Jy;' o (A71)* o J&, where
Jw : W — W is the canonical isomorphism (recall that W is reflexive since it is a Hilbert space)
and Ji¥ : V — V' is the Riesz—Fréchet isomorphism. Then T' € £(V; W) and T is an isomorphism.
Moreover, using that (w’, Jy,' (w”))wrw = (Jw (Jog* (W), w' Yy wr = (W, w' )y o for all w’ €
W’ and all w” € W”, we infer that for all v € V,

a(v, T(v)) = (A(), T(v))wrw = (A71)*(J§¥ (v)), A(W)wr w
= (JFF W), v)vry =[]y
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Exercise 25.11 (Sign-changing diffusion). (i) It is clear that the map T is linear and bounded.
Moreover, we observe that ("o T)(v)(x) = v(z) for all v € V and all x € Dy, whereas we have for
all z € Do,

(T oT)(v)(x) = =T (v)(x) + 25:((T(v))|p, ) ()
= —(=v(@) + 251(v|p,)(x)) + 251(v|p, ) (2) = v(2).

Hence, T o T' = Iy, and this implies that T is bijective.
(ii) To prove T-coercivity, we observe that for all v € V|

a(v,T(v)):/ H1|V’U|2d$€—/ I€2|V’U|2d$€-‘r2/ ko V-V (S1(v|p,)) dx
D Do Do

= r1l|vlp, I3, — K2llvlp, 1Y, + 2/ k2 Vv-V(S1(v|p,)) dx

Do

> (k1 =07 k2l 191 Z v 191D 155 = m2(1 = 0)lv]o, (1T,

where 77 > 0 can be chosen as small as needed. Under the assumption that 7= > 1S4 ||2L(V1_V2)7 it is
possible to choose 17 € (0,1) such that both real numbers (k1 —7~!|k2]|S1 H%(Vm@)) and —ka(1—17)
are positive. This yields T-coercivity, and, therefore, the conditions (BNB1)-(BNB2) are satisfied.

(iii) The map Sy is in £(V;;V32), and one verifies that ||Sl||2£(V1;V2) = 3. Hence, the conditions
(BNB1)-(BNB2) are satisfied if % > ¢. Reasoning similarly with the operator Sy shows that

T-coercivity holds true provided 2 < ||52||2£(V2.V1), and one verifies that HSQH%(\/?VQ =1

[Ra]
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Chapter 26

Basic error analysis

Exercises

Exercise 26.1 ((BNB2)). Prove that (26.8) is equivalent to (26.5b) provided (26.5a) holds true.
(Hint: use that dim(WW},) = rank(Ayp) + dim(ker(Aj)) (A} is defined in (26.9)) together with the
rank nullity theorem.)

Exercise 26.2 (Bijectivity of Aj). Prove that Aj is an isomorphism if and only if A} is
an isomorphism. (Hint: use dim(V}) = rank(Aj) + dim(ker(Ay)) and dim(Wj) = rank(Ap) +
dim(ker(A7)).)

Exercise 26.3 (Petrov—Galerkin). Let V, W be real Hilbert spaces, let A € L(V;W') be an
isomorphism, and let £ € W’. Consider a conforming Petrov—Galerkin approximation with a
finite-dimensional subspace Vi, C V and W}, := (JiF)"' AV}, € W, where J§if : W — W is the
Riesz—Fréchet isomorphism. The discrete bilinear form is ap, (vp, wr) := (A(vn), wn)w.w, and the
discrete linear form is ¢ (wp,) := £(wy,) for all vy, € V}, and all wy, € W),. (i) Prove that the discrete
problem (26.3) is well-posed. (ii) Show that its unique solution minimizes the residual functional
R(v) := [|[A(v) — £||w over Vj,.

Exercise 26.4 (Fortin’s lemma). (i) Prove that II; in the converse statement of Lemma 26.9
is idempotent. (Hint: prove that Bo AZT = Iy;.) (ii) Assume that there are two maps 11y 5,115 :
W — W, and two uniform constants c1,ca > 0 such that [|II; ,(w)||lw < al|lw|lw, [[H2n((I —
Iy ) (w)lw < co|lw||w and a(vp, o p(w) — w) = 0 for all v, € Vi, w € W. Prove that IIj, :=
Iy 4112 5 (I—11; 1) is a Fortin operator. (iii) Write a variant of the direct statement in Lemma 26.9
assuming V, W reflexive, A € L(V;W') bijective, and using this time an operator II, : V — V},
such that a(IIj(v) — v, wy) = 0 for all (v, wp) € VW), and vy, |11, (v)|lv < ||v]|v for all v € V' for
some vy, > 0. (Hint: use (26.10) and Lemma C.53.)

Exercise 26.5 (Compact perturbation). Let V,W be Banach spaces with W reflexive. Let
Ay € L(V;W') be bijective, let T € L(V;W’) be compact, and assume that A := Ay + T is
injective. Let ag(v,w) := (Ag(v), w)w+ w and a(v,w) := (A(v),w)w: w for all (v,w) € VxW. Let
Vi, € V and W), € W be s.t. dim(V3,) = dim(W},) for all h € H. Assume that approximability
holds, and that the sesquilinear form ag satisfies the inf-sup condition

inf sup a0 (vn, wn)|

190Wn,Wr)l _. 50, VheH.
on€Viwy,ew, [Vnllv[lwnw
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Following Wendland [46], the goal is to show that there is hg > 0 s.t.

inf  sup M—:a>0, Vh € H N (0, hol.

n€Viwy, eW, [[On]v [lwhllw

(i) Prove that A € L(V;W') is bijective. (Hint: recall that a compact operator is bijective iff it is
injective; this follows from the Fredholm alternative, Theorem 46.13.) (ii) Consider Ry, € L(V;V4)
s.t. for all v € V, Ry(v) € Vj, satisfies ag(Rp(v) — v,wy) = 0 for all wy, € W),. Prove that
Ry, € L(V;V},) and that Ry (v) converges to v as h | 0 for all v € V. (Hint: proceed as in the proof
of Céa’s lemma.) (iii) Set L := Iy + Ay'T and Lj, = Iy + Ry Ay 'T where Iy is the identity
operator in V' (observe that both L and Ly, are in £(V)). Prove that Lj converges to L in L(V).
(Hint: use Remark C.5.) (iv) Show that if h € A is small enough, Lj, is bijective and there is C,
independent of h € H, such that ||L; ||y < C. (Hint: observe that L=*L;, = Iy — L™*(L — Ly,)
and consider the Neumann series.) (v) Conclude.

Solution to exercises

Exercise 26.1 ((BNB2)). The statement (26.8) is equivalent to ker(A;) = {0}. Since
dim (W) = rank(Ay) + dim(ker(A})),

this statement is equivalent to dim(W3) = rank(Ap). Since the inf-sup condition (26.5a) implies
that ker(A4,) = {0}, we infer that rank(A4,) = dim(V},) owing to the rank nullity theorem. We
conclude that (26.8) is equivalent to dim(V}) = dim(W,).

Exercise 26.2 (Bijectivity of A;). We observe that A, : Vj, — W/ is an isomorphism iff
ker(Ay) = {0} and rank(A;) = dim(W}) = dim(W},). Since we have dim(V}) = rank(A}) +
dim(ker(Ap)) and dim(W},) = rank(Ay) + dim(ker(A})), these two statements are equivalent to
dim(V3) = rank(A7) and dim(ker(Aj})) =0, i.e., to the bijectivity of Aj.

Exercise 26.3 (Petrov—Galerkin). (i) We apply the discrete BNB theorem 26.6. Since (JiF) 71 A :
V — W is an isomorphism, the subspaces V;, and W}, have the same dimension, thus prov-
ing (26.5b). Moreover, taking wy, := (Jii) "' A(vy) € W), for all v;, € Vj,, we observe that

|an (vn, wn)| = [(Aon), (Jig) " (Alon)))wrw| = AR > allually,

for some real number o > 0 since A : V. — W’ is an isomorphism. In addition, ||wy|lw =
| A(vr)lwr < [Allz(v;wnllvnllv. Combining these two bounds yields the inf-sup condition (26.5a).
(ii) We observe that

R)? = (Av) = 4, (Jw) " (A() = Ohwrw,  WweV.
Proceeding as in the proof of Proposition 25.8, we infer that w;, minimizes R over V}, iff
(Alup) = €, (Ji) " Awn))wrw =0, Yoy, € Vi,
which is just a reformulation of the discrete problem in the Petrov—Galerkin setting.

Exercise 26.4 (Fortin’s lemma). (i) We have for all 8;, € V/,

<B(AZT(9h))aUh>vg,vh = a(’UhaA;;T(eh)) = <Ah(vh)7A;;T(9h)>W}’l,Wh
= (A5 (AT 0), ) vy v = (On vn) v v
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for all v, € V},, which proves that B o AZT =ly;. As a result, we have
I (T (w)) = 451 (B o 431 (B(w))) = 4} (B(w)) =TIy (w),

for all w € W, i.e., I}, is idempotent.
(ii) We have

a(vp, I (w)) = a(vp, 1 p(w) + Hap (1 = Iy p) (w)))
= a(vp, 1 p(w)) + a(vp, Ho n (I = Ty p) (w)))
= a(vp, 1 p(w)) + a(vp, (I — Iy p)(w)) = alvy, w).

Moreover, we have

[TLs (w)[lw < ([T p(w)][w + [[T2,n (1 = ) (w) [[w < (e1 + e2)[Jwllw.

Hence, 11 is a Fortin operator.
(iii) We observe that for all wy, € W,

11
sup |la(vn, wh)| > sup la(ITp,(v), wh)| > o sup la(v, wy)|

vV lonllv T wev [Ma(v)]lv vev  [lvllv

Owing to Lemma C.53 (with W’ in lieu of W) and since V is reflexive and A is an isomorphism,
we infer that

la(v, w)| la(v, w)|

o = inf sup = inf sup ————"—
veVwew [[wllwllvlly - wew ey [[wllwllollv’

where we used the reflexivity of W and the fact that a(v, w) = (A(v), w)w w. Since wy, € Wj, C W,

la(v,wp

this implies that sup,cy = I > a|lwp||w, thereby proving that

inf  sup Al o
wn €W v, eV, [[Vnllv[lwnw

Invoking (26.10), we conclude that a satisfies the inf-sup condition (26.5a) with ay, := v, o

Exercise 26.5 (Compact perturbation). (i) Since Ay is bijective, we can write Aj'A = Iy, +
Ay 7. The operator Ay T being compact, the Fredholm alternative shows that Ay L 4 is bijective
if and only if it is injective. That A, 1 A is injective is a consequence of Ag being bijective and A
being injective.

(ii) Let v € V. Owing to inf-sup condition satisfied by the sesquilinear form ag, we infer that

ao(Rp(v), wp ao(v, wp
collBr(@)ly < sup 10ERLwnl a0l )l

wnews,  |lwnllw wnews,  |[wnllw

where ||agl| is the boundedness constant of ag on V xW. Hence, Ry, € L(V; Vi) with || Rp| £ov,v,) <

llaoll

o Furthermore, proceeding as in the proof of Céa’s lemma, we infer that

laoll\ .
Ry(v) —v||ly < (14— ) inf |[v—w ,
1) = olly < (1 120) ng o= o
so that the convergence of Ry (v) to v as h — 0 follows from the approximability property.
(iii) Since Ry converges to Iy pointwise, we infer from Remark C.5 that Rj converges to Iy
uniformly on compact sets. Since A T is compact, this implies that Lj, converges to L uniformly
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on bounded sets, i.e., in E(V).
(iv) Since L™1Lj, = Iy, — L YL — Ly,), taking h € H small enough, say h € (0, hy] with hy > 0,
st |[L7HL = Ln)| gv we infer that Ly, is invertible with

L'L =" (L7NL - Ly),

keN

_27

so that || L, | zvy < C = 2[|L7" vy
(v) Let vp, € Vi, Assume h € (0, hy]. We infer that

« ao(Lp(vp), w
% Jonly < aollZuon)lly < sup 1oLl un)]

wy €W, l|wn|lw
< s |a0((L—Lh)(Uh)awh)|+ sup la(vn, wp)|
wh €W l|wnlw wnew,  llwnllw

since ag(L(vp), wr) = (Ao(L(vp)), wrywr.w = (A(vn), wn)wr.w = a(vp, wp). The first term on the
right-hand side can be estimated by |laol| || L — Lal||z(vyl|vnl|v, and taking h € H small enough, say
h € (0, ho] with hy > 0, the factor |laoll|[L — Ln||z(v) can be bounded by §& and thus hidden
on the left-hand side, yielding the expected inf-sup condition for the sesthnear form a with
h,o = min(hl, hz) > 0.



Chapter 27

Error analysis with variational
crimes

Exercises

Exercise 27.1 (Error identity). Assume stability, i.e., (27.1) holds true. Let V; be defined
in (27.2) and equip this space with a norm ||-||y; s.t. there is ¢, s.t. [|un|ly, < ollvnllv, for all
vp, € Vi Prove that

. Cp
[w —unlly, = oinf |lu—wvnllv, + a—h|\5h(vh)||wh( :

Exercise 27.2 (Boundary penalty). (i) Prove that 22 —28zy+mn0y? > 7710%5; (22 +y?) for all real

numbers z, y, 70 > 0 and 8 > 0. (ii) Using the notation of §27.3.1, prove that ay(vs,vn) > 2| v
for all v, € V4. (Hint: prove that |v}, (0)v,(0)] < ||U;1|‘L2(07h)h_%|Uh(0)|.)

2
Vi

Exercise 27.3 (First-order PDE). The goal is to prove (27.11). (i) Prove that

|la(vn, wh)|

< V6h™2||G(v ,
wh||L2(D) = || ( h)”lz(]RI)

h™2 | G(vn)||le@ry) < sup
wpEVh

where G;(vy) = a(vp, ;) for all ¢ € {1:1} with I := dim(V},). (Hint: use Simpson’s rule to
compare Euclidean norms of component vectors and L?-norms of functions.) (ii) Assume that I
is even (the odd case is treated similarly). Prove that aj < coh. (Hint: consider the oscillating
function vy, s.t. vy, (22;) := 2ih for all i € {1:1} and vy (22:41) := 1 for all i € {0:£—1}.) (iii) Prove
that a, > c1h. (Hint: prove that maxie (1. ry [vn(2i)| <23 51,y [Gr(vn)].) (iv) Prove that

inf  sup [ (vn, wn)| >ap>0
n€Viwy, e W, [[Vnllwrr(pyllwall L (p)
with Wy, := {wy, € L(D) | Vi € {0:1-1}, wh[z, 2,,,) € Po}. (Hint: see Proposition 25.19.)

Exercise 27.4 (GaLS 1D). The goal is to prove (27.12). Let v, € Vj,. (i) Compute ap(vp, vp).
(ii) Let ¢(x) := —2z/fp, set ¢, := ZP(¢), and show that ap (v, T (Chon)) > %ﬁglﬂvhﬂiz(m -
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c1a(vp, vp) uniformly w.r.t. b € H, J2 is the averaging operator defined in (22.9), and Zp is the
L2-projection on the functions that are piecewise constant over the mesh. (iii) Prove (27.12).
(Hint: use the test function zj, := 272V(Crvn) + 2(c1 + 1)vp.)

Exercise 27.5 (Nonconforming Strang 1). Let T : W, - W N W,,. Let V; := V so that
Vi := V + V4, and assume that V} is equipped with a norm ||-||y;, satisfying (27.5). (i) Assume that
ap can be extended to Vj,x (W + W},). Assume that there is [|al|gn s.t. consistency/boundedness
holds true in the form |a(u, T'(wp)) — an(vn, T(wn))| < llallsallv — vallv; [ wsllw, . Prove that

. lallen Ch s
ol < it | (14622 g+ 25 ) g

with ||6A§L“(Uh)||wé = [l —LoT +an(vn, T(-)) — an(vn, -)|lw; . (Hint: add/subtract ay(vp, T'(wh)).)
(ii) We now derive another error estimate that avoids extending a; but restricts the discrete trial
functions to Vj, NV (this is reasonable provided the subspace V}, NV has approximation properties
that are similar to those of V4,). Assuming that there is ||al|v xw, s.t. boundedness holds true in
the form [a(u — vy, T'(wr))| < ||lallvxw, [|[v — vn|lv; [[wnllw, , prove that

. llallvxw Cf iz
L [ [ AL R A A

with Hgiﬂ(vh)”W;i = [l = Lo T +a(vp, T()) — an(vn,")llw; . (Hint: add/subtract a(vs, T'(wp)).)

Exercise 27.6 (Orthogonal projection). Consider the setting of Exercise 25.4 with real vector
spaces and coercivity with £ := 1 for simplicity. Let u be the unique element in V' such that
a(u,v —u) > £(v —u) for all v € U. Let V}, be a finite-dimensional subspace of V, and let U, be
a nonempty, closed, and convex subset of V},. We know from Exercise 25.4 that there is a unique
up, in Vi, such that a(up,vp — up) > €(vp — up) for all vy, € Up. (i) Show that there is ¢q(u) such
that for all (v,vy) € UxV},

u—unl3 < er(uw)(llu—vnlly + [Jun — vllv + llu — unllvlu — villv).

(Hint: prove allu — up ||} < a(u,v —up) + £(up, — v) + alup, vy, — u) + €(u —vg).) (ii) Show that
there is co(u) such that

N

- < inf — — o3 inf - )
[u Uhllv_@(U)(vhlgUh(llu onllv + lu vhl\v)ﬂngHUh vllv

Solution to exercises

Exercise 27.1 (Error identity). Let v, € V},. The triangle inequality, the assumption on the
[I]lv,-norm, stability, and the fact that the discrete solution satisfies ap(un,ws) = €x(wp,) for all
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wy, € Wy, imply that

lu—wunllv, < llu—wnlv, + [lun — vy,
< |lu=wnllv, + & llun — vallv,

lan (up, — vn, wp)|

Cp
< flu=vally, + = sup

h wpeW), ||wh||Wh
[ —
i vnlhy + 2 sup ) ZenCen, )
ap, wpeWp HwhHWh

¢
= — —|6 .
[w = vnllv, + ahH n(vn)llw;

of the expected identity. Taking vy, := wuy, in the infimum and since 0y, (up) = 0 € W}, we conclude
that ||u — un|lv, > r, e, [Ju—upllv, = rh.

Since vy, is arbitrary in Vj,, we conclude that ||u—up||v, < r, where rj, denotes the right-hand side

Exercise 27.2 (Boundary penalty). (i) Note that 22 — 28zy + noy? > %(ﬁ +y?) iff

1+ﬂ2 9By +n2+[32

2>0.
1+77 1+770y

Since the coefficients of 22 and y? are both positive, the above condition amounts to

14+ p%2n? + 52
1+mn0 1+770'

B <

Rearranging the terms leads to 2n93? < n3 + 4%, which is trivially true.
(ii) Let vy, € Vj,. Since v}, is piecewise constant, we have

[0}, (0)va (0)] < h=[v},(0)| ™ %o, (0)] = (vl 20,0y X B2 [0 (0)]-

Using the Cauchy—Schwarz inequality, we infer that

(S

=0, (0)or,(0) = v, (or (1) = =[|vh ]l L2(py (™ on (0)* + R~ ua(1)]?)

As a result, we have
an (v, vn) > 2% — zy + 92,

1
with  := ||v},||z2(p) and y := (R~ |un(0)|* + A~ |vn(1)[?) 2. Using the quadratic inequality from
Step (i) with ng := 1 and ﬁ %, we conclude that
3 2
an(vn, vn) = g(ﬂﬁ +y%) = —HUthh-

Exercise 27.3 (First-order PDE). (i) Denote by {;}icf1:7} the nodal basis of Vj,. Let R,
R’ — V}, be the isomorphism that reconstructs a function in Vj, from its coordinate vector in R’.
A direct computation using Simpson’s rule (see §6.2) shows that $h||Y]|Z, ®D) < < [|Rp (Y )HLQ(D)

hY (|72 gy for all Y € R!. These bounds imply that

a(vp,w 1
B G < sup T < VB HIGeer, (1)
Wh h
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where G;(vg) := a(vp, ;) for all i € {1:1}.
(ii) Let us write v, = Zie{ltl} Vip; with Vo, := 2ih for all i € {1:%} and Vo171 = 1 for all
i € {0:2-1}. Set V := 0 and let [-| denote the floor function. We infer that

Tit1 5
hlopllZzpy = Z h/ (vp,)” dt = Z (Vig1 — V;)?

ie{0:1-1} ¥ i€{0: 1—-1}
> Y -k’ Y (1-2ik)? >34+,
ief0: L1} ie{0: [£]}

since 1 —2ih > 1 if i < [£]. Using the inequality [1] +1 > £ = L vields |[v}|lr2(p) > 2

Furthermore, G;(v,) = 0 if i is even, and G;(vy) = h otherwise. Hence, [|G(va)l|p2wry < h'/2.
Using the rightmost bound in (27.1) leads to a; < coh with ¢g := 4+/6.

(iii) Let vp, be arbitrary in Vj,. Set Vp := 0 and Vi41 := V. Since G;(vy) = %(Viﬂ —Vi_q) for all
i € {1:1}, we infer that for the even indices, we have [Vai| <23, c10.;_1y [G2k+1(vn)|, whereas for
the odd indices, we have [Va;—1| < [Vig1[+23 0,4, 13 |G (vn)] <23 eq1. 1y |Gr(vn)|- Hence, we
have )

Vil <2 > [Gr(on)] < 2072 [|G(vn) |l e2(rr)s
ke{l:1}

IN

owing to the Cauchy-Schwarz inequality. Furthermore, a direct computation shows that v}, || z2(p)
V2h 7|V || oo m1). Using the leftmost bound in (27.1) and the Poincaré inequality v/2||v}||L2(p) >
lvnll 1 (py leads to aj, > c1h with ¢p == 1.

(iv) Inspired by the proof of Proposition 25.19, we take w3, 2, ,] = sgn(vﬁl‘[mi w¢+1]) forallv, € Vj,
(notice that vj, is piecewise constant). Then ||wp||p~(p)y = 1 and a(vy, wn) = ||v}, | L1 (p), and we
conclude as in Proposition 25.19.

Exercise 27.4 (GaLS 1D). Let v, € V},.
(i) Applying the definition of ap(vp, wy), we obtain

1
1 1
an (v, vn) = hlvh]|7- +/0 5 (i)' da = hllvi |72 (p) + 5vn(1)*

(ii) Let J» be the averaging operator defined in (22.9). Let ((x) = —2z/¢p and let us set
Cn = ZP(¢). We have

1
an(vn, Tp¥ (Chon)) = alvn, T (Chon)) + h/o v (T3 (Chon))' da
= a(vn, Qup) + a(vn, (Cn — Q)vn) + a(vn, Ti (Chvn) — Chvn)

1
b [ o Gan)) da,
0

where we recall that a(v,w) = fol v'wdz. Let us bound the four terms on the right-hand side.
First, we have

1 1
1 1 -
a(vp, Con) = / vy Cop dz = —/ 51);3(/ dz + ((1)§vh(1)2 = (5 a2 (py — vi (D).
0 0
Second, using that ||¢; — (||~ (p) < ¢l h, we have

la(vn, (Ch = Qon)| < c€p' hllvh ]| 2oy llvnll L2 () -
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Third, using (22.11) from Lemma 22.3, the fact that v, and ¢ are continuous and ||y — (|| Lo (py <

chéz)l, and a discrete trace inequality, we have

la(vn, T5Y (Chon) — Cavn)l < loplle2o) |75 (Chon) — ChonllL2(py

1
Sch‘zlvélL%D)( > ||[[<h“h]]||2L2<F>>

FeF?

2

< chtluhllio (| 3 MG - Olonliace)
FeFy?
< cllCh = Cllzes(myllvillL2 (o) llvnll L2 (o)
< clp' hl|vh 2 llonll L2 (py-
Fourth, we use that (;, is piecewise constant, v, is continuous, and we invoke (22.11) from

Lemma 22.3 together with the triangle inequality, the bound [(hvn|mi (k) < 2651||vh|\L2(K) +
2|vn|m1 (i), and the above manipulations on the jump term to infer that

' }
b [ R G e < h||vz|Lz<D>< 3 |JsV<<hvh>|%1<K>>
0 KeTy,
1

2
< Ch||v;z||L2(D)< Z o llonll72crey + 107l 720y + 71 Z 11¢n — C]]Uh|%2(F))
KeTn FE]}IO(

=

< Ch||”;1||L2(D)( Z 0o lonllTcrey + 10132y + €5 R Z |Uh||%2(p))
KeTh FeFy

< chllopllzaoy (65" Ilvallzz + vl za())-

In conclusion, we have established that
an (v, T (Chon)) = €t lonl|F2(py — ¢ (vh(1)2 + 05 Rl L2 oy llonll L2 (o) + hllv?lll%z(p))
1 1
> 365 Il — (5 + Hlbh T ).

where the last bound follows from the use of Young’s inequality.
(iii) The identity from Step (i) combined with the bound from Step (ii) implies that

1/,
an(vn, Iy (Chon)) + an(vn, (c1 + 1)op) > 3 (£D1||vh|‘%2(D) +on(1)? + h||”;1||2L2(D))-

Hence, an(vn, zn) > |[vall}, where zj := 272 (Chvn) + 2(c1 + 1)vn. By proceeding as above, one
can also show that ||zp|lv, < c2||vnllv;,. This finally proves that

2
sup an(vp, wp) an(vn, zn) th“Vh > e

> > > ¢ Honllv,
wp €V ”wh”Vh th”Vh ||ZhHVh g "

whence the inf-sup condition (27.12).
Exercise 27.5 (Nonconforming Strang 1). The starting point for both questions is the bound

C
lu — unllv, < llu—vnllv; + a—‘jbuzsh(vh)nw;,
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(i) Since ap, can be extended to Vi, x (W + W},), we can write

(On(vn), wi)wy w,, = Cr(wn) — an(vp, wp)
= fh(wh) — E(T(wh)) + a(u, T(wh)) - ah(vh, wh)
+ an(vn, T(wn)) — an(vn, T(wn))
= (03 (o), wn)wy ., + alu, T(wn)) — an(vn, T(wn)),

where a(u, T'(wyp,)) = (T (wy,)) follows from T'(wy,) € W. Assuming consistency/boundedness in the
form

la(u, T'(wr)) — an(vn, T(wn))| < |lallgs v — vnllv; lwallw,

leads to R
[0n(vr)llw; < 05" (vi)llwy + llallgn llu = vallv,

whence we infer the expected error estimate.
(ii) Taking vy, € Vi, NV, we can write
(0n(vn), wn)wy wy, = €n(wn) — (T (wn)) + a(u, T(wr)) — an(vn, wn)
+ a(va, T(wn)) = a(vn, T'(wn))
= (83" (vn) wn)w; wy, + a(u — vn, T(wp)).

Assuming boundedness in the form

la(u = v, T(wn))| < llallvxw, llu—vallv [[wnllw,
leads to

[6n (wa)llw; < 105" (o) lwy + llallvxw,, lw = vallv,

whence we infer the expected error estimate.

Exercise 27.6 (Orthogonal projection). (i) Using the coercivity of a, we deduce that

allu—upli < alu —up,u—up) = alu,u —up) — alup, uw — up)

< a(u,u—v)+alu,v —up) — alup,uw — vy) — alup, vy — up).

Using that a(u,u —v) < £(u —v) and a(up, up, — vy) < €(up — vp), the above inequality implies
that

allu —upl|¥y < (u—v) + alu,v —up) + alun, v, — u) + £(up, — vp)
<l u—wp) + alu,v —up) + alup, vy — u) + L(up — v),

which is the inequality suggested in the hint. Using the triangle inequality and letting ||a|| denote
the boundedness constant of @ on V' xV, we infer that

allu—unlly < v llw = vnllv + llall ullvliv = unllv
+ lalllfunllvllon = ullv + [[€]lvllun — o]
<N ellvllw = onllv + llal {[ullviiv = uallv
+ llall flun = ullv llon = ullv + lalH {[ullvlive = ullv + [[€lvlun = o]

< 2max([|[€][y, [lall lullv)(lv = vnllv + [lo = unllv) + llall [lun = ullvlon = ullv.
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(ii) We split the quadratic term on the right-hand side as follows:

la]l® o
el llv o = wlly < S o, =l + 5w — unll3-
We infer that
o ) , llal® 2
e —unlly < 2Zmax(|l€lly, laf ullv)(lu = vallv + llv = uallv) + Z=llvn = ully.

We can now take the infimum on v, € U, and on v € U since v, and v are arbitrary.
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Chapter 28

Linear algebra

Exercises

Exercise 28.1 (Matrix representation of operators). Let H be a (complex) Hilbert space
with inner product (-, )g. Let V}, be a finite-dimensional subspace of H with basis {@i}ie{l:]}.
Let Z : Vj, — V4, be a linear operator. Let M € C'*! be the mass matrix s.t. M;; = (p;, 9i)m,
and let B,D € C'*! be s.t. Bij := (Z(¢;), ¢i)u, Dij = (Z(p;), Z(¢i))u for all i, j € {1:1}. Prove
that D = BAIM~1B. (Hint: use Z € C*! s.t. Z(ypj) :== D oke{1: 1y ZkiPk-)

Exercise 28.2 (Smallest singular value). Prove that the real number a2 defined (28.17a)
is equal to HA*1||;21(C,). (Hint: to bound a2, consider a vector V. € C! s.t. A7V, |p2cr) =

A" 2y IVsllez(cry-)

Exercise 28.3 (/>-condition number). Let Z € R/*! be the upper triangular matrix such that
2= 1foralli € {1:1}, and Z;; := —1 for all 4,5 € {1:1}, i # j. Let X € R’ have coordinates
Xi :=2'"" for all i € {1:I}. Compute ZX, || ZX||;2rr), and |[X[[;2(zr). Show that || Z] g > 1
and derive a lower bound for k,2(Z). What happens if I is large?

Exercise 28.4 (Local mass matrix, 1D). Evaluate the local mass matrix for one-dimensional
P; and P, Lagrange finite elements on a cell of length h.

Exercise 28.5 (Stiffness matrix). (i) Let {A\1, A2, A3} be the shape functions of the P; Lagrange
element with the cell K shown on the leftmost part of Figure 28.1. Here, :\\1 is associated with
the vertex (1,0), A2 with the vertex (0,1), and A3 with the vertex (0,0). Evaluate the stiffness
matrix for | 7 Vu-Vwdz. Same question for the Q; Lagrange element with the shape functions
{61,65,03,0,} associated with the vertices (1,0), (1,1),(0,1),(0,0), respectively (see the central
part of Figure 28.1). (ii) Consider the meshes of D := (0,3)x(0,2) shown in the right part of
Figure 28.1. Evaluate the stiffness matrix for [, Vo-Vw dz.

Exercise 28.6 (Sensitivity to perturbations). Let Z € C/*! be invertible and let X € C!

solve ZX = B with B # 0. Set x := kp2(Z). (i) Let X € C! solve ZX = B. Prove that

”X_XHﬂ(M) HB—BHﬂ cl .. v I o2V Hx_x”ﬂ cl ||3—3\\£2 cl
) < g €D (ii) Let X € C! solve ZX = B. Prove that ————& €
Hx”ﬂ(cl) - HB”e?(cI) ( ) € ”XHﬂ(CI) - IlZ”Zz(CI)

(iii) Explain why the above bounds are sharp.
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(0,1) (0,2) (1,10

(0,0) (1,0) (0,0 0,1)

Figure 28.1: Tllustration for Exercise 28.5. Left and central panels: reference triangle and square
considered in Step (i). Right panel: three meshes for Step (ii).

Exercise 28.7 (Stability). Let AU = B be the linear system resulting from the Galerkin ap-

H
proximation. Equip the vector space C! with the norm V||, := supycc: ”F{1/‘\(/+H“A/. Show that
4 h
llun—vnllv, llanll [B=AV| I - — .
W < S, forall Ve CF, where uy, = Ry (U) and vy, := Ry (V). (Hint: show that

apllun, — vpllv, < AU = V)|« and that [|B||. < |lan||||unllv,, where oy, and |lap|| are the stability

and boundedness constants of ap on Vj, xWj.)

Exercise 28.8 ({*°-norm). (i) Prove Proposition 28.18. (Hint: use that AY > min;c ;.73 (AY);U,
where U € R’ has all entries equal to 1.) (ii) Derive a bound on [A™!||je(rr) with A :=
h~1tridiag(—1,2,—1). (Hint: consider the function z +— x(1 — ) on (0,1) to build a majorizing
vector.) (iii) Let (Eg,...,Er) be the canonical basis of R. Let a € R and consider the matrix
Z =T+ aEy ® E; with entries Z;; := §;; + ad;18;7. Verify that Z7! =7 — aE; ® E; and evaluate
the condition number k¢~ (Z). What happens if « is large?

Exercise 28.9 (Lumped mass matrix). Let D be a two-dimensional polygonal set and consider
an affine mesh 7 of D composed of triangles and P; Lagrange elements. (i) Let K be a cell in
7. Compute the local mass matrix M* with entries M[S := [} 0k i(®)0k ;(x)dx, i,7 € {1:3}.

(ii) Compute the lumped local mass matrix M" with Mff = 0ij D 1eq1:3) ME . (iii) Compute

the eigenvalues of (WK)_l(ﬂK — MX). (iv) Let M be the global mass matrix and M be the
lumped mass matrix. Show that the largest eigenvalue of (M)~ (M — M) is 3.

Exercise 28.10 (CG). Let A € R be a real symmetric positive definite matrix and let
J : RT — R be such that J(V) := %VT.AV — BTV. Let U,, be the iterate at step m > 1 of
the CG method. (i) Prove that U,, minimizes J over Uy + K,,,. (Hint: use Proposition 28.20.)
(ii) Let my, := arg min, cc J(Um + 7Py ). Show that 7, = a,, in the CG method. (iii) Write the

preconditioned CG method by just invoking the matrix P := PPy .

Exercise 28.11 (Complex symmetric system). Let A := T +icZ where T is symmetric real,
o > 0, and Z is the identity matrix of size I xI. Let A, and A, be the two rewritings of A as a real
matrix of size 21 x2I (see Remark 28.23). Determine the spectra o(A), o(A), and (A, ), and
comment on their position with respect to the origin. What happens if one considers the rotated
linear system —i AU = —iB instead?
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Solution to exercises

Exercise 28.1 (Matrix representation). Let i,j € {1:1}. We have
Bij = (Z(¢;),¢i)u = Z Zij (ks i) = Z ZpiMi = (M2);,
ke{l:1} ke{l:1}
i.e., B= MZ. Moreover, we have
Dij = (Z()) Ze)u = >, D ZnZulpr e
ke{l:1}1e{1:1}
= > Y ZyZiMy = (2"M2),;,
ke{l:I}1le{1:1}
showing that D = ZH M Z. Putting everything together, and since MY = M, we conclude that
D=(M'BIMM B =B"MB.

Exercise 28.2 (Smallest singular value). We first observe that

-1
1 IVlle2cry ™AV g2 (cr) 1
apt = sup oL = ——or—— < A e en.
“ vee [AVlleen  veer  [AVleer )
. I - . . . . I -1 ”Ailv*HZZ(CI)
Since C* is finite-dimensional, there is V. € C* s.t. A l2cry) = v, o, —
#1le2 ()

A1V, we infer that

. Letting V., =

[AVisllezcry  IValleeery
Qp2 S = I
Vil 2(cry A=V g2y

= A -

Exercise 28.3 (/*-condition number). A direct computation shows that all the components
of ZX are equal to 2' =7, so that 12Xl 2 (mry = I1/221-1 and that [XIle2(ry = (%(1 — 42 >
(%)1/ 2. Since the last vector of the canonical basis of R’ is left invariant by Z, we infer that
HZHp(RI) > 1. This yields

_ IS U
ke (2) > |12 )||X|\g2(RI) > (%) 122"

IH 2RIy > —————————
= 2K e
If I is large, the matrix Z is ill-conditioned.

Exercise 28.4 (Local mass matrix, 1D). Setting h := %, the local mass matrices are, respec-
tively, given by

2 1 _1

11 15 15 30

KPy _ 3 6 KPPy _ 1 38 1
M —h<l l> , M =h it 15 i
6 3 1 1 2

30 15 15

Observe the two negative entries in M%F2,

Exercise 28.5 (Stiffness matrix). For the P; element, we obtain

~ 1 ~ 0 ~ —1
VA — <O> L Vi = (1) L Vh = <_1> ,
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so that the stiffness matrix is

R a 0
A=10 o ~]|,
Yoy B
with a = %, Gi=1,v:= —%, and § := 0. For the Q; element, we obtain

5 _(1-y > [y A 5> _(y—1
w_(_x) Wr(J,V%_Q_J,V@_Q_l,

so that the stiffness matrix is

A\:

N0 o R
o oo o
> Q >0
SIS NS S

: 2 p._ _1 1
with a := 5, b= —§, and c:= —3.

Let us consider the domain D := (0,3)x(0,2). Since the geometric mappings are isometries,
we can just combine the entries of the stiffness matrix A. For the first mesh, we obtain

A— 28 +4a 2y - 4 -1
o 27 264+4a)  \ -1 4)"
For the second mesh, we obtain
4a 2b —
A= (5 G)= (1 71)
For the third mesh, we obtain
20+ 3+ 2a b+ 0 2
A= = 3 130 .

w—wloo
ol oo | =

Exercise 28.6 (Sensitivity to perturbations). (i) The estimate results from
IX = Xllezery < N2 ez 1B = Bllezgery,
[Bllezcry < [IZlle2(er) IXlle2ery-
(ii) To prove the second estimate, we observe that (£ — Z)X = Z(X — X) and infer that
IX = Xlleeery < NIZ7 el 2 = ZllecnlXlleen-

Rearranging the terms proves the assertion.

(iii) Let us prove that the estimate from Step (i) is sharp. Owing to the compactness of the
unit ball in finite dimension, there exist Xo,Bo € C' s.t. | ZXollzcry = [|1Z]le2crylXollez(crys
[Z7'Bollezcry = |27 le2(cryl|Bollez(cry. This implies that the estimate is sharp. The proof that
the estimate from Step (ii) is sharp is similar.

Exercise 28.7 (Stability). Owing to the Cauchy—Schwarz inequality, we infer that

anllun — vnlly, < sup 1220 = Vh: )]
wp €W}, HwhHWh
WHAWU -V
= sup LAWY 4w — ).
weer IRy (W)llw,



Part VI. GALERKIN APPROXIMATION 149

Moreover, we have

YHB| 0(R(Y)

Blls = sup ————+— = sup ————

1Bl = S0 R T~ o TR )T

lan (uns Ry(Y))|
S TR s

< llanllllunllv,-

Combining these two bounds and recalling that AU = B proves the assertion.

Exercise 28.8 (/*°-norm). (i) Let V € R and set W := AV. Since A~ > 0, we have
£V = AW < [|W/[ o i) A7,

where U € R has all entries equal to 1. Using the hint leads to

1
AU < — Y,
minje(q, 13 (AY);

so that [|V||ge@ry < #%HWHZM(RI), whence the assertion.

(ii) We observe that A is a nonsingular M-matrix and that the vector Y € R! with components
Y; :=x;(1 — ;) for all i € {1:T} is a majorizing vector for A. Indeed Y > 0 and (AY); = 2h for
all i € {1:1}. Using Proposition 28.18 yields [|A™!||pee @y < A1

(iii) A direct computation shows that
ZZ7'=(T+aE1 ®E) (T — aE1 ® Ef)
=7 - a2(E1 ®Er)(E1 ® Ep)
=7 - 042(E1~E[)E1 QREr=17.

Moreover, ||Z|[gee(cry = |27 geo(cry = 1+ |, so that k= (Z) = (14 |a])®. If a is large, the
matrix Z is ill-conditioned.

Exercise 28.9 (Lumped mass matrix). (i) Consider a cell in the mesh, say K € Tp,. Let
z1, 29, 23 be the three vertices of K and let A1, A2, A3 be the associated barycentric coordinates
(i.e., the local nodal shape functions). The local mass matrix M € R3*3 associated with K is
defined to be

M ::/K)\i(cc)/\j(w) dx = |K|W;;,

where the matrix W € R3*3 is given by

W:

E|)—AE|»—A@I>—'
E|)—A®I)—tz|>—-
c:l)—ts|>—ts|>—l

One way to do this computation is by using the quadrature formula (30.3) (observe that K is
indeed a triangle since the mesh is affine).

(ii) The local lumped matrix M" e R3*3 s

ﬂfj = |K|Ww with W =

O O wi=
O wik O
w= o O
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Of course, since W is diagonal, ﬂK is diagonal and the assembled matrix M is also diagonal.
(iii) The three eigenvalues of the matrix

[N N

M) LM = ME) =W (W - W) =3 |-

;|>—l;|>—l®|)—t
5|>—I®I>—I;|)—A
|
G:I»—IS|>—IS|)—A
Ll L

|
N G e
|

are (0, %, %)

(iv) Let (Y, ) be an eigenpair of ﬂil(ﬂ —M)), ie, YI(M — M)Y = AYTMY. We infer that

YT - MY = | 3 YEM® - M5k

KeTn

ANkl W = Wil [ Y2,
KeTy,

IN

where Y = (Yj_dof(K_rl),Yj_dof(K72),Yj_dof(K73))T € R3 is the vector of the three components of
Y that are associated with the vertices of the triangle K (j_dof is the connectivity array) and
where ||-[[,2 denotes either the Euclidian norm or the matrix norm induced by the Euclidean norm.
Owing to Step (iii), we infer that |[W — W[,z < 1, which, in turn, implies that
T, 3 1 2 3 T-K 3 T
YTM =M <= Y CIK|IYklf =5 D [KYEM Yi = SYTMY.
4 3 4 4
KeTh KeTh

In conclusion, we have established that
IYT(M — M)Y| = A\[YTMY < gYTMY,

which proves that A < %.
Exercise 28.10 (CG). (i) We observe that for all V € R,

1 1
SIV = U3 = 5(v=U)TAV - U)

%VTAV - BTV + %UTAU
1
=3(V)+ 5UTAU.

This shows that minimizing J over Uy + K, is equivalent to minimizing the energy error over this
subspace. Proposition 28.20 implies that V = U,,.
(ii) Since
1
J(Um + 77Pm) = 3(Um) - nPrTan + 5772P21Apma
we infer that
B PI R
=BT AP,
From step (m — 1) of the CG method, we obtain P,, = R,, + 8m_1R,—1 and since Rl _|R,, =0
owing to Proposition 28.20, we infer that PLRm = RrTan, whence we conclude that 7, = a,.
(iii) The CG method applied to the preconditioned system AU = B with A = P APF)~!
and B = PEIB yields iterates U,,, P,,, and R,, such that U,, = ’PITUm7 P = PEPm, and
R, = PﬂlRm, where U,,, P,,, and R, are delivered by Algorithm 28.1.
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Algorithm 28.1 Preconditioned CG.
choose Uy, set Ry := B — AUy and Py := P~ 'Ry
choose a tolerance tol and set m :=0
while ||R,||¢2 > tol do

am = RI P~IR,,/PT AP,
Um+1 = Um + P
Rimt1 =Ry — am APy,
B = R 1P Rt /R, P T Ry,
Pm+l = P_lRm-l—l + Bum
m<+ m+1
end while

Exercise 28.11 (Complex symmetric system). One readily sees that o(A) = {u+io | p €
a(T)}, so that o(As) = {u+ic|pu € o(T)}. If the matrix T is indefinite, the spectrum of A,
straddles the origin. Furthermore, since AA = T2 4 027, 0(Aws) = {212 +02)2 | p € o(T)}
is included in the real line but straddles the origin with an equal number of eigenvalues on both
sides. If one considers the rotated system —i AU = —iB and the first rewriting as a real system,
one obtains

.= (77 7).

whose spectrum is contained in a line segment parallel to the imaginary line and symmetric with
respect to the real line. This is a (much) more favorable situation for Krylov subspace methods.
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Chapter 29

Sparse matrices

Exercises

Exercise 29.1 (Retrieving a nonzero entry in CSR format). Write an algorithm to retrieve
the value A;; from the array aa stored in CSR format.

Exercise 29.2 (Ellpack (ELL)). Write the arrays needed to store the matrix from Example 29.3
in the Ellpack format. Write an algorithm that performs a matrix-vector multiplication in this
format.

Exercise 29.3 (Coordinate format (COO)). Let A be a IxI sparse matrix. Consider the
storage format where one stores the nonzero entries A;; in the array aa(l:nnz) and stores in the
same order the row and columns indices in the integer arrays ia(l:nnz) and ja(l:nnz), respectively.
(i) Use this format to store the matrix defined in (29.4). (ii) Write an algorithm to perform a
matrix-vector product in this format. Compare with the CSR format.

Exercise 29.4 (Storage). Consider the storage format for sparse I xI matrices where one stores
the nonzero entries 4;; in the array aa(1:nnz) and stores in the same order the integer (i — 1) +j
in the integer array ja(l:nnz). (i) Use this format for the matrix defined in (29.4). (ii) Write an
algorithm to do matrix-vector products in this format. Compare with the CSR format.

Exercise 29.5 (Greedy coloring). (i) Prove that the total number of colors found by Algo-
rithm 29.5 is at most equal to 1 plus the largest degree in the graph. (ii) Assume that a graph G
can be colored with two colors only. Prove that if the BF'S reordering is used to initialize traverse,
then Algorithm 29.5 finds a two-color partitioning. (Hint: by induction on the number of level
sets.)

Exercise 29.6 (Multicolor ordering). Prove Proposition 29.10.

Exercise 29.7 (CMK reordering). Give the sparsity pattern and the CMK reordering for the
matrix shown in Figure 29.4.
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Solution to exercises

Exercise 29.1 (Retrieving a nonzero entry in CSR format). Algorithm 29.1 shows how to
retrieve the value of A;; from the array aa assuming that the entry 4;; is nonzero:

Algorithm 29.1 Retrieving A;; # 0 in CSR format.
for p € {ia(i): ia(i+1)—1} do
if ja(p) := j then
value := aa(p); Exit loop over p
end if
end for

Exercise 29.2 (Ellpack (ELL)). For the 5x5 matrix shown in (29.4), Nyow = 4 and

1. 2. 0. 0 1 4 4 4
3. 4. 5.0 1 2 4 4
aa= [6. 7. 8 9., ja=|1 3 4 5
10. 11. 0. O 3 4 4 4
12 0. 0. 0 5 5 5 5

The following algorithm shows how to evaluate the matrix-vector multiplication y = Az in the
Ellpack format.

Algorithm 29.2 Matrix-vector multiplication in Ellpack format.
for i € {1:1} do; yi:=0
for p € {1: Nyow } do
yi := yi + aa(i,p) x x(ja(i,p))
end for
y(i) := yi
end for

Exercise 29.3 (Coordinate format (COO)). (i) One possibility could be

aa=[1.2.3.4.5.6.7.8.9.10. 11. 12]
ia=[112223333445]
ja=[141241345345]

Another one could be

aa=[1.3.6.4.7.10. 2. 5. 8. 11. 9. 12]
ia=[123234123435]
ja=[111233444455]

(ii) We now write an algorithm for the matrix-vector multiplication in the coordinate format. The
algorithm essentially consists of a single loop, whereas there are two nested loops for the CSR
format.
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Algorithm 29.3 Matrix-vector multiplication in coordinate format.
for i € {1:1} do
y(i) =0
end for
for p € {1:nnz} do
y(ia(p)) :=y(ia(p)) + aa(p) * z(ja(p))
end for

Exercise 29.4 (Storage). One possibility could be

aa=[1.2.3.4.56.7.8.9.10. 11. 12]
ja=[14679111314 15 18 19 25]

Another one could be

aa=[1.3.6.4.7.10.2.5.8.11. 9. 12]
ja=[1237131416 17 18 19 23 25]

(ii) We now write an algorithm for the matrix-vector multiplication in the proposed format. The
algorithm essentially consists of a single loop, whereas there are two nested loops for the CSR
format.

Algorithm 29.4 Matrix-vector multiplication.
for i e {1:1} do
y(i) =0
end for
for p € {1:nnz} do
j =modulo(ja(p) — 1,I)+1
i=(jalp) —j)/1+1
y(i) :=y(i) + aa(p) * z(j)
end for

Exercise 29.5 (Greedy coloring). (i) Let & > 0 be the largest degree in the graph. Let
j € {1:1}. Assume that Adj(j) # 0 (otherwise the greedy coloring algorithm (Algorithm 29.5)
gives color(j) = 1 < k+ 1). Assume that min{l > 0|l & color(Adj(j))} > k + 2. This means
that {1,...,k+1} C color(Adj(j)), which in turn implies that the cardinality of color(Adj(j)) is
at least k4 1. Hence, the cardinality of Adj(j) is at least k + 1, which is in contradiction with the
definition of k. We then conclude that min{l > 0|7 ¢ color(Adj(j))} < k+ 1, and this implies
that color(j) as defined by the greedy coloring algorithm is less than k 4+ 1. This proves that the
total number of colors found by the algorithm is at most &k + 1.

(ii) Since we know that the graph can be colored with two colors only, there exists a (theoretical)
graph coloring map color®™ : V' — {1,2}. Let {L;}1¢c(1.13 be a set of level sets of the graph G.

Assume that traverse is based on the BFS reordering using these level sets. Let us prove by
induction that card(color®(L;)) = 1 and that the greedy coloring algorithm (Algorithm 29.5)
gives the same color, modulo(l —1,2) 41, to all the vertices in the same level set L;. The induction
hypothesis holds true for [ = 1 since the first level set L; has only one vertex. Assume that k > 2,
otherwise there is nothing to prove. Let [ > 1 and j,n € L;4;. Since traverse is based on the
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BFS reordering, one of the neighboring vertices of j, say i(j), must belong to the level set L;.
The same argument shows that one of the neighboring vertices of n, say i(n), must belong to the
level set L;. But the graph can be colored with two colors only. This means that two neighboring
vertices must have different colors. As a result, one must have

color™(j) = modulo(color®™(i(5),2) + 1
= modulo(color®™(i(n),2) 4+ 1 = color™(n).
Hence, we have proved that card(color*®(L;;1)) = 1. This argument also shows that j cannot
have any neighbor in L;;;. Hence, by construction of the level sets, the neighbors of j can only

belong to L; N Lj42. Since the vertices in L;4o (if I +2 > k) have not been visited yet, their color
assigned by Algorithm 29.5 is zero. Hence, we have

min{s > 1| s &€ color(Adj(j))} = min{s > 1| s # color(i(j))}
=min{s > 1| s # modulo(l — 1,2) + 1}
= modulo(l,2) + 1.
In other words, color(j) = modulo(l,2) 4 1 for every j € L;+1. This proves the assertion.

Exercise 29.6 (Multicolor ordering). Let B be the reordered matrix. We define a k_maxxk max
block structure of B by saying that B;; is in the block kxI if color(i) = k and color(j) =1I. Let
i,j € {1:1} be s.t. B;; is in the k-th diagonal block. This means that ¢ and j have the same color
k. Assume that ¢ # j. Then j & Adj(i), otherwise j and i would have different colors. This means
that B;; = 0 (recall that j € Adj(i) iff B;; # 0 or Bj; # 0). This proves that the k-th diagonal
block of B is diagonal.

Exercise 29.7 (CMK reordering). Starting from the vertex 8, the level sets are
Ly =48}, L.={2}, L;={1,3,4,5}, Ly={6,7}.
One possibility for the permutation index corresponding to the CMK reordering is
perm = {8,2,1,5,3,4,6,7}.

The sparsity pattern and adjacency graph are shown in Figure 29.1.

Figure 29.1: Sparsity pattern (left) and adjacency graph (right) of a 8x8 sparse matrix.
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Quadratures

Exercises

Exercise 30.1 (Quadratures on simplices). Let K be a simplex in R%. Let zx be the barycen-
ter of K, let {z;}ic0:4} be the vertices of K, and let {m; };c{0.4; be the midpoints of the edges of K.
Consider the following quadratures: {zx}, {|K|}; {2i}icto:q} {d+_1|K|}7 {mi}icio:ays {ﬁ|K|}
(i) Prove that the first and the second quadratures are of order one. (ii) Prove that the third one
is of order two for d = 2.

Exercise 30.2 (Quadrature for Q2 4). Let K :=1[0,1]% be the unit hypercube. Let ai, i, =
(%,....%), i1,...,iq € {0:2}. Show that the quadrature ff( f(@)dz ~ Zil,...id Wiy iy f(@iy . iy)
where wy, ., ‘= g1 HZ:1(32';€(2 —ig) + 1) is exact for all f € Qg 4. (Hint: write the Qg 4 Lagrange
shape functions in tensor-product form and use Simpson’s rule in each direction.)

Exercise 30.3 (Global quadrature error). Prove that

‘/D(b(w)dzc— >y w1K¢(€zK)‘ < ch™| D" F |Gl ()

KeTnle{l:lo}
for all € W"P(D) and all h € H. (Hint: use Lemma 30.9.)

Exercise 30.4 (Quadrature error with polynomial). The goal is to prove (30.7). We are
going to make use of (30.6) formulated as follows: |Ex (¢q)| < chl|¥|wmeer)llalli (k) for all
q € Py aoTk where p+v—1< kg, u,v € N. (i) Prove that |Ex (¢p,. )| < chig|¢|wm.o i) [Pl 2 (k)
where p - is the mean value of p over K. (ii) Prove (30.7). (Hint: use Step (i) with p:=m —1.)

Exercise 30.5 (Surface quadrature). Assume d = 3. Let F be a face of a mesh cell. Let FCR?
be a reference face and let T : F — F be the geometric mapping for F. Let t1(3), t2(3) be the two
column vectors of the Jacobian matrix of Tr(3), say Jr(8) := [t1(8),t2(8)] € R3*2. (i) Compute
the metric tensor gp := JLJp € R?*2 in terms of the dot products ¢;-t;, i, j € {1,2}. (ii) Show that
ds = [[t1(8) xta(8)||2(ms) dS. (Hint: use Lagrange’s identity, that is, Ha||§2(R3)||bH§2(R3) — (a-b)? =
Ha><b||§2(R3) for any pair of vectors a,b € R?, and recall that ds = /det(gp)ds). (iii) Given a

quadrature {s;, @l}le{l:l%} on F, generate the quadrature on F.
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Exercise 30.6 (Asssembling). Let D := (0,1)?. Consider the problem —Au 4+« =1 in D and
ujpp = 0. (i) Approximate its solution with Py H I_conforming finite elements on the two meshes
shown in Figure 30.1. (ii) Evaluate the discrete solution in both cases. (Hint: there is only one
degree of freedom in both cases, see Exercise 28.5 for computing the gradient part of the stiffness
coefficient and use a quadrature from Table 30.1 for the zero-order term.) (iii) For a fine mesh
composed of 800 elements, we have uh(%, %) ~ 0.0702. Comment.

0 1 0 1

Figure 30.1: Tllustration for Exercise 30.6.

Exercise 30.7 (Discrete data). Adapt Algorithm 30.1 to the case where (di,r, )k, kyef1:d}s
(/Bkl)kle{li a4y, and y are known in the discrete space V. (Hint: let dif, beta, and mu be the corre-
sponding coordinate vectors, and observe that 1(&ix.,.) = 3_,,c(1. ., m(j-dof (m, i) x theta(n, ),
etc.)

Exercise 30.8 (Assembling of RHS). Write the assembling algorithm for the right-hand side

vector in the case where F'(&, wy) := f(&)wn(&)+2 4, c1.ay B (€) ngkh (&) with analytically known
: 1

data.

Solution to exercises

Exercise 30.1 (Quadratures on simplices). (i) Consider the first quadrature. Let i € {0:d}
and A; be the i-th barycentric coordinate. We have [, \jdz = (d—Jlrl)|K| and \;j(zx) = #.
Hence, [, Aidz = Ai(zx)|K|. This proves that the first quadrature is at least of order 1 since
Py.a = span{\; }scf0:q3- To show that the quadrature is not of order 2, we observe that [, A7 do =
| K |m, whereas the quadrature gives | K |ﬁ Let us consider the second quadrature. We
have [, Aidz = ﬁ|K| > jefo-ay Ni(%)) since - o gy Ai(z;) = 1. This proves that the second
quadrature is at least of order 1 since Py 4 = span{A;};c(o.4y. To show that the quadrature is not
of order 2, we observe again that [ \? dz = |K |m, whereas the quadrature gives |K |ﬁ
(ii) Let us now consider the third quadrature for d = 2. We have [, \;dz = (d—_1H)|K| =

(d—_lH)|K| 2 ieq0:2y Ni(m;), where we used that }=; 5.0 Ai(my;) = 1 in R2. Since [ AjAjde =

mHﬂ with i # j (see (30.3)), we infer that [ A\;\; do = ﬁHﬂ D keqo:23 Ai(me) A ()
since we have 7, .oy Ai(mu)Aj(my) = 1= d+r2' This proves that the third quadrature is at

least of order 2 since P2 o = span{Ao, A1, A2, AoA1, Aoz, A1 A2 }. To show that the quadrature is not

of order 3, we observe that [, A} dz = |K |m, whereas the quadrature gives | K| %.

Exercise 30.2 (Quadrature for Q3 4). Let é\il---id be the Q2 4 Lagrange shape function associated

Gl 43 41,...,1qg € {0:2}. This shape function is s.t. é\“ld(%) =

with the node @;, .., = (%,...,%
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0;, (1) . ..0;,(q) where & := (71, .. fd) and {@}ie{():g} are the univariate Qg 4 Lagrange basis

functions associated with the nodes O, 5, and 1. Using Simpson’s rule yields

/Ro?il,,,id(a)daz H (/Oléik(fk)dik)

= [I =.(0)+48; (%) +6:,(1)

:6% 1 [ > se-n+06.0)

ke{l:d} \le{0:2}

= H (3ik(2 —ig) + 1) = wiy 4y
ke{l:d}

The conclusion follows readily since (51-1,,,id)i1 ,,,,, iac{0:2} is a basis of Qz 4.

Exercise 30.3 (Global quadrature error). Owing to Lemma 30.9, we infer that

/¢ dr — Z Z wik ¢(&ir)| < Z |Ex(¢)

KeTnle{l:lg} KeTn

_1
<c Z WK 7 |plwm.n (k)
K€7-h

<en( Y IKI) (X 1ol )

KeTh KeTh

with 1—17 + ﬁ = 1, where we used Holder’s inequality in R™e (where N, denotes the number of mesh
cells). The conclusion follows from >, |K| = [D].

Exercise 30.4 (Quadrature error with polynomial). (i) We use the hint with ¢ := ¢,
q =P, pi=m, and v := 0. This is legitimate since 1 < n implies that p+v—-1=m -1 <
m+n—2 < kg. Hence, |Ex (dp,)| < chg|olwm.ox)|p g |l (x)- We conclude by observing that

Pz < Nl
(ii) We apply again the hint with g :=m — 1 and v = n. Notice that x4 > 0 since m > 1 and that
w+v—1=m+n—2<kg. This yields

|Ex (¢(p — ) < chig ™ olwm-r0 ) 1P — Pyl 1 (1)

and [p — p, 2y < chil|Vp|lLi(x) follows from the Poincaré-Steklov inequality (see (3.8) or
(12.13)). Since EK(¢p) = Ex(o(p — py)) + Ex(¢p,), we conclude by using the bound from
Step (i).

Exercise 30.5 (Surface quadrature). (i) By definition, we have

tT tity ti-t
7T o 1 o 1°¢1 1°02
gr :=Jpdr = [tél'] [tl,tﬂ - [t2~t1 tQ't2:|

(ii) We have ds = y/det(gr) ds, but Lagrange’s identity gives

det(gr) = [[t1ll32 o) [£2[72 (o) — (£182)* = [[#1 82|72 sy,
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whence ds = [|t1(8) xt2(8)||2(rs) d5.
(iil) Let {§l,@l}l€{1:l%} be a quadrature on F. We have

[ o@)ds = [ oTe@) @) xta(6) o) 45
F F
A S(T(81)@ 1t (81) xt2(81) |2 (o).
lee{1:1%}
The quadrature on F'is {Tp(gl), @lHtl(/S\l)Xt2(§l)Hé%Rﬁ}le{l;l%}-

Exercise 30.6 (Asssembling). (i) Let us consider a reference triangle K with vertices (1,0),

(0,1), (0,0) and let A1, A2, A3 be the corresponding barycentric coordinates. The local stiffness
matrix has been computed in Exercise 28.5. Using the same enumeration convention as in Exer-
cise 28.5, we have

(/;? V-V dﬁ)m,ne{l:s} -

For the zero-order term, we can use the quadrature of degree 2 from Table 30.1 based on the three
edge midpoints. We obtain

= O W=

N= = O

11 1

o 12 21 21
Am A dZ =L L L =M

~ 24 12 24

K m,ne{l:3} 1 1 1

24 24 12

The stiffness matrix is then A := D+ M. For the assembly procedure, we have h = %, |K| = h
L |K| =3, and

/Vgoi-Vgojdeh_2|£A|/ vém-véndfz/ V0,,-V6,, A7,
K |K| J& K

Kl [~~~  1[=
X K| J& 4Jr

||

K ~ 1 ~ 1
/@ideQ/Hmdfz—/Hmdfz—,
K |K| J& 4 Jr 24

with i := j_dof(K,m) and j := j_dof(K,n). Here, we have only one global shape function so that
i:=1and j:=1.

For the mesh on the left, we obtain for the stiffness coefficient and the right-hand side A;; =
4(D11 + Da2) + 4%(./\/111 + Mao) = 4+ % = % and F; = 8% = %, respectively, so that the
approximate solution is U = 22—5 =~ 0.08.

For the mesh on the right, we obtain Ay, = 4D33 + 4%/\/133 =4+ % = % and F; = 4% = %,
so that U = 4—29 ~ 0.04.

We observe that the first mesh leads to a more accurate solution. The advantage of this mesh
is that all the mesh cells contribute to the matrix and the right-hand side vector. In the second

mesh, the four triangles having two boundary edges do not contribute to the approximation.

Exercise 30.7 (Discrete data). We use the hint to compute the values of all the coefficients at
the Gauss nodes on every mesh cell. The assembling is done in Algorithm 30.1.

Exercise 30.8 (Assembling of RHS). The assembling is done in Algorithm 30.2.
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Algorithm 30.1 Assembling of Ag for discrete data.

Ag =0
for m € {1:N.} do
for [ € {1:lg} do; tmp:=0
for k1 € {1:d} do
for ks € {1:d} do
dif 1(ky, ko) := Y dif(ki, ky, j-dof(m,n)) x theta(n, 1)
ne{l:ngy}
end for
beta 1(k;) := Z beta(ky, jdof(m,n)) * theta(n,l)
ne{l:ingn}
end for
mul = Z mu(j_dof(m,n)) x theta(n,l)
ne{l:ingy}
for ni € {1:ng,} do
for nj € {l:ng,} do

x1:= »  dthetadK(ki,nj,l,m)*dif 1(ki, ko) dtheta dK(ky, ni,l,m)
ki,ko€{1:d}
x9 = theta(ni,l) * Z beta 1(k;) * dtheta dK(ki,nj,l,m)
k1€{1:d}

x3 := theta(ni,l) *mu 1 x theta(nj,!)
tmp(ni, nj) := tmp(ni,nj) + [x1 + x2 + x3] * weight K(I,m)
end for
end for
end for
Accumulate tmp in Ag as in Algorithm 29.2
end for

Algorithm 30.2 Assembling of RHS vector Bg.

BQ =0
for m € {1:N.} do
for I € {1:lg} do; tmp:=0
for ky € {1:d} do
xil(ky) := Z coord(ky, j_geo(n,m)) psi(n,l)
ne{l:ngeo}
end for
for ni € {1:ng,} do
21 := f(xil) * theta(ni,!)

Tg 1= Z Bk, (xi-1) * dtheta dK(k1,ni,l,m)
kie{l:d}
tmp(ni) := tmp(ni) + 1 + x2] * weight X(I,m)
end for
end for

for ni € {1:ng,} do; i := j_dof(m,ni)
Bo,i :=Bg, + tmp(ni)
end for
end for
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Chapter 31

Scalar second-order elliptic PDEs

Exercises

Exercise 31.1 (Cordes). Prove that ellipticity implies the Cordes condition if d = 2. (Hint: use
that ||d[|% = (tr(d))? — 2det(d).)

Exercise 31.2 (Poincaré—Steklov). Prove (31.23). (Hint: use (3.12).)

Exercise 31.3 (Potential flow). Consider the PDE V-(—xVu+Bu) = f in D with homogeneous
Dirichlet conditions and assume that r is a positive real number. Assume that 8 := V) for some
smooth function 1 (we say that 3 is a potential flow). Find a functional & : H}(D) — R of which
the weak solution u is a minimizer on H} (D). (Hint: consider the function e™%/*v.)

Exercise 31.4 (Purely diffusive Neumann). Prove Proposition 31.19. (Hint: for all w €
HY(D), the function w := w — wy, is in H}(D), use also the Poincaré-Steklov inequality from
Lemma 3.24.)

Exercise 31.5 (Mixed Dirichlet—Neumann). The goal is to show by a counterexample that
one cannot assert that the weak solution is in H2(D) for the mixed Dirichlet-Neumann problem
even if the domain and the boundary data are smooth. Using polar coordinates, set D := {(r,0) €
(0,1) x (0,m)}, 0Dy = {r € (0,1), 0 = «}, and 9Dq := ID\OD,. Verify that the function
u(r,0) :=r2 sin(36) satisfies —Au = 0 in D, g_Z\Dn =0, and u|p, = e sin(36). (Hint: in polar
coordinates, Ay = -2 (Tg—;‘) + T%%.) Verify that u ¢ H?(D).

r or

Exercise 31.6 (H?(R?)-seminorm). Prove that |¢|g2rae) = [|Ad| p2ra) for all ¢ € Cgo(R?).
(Hint: use Theorem B.3.)

Exercise 31.7 (Counterexample to elliptic regularity in W?2°°(D)). Let D be the unit disk
in R2. Consider the function u(x1,22) = z122In(r) with r? := 27 + 23 (note that upp = 0).
Verify that Au € L°(D), but that u & W2°°(D). (Hint: consider the cross-derivative.)

Exercise 31.8 (Domain with slit). Let D := {r € (0,1), ¢ € (0,27)}, where (r, §) are the polar
coordinates, i.e., D is the closed ball of radius 1 centered at 0. Let u(r, 6) := r cos(36) for all r > 0

and 6 € [0,27). (i) Let p € [1,00). Is ujp in WHP(D)? Is Ujjpy(p) 1D WLP(int(D))? (Hint: recall
Example 4.3.) (ii) Is the restriction to D of the functions in C'(D) dense in WP(D)? (Hint:
argue by contradiction and use that [[v)pllw1r(D) = [[VjiB)llwr.e ne(m)) for all v € Cc*(D).)
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Exercise 31.9 (A priori estimate). Consider the PDE —kroAu + 3-Vu + pou = f with ho-
mogeneous Dirichlet conditions. Assume that ko,p0 € R, ko > 0, V-8 = 0, Bjpp = 0, and
f € H{(D). Let Vs := (VB + (VB)") denote the symmetric part of the gradient of 3, and
assume that there is uf > 0 s.t. VB + uoly > pply in the sense of quadratic forms. Prove
that |ulg(py < (o) flar(p) and [[Aul|p2py < (4u6m0)_%|f|H1(D). (Hint: use —Au as a test
function.) Note: these results are established in Beirao da Veiga [3], Burman [8].

Exercise 31.10 (Complex-valued diffusion). Assume that the domain D is partitioned into
two disjoint subdomains D; and Ds. Let k1,k2 be two complex numbers, both with positive
modulus and such that 32 ¢ R_. Set £(z) := k1lp, (x) + k2lp,(z) for all z € D. Let f € L?(D).
Show that the problem of secking u € V := Hj(D;C) such that a(u,w) := [, xVu-Vwdz =
Jp fwdz for all w € V' is well-posed. (Hint: use (25.7).)

Exercise 31.11 (Dependence on diffusion coefficient). Consider two numbers 0 < A, < Ay <
oo and define the set K := {k € L>=(D;R) | k(x) € [Ny, Ag],a.e. ¢ € D}. Let V := H} (D) equipped
with the norm |v||v := ||Vv||r2(py and V' = H~Y(D). Consider the operator T, : V — V'
st. Tu(v) := =V:(kVo) for all v € V and all k € K. (i) Prove that X\, < [|Txllzv,vry) < Mg
and that T} is an isomorphism. (Hint: use Proposition 31.8 with # := 1 and the bilinear form
a(v,w) := [, kVu-Vwdz on V x V.) (ii) Prove that | T — Tw|lz(vyvy = |6 — &/ || (p) for all
Kk, k' € KNCY(D;R). (Hint: if ||k—&'|| oo(py > 0, for all € > 0 there is an open subset D, C D such
that the sign of (k—+")|p_ is constant and |k —&'| > ||k —K'|| L= (p)—€ in D; then consider functions
in Hj(De).) (iii) Let S, :=T,;' € L(V';V). Prove that A2||S. — Swllz(vivy < |6 — K[| L=(p) <
M NSk = Swrlleqvryy for all v, k" € KN COD;R). (Hint: Sy — Sp = Se(Tw — Tr)Swr.)

Solution to exercises

Exercise 31.1 (Cordes). Using the symmetry of d, we have ||d||% = (tr(d))? — 2det(d), where
2
det(d) is the determinant of d, so that % = %ﬂ with e := 2|f§t”<;j). Since det(d) > 0 by the
F
ellipticity condition, we have € > 0. Since (tr(d))? > 4 det(d) if d = 2, we have ||d|% > 2det(d),
so that € < 1, the case e = 1 being reached when both eigenvalues of d are equal, i.e., d = Al with

A> 0.

Exercise 31.2 (Poincaré—Steklov). Let us define the linear form f(v) := K%D D]z Jop 78 (V) ds.
This defines a bounded linear form on H'(D). Applying (3.12) (with p := 2), we infer that there

/BD ~v8(v)ds

is Chpg s.t.
for all v € H'(D). The rightmost term is bounded as | [, v&(v) ds| < |oD|= 178 (v) || 2 (o) OWing
to the Cauchy—Schwarz inequality. Hence, we have

. 1
V2Css|vll22(py < £pl|Vol|L2(py + £3|0D] %

)

o _1
V2Css|vll L2y < €p([|Vllz2(py + €57 V8 (V)| 2o

and we conclude using Young’s inequality: (a + b) < (2(a2 4 b%))z.
Exercise 31.3 (Potential flow). We observe that

\Y% (efw/“u) = %eﬂ/’/“(/un — Bu),
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since Vi) = 3. Consider the functional € : H3(D) — R such that
1 2
E(v) == —/ e¥/" g ‘V (efw/“v) dz —/ e ¥/" fyde,
2Jp D

for all v € H}(D). Proceeding as in the proof of Proposition 25.8, we see that u € H}(D) is a
global minimizer of € if and only if

/D Y, (e_w/”u) -V (e_w/”w) do = /D e /" fwde,

for all w € H}(D). Taking w to be arbitrary in C§°(D), we infer that

/e*W“V'(—HVu—I—BU)wdx:/ e /" fw dz,
D

D
which shows that u satisfies the PDE V-(—sxVu + Bu) = f a.e. in D.

Exercise 31.4 (Purely diffusive Neumann). For all w € H*(D), writing w := @ + wj, with
w € H}(D) and testing the weak formulation against w, we infer that the weak solution satisfies

aq(u, w) = aqg(u,w) = /D fwdz + /aD gv8(w)ds

—/wadx+/aDmg<w)ds,

where we used the compatibility condition (31.28) in the last equality. Since the equality aq(u, w) =
Jp fwdz + [, gv&(w) ds is valid for every function w € H'(D), we infer as in the case of Robin
conditions that the PDE and the boundary condition in (31.27) are satisfied a.e. in D and a.e. on
0D, respectively. To prove the well-posedness of the weak formulation, we use the Poincaré—Steklov
Lemma 3.24 with p := 2, i.e., Cps||v]|22(py < €p||VV| L2(p) for all v € HY(D), so that V := H!(D)
equipped with the norm ||v|ly := ||Vv||r2(py is a Hilbert space. Since aq(v,v) > Xp|[v[|¥, this
proves the coercivity of aq. Finally, the well-posedness follows from the Lax—Milgram lemma.

Exercise 31.5 (Mixed Dirichlet—Neumann). A direct computation gives

1O (0w 1 s ( L Lo 1 s (Lo
ror rar _4T st 27 )7 r2 962 4T st 2 )7

so that Au = 0. The Dirichlet condition is clearly satisfied on 0D4. Concerning the Neumann

condition on 9D, we observe that 8“ = }_gg = %T’E cos(36) which vanishes for § = 7. Finally,
we observe that grg = —%r 2 sin(3 0) and that fo 3r dr is not bounded.

Exercise 31.6 (H%(R%)-seminorm). Let ¢ € C5°(R?). Integrating by parts, we infer that

o 9%
2 _
|¢|H2(Rd) - Z /]Rd O0x;0xj Ox;0x; e

i,j€{1:d}
o¢p 0 ( 82¢ )
—— ¥ 9 dz
ije{l:d} R4 8:171 8$j 8$18$J
_ Z / oy 03 (;5
i jeisay TR ox; (’“)xl(’“)x
82¢ 82¢
> / 92 07 1 = 1AG]Z2za):
i,je{1:d}

where we used Theorem B.3 to exchange the order of the partial derivatives.
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Exercise 31.7 (Counterexample to elliptic regularity in W2>(D)). We observe that
Au = z122A(In(r)) + 2V (z122)-V(In(r)) + A(z122) In(r)

= 2V(2122)-V(In(r)) = 4:671:;62,
so that Au € L*°(D). Moreover, we have
0%u 22272
=1 1 ==
0x10x2 n(r) + rd
which is unbounded at the origin.
Exercise 31.8 (Domain with slit). (i) Since dpu = —1rsin(360) + 2rdy—o, where dy—¢ is the

Dirac measure whose support is the segment {r € (0,1), ¢ = 0} = {z1 € (0,1), z2 = 0}, we infer
that ujp € W'(D), but Upine(B) & WP (int(D)) since dy—¢ cannot be identified with any function
in L?(int(D)); see Example 4.3. o

(i) Assume that the restriction to D of the functions in C'(D) is dense in WP(D). Since
up € WHP(D), there is a sequence of functions in C'(D), say (vn)nen, such that v, p — up in

WhP(D). But, since v, € C*(D) c W'P(D) and |int(D)\D| = 0, we have
vapllwirpy = Vit @) e e ) -

This means that (v,,;,,5))nen is a Cauchy sequence in WhP(int(D)). Let w be the limit in
question. We have

w|p =up, a.. inD.
This proves that w);,5) = i) since |int(D)\D| = 0. This, in turn, establishes that Ujing(D) €
WP (int(D)), which is a contradiction. Hence, the restriction to D of the functions in C'(D) is
not dense in W1P(D).

Exercise 31.9 (A priori estimate). Following the hint and integrating by parts, we infer that
rollAul|72py = (B-Vu, Au) 12 () + polulF py = —(f; Au)r2(p) = (Vf, V) L2 (),

where we used that u € H}(D) in the third term on the left-hand side and f € H{(D) on the
right-hand side. Using that Bj9p = 0, we infer that

—(B-Vu,Au)papy =— Y (Bidu, 0;0;u)L2(p)

i,je{1:d}

Z ((6]61)611;, 8ju)L2(D) + (ﬁl(r“)l (6ju), 6ju)Lz(D)
i,j€{1:d}
= {3:1 + ‘IQ.

We have T; = ((VsB)Vu, Vu)r2(p). Using that V-8 = 0 and using again that 3 vanishes at the
boundary, we obtain that

1
To= Y (BVOu,du)2p) = / §V-(ﬁ||VuH2)dx —0.
ije{l:d} D
In summary, we have shown that

kollAul|Z2py + (VsB)Vu, V) L2(py + polulFr py = (Vf, Vu)L2(p).-
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Our assumption on Vg3 implies that
Kol Aull2(py + poluliy (py < (Vf, V) r2(p).-

The estimate on |u| 1 (py follows by applying the Cauchy—Schwarz inequality to the right-hand side.
The estimate on || Aul| 2( py follows by bounding the right-hand side as pf [u[3;, (D)+(4M6)_1 12 (D)-

Exercise 31.10 (Complex-valued diffusion). Let us write t,, := |k, |e!?™ for all m € {1,2}.
Set £ = e=”5"  Then the real part of (k1 is |r1] cos (£25£2) and that of £ky is k2| cos (£25£L).
It is readily seen that these two real numbers have the same sign and that they are both nonzero
since #2521 £ +7 (since otherwise z—; would be a negative real number). Hence, up to a possible
sign change in &, the bilinear form a satisfies the coercivity property (25.7). We conclude by

invoking the Lax—Milgram lemma.

Exercise 31.11 (Dependence on diffusion coefficient). (i) We have

@l = sup LEVwivv] 1 p £V Y dal
wevV [|wllv wevV [[wllv

)

for all v € V. Recalling the definition of the ||-||y-norm, this implies that ||} (v)|v: < Agl|v||v and
that
| [ &Vv-Vudz|

1T (v)llv >
[ollv

Z Moy
This lower bound proves that T} is injective, and the above two bounds together prove that

T, ,
\ < sup LTy

e HU”V H K”L',(V,V) > A

It remains to prove that T} is surjective. Proposition 31.8 applied with § := 1 (and p := 0, 3 :=0)
implies that the bilinear form a(v,w) := [}, KVv-Vwdz is coercive on V with a(v,v) > X[}
The Lax—Milgram lemma then implies that for all ¢ € V', there is a unique vy € V s.t. a(vg, w) =
(p,why v for all w € V. Let ¢ € V'. Then we have for all w € V,

(Th(vg),wyvr v = =(V-(kVvg), w)yr v = / £Vvg-Vwdz = avg, w) = (¢, w)v,v.
D
This shows that T} (ve) = ¢, i.e., Ty is surjective.
(ii) We have

| [,(k — &) Vo-Vw dz|
||TN — TH’Hﬁ(V;V’) = Sup sup D
veV weV ||UHV||wHV

< k= K[|z (p)-

Assume that ||k — &'[| < (py > 0 since otherwise there is nothing to prove. Let ¢ > 0 and assume
that € < ||k — K'||poo(p). There is a measurable subset E, C D with |E.| > 0 s.t. the sign of
(k — ')|p, is constant in B and |x — &'| > ||k — /|| Lo (py — € in E. Since we are assuming that
K, k' are continuous functions, there is an open subset D. C E.. Observing that the zero-extension
of a function in HE(D,) is in V, we infer that

| [, (k= &)||Vol|7 dz|
ITx = Turllcovyvry > sup De > ||k = K| oo (p) — €.

vEHJ (De) fDe vang dz
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Since € > 0 is arbitrary, this proves that ||T; — T/ || zov,vr) = |5 — £/ Lo (D)
(iii) Since S, = T !, we infer from the bounds derived in Step (i) that

A< ISkl <A
Using the hint, we obtain

”Sn - SH’”L(V’;V) < ”SN”L(V’;V)”TN - TN’HL(V;V’)”SN’HL(V’;V)
S /\EQHK — :‘il”Loo(D).

This proves that A}|[Sx — Sw|lzvv) < ||k — &'||L=(p). Finally, using the identity T, — T, =
T(Se — Sk)T, and reasoning similarly proves that ||x — &'|| e (p) < /\§||SN — Serlleqvvy-
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H'-conforming approximation (I)

Exercises

Exercise 32.1 (Discrete solution map). Let G}, be defined in (32.6). (i) Prove that |V (v —
Gr(v)lL2(py < ch"[v]gr+r(py for all r € (0,k], all v € H'*7(D), and all h € H. (Hint: observe
that G1,(Z;," (v)) = Zpy™ (v).) (ii) Assume that the adjoint operator A* has a smoothing property
in H*2(D) for some real number s € (0,1]. Prove that ||v — G, (v)||2(py < ch" 05 *|[v] grsr ().
(Hint: consider the adjoint problem A*({) = v — Gp(v).)

Exercise 32.2 (H!-estimate). Assume that for all g € H'(D), the adjoint solution ¢ € Hg (D)
st. A*(¢) = g satisfies [|¢||g2r:(p) < Csmo 3|9l (py With s € (3,1]. Assume that k >

L+ 5. Let [o]i-1(p) = SUP.cyy(p) k2P for all v € L2(D). Prove that [[u — uply-1(p) <

|Z|H1(D)

chY* 305V (u — up) || p2(py- (Hint: consider the adjoint problem A*(¢) = 2.)

Exercise 32.3 (Compactness). The goal is to prove Theorem 32.8. Let I : V' — L be the natural
embedding and define €(h) := sup,cy\y, % (i) Prove that |Gy — I[|z(vi) < @e(h),
where « and ||a]| are the coercivity and the boundedness constants of @ on V' x V. (ii) Assume
that limp_0€e(h) = 0. Prove that I is compact. (Hint: use (i).) (iii) Let R : L — V be s.t.
aly, R(f)) := (y, f)r for all y € V and all f € L. Assuming that I is compact, prove that R is
compact. (Hint: prove that R = (A*)~'I* and use Schauder’s theorem; see Theorem C.48.) (iv)
Let PY : V — Vj be the V-orthogonal projection onto Vj. Let R : L — V) be the operator
defined by a(vn, Ru(f)) = (vn, f)r, for all v, € V, and all f € L. Prove that ||R — Rp|lzzvy <
@HR — PYoR| z(;v). (v) Assuming that I is compact, prove that limp_o [|[R — Rl z(z:v) = 0.
(Hint: use (iii)-(iv) and proceed as in Remark C.5.) (vi) Assuming that I is compact, prove that
1imh_>0 E(h) =0.

Exercise 32.4 (Source approximation). Let f € L?(D), let ZP(f) be the L?-projection of f
onto PP (7). Consider the discrete problem (32.5) with the right-hand side [, Zp(f)wp, dz, that
is: Find up, € Vi, 1= P{o(Th) s.t. alup, wn) = €p(wp) = [} ZP (f)wy, dz for all wy, € Vi. (i) How
should (32.7) be rewritten? Show that k' := k — 1 leads to an optimal H'-norm error estimate.
(ii) How should (32.19) be rewritten? Assuming full elliptic regularity, show that &’ := k leads to
an optimal L2-norm error estimate.
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Exercise 32.5 (Advection-diffusion, 1D). Let D := (0,1). Let v,b be positive real numbers.
Let f : D — R be a smooth function. Consider the model problem —vu” +bu’ = f in D, u(0) = 0,
u(1) = 0. Consider H'-conforming P; Lagrange finite elements on the uniform grid 7;, with nodes

x; :=ih, ¥i € {0:1}, and meshsize h := I—_}_l (i) Evaluate the stiffness matrix. (Hint: factor out
the ratio ¥ and introduce the local Péclet number ~ := 22.) (ii) Solve the linear system when

f:=1 and plot the solutions for h := 10~2 and v € {0.1,1,10}. (Hint: wrtite U = U° + U € R’
with U? := b~1ih and U; := o + 65" for some constants o, 6, d.) (iii) Consider now the boundary
conditions u(0) = 0 and «/(1) = 0. Write the weak formulation and show its well-posedness.
Evaluate the stiffness matrix. (Hint: the matrix is of order (I 4 1).) Derive the equation satisfied
by h=1(Ury1 — Ug), and find the limit values as h — 0 with fixed v > 0 and as v — 0 with fixed
heH.

Solution to exercises
Exercise 32.1 (Discrete solution map). (i) We observe that

IV (v = Gu)llz2(p) < V(v = Zig™ ()l 20y + IVGr(v = g™ (0) |22 (p)
< c|V(v = 55" (v)llL2(p) < eh" ol g (),
where we used the triangle inequality, the fact that Gy (Z5;" (v)) = Z5;" (v), the H'-stability of
G}, and Corollary 22.16.

(ii) Consider the adjoint problem which consists of seeking ¢ € H} (D) such that A*(¢) = v—Gp(v).
Recall that V := Hg (D) is equipped with the norm |[v|ly := |[|[Vv||g2(py = [v]g1(py. We infer that

lv = Ga(W)lZ2(p) = alv = G (v),¢) = a(v = Gu(v),¢ = Tig™ ()

< allIV(v = Gr(@)llL2p) IV (¢ = Zig™ ()l 2 ()

< cllallb[ol e oy h* 05 ¢ e ),
and the assertion follows since ||C|| gi+<(p) < ca™ 03||v — Gu(v)|| 2(p).-

Exercise 32.2 (H !-estimate). Let 2 € H'(D). Let ¢ € H}(D) be such that A*(¢) = 2. Recall
that V := H§ (D) is equipped with the norm |[v[|y := [|[Vv||£2(p) = |v|m1(p). Since exact adjoint
consistency holds true, we infer that

(u —up, 2)2(py = a(u — up, ¢) = a(u — up, { — wp)
< lall IV (u = un)llL2(0) V(¢ — wr)l[L2(D).

for all wy, € V},. Since k > 1 + s, we infer that

inf [[V(¢ —wa)llz2py < ch™°|¢] g2+s(p)
wpEVhy

< ch™ 0 0l e ()
< ch1+scsmoo¢71655||ZHH1(D)
<c h1+scsm00171€1D_SHVZHLQ(D),

where the last bound follows from the Poincaré-Steklov inequality. Combining the two bounds,
dividing by [|Vz||L2(p), and taking the supremum over z € Hj (D) leads to the expected estimate.
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Exercise 32.3 (Compactness). (i) We have

Gp(v) —v Gr(v) —v
||Gh - I”L(V;L) = Sug M = sup M
veE

[[v]lv VeV [vllv
G — G —
oy 1680 = vl [Ga(w) ol
vev\vy, [|Gr(v) —vlv lvllv
Iel _
< E(h) sup H h(v) ’UHV'
'UGV\‘/}L ||UHV
Using the error estimate (26.18), we obtain
llallvxv .o lu=onllv _ lall
Gy —1 gy < ——>=¢(h) su inf ————— < ——¢(h).
|| ”L(V,L) an ( )uEV{)Vh,UhEVh H’UJHV o ( )

(ii) Using Step (i) and limp 9 e(h) = 0, we infer that limy o |Gr — I||z(v;z) = 0. But Gy, is
compact since its rank is finite (recall that V}, is finite-dimensional). Hence, I is compact (see
Theorem A.21).

(iil) Let us assume that I is compact. Let y € V and f € L. By definition, I(y) = y and

(AY(R(N), y)vev = (Aly), R(f))vr v = aly, R(f)) = (v, f)L
=), e =) yv.v,

which proves that A* o R = [*. Since A is an isomorphism, so is A*, whence we infer that
R = (A*)~! o I*. Schauder’s theorem (Theorem C.48) implies that I* : V/ — L’ = L is compact,
which, in turn, proves that R = (4*)~! o I* is compact.

(iv) Let Ry, : L — V3, be the operator defined by a(vp, Ry (f)) := (vn, f)r for all v, € V4, and all
f € L. Let f € L. The error estimate (26.18) for the adjoint problem gives

180~ el <12 sne e —wnde < LLymer) — Y RO,

where we used that the stability constant for the discrete adjoint problem is again « (see Re-
mark 26.8) together with the property infy, cv, ||R(f) — wnllv = [|[R(f) — PY (R(f))|v-

(v) Since we assume that I is compact, we know from Step (iii) that R is also compact. Let By,
be the unit ball in V and Z := R(By). Since R is compact, for every e > 0 there is a finite set
of points {z;}i,er in Z C V such that for all v € Z, there is i € I such that ||[v — x|y < e. Let
f€Br. Thereisi € I s.t. ||R(f) — xi|lv < e and

IR(f) = Py (RUv < IR) = @illv + llzi = By (@)llv + 1P (zi = R())lv
< 26+ ||z — Py (i) |lv-

Hence, we have
IR =Py o Rl cenivy = Sup 1R(f) = P (R v < 26+ max i = By (2i)]v-
€Br, v
Using that limy_o ||z; — PY (2;)|[v = 0 for all i € I (which a consequence of the approximability
assumption), and recalling that card(I) is finite, we infer that

; PV (. _ ; PV (. _
Lim max||z; — By (2i)llv = max lim [|z; — By’ (2:) |y = 0.
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As a result, we have limy_,o [|[R — P} o R||z(.v) < 2¢. Since € is arbitrary, we conclude that
lim |R — Py o R|lz(,v) = 0.
Lim | w © Rllciwivy

Then Step (iv) implies that
}lllm ||R - Rh”ﬁ(L;V) =0.
—0

(vi) We now estimate e(h). Let v € V\Vy, i.e., v — Gp(v) # 0. We observe that

[o = Gr()l[L = sup [(v = Gu(v), fz| = sup |a(v — Gn(v), R(f))z]

fEBL feBL
= sup |a(v — Gu(v), R(f) — Rn(f))z]
fE€BL

<llalllv = Ga(v)llv sup [|R(f) = Ba(f)llv
feBL
= llall v = Gr() IV IR = Ball£(Liv)-
We infer that e(h) < [lal|||R — Rpn||z(z;v), and the conclusion follows from Step (v).

Exercise 32.4 (Source approximation). (i) Either we directly invoke Strang’s first lemma or
we redo the argument from the proof of Lemma 27.5. We follows here the second option. For all
v, € Vi, we have

v —unllv < [lu—wnllv + lon — unllv

1 a(vy, — up, w
<|u—wlly + = sup M

@ ey, lwnllv

1 a(vp, wp) — £p(wp,
< Jlu—vnlly + = sup Zomn) — Caluwn)

O w, eV l[wn v

1 a(vp,wp) — L(wpy) + L(wp) — Lp(wp,
oy L s AR = ) £ ) = ()

& w,eVy, [lwn v

1 a(vy —u,wp) + (wp) — Ly (wy,

& w,eVy, lwnllv

a
< = vl + 1+ 3,

Jp(f=T3(f)wn dz '

Tl Recalling that |[v]|v := [[Vv|L2(py = |[v|a1(p), On is

with 6, = Lsup,, cv,
bounded as

_Ib _ d
5y = l sup inf fD(f h(f))(wh 'Uh) x
O wy, €V, v €PY, (Th) |lwn |l

1 ch||Vwn||z2(p)
< 2| f-1P 2 sup ————~
> aHf h(f)HL (D) wheI\)/h ||wh||v

<ca 'hf = Tp(f)l2p)-

This means that

a . _
=l < (14120} g vl + camthlf = 2 Dloco
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If u e H**1(D) and f € H¥ (D), then
lu —unllv < C(hk|u|Hk+1(D) +a thitE \flav (py)-

So it suffices that k' := k — 1 to obtain optimality in the H'-norm.
(ii) We now reformulate (32.19). Let (y—v, € V solve a(v, (u—u,) = (v,u —up)r2(p) for all v € V.
Elliptic regularity implies that |[(y—u, [[g1+:(p) < Csmo™ "} |[u — un| r2(py. For all v, € Vj, we
have

[ = unl|F2(py = a(u = un, Cuu,)

= a(u — un, Cu—w,, — vn) + a(u,vn) — a(un,vn)

— a(t— un, Cony, — 1) + /D (f — T2 (f)on da

= a(u — up, Cu—u, — Vn) + inf /D(f—Iﬁ(f))(vh — wp,) de.

whEP,?/(Th)
Let us take vy, to be the best approximation of (,—,, in V} in the V-norm. Since

. / /!
whelplgm) lvn — wallL2(py < R VorllLzpy < "MIVCu—ullL2(D),

we infer that
lu = unllZ2py < lallllu— unllveh® |Guu, | m+s o) + | f = TR (P20 IV Cu—u | L2 (D)
< c (e ®llu — unllv + o~ hepl| f = IR ()l 2o)) lv — wallL2(p)-

(Note that we have hidden the nondimensional factor llal

H**1(D) and f € H¥ (D), and assuming s = 1, we obtain

in the generic constant c.) If u €

Hu — Uh||L2(D) <c (hk+1|U|Hk+1(D) + Oé_lhk/+1fp|f|Hk/(D)),

where we used the bound on ||u — wup||y from the previous step and h < £p. We now obtain
optimality in the L%-norm if k" := k.

Exercise 32.5 (Advection-diffusion, 1D). (i) The stiffness matrix is given by

A= %tridiag( —1- %,2,—1 + %)
(ii) Assuming that f = 1, the linear system to be solved is AU = h(1,...,1)T. Since AU° =
(hy...,h, h—l—”yjl(l —2))T (observe that h(I+1) = 1), we infer that AU = 0,...,0,y (3 —1)".
If v = 2, then U = 0. Let us now assume that v # 2. Using U; = ¢ + 64", we infer from the rows

{2:1—1} of the linear system that
(-1-3)+204 (-1+3) 7 =0,

so that 6 = 1 or § = 24:_:; The first row of the system yields § = —p. From the last row of the

2
system, we finally infer that £(1 — 2)o(1 — 6'*1) = 4y~ 1(2 — 1), i.e., bo(1 — ') = —1. Notice
that § # 1 because we assumed that v = % # 0. Hence, —0 = o = —b~1(1 — §1+1)~1 that is,
~ 6 —1 2+

O=b 12— 5=-17

S+ 17 22—+
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When v > 2, the components of the vector U oscillate sk
between positive and negative values. The approximate I
solutions for v € {0.1,1,10} obtained with h := 1072
are plotted on the figure shown here. We observe that
for v = 10 the approximate solution exhibits spurious
oscillations close to the boundary layer. Instead, the
approximate solutions for v := 1 and v := 0.1 match well
the exact solution.

0 0.5 1

(iii) Setting V := {v € HY(D) | v(0) = 0}, the weak formulation now consists of seeking u € V'

such that a(u,w) = ¢(w) for all w € V. Since fol bv'vdz = 1bv(1)? > 0, the bilinear form a is still
coercive on V. The stiffness matrix is of order (I 4+ 1) and has the following tridiagonal structure:

co ¢+ 0 ... O
c_
v
A=21g  o

. Cop C4

0 ... 0 ¢ ¢
with ¢ :=2, ¢y =142, ¢y := -1+ 2, and c_ := =1 — L. We infer that (v + 2)(Us41 — Uy) =
f;é“ feori1dz, so that

U]+1 — Uy . 2ffll+l f‘pl-l-l dx

h 2v + bh

Hence, w — 0 as h — 0 with fixed v > 0, whereas U”};UI — @ as v — 0 with fixed
heH.




Chapter 33

H'-conforming approximation (II)

Exercises

Exercise 33.1 (Regularity assumption). Let uj solve (33.5). Assume that v € H"(D)
with r € (0,k]. Prove that [[u — unllg1(p)y < (A" |ulgier(py + (ZFefah Ug — gnll2» F))l)

(Hint: consider vy, := T35 (u) + Dacas O 9(9)¢a, and follow the proof of Theorem 22.14 to bound
lu = vnl a1 (p).)

Exercise 33.2 (Non-homogeneous Dirichlet). Let A denote the system matrix in (33.10).
Let R € R? and let k& > 1. Consider the Krylov space S;, := span{R, AR, ..., A*"'R}. For all
V e RY, write V := (V°,V9)T. Assume that R? = 0. (i) Prove that Y? = 0 for all Y € Si. (ii)
Prove that if A°° is symmetric, the restriction of A to Sj is symmetric.

Exercise 33. 3 (DMP). Assume that the stiffness matrix is a Z-matrix. Assume the following:
(i) Ay > — i Aij for all @ € {1:0}; (i) Ji € {1:1} such that A; 5, > =3, A j; (iii)
For all i € {1: IT i # ix, there exists a path [ =: i1,...,i; = i,] such that A;;,,, < 0 for all

j € {1:J—1}. Prove that A is a nonsingular M-matrix. (Hint: let B < 0, let U := A™!'B, and
proceeding by contradiction, assume that there is i € {1:1} s.t. U; = max;je1.13 U; > 0.)
Exercise 33.4 (Obtuse mesh). The mesh shown in Figure 33.1 contains three interior nodes
with coordinates z1 := (1,1), z2 := (3,1), and 23 := (2, 2). The sum of the two angles opposite the
edge linking z; and zo is larger than 7. (i) Assemble the 3x3 stiffness matrix A generated by the
three shape functions associated with the three interior nodes z1, z2, 23. Is A a Z-matrix? (Hint:
the local stiffness matrix is translation- and scale-invariant, there are four shapes of triangles in
the mesh, and one can work on triangles with vertices ((0,0), (1,0),(0,1)), ((0,0),(1,0), (0, 2)),
((~1,0),(1,0),(0,2)), and ((—1,1),(1,1),(0,1)).) (ii) Compute A~'. Is A an M-matrix?
Exercise 33.5 (1D DMP). Consider the equation uu+ fu’ —vu” = fin D := (0,1). Let Tj, be
the uniform mesh composed of the cells [ih, (i+1)h], Vi € {0:1}, with uniform meshsize h := I—Jlrl
Assume p € Ry, B € R, v € Ry and f € LY(D). Let uy, := Yicio.141y Uiwi € PP(Th) be such
that [, ((pun + Buj,)ei + vuy,el)de = [, feida for all i € {1:1}. Let F; := [, fo;da/ [}, ¢ida.
Assume that ¢ > li;‘ + ‘%h. (i) Show that min(U;_1, U; 1, u) <U; <max(U;—1,U;41, u) for all
i € {1:1}. (Hint: write the linear system as pU; + «;—1 (1, 8, v) (Ui — Ui—1) + a1 (p, B,v)(U; —
Ui+1) = E) (ll) Show that min(Uo,U1+1, W) S Ul S max(Uo,U1+1, W) for
all i € {1:1}.
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Figure 33.1: Tllustration for Exercise 33.4.

Exercise 33.6 (1D DMP, pure diffusion). Let D := (0, 1), f € L*°(D), and a nonuniform mesh
T of D with nodes {x;};cq0: 141}~ Let up € PE(Ty) be s.t. up(0) = a, up(1) = b, and [, uj,vj, do =
Jp fondz for all v, € PEo(Ts). (i) Show that max,epup(z) < max(a,b) + }esssup,cp f().
(Hint: test with ¢, € PPo(Th) s.t. Gnjo,2,] = = and @p|(e, 1) = 11:; for all i € {1:1}.) (ii) Let

¢p, be the function defined in the hint. Compute —0,,¢,. Comment on the result.

Exercise 33.7 (Maximum principle). Let D be a bounded Lipschitz domain in R%. Let &g € D
and R € R be s.t. maxgep || — xollee < R. (i) Let ¢(x) := —55||x — xo||%. Compute —Ag¢. Give
an upper bound on maxgep ¢(x) and a lower bound on mingesp ¢(x). (ii) Let f € L>°(D) and
let u € H'(D) solve —Au = f. Let M := esssup,cp f(z). Give an upper bound on —A(u— M).

iii) Prove that max,ecp u(x) < maxgcop u(x) + M+—R2 with M := max(M,0). (Hint: use (i
2d
from Theorem 33.6.)

Solution to exercises

Exercise 33.1 (Regularity assumption). Let us set

vn =T (W) + tgn,  Ugh = Y 05(9)@a-
aEAg

Observing that vy, gp = ZaeAQ a? (9)®@ajop = gn, we infer that up —vp, € V3. Proceeding as in the
proof of Theorem 33.2, we infer that [Ju — up | g1(py < ¢|lu — vallg1(p). Since T5™ (ugn) = 0 and
recalling that Z¥;™ (u) = deavl,%’ﬁ(u), we infer that

w— vy = (u— T w) + (wh — TE™ (wy)) =t T1 + To,

with wy, = I,%"ﬁ(u) — ugn. Owing to Theorem 18.14, we infer that ||T1||g1(py < ch”[ulgiir (D).
Concerning To, we infer from the proof of Theorem 22.14 (with m := 1 and p := 2) that

_1 _1
1Tl iy < ¢ Y hi walpllezry +¢ Y b lwnllL2 -
FeFy, FeFE

Since [ugp]r = 0, the first sum on the right-hand side is bounded as before. For the second
one, we write [lwal|z2(p) < |lu — I,%’ﬁ(u)Hp(F) + [|u — ugnl|z2(ry by the triangle inequality, and
[|u— I,%’ﬁ(u)H r2(r) is bounded as before using a multiplicative trace inequality. Finally, we observe

that (u — ugn)jp = g — gn for all F € F?, and we invoke the regularity of the mesh sequence to
replace hx by hp.
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Exercise 33.2 (Non-homogeneous Dirichlet). (i) A direct computation shows that AR =
(A°°R® + A°9R? R/)T = (A°°R°,0)T since R? = 0. By induction, we infer that (A'R)? = 0 for all
[>0.

(ii) Let X and Y be two vectors in the Krylov subspace S;. Owing to Step (i), we infer that
X? = Y9 = 0. As a result, we have (AX,Y)p2 @) = (A°°X,Y?) p2groy with I = card(Ap) and
I° = card(Aj). Hence, the restriction of A to Sy has the same symmetry properties as A°°.

Exercise 33.3 (DMP). Let B < 0 and let U := A~!B. Proceeding by contradiction, assume that
there is 4 € {1:1} such that U; = maxjcq. 7y U; > 0. Since AU = B, we infer that

0> B; = A;U; + ZAijUj > AU+ ) A (U; —Us),
J#i J#i
where A; == A;; — > ot A;; > 0 owing to Assumption (i), whereas the second term on the right-
hand side is nonnegative since A is a Z-matrix and U; = max;c¢i.7y Uj. Hence, both addends
vanish. As a result, i # i. owing to Assumption (ii). Exploiting Assumption (iii), we consider the
path [i =:iy,... 47 = 4,] such that A;;;;,, <0 for all j € {1:J—-1}. Since we already know that
Aij(Uj — U;) = 0 for all j # i, we infer that U, = U;. Reasoning similarly, we infer that U, = U;
for all j € {1:J}, which provides the expected contradiction once we reach i; = i..

Exercise 33.4 (Obtuse mesh). (i) Let us work on the following triangles:

1 ‘
L\M 2 12

In all the cases, the vertices are numbered anticlockwise starting from the lower left vertex. The
local stiffness matrices are, respectively,

5 3 _9 5 .3 _1
1 2 -1 -1 1 5 —1 -4 1 1 1 1 1 1 2
3 5 3 5 1

-1 0 1 —4 0 4 9 _9 4 _% _% 1

(Observe that the row- and columnwise sums of the above matrices vanish.) The entries of the
stiffness matrix are such that A;; = 6% + % + % = 1?7, Ao =0+ % = %, A3 = —1— % = —%,
Aszs =2+ 2% + 2 =5, and the other entries are evaluated using symmetries so that

17 3 _5
1 8 1
_ 3 17 5
A= 8 1 1
_5 _5
1 1 5
Hence, A is not a Z-matrix.
(ii) Computing the inverse of A, we obtain
63 1 1
248 248 16
-1 _ | __L 63 1
A7 = 248 248 16
1 1 37
16 16 160

Hence, A is not an M-matrix.
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Exercise 33.5 (1D DMP). (i) The discrete system is written

h
NE(Ui—l +4U; 4+ U;1) + g(Uz —Ui—1) + g(UH—l -U;)

v v
The contribution from the mass matrix can be rewritten

h h h
ME(Ui—l +4U; + Uiqr) = phU; — Mg(Ui - Ui—1) — NE(Ui —Uit1).

In conclusion, we have

,UhUi‘F(Ui_Uifl)(—%h‘Fg‘i‘%) —I—(Ui—UiH)(—u—Gh—g—l-%) = hF;.

Assume first that U; < max(U;—1,U;11), so that U; < max(U;—1,Uit1, %) Assume now that

U; > max(U;—1,U;11), so that the above identity and the assumption % > @ + ‘%h imply that
uhU; < hEy,

which means that U; < % Thus, we infer that U; < max(U;_1, Uj41, %) The other inequality is

proved similarly.
(ii) By induction, we have U; < max(U;_1, Uy, maX;e i it1—1} %) foralll € {1:14+1—1i}. Hence,

Ui < max(U;—1,Ury1, maxje;: 1y %) Similarly, we have U; < max(U;_;, Ury1, max;ecgi—j41:1} %)
for all [ € {1:4}. Hence,

F.
U; <max(Up,Ury1, max —2).
o, Ur1, max, )

The other inequality is proved similarly.

Exercise 33.6 (1D DMP, pure diffusion). (i) If uj, is maximum at o = 0 or at 2741 = 1, there
is nothing to prove since max,ep up(z) = max(a, b) < max(a, b)+ 5 esssup, ¢ p f4(z). Assume that
up, is maximum inside D. Since uy, is piecewise linear, the maximum must occur at a node z; with
1€ {1:I}. Let ¢y, € Plgo('ﬁl) be such that ¢h|[07%](x) = acil and (th[aci,l] (x) = 11__;2. Since up,(0) = a,
up(1) = b, and letting U; := up(x;), we have

1 [% 1 !
doe= [ g de=— [ uhde——— [ ud
/Df¢h x /Duh¢h x xi/o uy, da l—xi/z.uh x

1 1

=—(U;—a)— b—U;
—(Ui=a) - = (b= Uy
1 1 a b
($i+1—$i) Z; 1—£L'i
1 ~a(l — ) + by

We infer that

U;=a(l — ;) + bx; +x;(1 — xl)/ fondx
D
1
< max(a, b) + (eSfesBp f(x)) 3 /D op dx

1 1
< max(a,b) + —esssup f(x) < max(a,b) + — esssup f(x).
4 zep 4 zep
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In conclusion, maxep up(z) < max(a,b) +  esssup,ep f4(2).
(ii) Let ¢ € C§° (D). We have

1o 1 !
/¢h<p"dx:—/¢§lcp'd:v=——/ o dz + / o dx
D D i Jo 1—171 P

1 1 1

= —p(e)( + ) = -

LL’l(l _ xz) <6In 90>7

where §,, is the Dirac measure at x;. Hence, —¢} = ﬁéwl This means that a;(1 — 2;)¢p is

the Green function of the Laplace operator over D := (0,1) with Dirichlet boundary conditions.

Exercise 33.7 (Maximum principle). (i) We have —A¢ = 1 in D, maxzep ¢(x) = 0, and
. 2

mingeop p(x) > — 5.

(ii) The definitions give —A(u — M¢) = f+ MA¢p = f — M <0.

(iii) If M <0, then f < 0, and using the hint, we infer that

Let us assume now that M > 0. Using the hint together with —A(u — M¢) < 0, we infer that

max(u — M¢(x)) < max (u— M¢(x)) < max u(xz) + M max —¢(x)

xzeD xedD x€dD xz€dD
R2
< — M mi < M.
= qagp @) = Mgy o) = qags () + Mg

Using that M > 0 and ¢ < 0 gives

max u(x) < rmneag(u(w) — M¢(x)).

Putting everything together, we conclude that

R2
R @) = gy @ + Mgy
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Chapter 34

A posteriori error analysis

Exercises

Exercise 34.1 (Residual). Prove (34.10). (Hint: integrate by parts.)

Exercise 34.2 (Trace inequality in stars). Let Ci, » be defined in (34.12). Prove that Ci, , <
1

w2 (dCFQ,S)z + 201:’572)% with @, := hp, maxpere % and Dp = int(K; U K,.) with F := 90K, N

OK,. (Hint: see the proof of Lemma 12.15.)

Exercise 34.3 (Bound on dual norm). (i) Prove that ||T%(f)|lg-1(x) < chilfllz2(x) for
all f € L?(K). (Hint: use a scaled Poincaré-Steklov inequality for functions ¢ € H}(K).) (ii)

1
Prove that [|T5(9) |- (pp) < chllgllz(r) for all g € L2(F). (Hint: use the multiplicative trace
inequality from Lemma 12.15.)

Exercise 34.4 (Oscillation). (i) Let IR0 LP(K) — Py, be the best-approximation operator in
LP(K) for p € [1,00] and m € N. Prove that

1T = P @on)l 2 a0y < 1T = P2 ) O e oy ol 2 )

for all § € L>°(K) and all v, € P,, with n < m. (ii) Consider the oscillation indicators defined
in (34.19) with IY := 2k —2 and I* := 2k — 1. Prove that ¢ (un, f,d) < hx||(I— P ,) ()]l 2 ) +
e(l(1 = BEN(V-a) | oo (x0) + 10T = BE) (@) e (10) [ Van | p2 iy with (V)i i= ¥ e 1.0y 52 i
for all i € {1:d}. Prove that ¢%(up, f,d) < ¢|(I — P°)(d)||Loo(m) [ Vuunllp2(pp) with best-

approximation operator P,goo) mapping to L°°(F). What are the decay rates of the oscillation
terms for smooth f and d? (iii) What happens if [Y := k and [° := k — 1 for piecewise constant d?

Exercise 34.5 (Error reduction). Consider two discrete spaces Vi, C Vi, C H}(D) with
corresponding discrete solutions uy, and wup,, respectively. Consider the norm ||v]l, := a(v,v)2
for all v € H}(D). Prove that |[u — up, |2 = ||u — up, |2 + |[un, — un,||%. (Hint: use the Galerkin
orthogonality property.)

Exercise 34.6 (Approximation class for smooth solution). Let D be a Lipschitz polyhedron
in R%. Prove that H***(D) C A /4. (Hint: consider uniformly refined meshes.)



182 Chapter 34. A posteriori error analysis

Exercise 34.7 (Graded mesh). Let D := (0,1) and let (z;);cq0:1}, I > 2, be a mesh of D.
Let u € WH(D) and consider the piecewise constant function u; such that us(z) = u(w;—1)
for all z € (z;—1,2;) and all i € {1:1}. (i) Assume u € W1*(D). Prove that the decay rate
lu—urllpe(py < Flw]lLe(py is achieved using a uniform mesh. (ii) Assume now v € WhH(D).
Prove that the decay rate ||u — UIHLOO(D) 11w/ || 1(py is achieved using a graded mesh such that
z; = @V (1), where &(s) := Jo lw/(t)| dt for all s € (0,1) and all i € {0:1}.

‘UIHLl(D)

Solution to exercises

Exercise 34.1 (Residual). We observe that

(p(un), ) = Z/ (fo — (dVup)-Ve)dz
KeTy,
= Z/ (f + V-(dVup))pde — Z/ ((dVup) ngk)pds,
KeTn KeTy,

where n denotes the outward unit normal to K. We conclude by regrouping the terms from
both sides of each interface and observing that ¢ vanishes at the boundary faces.

Exercise 34.2 (Trace inequality). Let z € V}, and let v € H!(D,). Let F := 0K, N 0K, € F¢.
Proceeding as in the proof of Lemma 12.15 with p := 2, we infer that

IK]

|F| HU||L2 (F) < HU”L2 k) T2d” 1hl‘fHU||l'ﬂ(K)HVUHL2

where K € {K;, K, } is one of the two cells sharing F. Let D := int(K;UK,). Summing over these
two cells, using hx < hp_, and the Cauchy—Schwarz inequality for the rightmost term yielding

>oretr i W2 [VllLey < llvlleeppm Vol Lz(py), we arrive at

|Dr|

|F| HU||L2(F) < HU||L2(DF) +2d” 1thHU||L2(DF)HVUHL2 Dr)-

We now sum over all the faces I’ € F3. Since any mesh cell in 7, has exactly d faces sharing the
vertex z, we have

Z HU||2L2(DF) = d||”|\%2(Dz)-
FeF?

Invoking the Cauchy—Schwarz inequality yields

1
2
S Jollz2om IVollz20p) < ( 3 ||v|i2<DF>) ( 3 ||Vv||i2<DF>>

rerz FeFg FEFY
< d|vllzzp.)IVVllL2(D.)

1

We infer that

|Dr|
Z 7| ”’UH%Q(F) < dHU”%ﬁ(DZ) + 2hp, |[v]lL2(p,) IV L2(D.)
FeFe
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Finally, the definition of ¢, implies that
0z 'ho vl Ea(zey < dllvliZa(p,) + 2ho V] 20 Vol L2(0.),

where we used that ||UHL2 Foy = Y FeFo ||’UH%2(F). We conclude by invoking Definition 34.5 which
implies that
0z hpol[vll72 ey < (dCEs , + 2Cps 2)[| Vol F2(p,y-

Exercise 34.3 (Bound on dual norm). (i) Invoking the Poincaré-Steklov inequality on the
reference simplex and transferring back to K by pullback implies that ||| 2(x) < chi ||Vl L2 (k)
for all ¢ € H}(K). Using this inequality and the Cauchy—Schwarz inequality, we infer that

. | [x fodz|
Tl = sup 1

o < chi| fllL2x
peri(r) IVellLar) &

(ii) Let F := OK;NOK, € Fy. Let ¢ € H}(Dp). The Poincaré-Steklov inequality (proved as above
on the reference simplex and transferred by pullback) yields |[|¢||z2(x) < chi ||Vl L2k for all K €
Tr = {K, K, }. Combining this bound with the multiplicative trace inequality from Lemma 12.15

1
and using the regularity of the mesh sequence, we infer that |¢[/z2(p) < chz ||Vl L2 (k). We can
now conclude as above.

Exercise 34.4 (Oscillation). (i) Let v € P,,. Since (P( o) 0)vn € Py, we observe that

16vn, — P2 (0un) | 21y < 10 — (P2 0)wn 20
=116 = P20 ol 2y < 110 — PE20) oo (1) 1omll 2 i

(ii) Since f — V-(dVuy) = f — (V-d)-Vuy, — d:D?uyp, where D?uy, denotes the Hessian matrix of
up, we infer using the triangle inequality that
v 2
Ol un, o) = hae|(T = P2 ) (f = V-(@Vun)) | 2
2
= hie| (I = P o)l azqae) + hic T = PRl ) (V-ad)-Van) |
2
+hac (1 - Péklzxdzmuh)nmm»
We conclude using the result from Step (i) componentwise for the last two terms on the right-hand
side together with an inverse inequality on the Hessian of uj,. To prove the bound on ¢% (up, f,d),

we first observe that [dVus]r-nr = (dVun) ik, - r + (dVup) |k, K, r. Using the triangle
inequality and best-approximation operators in L?(F), we obtain

G (un, £,0) < BEN(T = P ) @Vun) ey + RENT = P )(@Vun) e, ()

Finally, we use the result from Step (i) together with a discrete trace inequality and the regularity of
the mesh sequence. If f|x and d|x are smooth, namely f|x € H*1(K) and dig € Whioo (K ; RIxd),
we infer that

O (uns ) < R (1 f | ac) + | Vunllz2 i),
S (un, f,d) < chi™ [ Vun| L2(py)-
(iii) If d is piecewise constant, choosing [¥ := k and [® := k — 1 leads to = hillf = fllz2x)

and @5 = 0, where f is the L2 orthogonal projection of f onto Py (K ) ThlS implies that ¢},
superconverges by two orders with respect to the approximation error.
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Exercise 34.5 (Error reduction). Since u—up, = (u—up,)~+ (un, —up, ), the conclusion follows
from
Hu — Uhy HZ = Hu - uhz”i + ”uhz — Uh,y ”i + 2a(u — Uhgs Uhy — uhl)’

owing to the symmetry of a, and the last term on the right-hand side vanishes owing to the Galerkin
orthogonality property since up, — up, € Vp,.

Exercise 34.6 (Approximation class for smooth solution). Let D be a Lipschitz polyhedron
in R%. Let u € H**1(D). Let (T,)nen be a quasi-uniform sequence of matching affine meshes (see
Definition 22.20) so that each mesh T, covers exactly D. Let h,, denote the maximal diameter
of the cells composing 7,,. The quasi-uniformity of the sequence implies that the d-dimensional
measure of every mesh cell is uniformly equivalent to he, i.e., there is ¢ s.t. card(T,,) < ch; 4| D|.
Moreover, we have established in Corollary 22.9 that

UhElPIig(Tn) IV (u U)HLQ(D) ¢ n|u|Hk+1(D)

Hence, we have

inf  ||V(u— < d(T,)"%|D|4 .
uhelpr%(m" (u—)||L2(py < ¢ card(Tp)” 4|D|4 |ul grsr(p)

This implies that
k
|U|A% < ¢|D|¢u|gr+1(py,

Le., u € Ay. This proves that H*1(D) C A

Exercise 34.7 (Graded mesh). (i) Let © € D. There is i € {1:1} such that © € (z;—1, ;). We
infer that

x

lu(z) = ur(z)| = Ju(z) — w(zii)] < / W' ()| dt < Jai — i W'l (p)-

Ti—1
This proves the assertion on a uniform mesh since we have |z; — z;_1| = %
(ii) We first observe that
[ Ol = () - 0w = 1
_ u =®(x;) — P(wi—1) = =.
vl Dy Jus ‘ ! I

As a result, we infer that

@) = ur(o)] = fute) i) < [ WOlat = o



Chapter 35

The Helmholtz problem

Exercises

Exercise 35.1 (1D Helmholtz, well-posedness). Let D := (0,¢p), k > 0, and consider the
Helmholtz problem with mixed boundary conditions: —0,,u — x*u = f in D, u(0) = 0, and
Ozu(lp) —iku(fp) = 0. (i) Give a weak formulation in V := {v € HY(D) | v(0) = 0}. (ii) Show
by invoking an ODE argument that if the weak formulation has a solution, then it is unique. (iii)
Show that the weak problem is well-posed. (Hint: use Lemma 35.3.)

Exercise 35.2 (Green’s function, 1D). Let G : DxD — C be the function defined by

Gla,s) = ! s%n(m:)e'i’”"s %f z €10, 9],

sin(ks)e™® if x € [s, 1].
(i) Prove that for all x € D, the function D > s — G(z,s) € C solves the PDE —0,su — k%u = Js—y
in D with the boundary conditions «(0) = 0 and dsu(fp) — iku(fp) = 0 (i.e., G is the Green’s
function of the Helmholtz problem from Exercise 35.1). (ii) Find H (z, s) s.t. 0sH (z, s) = 0,G(, s).

(iil) Let u(z) = (fD G(xz,s)f(s)ds. Prove that ||ullp2(py < &7 fll2py, |ularoy < 1 flle2py,
and |u|g2(py < (& + )| fll2py- (iv) Let v € L*(D) and let Z(z) := * OED G(z, s)v(s)ds. What

is the PDE solved by z? Same question for z(z) := x> f(fD G(x,s)v(s)ds. Note: The function z is
invoked in Step (1) of the proof of Theorem 35.11. (v) Assume now that v € H*(D) with v(0) = 0,
and let z and Z be defined as above. Prove that max(|z|g1(py,|2|a1(p)) < 4K€plv|gr(py. (Hint:
see Thlenburg and Babuska [29, p. 14] (up to the factor 4).)

Exercise 35.3 (Variation on Fortin’s lemma). Let V, W be two Banach spaces and let a
be a bounded sesquilinear form on V' xW like in Fortin’s Lemma 26.9. Let (Vi )ner, (Wh)nen be
sequences of subspaces of V' and W equipped with the norm of V" and W, respectively. Assume that
there exists a map IIj, : W — W}, and constants v, > 0, ¢(h) > 0 such that |a(vp, w — I (w))] <
c(h)||vrllvlwlw, v, [Tn(w)|lw < ||w|lw for all v, € V3, all w € W, and all h € H. Assume
that limp, 0 ¢(h) = 0. Prove that the discrete inf-sup condition (26.5a) holds true for h € H small
enough.

Exercise 35.4 (Lemma 35.8). (i) Prove that R((m-Vv)v) = $m-V|v|? for all v € H*(D;C) and
m € R% (i) Prove that ®(m-((Vv) ™)) = %m~VHvH§2(Cd) for all v € HY(D;C%) and m € R<.
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(iii) Let ¢ € H?(D;C) and let D?q denote the Hessian matrix of ¢, i.e., (D%q);; = 85izjq for all
i,j € {1:d}. Show that R(m-((D%*q)Vq)) = %m-VHVqH?Q(Cd). (iv) Prove that (35.11) holds true
for all ¢ € {v € HY(D;C) | Av € L*(D;C), Vv € L?(0D;C%)} and all m € Wh*°(D;R?). (Hint:
assume first that ¢ € H*(D;C).)

Solution to exercises

Exercise 35.1 (1D Helmholtz, well-posedness). (i) One possible weak formulation is as
follows: Find u € V such that for all v € V,

1353

135}
/0 (0pudpv — K*uv) dz — iku(fp)v(fp) = ; f(z)v(x) de.

(ii) Let us consider the homogeneous problem and let u be a solution to the homogeneous problem
a(u,w) = 0 for all w € V. This implies that 0 = |a(u,u)| > ku({p)?. Hence, u(fp) = 0, and the
Robin condition implies that d,u(¢p) = 0 as well. In conclusion, we have

2

Opzt — K*u =0, Oyu(lp) =0, u(lp)=0.

This is a linear second-order ODE with homogeneous data. The unique solution is u = 0.
(iii) The well-posedness follows by invoking Lemma 35.3 since the bilinear form f(f P (0pudyv —
k2uv) do — iku(fp)v(fp) satisfies the inequality (35.4a).

Exercise 35.2 (Green’s function, 1D). (i) Let € D be fixed. We observe that

G(z,0) =0,

0sG(z,lp) — ikG(x,lp) = isin(klp)e™P — isin(klp)e™? = 0.
Moreover, it is clear that G(z, s) is continuous at z. We now have to verify that
—0ssG(x, 8) — 112G(17, §) = Op—s,
where §,—; is the Dirac measure whose support is {z}. We observe that

ksin(kz)e™ — ksin(kx)e™ =0 if z € [0, ],
— ksin(ks)e"® =0 if z € [s,1].

ikx

—045G(x,8) — K°G(x, 5) = {

ksin(ks)e
Let us now verify the jump condition — (8SG(J:, 1) —0sG(x, x*)) = 1, which, let us recall, together
with the above identity and the continuity of G(z,-), is equivalent to stating that (—0ssG(x,-) —
K2G(z,-), @) = @(x) for all p € C§(D). We indeed have

—(0;G(z,2") — 0,G(z,27)) = —isin(kz)e™ + cos(kx)e™™ = e Heh™ = 1.

(ii) Let H(z,s) := fos 0,G(x,t)dt. We first consider the case s < x. This yields

H(x,s) = H_l/ irsin(kt)e™* dt = —ik ' (cos(ks) — 1)e"®.
0
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In the second case x < s, we have

S

H(z,s) = “71/ i sin(kt)e"™* dt + ffl/ K cos(kx)e™ dt
O xT

= —ik H(cos(rx) — 1)e" — ikt cos(kx) (e — 1)

= ik ("™ — cos(ka)e™®) = —ik e (cos(ra)e 3T — 1),

Notice that in both cases, we have |H(z,s)| < 2x71.
(iii) We have

‘o )
()] =] | Gasise)as] < 6t o100

Hence, |lull2(py < €ps™t| fllL2(p) because ||G(x,-)||L=(py < ™. Moreover, we have

£p

outoll =| [ 0,60.)7925) < 10,60 = Bl 0.

This implies that |u|g1(py < £p|fllL2(p). Recall that since G is the Green’s function of the
Helmholtz problem from Exercise 35.1, we have 0,,u—r%u = f, u(0) = 0, and d,u({p) —iku(lp) =
0. Hence, we can estimate |u|g2(py as follows:

lulrz(py = [|6°u + fllzepy < K2 llullzepy + 1 fllzzpy < (5 + DI fllz2py-

(iv) Let us assume that v € H'(D) and v(0) = 0. Let us set z(z) := x? fOéD G(z, s)v(s)ds. Since
G is the Green’s function of the Helmholtz problem from Exercise 35.1, 2 solves

O — K2Z = K%v, Z(0) =0, 08,2({p)—ikZ(fp) = 0.

Let us now set z(z) := K2 OéD G(x,s)v(s)ds. Since G is the Green’s function of the adjoint
problem, z solves

Ouzz — K*2 = K*v, 2(0) =0, 0,2(fp)+irz(fp)=0.

£p

(iv) Using that v(¢p) = [, dsv(s)ds, we infer that |v({p)| < £%|’U|H1(D), which in turn implies
that

ED ED
K 20,2(x) = 0,G(z, s)v(s)ds = OsH (x, s)v(s)ds
0 0
{p
=- H(z,s)0sv(s)ds + H(z,lp)v(Lp)
0

< H (@, )=o) (Cplvlar(py + [v(Ep)])

1
< 2||H (2, )| Lo 0y B 0] 11 (D)

Hence, |z|g1(py < 4klp|v|g(py because || H (x, )| o (py < 2671, The same argument holds true
for z.
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Exercise 35.3 (Variation on Fortin’s lemma). Let v, € V},. Using the assumptions, we have

11 11
sup la(vn, wh)| > la (v, I, (w))| > v sup |a (v, O (w))]
wnewn  wnllw T wew  |Th(w)llw wew  |lwllw
H _
> o, sup la(vn, w)] o, sup |la (v, I (w) — w)|
wew  wllw wew l|wllw

>y, v |lv = ym, c(h)||vn v

Let £y be such that c(h) < s« for all h € (0,£y]. We have

1
2

inf  sup ———*=
€V woew,  ||wnllw

for all i € (0, o). This proves (26.5a) with aj, > Sy, a for all k € (0, ).
Exercise 35.4 (Lemma 35.8). (i) We have

2R((m-Vv)v) = (m-Vo)u + (m-V)v
= m-V(v7) — (m-V)v + (m-Vi)v = m-V|v|?,

which proves the result.
(ii) Recalling that (Vv);; = 0, v; for all 4,j € {1:d}, we can apply the above identity as follows:

_ _ 1 1
R(m-((Vo)'0) = > R((m-Vv;)7;) = 3 > mVy? = §m-V||v||§2((cd),
je{1:d} jefl:d}

which proves the result.

(iii) Let ¢ € H*(D;C). Using v = Vq in the identity from Step (ii) and recalling that D?q is a
symmetric matrix leads to R(m-(D?*qV7)) = %m~VHVq||§2(Cd).

(iv) Assume first that ¢ € H?(D;C) and let m € W1°°(D;R?). Integration by parts gives

—/DAq(m-VG)de/DVq-V(m-Vﬁ)dx—/8D(n-Vq)(m-V§)ds

- / Ve ((Vm) V) de + / m-(D*q)Vq) da — / (n-Vg) (m-V7) ds.
D D oD

We now apply the identity established in Step (iii) integrated over D. Integrating by parts leads
to

1
R ([ miorava i) = [ SmvIVal e, do
D D2
1
= [ SOOIVl det [ )| Valeo
D 2 oD

Notice that all the integrations by parts make sense since ¢ and m have sufficient smoothness.
Putting everything together, we infer that the identity (35.11) holds true for all ¢ € H?(D;C) and
all m € W1>°(D;RR?). Reasoning as in the second step of the proof of Lemma 35.7, i.e., invoking
a density argument, we conclude that this identity still holds true if ¢ € {v € HY(D;C) | Av €
L?(D;C), Vv € L*(0D;C%)}.
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Crouzeix—Raviart approximation

Exercises

Exercise 36.1 (Commuting properties). Let K be a simplex in R? and let 119 denote the
L2-orthogonal projection onto constants. Prove that V(Z¢%(p)) = 1% (Vp) and V-(Z5% (o)) =
% (V-o) forall p € H(K) and all 0 € L*(K) with V-0 € L'(K) and Z* defined componentwise
using Z;"*.

Exercise 36.2 (Best approximation). Let v € H'(D). A global best-approximation of v in
P{R(Ty) in the broken H'-seminorm is a function v§* € PE*(T,) s.t.

Z IV (v = o)1 2) = Ig}p Z IV (v = o)1 Z2 (k)
KeTh vh &P (Th) KeTh

(i) Write a characterization of vy™ in weak form and show that vy" is unique up to an addi-

tive constant. (Hint: adapt Proposition 25.8.) (ii) Let U,k; be a global best-approximation of v
in the broken finite element space PP(T3); see §32.2. Prove that Yorer, IV(v = vg“)H%Z(K) =

Y orer, IV(0 = v};)H%z(K). (Hint: using Exercise 36.1, show that v* = Z;®(v) up to an additive

R

constant.)

Exercise 36.3 (H(div)-flux recovery). Let uj; solve (36.10). Assume that f is piecewise con-
stant on Tp. Set o = —Vuyx + %fu{(cc — xx), where xk is the barycenter of K for all

K € T,. Prove that oy, is in the lowest-order Raviart-Thomas finite element space Pg(7) and
that V-0 = f; see Marini [33] (Hint: evaluate [.[o4]-npetds for all F' e Fy.)

Exercise 36.4 (Discrete Helmholtz). Let D C R? be a simply connected polygon. Prove that
PY(Th) = VPE(T;) ® ViE P{S(Th), where
Vir PYS(Tw) := {vn € Py(Th) | 3an € PEY(Th) | vpx = V*(anix). VK € Th},

and V* is the two-dimensional curl operator defined in Remark 16.17. (Hint: prove that the
decomposition is L?-orthogonal and use a dimension argument based on Euler’s relations.)

Exercise 36.5 (Rannacher—Turek). Let K := [—1,1]¢. For all i € {1:d} and o € {I,7}, let
F; o be the face of K corresponding to {x; = —1} when o = [ and to {z; = 1} when o = r.
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Observe that there are 2d such faces, each of measure 29=1. Let P be spanned by the 2d functions
{1, 21,...,2q,23 —23,...,2%_, — 22}. Consider the linear forms o; o (p) := 2174 IFZ _ pds for all
i€ {l:d} and a € {l,7}. Setting ¥ := {0 o }ie{1:d},ac{i,r}, PrOVe that (K, P,¥) is a finite element.
Note: this element has been introduced by [40] for the mixed discretization of the Stokes equations
on Cartesian grids.

Exercise 36.6 (Quadratic space). Let 7, be a triangulation of a simply connected domain
D C R? and let

PQCR(,];I) = {Uh c P2b(7;1) | / [['Uh]]F(qOTEl)dS =0,VF e ]:}3, Vg € ]P)l,l}v
F

where T is an affine bijective mapping from the unit segment St = [-1,1] to F. Orient all the
faces I' € F;, and define the two Gauss points ng on F that are the image by Tr of g+ := :l:?,
in such a way that the orientation of F' goes from g to g}. For all K € Ty, let {Xo x, M.k, A2k}
be the barycentric coordinates in K and set bx = 2 — 3()\(2))[( + )\f)K + A%)K) (this function is
usually called Fortin—Soulié bubble [17]). One can verify that a polynomial p € Py 5 vanishes at
the six points {gf}peﬁ( if and only if p = abg for some a € R. Note: this shows that these
six points, which lie on an ellipse, cannot be taken as nodes of a Py o Lagrange element. (i)
Extending bx by zero outside K, verify that by € P3™(7s). (ii) Set B := spangcs, {bx} and
B. :={vy € B| [,vndx = 0}. Prove that P5(T,) + B. C Ps™(Ts) and that P§(75) N B, = {0}.
(iii) Define J : PS%(T,) — RVt st. J(v) := (vn(gr), vr(gh))Fer, for all v, € PS™(Ty). Prove
that dim(ker(J)) = N. and dim(im(J)) < 2Ny — N.. (Hint: any polynomial p € Ps o satisfies
Yrer, (P(gf) —p(gr)) = 0 for all K € Tp.) (iv) Prove that Ps™(T,) = P§(Tn) & By; see Greff
[19]. (Hint: use a dimensional argument and Euler’s relation from Remark 8.13.)

Solution to exercises

Exercise 36.1 (Commuting properties). Let p € H'(K). We observe that
/ Vpdr = ) / prgds = ) / I (p)n ds = / V(I (p)) da.
K FeF ' FeFrr ¥ K

Since V(Z{*(p)) is constant on K, we conclude that V(Z{#(p)) = I1%(Vp). Let o € L*(K) with
V-0 € L'(K). We observe that

/KV-ad:vz Z /Fa-anSZ Z ‘/FI%{(O')-’I’LKdSZ‘/Kv-(I?IR(O'))d,T.

FeFk FeFk

Since V-(Z§*(o)) is constant on K, we conclude that V-(Z% (o)) = 1% (V- o).

Exercise 36.2 (Best approximation). (i) The function v;" is a minimizer in P{*(7) of the
functional
Ewn) = 3 3 (Vn =), Vun —0)
=3 h ; h L2(K)>
KeTh

or, equivalently (since the function v € H*(D) is fixed), of the functional

1
@(wh) = 5 Z (th,th)Lz(K) — Z (V’U,th)Lz(K).

KeTy, KeTy,
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Reasoning as in the proof of Proposition 25.8, we infer that v}," is s.t.

Y (Vo Vun)pea = Y (Vo,Vun)paky,  Yun € PPY(TR).
KeTy, KeTy

The bilinear form Y- - (Vwn, Vws) L2 (k) is coercive on the subspace {wy, € P{™(Ts) | [ wn dz =
0}. This shows the existence of v;" and its uniqueness up to an additive constant.
(ii) For all wy, € PP(Ty), we have

> (VTHW), Vun) oy = Y [%(Vo), Vun) oy = Y (Yo, Vwn) £2(x),
KeTn KeTs, KeTs,

where the last equality follows from the fact that Vwy, is piecewise constant. This shows that
9% (v) = vP, up to an additive constant in each mesh cell, and restricting the test function to
wy, € PP*(Th), we infer that Zp" (v) = vy up to a global additive constant. Therefore, we have the

expected identity
Yo IV =)z = Y IV =)z k)
KeTy KeTh

Exercise 36.3 (H (div)-flux recovery). By definition oy, x € RTo 4 and V-(oy,x) = f|x for all
K €Ty,. Let F € Fp with F:= 0K;N0K,. We infer that

/ [on] nrpefds = / (V-op)er du —|—/ o Ve de
F KUK, KUK,

= / foRde — / V- Vei de = 0,
KUK, KUK,

since leUKT(:I: —xk) V@ de =0 and supp(¢7) = int(K; U K,). This implies that [o]-np =0
for all I’ € F} since the normal component of a function in RTy 4 is constant on each face;
see Lemma 14.7. We conclude that o, € Pg(7;) since the zero-jump condition implies that
oy € H(div; D) owing to Theorem 18.10. Since o, is in H(div; D), its divergence equals its
piecewise divergence, i.e., V-op, = f in D.

Exercise 36.4 (Discrete Helmholtz). Let p, € Pf(Ty) and let g € P{(7Ty). Integrating by
parts cellwise, we infer that

(Vo Vican) 12 (py = Z/ (VEprnk)gn ds.

Since V'p,-ng is constant on each face of K and since g;, has continuous mean value on all the
mesh interfaces and zero mean value on all the boundary faces, we conclude that

(Von: Vican) 2oy = Y / [V prl-mpgn ds =0,
FEFy
since VLph‘Kl-nKl = —VLph‘KT~nKT for all I':= 0K; N OK, owing to the continuity of p; across
F (note that V+ Dh|K T K only depends on the tangential derivatives of p;, on 0K). Moreover, we
have dim(VP{ (7)) = Ny — 1 and dim(V;-P{§(Tr)) = Ne — N2 since dim(P{§(75)) = Ne — N2

and V- is injective on P{f(‘) (7). Using Euler’s relations from Remark 8.13, we obtain
dim(VP§(Ty)) + dim(V; P§(Tr)) = Ny — 1+ Ne — N2 = 2N, = dim(P)(7y,)).
We conclude that PY(T,) = VPE(T,) @ V#Pf%(’ﬁl)
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Exercise 36.5 (Rannacher—Turek). The 2d functions

2 2 2 2
Lz, ..., xq, 0] — X5, ..., T35 1 — T7)

are linearly independent. Hence,
card¥ = dim P = 2d.

Consider the linear combination } ¢ 4 > ie(1.4} Bi,a0i,a and assume that it is the zero form in
L(P;R). Consider first p := x; for j € {1:d}. Then 0, o(p) = 0if j # i, whereas o,;(p) = —1 and
jr(p) = 1. Hence, fi; = Bi, for all i € {1:d}. Consider then p := 23 — 27, for j € {1:(d — 1)},
so that 0,4(p) = 0if i & {j,j + 1}, whereas 0;(p) = 0;-(p) = 3 and 0j41,:(p) = j11.-(p) = —3.
Hence, Bj; = Bjy1, for all j € {1:(d —1)}. As a consequence, all the coefficients 3; , take the
same value, say 8, and considering p := 1 for which 0; o(p) = 1 for all i € {1:d} and « € {I,r}, we
infer that 5(2d) = 0, whence 5 = 0.

Exercise 36.6 (Quadratic space). (i) For all K € T, and all F' € Fg, bx vanishes at the
points {gf} Let indeed A; g, A\j k be the two barycentric coordinates that do not vanish on F'.
Thus, (A 5 o Tr)(GF) + (Mo Tr)(g*) = 2. This shows that (bg|p o Tr)(g=) = 0. Hence,
Jpbr(qoTr")ds = [7(bx oTr)qds = 0 for all g € Py 1, since (bx o Tr)q is a polynomial of degree
three and the two-point quadrature based on g+ is exact for polynomials of degree three. Since
[bx]r = +bg, we infer that [, [bx]r(qoTr")ds = 0. Since b € PY(Ty), we obtain bx € P§*(Ty).
(ii) Since P5(T,) C P$™(Tn) and B, C B C P$®™(Ty), we infer that P§(7,) + B. C Ps™(Tr). Let
now v, € P(T,) N By so that vy, = ZKGT;L agbg. Let F' € Fp and let K, K, be the two cells
such that F':= 0K; N OK,. Let A, k,,\j, .k, and A, k., A}, Kk, be the barycentric coordinates in
K; and K, respectively, that are nonzero over F'. The continuity of v;, across F' implies that

aKl(2 - 3)\71217Kl - 3)\?Z;Kl)‘F = aK7(2 - 3)\7:27‘;K7‘ - 3)\.?7‘;K7‘)|F7

2 o 2 2 B
S )ir = (A g, +A] g )p. Hence, vy =

a Y ger, b, Moreover, a direct computation gives [, bx dz = $|K|. Hence, [, vy dz = 3a|D|.
Finally, v, € B, implies that [, vy dz =0, so that a = 0.

(iii) A function vy, is in ker(.J) if it vanishes at the six points {gF}rer, for all K € T;. Hence,
ker(J) = B so that dim(ker(J)) = N.. Let us now consider im(J). For all K € Ty, consider
the vector ¢ € R*Nt with components (Y p+)per, such that g p- = —1 and Y p+ = 1 if
F € Fk, and ¢ p+ = 0 otherwise. Then, the hint means that any vector in im(.J) is orthogonal
(for the Euclidean inner product) to @i for all K € T,. It remains to show that the family
{¥k } ke, is linearly independent. Assume that >, uxix =0in R2Nt, Considering the two
components of this vector attached to an interface F' := 0K; N 0K,, we infer that ux, = ux,.
Hence, px := po for all K € 7. Finally, considering a boundary face F' := 0K; N dD, we obtain
po = px, = 0.

(iv) We observe that

which implies that ax, = agk, since (/\fl,Kl + A

2N = Nt + (Ny + N. — 1) = (Ny + N¢) + (N. — 1)

= dim(P5(7p)) + dim(B,) = dim(P§(T;,) @ Bs)

< dim(P5"™(7y)) = dim(ker(J)) + dim(im(J))

< Nc + 2]Vf - Nc = 2Nf;
where we used Euler’s relation (see Remark 8.13), the inclusion P5(7y,) & B, C P$*(T) from
Step (ii), and the rank nullity theorem for J together with Step (iii). Hence, the above inequalities
are equalities, showing that dim(P5(75,) @ B.) = dim(Ps™(7y)). Since P5(Tp) @ B. C P§*(Ty), we
conclude that the reverse conclusion also holds true.
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Nitsche’s boundary penalty
method

Exercises

Exercise 37.1 (Poincaré—Steklov). Let Cys be defined in (31.23). Prove that C’Psﬂf,l lvl|L2(py <
(HVUH%Q(D) +|v[2)z for all v € HY(D). (Hint: use h < £p and (31.23).)

Exercise 37.2 (Quadratic inequality). Prove that 2% — 28zy + woy? > ?i—;iz(ﬁ +y?) for all
real numbers x, y, wp > 0 and 5 > 0.

Exercise 37.3 (Error estimate). Prove (37.14). (Hint: consider the quasi-interpolation opera-
tor from §22.3.)

Exercise 37.4 (Gradient). Let U be an open bounded set in R?, let s € (0,1), and set H,(U) :=
[L2(U), H}(U)]s2. (i) Show that V : H'=*(U) — (H,(U))" is bounded for all s € (0,1). (Hint:
use Theorems A.27 and A.30.) (ii) Assume that U is Lipschitz. Show that V : H'=*(U) — H~*(U)
is bounded for all s € (0,1), s # 5. (Hint: see (3.7), Theorem 3.19; see also Grisvard [20,
Lem. 1.4.4.6].)

Exercise 37.5 (L?-estimate). (i) Modify the proof of Theorem 37.7 by measuring the inter-
polation error on the adjoint solution with the operator Z"® instead of Zjy™, i.e., use Yj, :=
Vi instead of Yy, := Vi, N Hy(D). (Hint: set ag(v,w) := (Vo,Vw)rz2(py — (n-Vu,w)r29p) +
ZFGF,? woﬁ(v, w)r2(r).) (ii) Do the same for the proof of Theorem 37.8.

Solution to exercises
Exercise 37.1 (Poincaré—Steklov). Since h < {p, we have
IVollZ2p) + 0[5 = IVUllz2 0y + €5 101122 (0m).

where {p := diam(D). Using the Poincaré-Steklov inequality (31.23) leads to the expected bound.
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Exercise 37.2 (Quadratic inequality). Notice that 2% — 282y + woy? > M(:ﬁ +y?) iff

— 1+wo
1+5 e
x* — 2Bxy + 0.
14+ w p 14+ w
2 2
Since the coefficients 11:1@ i and % are both positive, the above quadratic form is nonnegative

iff
- I+ wg+68
T 14+ @y 14+ @ '
Rearranging the terms leads to 2wo3? < wi + 4%, which is trivially true.
Exercise 37.3 (Error estimate). We bound the infimum in (37.13) by taking vy, := Z;"™" (u),

where Z;7™ : L'(D) — PZ(Ty) is the quasi-interpolation operator from §22.3. Let us localize the
[|[|v;-norm as follows:

loll%, == > ollf, 0,
KeTn
P,y = 19002y + B ol 2agm + 32 hrlnVolZage,

FeFrnFP

if K € 7,90 and HUH%/u(K) = [[V|[2 () otherwise. Owing to the estimate (22.14) from Theo-

rem 22.6 (with m := 1, p := 2) and to the approximation results for Z}"* on faces (see Exer-
cise 22.5), we infer that [lu — Zp™ (u)|lv,(x) < chiclul s sy for all K € Ty, where Tx is the
collection of the mesh cells sharing at least a vertex with K. Then (37.14) follows by invoking the
regularity of the mesh sequence.

Exercise 37.4 (Gradient). (i) Let y € L?(U). By definition of the weak derivative of y, we have

Vud
Vol = sup AV, yyVodd

< clyll2wy-
vEH; (U) ||”||H5(U) veH{(U) ||’U||H5(U)

Let now y € H'(U). We then have

IVyllL2@wy < ellyllmw)-

This shows that V maps boundedly from L?(U) to H =1 (U) and from H(U) to L?(U). The Riesz—
Thorin theorem (Theorem A.27) implies that V maps boundedly from [L*(U), HY(U)]1-s2 =
H'=*(U) to [HY(U), L?*(U)]1-s,2 for all s € (0,1). But Theorem A.30 implies that

[H(U), LX)z = [L3(U), HY(U)],
Setting Hio(U) := [L2(U), HY(U)]. 2, we have
H(U), L(U)]1- 2 = (H(U))'.

(ii) From (3.7) and Theorem 3.19, we know that Hg(U) = H§(U) for all s € (0,1) if s # 3.
Hence, V maps boundedly from H'~*(U) to H=*(U) := (H§(U))' for all s € (0,1) if s # 1.
Exercise 37.5 (L?-estimate). (i) Let us consider V; = Vi + Vj,, Zs := H'*(D) N HY(D),
Yy, := Vj, and Zy := Zs + Vj, equipped with the norm ||zH2Zﬁ = HVZH%Q(D) + |2]3. Let us consider
the bilinear form

aﬁ(v,w) = (Vv, V’LU)Lz(D) - (n'V’U,’LU)Lz(aD) + Z ’(Doh}l (v,w)Lz(F).
FeFy
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Notice that ay is bounded on V4 xZy. The Galerkin orthogonality property holds true for a4 since
for all y, € Vj,

ay(u,yn) = ln(yn) = an(un, yn) = ag(un, yn)-

Let 6*¥(¢.) be the adjoint consistency error defined in (36.29), i.e., for all v € V},
0V (Ce)s v)vy vy o= = (v, Ae) 2(p) — ag(v, Ce)-
Since (. vanishes on 0D, the following identity holds true: For all v € V},
(0°(Ce)svhvy vy = —(v,m-VEe) L2(0D)-

Hence, the adjoint consistency error can be bounded as in the proof of Theorem 37.7. Concerning
the interpolation error on the adjoint solution, we can now consider the interpolation operator
Zp™ from §22.3, and we deduce as before that

inf HV(Ce - yh)HLQ(D) < HCe _I}g17av(<e)|‘zu < ChS|Ce|H1+s(D).
Yn€Yn

(ii) For the proof of Theorem 37.8, one proceeds as above by considering the bilinear form
ag(v,w) := (Vv,Vw)2(py — (n-Vu,w)r29p) — (v,n-Vw)25p) + ZFG]_-S wohgl(v,w)Lz(F).
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Chapter 38

Discontinuous Galerkin

Exercises

Exercise 38.1 (Elementary dG identities). (i) Let F' := 0K; N 0K, € F;. Prove that
2{onkq} = {o}d + [e{q})nr. (i) Let 6;,0, € [0,1] such that 6; + 0, = 1. Let [a]y :=
2(0ra; — 6ia,) and {a}g := 6,a; + bra,. Show that {ab} = {a}{b}s + L[a]s[b].

Exercise 38.2 (Boundary conditions). (i) Assume that u solves the Poisson problem (38.1)
with the non-homogeneous Dirichlet condition u = g on dD. Let af be defined in (38.20). Devise
Z‘Z’HD so that exact consistency holds for the following formulation: Find w;, € Vj, such that
al (up,wy) = Z‘Z’“D(wh) for all wy, € Vj,. (ii) Assume that u solves the Poisson problem with the
Robin condition yu + n-Vu = g on D. Let (X" be defined in (38.13b). Devise a}” so that exact
consistency holds for the following formulation: Find wuy, € Vj, such that aZ"Rb(uh, wp) = éﬁb(wh)
for all wy, € V.

Exercise 38.3 (L%-estimate). Prove Theorem 38.12. (Hint: see the proof of Theorem 37.8.)
Exercise 38.4 (Local lifting). Prove (38.22a). (Hint: use (38.10).)

Exercise 38.5 (Local formulation). Write the local formulation of the OBB, NIP, and ITP dG
methods discussed in Remark 38.13.

Exercise 38.6 (Extending (38.25)). Let aj (resp., ap) be defined by extending (38.25) (resp.,
(38.4)) to VyxVy. Show that an(v, wn) = an(v,wn) + Y per, [piVav — I (Vo) b np[ws] ds for
all (v, wp) € VyxV.

Exercise 38.7 (Discrete gradient). Let (vj,)nen be a sequence in (V3,)pep (meaning that v, €
V3, for all h € H). Assume that there is C s.t. ||vp|y;, < C for all h € H. One can show that there is
v € L*(D) such that, up to a subsequence, v, — v in L?(D) as h — 0; see [15, Thm. 5.6]. (i) Show
that, up to a subsequence, &' (v),) weakly converges to some G in L?(D) as h — 0. (Hint: bound
&} (vn)|lL2(py-) (ii) Show that G = Vv and that v € H}(D). (Hint: extend functions by zero
outside D and prove first that [p, &), (vp) @ dx = — [, o V- @ dz+Y pe 7 [ {P-Tp®}-np[vn] ds
for all @ € C§°(RY).)
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Solution to exercises

Exercise 38.1 (Elementary dG identities). (i) Let F' := 0K;N 0K, € F; be an interface. We

have
1 1 1 1
Ok 9K~ OIK K, = 501K 9K T 501K K, + 591K d|K, + 57K d|K,
1 1
501K 9K, =+ SO IK K, — 5Ok 9K~ 591K K,
1 1
= 301K lq] + ok, {a} + §U|KT[[Q]] - ok {4}
={o}d] + [o]{q},
and the result follows after observing that ng, = —ng, =: np.

(ii) We proceed as above and obtain that

1 1 1
i(albl + CLTbT) = 5(91&1()[ + 6,.a;b, — 0,a;b, + 0Talbl) + 5(97«&7«()7« + 0ya,.b; — 01a,.b; + 01arbr)
1 1 1 1
= 5&1{1)}9 + Ear{b}e + 5(97«@ — GZaT)bl — 5(97«&[ — 01ar)br

= {aHb}o + ;lalo 0],

Exercise 38.2 (Boundary conditions). (i) Integration by parts shows that

> /Dvhu.vhwhdx— > /F{th}-nF[[wh]]ds— 3 /F(th'nK)whdS:/wahdw.

KeT, FeFy FeFp

Adding the symmetry term and the penalty term on the interfaces on the left-hand side does not
change anything since u is continuous across the interfaces. Notice though that the symmetry and
the penalty terms are not zero at the boundary. Hence, we must add them on both sides of the
equation, yielding

> /Dth-VhwthC— > /F{th}-nF[[wh]]ds— 3 /F(th-nK)whds

KeT, FeFy FeF?

—0 Z /F{Vhwh}np[[u]]ds—H Z /F(VhwhnK)uds

FeFy FeF?

+ Y w(hp)/[[u]][[wh]] ds+ 3 w(hp)/ wwy ds

Fery F FeF? E

:/wahd:r—t? Z /F(Vhwh-nK)uds—l— Z w(hp)/Fuwhds,

FeFP FeFy

where the value of § € {—1,0,1} depends on the method that is chosen (NIP, ITP, SIP). Now,
we replace ujpp by g on the right-hand side and we regroup the boundary and interface integrals
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using the usual convention about jumps and averages at the boundary. This leads to

Z /Dth-Vhwhdw— Z /F{th}'nF[[wh]]ds

KeTy, FeFy,

-0y /{Vhwh}-np[[u]] ds+ Y w(hp)/[[u]][[wh]] ds
Fer, T FeF, F

:/ Swpdr —0 Z /(Vhwh~nK)gds+ Z w(hp)/ gwy, ds.
b FeFp r FeFy F

Thus, the exact consistency property af (u, wy) = éZ’nD(wh) holds true for all wy, € V}, if we set
0P () = / fupdz =03 / (Vawnni)gds + Y W(hF)/ gwp, ds.
b FeFp F FeFp F

(ii) We proceed as above for the Robin boundary condition. The only difference is that we do not
add the symmetry term and the penalty term at the boundary. This leads to

Z /;th~vhwhdx— Z /F{th}np[[wh]]ds— Z /F(Vhwn;()whds

KeTy FE}-;Z FG]‘-,?
-0 Z /{Vhwh}-np[[u]] ds + Z w(hp)/ [u][wr] ds = / Jwp, d.
reFe ¥ FeFy F D
We conclude by replacing Vju-ng at the boundary by —vyu + g, leading to

Z Vyu-Vywy, do — Z /{th}-np[[wh]] ds + Z /vuwhds
Ker, /D F F

FeFy FeFy

0} /F{Vhwh}-np[[u]] s+ Y w(hp)/F[[u]][[wh]] ds:/wahdx—i- 3 /Fgwhds.

FeF? FeFy, Fery
Therefore, once again the exact consistency property, i.e.,
0,Rb )
a, " (u, wp) = Cp(wp) + Z / gwy, ds =: (2P (wy,), Ywy, € Vi,
rerF?’E
€F?

holds true if we set

aZ’Rb(v,wh) = Z /Dth-Vhwhdx

KeTy

_F;’?/F{th}-mw[[wh]] ds—GF;’?/F{Vhwh}.nF[[v]] ds

+ vwy, ds + w(hp) [ [v][ws]ds.
Fgf:;?/FW ' Fezf;; " /F "

Exercise 38.3 (L2-estimate). Let e := u—uy,. Let usset Vy := Vi+Vy,, Zs := H'TS(D)NH{ (D),
Yy :=VynN H(} (D), Zy := Zs+ Y}, equipped with the same norm as V;. Consider the bilinear form

ag(v,w) := (Vyv, Vaw) p2(py — Z /[[v]]{vhw}-npds.
FeF, ¥
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Notice that ay is bounded on V;xZ;, and that for all y;, € Y},

ag(u,yn) = (f,yn)r2(p) = n(yn) = an(un, yn) = ag(un, yn),

since Y, C H}(D) and [u] = 0 for all F' € F),. Hence, the Galerkin orthogonality property holds
true for ay. We can therefore apply the abstract nonconforming estimate from Lemma 36.14 which
yields

inf

lellzzpy  wneva llellz2(p)

llellL2(py <

(H&dj@e)”m | |v<<e—yh>|Lz<D>>”e|V
(R

where (. € Hj(D) is the adjoint solution associated with the error e (recall that ||C||g1+s(p) <
cl% el £2(p)) and where the two terms between parentheses are the adjoint consistency error and
the interpolation error on the adjoint solution. Let us first bound the adjoint consistency error.
The definition of §*%(¢.) implies that for all v € V4,

(6*4(Ce)s v)vy vy = — (0, AGe) 12(p) — ag(v,¢e) = 0,

where we used that [V(.]r = 0 for all F' € F} since s > %, i.e., exact adjoint consistency holds

true. To bound the interpolation error on the adjoint solution, we consider the quasi-interpolation
operator Zyy" from §22.4 and deduce that

. g,av
y;}lelf;ﬁl llCe — yh”Zu <l — Lio (Ce)”Zu

< ch®|Ce| mits(p)
< ch® 05 Gl ms ()
< C Csmo hsfbisHGHLz(D),

where we used the approximation properties of Z¢;" from Theorem 22.14. Note: it is also possible
to estimate the interpolation error using any of the operators from §18.3 (e.g., the L?-orthogonal
projection) by considering the bilinear form

(0,0) = (B, Viw)gao) = Y- [ (o) meful ds
FeFy F

- Y [plabneast 32 [ fulas

FeFp FeFp

Exercise 38.4 (Local lifting). We observe that

1E% (D2 = /F (L4 ()} mppds.

Using the Cauchy-Schwarz inequality together with the fact that {w} = |Tr|™' 3 cor, wik for
every function w, we infer that

HﬁlF((P)H%?(DF) < ||{LZF(SD)}||L2(F)H[[@]]HL%F)
= h?H{ﬁﬁw(@)}Hm(m x hp? 1]l L2y

1 1 _1
< — > hEILE@)kllzar) x hp? el e
|7}7| KeT;
F

1 1
< — > callCr(@)lLz) x hp® Ilelller)
|TF| KeT;
F

_1
< cadll o)z (ppy X hp? o]l 22,
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since Y e 1€ (@) |20y < [Tl |L5(9) | L2(Dp) and |Ti| > 1.
Exercise 38.5 (Local formulation). The local formulations take the form
/ Gp(up)-Vadz + Z (nK-nF)/ ffp(uh)qu :/ fqdx,
K FeFx F K

with

G wn) o= Viun + Ly ([unl). BP(wn) = —(Viun}m,

GI}\ILIP(’UJ}I) = thh +£2([[’U,h]]), ih}gp(uh) = —{thh}-np + w(hp)[[uh]],

Gi' (up) == Viup, (T)%P(Uh) = —{Vhun}tnrp + @(hp)[un].

Exercise 38.6 (Extending (38.25)). We observe that

an(v,wp) — ap(v,wy) = — /Rd thﬁﬁl([[wh]])dx + Z /F{th}.np[[wh]] ds

FeFy

= —/RdI,E’(th)-[,Z([[wh]])d:v—f— Z /F{th}-np[[wh]] ds

FeFy

-y /F{vhv—z};’(vhu)}-nF[[wh]]ds,

FeFy

where we used that L} ([un]) € PP(75) and the definition of £}, ([un]).

Exercise 38.7 (Discrete gradient). (i) The sequence (& (vj,))nen is uniformly bounded in
L?(D) since the triangle inequality and (38.22b) imply that

1
164 (vn)l 2y < I Vavnlleaoy + €5 ([val) | z2(py < max(1,ncac)vV2|vallv;.-

Since L?(D) is a Hilbert space (which is a reflexive Banach space), Theorem C.23 implies that
there is G € L?(D) s.t. ®! (vy) weakly converges to G in L?(D) as h — 0.
(ii) Let now ® € C§°(R?). We have

/62(%)"1’&17:/ Viop-®de — | Ly, ([on])-@ da
Rd Rd R4

:/ thh"I’dﬂf—/ L, ([vn])-Z7 (®) da
Rd R4

= _/Rd v, V-® dx + Z /F[[vh]]@-mwds—/Rdcil([[vh]])_zﬁ(@)dx

FeFn

— —/Rd’l}hv-@dl'-i- Z /F[[vh]]{@_z};@)}.anS’

FeFy,

where we used elementwise integration by parts and proceeded as in Exercise 38.6. Let %1,%,
denote the two terms on the right-hand side. The convergence of v, to v in L?(R) implies that
T = - fRd vV-® dx. Moreover, the Cauchy—Schwarz inequality and the regularity of the mesh

sequence lead to
1

2
[Ta| < |vnls ( Z hi|® _I}E((I))”%?(OK)) :

KeTy,
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Using the Poincaré—Steklov inequality, we infer that

3
|T2| < |vnls ( > h?<|<1>|311<;<>> < hlvals|®| e (p) — 0,
KeTy,

since |vp|; is uniformly bounded w.r.t. h € H. Letting h — 0 in the above equality and using the
weak convergence of &} (vy,) to G, we infer that

Gddzr = —/ vV-® dx.
R4 R4

This shows that v € H'(R?) with Vv = G. Since v has been extended by zero outside D, we infer
that v&8(v) = 0, i.e., v € H}(D).
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Hybrid high-order method

Exercises

Exercise 39.1 (Stabilization). Prove that ax (0x, Uk ) is equivalent to ||VTKH2LQ(K)—|—9K({)K, k)
for all i € Vi, with rg := R(x) and

Ox (brc, k) := hilllve = Wi (ri) |2 sy + P vor — T (r) 172 o) -

(Hint: note that S(0x) = I} (vk — % (ri))jox — (vox — I (7)), and to bound dx (0x, k)
from below, prove that O (o, 95 )2 < chit vk —7k | L2 (k) —|—h;<% IS(9x )| 220k, then invoke the

Poincaré-Steklov inequality, the triangle inequality, and the lower bound from Lemma 39.2.)

Exercise 39.2 (Finite element viewpoint). Let V¥ be defined in (39.10). Let x : H'(K) —
V};‘H be the elliptic projection and set § := v — Ex(v) for all v € VE. (i) Prove that

Rt I (8) |2y < € (IVER ()2 (x) + P IS5 (0)) | 2 0) ) -

(Hint: use the Poincaré-Steklov inequality in K and the lower bound from Lemma 39.2.) (ii)
Prove that

V622 < € (IVER () lzarey + b IS (0) | z2ox)-
(Hint: integrate by parts ||V¢ ||i2( ) and accept as a fact that a discrete trace inequality and an
inverse inequality are valid on V&, then use that S(Z% (v)) = T0% 5 (05 (8) 101 ) — 115 4 (B¢ )-) (i)
Let ax (v, w) := (VEK (v), VEK (w)) p2(x) +hi (S(ZE (v)), S( A}“((v)))Lz(aK) on VE xVE . Prove that
ar(v,v) > CHVUHQLQ(K) with ¢ > 0.

Exercise 39.3 (Elliptic projection). Prove the second bound in Theorem 39.17. (Hint: intro-
duce the L?-orthogonal projection H];(H.)

Exercise 39.4 (Reconstruction). (i) Let G: VE — VE =Py 40 Ty' be s.t. (G(ik), q)L> (k) =
_(’UK7 V-q)Lz(K) + (’UaK,’rLK-q)Lz(aK) for all g € Vilg Prove that HVV;§+1G = VR, where HVVI?FI
is the L?-orthogonal projection onto VVEFL. (i) Let Gy : VE — VE = (&) ' (RT}.4) be

s.t. (Grr(0k), @)r2(k) = —(Vi, V@) 2(k) + (Vor, Mi-q) 120k for all g € VE| where ¢ is the
contravariant Piola transformation defined in (9.9¢), and RT}, 4 is the Raviart—-Thomas polynomial
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space. Prove that |Gpr(0k)|lL2(x) > C|ﬁK|VI’§ with ¢ > 0. (Hint: use the dofs of the Raviart—
Thomas element; see John et al. [30] for the seminal idea in the context of dG methods.)

Exercise 39.5 (k =0). (i) Derive the HHO method in 1D for k = 0, as well as the global trans-
mission problem. (ii) Prove that, in dimension d > 2 for k = 0, R(0x )(x) = vk + ) per, %(UF -
v )Ing|p(® — xx) for all @ € K, with vp := vy |p for all F' € Fg, and xk is the barycenter of
K, and S(0x)|p = vk —vr — VR(Uk)-(xx — xF), where  is the barycenter of I for all F' € Fy
(Hint: any function ¢ € Py 40 Ty is of the form ¢(z) = qx + Gy(x — T ), where qx = q(xx)
is the mean value of ¢ over K and G, := Vg, and use also (7.1).)

Exercise 39.6 (Transmission problem). (i) Prove the converse statement in Proposition 39.10.
(Hint: write W = (W — Uppre,0) + (Uwpr, wor).) (il) Justify Remark 39.11. (Hint: for the
converse statement show that ax (u, w) — lx(w) = ax(Ux,, Un) — lr(Uy) with p = wpk.) (iii)
Adapt the statement if ax is nonsymmetric. (Hint: consider U} € H'(K) s.t. USjox = A and
ar(,Uf) =0 for all € H}(K).) (iv) Prove (39.23).

Exercise 39.7 (HDG). Consider the HDG method. Assume the following: if (vi,por) €
Vi xVox with Vox = [lper, VF is st (Tox (vkjox — pox), Vkjox — por)r2ox) = 0 and
(v, VT )2(k) — (Hox, Tk MK )120k) = 0 for all T € Sk, then vk and psx are constant
functions taking the same value. Prove that the discrete problem (39.25) is well-posed. (Hint:
derive an energy identity.)

Exercise 39.8 (Space A). Let A be defined in (39.21). Recall that the trace map 5, : H'(K) —
Hz(0K) is surjective. (i) Prove that there are constants 0 < ¢; < ¢y s.t. c1i|VUul L2 k) <
|u|H%(8K) < ea||VUu| L2k for all e H2(9K), all K € Ty, and all h € H. (Hint: prove first the

bounds on the reference cell K.) (i) Set |[A[|% := > ke |)\6K|ill(8K)' Verify that [|-||a indeed
g 2

defines a norm on A, and that A is a Hilbert space. (Hint: for all A € A, consider the function
Ux:D — Rs.t. Uyg := Uy, for all K € Ty, and prove that Uy € Hj(D).)

Exerc1se 39.9 (Liftings, 1D). Consider a uniform mesh of D := (0,1) with nodes z; := ih,

1= I+1 for all ¢ € {0:(I4+1)}. Consider the PDE —u” = f in D with «(0) = u(1) = 0.

(i) Prove that (39.22) amounts to AX = B with A = h~!tridiag(—1,2,—1), X; = \;, and
B, = fgj pifds for all i € {1:1}. (Hint: prove that Uy is affine on every cell K; = [2;-1,;].)
Prove that \; = u(z;). (Hint: write f = —u’" and integrate by parts. This remarkable fact only
happens in 1D.) (i) Let k > 2. For all m > 1, set ¢ := (2(2m 4 1))~ 2 (L1 — Lm—1), where
L,, is the Legendre polynomial of degree m (see §6.1). Verify that {gbm}me{l k—1} is a basis of
P}, := {p € Px [ p(+1) = 0}. Prove that Uy, (x = [ G(z,5)f(s)ds on K := [-1,1] with the
discrete Green’s function G(z,s) := Zme{l_k_l} O (x )qﬁm( ) (Hint: observe that ¢! = Ly,.)
Infer the expression of Uy, X for every cell K;.

Solution to exercises

Exercise 39.1 (Stabilization). Using the hint and the triangle inequality leads to
1S(0r) | 2oy < IMh g (v — Wic (i) ok || L2(0x6) + Ilvor — Mo (rx) |22 (050

_1
< ChK2 ok — Wi (ric )| 2y + vor — Mo (ric)l L2 or)

<c h2 QK(UK,UK)%
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where we used the L2-stability of Hg x and a discrete trace inequality. Hence, we have
ax (bx, 0x) = [ VrrelTecrey + g 1IS(0K) 17205
< IVrkliex) + ¢k (0, k).

Let us now prove the converse bound. Using again the identity from the hint and the triangle
inequality, we infer that

1
Ox (i, )% < Wt o — T (i) |2 i) + b 1S (05) | 2206
_1
+ hi? M (v — Wi (r)) ok || L2016 -

Rearranging the terms, using the L2-stability of Hg x and a discrete trace inequality leads to

_1 R
Oxc (i, k)7 < chi ok — e (ri) | 22y + hi® (1S (0k) | 22 o

Since vi — % (rk) = I (vg — rk), we invoke the L%-stability of II% to obtain

1
Ox (b, 0K)% < chi vk — 7| zagaey + b2 I1S(06) | 22 (o)

Owing to the Poincaré-Steklov inequality (recall that vx — rx has zero mean value on K), we
infer that R ) )

Ok (0, 0x)? < c||[V(vk —r&)llL2(x) + by [IS(0k) | 20k
The triangle inequality and the lower bound from Lemma 39.2 imply that

Ok (bx, 0K)? < c

7N

_1 .
IVrllzac) + b 1Sl 2o )-

This proves that g (o5, k)

2 < cig(bx, k)2, and since | Vrg||p2 (K) < ax (0x,0K)2, we con-
clude that HV?‘KH%Q(K) + 0k (VK , Uk )

S CCLK(’IA)K,’{)K).

Exercise 39.2 (Finite element viewpoint). (i) Let v € V& and let us set 6 := v — Ex(v). The
L%-stability of IT%. and the Poincaré-Steklov inequality (recall that J has zero mean value on K)
imply that

M (D)l 2y < 161l 2k) < €hiclIV8] L2 iy

The triangle inequality and the lower bound from Lemma 39.2 yield
B I (6) 20y < € (IVER (@) lz2) + A ISEE )20

(ii) Integrating by parts and using the definition of V§-, we infer that
IVl Z2(ry = —(I5(6), AG) 2y + (M s (Sok ), i V) L2(xc) -

Invoking the Cauchy—-Schwarz inequality, together with a discrete trace inequality and an inverse
inequality in V}“(, leads to

_1
V6] z2(x) < ¢ (R TG ()l 2 x) + hie® 15k (8105 | £2056) )

where c is uniform w.r.t. K € Tp,, h € H, and v € V5. Recalling the definition of the stabilization
operator, rearranging the terms, and recalling that £x = Ro f}“{, we infer that

S(Zk (v)) = M (M5 (8) o) — M (Sl )-



206 Chapter 39. Hybrid high-order method

Invoking the triangle inequality, the L2-stability of Hg x> and a discrete trace inequality leads to

~ _1
115k (805 1 L205) < IS5 () |22 (01) + € b 1T (6)[| £2(x6) -

Hence, we have

_1 ~
V8l 2y < e (hig! T ()| 20 + i (ST (W) 22 o))

and the assertion follows by invoking the bound from Step (i).
(iii) The Pythagorean identity implies that

IVollZee) = IVEK )L 1) + IV (0 = Ex ()22 s0)-
The bound from Step (ii) implies that
IV(v = Ex ()1 L2(x) < cax(v,v).
Since HVEK(U)H%Q(K) < ag(v,v), this completes the proof.

Exercise 39.3 (Elliptic projection). Let us define the function 6 € H*(D) such that 65 :=
uj —Ex (u) on all K € Ty. Recall that u € H'*"(D), r > %, and that ¢ := min(k+1,r). Owing to
the optimality property of the local elliptic projection and the approximation properties of H’;{H,

we have
V6]l 2y < 1V (uw = T () |2y < € helul e i)

Using the triangle inequality, the approximation properties of H]?'l, a discrete trace inequality,
and the optimality property of the local elliptic projection, we infer that

1 1 1
W2Vl L2or) < BRIV (u— T () |22 o) + hE NIV (Ex (w) — T ()| 2 (o)
< e (Riglulgse iy + | V(Ex (w) — T () || L2(x))
C (h’}(|u|H1+t(K) + 2||V(’U, - H%H(u))HLz(K))

C/ I’L%|U|H1+t([{).

IN A

Exercise 39.4 (Reconstruction). (i) For all ¢ € V™, since VVET C Vi, we have
(G(0k), Va)L2(x) = —(vK, V-V @) 12(k) + (Vor, Nk V) 12 (oK)
= (VR(%k), V) L2(K)-
This proves that va1§+1G = VR.
(i) Let 9x € V. Recalling from Definition 14.10 the dofs of the Raviart-Thomas finite element,
we consider the function g, € V} s.t.
(@o Vi, Cm o T ) 2(ry = hig (vox — v, Cm 0 T ) r2(ry, VF € Tk,
(@o, Ym0 Tie D2y = (Yo, ¥m o Tg 2k,
where {Gm}peq1int y 15 @ basis of P g1 with nf = dim(Pgg-1) = (d‘H]z_l) and {¥m tme{1:ne,}
is a basis of P;,_1 ¢ with ng, = dim(P_1,q4) = (d;i;l). We observe that
(Gre (0K ), @u)L2(r) = —(VK, V@) 12(K) + (Var , MK -Qu) L2(0K)
= (Vug, q’U)L2(K) — (vk — vor, nK'QU)L2(6K)

= HVUK”i%K) + h;(IHUK - UaKH%%aK) = |@K|%/II§-



Part VIII. ELLipTic PDES: NONCONFORMING APPROXIMATION 207

Using inverse inequalities shows that
laollzacre) < € (Vv ey + b llve = vox |l r2(ox)) = ¢ |0x| -
The Cauchy—-Schwarz inequality implies that
|ﬁK|%/k = (GltT(ﬁK)=(Iv)L2(K) < ||G1tT(ﬁK)||L2(K)H(IvHLQ(K)
K
< ¢\ Grr(0r) |22 a6) [0 g »
whence the conclusion.

Exercise 39.5 (k = 0). (i) We enumerate the mesh vertices from 0 to N + 1. On a mesh cell
K; := [x;,x;41] of size h;, for all ¢ € {0: N}, the discrete unknowns are the real number u; := ug,
attached to the cell and the two real numbers usrk, := (A;, Aiy1) attached to the two endpoints.
Recall that A\g = Ax+1 = 0 owing to the enforcement of the homogeneous Dirichlet condition. A
direct computation shows that -“LR(u;, (Ais Ait1)) = hy "(Aip1 — ;) and that S(ug, (A, A1) =
u; — 3(A; + Ai41) at both endpoints of K;. The local discrete equations are for all v := (v;);e {0: N}
and all p = (1;)icf0: N1y With po = pin+1 =0,

> (hil()‘i-i-l = Ai) (pit1 — 1)

i€{0: N}

+2h; ! (“i - %()\i + )\z‘+1)) (Ui - %(Ni + Mz'+1))> = Z hi fivi,
i€{0: N}

where f; denotes the mean value of f over K;. Taking first v; = 1 (u; + pis1) for all i € {0:N}
allows us to get rid of the stabilization term and leads to

_ -1
R Nigr = i) (i1 — ps) = hifii(/ii + fig1).

This is the transmission problem identified in Proposition 39.10. The algebraic realization of this
problem is AA = F, where A is the tridiagonal matrix of order N with entries (—1,2,—1), A € RY
is the vector formed by the A;’s at the interior vertices, and F € RY has components given by
Fi == 2(h2_, fic1 + hif;) for all i € {1:N}. (Up to an aproximation of the right-hand side with
a quadrature, this linear system is the same as the one obtained using continuous P; Lagrange
finite elements.) Once the \;’s have been computed, the cell unknowns u; are recovered by taking
arbitrary cell test functions and zero face test functions. This gives

1.5, 1
U; = §hffz+§()\z+/\z+l)a VZE{ON}
Finally, the local liftings are such that
1 1 .-
Unidin = 5Ai + A1), Uppe = §hffz'-

One can observe that “LR(Ux, a1+ (Ais A1) = hy ' (Aig1—A;) and that S(Ux, x,, . (Ais A1) = 0.
(ii) Let vg € VIO( Thus, vk is constant on K and vgx is piecewise constant on 0K. Let us set
vp = vy |p for all F € Fg. For all g € Py 40 Ty' with ¢(x) := qx + Gy-(x — xx) Wwhere z is
the barycenter of K, we have

(VR(0k ), V@) L2 (k) = —(vK, AQ) 12(k) + (Var, nK-Vq)

= Z |F|anK‘F~Gq.
FeFk
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Since VR(vk) and G are constant in K, we conclude that
. F
VR(0k) = Y %UF"'LIQF
FeFy
Since Y per,. [Fngr =0 (see (7.1)), we infer that
. F
VR(bok) = Z %(UF — VK)MK|F,
FeFk
and, finally, we obtain
R(og)(x) = vk + Z v Nk P (T — TK), Vo € K.
FG]‘-K

Furthermore, we have for all F' € Fg,
S(’IA}K)|F = H%(’I}K —vfp + (I — Hg)R(ﬁK)) = Vg — UF — VR(’IA)K)(CBK — wF),
since 1% (R(d9x)) = vk and TI%(R(dk)) = vx + VR(0k)-(xF — T k).

Exercise 39.6 (Transmission problem). (i) Let ) € th,o and assume that uz, solves the
transmission problem (39.20). Setting ur = (uk,uox) := (U, 0) + (Uuy > uox) for all K € Ty,
we infer that

aK ( K,W )
=ax ((Uf\x’ ) (UuaKvuaK)a (wK - U'LUBK’O)) + dK((Uf\K7O) + (qu)K ) uaK)v (UwaK ) waK))
= dK((Uf\K7 )7(w — Uy ))+€K( wax) +dK((Uu8K7u6K)7(U'W@K?waK)) _ZK(U'WZ)K)

KK(wK) + aK((qu)KauaK) (UwaxawaK)) - KK( waK)

using that ax (U, ok ), (Yx,0)) = 0 for all yx € VE, a similar argument for (Us,,, wor)
together with the symmetry of ar, and the definition of Uy, . Summing over K € Tj, shows that

g ax (U, W) g Ui (wi),

KeTy KeTn

i.e., Uy, solves the global HHO problem (39.16).

(i) Let us prove the forward statement. Assume that u is the weak solution, i.e., u € H} (D) and
a(u,w) = {(w) for all w € Hj(D). Let K € Ty. Let us now define X by setting Aok = ujgx for all
K € Tj. This definition makes sense, i.e., Agx is single-valued since v does not jump across the
interfaces (see Theorem 18.8). Moreover, A € A owing to the trace theorem (see Theorem 3.10).
Let ¢ € HY(K) and let ¢ be the zero-extension of ¢ to D. Since ¢ € HL(D), we infer that
a(u, 1) = £(¢)). The definition of Uy, implies that

K(u - Ufuﬁw) = a(U‘?’J]) - GK(Uf\Kvw) :ﬂ(/&) _KK(w) =0.

Since (u — Uy, )jox = Aok, the above identity together with the definition of U, implies that
uj g —Uf e = Uxyye- Let us now prove that (39.22) holds true. Let u be a member of A. Using the
symmetry of ag, the fact that ujx — Ux,, € Hj(K), and the definition of U,,,,., we infer that

ax (U= Uxpr, Upor) = ax (Upge,uw — Unyye) = 0.
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As a result, we have ax (u, Upyy ) = ax (Unyys Uy, ). Consider the function w defined by setting
wyg = Upyy, for all K € T, The restriction of w to K is in H'(K) for every K € Tj, the
jumps of w across the interfaces vanish by construction, and w vanishes at the boundary faces.
Theorem 18.8 implies that w € H (D). Using that 0 = a(u,w) — ¢(w), this implies that

0= Z ( (u UM@K) - KK(UNZ)K)) = Z (GK(UXMQ UHSK) - ZK(UNZ)K))7
KeThn KeTn

thereby showing that Uy, , solves the global transmission problem (39.22).

Let us now prove the converse statement. Assume that A solves (39.22). Set u := Uy, + Uy,
for all K € Tp,. This implies that ujgx = Aox. Let w € HY(D). Let K € Tj, and set p = wyk.
Since w — U, € H}(K), we infer that

aK(uvw_U#) _éK(w_U#) :QK(UABKvw_U#)+CLK(Uf\K’w_U#)_KK(w_U#)
=040=0,

by definition of Uy,, and Uy,,.. As a result, we have
(u, Up) = L (Up) + axc (u,w — Up) — b (w — Uy)
(u, Up) = L (Uy)

KWUf s, Up) + ax Uy, Up) = L (Uy)
UJK(UXaxv ) ZK(UM)

ax (u,w) — g (w) = ax(u

:CLK

I
S

since ax (Uy, ., Uu) = ax(Uy, Uy, ) owing to the symmetry of ag, the definition of Uy, , and the
fact that Uy, € Hg(K). Summing the above equality for all K € T, we infer that u is the weak
solution.

(iii) The global transmission problem (39.22) now consists of seeking A € A such that

Z aK(U,\aK, #6}( Z fK #aK VMEA.
KeTh KeTh

All the above arguments are readily adapted to this case.
(iv) Using that Uy, € Hy(K), =AUy, = fik, and =AUy, = 0, we have

Z (G’K(U)\BK ) UM@K) - ZK(UHBK))
KeTy,

= Z ((VU)\,VUM,K) = (f #BK) K))

KeTh

= > ((nk-VUx Uy ) 2(0x) + (AU, Uy ) 12(16))
KeTy

= > ((nk-V(Ux +Uys), Unpie ) r20K) — (VUF, VUpo ) 12(16))
K€7-h

= Z (Vung, p)r20x) = Z ([Vulrnp, p)r2(F)-

KeT, FeF?

Exercise 39.7 (HDG). Since (39.25) amounts to a square finite-dimensional linear system, it suf-
fices to prove that the only solution corresponding to zero data is the trivial one. Let (o7, u7;,, AF,)
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be one such solution. For all K € Tj, testing with 7 (= ox = or, 1k and Wk = Uk = uT,|K,
and letting Aox = (Ap)Frer,, we infer that

(0k,0K)2(k) + (Tox (ukjox — AaK), Ukjox — Aok )r2oK) = 0,

where we integrated by parts and used the expression (39.26) for the numerical flux trace ¢y,.
This implies that the two terms on the left-hand side vanish. In particular, we obtain ox = 0.
Equation (39.25a) with o := 0 and the fact that (Tox (ukxjox — Aok ), Uk|ox — Mok )2 (oK) = 0
imply, by assumption, that ux and Agx are constant functions taking the same value. Reasoning
as we did in the argumentation above Lemma 39.8 and observing that Az, | Fo = 0 by construction,
we conclude that wr;, and A\x, vanish.

Exercise 39.8 (Space A). (i) Let K be the reference cell. Let 7i € H2(OK). Since the trace
map ”ygf( is surjective, we have

-~ . ~12 T2

Cl|/L|H%(af() < 66;?1{;}?) HVUHLQ([A() < HVUM”Lz K
V(=7

where Uﬁ is the unique solution in H'(K) s.t.

VO =R, (VO V) ez, =0, ¥ € HY(R).

Reasoning as in Proposition 31.12, i.e., invoking the stability of the Poisson problem with non-
homogeneous Dirichlet conditions, yields

IVTallzac) < @ 1Al OR)’

Let now K € Ty and p € H2(9K). Let us set fi := poTy 55 Using the transformation of Sobolev
seminorms by the pullback by the geometric mapping (see Lemma 11.7), we infer that

1 ~
<chy ?lu _ <ccllh2 |\VUﬁ|\L2(f()

|M|H%(0K)
Moreover, since U, o Tx € H' (K K) and ~y (U o Tx) = J1, we infer using (9.8a) that
HVUﬁHLz(f() <|V(Upuo TK>HL2(K HJT (VUL) OTK”Lz K)

IKI‘
- IKI

1—4
KllezIVUullz2(ry < Chye * VU2

Hence, we have |y < ¢|VU,l| L2 (k), where ¢ only depends on the regularity of the mesh

H? (0K)
sequence. The proof of the converse bound uses similar arguments.

(ii) The only nontrivial property to verify in order to prove that [[A[R = > et |)\3K|H oK)
2

defines a norm on A is that ||| = 0 implies that A = 0. Assuming that ||A||x = 0, we infer that
Aok is constant for all K € 7. Since )\|].-a = 0, this implies that Ay is zero for all K € Tj, having
at least one boundary face. We can then repeat the argument for cells having an interface with
those cells, and we can move inward and reach all the cells in 7}, by repeating the process a finite
number of times. This proves that A = 0.

For all A € A, let Uy : D — R be s.t. Uyg := Uy, for all K € Ty, that is, we have
Uk € HYK), ax(Uxk,¢) = 0 for all ¢ € Hy(K), and 75, (Ux) = Aok for all K € T,. By
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definition of the space A, the lifting U vanishes on all the boundary faces and is continuous across
all the mesh interfaces. Theorem 18.8 then implies that Uy € Hg(D). Consider now a Cauchy
sequence (A, )nen in A, and let us set U, := Uy, € Hg(D) for all n € N. Summing the result from
Step (i) over all the mesh cells, we infer that

e [|Unl gz oy < IAnlla < 2 |Unllmp oy (39.1)

for all n € N, with 0 < ¢; < ¢2, where we equipped the Hilbert space HJ(D) with the norm
vz Dy = [IVvllL2(p) owing to the Poincaré-Steklov inequality. The lower bound in (39.1)
implies that (U, )nen is a Cauchy sequence in Hg (D). Hence, there is U € H}(D) s.t. U, — U in
H§ (D) as n — oco. The function A € L?(Fy) s.t. Aok := 75, (U) is in A since U has a zero trace
on the boundary faces. Moreover, the upper bound in (39.1) implies that A\, — X in A as n — cc.
This proves that A equipped with the norm ||-||s is a Hilbert space.

Exercise 39.9 (Liftings, 1D). (i) Let K, := [z;_1, 2;] be a mesh cell. In 1D, we identify Hz (K;)
with R2, and we write A := (A\;_1,\;)7. Since (Uy)” = 0 in K;, we infer that Uy is affine in K.
Since Ux(zi—1) = Ai—1 and Ux(z;) = A;, we infer that Ux = (Ai—19i—1 + Xii)|x,, where the ¢;’s
are the global shape functions in 1D. Inserting this expression into (39.22), we obtain the linear
system AX = B with X; := A;. It remains to prove that \; = wu(x;) for all ¢ € {1:1}. Since
f = —u”, integration by parts leads to

Tit1 Xit1 1 ZTq 1 Ti+1
B; = —/ u’p;ds = / u'pids = —/ u'ds — —/ v’ ds.
Ti-1 Ti-1 h Ti-1 h T;

7 7

Hence, B; = —"(Ii“}:“(mi) - "(I"fz(zi’l). Using the matrix A, we infer that B = AU, where U
has components U; = u(x;). Hence, A(X —U) = 0, and since A is invertible, we infer that X = U,
ie, A = u(x;) for all ¢ € {1:T}.

(ii) The functions {@m }me(1:k—1} are linearly independent. Moreover, ¢y, is of degree (m + 1),
and ¢, (£1) = 0 since L,,(—1) = (=1)™ and L,,(1) = 1. Hence, {¢m}mef1:x—1} is a basis of P}.
Using the hint, we observe that [, ¢,, (z)$;(z) dz = 0i;. As a result, letting K :=[-1,1], we infer
that for all p € P} with p := Ele{l:k—l}pl¢lv

Lo @@= 3 [ [ o @onerer @ dsds

me{l:k—1}

- Z Z pl/f(/f(¢;n(56)¢m(5)f(s)¢§(:c)d:z:ds

me{l:k—1}le{l:k—1}

S % wiw [ onereds= [ feple)as

me{l:k—1}le{l:k—1}

This proves that Ufu?(x) = [#G(z,s)f(s)ds. The expression for Uf, in K; is obtained by
applying the pullback by the map ;(t) = “%Jm +t4 for all t € [—1,1]. We obtain U, () =
fKi Gi(x,s)f(s)ds with G;(z, s) = == Yomeith—1}(@m o V) (@) (P 0 ;1) (5).
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Chapter 40

Contrasted diffusivity (I)

Exercises

Exercise 40.1 (Normal flux). Let o € {7 € LP(K) | V-t € L*(K)}, p > 2. Let v3x(o) €
H2(9K) be s.t. (4ax(0), dax = [, 0-Vo(¢)da + [ (V-o)v(¢)dz for all ¢ € H?(JK), where

v(¢) € HY(K) is a lifting of ¢, i.e., 755 (v(9)) = ¢ (see (4.12)). Prove that (v3, (o), ¢)ox =
Y rer \(@NnK) | F, @) F. (Hint: reason as in the proof of (40.18b).)

11
Exercise 40.2 (Bound on [v];). Prove that for all v € V§, |v[,, < c)\;%(ﬁi,(2 p)”U(U)HLp(D) +

24d_1
leij( 2~ V-0 (v)||La(py). (Hint: for the sum with LP-norms, use Holder’s inequality after observ-

ing that h¢, < c|K|, and for the sum with L? norms, use that X keT, a%)% < Xker, a%)é for
real numbers ¢ > s.)

Exercise 40.3 (Jump identity). Let F' := 0K;NOK, € F;. Let 0,0, € [0,1] be s.t. §,+6, = 1.
Set {a}g := 01a; + 0ra, and {a}y := 0,ra; + 0ia,. (i) Show that [ab] = {a}4[b] + [a]{b}e. (ii) Show
that [a8] = {a}ob] + [al{b}s.

Solution to exercises

Exercise 40.1 (Normal flux). Let ¢ € Hz(K) and let v(¢) € H'(K) s.t. v5,(v() = ¢.
Consider the mollification operators K¢ : L'(D) — C*(D) and K& : L'(D) — C*(D) introduced
in §23.1. Let us introduce the shorthand notation

Fs(o) == Z <(’C§(U)'"K)|F7¢\F>F-

FeFk

Recalling (40.15), we have

o) = Y /K (K3 () VLE (1) + V(K2 (o) LE (6))) da.

FeFk
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and invoking the commuting property (40.19), we infer that
F0)= 3 [ (K3(0)VLE@r) + K3V LE (@) do
FeFx 'K
Therefore, we have

lim Fs (¢ Z/ (o VLE($r) + (V-0))LE (¢)F)) d

§—0
FeFk

= Z ((enK)F, ¢|F)F-

FeFk

Since K¢ (o) is a smooth function, we also have

Fs(@)= > o)nx Ly (d)r)ds

FeFx aK

= | Ki(o)nxods
oK

= /K (K§(0)-Vo(¢) + V-(K§ (0))v(¢)) dz
:/K(/cg(a)~w(¢)+/c§(v-a)v(¢)) dz.

We infer that

5—0

lim Fs5(¢) = /K (o-Vu(o) + (V-o)v(e)) da,

and this concludes the proof.

Exercise 40.2 (Bound on |v|z). Let us write

1
2d(1— ?
T, = < ST o >|K|2LP<K>) )

KeT,
1
2d(5E-1) 2
i (X i e )
KeT,

Concerning Ty, the regularity of the mesh sequence and Hélder’s inequality with r := £ > 1 and
/ T

r’ = Lo = B imply that

r—1 p—2
sise( X KPP o)l

N[

KeTy,
(Z|K|~|a Kan(K))
KeTy,
1
P
(2 w) T (3 tewmltu)
KeTy, KeTy,

1_1 d(%—%)
=c|D[Z"?|o(v)||Lep) < clp lo()l|ze (D),
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where the last bound follows from |D[ < ¢4,. Moreover, since (3 e at)t < O ker, as;)+ for
t > s, and since ¢ < 2, we infer that

1
d(22—1) q d(2td—1)
2= ( > b T |V-U(U)K||‘iq<z<>) <lp ™ Vo)L,
KeTn
where the last bound follows from % > é and hyg < h < /{p for all K € T,. In conclusion, we
have shown that
2+d

1) d(Z-1)
[0, < ey 2 (67 P lle@)lLop) + L5 > TIIV-o)lLp))-

Exercise 40.3 (Jump identity). (i) We verify the statement

{a}talb] + [al{b}o = (Orai + b1a;)(br — by) + (@i — ar)(6ibr + 6,:br)
= 0,a;b; — Ora;b, + 01a,b; — O1a,b, + 01a;0; + 0,a;b, — 01a,b; — O,a,b,
= 0,a;b; — 6,a,:b, + 0a;b; — 0,.a,.b,
= a;b — ayb, = [ab].

(i) Switching a and b and using Step (i), we obtain

[ab] = [ba] = {b}la] + [D]{a}e = {a}o[b] + [a]{b}s-
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Contrasted diffusivity (II)

Exercises

Exercise 41.1 (Conforming finite elements). Consider the approximation of (40.3) by con-

forming finite elements. Let V' := Hj(D), Vi, := P¢o(Ta) C V, k > 1, and consider the norm

[[v]]v == H)\%VUHLz(D). Assume v € HY7(D), r > 0, and set ¢ := min(r, k). Prove that there is
. 1 + .

¢, uniform w.r.t. A, st |lu —upllv < e ger, )\Kh%|u|§il+t(7}())2 for all h € H, where T is the

collection of the mesh cells sharing at least a vertex with K, and that |u] H1+t(T;) can be replaced

by |u|H1+t(K) ifl1+t> %
Exercise 41.2 (dG). Prove the estimate (41.21).

Exercise 41.3 (HHO). (i) Prove (41.28a) (Hint: adapt the proof of (40.18a), i.e., use the
definition of the pairing (-,-)r together with the definition (39.2) for R). (ii) Prove (41.28b).
(Hint: adapt the proof of (40.18b). (iii) Prove the error bound (41.31). (Hint: see the proof
of (39.32) in Theorem 39.17.) (iv) Prove (41.32). (Hint: set £ = [t] and consider the elliptic
projection of degree ¢, say £%, for all K € Ty,.)

Solution to exercises

Exercise 41.1 (Conforming finite elements). Reasoning as in the proof of Céa’s lemma, we
infer that

— — inf fu—ovn|v-
lu —unllv U:thHU vnllv

We bound the infimum by taking vy, := Z;y" (u) of degree ¢ s.t. £ := [t]. We can then invoke

Theorem 22.14 to conclude that [[u — up|lv < (X gcr, )\Kh%|u|§{1+t(ﬂ())%, If1+t> 4 we

can take instead vj, := Z};(u) (the canonical interpolation operator with zero boundary trace) or

vy, == Iy (u) (the Lagrange interpolation operator with zero boundary trace). In both cases, we
. 1
obtain that [|u — unllv < c(X ey, AchFlulFi )
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Exercise 41.2 (dG). The definition of ny and the Cauchy—Schwarz inequality imply that

> [ {owonriods

FeFn

> REARE o (on)Yompllaey X Abhp® [ Twnl | 2(r
FeFy,

1
1 2 11
> ( > |TF|9§<,F)\K)\F1hF|I/\;2<VUhK||%2(F)) X Aphp? [[wn]llz2cr),

FeF, “KeTr

[ng (vn, wp)| =

IN

IN

where we used that

2

Z HK,F)\KVvh‘K-nF ds

KeTr

o) }one|am = /F

IN

S Trl0% N /F |V on |2 ds

KeTr

1
> Twl0% A AR Von k|72 (-
KeTr

1
Using that 0k r < 0% 5 (since O r < 1) and that |Tr|0x, FARAR" = 1, together with the inverse
inequality hp||Von || 72m) < €aellVUn k|72 () and invoking the Cauchy-Schwarz inequality, we
obtain

o] < can S S INEVenielece ) < (3 et )

FeFn, KeTr FeFy,

[SIE

Since Y per, DoxeTs () =2 ke, 2orer, () and card(Fx) < ny, we conclude that

1 _
g (oms wn)] < cdms|A%vhvh||Lz<D>( > AFhFlu[wh]niz(F))
FeFy,

Exercise 41.3 (HHO). (i) Let v, € PP, (7n) and @y, € th,o- Since the restriction of o (vp)

to each mesh cell is smooth and since the trace on K of the face-to-cell lifting operator L% is
nonzero only on F' for all F' € Fg, we have

(0 (n) 11y (Wi — worc), ) = /K o (0 VLA (s — worc) )
+ (Vo (on) 1) L (wie — waK)‘F)) dz
:/ U(vh)‘K-nKLﬁf((wK—waK)‘F)ds
OK

:/U(vh)‘K-nK(wK—waK)ds,
F
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where we used the divergence formula in K. Therefore, we obtain

ng(vp, W) = Z/ o(vp)| kN (wg —wor)ds
KeT, oK

— Z /\K/ Vvh|K-nK(wK—waK)ds

KeTh

KeTh
where we used the definition (39.2) of the local reconstruction operator R with the test function
k+1
Vh|K € ]P)k,d - VK .
(ii) Let us now prove (41.28b). Let v € Vi and Wy, € th,o- We are going to proceed as in the proof

of (40.18b). We consider the mollification operators K¢ : L(D) — C*(D) and K? : L*(D) —
C>(D) introduced in §23.1. Let us consider the mollified bilinear form

ns (v, Wy Z Z (K§(a(v)) k), (Wkx — wok)|F)F-

KeT, FEFK

By using (40.15) and invoking the approximation properties of the mollification operators and the
commuting property (40.19), we infer that lims_,o n45(v, Wn) = ng(v,wy). Since the restriction of
K¢ (e (v)) to each mesh cell is smooth and since K¢ (o (v)) € C°(D), we infer that

nﬁg v, wh Z / /Cd ’I’LK(’LUK ’LUaK)d
KeTy oK

(o(v))ngwk ds

Il
]
S~
e

(K§(o(v) Vug + K8 (V-o(v)wk) dz,

Il
vy
S

where we used the divergence formula and the commuting property (40.19) in the last line. Letting
d — 0, we conclude that nys(v, ) also tends to the right-hand side of (41.28b) as 6 — 0. Hence,
(41.28b) holds true.

(iii) Let us set ¢f = ZF(u) — Gy € ‘A/hk,o- The coercivity of aj on th,o and the definition of the
consistency error imply that

QlICEIZ, < an(Ch,CR) = —(On@h ), i vi,

so that an, (CF, CF) < a)|0n (ZF (u)) “?Vfo)/' The consistency/boundedness property from Lemma 41.16

yields o
an (G, Gh) < ellu— & (w17,

Recalling that ur = u7, |k, Usk = UF, sk, the definitions of aj, and of f,]f imply that

> Al VR(Zg (w) = i) 72y < e llu = EFF (W3-
KeTh

Since R(ZE- (1)) = Ex (u) for all K € Ty, we have

u — R(ig) = (u — Ex (u)) + R(ZE (u) — dk).
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Thus, the estimate (41.31) follows from the triangle inequality and the fact that

Y Ak V(= Ex (W))l|Tagy < llu— 5 (W)IIF,-

KeTh
(iv) Let us set 71 := u—&7 ™ (u). We need to bound |[n**1||y, = [**+![5 4. Recalling (41.11), we
. a3-1) 21
need to estimate the terms ||V(77"€;1)|\L2(K), hy® HV(nIkI'{H)HLp(K),andh HA(nIkI'{H)HLq(K).

We have seen in Exercise 39.3 that
HV(’I]@?l)HLQ(K) < Ch%{|U|H1+t(K), t .= min(r, k 4+ 1)

Let us now consider the other two terms. Let f = [t],so that f < k+1and £ <1+t Let us set
n' :=u — &} (u). Note that we also have ||V(nip)|lL2(x) < chlclulgive gy Invoking the triangle
inequality, an inverse inequality, and the tr1angﬁe inequality again, we infer that

d(3-3) d(z—
h ||V(77\k;J<r1)||LP ) < hg

Iol»—‘
b I>—‘

)
IV (nfx) L) + € (|\V(77|k;§1)|\L2(K) + IV o))

and the two terms between the parentheses are bounded by chb|ul mi+t (k). Moreover, invok-
ing (41.16), we obtain

noE

=
~—

IV () les i) < e (I (o) llz2 i) + R IV () e )
- C(HV(TI\K)”L2 + hK|u|H1+' K))

< hilul gy,
since t < . Similarly, we have

(52
hy

( d+2

_l) d 7_1
CNAME Ly < hie ™ T A@ ) Lacy + ¢ (VO Dz + IV i) 22(x)) -

d+2

di2 1
It remains to estimate h;l( 2 ) ||A(77fK)||Lq(K). We proceed as in the end of the proof of Theo-
rem 41.8. If ¢ <1 (so that x; = 1), we have £ = 1, and we infer that

d(45 ~
h

d( d2d2 - )

1
Nfl Lacry

Otherwise, we have t > 1 (so that y; = 0) and £ > 2, and we take ¢ = 2. Then, using the triangle
inequality, an inverse inequality, and the triangle inequality again, we obtain

hic | A ) | ) < Pl Aw = Wi (w)l| Loy + ¢ (IV (w = T (@) |22 a6y + 1V 0 22 ) ) -

Q=

)
1AM Lagre) = Ax* g

We conclude by invoking the approximation properties of H% (the L?-orthogonal projection onto
P, 4) and since ||V(77‘K)||L2 < chle|ulgive k).
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Linear elasticity

Exercises

Exercise 42.1 (Compliance). (i) Let s(e) be defined in (42.3) (i.e., s(e) := 2ue + Atr(e)ly) and
let A be the fourth order tensor s.t. s(e) = Ae. Verify that A is symmetric positive definite. (Hint:
compute the quadratic form Ae:f.) Compute Aze. (Hint: find o, 8 € R s.t. Aze = ae+ Btr(e)l.)
(ii) Invert (42.3), i.e., express @ as a function of s (the fourth-order tensor C s.t. € = Cs is
called compliance tensor). (Hint: compute first tr(s).) Compute e:s in terms of s’ and tr(s)
where t/ := ¢t — % tr(t)I is the deviatoric (i.e., trace-free) part of the tensor t. (iii) Consider the
Hellinger—Reissner functional £yg(t,v) := fD(ﬁt’:t’ + ﬁ tr(t)? + (V-t)v — fo)dron Hx V
where H := {t € L?(D) |t = tT,V-t € L?*(D)} and V := L?(D). Find the equations (in weak
form) satisfied by a critical point (s,u) of £yg. Verify that (s, u) satisfies (42.1) and (42.3) a.e.
in D. (Hint: use a density argument.)

Exercise 42.2 (Second-order system). (i) Find matrices A% € R for all j,k € {1:d}
st. Ves(u) = 30,4 0j(A7*Opw). (Hint: verify that >k 0i(AMej ® er)Opu) = V(AV-u) and
>k Oi(uler ® e;)Opu) = V-(uVu') where (€;);eq1:q4} is the canonical basis of R%.) (i) Verify
that (A7%)T = AR What is the consequence on the bilinear form a(v,w) := [, 0;w"A*O,v da?

Exercise 42.3 (Pure traction). The pure traction problem is V-s(u)+ f = 0 in D and s(u)-n =
g on dD. (i) Write a weak formulation in H'(D). (ii) Show that it is necessary that [, f-rdz +
Jopg:rds = 0 for a weak solution to exist. (iii) Assume that r € R satisfies [, 7dz = 0 and
Jp Vxrda = 0. Show that r = 0. (iv) Let V := {v € H'(D)| [,vdz =0, [, Vxvdz = 0}.
Show that the weak formulation is well-posed in V.

Exercise 42.4 (Timoshenko beam). Consider a horizontal beam D := (0, L) clamped at z = 0
and subjected to a (vertical) force distribution f and to a bending moment distribution m. A
(vertical) shear force F' and a bending moment M are applied at 2 = L. The unknowns are the
vertical displacement u and the rotation angle of the transverse section 0 s.t. —(u" —¢') = 7
and —v0" — (v’ —0) = Lm in D, where E is the Young modulus, I is the area moment of inertia,

ET
and v = W (S is the cross section area and x is an empirical correction factor usually set
to 2). The boundary conditions are u(0) = 0, 6(0) = 0, (v/ — 0)(L) = 4 F, and /(L) = ;M.

(i) Assuming f,m € L%*(D), write a weak formulation for the pair (u,6) in Y := X x X with
X :={v € HY(D) | v(0) = 0}. (ii) Prove the well-posedness of the weak formulation. (Hint: use
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that 2 [, fu/ dz < u||9|\%2(D) + ﬁ|u|ip(D) with 4 sufficiently close to 1 and the Poincaré-Steklov

inequality.) (iii) Write an H'-conforming finite element approximation and derive H'- and L?-error
estimates for u and 6.

Exercise 42.5 (HHO). (i) Prove (42.25). (ii) Prove Lemma 42.20. (Hint: see Lemma 39.2 and
use the local Korn inequality [|v||r2(x) < chi|le(v)||2(x) for all v € HY(K) s.t. (v,7)p2(x) = 0
for all 7 € Rk ; see Horgan [28], Kim [32].) (iii) Prove Lemma 42.21. (Hint: adapt the proof of
Lemma 39.16.)

Solution to exercises

Exercise 42.1 (Compliance). (i) We have
Ae:f = 2ue + Mr(e)l):f = 2ue:f + A r(e) tr(f).
This expression is symmetric in @ and f. Reasoning as in the proof of Theorem 42.11, we also have
Ae:e = 2ue:e + M tr(e)? > min(2u, 3k)e:e,

where p and k are bounded from below away from zero. Hence, Ae:e > 0 and Ae:e = 0 implies
that @ is zero. Using the ansatz AZe = ae + Btr(e)l and recalling that d = 3, we have

Aeie = ATe:A%e = o’ee + (208 + 382) tr(e)?.
We identify the coefficients with the above expression of Ae:e and infer that
o =2, 382 +2a8 = \.
Hence, a = /2 and 8 = +(v/3r — /2p).

1
3
(ii) Taking the trace of (42.3), we infer that
tr(s) = (2u + 3\) tr(e) = 3k tr(e).
Since & > 0 by assumption, we have tr(e) = = tr(s), so that s = 2ue + 2= tr(s)L. Since p > 0 by

assumption, we conclude that
e = € 8 — A tr(s)1
2 3K '

Introducing the deviatoric part of s, i.e., 8’ :== s — %tr($)]l, we have
2u
2ue = 8" + — tr(s)L.
pe =s' + o r(s)
Since :I = tr(s’) = 0 and I:T = 3, we obtain
1

1
®:s = E$’:$’ + o tr(s)?.

(iii) The Fréchet derivative of the functional £xg at a critical point (s, w) is s.t.

&tSHR(S,u)(]h):/D(ﬁS’;]h’_F&tr(s)tr(]h)-i-(v.]h).u) do,

Oy Si1m (5. u) (g) = / (Vs — f)gdr,

D
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for all (h,g) € H x V. In the first equation, we observe that
1 1 1 1
ZS "h' + oy tr(s) tr(h) = ZS/:]h + oy tr(s) tr(h)
L (s — L te()D)h + — tr(s)L:h
o s — 3 tr(s)l): o )L

1 A
oM (S ~ 3. tr($)]l) :h.

Taking h to be smooth and compactly supported in D, and recalling that h takes symmetric values
so that [,(V-h)-u = — [, e(u):hdz (in the weak sense), we infer that

i <$ - 3% tr($)]l) = e(u).

Step (ii) shows that if (s, w) is a critical point of £pg, then (s, w) satisfies the constitutive rela-
tion (42.3) a.e. in D. Finally, that the equilibrium condition (42.1) is satisfied a.e. in D follows by
taking g to be smooth and compactly supported in D.

Exercise 42.2 (Second-order system). (i) To verify the hint, we observe that

ZB (ej ® ex)Opu) = Z 0;(Ne;Okuy) = Zaj(AejV-u) = V(AV-u),
Jik J
and that
Zaj( er ®e;)0pu) = Z[) (nerOruj;) = V-(,uVuT).

7,k
Furthermore, we have 3, 0;(1u6;,10ku) = V-(uVu). We conclude that

ATF = ;L(Sjk]l-l- per ®e; + /\ej ® ey.

(ii) It is clear that (A7%)T = A7 This implies that the bilinear form a(v, w) := [}, 0;w' A7* v da
is symmetric.

Exercise 42.3 (Pure traction). (i) Le v be a smooth test function. By proceeding as in §42.2.1,
we obtain

Find w € H'(D) such that
a(u,w) = [, fwdr+ [, gwds, Ywe H'(D),

where a(v,w) = [}, (2ue(v):e(w) + A(V-v)(V-w)) dz.

(ii) Observe first e(r) = 0 and V-r = 0 for all € R. Assume that the above problem has a solution
uw € H'(D). Using test functions in R C H'(D), we infer that 0 = a(u,r) = [, f-rdz+[,, g-rds
for all » € R. Hence, it is necessary that the volume and surface loads f and g satisfy the above
compatibility equation for a weak solution to exist in H*(D).

(iii) Let » = o + Bxx € R and assume that [, rdz = 0 and [, Vxrdz = 0. Observing that
Vxr = 23, the condition [, Vxrdz = 0 implies that 3 = 0. The condition [, rdz =« [, dz =
0 implies that a = 0. In conclusion, » = 0.

(iv) Let V :={v e H (D) | [,vdz =0, [, Vxvdz =0} and consider the weak problem: Find
u € V such that a(u,w) = fD fwdx + fBD gwds for all w € V. The well-posedness of this
problem is established by proceeding as in the proof of Theorem 42.11. The boundedness of a
and of the right-hand side is evident. To prove the coercivity of the bilinear form a, we use that
V N R = {0} and apply Korn’s second inequality (see (42.14)).
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Exercise 42.4 (Timoshenko beam). (i) Let v be a test function for the normal displacement,
and let w be a test function for the rotation angle. Multiplying the first equation by v, the second
by w, and integrating by parts over D, we obtain a((u, ), (v,w)) = £(v,w) with

a((u, ), (v,w)) := /D ~v0'w' da + /D(u/ —-0)(v' — w)du,

(v, w) = % (/D(fv + mw)dx + Fu(L) + Mw(L)) .

To make sense of the above integrals, we introduce the Hilbert space X := {v € HY(D) | v(0) =
0}, and we equip the product space X xX with the norm ||(u,0)||xxx = |ulg1(p) + L|0| g1 (D).
Then, one possible weak formulation of the problem is as follows: Find (u, ) € X xX such that
a((u, 0), (v,w)) = £(v,w) for all (v,w) € XxX.

(ii) The boundedness of a and ¢ is an application of the Cauchy—Schwarz inequality. Let us prove
the coercivity of a. A straightforward calculation yields

a((u,0), (u,0)) :/Dw|6"|2dx+/D|u’|2dx+/D€2dx—2/D6‘u’dx.

Let 1 > 0. Using the arithmetic-geometric inequality (C.5) with parameter u, together with the
Poincaré-Steklov inequality Cps||v||r2(py < L||v'||2(py valid for all v € X, we obtain (with the
nondimensional number 5 = L~2y)

1
a((u,0), (u,0)) = 01 H1 py + [ulzn oy + 101720y — 11011720y — ;|U|§{1(D)

1 gl ¥
> (1 - ;) lulfr (py + §|9|§{1(D) + <§C§s +1- M) 101172 py-
Taking p:=1+4+ %CES yields
%CP%S 2 :Y 2 2 ~ 2
a((%@)v (%9)) 2 HTCQ|U’|H1(D) + EL |9|H1(D) = a(Y)|[(uw, )% xx
2 “PS

with a(7) := Jinf(1,C2%/(1 + 3C%)) > 0. This proves that a is coercive since v > 0. Owing
to the Lax—Milgram lemma, we infer the well-posedness of the weak formulation. Since the weak
solution (u,0) € X x X satisfies both PDEs in L?(D), we have v’ = ¢’ — 27 f and " = —%(u’ -

0) — #7m, which immediately shows that both u and ¢ are in H*(D). Finally, since a is symmetric,

Proposition 25.8 shows that (u,) = arg inf(, ,)ey €(v,w) with

E(v,w) = /D %(’y|w’|2 + v = wl?)de — % (/D(fv +mw) dz + Fu(L) + Mw(L)) .

(iii) Let Tp, be a mesh of D with vertices 0 =: 2 < 21 < ... < xy < 2741 := L with I € N. We
construct an H'-conforming approximation space by using P;, Lagrange finite elements for both u
and 0 and by setting

Xy = {’Uh S OO(E) | Uh|[zi,iq1] S Pk,Vi S {OZI}, Uh(O) = 0}

The discrete problem consists of seeking (up,0) € XpxXj, such that a((un,6r), (v, wp)) =
{(vp,wy) for all (v, wp) € XpxXp,. Assuming that u,0 € H**" (D), r € {1:k}, and using Céa’s
lemma, we infer that

|u — up|m1(py + L|0 — On|mr(py < ch"([ulg+r (D) + LIO| g1+ (D))
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We can also apply the Aubin—Nitsche Lemma since the elliptic regularity theory leads to the pickup
index s = 1. This yields

[ = wnl 2Dy + LIO = Onllz2(p) < ch*™* (lulgrer(py + LIO] a1 (D)-

Exercise 42.5 (HHO). (i) For all ¢ € VX, integrating by parts in (42.24), we have

(D(Z5 (), @) 2 () = — (W (v), V) 25y + (T (Wok ), qrr) L2 ()
= —(v,Vq)r2(k) + (Vo qnr)L2x) = (V-v,0) 12k,

since Vg € V£ and qng € ViJ. Since D(ZE (v)) € VE by definition of D, we conclude that (42.25)
holds true.

(ii) The only difference with the proof of Lemma 39.2 is that instead of the local Poincaré-Steklov
inequality in K, we invoke the local Korn inequality mentioned in the hint, i.e., [[v|lz2x) <
chi|le()||lLz(x) for all v € HY(K) s.t. (v,7)g2(x) = 0 for all » € Rg. The assumption k > 1 is
used here to prove that ((I — I} )R(0x),7)r2(x) = 0 for all r € R CPy 40 ;'

(iii) The proof is similar to that of Lemma 39.16 for scalar elliptic PDEs. We obtain

(Oz(w), wn) gy yr, == Z (Tr,x + T2k + T3.1),
' ' KeTh

where

1k = ple(u — Ex(u))nk, Wk — WoK)L2(9K),

To. i = MV-u — D(Zf (w)), wx — wok)r2(o5)

Ty i = phic' (S(Ti (w)), S(Wk)) 2 (o)
The first and third terms are similar to those obtained in Lemma 39.16 and are estimated in the
same manner, the only difference being that we invoke Korn’s inequality in each cell K € T}, instead

of the Poincaré-Steklov inequality when estimating %5 . The term Ty gk is rewritten using the
commuting property (42.25) and is bounded by using the Cauchy—Schwarz inequality.
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Chapter 43

Maxwell’s equations:
H (curl)-approximation

Exercises

Exercise 43.1 (Compactness). Let D := (0,1) be the unit cube in R3. Show that the em-
bedding Hy(curl; D) < L?(D) is not compact. (Hint: consider v, := Vé, with ¢, (z1, 22, 73) :=
L sin(nmay) sin(nwas) sin(nras), n > 1, and prove first that (vy,)n>1 weakly converges to zero in
L*(D) (see Definition C.28), then compute ||v, | r2(p) and argue by contradiction.)

Exercise 43.2 (Curl). (i) Let v be a smooth field. Show that |[Vxwv|% < 2Vv:Vv. (Hint:
relate Vxv to the components of (Vv — Vo').) (ii) Show that |[Vxv|r2(p) < |v|gr(p) for all
v € H}(D). (Hint: use an integration by parts.)

Exercise 43.3 (Property (43.12)). Prove the claim in Example 43.2, i.e., for [fmin, Omax] C
(=m,7) with ¢ := Opax — Omin < , letting 6 := —%(Hmin + Omax) 57—, prove that 6 € (=%, %) and
[emin + 91 emax + 9] C (_%7 %)

Exercise 43.4 (Dirichlet/Neumann). Let v be a smooth vector field in D such that v|5p, xn =
0. Prove that (Vxw)jgp, n = 0. (Hint: compute [, (Vxwv)-Vqdz with ¢ well chosen.)

Solution to exercises

Exercise 43.1 (Compactness). Let v, := V¢, with
1

¢On (21,22, 23) := — sin(nmxy) sin(nree) sin(nres), n > 1.
nm
Clearly, v, € C*°(D) and v,|sp xn = 0. Hence, v, € Hy(curl; D). Observe also that [|v,||z2(py =
3)% and Vxwv, = 0. Hence, |||l mew:p) = (2 %, which means that the sequence (v, ),>1 is
8 (cur; D) >

8
bounded in Hy(curl; D). Let us prove that the sequence (vy),>1 converges weakly to zero in

L*(D). For all ¢ € C5°(D), we have

(Vn, @)L2(D) = —(¢n, V-@)r2(p) = 0 as n — oo.
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Let now w € L?*(D). Owing to Theorem 1.38, for all ¢ > 0, there is ¢ € L*(D) s.t. ||w —
@|lr2(py < €. Writing (vp, w)r2(py = (Vn, @)r2(p) + (Vn,w — @)2(p) and using the Cauchy—
Schwarz inequality to bound the second term, we infer that limsup,, .. [(vn, w)r2(p)| < (%)%e,
and since € > 0 is arbitrary, we conclude that lim,, oo (v,,w)r2(py = 0. We have thus shown that
the sequence (v,,),>1 converges weakly to zero in L?(D). We can now prove that the embedding
Hy(curl; D) — L?(D) is not compact. Indeed, if the embedding were compact, there would exist
a subsequence (vy, )r>1 strongly converging to some v € L?(D), but strong convergence implies
weak convergence so that v = 0, and ||vy,, || L2(p) = (%)% with strong convergence would also imply

lvllz2p) = (%)% > 0, which is a contradiction.

Exercise 43.2 (Curl). (i) We have
1
Vv = g(V'U — Vo) (Vo - Vo) = Vu:Vo — Vo:Vo' < 2Ve: Vo,

where the last bound follows from the Cauchy—Schwarz inequality.

(ii) Let v € HG(D). The above identity shows that |V xv|[32 ) = |03 (p)—(Vo, VT )p2(p). Us-
ing that v vanishes at the boundary, integration by parts shows that (Vo, Vo')r2(p) = ||V~'U||%2(D).
This in turn implies that HVXUH%z(D) < |U|§q1(D) for all v € H}(D).

Exercise 43.3 (Property (43.12)). Let us set m := 3(6min + Omax). We have the following
equivalences:

o 0 < 3 iff —2m <27 — ¢ iff —6;n < 7 which holds true by assumption;

o 0> —3 iff 2m < 27 — ¢ iff Ojyax < 7 which holds true by assumption;

® Omax +0 < 5 iff g + mz’:fé < 5 iff m <27 — 0 iff Opnax < 7 which holds true by assumption;

® Omin + 0 > —Z iff =3+ mZ=% > —Z iff —2m < 27 — § iff —fin < 7 which holds true by

P
. 2w —9
assumption.

Exercise 43.4 (Dirichlet/Neumann). Let a € H2(dDy), which means that a € H2(9Dy)
and that the zero extension of a over dD is in Hz(dD). Let ¢ € H*(D) be the solution to the
following problem

Aq=0, qop, =, qap, =0.
We infer that

/ Vxv-Vgdx = —/ (vxn)-Vgds = —/ v-(NxVq)ds.
D aD oD,

Observe that nxVgsp, = 0 since gjpp, = 0. Hence, we have

O:/ va-qux:/ (va-n)qu:/ (Vxwv-n)ads.
D oD dD4

Since this is true for every o € H?(9Dy), this means that (Vxv)jsp,m = 0.
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Maxwell’s equations: control on
the divergence

Exercises

Exercise 44.1 (Gradient). Let ¢ € Hg(D). Prove that V¢ € Hy(curl; D)

Exercise 44.2 (Vector potential). Let v € L*(D) with (vv, Vmy)pz(py = 0 for all my, € Myo.
Prove that (vv,wn)r2py = (Vxzn, VXwy)r2(p) for all wy, € Vi, where zjp, solves a curl-curl
problem on Xp,,.

Exercise 44.3 (Neumann condition). Recall Remark 44.10. Assume that D is simply con-
nected so that there is Cps > 0 such that Cislp' ||| z2(py < [V xb||L2(py for all b € X,,. Prove

that there is ' > 0 such that CA'F’,SEBthHp(D) < |IVxbp||g2(py for all by, € Xp,. (Hint: adapt
the proof of Theorem 44.6 using Jy.)

Exercise 44.4 (Discrete Poincaré—Steklov for V-). Let v be as in §44.1.1. Let Yy, := {v €
Hy(div; D) | (vv, Vx@)r2(py = 0, V¢ € Hy(curl; D)} and accept as a fact that there is Crs > 0
such that C'pszIH’UHm(D) < ||V-v||p2py for all v € Yy,. Let & > 0 and consider the discrete
space Yho, = {v € P,S,O(E) | (von, VX@n)r2(p) = 0, Yo € Py ((Tn;C)}. Prove that there is
Cly > 0 such that éésth”Lz(D) < Up||V-vp||L2(py for all v, € Yyo,. (Hint: adapt the proof of
Theorem 44.6 using Ji.)

Solution to exercises

Exercise 44.1 (Gradient). It is clear that V¢ € H (curl; D) for all ¢ € H}(D). Hence, we must
just show that (V@)sp xn = 0. Using the definition of v¢ in (4.11), we have

(76(V¢),l>ap:/DV(b-wa(l)dx—/D(VXV¢)-w(l)d:c:/DV¢-wa(l)d:c,



230 Chapter 44. Maxwell’s equations: control on the divergence

for all L € H2(9D). Using the definition of 49 in (4.12), we have
(Vo). hhop = — /D oV-(Vxw(l)) dz + (Y (Vxw(l)),75(9))o = 0.

Hence, (v¢(V),1)9 = 0 for all I € Hz(dD). This proves that v(V¢) = 0.
Exercise 44.2 (Vector potential). The problem defining z; € X0, such that
(szh,wah)Lz(D) = (V’U,’wh)Lz(D), Ywp € Xhow,

has a unique solution since the sesquilinear form is coercive and bounded on X}, (uniformly w.r.t.
h € H) owing to Theorem 44.6. Moreover, the equality (vv,wn)r2(py = (Vx2n, VXWh)L2(D)
is valid for all wy, = Vmy, with m;, € My owing to the assumption on v and the fact that
Vx(Vmy) = 0. The conclusion follows from the identity Vi = Xpo, & VM.

Exercise 44.3 (Neumann condition). Let @}, € X}, be a nonzero discrete field. Let ¢(xp) €
M, be the solution to the following well-posed Neumann problem:

(vVo(xn), Vm)p2(py = (vxn, Vm)L2(py, VYm € M,.
Let &(xp,) := xp, — Vo(xn), so that &(xy) € X.p. Then we have
wn — Ty (€(wn)) = Ty (wn — &(@n)) = Ty (V(e(@n))) = V(T (6(zn)),

where we used that J(xy,) = @;, and the commuting properties of the quasi-interpolation operators
J¢ and Jf. Since xp € Xpyy, we infer that (van, V(TF(é(xn))))r2(p) = 0 (note that we can
always shift J2(¢(xn)) by a constant without changing its gradient in such a way that this function
is in M, ). We infer that

(vah, xh)L2(p) = Wah, h — T (€(xn)))L2(0) + (v, T (€(xh)))L2(D)
= (ven, Ty (§(xh)))L2(D)-

Multiplying by e?, taking the real part, and using the Cauchy-Schwarz inequality, we infer that
llznllzzpy < villanll L2y |15 (€(@n)) 2 (0)-

The uniform boundedness of J¢ on L?(D) together with the Poincaré-Steklov inequality on X,
implies that

175 & @) 220y < 1 T5 e 1€@n)l L2y < 1751l ciz2iz2)Cos oIV X L2 (D),
so that the expected result holds true with 7 := V@;HJﬁHZ(le;Lg)CA’ps.

Exercise 44.4 (Discrete Poincaré—Steklov for V-). Let x; € Y0, be a nonzero discrete
field. Let ¢(xp) € My := {v € Hy(curl; D) | V-v = 0} be the solution to the following well-posed
problem (see (44.9)):

(VVXC(wh),VXm)Lz(D) = (ViL‘h,VXm)Lz(D), VYm € M.

Let us define &(xy) := @ — Vx{(xy). This definition implies that &(xp) € Y. Indeed, any
¢ € Hy(curl; D) can be written as ¢ := m + V0 with m € M, and § € HJ(D) owing to the
Helmholtz decomposition from Lemma 44.1. Hence, we have

(v€(xn), VXP)L2(p) = (V€(xh), VXm)L2(p) = 0.
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Invoking the quasi-interpolation operators J;, and «7}?0 introduced in §23.3.3, we observe that

xn — Tno(€(@n)) = Tio(xn — E@xn)) = Tio(Vx(C(@n)) = Vx (Tip (¢ (@n))),

where we used that «7}?0 (zn) = xp and the commuting properties of the operators Jj, and j,?o.
Note that the above identity implies that V-z), = V-73,(&(z,)). Since @), € Yy, we infer that

(van, @n)L2(p) = (van, zn — Tio(E(@n))) L2y + (van, Tio(€(xn))) L2 (D)
= (van, Tyo(€(xn))) L2 (D)

Multiplying by e?, taking the real part, and using the Cauchy-Schwarz inequality, we infer that
voll@nl3zpy < villenl L2 (o) | Tio(€(@n)) | 220y

The uniform boundedness of J4 on L?(D) together with the Poincaré-Steklov inequality for the
divergence operator, that is,

Coslp [0l z2(p) < IV-0llz2(p), Vv € Yo,
imply that

1Tk (E@n)) 2oy < 1Tl e 1€(n) L2 ()
< 1Tl 2z Cos o V-€(h) || L2 (D)

< N TH N 2zzi22)Cos p | V-l L2 ()

so that the expected discrete Poincaré-Steklov inequality holds true with Cl := Vu_/i | T ||Z(1L2; L2) Chs.
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Chapter 45

Maxwell’s equations: further
topics

Exercises

Exercise 45.1 (Identity for ny). Prove (45.13b). (Hint: use the mollification operators K§ :
LY(D) — C*>(D) and K¢ : L'(D) — C>(D) from §23.1, and adapt the proof of Lemma 40.5. )

Exercise 45.2 (Consistency/boundedness). Prove Lemma 45.5. (Hint: adapt the proof of
Lemma 41.7 and use Lemma 45.4.)

Exercise 45.3 (Least-squares penalty on divergence). (i) Prove Proposition 45.10. (Hint:
use Lemma 44.1 to write A := A + Vp, where Ay is divergence-free and p € H} (D), and prove
that p = 0.) (ii) Prove (45.22). (Hint: use Lemma 44.4 for A — Vp.)

Solution to exercises

Exercise 45.1 (Identity for ny). Let us set

ngs(a,by) == Y ((K§(o(@))x, xn) p, r(by)) F.

FeFP
Owing to (45.9) and the commuting property Vx (K$(v)) = K¢(Vxwv), we have
ngs(a, by) = Z / ( ))- VX LE IR (by)) — K§(Vxo(a)) Lt (HF(Eh))) de,
FeFp Ki

and owing to Theorem 23.4, we infer that

hm nm; a,by) = Z / a)-VxLE (Il (by)) — Vxo(a) L (HF(Eh))) dz = ny(a, by).
FeFp K
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Since K§(o(a)) is smooth, we also have

ngs(a, by) )xn, ) L (T (b)) ds
1s(a, br) F;@/a K F(On
= Z / /CC xn)HF(bh)d
FeF?
:/ (K§(o(a))xn)-by, ds
aD

= /D (’CS(U(a))-Vxﬁh - VX(/cg(g(a))).gh> de
:/D (Kg(a(a)).ngh—Icg(vx(a(a))),gh) de.

We conclude by passing to the limit § — 0 on the right-hand side and using again Theorem 23.4.

Exercise 45.2 (Consistency/boundedness). Let ap, b, € V;. Using the identities from
Lemma 45.4, we infer that

KK |2 —
(6n(an), br)vy vi, = @, (On, br) — ny(On, by) — E noe ™ | Klf|L /(ahxn)'(bhxn)ds
FeF? For K e SR

= {3:1 + {3:2 + ‘Ig,
with 0y, := A — aj. The Cauchy—Schwarz inequality implies that

1
vk |? |HK| ’
%] < < > (y P 168172 x) + |\V><9h||L2(K)

T,

KeTh K
1
2
X <Z <VT‘K|bh|L2 +IirK||vxbh||L2(K)>>
KeTy
Hence, |T1| < ||04]v;||bnllvi. Moreover, recalling that A" := ":;jg, the boundedness esti-
L

mate (45.14) on ny yields
1
2

For g, 2d(3—
%ol < < > ||a<0h>|vc<m>> Balo.
FeF? K

Since k is constant on K;, we have

1+d(1-1)
lo@)lvey < Il (19 xBnlloe) + By 7 7 [V %(Tx0n) o) )

Hence, |Ta| < ¢||0nl|v; [|br||v;, . Finally, the Cauchy-Schwarz inequality leads to |T3| < |an|a|bnls,
and we have [05,|p = |an|o since Ajppxn = 0.

Exercise 45.3 (Least-squares penalty on divergence). (i) Assume that A € Hy(curl; D)
solves (44.1). We have already established that V-A = 0. Hence, A € Z; and a, . ,(A,b) =
ay, (A, b) for all b € Zy. This shows that A solves (45.20). Conversely, assume that A solves (45.20).
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Recalling Lemma 44.1, let p € H}(D) be sit. A := Ag + Vp, where Ay is divergence-free,
ie, (Vp,V@)L2(py = (A,Vq)r2(p) for all ¢ € H}(D). Using the test function b = e ¥Vp
in (45.20), observing that Vx(Vp) = 0, (A,Vp)r2(p) = HVpH%g(D), Ap = V-A € L*(D), and
(f,Vp)r2(py = 0, and taking the real part leads to

W IVol T2y + 1l AN 72 py <0,

whence we infer that p = 0. Hence, A = Ay is divergence-free. Finally, we have a, . ,(A,b) =
ayx(A,b) for all b € Zj, and this equality can be extended to any b € Hy(curl; D) by density of
smooth functions in Hy(curl; D). We have thus proved that A solves (44.1).

(ii) Since V-Ay is divergence-free, Ay € Hy(curl; D), and VxAy = Vx A, Lemma 44.4 implies
that

Crstp' | A = Vp| L2(p) = Costp' | Aoll2(p) < IV X Aollz2(p) = IV X Al L2(0)-

Invoking the triangle inequality and since ||[Vp|lrz(py < Cp'fp||V-AllL2(py, where Cps is s.t.

CpséglﬂqHLz(D) < ||IVq|lr2(py for all ¢ € Hg(D), we conclude that (45.22) holds true with Ccr =
min(Cpg, Chs).
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Chapter 46

Symmetric elliptic eigenvalue
problems

Exercises

Exercise 46.1 (Spectrum). Let L be a complex Banach space. Let 7" € £(L). (i) Show that
(AT)* = AT™ for all A € C. (ii) Show that o (T") C conj(op(T™)) C or(T) Uop(T). (Hint: use

Corollary C.15.) (iii) Show that the spectral radius of T verifies r(T) < limsup,, . HT”HZL).

(Hint: consider ZneN(,u_lT)" and use the root test: the complex-valued series > _\ a, converges

. neN
absolutely if lim sup,,_, . |an|» < 1.)

Exercise 46.2 (Ascent, algebraic and geometric multiplicities). (i) Let T € £(L). Let p
be an eigenvalue of T’ and let K; := ker(uly, — T)* for all i € N\{0}. Prove that K; C K> ..., and
assuming that there is j > 1 s.t. K; = K1, show that K; = K for all j/ > j. (ii) Assume that
1 has a finite ascent «, and finite algebraic multiplicity m and geometric multiplicity g. Show that
a+g—1<m<ag. (Hint: letting g; := dim(K;) for all i € {1:a}, prove that g1 +i—1 < g; and
i < gi—1+ g1.) (iii) Compute the ascent, algebraic multiplicity, and geometric multiplicity of the
eigenvalues of following matrices and verify the two inequalities from Step (i):

11 0 0 1100 11 0 0
01 2 0 01 00 01 00
00 1 0f” 00 1 1] 0 010
0 0 01 0 0 0 1 0 0 0 1

Exercise 46.3 (Eigenspaces). The following three questions are independent. (i) Suppose V =
V1 & V4 and consider T' € L(V) defined by T'(v; + v2) := vy for all v; € V; and all vy € V5. Find
all the eigenvalues and eigenspaces of T. (ii) Let T € £(V'). Assume that S is invertible. Prove
that S~IT'S and T have the same eigenvalues. What is the relationship between the eigenvectors
of T and those of S~'T'S? (iii) Let V be a finite-dimensional vector space. Let {vn}ne(i:my C Vi
m > 1. Show that the vectors {vn }ne{1:m} are linearly independent iff there exists T' € L(V') such
that {v, }ne(1:m} are eigenvectors of T' corresponding to distinct eigenvalues.

Exercise 46.4 (Volterra operator). Let L := L?((0,1);C) and let T : L — L be s.t. T(f)(z) :=
Jo f@)dt for a.e. x € (0,1). Notice that T is a Hilbert-Schmidt operator, but this exercise is
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meant to be done without using this fact. (i) Show that 7H(g f g(t)dt for all g € L2((0,1);C).
(ii) Show that T is injective. (Hint: use Theorem 1.32.) (111) Show that 0 € 0.(T). (iv) Show that
op(T) = 0. (v) Prove that pl;, — T is bijective if u # 0. (vi) Determine p(T'), o (T'), oc(T'), v (T).
Do the same for TH.

Exercise 46.5 (Riesz—Fréchet). Let H be a finite-dimensional complex Hilbert space with
orthonormal basis {e;};c(1:n} and inner product (-,-)m. (i) Let g be an antilinear form on H,
i.e., g € H'. Show that (J&)~1(g) = Dic(iny 9(ei)er with g(e;) := (g, €)1, Vi € {1:n}. Is
(JE)™' : H — H linear or antilinear? (i) Let g be a linear form on H. Show that z, :=
Dic(iny 9(ei)ei is st (g, y)r i = (2g,y)n. Is the map H' > g — x4, € H linear or antilinear?

Exercise 46.6 (Symmetric operator). Let L be a complex Hilbert space and T' € L(L) be
a symmetric operator. (i) Show that o(T) C R. (Hint: compute S((T'(v) — pv,v)r and show
that |S(w)|l|v]|2 < [(T(v) — pv,v)r| for all v € L.) (ii) Prove that o(T) = 0. (Hint: apply
Corollary C.15.) (iii) Show that the ascent of each p € o,(T) is equal to 1. (Hint: compute
(I, —T)(z)||? with z € ker(ul, — T)%)

Exercise 46.7 (H'(R) — L?*(R) is not compact). (i) Let x(z) == 1 +z if —1 < 2 < 0,
x(z) :=1—2if 0 <z < 1and x(z) := 0if |2| > 1. Show that y € H*(R). (ii) Let v, (z) := x(z—n)
for all n € N. Show that (v,)nen converges weakly to 0 in L*(R) (see Definition C.28). (iii)
Show that the embedding H'(R) < L?(R) is not compact. (Hint: argue by contradiction using

Theorem C.23.)

Exercise 46.8 (B'(R) — L?*(R) is compact). (i) Show that the embedding B'(R) — L?*(R) is
compact, where BY(R) := {v € H'(R) | v € L?(R)}. (Hint: let (un)nen be a bounded sequence
in B*(R), build nested subsets J; C N, Vk € N\{0}, s.t. the sequence (ty|(_g.x))nes, converges in
L?(—=k,k).) (ii) Give a sufficient condition on « € R so that B}(R) < L?*(R) is compact, where
BL(R) :={ve H'(R) | |z|*v € L*(R)}.

Exercise 46.9 (Hausdorff-Toeplitz theorem). The goal of this exercise is to prove that the
numerical range of a bounded linear operator in a Hilbert space is convex; see also Gustafson [23].
Let L be a complex Hilbert space and let Si,(1) := {x € L| ||z||r = 1} be the unit sphere in L.
Let T € L(L) and let W(T) := {a € C|3z € St(1), a = (T'(x),x)r} be the numerical range
of T. Let v, € W(T), v # p, and x1,x2 € Sp(1) be s.t. (T(z1),z1)r = 7, (T(x2),22)r = p.
Let T" := #i,y (T — ~I1). (i) Compute (T"(x1),21)r and (T'(z2),x2)r. (i) Prove that there
exists 0 € [0,27) s.t. S((T"(z1),22)r + e (T (z2),21)r) = 0. (iii) Let 2} := €!%z;. Compute
(T'(2}),2)) . (iv) Let A € [0,1]. Show that the following problem has at least one solution: Find
a,B € R st. |lax) + Bzz2l|r = 1 and (T'(ax) + Bxa), ax) + Br2)r = A (Hint: view the two
equations as those of an ellipse and an hyperbola, respectively, and determine how these curves
cross the axes.) (v) Prove that W (T) is convex. (Hint: compute (T (ax} + Bx2), oz + Bx2)L.)

Solution to exercises

Exercise 46.1 (Spectrum). (i) Recalling that, by convention, L’ is composed of antilinear forms,
we have

(WD) (1) Drrp = VAT = M TO) = NT*(), D,
forall A\ € C, alll € L, and all I’ € L'. Hence, we have

AT)*(I') = XT*(I"), vi'e L.
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This proves that (A\T)* = AT* for all A € C.

(ii) Let us start by showing that o, (1) C conj(op(T™*)). Let u € 0, (T). Then pl;,—T is injective and
im(ply, —T) # L, i.e., im(ul;, —T) is not dense in L. Using a corollary of Hahn—-Banach’s theorem
(Corollary C.15), we infer that there exists 0 # " € L’ such that 0 = (', (ulp — T)(x))p 1 =
(@' =T*(I"),x) 1 1, for all x € L (recall that (ulr)* = @ly). This means that ul’ —T*(l") = 0, i.e.,
7l — T* is not injective. This proves that f is an eigenvalue of T, i.e., 0y(T") C conj(op(T™)).
We now prove the second inclusion. Let pu € conj(o, (7)) and 0 # I’ € ker(zilr, — T%). Then
0= (al' =T*("),)pr.p. = U, (uI —T)())r 1 for all I € L. Hence, im(pul, —T) is not dense in L.
This means that 1 € o(T). But p & 0.(T'). Hence, p € op(T) U oy (T).

(iil) Let us set 7(T') := limsup,,_, ., HT"||L%(L). Let u € Cbe s.t. |u| > 7#(T) (notice that u # 0). We
have to show that uly, —T is bijective, which is equivalent to show that I, —u~'T is bijective. The
root test shows that the series -, i (W™ 'T)¥||z(r) is convergent. It follows that the sequence
Sp = Zke{o;n}(/flT)k is Cauchy in £(L). Since L£(L) is complete, there is S s.t. S, — S in
L(L). But

(I =p ' T)Sy = (I —p7'T) Y (u'T)
ke{0:n}

potTE— T (utT)
ke{0:n} ke{l:n+1}
=1Ip — (n ')

(]

Notice that limy, e [|(*T)"| £y = 0 since the series >, o (1™ T)*| (1) is convergent. In
conclusion, we have

(I, —p'T)S = lim (I, — p~'T)S, = I,
n—r00
which proves that Iy, —u~'T is invertible. Hence, u € p(T'), which, in turn, proves that r(T') < #(T).

Exercise 46.2 (Ascent, algebraic and geometric multiplicities). (i) Let K; := ker(ul, —T)*
for all i € N\ {0}. Let € K;. We have

(uly = T)*(2) = (uly — T) o (uly — T))(a) = (uI — T)(0) =0,

showing that x € K;;,. Hence, K; C K;y; for all ¢ > 1. Assume now that K; = Kj;, for
some j > 1. Let us show by an induction argument on p that K; = K;4,. The statement holds
true for p = 1. Assume that it holds true for some p > 1 and let us show that K; = Kjqp41.
Since K; = Ky, C Kjipy1, it suffices to show that K; -1 C Ky, Let 2 € K;4,11. Since
(uly, — T)7PH(z) = 0, we have (ul, — T)(x) € Kj+p = Kj4p—1 by the induction assumption, so
that « € Kj,. This completes the proof.

(ii) Let ¢; := dim(K;) for all ¢ € {1:a}. The definition of the ascent implies that K1 ¢ Ko & ... &
K, = K4, for all j € N. As a result, we have g1 +i—1 < g; for all i € {1:a}. Since g1 = ¢ and
ga = m, this implies that a4+ g —1 < m.

Next, let us prove that g; < g;—1 + g1 for all i € {1:a}. Once this is established, it follows
that go < 291 = 29, 95 < g2 + g1 < 3g, and so on, so that m = g, < ag. We start by writing
K; = K;_1®Y; (this is legitimate since we are working with finite-dimensional spaces). Let us show
that k := dim(Y;) < g := g1. Notice that £ > 1 sinced € {1:a}. Let (u;);cq1:5) be a basis of ¥; and
let us verify that the vectors ((ulr, — T)"""(uj))jeq1:y are linearly independent. Let ()je(1:k)
be k scalars such that Zje{l:k} aj(ply, — T) " (uj) = 0. We have Zje{l:k} oju; € Ki—1. But
> jef1:k} @u; € Yi by definition. Since Kj—1 NY; = {0}, we must have >, 5, aju; = 0. Since
(uj)jef1: %) is a basis of Y;, it follows that a; = 0 for all j € {1:k}. This proves that indeed the
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vectors ((ulp —T)""*(u;))jeq1: k) are linearly independent. But these vectors are also members of
K since u; € K; for each j € {1:k}. This proves that k¥ < ¢g. In conclusion, we have shown that
9i < gi-1+ 91-

(iii) Let T : R* — R* be the operator defined by T(X) := AX for all X € L := R*, with

oSO O
OO = =
O = NN O
O O O

Hence, 1 is the only eigenvalue of T'. A direct computation shows that

0

I, — A= , (I —A)? = , (Iy — A)® = 0y

o O O

o O o
O O NN O
o O O O
o O OO
o O OO
O OO N
o O O O

Hence, ker(I;,—T)? # ker(I;, —T)3, but ker(I, —T)3 = ker(I;, —T)* = R*. Thus, the ascent of u = 1
is a = 3. Moreover, dim(ker(I;, —T)?) = 4 and dim(ker(I;, —T)) = 2, i.e., the algebraic multiplicity
is m = 4 and the geometric multiplicity is ¢ = 2. Notice that we have a+g—1=4 =m < 6 = ag.
Let now T : R* — R* be the operator defined by T(X) := AX for all X € L := R*, with

o O O =
OO ==
O R OO
——_ 0 O

Hence, 1 is the only eigenvalue of T'. A direct computation shows that

Iy — A= , (I —A)? =0,

o O OO
SO o
o O O O
o= O O

Thus, ker(Ip, — T) # ker(I, — T)?, but ker(I, — T)? = ker(I, — T)® = R*. This shows that
the ascent of u = 1 is @ = 2. Moreover, dim(ker(I, — 7)?) = 4 and dim(ker(Iy — T)) = 2,
i.e., the algebraic multiplicity is m = 4 and the geometric multiplicity is ¢ = 2. Notice that
a+g—1=3<4=m=ag.

Let finally T': R* — R* be the operator defined by T'(X) := AX for all X € L := R*, with

OO O
OO ==
O = OO
— o O O

Hence, 1 is the only eigenvalue of T'. A direct computation shows that

Iy — A= , (I —A)? =0,

o O OO
SO o
O O O O
o O OO
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Thus, ker(I, — T) # ker(I, — T)?, but ker(I;, — T)? = ker(I;, — T)®> = R* This shows that
the ascent of u = 1is a = 2. Moreover, dim(ker(I;, — T)?) = 4 and dim(ker(I;, — T)) = 3,
i.e., the algebraic multiplicity is m = 4 and the geometric multiplicity is ¢ = 3. Notice that
at+g—1=4=m<6=ag.

Exercise 46.3 (Eigenspaces). (i) Let p € C and let v := v; + vy € V4 @ Vo. Then (p,v) is an
eigenpair iff yv = T'(v) = v1. Hence, (1 — 1)vy + pve = 0. But the sum V; @ V; being direct, we
infer that (u — 1)v; =0 and pve = 0. If g =1, then vo = 0. If p = 0, then v1 = 0. If u & {0, 1},
then v; = 0 and vy = 0. In conclusion, the eigenvalues are {0, 1}, and the associated eigenspaces
are ker(T) =V and ker(I, — T) = V;.

(ii) Let S, T € £(V) with S invertible. Let u € C, v € V. Then T'(v) = pv iff ST SS~ v = pS~1v.
This shows that S~ !ker(ul, —T) = ker(uly, — S™'TS). Thus, the eigenvalues of T and S~!TS
are identical, and v is an eigenvector of T iff S~1v is an eigenvector of S™IT'S.

(iii) Let V be a finite-dimensional vector space. Let v1,...,v, € V and let us assume that
v1,...,Un are linearly independent. If m < dim(V') = n, let {v;41,...,v,} be vectors that make
{v1,...,u,} a basis of V. Let T : V. — V be defined by Twv; := iv; for all ¢ € {1:n}. Then
{v1,...,v,} is a basis of eigenvectors of T, and the eigenvalues are {1,...,n}. Conversely, assume
that there exists T € L(V) such that vq,...,v,, are eigenvectors of T corresponding to distinct
eigenvalues, fi1, . .., fiy. Assume that vy, ..., v, are linearly dependent. Without loss of generality,
let us assume that v1 depends on (v;);er, where L C {2,...,m}, and the vectors (v;);cr, are linearly
independent. Then v; = ZleL aqv; and

T(v1) = vy = Z a;T(v) Z Qv -

lelL leL

0="> ailp — p)v

leL

This shows that

Hence, ay(p — 1) = 0 for all [ € L, which, in turn, implies that o = 0 since pq1 # py for alll € L.
In conclusion, v; = 0, which is a contradiction since v; is an eigenvector (i.e., v1 cannot be equal
to zero). Hence, the vectors vy, ..., v, are linearly independent.

Exercise 46.4 (Volterra operator). Let L := L?(D;C) with D := (0,1).
(i) Let f,g € L. Integrating by parts, we obtain

(9. T(f))r = /Olg(w)(/owf(t)dt) dZC=/Olam(/lmg(t)dt)(/owf(t)dt) da
- —/01 ([Ig(t)dt)f(x)dx.

This means that TH f g dt Note in passing the T is a Hilbert—Schmidt operator. Specifi-

cally, we have T'(f fo t)dt with K (z,t) :==1ift € (0,z) and K (x,t) := 0 otherwise
(see Example 46 11) Hence T is compact and not symmetric.

(i) Let us show that 7T is injective. Assume that 7(f) = 0. Then [; f(t)dt = 0 for a.e. z € D.
To conclude that f = 0, we apply the vanishing integral theorem (Theorem 1.32) by showing that
(fyo)r =0 for all p € C§°(D). Let ¢ € C5°(D) and let us define ¢(z) := —¢'(x). Observe that
Y € L and TH(x) = fwl Y(t)dt = p(x) — (1) = @(x) since ¢ is compactly supported in D. Then
0= (T(f),¥)r = (£, TW)r = (f,p)r for all p € C5°(D).

(iii) Let g € L and assume that T(f) = g with f € L, i.e., we have [ f(t)dt = g(z) for a.e.
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x € D. This means that f = d,g, i.e., f is the weak derivative of g. But this is not possible unless
g € HY(D;C) and g(0) = 0. In conclusion, T is not surjective. This proves that 0 € o.(T)U o, (T).
Note though that the above argument shows that im(7) = {g € H'(D;C) | g(0) = 0}, from which
we conclude that im(T) = L*(D;C) = L. (Another way to prove im(T) = L consists of proving
that the only function h € L that satisfies (h,T(f))r = 0 for all f € L is h = 0 and invoking
Corollary C.15. We leave the details to the reader.) Hence, 0 € o.(T).

(iv) Assume 0,(T) # 0, and let p € 0,(T) and 0 # f € L s.t. T(f) = uf. We have i # 0 since T

is injective. Moreover, we observe that

(11 =ns) = (—ue ™ [ pwars e 5 —0)
e GG /Ow f(t)dr) = o),

which shows that e # '* foz f(t)dt should be constant, but this constant must be zero since
limg o [; f(t)dt = 0. Hence, [ f(t)dt =0 for a.e. z € (0,1). We conclude that f = 0 by using as
above the vanishing integral theorem. This is a contradiction. This proves that o,(T") = (.

(v) Let g # 0. Since T is injective, we only need to prove that T is surjective. Let g € L. Let us
try to find f € L such that T'(f) — uf = g. This is equivalent to

( / " f(tydt - uf = g) = ((—per / " p@ydet e () = e g(x))
— (Bw (e_‘” /Ow f(@) dt) = —ue‘“mg(:v))
— (e_“”” /Ow f)dt=—p /Ow e Mg(t) dt)
= (f) = e [ g0t - o)

The triangle inequality and the Cauchy—Schwarz inequality imply that f € L = L?((0,1);C), and
there is a constant ¢ that depends on p such that || f||, < ¢||g]|r. This proves that T—ply, is bijective
if u # 0. (Notice that T is compact since it is a Hilbert-Schmidt operator; see Example 46.11).
Hence, we could also invoke Theorem 46.14 (i)-(ii) which implies that {0} = o.(T) U 0y(T"). Since
we have already shown that o, (T") = (), we conclude that p(T") = C\{0}, i.e., uIr — T is bijective
for all u #0.)

(vi) We have shown that p(T) = C\{0}, op(T) = 0, 0c(T) = {0}, 0x(T) = 0. The same results
hold true for TH.

Exercise 46.5 (Riesz—Fréchet). (i) Let g € H'. Let y := > ,.(y.,y vie; € H and let zy =
>icqiny 9(€i)ei € H with g(e;) := (g, €;) .. Using the orthonormality of the Hilbert basis, we
obtain

(@) = Y (9leen e = Y gle)Wi

ie{l:n} ie{l:n}
= S lgvedwn = 99 = (T (9), v
i€{l:n}

This proves that z, = (J*)7!(g). The map g — =z, is clearly linear, i.e., (J*)~! and J* are
linear operators.
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(ii) Similarly, we have

(g, )m =Y (9leenyiedn = > gleyi = 9(y) == (g, v)m.n-

ie{l:n} ie{l:n}

Finally, the map g — x4 is clearly antilinear.

Exercise 46.6 (Symmetric operator). (i) Notice first that (T'(v),v)r, = (v, T(v)) = (T'(v),v)r,
for all v € L. Hence, (T'(v),v) € R for all v € L. Let ;1 € C. We have

23(T (v) = po,v)r = (T(v) = pv, ) = (T(v) = po,v)
= (T(v),v)r = pllvll, = (T (), v)r +AllvlE

= —2i3(p)l|v]|Z.

This proves that [S(u)|[|v]|2 < |((T — plr)(v),v)r|. Hence, if S(u) # 0, then T — uly, is coercive,
that is, S(p) # 0 implies that u € p(T) = C\o(T'). In other words, u € o(T) = C\p(T) implies
that p € R.

(ii) Assume that o,.(T) # 0. Let p € 0o(T). Then T — ply, is injective and im(7T — ply) is not
dense in L. Corollary C.15 implies that there is 0 # f € L such that (f,T(v) — pv)r = 0 for all
v € L. Since p € R, this means that (T'(f) — pf,v)r, = 0 for all v € L. This, in turn, implies
that (T" — pl)(f) = 0, ie., p € op(T), which is impossible since o, (1) N o (T) = (. Hence,
or(T) = 0. (iil) Let p € op(T). Let x € ker(uly, — T'). Then (ulp —T)o (ulp —T)(x) =0, ie.,
x € ker(uly, — T)?. This shows that ker(ul;, — T) C ker(ul, — T)% Let z € ker(uly, — T)?. This
means that (ulp, —T)o (ulr, — T)(xz) =0, and

0= (z,(ulp —T)o (uly —T)(x))r = (Al — T™)(x), (ulr — T)(2))L
= (I = T) (@), (I — T) (@)L = ||(nle — T)(@)|3,

where we used that 77 = p and TH = T. The above equality implies that (ul;, —T)(x) € ker(ulz, —
T), and this shows that ker(ul;, — T)? = ker(ulr, — T'), thereby proving that the ascent of y is
equal to 1.

Exercise 46.7 (H'(R) — L?*(R) is not compact). (i) Let y(z) == 1 +z if —1 < 2 < 0,
x(z) :=1—2if 0 <z <1, and x(x) := 0 if |z| > 1. It is clear that x € L?(R). Moreover, the weak
derivative of y is equal to 1 if —1 <2 <0, —1if 0 < <1, and 0 if |z| > 1. Hence, x € H'(R).
(ii) Consider the sequence v, (x) := x(z —n) for all n € N. Let ¢ € L*(R). We have

n+1 2
/ (b(x)X(x - n) dz| < ||¢|L2(n1,n+1)\/;'
n—1

But [|¢]|L2(n—1,n+1) < [0l L2(n—1,00) = 0 as n — o0o. Hence, [, ¢(x)v, () dz — 0 as n — oo, for all
¢ € L?(R). According to Definition C.28, this means that the sequence (v, )nen converges weakly
to 0 in L%(R).

(iii) We argue by contradiction. Assume that the embedding H*(R) — L?(R) is compact. Since

/]R o(z)v, (z) da

lvnll2my = \/g and |vn |y = V2, the sequence (vn)nen is bounded in H'(R). Owing to

Theorem C.23, we infer that there exists a subsequence (v,,, )ren that converges to some v € L(R).
Since strong convergence implies weak convergence and (v, )nen converges weakly to zero owing

to Step (ii), we must have v = 0, but since ||v,||L2®) = \/g, we must have [|v]| 2@y = \/g > 0.
This is a contradiction.
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Exercise 46.8 (B'(R) — L%*(R) is compact). (i) Let (u,)nen be a sequence in the unit ball of
BL(R). Let us set Jy := N. Let k € N\{0}. Using that the embedding H'(—k,k) — L?*(—k, k)
is compact, let us extract a subset J; C Jy such that (u,|—1,1))nes, converges strongly to some
function vy in L?((—1,1)). By induction on k& > 1, we extract from the sequence (u,)necs, a
subsequence (un)neg,,, such that (Un|—(kt1),k+1))ner,,, converges to some vjy1 in L?(—(k +
1), k+1). Note that by construction vy 1|(—x,x) = vi since the sequence (un)ne s, is a subsequence
of (un)ney,. For each k € N\{0}, we define nj to be the smallest integer in Jj such that ||u,, —
U | L2 (—k k) < % for all m € Jj such that m > ny. This is legitimate since (wp|(—k,k))necs, is
a Cauchy sequence in L?(—k, k). Note that nyy 1 € Jrr1 C Jx and for all m > ngyq we have
ltng, o = Umll 2 (k) < NUngyy = UmllL2(—k—1,041) < %_H < % Hence, ng < npy1. As a result, we
have for all k <[ € N,

IN

uny = wn,llL2(—kk) + g L2 @\ (= k1)) + NUn |22 @\(—8,8))
1 1 1 3

<=
k+k+l_k’

||unk — Un, ||L2(R)

IN

where we used that [[v]| 2\ (—xk) < 71Vl BrR) for all v € BY(R). It follows that (un, )ren is a
Cauchy sequence in L?(R). This proves the compactness of the embedding B*(R) < L?(R).
(ii) The above proof shows that the embedding B} (R) < L?(R) is compact if a > 0 since in this

case [|v]| 2w\ (—kk)) < k%HUHBé(R)-
Exercise 46.9 (Hausdorff-Toeplitz theorem). (i) Using the proposed definitions, we have

(T' (1), 2)1, = ﬁ«ml),m — (o)) = M—iyw —) =0,
(T" (1), 22)1, = ﬁ«mg),m (2, 22)1) = M—iyw =1
(ii) Let us compute $(e(T"(z1),z2) + e (T"(22), x1)1). We have

(T (x1),2)r + e (T (22),21)1) = cos(O)S((T"(x1), 22)1) + sin(@)R((T"(21), x2) 1)
+ cos(O)S((T" (w2), 1)) — sin(@)R((T" (1), z2)1).

The equation (e (T"(z1), x2) + e (T"(x2), 1)) = 0 is equivalent to

cos(0)S((T"(z1), z2) + (T'(x2), 21)1) + sin(O)R((T"(x1), 22), — (T" (1), 22)1) = 0.

This problem amounts to finding a unit vector (cos(f),sin(#))T that is orthogonal to the vector

(S((T"(w1), w2) L + (T"(z2), 21) 1), R((T" (1), 22) . — (T (21), J:Q)L))T. There are two angles 6 sat-
isfying this property.
(iii) Let us set z} := €!?z;. We obtain

(T'(2h),24)p = (T (x1), 2} = €’ (T"(21),21) . = 0.

(iv) Let A € [0,1], and let us consider the following problem: Find «, 8 € R s.t. ||ax] + Bza||L =1
and (T"(ax) + Bx2), ax + Bxa)r = A\. We have

1= |lazy + Basll] = o® |24 + B[|x2l| + 20B8R (), 22)1),
=a?+3%+ 204ﬁ3‘%((3:'1,3:2)L).
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The set of points (a, 3) € R? satisfying this equation is an ellipse intersecting the axes at (1,0),
(0,1), (—1,0), and (0,—1) (note that we used the Cauchy—Schwarz inequality here). Moreover, we
observe that

A= (T'(az! + Bx2),ax + Bx2)L
= o*(T'(2), 2)) + BT (w2), w2) 1 + aB((T" (), 22) 1 + (T"(x2), 2)1)
= %+ afR((T' (@), 2)r + (T'(22),2})r).

(Notice that we used S((T"(a}),z2)r + (T"(z2),27)r) = 0 here.) The set of points (a,3) € R?
satisfying this equation is an hyperbola intersecting the vertical axis at +v/\. Since \ € [0, 1], we
conclude that the system

a? 4+ 62+ 28R (2], 22)L) =1,

B+ aBR((T(z1),22) L + (T (z2),21)1) = A,
has at least two solutions (four in general).
(v) Let us prove that W(T') is convex. Let v, € W(T) C C and let us prove that the segment
connecting 7 to p is in W(T'). There is nothing to prove if 4y = u. Let us assume now that v # p.

Let x1,22 € L be s.t. ||x1]|r = ||z2||r :== 1 and (T'(z1),21)1 ==, (T(x2),x2)r := p. Let A € [0, 1],
and let 7, a, and 8 be constructed as above. We obtain

(T(awy + Bra), axy + Bra) L = (T(awy + Bra) — y(ox) + Br2), ox' + Br2)L
+ y(ax) + Bxg, axi + Bx2) L
= (p = (T (ax) + Br2), 02 + Br2) 1 +7
= (L=7)A+7.
This proves that (1 —y)A+~ € W(T') for all A € [0,1] because ||az] + Bz2||r, = 1. Hence, W (T')

is convex.
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Chapter 47

Symmetric operators, conforming
approximation

Exercises

Exercise 47.1 (Real eigenvalues). Consider the eigenvalue problem: Find ¢ € HE(D;C)\{0}
and X € Cs.t. [ (V-Vw + yw)daz = X [, ywda for all w € Hj(D;C). Prove directly that X is
real. (Hint: test with w :=1.)

Exercise 47.2 (Smallest eigenvalue). Let D; C Dy be two Lipschitz domains in RY. Let
a; : HY(D;)x HY(D;) — R, i € {1, 2}, be two symmetric, coercive, bounded bilinear forms. Assume
that aq (v, w) = a2(v, w) for all v,w € H}(D1), where v, w denote the extension by zero of v, w, re-
spectively. Let A;(D;) be the smallest eigenvalue of the eigenvalue problem: Find ¢ € H}(D;)\{0}
and X € R s.t. a;(¢,w) = AN, w) 2(p,) for all w € Hg(D;). Prove that A\ (D) < A\ (Dy). (Hint:
use Proposition 47.3.)

Exercise 47.3 (Continuity of eigenvalues). Consider the setting defined in §47.1. Let aj,as :
VxV — R be two symmetric, coercive, bounded bilinear forms. Let A1, A : V — V' be the linear
operators defined by (A;(v),w)v v = a;(v,w), i € {1,2}, for all v,w € A. Let A;(a1) and Ai(az)
be the k-th eigenvalues, respectively. Prove that [Ag(a1) —Ag(a2)| < sup,eg [((A1 —A2)(v), v)v v,
where S is the unit sphere in L?(D). (Hint: use the min-max principle.)

Exercise 47.4 (Max-min principle). Prove the second equality in (47.6). (Hint: let E,,_1 €
Vin—1 and observe that E- | NW,, # {0}.)

Exercise 47.5 (Laplacian, 1D). Consider the spectral problem for the 1D Laplacian on D :=
(0,1). (i) Show that the eigenpairs (A, %) are Ay, = m272, by, (z) = sin(mmz), for all z € D
and all m > 1. (ii) Consider a uniform mesh of D of size h := I+-1 and H'!-conforming P; finite
elements. Compute the stiffness matrix A and the mass matrix M. (iii) Show that the eigenvalues

of the discrete problem (47.8) are Apy, = h—ﬁz(;z:igz;r}%) for all m € {1:1}. (Hint: consider the

vectors (sin(mhml));eq1. 1y for all m € {1:1}.)

Exercise 47.6 (Stiffness matrix). Assume that the mesh sequence (7p,)ney is quasi-uniform.
Estimate from below the smallest eigenvalue of the stiffness matrix A defined in (47.9) and estimate
from above its largest eigenvalue. (Hint: see §28.2.3.)
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Solution to exercises

Exercise 47.1 (Real eigenvalues). Testing with w := v yields

[ otz +opyas = [ jupas
D D

Since 1 # 0, this shows that A is real.

Exercise 47.2 (Smallest eigenvalue). For all v € H}(D;), let us denote by v the extension
by zero of v over Dy. Theorem 3.18 implies that 0 € Hg(D2) and [0 g1 (p,) = [|v]| g1 (py). We
conclude using Proposition 47.3, which implies that

/\1(D1): mi al(vav) _ min aQ(fﬁam
vEH;(D1) ||UH%2(D1) vEHG(Dy) H5||2L2(D2)

- as(v,v)

> i /\1(D2)
vEHL(D2) ||UH%2(D2)

Exercise 47.3 (Continuity of eigenvalues). Using the min-max principle (Proposition 47.4),
we infer that

A A
)\k (al) = min max “@)2&7 )\k ((Lg) — min max “@Lﬂ
Ep eV veky Hv||L2(D) EreVy veEy HUHLZ(D)

Let E? := span{¢?,..., ¢}, where {¢f,... 9%} are the k first eigenfunctions of as, so that

Az (v), :
Ak (az2) = max, ¢ ge “o)vlviv e obtain
2 T,

A / A /
Ai(a1) — Ag(az) < max 7< 1(1))2, DAY — max 7< 2(1))2, Vv
veE} HU”Lz(D) vEE} HU”Lz(D)

Let g € EZ\ {0} be such that Au@)g)vry max,e g2 i) viviv e infer that

1922 T2 o)

Melar) — Aw(az) < (A1(9), 9)vrv  {A2(9), 9)viv _ (A1 — A2)(9), 9)v v

”gH%z(D) Hg||2L2(D) Hg||2L2(D)

(A1 = 42) (0) 0}y v |
EIE

Hence, Ap(a1) — Ax(az2) < sup,cy . The other inequality is shown by switching
the roles of A\;(a1) and A (a2).

Exercise 47.4 (Max-min principle). Let us set

Wmfl = span{1/)1, s 7¢m71}; W’m = span{1/)1, s 7¢m}

For all v € W;5_,, we have v € span{,, },>m, 50 that

Anv2
max min R(v) > min R(v) = min M = Am.
En-1€Vm-1veB_, vewk VEWL 1 Dnsm Un

Let now E,,_1 € V;,_1. A dimension argument shows that E;~ |, N'W,, # {0}. Thus, we have

min R(v) < min  R(v) < max R(v) < max R(v) = A,
veEWnm

veBL | vEEL  NW, T weEL W,
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where the last equality follows from the min-max principle. This proves that

max min  R(v) < A\,

Em-1€Vm_1veEL |

Altogether, we have shown that

max min  R(v) = A\p,.

Em—1€Vm_1veEL |

Exercise 47.5 (Laplacian, 1D). (i) The spectral problem for the Laplacian in the domain
D :=(0,1) is:
{ Find v € Hj(D)\{0} and A € R such that
a(Y,w) = N, w)r2py, Yw € Hy(D),

where a(¢, w) := fol 'w'dz. Tt follows that —¢” = \ip, 1p € H(D). This is an ordinary differential
equation with characteristic equation —s? = X. If A < 0, we have s = +v/—\, and the fundamental
solutions are eV=** and e~ V~**. But these two fundamental solutions do not satisfy the boundary
condition. Hence, A > 0, and the two fundamental solutions are cos(v/Az) and sin(v/Az). It follows
from 1(0) = (1) = 0 that 1 (z) = sin(mmz) with A = m?7? and m € N\{0} (since 9 # 0).

(ii) The discrete eigenvalue problem is

{ Find ¢, € V;3,\{0} and A, € R such that
a(tn, wn) = An(Yn, wn)r2(p), Ywn € V,

where Vj, := Pf(7n). This problem can be recast as follows:

{ Find U, € R’\{0} and \; € R such that
AUh = )\hMUhu

where A;; = a(pj, i), Mij == (@5, i)r2(py and {1, ,¢r} are the global shape functions in
Vi,. For all i € {1:1}, we have

1 .
e a1 if e
pi(z) = ple =@l 1 ifoe [?1 @i,
0 otherwise.

We infer that

. 2 ifi=j,
A = [ S@dade =4 —4 itli—g =1,
0 0 otherwise,
and
. ifi=j,
M= [ pj(@)pi(z)de = & if i —j| =1,
0 .
0 otherwise.

Thus, A = +tridiag(—1,2, —1) and M = Btridiag(1,4,1).
(iil) Using that

%(2eiﬂ'hml _ eifrhm(l—l) _ eiﬂhm(H—l)) _ 2(1 _ COS(ﬂ'hm))C\\Y(Zeiﬂ'hml)

3
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we infer that the eigenvalues of the stiffness matrix A are

2
A, A = E(l — cos (mhm)),

with the corresponding eigenvectors Uy, = (sin(whml));re{lzl} for all m € {1:1}. Using that
S(4ei7rhml + ei71'hm(l—1) + ei71'hm(l-|-l)) _ (4 + 2COS(7Thm))%(26iﬂ—hml)

)

we infer that the eigenvalues of the mass matrix M are
h
Abm, M = §(2 + cos (mhm)),

with the corresponding eigenvectors Uy, = (sin(ﬂ'hml))lTe{l:I} for all m € {1:1}. The identity

Am, AUnm = AUnm = Ane MU = A Anm, mUnm,

for all m € {1:1} shows that Ay, = ;‘:’"’; = %(;zgz 222,}3)

Exercise 47.6 (Stiffness matrix). We are going to use Proposition 28.11. We first have

f |la(vn, vn)|

a2 = inf  sup la(on, wn)|
L vR €V ||’UhH%2(D)

>«
o€V w,ews, [[Vnll 20y lwnll 2 (D)

We also have

.7 |la(vn, wp)|
wr2 = Sup sup
oneVi wnews, [[Vnll 20y lwn | 2 (D)

HUhHHl(D)
[all { sup T————
v €V, ||Uh||L2(D)
max

Let ;L}{’/il“, ™ be the smallest and the largest eigenvalues of the mass matrix M, respectively.
Owing to Proposition 28.6, we infer that ahd < ,uﬂ“ < phit < coh®. Let /\jli“, AL be the
smallest and the largest eigenvalues of A, respectively. Since A is symmetric, we have A} =
A=Y 2" and A% = || Al|s2. Finally, Proposition 28.11 gives

IN

2
) < clla||tHh2.

AR = AT Z > it are > apiy® > caht,
and

N = || Al < s < cp|lall bR < cllall o2,
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Nonsymmetric problems

Exercises

Exercise 48.1 (Linearity). Consider the setting of §48.1.2. Let V' < L be two complex Banach
spaces and a : VxV — C be a bounded sesquilinear form satisfying the two conditions of the
BNB theorem. Let b : LxL — C be bounded sesquilinear form. (i) Let 7' : L — L be such that
a(T(v),w) := b(v,w) for all v € L and all w € V. Show that T is well defined and linear. (ii) Let
T. : L — L be such that a(v,Tx(w)) := b(v,w) for all v € V and all w € L. Show that T, is well
defined and linear.

Exercise 48.2 (Invariant sets). (i) Let S,T € £(V') be such that ST = T'S. Prove that ker(S)
and im(S) are invariant under T'. (i) Let 7' € £(V') and let W7y,..., W,, be subspaces of V that
are invariant under T'. Prove that Wi +4...+W,, and [, {1:m} Wi are invariant under 7'. (iii) Let
T e L£(V) and let {v1,...,v,} be a basis of V. Show that the following statements are equivalent:
(a) The matrix of T with respect to {v1,...,v,} is upper triangular; (b) T'(v;) € span{vi,...,v;}
for all j € {1:n}; (c) span{v1, ..., v;} is invariant under T for all j € {1:n}. (iv) Let T € L(V). Let
i be an eigenvalue of T'. Prove that im(uly — T') is invariant under T'. Prove that ker(uly — T)*
is invariant under T for every integer o > 1.

Exercise 48.3 (Trace). (i) Let V be a complex Banach space. Let G C V be a subspace of V
of dimension m. Let {¢;};c(1:m} and {¢j};c(1.m) be two bases of G, and let {¢};c(1./m) and
{¥%}je1:m) be corresponding dual bases, i.e., (¢}, ¢;)v+ v = dj, etc. (the way the antilinear forms
{#)}jeqiimy and {9} cq1.m) are extended to V' does not matter). Let 7' € L£(V) and assume
that G is invariant under 7. Show that Zje{l;m}<7/’;‘aT(1/’j)>V',V = Zje{l:m}<¢;’T(¢j)>V/7V'
(11) Let B ¢ Cmxm hHe g.t. T(¢z) =: Zje{l:m} Bji¢j (I‘GC&H that G is invariant under T) Let
V= (<¢;7U>V/1V)_-]!—E{1:m} for all v € G. Prove that T%(v) = _c(q.,,,(B*V);9¢; for all a € N.
(Hint: use an induction argument.) (iii) Let 4 € C, a > 1, and S € L(V). Assume that
G := ker(uly — S)* is finite-dimensional and nontrivial (i.e., dim(G) := m > 1). Prove that
2jeit:my (@5, 8(05))vyr = mpu. (Hint: consider the mxm matrix A with entries (¢7, (ulv —
S)(¢;))v,v and show that A =0.)

Exercise 48.4 (Theorem 48.12). Prove the estimates in Theorem 48.12. (Hint: see the proof
of Theorem 48.8.)
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Exercise 48.5 (Nonconforming approximation). Consider the Laplace operator with homo-
geneous Dirichlet boundary conditions in a Lipschitz polyhedron D with b(v,w) = [ p pyw dz,
where p € C°(D;R). Verify that the assumptions (48.25) to (48.30) hold true for the Crouzeix—
Raviart approximation.

Solution to exercises

Exercise 48.1 (Linearity). (i) Let tz,v = sup,ecy Hg”é. We first observe that |b(v,w)]
Bl vl Lllwlle < er v o]l [vllz]jw]lyv, that is, the antilinear form f, : V' — C defined by f,(w) :
b(v,w) is bounded. Then, for all v € L, there exists a unique T'(v) € V' — L s.t. a(T(v),w) :

fo(w) for all w € V. Let v1,v2 € V and a1, as € C. We obtain

A

a(T(aqv1 + agva), w) = b(avy + agve, w) = arb(vy, w) + asb(va, w)
= a1a(T(v1), w) + aza(T(v2), w)
=a(a1T(v1) + a2T (v2),w), Yw e V.

This means that T'(a1v; + agve) = anT(v1) + T (ve), ie., T : L — L is linear.

(ii) Using the same arguments as above, we prove that the linear form g, : V' — C defined by
guw(v) 1= b(v,w) is continuous. Then, for all w € L, there exists a unique Ty (w) € V — L s.t.
a(v, Tu(w)) := gw(v) for all v € V. Let wy,we € V and aq, ag € C. We have

a(v, T(rwi + agws)) = b(v, vywi + asws) = @1b(v, wr) + @b(v, ws)
=ma(v, Tu(wr)) + @a(v, Ty (we))
=a(v,a1T(w1) + 2T (we)), YveV.

This means that Ty (aywi + asws) = ay Ty (w1) + agTy(ws), ie., Tk : L — L is linear.

Exercise 48.2 (Invariant sets). (i) Let S,T € L£(V) be such that ST =T'S. Let v € ker(S) so
that ST (v) = T'S(v) = 0. Hence, T'(v) € ker(5), i.e., ker(S) is invariant under 7. Let v € im(S),
i.e., there is z € V such that v = S(z). This implies that T'(v) = T'S(z) = ST(z) € im(9), i.e.,
im(S) is invariant under T

(ii) Let T € L(V) and let Wy,...,W,, be subspaces of V that are invariant under 7. Let wq +
coit Wy EWL 4o+ Wy, Then T(wy + ... +wy) = T(w1) + ... + T(wm) € Wi+ ...+ Wi,
ie., Wi + ...+ W, is invariant under T. Let w € ﬂie{l:m} W;. Then T'(w) € W;, since w € W;
fmd VVZ is invariant under 7" for all ¢ € {1:m}. Hence, T'(v) € N;cq1.pny Wis 1€y Nieqrmy Wi i
invariant under 7'.

(iii) We only prove that (b) implies (c) since the other implications are evident. Let us assume
that (b) holds true. Let us fix j € {1:n}. The statement (b) implies that T'(v1) € span{v} C

span{v1,...,vn}, T'(v2) € span{vy,va} C span{vi,..., v}, ..., T'(v,) € span{vy,...,v,}. Hence,
if v is a linear combination of vy,...,v,, then T(v) € span{vy,...,v,}. In conclusion, we have
shown that span{vi,...,v,} is invariant under T', thereby proving (c).

(iv) Let u be an eigenvalue of T'. Let v € im(uly — T'). Then
T(v) = (T — ply)(v) + pv € im(uly —T) + span{v} C im(uly —T),
ie., im(uly — T) is invariant under 7. Let now v € ker(uly — T)*. We have

(uly = T)*(uly = T)(v) = (ulv = T)(uly —T)%(v) = 0.
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Hence, pv — T'(v) € ker(uly — T)®. This implies that
T(v) € ker(uly — T)* + span{v} = ker(uly — T)*.
Hence, ker(uly — T)* is invariant under T'.

Exercise 48.3 (Trace). (i) Since {¢;},cq1:m} and {9;} e{1:m} are two bases of the same vector
space, there exists an invertible mxm matrix A such that ¢; = Zke{l:m} Ajpiy for all j € {1:m}.
Let (Aw )ije1:my be the coefficients of A~! and let {¢)}}jcq1:m} be a dual basis of {15} je(1:m}-
We obtain

S AL by oA, DD Aptr)viy

k'e{l:m} k'e{l:m} ke{l:m}

Z Z A Ak (g v v

k'e{l:m} ke{l:m}

> ApA =65
ke{l:m}

This proves that ¢} ¢ = > 1. m A,:,liw,;,m. Using that T'(G) C G, i.e., that G is invariant under
T, we infer that

Yo WL T@)viv =Y ($heT(@)vv

i€{l:m} i€{l:m}
= Z ( Z A];éw;c/‘Gv Z AT () v v
i€{l:m} k'e{l:m} ke{l:m}
= > > Wh.T vy AL A,
k'e{l:m} ke{l:m} 16{1 m}
= > WLTW))vy,
ke{l:m}

which proves the expected result.
(ii) Since G is invariant under T, there are m? scalars (Bz'j)i,je{1:m} such that

T(¢:)= Y, Bjid;.

je{l:m}

Using the properties of the dual basis, we obtain

(D, T(di))vrv = Z Bji{¢l ¢j)vr,v = B

je{l:m}

Let v := Zie{lzm} V;¢; € G. We have

Z VT¢Z Z Z ByiVigr = Z (Bv)k¢k

ie{l:m} ke{l:m}ie{l:m} ke{l:m}
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We can now conclude by using an induction argument as follows:

Z (B“~'V)T(¢3)

i€{l:m}

Z Z Bii(B* V)¢

ke{l:m}ie{l:m}

> (BV)ioy.

ke{l:m}

T (v)

(iii) Let us set T':= ply — S. Let v € G :=ker(uly — S)®, so that

(nly = S)*T'(v) = (ply — S)*(ulv — S)(v)
= (ulv = S)(plv — 5)*(v) =0,

which means that G is invariant under 7. Let A be the mxXxm matrix with entries (¢}, (uly —
S)(@;))ve,v for all 4,5 € {1:m}. Since T%(v) = (uly — S)*(v) = 0 for all v € G, the argument in
Step (ii) shows that A“V =0 for all V € C™, i.e., A* = 0. Hence, the matrix A is nilpotent. Since
the trace of any nilpotent matrix is zero, we infer that tr(A) = mu—>3",c 1., (¢}, S(d:))vr,v = 0.
We have thus proved that

tI‘(S) = Z <¢;7 S(¢i)>V’,V = mp,
ie{l:m}
which is the expected result.
Exercise 48.4 (Theorem 48.12). We proceed as in the proof of Theorem 48.8. Using ¢t = 7,
and t* = 7* in (48.31), we infer that

T —T,)(w), .
T —Tw)a,lz@,;r2) = sup sup (« n)(v), W)r2(p) < ch™tT
|Gl L(G;L2)

veGuwerr vl fwllL2

Using t = 7 and t* = 7;; in (48.31), and recalling that 7" = TH, we infer that

(v, (T" = T (w)) 2 (D)

(T = Th)*|es l(Gsse2) = sup sup

veL? weds, [vll L2 [|w]| 2
T —1T, .
— sup sup (( h)(v)aw)Lz(D) < ch™ .
vEL2 weGH, [vll L2[|w]| 2

Using t = 7, and t* = 77 in (48.31), we finally infer that

T—Th)(v),w .
sup sup ( UCILIIEIE) < ch™
vEG), WEGH, [ollz2flwl 2>

The conclusion follows by applying Theorem 48.1 to Theorem 48.3.

Exercise 48.5 (Nonconforming approximation). The assumption (48.25) holds true for the
Laplace operator with homogeneous Dirichlet conditions in a Lipschitz polyhedron with

1
Vi = H™"(D)NYV, r> g
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After extending ay, to V3 xVjy by setting ag(v, w) := fD Viv-Viw dz where Vj, is the broken gradient
operator (which is an extension of the usual gradient operator to V}; see Definition 36.3 and below),
the assumption (48.26) holds true with

o3y = > IVoliemy + D hxlng-Voliaox).
KeTy, KeTh

Since T'(v) € H3(D) and S, (w) € H}(D) for all v,w € L*(D), i.e., VT (v) € L?*(D) and VS, (w) €
L?(D), we have

aﬁ(T(v),S*(w)):/DVhT(v)-VhS*(w)dx

_ /DVT(U)-VS*(w) dz = a(T(v), 5.(w)),

for all v,w € L?(D). This proves that the assumption (48.27) holds true. Similarly, the as-
sumption (48.28) (related to the restricted and adjoint Galerkin orthogonality properties) holds
true because V, NV C V := H}(D). The two properties (48.29) are a consequence of the
error estimate (36.21). Finally, the best-approximation property (48.30) is a consequence of
Vi,NV C PE o(7r) and the approximation properties of H'-conforming finite elements.
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Chapter 49

Well-posedness for PDEs in mixed
form

Exercises

Exercise 49.1 (Algebraic setting). (i) Derive the counterpart of Theorem 49.12 in the setting
of §49.3.1. (Hint: assume that the matrix B has full row rank and consider a basis of ker(5).) (ii)
What happens if the matrix A is symmetric positive definite?

Exercise 49.2 (Constrained minimization). The goal is to prove Proposition 49.11. (i) Prove
that if u minimizes € over V;, there is (a unique) p € @ such that (u,p) solves (49.35). (Hint:
proceed as in §49.3.1.) (ii) Prove that (u,p) solves (49.35) if and only if (u,p) is a saddle point
of L. (Hint: consider €, : V — R s.t. €,(v) := L(v,p) with fixed p € @Q.) (iii) Prove that if
(u,p) is a saddle point of £, then w minimizes € over V;. (iv) Application: minimize €(v) :=
2’()% + 21}% — 6v1 + v9 over R? under the constraint 2v; + 3vs = —1.

Exercise 49.3 (Symmetric operator). Let X be a Hilbert space and let T € L(X; X) be a
bijective symmetric operator. (i) Prove that 7! is symmetric. (i) Prove that [\ € o(T)] <
(A"t € o(T™Y)]. (Hint: use Corollary 46.18.) (iii) Prove that o(T) C R. (Hint: consider the
sesquilinear form ¢y (z,y) := (T — Mx)(z),y)x and use the Lax-Milgram lemma.)

Exercise 49.4 (Sharp stability). The goal is to prove Proposition 49.8. (i) Assume that ker(B)
is nontrivial. Verify that 1 € crp(f). (i) Let A # 1 be in o(T). Prove that A(A —1) € o(S). (Hint:
consider the sequence x, := (vn,¢n) in X from Corollary 46.18, then observe that (S(gn),qn)g =
(1 - )‘)2<A(Un)uvn>V’,V + 0n,y With 8, := (B*(qn) + (1 = N)A(vn), A7 B*(gn) — (1 - Nvn)viv,
and prove that S(g,) — A(A — 1)g, — 0 and liminf, o [|gallo > 0.) (iii) Prove that o(T) C
s A TU{LFU I, AT with A = 2(1+ (4% +1)%), and AF = 2(1 & (4L 1 1)), (Hint: use
Lemma 49.1.) (iv) Conclude. (Hint: T is symmetric with respect to the weighted inner product

(#,y) 5 = a(v,w) +(¢;7)q-)

Exercise 49.5 (Abstract Helmholtz decomposition). Consider the setting of §49.2 and
equip V with the bilinear form a as inner product. (i) Prove that im(A~!B*) is closed and
that V = ker(B) @ im(A~'B*), the sum being a-orthogonal. (Hint: use Lemma C.39.) (ii)
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Let f € ker(B):. Prove that solving b(v,p) = f(v) for all v € V is equivalent to solving
(S(p),9)q = (Jg ' BATX(f),q)q for all ¢ € Q.

Exercise 49.6 (Maxwell’s equations). Consider the following problem: For f € L?(D), find
A and ¢ such that

Vx(kVxA)+vVe = f,
V-(vA) =0,
Ajpp,xn =0, dop, =0, (kVxA)pp,xn =0, App,n=0,

where k, v are real and positive constants (for simplicity), and |[0Dq4| > 0 (see §49.1.3; here we
write A in lieu of H and we consider mixed Dirichlet—~Neumann conditions). (i) Give a mixed weak
formulation of this problem. (Hint: use the spaces Vy := {v € H(curl; D) | v*(v)|ap, = 0}, where
the meaning of the boundary condition is specified in §43.2.1, and Qq := {q € H'(D) | v8(¢)jop, =
0}.) (i) Let B : Va — Q] be s.t. (B(v),9)q,.q4 == Vv, Vq)r2(p). Let v € ker(B). Show that
Vv =0 and, if v € H' (D), 78(v)|9p,n = 0. (Hint: recall that v is constant.) (iii) Accept as a
fact that D, 0Dq, 0D, have topological and smoothness properties such that there exists ¢ > 0
s.t. £p||Vxwv||p2(py > cl|v||L2(py, for all v € ker(B), with £p := diam(D). Show that the above
weak problem is well-posed. (Hint: use Theorem 49.13.) (iv) Let (7,)nen be a shape-regular
sequence of affine meshes. Let k > 0, let V3, := PZ(7,) N Vg, and let Q, := Pngrl (Th) N Qq. Show
that VQp C V4. (v) Show that the discrete mixed problem is well-posed in Vj, x @}, assuming that
0Dq = 0D. (Hint: invoke Theorem 44.6.)

Solution to exercises

Exercise 49.1 (Algebraic setting). (i) Let us consider the linear system (49.27). We have
already seen that a necessary condition for the invertibility of the matrix (g‘ %T ) is that B has full

row rank and that this implies in particular that M’ := N — M > 0. Notice that M’ = dim(ker(B))
since dim(im(B)) = M.
If M' =0, ie., N = M, the matrix B is square and invertible, and it is readily seen that the

matrix (g‘ %T ) is invertible without invoking further assumptions on the matrix A, and we have

A BN\' (o0 B!
B o) ~\BT -BTAB )"

Thus, if N = M, Theorem 49.12 can be reformulated as follows: the matrix (“g %T) is invertible

iff the matrix B has full row rank.
Assume now that N > M, so that M" > 1. Let (J;)ie{1: 7} be a basis of ker(B) (recall that

by convention the J;’s are column vectors in RY) and let 7 € RN*M be the rectangular matrix

formed by the above basis. Observe that ker(J ') = (ker B)t = im BT. Recall that (g‘ %T) is

invertible iff ker (g‘ %T) = {0}. Assume first that ker (4 8) = {0}. If ker(JTAJ) # {0}, there

exists V # 0 in ker(J"AJ). Then, let U := JV and notice that U # 0 since the columns of
J are linearly independent. The identity ker(7T) = im BT implies that there exists P such that

—BTP = AJV = AU. This is a contradiction since 0 # (U,P) € ker (g‘ %). Hence, JTAJ is
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B O

BU =0, i.e., U € ker(B). Hence, there is V € RM' s.t. U= JV. This means that A7V + BTP = 0.
Multiplying on the left by J ' gives

invertible. Suppose now that JT.AJ is invertible. Let (U,P) € RY xRM in ker (A BT). Then,

0=J"AIV+T ' B™P=TJTAIV+ (BJ)'P =TT ATV.

Hence, JTAJV = 0, which implies that V =0, 0 = JV = U and 0 = AJV = —BTP. But
ker(BT) = {0} since B has full row rank, i.e., P = 0. In conclusion, (g‘ %T) is invertible.
To sum up, the algebraic counterpart of the operator A, from Theorem 49.12 is the matrix

Ay = JTAT € RM' XM and Theorem 49.12 can be reformulated as follows: the matrix (g‘ %T)

is invertible iff the matrix B has full row rank and the matrix A, is invertible.
(ii) If the matrix A is symmetric positive definite and N > M, so is the matrix A,. Therefore,

the invertibility of (“g %T) is equivalent to B having full row rank.

Exercise 49.2 (Constrained minimization). (i) Since u € Vg, b(u,q) = g(q) for all ¢ € Q.
Let B € L(V;Q’) be the operator associated with the bilinear form b. The Euler condition yields
Dé&(u)(h) = 0 for all h € ker(B). Since DE(u)(h) = a(u,h) — f(h), we conclude that the linear
form a(u,-) — f(-) is in ker(B)t = im(B*) since B is surjective. Hence, there is p € @ such that
a(u,v) + b(v,p) = f(v) for all v € V. The uniqueness of p follows from the injectivity of B*.

(ii) Assume that (u,p) solves (49.35). Then L(u,q) = L(u,p) for all ¢ € Q. Moreover, the
functional €, : V — R s.t. €,(v) := L(v,p) (with p fixed) is strictly convex and D€,(u)(h) = 0
for all h € V since DE,(u)(h) = a(u, h) + b(h,p) — f(h). This implies that v minimizes &, over
V. Conversely, assume that (u,p) is a saddle point of £. This implies that £(u,q) — L(u,p) =
(B(u) —g,9—p)qg,@ < 0for all g € P. Hence, (B(u) —g,¢)q . < 0, and taking +¢, we infer that
(B(u) — 9,9)q,0 = 0 for all ¢ € Q. Therefore, B(u) = g. Moreover, u minimizes the functional
¢, over p, whence we infer that D&, (u)(h) = 0 for all h € V, i.e., a(u,h) + b(h,p) — f(h) = 0 for
all h e V.

(iii) Assume that (u,p) is a saddle point of £. We have already seen that the left inequality
in (49.29) implies that B(u) = g, i.e., u € V. Moreover, taking v € V,, we can see from the right
inequality in (49.29) that &(u) — €(v) = L(u,p) — L(v,p) < 0.

(iv) Using the above results, we infer that u is the minimizer of € over R? under the above
constraint if and only if (u,p) := (u1,uz2,p) is a saddle point of L(v,q) = E(v) + ¢(2v1 + 3v2 + 1).
The optimality conditions are

0= 0y, L(u,p) = 4u; — 6+ 2p,
0= 8v2£(u7p) = 4“2 + 1+ 3pa
0= (%E(u,p) = 2U1 + 3UQ + 1.

The solution to this linear system is (u1,us2,p) = (1,—1,1). Hence, the minimizer is u = (1, —1),
and the minimum is €(u) = —3.

Exercise 49.3 (Symmetric operator). (i) Using the symmetry of T, we infer that for all
z,y € X,

(T~ (2),y)x = (T™H(2), TT~ (y))x = (T7 (), TT™ (2))x = (T~ (y),2)x.

(ii) Let A € o(T). Owing to Corollary 46.18, there is (2, )nen in X such that ||v,||x = 1 for all
n € N and T(v,) — A, — 0 as n — oo. Since T is bijective, A # 0 so that A='T~! is bounded.
This implies that A~'v,, — T71(v,) — 0 as n — oo, which shows that A=! € o(T~!). The proof
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for the converse is identical.
(iii) Assume that A = a +i8 € o(T) with 8 # 0. The sesquilinear form ¢y(z,y) = (T —
Mx)(z),y)x is bounded and coercive, this latter property following from

R(—ita(z,2)) = Blz| %, Vo e X.

Hence, for all y € X, there is a unique z € X such that ¢5(z, z) = (v, 2)x for all z € X owing to
the Lax—Milgram lemma. This implies that (7" — A x)(x) = y showing that T'— Al x is bijective.
Hence, A\ & o(T).

Exercise 49.4 (Sharp stability). (i) Let v € ker(B) \ {0}. Then T(v,0) = (v,0), so that
1€ o,(T).

(i) Consider a sequence (i, )nen in X such that ||z, ||x = 1 for all n € N and T(z,,) — Az,, — 0 as
n — oo. Writing z,, := (vn, ¢n), we infer that (1—\)v, +A~1B*(¢,) — 0 and JélB(vn)—)\qn — 0.
This implies that S(gn) — A(A — 1)@, — 0. We observe that

(S(qn)a qn)Q = (1 - )\)2<A(’Un), vn>V/.,V + 577,;
with
bn = (B*(qn) + (1 = M) A(vn), A""B*(gn) — (1 = Nvn)vrv,
and §,, — 0 since B*(g,) + (1 — A)A(v,,) — 0 (since A is bounded) and A1 B*(g,,) — (1 — v, is

bounded in V (since z,, is bounded in X'). Owing to the coercivity of A and the characterization
of o(5), we infer that

Y

2
( % +1>|qn|2Q TS e+ ol

1
2 -
”‘Tn”X + 04(1 _ )\)2571

Y

This shows that liminf, o ||gn|l@ > 0. Recalling that S(gn) — A(A — 1)g, — 0, we conclude that
AA—1) e a(9).

2
(iii) Lemma 49.1 implies that A(A—1) € [5—2 16l } A simple reasoning on the quadratic function

llall?  a

A = A(A — 1) leads to the expected result on o(T), recalling that 1 € (7).
(iv) We observe that T is symmetric with respect to the weighted inner product (z,y) ¢ := a(v, w)+
(¢,7)q- Let ||| ¢ be the induced norm in X. Equipping X with this norm, we infer that

Tl cxix) = sup |A| = A
Xeo(T)

1T exix)y = sup A7 =(=XA7)""
Xeo(T)

Since T(z) = y with y = (Afl(f),,]él(g)) whenever = := (u,p) solves (49.35), we conclude
that (49.26) holds true.

Exercise 49.5 (Abstract Helmholtz decomposition). (i) Since

2
lall[A7B* ()|} = (B*(0), A7'B*(0))v-.v = (S(9). )@ = ﬁlfﬂé
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owing to Lemma 49.1, Lemma C.39 implies that im(A~!B*) is closed. That V = ker(B) +
im(A~1B*) results from the fact that the saddle point problem (49.33) has a solution with right-
hand side (f,g) = (A(v),0) for all v € V. Finally, let vy € ker(B) and v; € im(A~'B*) so that
vy = A7t B*(q) for some ¢ € Q. Hence,

a(v,v1) = (A(vo), A B*(@))v'.v = (B(w0), ). = 0-

This proves the a-orthogonality between ker(B) and im(A~B*).

(ii) Solving b(v,p) = f(v) for all v € V amounts to B*(p) = f in V’. Since both forms vanish on
ker(B), it is enough to assert that (B*(p),vi)v:.v = (f,v1)y+v for all v; € im(A~1B*). Therefore,
we have for all ¢ € Q,

(S(p)sa)q = (BAT'B*(p).a)qr.q = (B*(p). A" B*())v+,v = (f, AT B*(@))v',v-
This proves the equivalence.

Exercise 49.6 (Maxwell’s equations). (i) We obtain a weak formulation of the problem by
testing the equations with smooth vector fields v and smooth scalar fields ¢ (recall that we can
work here with real-valued functions and fields since v and  are real numbers):

/D(HVXA-va)dx—/aD(/q(VxA)xn).vdS+/

V'U-ngd:c:/ fode,
D D
/VA-qu:Z:—/ (vA-n)qds = 0.

D oD

We now apply the boundary conditions assuming that the test functions satisfy Vjgp, XM =0 and
q1op, = 0, which leads to

/(anA-va)dx+/ m;-Vqﬁda::/ fode,
D D D

/ vA-Vqgdz = 0.
D

We can make sense of the above informal argument by assuming A,v € V3 and ¢, ¢ € Qg where
Va = {v € H(cwl; D) | v“(v)jap, = 0},
Qa = {g € H'(D)[*(q)jop, = 0},

where the boundary condition in Vi means that [, (v-Vxw—(Vxv)-w)dz =0 for allw € H'(D)

s.t. v8(w)jap, € H: (0Dq4). We equip Vg with the norm of H (curl; D) (see the proof of Theo-
rem 43.1) and Q4 with the norm of H'(D). Then, Vj is a closed subspace of H (curl; D) and Qq is
a closed subspace of H*(D). We introduce the bilinear forms a(A,v) := [, (kVxA-Vxv)dz and
b(A,q) == [, vA-Vqdz, and the linear form /(v) := [, f-vdx. The above problem is reformulated
as follows: Find A € V3 and ¢ € Qq such that

a(A,v) 4+ b(v,¢) =l(v) Yv e Vg,
b(A,q) =0 Vg € Q.

(ii) Let v € ker(B), i.e., 0 = [, vv-Vqdaz for all ¢ € Qq. Taking ¢ arbitrary in C§°(D) and since
v is constant, we infer that V-v = 0 in D. If v € H'(D), we infer that for all ¢ € H2 (0D,,), we
have

/aDn(v-n)¢ds = /8D(v-n)¢ds = / (v-Vi(¢) + (V-)l(¢)) dz =0+ 0 =0,

D
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where $ is the zero extension of ¢ to 0D and l(g) is a lifting of 5 in Q4. The above identity implies
that v&(v)jsp,n = 0.

(iil) We are going to use the Babuska—Brezzi theorem to prove the well-posedness of the mixed for-
mulation, that is, we have to prove (49.36) and (49.37). Since we have |V xv||72p) > 65202H”H2Lz(p)
for all v € ker(B), we infer that

c? _ A2
”vvaiz(D) 2 m(”VX”H%?(D) +€D2”v”i2(D)) = ?DCQHIUHQH(CHI"];D)'

2,-2
UL R

This shows that a(v,v) > <25 HUH%J(CHH;D) for all v € ker(B), which proves (49.36).

Since [0Dq| > 0, we equip Qq with the norm ||¢||q, := [q|#1(p). Let ¢ be a nonzero member of Qq.
Letting v, := v~ Vg, we verify that v°(vg)jap, = 0 and v||vg|| mr(cwn;ny < g2 () = |lall@. (note
that v, is curl-free since v is constant). The definition of v, implies that b(vy, q) = fD vvg-Vgdo =
IVallZ2py = lalld,: which, in turn, gives

|b(w, q)| [b(vg: q)| lall?
sup > o = <> vlgllq,.
weVy ||wHH(Curl;D) qu”H(Curl;D) quHH(Curl;D)

This proves (49.37). In conclusion, the weak mixed problem is well-posed.
(iv) Recall that

Vi, = {vn € H(curl; D) | 9% (vp k) € Np3, VK € Ty vpjop, X1 = 0},
Qn =A{an € H'(D) | Y% (qnx) € PYK € Ty; qnjop, = 0}-

Here, P is either P41,3 or Q41,3 depending on the shape of the cells. Recalling the commuting
properties stated in Lemma 16.16, we have Vg, € H(curl; D) and 9% (Vqp k) € Ny 3 for all
qn € Qn. Moreover, the boundary condition gj9p, = 0 implies that Vg, 9p,xn = 0 for all
qn € Qpn. Hence, VQj, C Vj,.
(v) The discrete mixed problem posed in V, x@Q), consists of seeking A, € V;, and ¢p, € @, such
that

a(Ap,vn) + b(vp, ¢n) = (vp), Vo € Vi,

b(An,qn) =0 Van € Qn-

Proving the well-posedness of this discrete problem can be done by proving that a is coercive on
the discrete space
ker(Bh) = {vh ev, | b(vh,qh) =0,Yq, € Qh}

Since we have assumed that 0Dgq = dD, this is exactly the coercivity statement made in Theo-
rem 44.6 under the form of a discrete Poincaré-Steklov inequality, i.e., a is coercive on ker(By,)
with a coercivity constant that is uniform w.r.t. the mesh size. We also need to prove that the
discrete counterpart of the inf-sup condition (49.37) holds true. Let g;, be a nonzero member of Qj,.
Letting vy, := v~ Vg, we have already verified that v, € V3. Moreover, v||va| gr(cur:p) < ||l Qa>
and proceeding as in Step (iv), we infer that

b(wn, qn
sup LICIIE > vgnllar (p)-
w,EV), Hwh”H(Curl;D)

In conclusion, the discrete mixed problem is well-posed.
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Mixed finite element
approximation

Exercises

Exercise 50.1 (Algebraic setting). Let A := (\}5 ?) and B := (1,0)T. Show that

inf sup WT AV < inf sup WAV
veker(B) weker(8) IWlle2@2) IVIle2@e) — Verz were [|Wllee@2) IVl 22y

(Hint: one number is equal to 0 and the other is equal to 1.)

Exercise 50.2 (Saddle point problem). Let V,Q be Hilbert spaces and let a be a symmetric,
coercive, bilinear form. Consider the discrete problem (50.2) and the bilinear form t(y,z) :=
a(v,w) + b(w, q) + b(v,r) for all y := (v,q),z = (w,r) € X := VxQ. Let X} := V,xQ) and
consider the linear map P, € L£(X;X}) such that for all + € X, Py(z) € X is the unique
solution of ¢(Py(x),yn) = t(x,yn) for all y, € Xj. Equip X and Xj;, with the norm ||(v,q)| g =
(4%+1)%+1
(4 fj\ 1)z -1
Proposition 49.8.) (ii) Prove that |Ju — up||?2 + ||p — ph||g2 < & (infy,ev, |lu—un|? +infy,cq, lp —
qnlly)- (Hint: see the proof of Theorem 5.14.)

(|lv]12 + HqHé)% with |[v]|2 := a(v,v). (i) Prove that || Py || z(x;x) < & = . (Hint: use

Exercise 50.3 (Error estimate). (i) Prove directly the estimate (50.7a) with ¢}, replaced by
ety = (L+ by + By (Hint: consider 2, € Vi, s.t. Bi(zn) = Ba(un — vp) with vy, € Vi
arbitrary.) (ii) Assume that V is a Hilbert space, ker(Bj,) C ker(B), and ¢g := 0. Prove that

llal

lu—wunlly < 2linf,, crers,)

|u—vh||V.

Exercise 50.4 (Bound on A and B). (i) Prove Proposition 50.12. (Hint: observe that (AU)TY =
a(Ry(U),R,(Y)).) (ii) Let Jy € RN*N be the symmetric positive definite matrix with entries
Jvij = (pi,pj)x for all i,j € {1:N}. Let ||-[|,2r~) denote the Euclidean norm in RY. Verify

1 —1
that ||R¢(U)||V = Hj‘f Ung(RN) and ||UHE2(RN) = ”jV 2U||22(]RN) for all U € RN.
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Exercise 50.5 (S,). The goal is to prove the identity (50.17). (i) Verify that A ' = A~! —
pATIBT( Mg+ pS) 1BA~L. (Hint: multiply the right-hand side by A, and develop the product.)
(ii) Infer that S, = S — pS(Mg + pS)~!S. (iii) Conclude. (Hint: multiply the right-hand side by
pMyt+871)

Exercise 50.6 (Penalty). (i) Prove Proposition 50.18. (Hint: verify that C(U — U.,P — P.)T =
(0, —eMgP.)T and use Proposition 50.12.) (ii) Replace the mass matrix Mg by the identity
matrix Zys times a positive coefficient A in (50.18). Does the method still converge? Is there any
interest of doing so? Can you think of another choice?

Exercise 50.7 (Inexact Minres and DPG). Let VY be Hilbert spaces and B € L(V;Y”) be s.t.
Bllolly < 1B@Ily+ < [blllelly for all v € V with 0 < 6 < [jo] < oo. Set (v, v) = (B(v).u)y "y
Let f € Y'. Let Jy : Y — Y’ denote the isometric Riesz—Fréchet isomorphism. (i) Show that
the MINRES problem minyey ||f — B(v)|lys has a unique solution v € V. (Hint: introduce the
sesquilinear form a(v, w) := (B(v), J;'(B(w)))yy and invoke the Lax—Milgram Lemma.) (ii) Let
{Vh C V}nen and {Y,, C Y}ren be sequences of subspaces approximating V' and Y, respectively.
Assume that there is Sy > 0 s.t. for all h € H,

inf sup b, yn)l > Bo. (50.1)
on€Vi gy ey, [[onllvIlynlly

Let Iy, : Y — Y be the canonical injection and I : Y/ — Y;/. Show that the inexact MINRES
problem min,, ev;, [|7};(f — B(vn))|ly; has a unique solution uy, € Vj,. (Hint: introduce the residual
representative 7, 1= J;hll,j(f — B(up)) € Vi and show that the pair (up, ) € Vi X Y} solves a
saddle point problem.) (iii) Show that the residual representative r, € Y}, is the unique solution of
the following constrained minimization problem: min., ey, n(r:(B(v;,)))+ Hlznll3 — (L (), Zh)Y] Y, -
(Hint: see Proposition 49.11.) (iv) Assume now that f € im(B) so that B(u) = f. Prove that
there is ¢ s.t. [Ju—up||v < einfy, ev, [Ju—wp||v for all h € H. (Hint: use a Fortin operator.) Note:
since S||lvp|lv < ||B(vp)|ly- for all vy, € Vj,, it is natural to expect that the inf-sup condition (50.1)
is satisfied if the subspace Y}, C Y is chosen rich enough. The inexact residual minimization in
a discrete dual norm is at the heart of the discontinuous Petrov—Galerkin (dPG) method; see
Demkowicz and Gopalakrishnan [14], Gopalakrishnan and Qiu [18], Carstensen et al. [10]. The
extension to reflexive Banach spaces is studied in Muga and van der Zee [35].

Solution to exercises

Exercise 50.1 (Algebraic setting). Since A is symmetric, we have

e WT AV
inf sup
ver? wegz [Wller2) VI 2 w2

= |)‘min(A)|a

where Apin(A) is the eigenvalue of A with the smallest absolute value. A simple computation
shows that the eigenvalues of A are —1 and 2, so that [Amin(A)| = 1. Moreover, ker B = span{es}
with es := (0,1)T. But

ea Aes = (0,1)7(v/2,0) = 0.

Hence, we have

inf sup WT AV =
veker(B) weker(B) || Wlle2r2) V]| e2(r2)
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Exercise 50.2 (Saddle point problem). (i) Owing to Proposition 49.8, we infer that

2 1
) t(Yn, zn) MI%H +1): -1
inf  sup = )
un€Xn e X, |ynll 5 llznll 5 2
2
) Bt
sup sup = :
vex zex [llzllzll% 2

This implies the bound on || Py z(x;x)-
(ii) Observing that X}, is pointwise invariant under Py, we infer that

|z —anlg = I = Pu)@)ll g = (I = Pa)(@ —yn)ll g < 1T = Palleexsxllz —unll 5,
for all y, € Xj. We conclude observing that |[I — Pp| z(x;x) = | Pallcix:x)-

Exercise 50.3 (Velocity estimate). (i) Let v, € Vj,. Owing to the surjectivity of the operator
By, implied by the inf-sup condition (50.4b), there exists z; € V}, such that Bp(z) = Bp(up — vg)
and B znllv < [[Br(un — vn)llg; - Since

b Up — Vp,
1Ba(un — vi)lg, < sup 12n = vnn)l
" an€Qn lanllq

b(u — vn, qn)|
sup ——— >
ahEQn ”qh”Q
[0/ lw = v llv,

IN

where we used the Galerkin orthogonality property for the second equation in (50.2) (i.e., b(u —
up,qn) = 0 for all g € Qp,), we infer that

Bullznllv < [16]] [[u — vallv.

Let us set wy, := vy, + 2zp. Since up, — wy, € ker(By), we infer from the inf-sup condition (50.4a)
that

a(up, — wh, Yn
apllup —wplly < sup laun —wn, yu)l

yn Eker(By,) Hyh”V
— la(un — u,yn) + alu — wpy, yn)|
ynEker(By,) ”thV
b — _
— swp |b(yn,p — pn) + a(u whayh”,
ynEker(By,) ”thV

where we used the Galerkin orthogonality property for the first equation in (50.2). The rest of the
proof is identical to that of Lemma 50.2.

(ii) Set Vo := ker(B). Let Py, : Vo — ker(B},) mapping u € V to the unique solution uj € ker(By)
of a(up, — u,wp) = 0 for all wy, € ker(Bp). Then ker(Bjp) is pointwise invariant under P, and
| Prllzovisve) < % To conclude, we observe that

lw —unllv = [[(I = Bo)(w)llv = (I = Pa)(u = vn)llv <[ = Pallcvosve)llu = onllv,

for all vy, € ker(By) and that [[1 — Prllzevesve) = | Prll2(vesve) (see the proof of Theorem 5.14).
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Exercise 50.4 (Bound on A and B). (i) Let U,Y € RY and set uj, := R,(U) and y;, := Ry (Y).

Using the hint, we infer that III(?vjl(J\)/;ﬂ(v = aﬁzzlly‘f), so that (50.11a) follows from the inf-sup and

boundedness conditions on a. The proof of (50.11b) is similar since (BTP)TY = (BY)TP = b(yn, px)
where p, = Ry (P).
(ii) We observe that

IRV} = (Ro(U),Rp(U))v = (v U)TU = (T2 U)T (T2 V) = |72 Ul 2 e

proving the first identity. The second identity results from

1
1 JZNTY uTy
|7 U2y = sup % = sSup ———————
very [ReMllv very R (7, 2Y) |y
uTY
= sup = [[Ull2(mny-

vern [|[Ylle@y)

Exercise 50.5 (S,). (i) A direct calculation shows that

(A+ pBTMG'B)(A™ = pAT BT (Mg +pS) ' BA™") =T+ pB"M'BA™
—pB (Mg + pS) ' BA™" — p’BT MG S(Mq + pS) ' BA™.

The last term on the right-hand side is transformed as follows:

P’BTMG'S(Mq + pS) ' BA™ = pBT MG (- Mg + Mg + pS)(Mq + pS) ' BA™
= —pBTMG'BA™ + pBT (Mg + pS) ' BA™.
Hence,
(A+pB"MG'B)(A™ = pAT'BT (Mg +pS) ' BA™) =T.

Similarly, one proves that (A~ — pA™'BT (Mg + pS) ' BA™)(A+ pBTM,'B) = T.
(ii) Multiplying the above relation by B on the left and by BT on the right, we obtain S, =
S —pS(Mg + pS)~'S.
(iii) Following the hint, we obtain
(7" +pMGH(S — pS(Mg +pS)~'S)
=T+ pMy'S —p(Mq+pS)~'8 = PP MG'S(Mq + pS)~'S
=T+ pMy'S — pMy (Mg + pS)(Mq +pS)~'S
=7
The other identity is proved similarly.
Exercise 50.6 (Penalty). (i) Subtracting (50.18) from (50.9) yields
AU-U)+B"(P-P.,) =0,
B(U—-U.) +eMgP. =0.
Using the inequalities (50.11a) and (50.11b) in the first equation yields

llal

SIRA(U = Uy

1 1
IRy (P —Po)llg < =[BT (P — Pl = 2=l A(U = Ue) ez <
Bn Bn
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Multiplying the first equation by U — U, and using the coercivity of a together with the second
equation, we infer that
an [Rp(U = U} < (U—-U)TAU ~Ue) = (U~ U.)"BT (P — P)
(B(U—U.))T(Pe = P) = —e(MqP)T(Pc —P)
— e(Mq(Pc = P))T(Pc = P) = ¢(MqP) (P —P)
— e(M@P)T(Pc = P) < €|[Ry(Pe = P)[lalIRu(P) -

IN

Combining the above two inequalities yields (50.20).
(i) The first estimate in the proof of Proposition 50.18 is unchanged:

a
IR —Pollo < iR, 0 - U

The second estimate becomes
an[Ro(U = Uo)[5 < —eAZuP)T(Pe = P) < eX|[Pe — P2y [[Plle2 -
Let ftmin be the smallest eigenvalue of M. We have
pomin| Qo gary < QTMQQ = [IRy(Q)I[-

This implies that
anl|Ro(U = U} < eMtigain Ry (Pe = P)ll@lIRw(P) -

We infer that

an?
[|all?

anBh
llall

IRe(U = Uo)lv + IRy(P = Po)llo < i IRy (Pl -

The method still converges when ¢ — 0, but to obtain a convergence rate close to ¢, one should
set A = fmin. If the mesh sequence is quasi-uniform, Proposition 28.6 shows that fimin ~ he.
Hence, one should choose A ~ h?. This method is interesting since it does not involve Mél. More
precisely, (50.19) can be rewritten as

1 . -
— =F+—BTG.
<A+ B B) U + 18

For instance, if the mass matrix Mg can be lumped, which is the case for IP; and QQ; continuous
finite elements, one could also use the lumped mass matrix instead of h9Z.

Exercise 50.7 (Inexact Minres and DPG). (i) Let usset € : V — Rs.t. €(v) := || f—B(v)|3-
for all v € V. We have

€(v) = S (f = Bv), Jy ' (f = B(v)))yy-

N =

Since the sesquilinear form a(v,w) := (B(v), Jy,' (B(w)))y~y is Hermitian and coercive, u mini-
mizes € over V iff a(u,w) = (f, Jy ' (B(w)))yy for all w € V. Owing to the Lax-Milgram lemma,
this problem admits a unique solution u € V. Notice in passing that we have shown that v € V is
the unique solution to the normal equation

B*Jy'B(u) = B*J;  (f).
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In what follows, we are going to construct an approximation of w.
(ii) Let us set &, : Vi, = R s.t. € (vp) == || i (f — B(vh))HQ};. We have

E(on) = 30~ Blun), InJ5, T (F — Blon)) vy
so that up € Vj, is characterized by the Euler equations
(f = B(un), InJy, I B(wp))yry =0, Ywy, € Vi
Since J;hl is selfadjoint, these equations amount to
(B*(In(rp)), wp)vr v =0, Ywy, € Vi,
Moreover, the definition of 7, implies that for all y, € Y,
(rnsyn)y = (v, (T), yn)vy vi, = (f — B(un), In(yn))y v
= Infyyn)yy v, — U B(un), yn)yy v, -
Thus, the pair (up,7) € Vi, X Y}, solves the following saddle point problem
(rnyn)y + I (B(ua)), yn)vy v = In(f)syn)yvy v, Yy € Ya,
(B*(In(rn)), wn)vr,v =0, Yy, € Vi,

Since we have (1 (B(vr)), yn)vy v, = b(vn, yn) for all (vp, yn) € Vi, x Vi, the inf-sup condition (50.1)
implies that the above problem is well-posed.

(iii) Let us set & : Y, — R s.t. &,(2n) = 3llzal3 — (5 (f);2n)v; v, We have established in
Proposition 49.11 that r;, minimizes &;, in the subspace

(I;:(B(Vh)))L = {Zh S Yh | b(Uh,Zh) = 0, Vvh S Vh}

if and only if there is a unique Lagrange multiplier uj, € V}, such that the pair (ry,up) € Y x Vj
is the unique solution to the above saddle point problem.

(iv) Recall that Lemma 26.9 shows that the inf-sup condition (50.1) implies the existence of a
Fortin operator ITy : Y — Y} s.t. b(vp,y — I, (y)) = 0 for all v, € V), and |4l z(vyy,) < %LO”. We
have
b(u — up,
=y < sup 2t
vey  ylly

Using that B(u) = f, we obtain

Let wy, be arbitrary in Uy,. We have

b(u — up,y) = b(u —up,y — i(y)) 4+ b(u — up, Ma(y))
=b(u—wp,y — Hp(y)) + (rp, Op(y))y.
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This implies that
Bl —unlly < 161+ [Tkl vyl = wallv + [Tl vy lrally -
Moreover, we have
Irnll3- = (I B(u = un),ra)y; v, = (I B(u—wh), mh)y7 v,
where we used the second equation of the saddle point problem. This shows that
Irnlly < ol flw = wallv
Putting everything together proves the quasi-optimal error estimate

Bl —wnlly < bl (1 -+ 21T cvv) inf flu— wnllv-
wp €V,
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Chapter 51

Darcy’s equations

Exercises

Exercise 51.1 (Compactness). Let D := (0,1)3 be the unit cube in R3. Show that the embed-
ding Hy(div; D) < L*(D) is not compact. (Hint: let

1. .
— sin(nmas) sin(nras),

¢1,n($1,$2,5€3) :
G2 (21,22, 23) 1= — sin(nmas) sin(nmay),

1
G321, T2, 23) 1= — sin(nwzy) sin(nrzs),
nm
for all n > 1, set v,, := VX¢,, and prove first that (v,,),>1 weakly converges to zero in LQ(D)
(see Definition C.28), then compute ||v,|/£2(p) and argue by contradiction.)

Exercise 51.2 (Neumann condition). Prove Proposition 51.3. (Hint: for the surjectivity of
the divergence, solve a pure Neumann problem.)

Exercise 51.3 (Integration by parts). Let H}(D) and H,(div; D) be defined in §51.1.3. Prove
that [ (Vg-s + ¢V-¢)dx = 0 for all ¢ € Hi(D) and all ¢ € H,(div; D). (Hint: observe that

¥&(9)jop, € H?(0Dy).)
Exercise 51.4 (Primal, dual formulations). Prove Proposition 51.7.

Exercise 51.5 (Primal mixed formulation). Consider the problem: Find p € H*(D) such
that —Ap = f and v8(p) = ¢ with f € L%(D) and g € H=(dD). Derive a mixed formulation of
this problem with unknowns (p, \) € H(D)x H~2(9D) and show that it is well-posed. (Hint: set
b(v, 1) := (1, 7%(v))ap and observe that B = 48 : H*(D) — Hz(0D).) Recover the PDE and the
boundary condition. Note: this method is introduced in Babuska [2].

Exercise 51.6 (Fortin operator). Justify Remark 51.14. (Hint: use arguments similar to those
of the proof of Lemma 51.10.)

Exercise 51.7 (Inf-sup condition). The goal is to prove the inf-sup condition (51.23) using the
canonical Raviart—Thomas interpolation operator. (i) Do this by using elliptic regularity. (Hint:
solve a Dirichlet problem.) (ii) Do this again by using the surjectivity of V- : H'(D) — L?(D).
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Exercise 51.8 (Error estimate). (i) Prove that
||U - o'hHH(div;D) < Cll Chhel{/h ||U - thH(div;D);
_ <d, inf |lo— oy 42 inf |p— :
lp — pnllz2py < 4 Jo o — snll mr(aiviD) ,of P = anll2(p)

. A ch
with ¢} = (14 $£)(1 + %) and ¢ = W
p € H"(D) with r € (0,k + 1], prove that

(ii) Assuming that o € H"(D), V-0 € H"(D), and

o — onllmiv:py < ch"(lolmar ) + [V-olur (D)),
lp —prlle2py < ch™(|o|ar 0y + |V-olur (D) + [Pla"(D))-

(Hint: use the commuting projection Jy.)

Exercise 51.9 (Box scheme). Let d := Al A\g > 0, and enforce the boundary condition
v&(p) = 0. Let Vi := P5'(Tn)x P{§(Th), where P{%(Ty) is the Crouzeix Raviart space defined
in (36.8). Let W, := PY(Ty)xPP(Ty). Consider the bilinear form a; : Vi, xWj, — R defined
by ap(vp,wp) = )\O_I(O'h,Th)Lz(D) + (V'UhJIh)L?(D) + (Vhph,Th)Lz(D) with vy, := (op,pr) and
wp, := (Th, qn) (see Definition 36.3 for the broken gradient V). (i) Prove that dim(V3) = dim(W})
and that there is o > 0 s.t. for all v, € Vj, and all h € H, alvp|lv, < sup,, ew, lanConwn)| it

llwnllw,

lonll¥, = A5 1onllzzaiv: ) + Aol Vaprllze(py and [wnllfy, = A3 170l Z2(py + Aolp lanl1Z2(m)-
(Hint: test with (), + Ao Vapn, 2p, + (20, 'V-03,), where (oh,p,) is the L?-orthogonal projection
of (op,pn) onto Wy,.) (ii) Consider the discrete problem: Find uj € Vj, such that ap(up,wp) =
(f,™w)L2(p) + (9,4qn)L2(p) for all wy, € Wj. Show that this problem is well-posed, prove a quasi-
optimal error estimate, and show that the error converges to zero with rate h if the exact solution
is smooth enough. (Hint: use Lemma 27.5.) Note: the scheme has been introduced in Croisille
[12] to approximate (51.1). It is a Petrov—Galerkin scheme with only local test functions.

Solution to exercises
Exercise 51.1 (Compactness). Let v, := VXx¢, with

1 sin(nmas) sin(nmras)
Gn(T1, 72, 73) := — | sin(nmwas)sin(nrzy) |, Vn > 1.
"\ sin(nme ) sin(nwesy)

We obtain
sin(nmxy)(cos(nmry) — cos(nmrs))
v, = | sin(nmwxy)(cos(nrrs) — cos(nmry))
sin(nmas)(cos(nray) — cos(nmxs))

We have v,, € C*°(D) and v, pp-n = 0, so that v, € Hy(div; D). Moreover, |[v,|L2(p) = (%)%
and V-v,, = 0, so that ||v, || gaiv;p) = (%)% This means that the sequence (vy,)n>1 is bounded in

Hy(div; D). Let us prove that the sequence (v,),>1 converges weakly to zero in L?*(D). For all
¢ € C5° (D), we have

(Vn, @)r2(D) = —(¢n, V-@)r2(p) = 0 as n — oco.
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Let now w € L?*(D). Owing to Theorem 1.38, for all € > 0, there is ¢ € L?(D) s.t.

|w—@llLzp) <€

. Writing (v, w)2(p) = (Vn, @) L2(D) +(Vn, w—¢) L2(py and using the Cauchy-Schwarz inequality
to bound the second term, we infer that limsup,, . [(Vn, w)p2(p)| < (%)%e, and since € > 0 is
arbitrary, we conclude that lim, (v, w) r2(p) = 0. We have thus shown that the sequence
(Un)n>1 converges weakly to zero in L?(D). We can now prove that the embedding Hy(div; D) <
L%(D) is not compact. If the embedding were compact, there would exist a subsequence (v, )k>1
strongly converging to some v € L?(D). But strong convergence implies weak convergence, so that
v =0, and ||v,,[[L2p) = (%)% with strong convergence would also imply ||v|z2p) = (%)% > 0,
which is a contradiction.

Exercise 51.2 (Neumann condition). There are only two differences with the proof of Propo-
sition 51.1. The first one concerns the divergence operator which now maps from Hy(div; D) to
L?(D) (owing to the divergence theorem). To prove that this operator is surjective, let ¢ € L2(D)
and let us solve the pure Neumann problem ¢ € H*(D) such that A¢ = g and fD ¢dx = 0. Then
Sg = V¢ has all the expected properties. The second difference concerns the boundary condition
which is now a simple consequence of ¥4 (o) = v4(a¢) + 74 (o) = an.

Exercise 51.3 (Integration by parts). Observe that
/ (Vas +qV-s)dz = (v(s),7%(a))op-
D

We obtain v&(q)sp, € Hz(dD,) since its zero-extension to AD is ¥8(q) (since ¢ € H(D)) which
is in H2(8D). This implies that

(v4(s), 78 (@) = (Y (€)joD.s V¥ (@100, ) 0D,
and this last quantity vanishes since ¢ € H,,(div; D).

Exercise 51.4 (Primal, dual formulations). Let p € H(D) solve (51.15) and define o :=
d~!(f — Vp). Since [, (Vp-T+pV-T)dz = 0 for all 7 € H(div; D), the first equation of (51.6)
is satisfied. Moreover, we infer that fD o-Vgdxr = — fD gqdz for all ¢ € H}(D), implying that
V.o = g so that the second equation of (51.6) is satisfied. Let now (o,p) € H(div; D)xL?(D)
solve (51.6). Then V.o = ¢ and taking a divergence-free test function 7 in the first equation
of (51.6) shows that (51.17) is satisfied. Finally, let o € H(div; D) with V-0 = g solve (51.17),
and let p € L*(D) be s.t. [, pV-rde = [,(d o — f)-7da for all 7 € H(div; D) (note that
the right-hand side vanishes if T is divergence-free). Since V- : H(div; D) — L?*(D) is surjective
owing to Lemma 51.2, p is well defined, and its definition implies that the first equation of (51.6)
is satisfied. The second one follows from V-0 = g. Since Vp = f — d~'o, the energy identity
results from

1 1 _
&) =3 [ VpdVpdo = -5 [ (c-df)d (s - df) = & (o).
D D
Exercise 51.5 (Primal mixed formulation). The weak mixed formulation is

Find p e V:= HY(D) and A € Q := H~2(8D) such that
a(p,q) +b(q,\) = f(a), Vg€V,
b(p, 1) = g(1), V€ Q,
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with a’(pa Q) = fD Vp-Vgdz, b(’l},/l,) = <N7’7g(v)>3D7 f(q) = fD fqdz, and g(ﬂ) = <M79>6D'
All these forms are bounded. Moreover, the reflexivity of H %((?D) implies that B = ~&, so that
ker(B) = ker(v8) = Hg(D) owing to Theorem 3.10. Hence, the bilinear form a is coercive on
ker(B). Furthermore, B is surjective still by Theorem 3.10, so that the well-posedness follows from
Theorem 49.13. The second equation in the weak mixed formulation implies that (1, v8(p)—g)op =

0 for all u € H™2(8D), so that we recover the boundary condition v&(p) = ¢ a.e. on D, and the
PDE follows by taking g arbitrary in H{ (D) in the first equation.

Exercise 51.6 (Fortin operator). Let us verify the two properties stated in Lemma 26.9(i)
with W := H(div; D), W, := P3(Tp,), V := L*(D), and V}, :== PP(T). The operator II;, maps
from H(div; D) to P3(T,) as required. Moreover, we infer that for all g, € PP(7,) and all
v € H(div; D),

/ 0n VT (v) da — / V- (TA(V) (T2 (V-0)))) da
D D
- | aTr @)

:/ anZp (V-v)dz
D

= / qnV-vdz,
D

since V-J = JP(V-), PP(Ty) is pointwise invariant under [, and g, is in PP(7). In addition,
using the stability of all the operators, one can see that ||II;,(v)|| g (aivip) < cl|V-v|lL2(D).

Exercise 51.7 (Inf-sup condition). (i) Let ¢, € Q. Let ¢ € H(D) solve A¢ = q; and set
Sqn = Vo. Elliptic regularity implies that ¢,, € H*(D) with s > %, ie., g, € V4(D), where the
space V(D) is defined in Lemma 19.6 (with p := 2). This means that g, is in the domain of the
interpolation operator I,‘li. Moreover, we have for all K € Ty,

IZ5 (Squ 1) |22 x) < llSgnix N2y + hiclSgn i LBz (56))-

Summing over the mesh cells and since hx is bounded by the diameter of D, we infer that
I1Z5 ()l 2 (D) < ellsg, =Dy < € lldllL2(p)-

We can now conclude as in the proof of Lemma 51.10, but this time we take ¢ = Ig(gqh),
(ii) Let again g, € Qn. We use the hint to infer that there is g,, € H'(D) such that VSy =
and ”th”Hl(D) < C||q||L2(D). Since

IZ5 (San 120 22 (r0) < ellisguixc pac) + icISan ¢ Lr (1)
for all K € Tj, we can now conclude as in Step (i).

Exercise 51.8 (Error estimate). (i) The error bound on o follows from Corollary 50.5 since
la]l = As, @ = Ny, ker(Bp) C ker(B), and we use Remark 50.6 to bound the norm of the Fortin
operator by Il — 1 For the primal variable, we proceed as in the proof of Theorem 51.16 and
use the bound on the dual variable.

(ii) To bound the best-approximation error on the dual variable, we use the commuting projection
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J and Theorem 23.12 to infer that
o — jl?("’)HH(div;D) <o — jhd(o')||L2(D) + (Vo — j}?(V'U)HN(D)

<c| inf Jlo—eulrxpy+ inf Vo —dnlrp) |,
shEPI(Th) dhEPP(Th)

and we conclude invoking Corollary 22.9 (with p := 2 and x € {d, b}).

Exercise 51.9 (Box scheme). (i) We observe that
dim(V,) = N; + N} = (d + 1) N, = dim(Wy,),

where Nt is the number of mesh faces, N} the number of mesh interfaces, and N, the number of
mesh cells. Let vy, := (o, pr) € Vi,. Following the hint, we infer that

an(vn, wn) = Ag (O, @), + X Vapn)L2(p) + (V-0n,2p, + pA ' V-01)12(D)
(Vhph,zh + Ao Vipn)L2(p)
o (on,@n)L2(0) + (02 IV-0nllizpy + Aol Vapnll iz o)
+2(V-on.p,)r2(p) + (n, Vapn)L2(p) + (Vipn, Uh)L2(D)
)‘0_ (”UhHL? (D) +£ |V 0'h||L2 D)) + )\OHVhPh”m
+2(V-on,pn)12(D) + 2(0h; Vapr)L2(D)
=X (”UhHL? (D) +£ |V 0'h||L2 D)) + )‘Othph”iZ(D)?
since (V-on,p, )r2(p) = (V-0n,pn)r2(p), (s Vapn)L2(p) = (0n, Vapn)r2(p) and

(V-on,pn)r2(p) + (Oh, Vabn)L2(D) = Z (onnr, [pr])rzr) =0,
FeFy

owing to the fact that the normal component of o, is continuous across F' and takes a constant
value on F and that [, [pn]ds = 0 by definition of the space P{§(7,). Since (60 — op)x =
é(V-ah)(w — &), where & is the barycenter of K for all K € Tj,, we infer that there is a uniform
constant ¢ > 0 such that [|@y[|3>p) + CHIIV-0nlF2 0y = cllonlliaipy + (b IV-onllizp)). This
shows that

an(vn, wy) > min(1, ¢) [Jon 13, | Yoy, € V.

Finally, we have
lwnllfy, = A0 llen + Ao VapnlZipy + 20l5% 0120, + €52 ' V-anll72py < ¢ llonllf,

where we used that ||y [|z2p) < [lonlL2(p). P, lz2(p) < [lPnllz2(p), and the discrete Poincaré-
Steklov inequality CS®05" |pnllL2(py < |[VapnllL2(py (see Lemma 36.6). This proves the expected
inf-sup condition on the bilinear form aj. Notic e that ||-||y;, defines a norm on V3, owing to the
discrete Poincaré-Steklov inequality.

(ii) Since the linear spaces Vj, and W) have the same dimension, the above inf-sup condition
implies that the problem of finding uj € Vi such that ap(un, wn) = (f, Tn)L2(p) + (9, 9n)L2(D)
for all wy, € Wy, is well-posed. To establish an error estimate, we use Lemma 27.5. Let us set
V; := (H(div; D)xHj (D)) + Vj, which we equip with the norm

HU”%/u = )‘alHUH%J(div;D) + /\0||Vhp||2L2(D)
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Notice that (27.5) holds true with ¢y := 1, i.e., [Junllv, < [Jvnlly, for all v, € V. It remains to
bound the consistency error. For all (vy,wp) € Vi xW;,, we have

(6n(vn), wh>W;L,Wh = (fvTh)L2(D) + (g, Qh)L2(D) — an(vn, wn)
=Xy (o — onmn)L2p) + (VD = Vibn, Th) 2oy + (V-0 — V-on, qn)12(p)
<c ||(07p) - (o'hvph)”Vu”wh”Whv
where we used the Cauchy—-Schwarz inequality and the discrete Poincaré-Steklov inequality for the
third term on the right-hand side. Owing to Lemma 27.5, we infer that there is a c¢ s.t. for all

he™H,
||(07p) - (o'hvph)”Vn <c inf H(va) - (0';17]9;1)|‘W'

(o},,0,)EVh
If the solution is smooth enough, we can use the approximation properties of finite elements to
infer that
1 1
Ao 2(lo = onllLz(p) + €plIV-(e — on)llL2(p)) + A Ve (P — pr)llL2(p)
_1 1
< ch(Xg 2(lo|ar () + olV-o|ui(p)) + Aé pla2(D))

that is, the error converges to zero with rate h.
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Potential and flux recovery

Exercises

Exercise 52.1 (Hybridization). Consider the discrete problem (52.4). (i) Let Q5 = QnxAp,
and By, : thy — Q}, s.t. (Br(m), (Qh’“h»é;@h = bp(Th, qn) + cn(Th, ppn) for all 7, € thy and

(qn, pn) € @h. Prove that E; is injective. (Hint: integrate by parts and use the degrees of freedom
of the RT}, 4 element.) (ii) Prove that (52.4) admits a unique solution.

Exercise 52.2 (Crouzeix—Raviart). Assume that d|x and gk are constant over each mesh
cell K € T,. Let V), denote the broken gradient (see Definition 36.3). Let Py§(7s) be the
nonconforming Crouzeix—Raviart finite element space with homogeneous Dirichlet conditions (see
(36.8)) and let py* € PC(Tn) solve [, (dVapit)-Vigi™ dz = [, ggi* da for all ¢i* € PL§(Ty). Let
x i be the barycenter of K for all K € Tj. Define

o = —(dVp) |k +d gk (T — K ) K,

prk = (k) + d K| gk (AT (@ — k), T — oK) r2k).
(i) Prove that o, € Pg'(Ty). (Hint: compute [,[on]nrpefds with ¢f* the Crouzeix—Raviart
basis function attached to F.) (ii) Prove that [, (g V-7, + Vigs™-7) dz = 0 for all ¢i* € P{§(Th)
and all 7, € P§(T3,). (iii) Prove that the pair (o, pp) solves (51.21) for k := 0 and f := 0. (Hint:
any function 7, € P§'(7Ty) is such that 7, x = 7k +d~'(V-7,) |k (® — Tk ), where T is the mean
value of 7, on K.)

Exercise 52.3 (Post-processed potential). Let £ > 0. Consider the simplicial Raviart—-Thomas
element RT}, ;. Assume that it is possible to find a polynomial space M, ;s so that for all m € My, ./,
Mg, (m) = Hp,, (m) = 0 implies that m = 0 for all K € Tp,. Prove that (Vm, T)p2 k) = 0 for all
7 € RT}, 4 implies that m = 0. (Hint: integrate by parts and use the degrees of freedom in RTy, 4.)
Let now mj° be the post-processed potential from the dual mixed formulation (52.2). Show that
[Vmp©llp2k)y < clld™ron — fllL2(k) for all K € Ty. (Hint: use norm equivalence on the reference
element, then (52.13); see also Vohralik [45, Lem. 5.4].)

Exercise 52.4 (Bound (52.19)). Prove (52.19). (Hint: use Theorem 34.19.)

Exercise 52.5 (Inverse inequality). Prove (52.20). (Hint: consider the dual mixed formula-

tion of (52.17) and introduce the post-processed variable mZ°, use (52.13), accept as a fact that

lm2°lz2(p,) < chp, |Vemic|L2(p,), and bound traces of m2® using Lemma 12.15.)



278 Chapter 52. Potential and flux recovery

Exercise 52.6 (Prager—Synge equality). Let u € H}(D) be such that —Au = f in L?(D).
Let up, € H}(D), and let o* € H(div; D) be such that V-a* = f. Prove that |V(u — uh)H%g(D) +
[Vu+o*||3. 2(py = = [|Vup +o ||L2(D). (Hint: compute (V(u —up), Vu +0*)r2(py.)

Solution to exercises

Exercise 52.1 (Hybridization). (i) Let (g, un) € ker(g,j), ie., bp(Th, qn) + cn(Th, n) = 0 for
all 7, € thy . Integrating by parts in each mesh cell K € Tj, we infer that

Z / V| Th dx +/ (njorx — an k) (Th'mi ) ds = 0.

KeTn

Since Vg x € Pr_1,4 for all K € Ty and (pnp — qnjx) © Tr € Pra—1 for all F € Fg, we can use
the degrees of freedom of the RT 4 element and choose 7, € thy to obtain

> (HV(]hHLz + bl njor — anix Il aK)) =0.
KeTy,

This implies that g, is piecewise constant and that ppox = qnx on the boundary of each mesh
cell. Since up, vanishes on the boundary faces, we infer that ¢, vanishes on all the mesh cells having
a boundary face and that pj, vanishes on all the faces of those cells. We can repeat the argument
for the cells sharing an interface with those cells, and we can move inward and reach all the cells
in 75 by repeating this process a finite number of times. This proves that ¢, = 0 and u, = 0.
Hence, B; is injective.

(ii) The discrete problem (52.4) is a finite-dimensional saddle point problem. The bilinear form
a is coercive on V), y><Vhy and the bilinear form by, associated with the operator Bj, on v, nyh

(i.e., bu(Th, (qn, 1)) := (Bn(h), (qn, 1n)) g 5, ) satisfies a discrete inf-sup condition owing to the
h?

injectivity of the adjoint operator EZ established in Step (i). Hence, the discrete problem (52.4)
admits a unique solution.

Exercise 52.2 (Crouzeix—Raviart). (i) Let F' € F; and let D be composed of the points in
the two cells such that F' := 0K;NJK,. Observe from the definition of o, that o, -/ is piecewise
constant on each face I/ C dDr and that V-0, x = gx. Following the hint, we infer that

/ (o] mrE ds = / V- (oned®) de
F KUK,

- /K (Voo + o Vo) da
lU r

:/ (g(p(l‘;}{ CR d v Cl{)d — O
KUK,

since [, op-npefds = 0 (because ¢ has zero mean value on each face F' C dDp) and [}, (x —
xr ) Veitde = 0 (because Vit is piecewise constant). Observing that both [o]-nF and @
are constant on F', we infer that [o,]-np = 0. Since, by its definition, o}, € P(()i’b(’ﬁl), we conclude
that o, € Pod('ﬁl)
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(ii) We integrate by parts in each cell K € Tj,. This yields

/(qg[{V'ThﬂLthi?{'Th)dx: > /Th'nF[[qI(ZR]]FdS‘F > /Th-nFq;({’“ds,
D P P

Fery FeFp

since the normal component of 7, is single-valued at interfaces. To conclude that the right-hand
side is zero, we observe that the normal component of 73, is constant on all the faces, whereas
lg"]F and qﬁTF have zero mean value on all F' € F¢ and F € F, respectively.

(iii) Since o, € PS(Ty) satisfies V-0, = g, it remains to show that the weak form of Darcy’s law
is satisfied. Let 7, € P§(T). We infer that

/ phVJ'h de = / pg“(wK)V.Th dz + / d_2g|K(.’1} — :BK)(d_l(CE — :BK))VJ'h dx
K K K

= / PtV Ty, da —|—/ d_lg‘K(:I: —xg)-(d (7 — 1K) do
K K

:/ pfl“V-Thdx—i—/ d'gx(x —zK)-(d ') do
K K

:/ PRVt do —|—/ (o +dVpi™)-(d~'7,) du,
K K

where we used the definition of p;, and the fact that ¢ and V-7, are constant on K in the first
line, that fK ptde = p*(xk), V-1, is constant on K, and the hint in the second line, and that
g is constant on K and the definition of o, in the third line. Summing over K € 7j, and using
Step (ii), we infer that [, ppV-m da = [ 7h-(d " top) da.

Exercise 52.3 (Post-processed potential). Let m € My, ;- and let us assume that (Vm, 7)g2(x) =
0 for all 7 € RT}, 4. Integrating by parts, we infer that

0= (Vm, T)LZ(K) = —(m, V'T)Lz(K) + (m, T'TLK)LQ(@K)
= _(HQK (m)7 v'7-)112(1() + (HAaK (m)7 T'nK)L2(8K)7

since V-1 € P, 4 = Qx and T-nk is a piecewise polynomial of degree at most k on the faces in
OK. Subtracting the mean value my = ﬁ / ¢ mdz and using the divergence theorem, we obtain

with m’ :=m — my,
0= —(q,(m"),V-T)r2(i)y + (Mayy (M), 710K ) 12(0K0) -

Let us consider a function 7 € RT}, 4 such that 7-ng = 0. Integrating by parts again, we infer
that VIIg, (m’) = 0 since this function is in Py_; 4 and moments in K against functions in Py_; 4
are possible the degrees of freedom in RT} 4 once those attached to faces have been set to zero.
Since m’ has zero-mean value in K and Ilg, preserves this property, we infer that Ilg, (m') = 0.
We now obtain that 0 = (IIz,, (m'), T-nk)r2(5K), and choosing now 7 to have arbitrary normal
component on each of the faces in K, we infer that Iy, (m') = 0. We can now use the assumption
on Ilg, and IIs,, to infer that m = my, i.e., m is constant.

Mapping to the reference element and using norm equivalence, we infer that there is a constant ¢
s.t. for all K € T, and all h € H,

|(Vm7"')L2 K |
IVml L) < ¢ sup I
rerT,,  |ITlL2x)
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Let now m}.¢ be the post-processed potential from the dual mixed formulation (52.2). Using (52.13),
we infer that

|(Vmye, )2 (i)

Vmp©l|L2x)y < ¢ sup

TERTy 4 ||7'||L2(K)
(d™ron — f,7) L2 i)
=c sup
TERT), 4 I7llz2x)

<|ld7'en — Fllax)

Exercise 52.4 (Bound (52.19)). Recalling the notation in Corollary 34.14, the key point is that,
upon defining

N (pn) = hrllg + V-(dVpn)l L2k,

ﬁwh):—( > hF/n[[dehﬂni%F/)),

F'eFinFg

the bound (52.18) can be rewritten as follows, where ¢ > 0 only depends on the regularity of the
mesh sequence:
cllo, + dVpnllrae) < D (nke(pn) + i (p)).
K'eTx

We can now use Theorem 34.19 to bound the right-hand side: the oscillation terms from Defi-
nition 34.17 reduce to wy, = h||g — ZP(9)|lr2(rry (with 1Y := 1 > k — 1) and w, = 0 (with
I := k — 1) since d is piecewise constant, and only the cells in T need to be considered when
bounding 7% (py) since only jumps across interfaces in Fy, are involved.

Exercise 52.5 (Inverse inequality). Following the hint, let m2Z° be the post-processed variable
from the dual mixed formulation of (52.17). If z € Vg, m2° has zero mean value in D, and both o

and I?’b(fz) have zero normal component on 0D, (recall that f, = —1.dVpy, that ¢, vanishes
at 0D, and that .'Z'ld’b preserves zero normal components). If z € V,?, m3° has zero moments up to

order [ on all faces located in 0D, N dD, and both o} and I? "b( f=) have zero normal component
on all faces located in 0D, \ dD. Owing to (52.13), we infer that

loz =T ()l e, = @0 (F2) = 0% Vami)rao.).
Integrating by parts and using the above properties on 9D, as well as
VAT (F2) — 02 =T (V-f= — g:)
on each cell in D, we infer that
loz =T ()2, = = (T (V£ = 92),mE) 20
+ Z / Idbfz)—a)]]np/ds

FleF?

Recalling that the jump of mj° has zero moments up to order /, that the normal component of

I? P(f.) — o in each cell in D, is a polynomial of order at most [, and that [oi]-ng = 0, we
infer that

/F [ @0 (f) — o2)] e ds = ({mie), T (f2)]ne) g,
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We now bound (ZP (V- f2—g=), m2%) 12(p.) and ({m}}, [Z° (£2)] “npr) 2y using Cauchy—Schwarz
inequalities. We use the inequality [|m2°||L2(p,) < chp, | Vimi®| L2(p,) given in the hint (this bro-
ken Poincaré-Steklov inequality can be proven along the lines of Exercise 22.3), and we combine it
with the multiplicative trace inequality from Lemma 12.15 and the regularity of the mesh sequence
to infer that y

M2l L2y < chplVemZtll L2 (p,)-

Using the stability result from Exercise 52.3, we can bound ||V, m2¢| L2(p,) by [l TP (f2) llL2(p.)-
This leads to

1
clloy =T (f) 2o, < b TP (V-Fz = g2)ll2ay + D PR (F)]me |l L2,
FreFe

with ¢ > 0, and we conclude using the L?-stability of Ilb, the fact that the normal components of
I?’b( f=) are L?-orthogonal projections of those of f., and the regularity of the mesh sequence.

Exercise 52.6 (Prager—Synge equality). (V(u — up), Vu + 0*)p2(py = 0 follows from inte-
gration by parts since (u — up) € H}(D) and V-(Vu + o*) = —f + f = 0. As a result, we
have

HVuh + U*”%P(D) = ||V(U - Uh) - (VU + U*)Hiz(D)
= IV (u = un)l32py + Ve + 0|3 ).

This proves the assertion.
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Chapter 53

Stokes equations: Basic ideas

Exercises

Exercise 53.1 (V- is surjective). Let D C R? be a domain of class C2. Prove that V- : H} (D) —
L?(D) is continuous and surjective. (Hint: construct v € H{ (D) such that v = Vg+ Vx4, where
q solves a Poisson problem, v solves a biharmonic problem, and Vx4 := (921, —011)T.)

Exercise 53.2 (de Rham). Let D be a bounded open set in R? and assume that D is star-shaped
with respect to an open ball B C D. Prove that the continuous linear forms on WO1 (D) that
are zero on ker(V-) are gradients of functions in Lﬁ/(D). (Hint: use Remark 53.10 and the closed
range theorem.)

Exercise 53.3 (L?-estimate). Prove Theorem 53.19 directly, i.e., without invoking Lemma 50.11.

Exercise 53.4 (Projection). Let (Vi0,Qn)nen be a sequence of pairs of finite element spaces.
Let p € [1,00] and let p’ € [1, 00] be s.t. %—i—; =1. Let IIZ : Q, — Zj, be an operator, where Z}, is
a finite-dimensional subspace of LP(D). Assume that there are 31, 82 > 0 such that for all h € H,

| [panV- 'UhdI| Z | /panV- vhdm\
SquhGVhO |'Uh|wl P (D) - ﬁl”qh N Hh (qh)”Lp,(D) for all dn € Qh and Supvhtho "Uh‘wl P (D)

Ballanll 1o (py for all gn € Zp. (i) Show that 17 is bounded uniformly w.r.t. h € H. (ii) Show that
the (Vio, @n) pair satisfies an inf-sup condition uniformly w.r.t. h € H.

Exercise 53.5 (Spurious mode for the (Q;,Q;) pair). (i) Let K = [O 1]? be the unit square.
Let @;; = (%,1), for all i,j € {0:2}. Show that the quadrature Jz f(®)dz =~ Z”w”f(a”)

where wij = 55(3i(2 — i) + 1)(35(j — 2) + 1) (ws; = 35 for the four vertices of K, Wi = g
the four edge midpoints, and w;; := % at the barycenter of K ) is exact for all f € Qa. (Hint:
write the Q2 Lagrange shape functions in tensor-product form and use Simpson’s rule in each
direction.) (ii) Consider D := (0,1)? and a mesh composed of IxI squares, I > 2. Consider the
points ajm = (g7, ) for all [, m € {0:2I}. Let p, be the continuous, piecewise bilinear function
such that pp(@ok,2n) == (— 1)’“‘HI for all k,n € {0:I}. Show that pj, is a spurious pressure mode

for the (Q1,Q1) pair (continuous velocity and pressure).

for
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Solution to exercises

Exercise 53.1 (V- is surjective). Let g € L2(D) and let ¢, € H}(D) := {v e H (D) | [jvdz =
0} be such that
Agg =g, Ondgop =0

The elliptic regularity theory for the Laplace operator implies that there is a constant ¢ so that
laglmz(py < cllgllrz(py- Let m := (n1,n2)" be the outward unit normal at the boundary and
define the unit tangent vector 7 := (—ng,n;)". Owing to the boundedness statement from Theo-
rem 3.10(iii) applied componentwise to Vg, (with p := 2), we infer that Vg sp € H=(dD), ie.,
T-Vagop € H?(9D) (recall that the boundary of D is of class C?). Let ¢ € H?(D) be such that

A%y =0, thgop =0, Onthyap = T-Vagop.

Let us show that there is ¢ so that [[¢g]lm2py < cllgllr2py for all g € L2(D). Invoking the

surjectivity statement from Theorem 3.16(i), there exists ¢, € H?*(D) so that dgop = 0 and

Ondglop = T-Vagop, and there is ¢ s.t. [|¢gl| g2(p) < C”T'V%”H%(BD) for all g € L%(D). Hence,

we have (the value of ¢ can change at each occurrence)

1¢gllr2(0) < cllT-Vay| ) < cllVagll

HZ(8D) = H? D)
< cllggllaz(py < cllgllz2(py-

This shows that ||¢g|lz2(p) < cllgllz2(p)- The definitions of ¥, and ¢, imply that

A2(7/157 - ng) = _A2¢g7 (7/19 - ¢g)|6D = Oa 871(1/}9 - ng)\OD =0.

The solution to this problem is such that |A(vy — ¢)|r2(p) < [[A¢yllz2(py. This indeed results
from

HA(Q/J(] - ¢g)||2L2(D) = (A(d’q - ¢q)a A(wg - ¢g))L2(D)
= (AQ("/J(] - ¢g)7wg - ¢g)L2(D)
= _(A2¢gv¢g - ¢’9)L2(D) = —(Aébga A(‘/’g - ¢g))L2(D)7

and the assertion follows from the Cauchy-Schwarz inequality. Moreover, since (1y — ¢4)jop = 0,
the elliptic regularity theory implies that

Vg — Pglla2(py < c|AWy — dg)llz2(py < cl|AdgllL2py < cllgllz2(p)-

Invoking the triangle inequality and the bound |@yl|z2(p) < cllgllz2(p) shows that there is c,
uniform w.r.t. g € L2(D), such that ||¢4]|g2(py < ¢llg]l2(p)- Let us now consider the field

v, = Vg, + VX,
where VX, = (021, —811/)g)T. We have V-v, = g and
Vg1 = Onqy + (M102y — n201%y) = 0+ 7-Vipy = 0:9, = 0.
Moreover, we have
Vg T = T-Vqy + (—n202g — n101¢y) = T7-Vqy — Onthy = 0.

In conclusion, Vv, = g, vg9p = 0, and there is ¢, uniform w.r.t. g € L%(D), s.t. lvgll e (py <
llagll zz2(Dy + [1g |l 2Dy < cllgllL2(py-



Part XI. PDES IN MIXED FORM 285

Exercise 53.2 (de Rham). Consider the weak gradient operator V : v (D) — W' (D).
One readily sees that —V = (V-)*. Since V- is surjective owing to Remark 53.10, the closed range
theorem implies that [ker(V-)]* = im(V).

Exercise 53.3 (L*-estimate). Let (&, ¢) € VaxQ be the solution to the adjoint problem with
source term u — wp, i.e.,

a(v, &) + b(v, ¢) = /D(u —up)vdx, b, q) =0, V(v,q) € VaxQ.

Taking v := u—wup, q := p—pp, and using the Galerkin orthogonality property, i.e., a(u—wup, &)+
b(&n,p — pr) =0 for all &, € Vig and b(u — up, ¢p) = 0 for all ¢p, € Qp, we obtain

lw = unl|izpy = alu — un, &) + b(u — up, @)
=a(u —up,§ —&n) — b(&n,p — ) + b(u — wp, ¢ — én)
=a(u —up,§—&n) +b(& — &n,p —pn) + b(u — wp, ¢ — én)
< la|l |w = wn|m1(0)|€ — &nlm (D)
+ [0l 1€ = &nle (o)l — prll2(py + 110]l |w — wn| g 0y |6 — dullL2(D)
We infer that

inf - inf  |[b] [|¢ — )
“nf, el e Gl o2, 1110 = Onllzo) )

and the approximation properties of finite elements imply that

Hu - uh”%ﬁ([)) <c (H’LL — uhHHl(D) + — ” ” Hp ph”L D))

x b ([lall €] g+« oy + 1101 @] 2 (D))-

The conclusion follows from the regularity pickup estimate

lall [€nler+e(py + 1Dl [@]r2 (D) < e *llu — wn]l2(p
Exercise 53.4 (Projection). Let g, be an arbitrary function in Q.

(i) Holder’s inequality implies that

| [p anV-vp dz|
cllanll Lo (py = sup fﬁ}hh}v—lp(m > Billgn — 105 (gn)ll 1o (py-
Vh hO ’
Hence, [|TI7 (a0)ll o (py < 117 (an) — anll oo (py + lanll o (py < (5 + Dllanll o (py-
(ii) We have

| Jp anV-vndz| w | Jp 107 (gn) Vv da| sup | Jp(an — 117 (gn))V-vp da|

sup
vneVio  [Vrlwie(D) v EVio [vn|wie (D) v, EVio [vn|lwie(p)

> BollTI5 (an)l Lo () = €llan = T (an) | Lo ()

where we used Holder’s inequality and ||V-va|zr(p) < clva|wip(p) to bound the last term. But
we also have
| [ anV vy dz|

sup —P————— > Bilgn — 17 (1)l Lo (-
vneVio  |[Vn|lwir(D)
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The above two inequalities imply that

|fD qnV-vp, d:Z?| 6162 z
sup > It qdh p’ .
or €V |'Uh|W1«P(D) c+ ﬁl H h( )“L (D)

This, in turn, implies that

<C+[‘31 1 ) fD th"l}hd:Z?

su 72 HZ ’ + —HZ ’ Z ’ y
55 5 p I (@r) | oy + llan = 10 (@)l 2oy 2 llanll Lo ()

v,EVio |[VhlWin(D)
which shows that (Vj,0, Q) satisfies a uniform inf-sup condition.

Exercise 53.5 (Spurious mode for the (Q;,Q;) pair). (i) Let oZ-j be the Q9 Lagrange shape
function associated with the node @;; := (%,1), 4,j € {0:2}. This shape function can be repre-
sented as é\ij (Z) == pi(Z1)q;(T2), where T := (Z1,72)" and p;, g; are univariate quadratic polyno-
mials. Using Simpson’s rule yields

/ﬁ@j(f/ﬁ) dz = (/()lpi(fl)d@) (/01‘17'(52)‘1@2)
= 2 (i(0) + 4pi(3) + i) (55 (0) + g (3) + 45(1)

1€{0:2} me{0:2}
= Z wlmé\ij (@im) = wij,

I,me{0:2}

where Wiy, 1= 5¢(31(2 — 1) + 1)(3m(2 — m) + 1). The conclusion follows readily since (é\ij)l‘_’je{otg}
is a basis of Q.

(ii) Let us first observe that pp(asiii,2n) = 3((—=1)*™ + (=1)*1F7) = 0 for all k € {0:1-1}
and all n € {0:1}. Similarly, pp(agk2nt+1) = 0 for all k& € {0:1} and all n € {0:1—1}, and
Ph(@2ky1,2n41) =0 for all & € {0:7 — 1} and all n € {0:I—1}. Let ;; be a global shape function
(for the @, Lagrange element) associated with the node asg; 2;, for all 4, j € {1:1—1} (recall that
I > 2 by assumption). It suffices to show that [, (V-@y;)ps dz = 0. Since (V-@y;)ps is piecewise
in the polynomial space Q2 2, the function ¢;; is supported in the four cells sharing ag;2; and
since V-@ij(@zi+1),2(j+1)) = 0, the quadrature from Step (i) yields

—1)¢t+I
[ @omas = CI (109 00)ania) - (Vo) aina)

— (Vi) aziivr)2j) — (V-wij)(@gia-1)) — (V'Soij)(agi,z(jﬂ)))-

Symmetry arguments show that (V-;;)(azi2;) = 0, (V-¢i;)(@si-1).2;) + (V-pij)(@z(it1)25) = 0
and (V-goij)(agm(j_l))+(V-<pij)(a2i72(j+1)) =0. Hence, fD(V'SDij)ph dz = 0 for alli,j S {1:[—1}.
This shows that pp, is a spurious pressure mode.
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Stokes equations: Stable pairs (I)

Exercises

Exercise 54.1 (Mini element). Show that the Fortin operator II; constructed in the proof of
Lemma 54.5 is of the form IT,(v) := Iy0(v) + X ger, Dicq1:a) vi-(v)bie;, for some coefficients
v (v) to be determined. Here, {€;};c(1.q; is the canonical Cartesian basis of RY.

Exercise 54.2 (Bubble<Stabilization). Consider the mini element defined in §54.2 and assume
that the viscosity u is constant over D. Recall that Vj,o := V,\y & By, and Q, := P{(T,) N L2(D)
with V}y := P (7). Let (wn, pp) be the solution to the discrete Stokes problem (53.14). (i) Show
that a(vp, by,) = 0 for all v, € V}}; and all b, € By,. (ii) Set uj, == uj, + uz € Vio. Show that

a(u),vp) + b(vy,pr) = F(vp), Y, € Vhlo. (54.1)

(iii) Let by = boTx be the bubble function on K € T;,. Let {ei}icq1:4y be the canonical Cartesian
basis of R?. Let S € R**? be defined by S/5 := fbileza(bKej,bKei) for all 4,5 € {1:d}. Let
uZIK =Y ic(1.ay Cr€ibr. Show that cx = (S¥)~1(Fg — Vpn i), where Fj; = mF(bKei)v
for all i € {1:d}. (iv) Set cu(pn,qn) = Y ger, Vanx (™)' Vonk [ b dz and Ru(qn) =
Y KeT, Van x (8%) ' Fg [} bx dz. Show that the mass conservation equation becomes

b(wy, qn) — cn(pn, an) = Glqn) — Ri(qn), Van € Qn.- (54.2)

Note: since (Sg)~" scales like = 'h3, cn(pn,qn) behaves like Y7o %fK Van-Vpp, dz, and

Ry, (qn) scales like ZKeTh, % fK Van k- Fr dz. This shows that, once the bubbles are eliminated,
the system (54.1)-(54.2) is equivalent to a stabilized form of the Stokes system for the (P;,P;)
pair; see Chapters 62 and 63.

Exercise 54.3 (Singular vertex). Let K C R? be a quadrangle and let z be the intersection of
the two diagonals of K. Let K1,..., K4 be the four triangles formed by dividing K along its two
diagonals (assume that K1 N K3 = {z} and Ko N Ky = {z}). (i) Let ¢ be a scalar field continuous
over K and of class C" over the triangles K1, ..., Ky. Prove that 35,y 41 (=1)'n-Vx, (2) = 0
for every unit vector m. (ii) Let v be a vector field continuous over K and of class C' over the
triangles Ky,..., K4. Prove that Zi€{1:4}(—1)iv-v|m (z) = 0. (iii) Assume that v is linear over
each triangle. Show that the four equations | x, Vvdz =0foralli e {1:4} are linearly dependent.
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Exercise 54.4 (P;-iso-P5,P;). Consider the setting of Lemma 54.12 with the (P;-iso-Ps,P;) pair
in dimension three. (i) Let K € T,. Let Vi be the set of the vertices of K. Let Mg be the mid-
points of the six edges of K. Let ML be the set of the two midpoints that are connected to create
the 8 new tetrahedra. Let M3 be the set of the remaining midpoints. Let V3o be the Py velocity
space based of Tj, /2. Find the coefficients a, 3,7 so that the following quadrature is exact for all

wy € Vio: [pwndr = |K|(a) oy, wi(z) + B2 ment, Wh(m) + 93 e vz wn(m)). (Hint:
on a tetrahedron K’ with vertices {2'}./cy,,, the quadrature [, wy dz = |K’| Dev Jwn(2')
is exact on Py.) (ii) Prove Lemma 54.12 for the (P;-iso-P2,P;) pair in dimension three for all
p € (1,00). (Hint: adapt the proof of Lemma 54.8.)

Solution to exercises

Exercise 54.1 (Mini element). A direct calculation shows that

fK (v; — I,%bav (v;)) dx
fK bK dx ’

Tk =

for all i € {1:d} and all K € Ty,

Exercise 54.2 (Bubble<Stabilization). (i) Since the mesh is affine, the function e(vp,) is linear
over each cell K € Tj, for all vy, € Vhlo. Hence, we have

1
ﬂa(vh,bh) _ZK:/I(@(vh):e(bh)dx_ZK:/Ke(vh):Vbh da
= ZK: - /K V-(e(wvp))-by, dz = 0.

(ii) Since the bilinear form a is symmetric, the above argument gives a(u?,vs) = a(vy,u?) = 0.
The assertion follows readily.

(iii) Let K € T. Testing the momentum conservation equation against the function bxe;, we
obtain

Z a(bKej,bKei)ch = a(uz,bKei) = a(up,bie;)
je{1:d}
= —b(brei, pn) + F(bxe;)

:—/ bKaiphdI‘FF(bKei)-
K

Dividing by fK bi dx, we obtain S¥cx = (=Vph k + Fg). This proves the assertion.
(iv) The mass conservation equation gives for all g, € Qp,

Glqn) — b(uh, qn) = b(uh,qn) = > / brek Vg dx
KeT, VK

= Z VQh|K(SK)_1(_vPh\K+FK)/ by da.
KeTh K
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Using the notation

cn(Phy qn) = Z V%|K(3K)71Vph|1</ by dz,
KeTn K

Ru(qn) = Y VQh|K(SK)71FK/ bk du,
KETh, K

the mass conservation equation becomes

b(up,, qn) — cn(pn,qn) = G(qn) — Ru(an)-

Exercise 54.3 (Singular vertex). Without loss of generality, assume that the enumeration of the
triangles K1, ..., Ky is done counter-clockwise. Let 71 be a unit vector aligned with the diagonal,
say Aj, separating K; and Ky, and Ky and Kj3. Likewise, let 7 be a unit vector aligned with
the diagonal, say Ag, separating K; and Ko, and K3 and K4. Let ¢ € C°(K;R) and assume that
¢; = Px, € C'(K;;R). We have

T1-V¢1 = T1-Vou, T1-Voz =71-Va, on Ay,
TV = To-Vo3, To-Voo =72V, on As.

Since z € A1 N Ay, we infer that

—71-V$1(2) + 11-Va(2) — T1-V3(2) + T1-Vu(z) =
—72:V1(2) + 12:Va(2) — T2-V3(2) + T2-Vu(z) =

)

Let n = a7 + BT be any unit vector in R? (recall that 71 and 75 are linearly independent).
Combining the above two equations, we infer that

—n-V¢1(z) + n-Va(2z) — n-Vs(z) + n-Veu(z) =0,

Le., Zi€{1:4}(—1)in-v¢i(z) =0.
(ii) We can now apply this result to the Cartesian components of the vector field v using n = e,
and n = e,. Let us set v; := v|k, and let v}, v/ be the two Cartesian components of v;. We have

0= > (=Dduf(z)+ Y. (D)9l(z)= Y  (-1)'V-vi(2).

ie{l:4} ie{1:4} ie{1:4}

(iii) If we assume that v is piecewise linear, then V-v; is constant over K, i.e., va Vw,dz =
|K;|V-v;(z). Hence, Zie{1:4}(—1)i|Ki|*1 Jx, V-vida = 0, which shows that the four equations
Jx. V-vida = 0 for all i € {1:4} are linearly dependent.

Exercise 54.4 (P;-iso-P,P;). We assume that d = 3.

(i) Let Tx/s be the collection of the eight tetrahedra created by dividing /K. Notice that the eight
tetrahedra are not all similar, but they all have the same volume %|K |. The following holds true
for all wy, € Vi

K1
o= >

K’GTK/S

( > 'wh(z))'

zEVgr
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We observe that the vertices in Vi belong to only one cell in Tx /s, the midpoints in M belong
to 244 = 6 cells in Tx/g, and the midpoints in M3, belong to 2+ 2 = 4 cells in Tk g- Rearranging
the summations leads to the quadrature

/Kwhdxz'?%'( D wn(2)+6 > wp(m)+4 ) m(m))-

z€VK meM;, meMi

Hence, we have o = 3%, B = %, v = %.

(ii) Let p € (1,00). We proceed as in the proof of Lemma 54.8. Let 7, be the pressure mesh and
Thy2 be the velocity mesh. Let us number all the internal mesh edges of 7;, from 1 to N!. Consider
an oriented edge E; with 4 € {1: N}, and denote its two endpoints by zijE and its midpoint by
m;. Set l; == ||z — z; ||z and 7 == ;7 '(2]" — 2;7), so that [; is the length of F; and 7; is the

unit tangent vector orienting E;. Let g be a function in @)}, and let sgn be the sign function. Let
vy, € Vi be (uniquely) defined by prescribing its global degrees of freedom in Vjq as follows:

vp(a;) =0 if @; is a mesh vertex,
vp(m;) = —lf/sgn(aﬂ.qhﬂaﬂ.qh|p/717'1- it B; ¢ 0D,
vh(mi) =0 if B; C (9D,

where 0;,qn 1= Ti-Vqn denotes the tangential derivative of ¢, along the oriented edge F,;. Note
that vj,(m;) depends only on the values of g, on E;. Let K € T;. Using that Vg x is constant
over each cell in T, and since Qy, is H'-conforming, we infer that

/ th-vhdx:—/ 'Uh-thd:Z?:— Z th\K'/ ’UthC
D D

KeTh K
KeTy m;eM}, m; M
> > EIEL D 10nanma)P'l > e Y Wl Vanlly, )
KeTh m; K KeTh

The last inequality results from the fact that I; > ch g owing to the regularity of the mesh sequence,
and that every tetrahedron K € 7, has at least three edges in D, i.e., the quantities |9, qn(m;)],
where m; spans the midpoints of the edges of K that are not in 9D, control ||Vgp]|¢2. Finally, the
inverse inequality from Lemma 12.1 (with r := p, [ := 1, m := 0) together with Proposition 12.5
implies that for all K € Ty,

|'Uh|€Vl,p(K)§Chl_(p|K| Z [on(m)][}2
meMpg

and since l; < chg, we have ||vp(m)]; < ch’;;HthHIg;_l. Since p(p’ — 1) = p/, combining these

bounds shows that |vh|%11p(K) < ch’;;HthH for all K € Tj,. This proves that

p
L' (K)

A

|f th'vh dx| ’ ’ p’
sup =R > S MlVanllh, o |-
YR EVio |vh|W1‘p(D) KeTy,

We conclude by applying Lemma 54.3.
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Stokes equations: Stable pairs (II)

Exercises

Exercise 55.1 (Local mass balance). Let uj, € Vi and g € L2(D) satisfy [, ¢ V-upde =

Jpangdx for all g, € PP (Tn). Show that [, (¢%) '(¢)V-unde = [ (%) (g)gdx for all
q € Prq and all K € T;, with ¢%(¢) := qo Tk. (Hint: use that [, V-u,dz = [, gdz =0.)

Exercise 55.2 ((P2,P5)). Complete the proof of Lemma 55.8. (Hint: to show that the assump-
tion (i) from Lemma 54.2 is met, prove that [,.(v — Iy, (v))ds = 0 for all F € Fy using Simp-
son’s quadrature rule; to show that the assumption (iii) is met, show first that [ITap(v)|w1e (k) <

1
chp, ZFGF% |lv|lz»(F) and then invoke the multiplicative trace inequality (12.16).)

Exercise 55.3 ((Qx,Q}_,)). (i) Justify Lemma 55.23 for k := 2 by constructing a counterexample.
(Hint: given an interior vertex of a uniform Cartesian mesh, consider the patch composed of
the four square cells sharing this vertex, and find an oscillating pressure field using (ii) from
Exercise 54.3.) (ii) Generalize the argument for all k£ > 2.

Exercise 55.4 ((P{%,PP)). Justify the claim in Remark 55.19. (Hint: see the proof of Theo-
rem 36.11.)

Exercise 55.5 ((P2,P}), HCT mesh). Using the notation from the proof of Lemma 55.14, the
goal is to prove that im(B)* = span(ly). Let 21 := (0,0), 22 := (1,0), 23 := (0,1), 24 :== (3, 3).
Consider the triangles IA(l = conv(Z1, 22, 24), IA(Q := conv(Zs, 23, 24), and IA(g = conv(2s, 21, 24)-
Let p € Plb(ﬁ) with the reference macroelement U := {K7, K», K3}, and set

1),

)
)

P1i= D, (21), p2 =D, (22), p3 =D, (

Q1 = P|f<2(22)= q2 = pu?z(23)7 q3 = p‘f@(%),
S1°= p‘f@(gs), 82 1= p‘f(%(gl), 83 '= p‘f<3(24)-
Let myy = (21 + 24), Mgy = %(22 + Z4), M3y = %(23 +2z4). Let u € Pfo(ﬁ) and set

M), (us, vs)" := w(May), (ug,v9)" = w(Miss), (u10,v10)" := w(Z4). (i) Show (or
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accept as a fact) that

/A pV-udz = (—ur + ug + 4vr + 2vs)ps
Ky

—|— (—U7 + us —|— (V%4 + 51)8)p2 —|— (—2U7 + 2u8 — U7 —|— v + 31)10)[)3.

(Hint: compute the Py shape functions on K, associated with the nodes ™14, Moy, and z4.) (ii)
Let T : [ — Ko, T, Ky — K3 be the geometric mappings s.t.

~ ~ -1 -1\ . . A ~ 0 1\~ 4
Tz, (x) =22+ ( 1 O) (—2z1), T, (2):=2z+ (_1 _1> (- z1).

Verify that T maps the vertices of K to the vertices of K; for i € {2,3}. (iii) Compute the

contravariant Piola tranformations 1/:% (v) and 1#?? (v). (iv) Compute [ pV-udZ fori € {2,3}.
2 3 i

(Hint: use Steps (i) and (iii), and [ ¢V-vdZ = [z V%, (0)V- (P, (v)) AT (see Exercise 14.3(i)).)

(v) Write the linear system corresponding to the statement (B(u),p)m(ﬁ) = [ pV-udz =0 for

all u € Pffo(ﬁ), and compute im(B)*.

Exercise 55.6 (Macroelement partition). Reprove Corollary 55.3 without invoking the par-
tition lemma (Lemma 55.1). (Hint: see Brezzi and Bathe [7, Prop.4.2].)

Exercise 55.7 (Macroelement, continuous pressure). Let the assumptions of Proposition 55.5
hold true. (i) Show that there are ¢1,c2 > 0 s.t.

[N

b
sup |b(vh, qn)]

Z c B dh — C h2 qhn 2 ,
VR EVho ”vh”V ! DH HQ 2( Z Ul |H1(U))

Ueuy,

for all g, € Qp and all h € H. (Hint: use the quasi-interpolation operator Z#}, and proceed as in
the proof of Lemma 54.3.) (ii) Setting g = ﬁ fU qn dz, show that there is ¢ s.t. |gn)u|m () <

cllgn — ﬁhUHLQ(ﬁ) for all U € Uy, and all h € H. (Hint: use Lemma 11.7 and the affine geometric

mapping Ty : U — U.) (iii) Prove Corollary 55.5. (Hint: use Remark 55.4. See also Brezzi and
Bathe [7, Prop 4.1].)

Solution to exercises

Exercise 55.1 (Local mass balance). Let ¢ € Py 4 and K € Tj,. Let us define ¢ € P,E(’ﬁl)
by setting g x = qo Tgl and qp i = 0 if K’ # K. Let g, := ﬁfD qn dz. This gives
an —qp, € P,E’)*(ﬂl), so that by assumption we have

/(Qh —qp)V-upde = / (qn —Gp)g da.
D D

But the compatibility condition [ p 9dz = 0 and the homogeneous Dirichlet condition enforced on
up imply that

/qhv-uhdxzﬁh/ V-uhdx:OZQh/gdx:/qhgdx.
D D D D
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Hence, we have

/(qugl)Vﬂuhdx:/ th~uhd:17:/ qhgdx:/(qugl)gdx,
K D D K

which proves the assertion.

Exercise 55.2 ((P2,Ph)). Let us verify that the assumptions (i)-(iii) from Lemma 54.2 are met
with the operators Il;j, Ils;, defined in the proof of Lemma 55.8. Recall that this operators map
from V := W, "*(D) to Vi := P§,(Th). The operator Iy, is linear, so that the assumption (i) is
met. Let us show that it is also the case for the assumption (ii). Let F' € F;. Since Iy, (v)p is
quadratic on F, we can apply Simpson’s quadrature rule to infer that

/ I, (v) ds |Ig| (th( )(z1,r) + 42 (v)(MmF) + th(v)(zz,F))
F

2|§|H2h( )(mF):/F'UdS,

where {21 p, 22 p} are the two endpoints of F' and mp is the barycenter of F. Consider now
K € T, and let F§ be the collection of the mesh interfaces that are faces of K. The above identity

implies that
/V’U—th Z/’U—th )ngds =0,

FEFy
where n g is the unit outward normal to K. Since @), is composed of piecewise constant pressures,
we infer that for all ¢ € Qp,

b(v — I (v =Y qh‘K/ V(v — My (v)) dz =

KeTn

Hence, the assumption (ii) from Lemma 54.2 also holds true. Let us now turn our attention to the
assumption (iii). We define the real numbers

o [T (v) ||V o [T2n (v — Typ(v))|lv
C1p i= Sup —————, Cop i= sup
vev  |vllv veV |v]lv

Owing to the WO1 P_stability of Z2% (see Theorem 22.14) and recalling that ITyj, := Z%}, we infer
that cyp is bounded uniformly w.r.t. h € H. Moreover, the inverse inequality from Lemma 12.1
(with r :=p, [ := 1, m := 0) together with Proposition 12.5, the regularity of the mesh sequence,
Holder’s inequality, and the multiplicative trace inequality (12.16) implies that for all K € T}, (the
value of ¢ changes at each occurrence),

_ 1
Mo (0)|wre (i) < chit |7 Y [Tap(v)(mp)le

FeFy,
32 72 5
<chp Y llpie <chy D FI [0l
FeFy FeFy

» 1 -1
<chl Y ollper) < e (b lvlloa) + [vlwe)-
FeFg
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This bound combined with the approximation properties of Z3, (see Theorem 22.14) yields

TLan (v — T () lwrr (i) < ¢ (R v = Tun(0)]| Lo (x) + [0 = T (0)|wrr i)

< d |'U|W1~P(DK)’

where Dy is the set of the points composing the mesh cells that have a nonempty intersection
with K. Owing to the regularity of the mesh sequence, we conclude by summing over the mesh
cells that [TIyp (v =TI (v))|lwre(py < c|v|wrr(p), i-e., cap is also uniformly bounded w.r.t. h € H.
This shows that the assumption (iii) from Lemma 54.2 is also met, and this completes the proof.

Exercise 55.3 ((Qx, QY _,)). Let D be a rectangle and let 75 be a uniform Cartesian mesh of
D. Let h € H be the meshsize. Let K := (0,1)% be the reference square. We assume that all the
geometric transformations Ty : K — K € Tj, are homotheties, i.e., using the conventions defined
in Table 21.1, we have Tk (Z) = 21,k + hZ for all & € K, where z1 x is the bottom left vertex of
K.

(i) Let p(&) := 4(Z — 3)(¥ — 3). Note that p takes the alternating values £1 at the four vertices of

-~

K. Let py be the Q;-discontinuous pressure field s.t. py g = po Tgl = (%)~ (p) for all K € Tj,.
We are going to show that pj is a spurious pressure mode. Let v, be a continuous Qs velocity
field with zero trace on D. We have [,.(V-vy)pp dz = [ (V-0)pdz, where ¥ := % (v;,) and
is the contravariant Piola transformation. Since the function (V-0)p is a polynomial in Q3, we can
apply the tensor-product version of Simpson’s rule to obtain

h2
/(V'vh)ph dz = 36 Z Vvy k(21,50 k (21,K),
K 1e{1:4}

where z1 k, ..., 24 k are the four vertices of K. (Recall that all the cells have the same surface h?
since we assumed that the mesh is uniform.) Let now z be an internal vertex in the mesh and let
Ki,..., K, be the four cells sharing z. Assume that the cells are enumerated counter-clockwise
around z and that K; is the top right cell. We infer that Tk, (2;) = z for all ¢ € {1:4}. The
definition of p, implies that py |k, (2) = (=1)", so that reasoning as in Exercise 54.3(ii) gives

> Veuk, @k, (2) = Y (~1)"Vouk,(2) =0,
me{l:4} me{1:4}

If z is a boundary vertex, but not a corner, a similar argument shows that

Z (=1)"V-vyk,, (2) =0,

me{1,2}

where K1, Ky are the two cells sharing z, and again pj g, (2) = £(—1)™. Moreover, it is clear
that V-vp,(2) = 0 if z is a corner vertex since v)9p = 0. Finally, using

h2
/D(V-vh)phdx: 36 Z Z Vvy k(21,500 k (21,K)

KeTnle{1:4}

2
_ ;L_G Z Z Vv k,, (2)Ph k., (2)

z€Vhp me{l:m,}

:O,
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where m, € {1,2,4} is the number of mesh cells sharing z, we conclude that p, is a spurious
pressure mode.

(i) If k is even, the spurious pressure mode py, is a Qp—1-discontinuous field s.t. p,x = (V%) (P)
for all K € Ty, where

pay= [ G-z ] @-7).

ie{l:k—1} je{l:k—1}

where (Z1,...,75—1) are the interior Gauss-Lobatto nodes for the quadrature over (0, 1) that is
exact for the polynomials of degree (2k — 1). Whenever k is odd, we first define a Qj_; reference
field p as above using the interior Gauss—Lobatto nodes. Then we enumerate the mesh cells with
two indices as K;j, i € Z,j € J, where z1 k, , = (ih,jh), and we define the spurious pressure
field by setting ppx, , = (=1)""/po Tk, ;. This way, we still have that for every interior mesh
vertex z shared by the cells K1, ..., K4, py|x,,(2) = (—1)™cy, where ¢ = Hie{l;k_l} 7?2, with the
same modifications as above when the mesh vertex z lies at the boundary.

Exercise 55.4 ((P{®,Pb)). It is straightforward to adapt the error estimate from Theorem 53.17
to the present nonconforming setting by proceeding as in §36.3 to handle the discrete bilinear form
ap,.

Exercise 55.5 ((P2,P?), HCT mesh). (i) The P; shape functions on K, associated with the
vertices 21, 2o, and 2z, are, respectively,

O1(r,y) =1—-2 -2y, bO2(z,y)=2—y, Oa(x,y)=3y.
The Py shape functions on K 1 associated with the nodes 7214, T4, and 24 are, respectively,
Yr(z,y) = 12y(1 — 2 —2y), ¥s(z,y) = 12y(x —y), ¢io(z,y) = 3y(6y — 1).

We have pzz, = p101 +p20z + psbs and w . = (ur, v7) "7 + (us, v8) TPs + (u10,v10) " ¥10. The rest
of the computation can be done by hand or by using any symbolic comping software:

/A pV-udZ = (—ur + us + 4vr + 2vs)p1
K

+ (—U7 + ug + v7 + Hug)po
+ (—2uy + 2ug — v7 + vs + 3v10)P3.

(11) VY\G ha,Vf Tf(2 (21) = ,/2'\2, TI?2 (22) = 23, TI?2 (24) = 24, and Tl?'g (21) = ,/2\3, TI?% (22) = 21,
TIA(% (24) = Z4.

(iii) Using the expressions for Jz and Jz, , we obtain

1!’%2 @) = det(JfQ)J;?i <Z> N <—uv— v) ;
oo ()- ()

(iv) Using the above results and the hint, we make the change of variables p — ¢, 7 — 8, 8 — 9,
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u — v, v — —u — v, and obtain

/. PVudi= [ U )96, () dF

= (—vs + vg + 4(—ug — vg) + 2(—ug — vo)q1

+ (—vg +vg + (—ug — vg) + 5(—ug — v9))q2

+ (—2vs + 2v9 — (—us — vs) + (—ug — v9) + 3(—u10 — v10))qs
= (—4dug — 2ug — bvg — v9)q1

+ (—ug — bug — 2vg — 4vg)qa

+ (us — ug — 3uip — v + v9 — 3v10)g3.

Similarly, making the change of variables p — s, 7— 9,8 =7, u = —u — v, v — u, we obtain

/. PVudi= /. U, )V, () 0
= (ug + vg + (—u7 — v7) + dug + 2u7)s;
+ ((ug + v9) + (—u7 — v7) + ug + Huz)se
+ ((2ug + 2v9) + (—2u7 — 2v7) — ug + uz + 3u10)s3
= (u7 4 Bug — vy + v9)s1
+ (duz + 2ug — v7 + v9) S92
+ (—uy + ug + 3uig — 2v7 + 2v9)s3.

(v) The identity (E(u),p)LQ(ﬁ) =0forallu e Pfo(ﬁ) is equivalent to UTBP = 0 with the vectors

.7 T 18
U := (ur,us, ug, uio, v7, U8, V9, v10) € R,

P:= (p17p25p35q15q27Q3;51752553)1— € Rga

and the matrix B € R3*9 g.t.

~1-1-2,0 0 0 1 4-1

1 1 2-4-1 10 0 0

0 0 0-2-5-1} 5 2 1

Bim |-9..0.00.0 0=380 0 3
S NSNS R | | R it R
2 5 1-5-2-1, 0 0 0

0 0 0-1-4 141 1 2
Lo 0 30 0-30 0 0

One can verify that the matrix B has full row rank and that ker(B) = span((1,...,1)T). Hence
im(B)* = span(1).

Exercise 55.6 (Macroelement partition). Let ¢, € Qp. For all U € Uy, we set Gy =
‘—(1” fU gndz and Gy, := Y ;o Gulu. Proceeding as in the proof of Corollary 55.3, we infer that
b b
sup b(vn, qn)| > 1b(vn, qn)

> Binllgn — @nllg
wneVio onllv " pevi llonllv ’
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with V;' := 37y, Vio(U). Moreover, we have

sup b(vn, qn)| > b(vn, @)l |b(vn, qn — Ty
oneVio Unllv T esevio lvnllv wnevio onlv

2 Banl@nlle — llan — Tl
since [|V-vp || 2(p) < ||v[lv = |v|m1(p). We infer that
1 b(vn, gn _
(o= +1) sup POm@ S 517,
Bin vneVio  |lvnllv
In conclusion, we obtain
1 11 b(vn, qn)| _ |~ _
—+—(—+1)> sup ————— 2 [[qxllQ t llan —Tnll = llanlle-
(5 (g +1)) s Bl g + o~ o > o
This proves the assertion.

Exercise 55.7 (Macroelement, continuous pressure). (i) Owing to the inf-sup condition

(53.9), there exists Bp > 0 such that for all g, € Qy, there is v(gs) € V := HE(D) such that
% > Bpllanllq- Let gn € Qp. Recalling that Z% is the R-valued version of the H{-
conforming quasi-interpolation operator introduced in §22.4.2, we have

|b(vn, qn)| S 1b(Z5o(v(gn)); an)
llv

onevio llonllv = IIZ55(v(an))
o [P (v(an)), an)|
- v(an)llv
[b(v(an), an)l b5 (v(an)) — v(an). an)l
— vlan)lv [v(qn)llv
6@ (v(an)) —vlan), an)|

> cPpllanllg — ¢
lv(qn)llv

Using that Qj, is H'-conforming and since we are enforcing the homogeneous Dirichlet boundary
condition on the velocity over the entire boundary dD, one integration by parts together with the
Cauchy—Schwarz inequality and the approximation properties of Z7, gives

()~ v = | ¥ [ @) - o)V, ds]
KeTy
<c Z hc |v(qn) | (i)l an| v ()
K€7-h
%
< cloalv( 3 Ml )
KeTy,
Since hx < hy for all K € U, we have
1
b(Zs (v(gn)) —v(qn), q ( )
hirlq
To(an)v 2 Mlanlin )

Uely,
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(ii) Denoting @iy == ﬁ fU qn dx, using the affine geometric mapping Ty : U— U, and invoking
the shape-regularity of the macroelement partition, we have

holanlm vy = holany = Guolm @) < cho |35 det(T0)|2|Gn ~ vl (o)

where gy := qpju o Ty (see Lemma 11.7). Since infj ey maxyey, card{ K C U} < oo implies that
span{qy y o Ty } is a finite-dimensional space, we invoke the equivalence of norms and infer that

_ 1~ —
hulanjo | wy < chull T Idet(To) 12 1@ — Tuull L2 )

where ¢ is uniform w.r.t. h € H (because the dimension of span{gy|y o Ty} is bounded from above
uniformly w.r.t. h € H). Invoking again Lemma 11.7, we obtain

holanolm wy < chollIg lan = TuollL2@-

Since the geometric mapping T is affine, we have hy||J;|| < ¢ (see (11.3)), and we conclude that
for all U € Uy,

lanjulm @y < cllan = Guoll 2 -

(iii) Combining the results of Steps (i) and (ii) shows that

1

_ 2 b(vn, qn

cl<§j |qh|U—th||%2<U>> ©osup PO e
Ueu, vneVio  1Vnllv

Now, we invoke Remark 55.4 and observe that

|b(vn, qn)| |b(vn, gn)| _
SUD = > SUp o Zﬁlh( > HQh|U_QhU||2L2(U)) )
wneVio  onllv " oevy lonllv =

N[

with Vi == >~ ¢y, Vio(U). Combining the above two bounds shows that

c b(vn, qn
(—1 + 1) sup O] > c26pllanllq-
Bin vneVio  lvnllv

In conclusion, the inf-sup condition (55.1) holds uniformly w.r.t. h € H if

inf By := inf min By, > 0.
heH heH Uely,
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Friedrichs’ systems

Exercises

Exercise 56.1 (Robin condition). Show how to enforce the Robin boundary condition yu —
on=0on9dD (with v € L>*(9dD) and v > 0 a.e. on D) in the framework of §56.2.2.

Exercise 56.2 (Linear elasticity). Consider the linear elasticity model from §42.1. Verify that
s — d+0 tr(s)ly = u(Vu + Vu') with 0 := % and that $V-(s + ") 4+ f = 0. Write this system
using Friedrichs’ formalism. (Hint: identify s € R¥*? with a vector s € R% by setting S[ij] i= $ij
with [ij] :=d(j — 1) + 4 for all 4,5 € {1:d}.) Verify (56.1a)-(56.1b) and that the upper left block
of IC, say K*%, is positive definite. What happens in the incompressible limit A — oco?

Exercise 56.3 (Positivity, locality). (i) Reprove Theorem 56.9 by replacing the assumption
made on K by those stated in Remark 56.12. (ii) Let D := (0,a)x(—=1,1), a > 0, and let K :
L?*(D) — L3(D) be such that K(v)(z,y) := v(z,y) — +1 v(z,§)d€ with o € [0,1). Assuming
X := 0, prove that K satisfies the assumptions from Remark 56.12.

Exercise 56.4 (Wave equation). Consider the wave equation %—8—2 finD :=(0,1)x(-1,1)

with the boundary conditions @(t +1) =0 for all ¢ € (0,1) and a 7(0,2) = @(0 x) = 0 for all
€ (—1,1). Recast this problem as a Friedrichs’ system and 1dent1fy the boundary fields N and

M. (Hmt. set u = e~ (2%, 9%) with A > 0.)

Exercise 56.5 (Partial positivity). Assume that there is an orthogonal projection operator
P € C™*™ (ie.,, PT = P and P? = P) such that

K4+ K" — & > 24P a.e. in D, (56.1a)
A

sup w > a||(@,, = P)(v)||r — A|P(v)||L for all v € Vj, (56.1b)

weL ”wHL

IP(w)||z > ~||(In — P)(w)]||z for all w € Vy s.t. A(w) =0, (56.1c)

with g > 0 a > 0,7 > 0, A, and Vj := ker(M* + N). (i) Assume (56.1a), (56.1b), (56.27), and
(56.1). Prove that A : Vy — L is an isomorphism. (Hint: adapt the proof of Theorem 56.9.) (ii)
Verify (56.1a) for Darcy’s equations with p := 0 and a Dirichlet boundary condition on p. (Hint:
use a Poincaré-Steklov inequality.)
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Exercise 56.6 ((BNB1) for Darcy and Maxwell). (i) Prove the condition (BNB1) for Darcy’s
equations with Dirichlet or Neumann condition. (Hint: use the test function w = (7,q) =
(6 +dVp,p+ p~tV-o).) (ii) Do the same for Maxwell’s equations with the condition H xn = 0
or Exn = 0. (Hint: use the test function w := (e,b) := (e7(E —ilVxH),e(H + w_l;,LVXE))
where 0 := 7.)

Exercise 56.7 (Boundary operator for Darcy and Maxwell). (i) Verify that M defined
in (56.35) satisfies (56.27) and that it can be used to enforce a Dirichlet boundary condition on
p. (Hint: use Theorem 4.15.) How should M be modified to enforce a Neumann condition? (ii)
Verify that M defined in (56.36) satisfies (56.27) and that it can be used to enforce the boundary
condition Hxn = 0. (Hint: use the surjectivity of traces from H'(D) onto Hz(0D) and (4.11).)
How should M be modified to enforce the boundary condition Exn = 07

Exercise 56.8 (Separation assumption). Let D := {(21,72) € R? |0 < 23 < 1 and |z1| < 22}
with B := (1,0)T. Let V := {v € L*(D) | B-Vv € L?(D)}. Verify that the function u(z1,z2) 1= x5
isin V for a > —1, but wgp € L*(|Bn|;0D) only if a > —3.

Exercise 56.9 (Semi-norm |-|5;). Let V' be a complex Hilbert space, N, M € L(V;V'), and
let Vp := ker(M — N). Assume N = N* and R((M (v),v)y,y) > 0 for all v € V. Let |v|3, :=
R(M(v),v)yr v) for all v € V. Prove that [(N(v), w)y v| < |v|ar|w|ar for all v,w € V.

Solution to exercises

Exercise 56.1 (Robin condition). We can take

Odxaimn
M= |t
-n 52’}/
so that
(Dd><d§®d><l dxd T
MoN =2 |-H L M= | T
-n . v Ixd Y

Then (56.7a) holds true since v > 0 a.e. on dD. To see that (56.7b) is satisfied, one can write
(1,9) = (yvn,v) + (7 — yvn,0) and observe that (yvn,v) € kerf(M — N) and (7 — yvn,0) €
ker(M + N).

Exercise 56 2 (Linear elasticity). Taking the trace of s — d+-0 tr(s)ly = u(Vu + Vu'), we
infer that d+9 tr(s) = 2uV-u, so that s = 24(V-u)ly + 2(Vu + VuT), which coincides with the
constitutive law (42.3) since § = 2. Since s is symmetric, we also infer that 1V (s+s7) = Vs =

—f owing to (42.1). Using the suggested identification between s € R%*¢ and s € R the above
PDEs can be cast into Friedrichs’ formalism by setting m := d? + d and

K = (2u)~" ’Css@dQXd k. Odedzg ke {1:d},
Oaxaz | Odxd (EM)T Ouxa
with K055 € REXE st K85 o= Oixdji— 7i50i0m and EF € R D st. €h 1= =3 (8inb5+0udjk),

where the §’s are Kronecker symbols Assumption (56.1a) holds true smce all the fields are constant
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(so that X = O,,x.m). Assumption (56.1b) holds true since A* is symmetric. Finally, we observe

that
0

d
T I8l oy + 7o
In the incompressible limit, # — 0 and the full control on & is lost, and only the control on the
deviatoric part s — d ! tr(s)l; remains.

21K, 8) o (gazy = Is —d~ tr($)]ld||§2(uadxd)-

Exercise 56.3 (Positivity, locality). (i) Defining the formal adjoint by A(v) = K*(v) — Xv —
Aj(v), the results in Lemma 56.8 still hold true owing to the following identity:

(A(w),v) = $(A(v), )1 + 5(A@V),0)L = $(A@V),v) + 3(v, A(v)) L + 5 (N (v),v)vr v
3(A(w), ) + §(v, K*(v) = Xv — A1 (v) 1 + 35(N(v),0)vr v
= 3(A(),v)r + $(v, K*(v) = Xv + K (v) = A(v)) + 5(N(v), v)vr,v
= 3(A(),v)r = 5(A(v),v), + 3(v, (K* + K)(v) = Xv)1 + 5(N(v),v)vv
= 3(A(),v)r = 3(A(v),v), + 3(K* + K)(v) = Xv,0)1 + 5(N(v),0)vv

The rest of the proof of Theorem 56.9 is unchanged.
(ii) Notice that K is a bounded operator on L?(D) (apply the triangle inequality and the Cauchy—
Schwarz inequality). Moreover, we have

(K (v),w)r2(p) = //+1 v(@,y)w a:yd:z:dy—_/ /+1/+1 w(z,y)dé dz dy
//+1 v(z, y)w aryd:z:dy——/ /+1/+1 v(x, y)w(z, &) dE dedy
/ /+1 v(z,y) ( z,y) — 2/_1 (x,§)d§> dedy = (v, K (w)) £2(p)-

Hence, K = K*, i.e., K is self-adjoint. Using the inequality

‘/:1”("”’”% /:1”("”’@ aca| =3 ([ Tm,s) d§>2 </ Tv(rs,s)?d&,

we infer that

((K-FK*)(’U),’U)Lz(D) = 2(K(U),U)L2(D)
2 2||UH%2(D) - 2UHU||%2(D) =2(1- U)H’U”%%D)

and this proves the statement with po =1 — 0.

Exercise 56.4 (Wave equation). We obtain

and the source term is (e~ f,0)T, so that the properties (56.1) hold true. Moreover, we have
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where n := (ny,n,)" is the outward unit normal to D. On the side {t = 0,2 € (—1,1)} where

n = (—1,0)T, we can take M := —N enforcing the conditions % = % = 0. On the sides
{x ==+1,t € (0,1)} where n = (0,41)T, we can take
0i-1
s[5

so as to enforce the condition % = 0. On the side {t = 1,z € (—1,1)} where n = (1,0)T, we can

take M := A\ so that no condition is enforced. We see that the properties (56.7) hold true in all
the cases.

Exercise 56.5 (Partial positivity). (i) We outline the differences with respect to the proof of
Theorem 56.9. Concerning (BNB1), let v € V). Proceeding as before, using (56.1a), and using
that 7P is an orthogonal projection operator gives j[|P(v)[|2 < R(a(v,v)). Owing to the triangle
inequality and (56.1b), we infer that

R((A(v),v)1)

ol P < TS o,
A(v),v
< B 1)+ B~ P
A A 1 A
< sup DL (14 2y po), + 2 sup ELL]),
wer Wl ! @ wer  lwlln
yielding
1 Av),w
B IPW) < e sup (AL L]
o el
with ¢; = ((12—?)2 + %) ° Owing to (56.1b), we infer that
1 A(v),
ol < g sup A0,
e Tl

with ¢ = 1 (1+ %)—i—%ué. The rest of the proof of (BNB1) proceeds as before. Concerning (BNB2),
let w € L be such that a(v,w) = 0 for all v € V). Proceeding as before, we infer successively that
A(w) =0, w € Vp, and 0 = %((A(w),w)L) > ol P(w)]|2, so that P(w) = 0. Invoking (56.1c), we
conclude that w = 0.

(ii) We set P (o, p) := (o,0). Moreover, Vo = Vy = H(div; D)x H} (D) since a Dirichlet condition
is enforced on p, so that we can use the Poincaré-Steklov inequality Crs||pl|r2(p)y < £p||Vplz2(D)
for all p € H} (D). Then (56.1b) follows from Cps¢5'||pl|r2(py < |d ™ o+ Vp| r2(p)+[|d~ o || L2 (D).,

ld =1+ Vpll L2y < sup,ep LA

from CpgéBlHqHL2(D) S )\;1||T||L2(D) with d_lT + Vq =0.

,and ||d ™Yo || 2(py < A, o] 2(p), Whereas (56.1c) follows

Exercise 56.6 ((BNB1) for Darcy and Maxwell). (i) For Darcy’s equations, we take (7,¢q) :=
(0 +dVp,p+ pu~tV-0). We observe that ||(7,q)||z is bounded by ||(o,p)|lv and that

(A(o,p), (1,9))1 = (do, o) r2(p) + (AVDp, VD) r2(py + (1~ ' V-0, V-0) 12(p) + (1P, P) L2(D),

since (o, Vp)r2(py + (V-0,p)12(py = (6°1,p)r2(9p) = 0 owing to the boundary condition. This
allows us to control all the terms composing the graph norm ||(o,p)||v.
(ii) For Maxwell’s equations, we take the test function

(e,b) := (e (E — i%VxH), e(H + W—1MV><E)),



Part XII. FIRST-ORDER PDES 303

where 0 := 7. We first observe that [|(e,b)|r, is bounded by [|(E, H)|v. Recalling that fi := wp,
ie”? = ¢ and ie? = —e~ we have
(A(E,H),(e,b)) = eie(UHEHQLz(D) + ﬂ||HH2Lz(D))
+e (i VX B 2py + 0 VX H || 72(py)
+ 2%(6i0((H, VXE)L2(D) - (VXH, E)Lz(D))).
The last term vanishes owing to the boundary condition. This gives
VIR (A(E, H), (e,b)1) = 0| Ela ) + il H a0y + 5 VX Ellda(py + 0~ VX H a0
This allows us to control all the terms composing the graph norm ||(E, H)||v.

Exercise 56.7 (Boundary operator for Darcy and Maxwell). (i) (56.7a) holds true since
M is skew-symmetric. Moreover, we have

<(M - N)(va)a (Tv Q)>V',V = _2<T'n7p>3D7

(M + N)(o,p), (T, Q))vrv =2(on, q)oD-
Hence, (56.7b) follows from (o,p) = (0,0) + (0,p), (o,0) € ker(M — N), and (0,p) € ker(M +
N). Moreover, if (o,p) € ker(M — N), then (t-n,p)sp = 0 for all = € H(div; D). Owing to
Theorem 4.15, the normal trace operator 4 : H(div; D) — H~2 (D) such that v4(7) = 7-n is
surjective. Since 7 is arbitrary in H(div; D), we conclude that pjgp = 0. Finally, a Neumann
condition can be enforced with the operator

<M(07p)7 (Tu q)>V’,V = —<0"’I’L, q>8D + <T'nap>6D-

(ii) (56.27a) (and (56.7a)) holds true since M is skew-symmetric. Moreover, we have
(M = N)(B,H), (e,b))vv = / V(26 H @) da,
D
(M+N)E,H),(e,b))y v = / V-(2¢ Y Exb)dx.
D

Hence, (56.27b) (and (56.7b)) follows from (E, H) = (E,0) + (0, H), (E,0) € ker(M — N), and
(0, H) € ker(M + N). Moreover, if (E, H) € ker(M — N), then 2¢ [, V-(Hx€)dz = 0 for all
e € H(curl; D). Let ¢ € H?(dD). Owing to the surjectivity of the trace operator from H'(D)
onto Hz(8D) applied componentwise, we infer that there is e € H*(D) C H(curl; D) such that
ejpp = ¢. Using (4.11), we obtain

(Hxn, ¢)op = /

D

(HVx$— (VxH)$)de = _/ V-(Hx$)dz = 0.
D

Since ¢ is arbitrary in Hz(9D), we infer that Hxn = 0 in H~2(9D). Finally, the condition
Exn = 0 can be enforced with the operator

(M(E,H), (e, b))y v = —/ V-(e YExb+ €Y Hxe) dx.
D

Exercise 56.8 (Separation assumption). We have

1 o 1
||U||%2(D) = / x%a/ dzy dee = 2/ 23T dy.
0 —xI2 0
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Hence, |ulr2(py < oo if and only if a > —1. Moreover, ||3-Vul/z2(py = 0. Hence, u € V iff
a > —1. Finally, observing that |3-n|= — and dl = v/2dzs on DT, we infer that

[l 22(-m):00) / u?|Bn|dl = 2—\/_/ 200 (.

The integral is finite iff oo > —%.
Exercise 56.9 (Semi-norm [-|5;). Notice first that
(N(),wyvrv = (v, N (w))yr v = (N*(w),v)v, v = (N(w),v)y v

Hence, (N(v),v)y: v € R for allv € V. Let t € R, let v,w € V. We have

0 <RUM (v + tw),v +tw)y v) = (N(v+ tw),v + tw)y v
= (N(v),v)v.,v + H{N(v), 0y, + N (w),v)v,v + (N (w), wyyv
= (N(v),v)vv + 2R((N(v), w)v'v) + (N (w), w)v,v.

Since this quadratic polynomial in ¢ takes nonnegative values, its discriminant is negative, which
implies that

R((N(v), w)vv) < (N(©),0)2, (N (w), w)Z,

)

= RN (), 0)3 ) RN (w),w) 1)
= R((M(v),0) 2, )R((M (w), )2, 1)) = [v]arlw]ar.
(v

There is nothing to prove if (N(v),w)y.y = 0. Instead, if (N(v),w)y v # 0, we multiply v
by (N(v),w)y, v/|{N(),w)y: | in the above formula, and we obtain the expected bound, i.e.,

(N (v), w)v: v| < |v|pw|p for all v,w € V.
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Residual-based stabilization

Exercises

Exercise 57.1 (Least-squares). Write the LS approximation and the resulting error estimate
for the advection-reaction, Darcy’s, and Maxwell’s equations (for simplicity assume that u €
H**+1(D;C™) and hide the scaling factors in the generic constant c).

Exercise 57.2 (Transport in 1D). Consider the LS approximation using Pj Lagrange finite
elements, k > 1, of the one-dimensional transport problem «' = f in D := (0,1) with u(0) =0
and f € H*(D). Prove the optimal L?-error estimate ||u — up || r2(py < ch*™|f|ge(py. (Hint: use
a duality argument.)

Exercise 57.3 (Duality argument for Darcy). Consider the LS approximation of Darcy’s
equations with homogeneous Dirichlet conditions on p in the mixed-order case k := ke —1 = k, > 1,
i.e., Vio = Pgy (Th) X Pf o (Th). Assume that p =0, d~' := &Iy with x € WH(D), and that full
elliptic regularity holds true for the Laplacian. The goal is to prove the error bound ||p—p| z2(p) <
ch**(|o|grrv2(py + [plge+1(p)); see Pehlivanov et al. [38]. Let Zj, have optimal approximation
properties in Pg,,(75), and let TI} = Hg(D) — P¢y(Tx) be the elliptic projection such that
for all ¢ € H{(D), (V(g — I} (q)), Van)L2(py = 0 for all ¢, € Pgo(Tn) (see §32.4). (i) Setting
en = (In(e) = on, 15 (p) — pn), prove that [len|lv < c([|Zn(0) — ol H(aiv;p) + IIHT5(P) — pllL2(p))-
(Hint: use coercivity and the Galerkin orthogonality property.) (i) Show that |[p — pnl/z2(p) <
ch* X (|o| grrvz(py + [Pl 1 (py). (Hint: use a Poincaré-Steklov inequality and Exercise 32.1.)

Exercise 57.4 (SUPG). Assume that hr < Bx g min(1, %:Tg) for all K € T with peo =
| KCl[Lo (D). Prove that the same error estimate as in the GaLS approooximation is obtained by consid-
ering the following discrete problem: Find uj € Vi such that ai""¢(up, wy) = (f, wn + 741 (wr)) L
for all w, € Vio with the SUPG-stabilized sesquilinear form a;'" (v, wpn) = (A(vn),wn)r +

(A(vp), TA1(wp)) . (Hint: bound (A(vp), 7Kvp)r and use Lemma 57.6 to establish coercivity.)

Exercise 57.5 (Boundary penalty). (i) Prove that (57.33¢) and (57.33d) are equivalent. (Hint:
consider the Hermitian and skew-Hermitian parts of Mpg.) (ii) Verify that the boundary penalty
operators defined in Example 57.18 for Darcy’s equations and in Example 57.19 for Maxwell’s
equations satisfy (57.33). (Hint: direct verification.)
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Solution to exercises

Exercise 57.1 (Least-squares). For the advection-reaction equation, the LS approximation
amounts to seeking up € Vg such that

/ (nup + B-Vup)(pwy, + B-Vwy) dz = / f(pwpy, + B-Vwy,) dz,
D D

for all wy, € Vio. Assuming u € H*1(D) yields the error estimate
lu = unl 2Dy + 18-V (w = un)l| L2(py < ¢h*[ul grss(p)-

For Darcy’s equations, the LS approximation amounts to seeking uy := (o, pn) € Viho such that

/d*(d_lah+Vph)-(d_1rh+th)dx
D
+/ M*_l(ﬂph‘f'v'a'h)(/ﬂ]h+V'Th)d$:/ i f(pan + Vory,) da,
D D

for all wy, == (T, qn) € Vho. Assuming o € H*1(D) and p € H**(D) yields

lo — anllz(giv:py + P — Pullar (D) < Chk|(f7,p)|Hk+1(D)ka+1(D)-

For Maxwell’s equations, the LS approximation amounts to seeking uy, := (Ep, Hy,) € Vo such
that

/ U*_l(UEh — VxHyp)-(oep, — VXEh) dx
D
* / fis. (iwpHp + VX Bp)-(—iwpby, + Vx@y) do = / o, 'j-(0€, — Vxby)da,
b D

for all wy, := (en,bp) € Vio. Assuming (E, H) € H*1(D)x H*1(D) yields
1B — Enllr(caripy + |1 H — Hil| mreur,py < ¢h*|(B, H) g ()< 1 () -

Exercise 57.2 (Transport in 1D). The discrete problem amounts to seeking uj, € Vio such
that [, wjw), dt = [, fwj, dt for all wy, € Vio with

Vio 1= {vh S OO(E) | Vi € {O:I—l}, Vh|[z:, € Py | ’Uh(()) = O}

m'H»l]

Consider the adjoint solution ¢ € H}(D) such that —¢” = u — uj,. We have

lu—unlZ2(p) = / (u—up)'¢"dt = / (u = un)' (¢ — Zno(Q))' dt,
D D
where we used the Galerkin orthogonality property and the fact that the Lagrange interpolant of
¢, Ino(Q), is in Vjg. Using the Cauchy—Schwarz inequality, the approximation properties of Zpg,
and the fact that |(|g2(py = ||u —unl|z, we infer that ||u —wup||r2(py < chl|(u—un)'||L2(py. Finally,
since f € H¥(D), we have u € H*"'(D) with |u|gri(py = |f|gs(p), and (57.7) implies that
[(w = un) | L2(py < h*|f|un(p)-



Part XII. FIRST-ORDER PDES 307

Exercise 57.3 (Duality argument for Darcy). (i) Proposition 57.1 implies that
a?llenll < a*(en,en) = a™(mn, en),
owing to the Galerkin orthogonality property, where ny, := (Z5 (o) — o, 11} (p) — p). Writing
en = (€. ¢y),  nni= (M),

we obtain
olenll? < /D (kmg, + Vi) (e, + Veb) dz + /D (V-n])(V-€f) de
- / (W20 -€f + Vi we§ + Vel + (Vng)(V-ef)) da
D

- /D (K25 €5 + Vi -ref, — V-(snf)el + (V-ng)(V-€])) de,

where we used the definition of the elliptic projection and integrated by parts the term involving
Vel Using the Cauchy—Schwarz inequality and the smoothness assumption on x, we obtain

o®|lenlly < e(l|Zn(o) — ol aaivip) + IT5 (@) = pll2py)llenllv,
and the expected bound follows.
(ii) Using the approximation properties of Z;, and since k, = k + 1, we infer that
||Ih(0') — a”H(div;D) S Chk+1|0'|Hk+2(D).
Since we are assuming that full elliptic regularity holds true for the Laplacian, Exercise 32.1 shows
that ||II}}(p) — pllz2(p) < Chk+l|p|Hk+l(D). Hence,
lenllv < ch* (o grere(py + [Pl aer1(Dy)-

Using the triangle inequality and the Poincaré-Steklov inequality, we infer that

P = pullz2cpy < llp = W5 (P) 2oy + L5 (P) — Pall2(p)
< lp = (®)l| L2 () + Crs enlIV T} (p) = p1) | L2(0)
< lp = 5 (0) |22 () + Cis o llenllv,
and we conclude using the approximation properties of II} and the above bound on ||ep||v.

Exercise 57.4 (SUPG). Using Young’s inequality and the assumption on hg, we infer that for
all v, € Vo,

1,1 1,1 1,1 1
(Awn), TR | < 3lrE A} + 3 5 Kunlly < et An) + guollonll.
Let us denote by aj" the discrete sesquilinear form associated with the GaLS approximation and
let ||+||v;,, be the stability norm defined in (57.13). This gives

J 1
R(ay" (vn,vn)) = R(ai"(vn, v)) — R((A(vn), TKvn)1) > 5””’1H%/h,07

owing to Lemma 57.6 and the above bound on the nonsymmetric term. Furthermore, the consis-
tency error resulting from aj'"¢ can be estimated by proceeding as in the proof of Lemma 57.7.
We conclude that the same error estimate is obtained. As a conclusion, GaL.S is more stable than
SUPG, and the price that SUPG has to pay for artificially breaking the symmetry of the stabilized

sesquilinear form is to require that the meshsize is small enough.
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Exercise 57.5 (Boundary penalty). (i) Let us prove that (57.33c) implies (57.33d) (the proof
for the converse is similar). Let M% := (MM + Mp) be the Hermitian and skew-Hermitian parts
of Mp. We observe that

((MF +Nr)y, 2) eyl = [(MF + 82+ Np)y, 2)L(F)]
<N ((ME+ 8Dy, 2) L] + [(Mz + Np)y, 2)1p)]
< fylae |zl ae + [(y, (Mp = NF)2) L)l
< 2yl aeglzlag + [((ME —NF)z,y) )l

1
<2yl a2 e + B2 YllLryl 2l ae,

where we used the triangle inequality to pass to the second line, the fact that (./\/l; + Sg) is Her-
mitian and positive semidefinite and the Hermitian symmetry of Ar to pass to the third line, we
have added and subtracted (M} +S2) and proceeded similarly to pass to the fourth line, and we

used (57.33c) to pass to the fifth line. We conclude by observing that |y| e < cﬂil llyllz(Fy owing
to (57.33b).

(ii) In both cases, (57.33b) is obvious, so that it remains to prove (57.33a) and (57.33c¢) (since (57.33d)
is equivalent to (57.33¢)). Consider Example 57.18. Then v := (o,p) € ker(Mp — Np) implies
that p = 0, so that v € ker(S2). Hence, v € ker(M% — Np). Moreover, we have with w := (7, q),

(ME = Nr)v,w)py = (T1,0)L2(p) + (g, D) L2(p) < ¢l L l|Pl L2(F)

and ||pl|p2(ry = @ 'pagr. Consider now Example 57.19. Then v := (E, H) € ker(Mp — Np)

implies that Hxn = 0, so that v € ker(S2). Hence, v € ker(M% — Nr). Moreover, we have with
wi= (he),

((M%P —NF)U,U})L(F) = (e,HXn)L2(F) + a(hXTL,HX’n)Lz(F)
< cllwlpr) | H*xnl L2 (r),

and ||H><’I’I,HL2(F) = 0171|H|ML}§.
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Fluctuation-based stabilization (I)

Exercises

Exercise 58.1 (Simplified setting). Consider the setting of Remark 58.1 and assume that (58.7)
holds true. Let Jp,(v,) := LAy, (vy) for all vy, € Vi, (i) Prove (58.4b). (ii) Prove (58.4c).

Exercise 58.2 (Local bounds for CIP). The goal of this exercise is to prove Lemma 58.4.
(i) Let ¢1 < ¢} be positive real numbers. Let ay,az be two positive real numbers such that
cra1 < az < cjap. Verify that there are positive constants co,ch, only depending on ¢; and
cy, such that comin(ay,b) < min(ag,b) < ¢, min(ay,b) for any positive real number b. (Hint:
distinguish the four possible cases.) (i) Assume (58.19). Prove that there is ¢ such that 7 <
cminK,ej_}((z) T for all K € Tj, and all h € H. (Hint: use Step (i) and the regularity of the mesh

sequence.) (iii) Prove (58.20). (Hint: use Step (i), [|¢[|L=(py) < max, s 71, and &~ Lo (r) <
K

maxye ¢ 7, )

Exercise 58.3 (Full gradient). Prove (58.21) for CIP with (58.25).

Exercise 58.4 (1D advection, CIP). Let D := (0,1), f € L°°(D), and a nonuniform mesh 7 of
D with nodes {zi}ic(o: 141} and local cells K, 1 := [2;, zi11] of size h; 1 :=@ip1 —x;, Vi € {0:1}.
Let h; = %(hF% + hiy1), Vi € {1:1}, be the length scale associated with the interfaces. Let
Vi, == {vn € P{(Th) | vn(0) = 0}. Let B # 0. Consider the problem Bd,u = f, u(0) = 0.
(i) Write the CIP formulation for the problem using (58.25) and let u;, € V3 be the discrete
solution. (ii) Show that the discrete problem has a unique solution. (iii) Let up := ;e 1. 141y Uitps
and Ug := 0. Write the equation satisfied by U;_o,...,U;12, Vi € {2:1—1}. (iv) Simplify the
equation by assuming that the mesh is uniform and interpret the result in terms of finite differences.
(Hint: compare the CIP stabilization with the second-order finite difference approximation of
|B|h20pszzu.) Note: the term |B|h30,u00u is often called hyperviscosity in the literature.
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Solution to exercises

Exercise 58.1 (Simplified setting). (i) Using the definitions and since h < £p, we have

73| Tnwn) | = 75 An(on) |
< B 2hE | A (on) = An(on) [z + 73| A (on)l|
< eB7EhE (B30 2 onls + BLp vallL) + 72 [ Ax(vn) 1«
< 73| Ay (on)llz + ¢ (Jonls + g lonllz).
This proves (58.4b).
(ii) We have
27| Ar(on) |7 = 7(Ar(on), Ar(on) = 77 Tn(on)) + 7(Ar(on) = 77 Tn(on), Ar (o))
+ 7(A1(vn), 7 T (o)) + 7(77 Tn(on), A1 (vn))
< 27| Av(on) | Ll Av(vn) = 77 T (vn) L + 2R ((A1 (vn), Tn (o)1)
Invoking Young’s inequality and since 7= 17, (vy,) := Ap(vy), we infer that

STl AL @I = R(ALwn), Tulen)) i + 7l Ar(on) — An(wn) I}

R(A1(vn), Tn(vr))r + (B ou|% + 8257 |vallZ)
R(A1(vn), Tn(vr))r + ¢ (Jval% + pollvall1),

IN A

since g > 6651. This shows that

1

2 max(1, C)THAl(Uh)H% < R(A1(vn), Tn(vn))r + pollonl|Z + |val3,

i.e., (58.4¢c) holds true.
Exercise 58.2 (Minima). (i) We distinguish four cases.
1) min(a1,b) = min(ag,b). Then the expected bound holds true with ¢; := 1 and ¢, := 1.

2) rmn( a1,b) = b and min(az,b) = az. Then the expected bound holds true with ¢y := ¢; and

=1

3) min(al,b) = ap and min(az,b) = b. Then the expected bound holds true with ¢3 := 1 and
chi=d}.

4) min(aq,b) = a1 and min(ag,b) = ae. Then the expected bound holds true with ¢o := ¢ and
ch = .

(ii) Let K € Ty, and let K’ be arbitrary in '7}((2). The regularity of the mesh sequence implies that
hx < chg:. Moreover, the assumption (58.19) on the grading of the coefficients {fx } ke, implies
that B;(l < cﬂ;{}. Hence, B;(l hi < cﬁi_{,lhK/. Owing to Step (i) we infer that 7 < /7. Taking
the infimum over K’ € '7}((2) proves the assertion.

(iii) Let us prove (58.20a). Let K € Tj,. The definition of ¢ implies that

[l (py) < max Tr.
LeT®
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Let L € 7}((2). Then 7, < erix owing to Step (i) since K € 7'L(2). Moreover, still owing to
Step (ii), we have 7x < eming, 7, Tk, Combining the above bounds shows that ||| Lo (p,) <
cming., 7, Tr. This proves (58.20a).

Let us now prove (58.20b). The definition of ¢ implies that

e < max T, .
67 =) < max i

Moreover, owing to Step (ii) we have

-1 -1 -1
max Tp, < MmaX Tp; S CTp .

K'eTk K”€72®
This shows that (58.20b) holds true.

Exercise 58.3 (Full gradient). Owing to the triangle inequality, we infer that
> rehelllA )i <2 > mehelllAr(o)]Fl7 e + Trhel (A — A) ()] Fl17 (r)
FeFy Fery

<2 > 7ehp|[A ()7 + cuollvnllZ,
FeFy

where we bounded the second term on the right-hand side by invoking the triangle inequality to
bound the jump, the fact that the fields {Ak}ke{l:d} are piecewise Lipschitz with L4 < cug, a
discrete trace inequality, an inverse inequality, and the fact that 7 < emin(7g,, 7x,.) and po < 7'};1.
Concerning the first term on the right-hand side, we use the assumption that the fields {.A*} ke{l:d}
are continuous over D to infer that

> rehpll[A )]l < D meBEREIVRlFl L ey,
FeFy FeFy

with fp := max(fk,, Bk, ). Finally, we have
Brrr < max(fk,, Bk,) max(Bg, hi,, Bxhi,)
< chpmax(Bk,, Bk, ) min(Bx,, Bx,) " < ¢ hr,

where we used the regularity of the mesh sequence and the assumption on the variations of 5 which
implies that max(fk,, Bk, ) < cmin(fk,, Bk, ). We conclude that

> mehelllA )l e < ¢ Y BrhElIVorl el -

FEFy FeFy?
This proves the assertion.
Exercise 58.4 (1D advection, CIP). (i) The CIP formulation consists of seeking uy, € V}, s.t.
/ vpBO0yup dr + Z |B|hZ[0run] [Ozvn] = / fop dex, Yoy, € Vj,.
D T D
ie{l:1}
(ii) We establish uniqueness. Assume f = 0. Then, using vy, := uy, we obtain

1 1
OZ/Dgﬂaxu%dI—l— Z |5|h12[[31uh]]2:§ﬁuh(1)2+ Z |ﬂ|h12[[3$uh]]2,

ie{l:1} ie{1:1}
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This implies that [O,un] = 0 for all ¢ € {1:I}. Hence, dyuyp is constant over D since uy is
piecewise linear. We conclude that d,u, = 0 because Jd,up f pvndz =0 for all vy, € Vj. Hence,
up(x) = up(0) = 0 for all x € D, thereby proving uniqueness. Existence follows from the fact that
the trial and test spaces have the same dimension (they are actually identical).

(iii) Let us now use the shape function ¢; as a test function, for all i € {2:7—1}. We obtain

i U; — Ui— Tt Uiyr — U;
/ foide = / <p1ﬂ71d:17+/ <plﬂde
D Ti;—1 h’z—% x h’

i i+%
Ui—Ui-1 Uji—g —Uj2y 1
i - )
+ |ﬂ| 1—1 hi—— hi—§ hi_l
2 2 2
+|ﬁ|h2(Ui+1—Ui_Ui—Ui,l)(_ 1 _ 1 )
* hi+l hifl h,H,l hl‘,l
2 2 2 2
Uito —Uipr Ui — Uy 1
18102 ( - )
* hiys hivy /iy
Since [ pidr = h;_1 and [ pide = hiy1, this gives
Ujz1 — U;—
[ fp— s
D 2
U, —U;_ U,—1 — U,_ 1
2 7 i—1 Vi 1 1—2
+ |ﬂ|h¢71( T s Mo s ) B s
2 2 2
+|ﬁ|h2(Ui+1—Ui_Ui—Ui,l)(_ 1 _ 1 )
* hi-i—l hi—l hH_l hi_l
2 2 2 2
Ui —Uin Uja— Uiy 1
HpInE, (S - )
i+3 it 3 it 3

(iv) Assuming that the mesh is uniform, we obtain

1 U1 — Uisr 18]
0 de — - 5 I 1—2 7— 7—
h/wa z=pf— +h((u Ui—1 + Ui_o)

—2(Uss1 — 2U; + Ui 1) + (Usgo — 2Ussq + Ui)).

The term B% is the second-order finite difference approximation of Sd,u. The term
‘%'((UZ —2U;1 + Uifz) — 2(Ui+1 —2U; + Ui,l) + (Ui+2 —2U;41 + Ul)) is the second-order fi-
nite difference approximation of |3|h30.4z.u. This shows that the CIP formulation amounts to
approximating the solution to the perturbed equation 89,u + |8|h30sseau = f-
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Fluctuation-based stabilization

(IT)

Exercises

Exercise 59.1 (Inf-sup condition). Consider the setting of §59.1 and assume that the functions
in By, vanish on dD. Prove that there is o > 0 such that for all r;, € Rj, and all h € H,

1 aBt (rp, wy,
Vi + g 2 |A1(ra)|[2) < sup lai (rn; wn)|
wWhp €V, HwhHVh,

a(llrn|

)

with a® defined in (58.3) and [vpl|3, = pollvnllZ + 5lvnliy + |vnl%e for all vy € V. (Hint: use
the coercivity of a}” to control ||rp||v, , and use that the fields {A*},c 1.4y are piecewise Lipschitz

together with (59.4) to control ug *||A1(r4)l|z.)
Exercise 59.2 (Full gradient). Prove (59.9) for the choice of s;" in Example 59.4.

Exercise 59.3 (SGV). Prove Lemma 59.7.

Solution to exercises
Exercise 59.1 (Inf-sup condition). Let us set

o la(rh, w)]
pp = sup ——————.
wnevi,  wnllv,

Let 7, € Ryp,. The coercivity property of af” and the fact that Ry C Vj, imply that ||rp|lv, < pa.
Considering the first-order operator A; defined in Proposition 58.5, recalling that the fields A* are
piecewise Lipschitz, and using an inverse inequality, we obtain that

(A1 = A ()l Lxy < cpollmalloir)s
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for all K € Ty,. Since (A;(rr))|x € Gk, the assumption (59.4) implies that

(A1 (rn), 0K ) (1) |

Ay (ra)ll Ly <77 sup

bk €Bk ”bKHL(K)
. |(A1(7h), br ) LK)
<y ' sup (K) +cpollrall Loy
bk €BK ”bKHL(K)

Since B, = ke, B, taking a supremum over functions in By, is achieved by taking suprema
over functions in By independently for all K € 7Tj. This implies that there is ¢ > 0 s.t. for all
heH,

—1 Al Th ,bh L 1
cug Ao < sup [ALTR:OnL] | a

1
O 7 A2

Since (A1 (rp),bn)r = a}" (74, bn) — (Krp, by) 1 owing to the assumption that functions in By, vanish
on dD, we infer that

_1 |CLBP(Th,bh)| 1
cpg Ay (ra)llp < sup P g g [l |-
bn€B g ||bal

We conclude by observing that ué 1orllz = l|bnllv, and By C Vi,
Exercise 59.2 (Full gradient). We observe that
1
T2 65 (A )l <Y TN AR (ko) Lo
ke{l:d}

1 ‘
< e Br kR (Vor) [ L),

for all K € 75, where we used the linearity of x¢, the triangle inequality, and the bound || A%, <
Pk

Exercise 59.3 (SGV). We have to prove that the bilinear form sV (vy, wy,) defined in (59.19)
satisfies the design conditions (58.4).

(1) Let us first prove that (58.4a) holds true. Using an inverse inequality and the inequality
BrxTk < hi, we obtain

|5 (s vn)| < ¢ Y TrIRR ()1 (-
KeTn

Now, we use the local stability of «}, (which follows from ||} (va)[|L(x) < cllvnlly(p - see (59.16))
and the regularity of the mesh sequence to infer that

; — 1
S o) < e 3 rtfonl2 ) < I bunll.
KeTn

(2) We now prove that (59.17) holds true and then invoke Proposition 59.6 to establish (58.4b)-
(58.4¢). The triangle inequality implies that

172k (Ar(vn) L < 17265 (A (on)) L + 7265 (AL — Ay) (vn))l|z-



Part XII. FIRST-ORDER PDES 315

Using the local L-stability of }, the Lipschitz continuity of the fields AP the fact that L4 < cpuo
and 7 < g ! an inverse inequality, and the regularity of the mesh sequence, we obtain (as usual,
the value of ¢ changes at each occurrence)

At ((As = AD@IE <e 3 miell(Ar = AN s,
KeTy

<c Z i Lo h [ Vonl T )
Keﬂl

<e > mrLAlonli k) < cpollonlz:
KeTh

Hence, |72 k% (A1 (on))||ln < 7263 (A, (o)l + cué”vhHL for all vy, € V3. We have proved that
(59.17) holds true, and Proposition 59.6 implies that (58.4b) and (58.4c) also hold true.



316 Chapter 59. Fluctuation-based stabilization (II)




Chapter 60

Discontinuous Galerkin

Exercises

Exercise 60.1 (Upwind flux). Consider the advection equation uu + 3-Vu = f. Let F :=
0K, NOK, € Fy. Let & (up) := Bnp{un} + 1|B-np|[us]. Show that &5 (us) = (B-nr)upx,
if Bnp >0 and O3P(uy) = (B-nr)uy Kk, otherwise.

Exercise 60.2 (S%). Verify that the jump penalty operators from §60.3.3 verify (60.21).

Exercise 60.3 (Absolute value). (i) Show that a suitable choice for the jump penalty operator
is 8p = |NF| where |[Np| is the unique Hermitian positive semidefinite matrix such that |[Np|? =
NENF = NE. (Hint: |w"Npo| < [w"|NE|v|.) (i) Verify that

@dxdi’np |:nF®nF0] OLTTT§ O3x3 |OL|TTT§ Osx3
nl {0 0" 117 || Osus BTTT O3x3 | |BITTT

Exercise 60.4 (Matrix T). (i) Show that TT = —T. (i) Show that (TTT)? = TTT.

Exercise 60.5 (Orthogonal subscales). (i) Prove that a5*® is coercive on V}, equipped with the

norm ||vpl|f, := pollvnllZ + 3lvnl3e + 1[vn]l3e. (i) Assume that the fields A* are Lipschitz (with
Lipschitz constant L4 < cpug). Assume that v € Vi := H¥(D;C™) NV, s > % Prove that there is
¢ such that

[(0n (T3 (w)), wn vy vi | < ellu = T3 (w)lvg lwn v,
for all (v,wp) € VyxV), and all h € H, where I}f denotes the L-orthogonal projection onto Vj,
[vl1%, = mollvllZ + 5lvfker + |[0]3o, and (v}, =[]}, + X ker, Bxllvll ox)- (Hint: adapt the

proof of Lemma 60.10.) (iii) Prove that ||u — up|ly, < cozhFtz |u] grr+1(pycmy using only Steps (i)
and (ii). (Hint: adapt the proof of Lemma 27.8.)
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Solution to exercises

Exercise 60.1 (Upwind flux). By definition, we have

~ 1 1
D3P (up) = 5(3"}«“)(%\1(1 +up|k,) + §|ﬁ'nF|(uh\Kl - Up|K, )

Assuming that B-ng > 0, we infer that

%(ﬁ'nF)(uh\Kl +upk,) + %(ﬁ'nF)(uh\Kl — Up|K,)

TP (up)
1
= (ﬁ'"F)i(Uh\Kl + up i, + Up K, — Un|k,) = (B-1F)up K,

The proof is similar if 8-ngp < 0.

Exercise 60.2 (S%). In all cases, (60.21b) is obvious.

(1) For the advection-reaction equation, ker(Np) = {0} = ker(Sy) unless B-np = 0, in which case
ker(Vr) = R = ker(S%). Hence (60.21a) holds true. Moreover, |(Npv,w)pm| < o ?|v|ss|wlss,
so that (60.21¢) holds true.

(2) For Darcy’s equations, v := (o, p) € ker(Np) implies that o-n = 0 and p = 0. Hence, (60.21a)
holds true. Moreover, we have with w := (7, q),

Nrv,w)pry = (61, Q) L2(F) + (P, T1) L2(F)-

Since |v]se, = ai|lonr|p2(r) + azlpllr2(F), we infer that (60.21c) holds true.
(3) For Maxwell’s equations, v := (E, H) € ker(Ny) implies that Hxnp = Exnp = 0. Hence,
(60.21a) holds true. Moreover, we have with w := (e, bh),

(NFU;U))L(F) = (Han, e)L2(F) + (E, h“l’I,F)Lz(F).
Since |v]se, = a1||Exnr| L2r) + az||H xnp| L2(r), we infer that (60.21c) holds true.

Exercise 60.3 (Penalty field by absolute value). (i) Let us verify that S% = |Np| ver-
ifies (60.21). (60.21a) is obvious. To prove (60.21b), we use that || |[Ng||l;z = [|NF|e. To
prove (60.21¢), we use the hint, the Cauchy—Schwarz inequality, and (60.21b).

(ii) A direct calculation shows that

Oaxainr | [Oaxainr | {nF®nF0] {I’.F_@@E_i_@_] [?}E@ﬂf_ig}
np 0 nk i 0 or i1 or i1 or i1

Moreover, since the matrix

OLTTTE ®3><3
Q33 | BTTT
is block diagonal, we have
OéTTT ®3><3 |04TTT| ®3><3 |a||'H‘T'H‘| ®3><3
O3xs | BTTT O3x3 | [T O3x3  |BITTT

But TTT is symmetric positive semidefinite. Hence, |TTT| = TTT. This proves the assertion.
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Exercise 60.4 (Matrix T). (i) Let E, H € R®. We have
E'TH = E-(Hxn) = —(Exn)H =—(TE)"H=-E"T"H.

This proves that TT = —T.
(ii) Let E, H € R?. Since TT = —T, we have

E'T'"TT'TH = (TE)"T"T(TH)
= ((Exn)xn)-(Hxn)xn).
But the vector triple product identity, (axb)xc = (a-¢)b — (b-¢)a, shows that
(Exn)xn = (En)n — E.
Hence, we have

E'"T'TT'TH = (E-n)n — E)-((Hxn)xn)
= —E-((Hxn)xn) = (Exn)-(Hxn)
= (TE)(TH) = ETT"TH.
This proves that TTTTTT = TTT.

Exercise 60.5 (Orthogonal subscales). (i) See Step (1) in the proof of Lemma 60.9.
(ii) Setting 1 := u — ZP(u) in the proof of Lemma 60.10, we still obtain

(B (T3 ) wnhvivi, = (s A Cwn))1 + 5 (M + A wn) oy

+ nh(wh, 77) + Z (S;‘[[n]]v [[wh]])L(F)
FeFp

=T+ T+ %3+ Ty

The only difficulty lies in bounding T; since we have not included the term |72 Ay, (wp)||z in the
l|-llv;,-norm. Since (1, A;, (wp))r = 0 by definition of Z}’, we infer that

|(n, Awn(wn)) | = [(1n, (Arn — Ayp) (wn)) L] < pglinllzig > Lallwnl|z,

where we used the fact that the fields AF are Lipschitz and an inverse inequality to estimate
[Vwn | (k). Since L < cpp, this gives the expected bound on |(6,,(Z} (u)), Wh)V; Vi, |-

(iii) Adapting the proof of Lemma 27.8 where we bound the infimum over v;, € V}, by taking v, :=
ZP?(u), and using the stability property from Step (i) together with the consistency/boundedness
property from Step (ii), we infer that

lu = unllv, < cllu—Zully,.

Finally, we use the approximation properties of I,E’ to derive the error estimate.
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Chapter 61

Advection-diffusion

Exercises

Exercise 61.1 (A priori estimates). Consider the problem (61.1). Assume that d. := ely,
VB =0, Baop =0, p:=p >0, and f € Hj(D). Let Vi3 := (VB + (VB)") denote the
symmetric part of the gradient of 3, and assume that there is py > 0 s.t. V8 + puly > pply
in the sense of quadratic forms. Prove that |u|g:(py < (16 + po) | f|ar(py and |[|[Aul|2(py <
(4(uf + H0)€)7%|f|H1(D)- (Hint: test the PDE (61.1) with —Aw.) Note: see also Beirao da Veiga
[3], Burman [8].

Exercise 61.2 (Advection-diffusion, 1D). Let D := (0,1) and let €,b be two positive real
numbers. Let f : D — R be a smooth function. Consider the PDE —eu” 4+ bu’ = f in D with
the boundary conditions u(0) = 0, u(1) = 0. Consider H'-conforming P; Lagrange finite elements
on the uniform grid 7, with nodes x; := ih, Vi € {0:1}, and meshsize h := ﬁ11 (i) Evaluate the
bh

stiffness matrix. (Hint: factor out the ratio £ and introduce the local Péclet number vy := 2
(i) Solve the linear system when f := 1 and plot the solutions for h := 1072 and v € {0.1,1,10}.
(Hint: the solution U € R! has the form U° + U with U} := b='ih and U, := o + 05" for some
constants g,6,4.) (iii) Consider now the boundary conditions u(0) = 0 and /(1) = 0. Write the
weak formulation and show well-posedness. Evaluate the stiffness matrix. (Hint: this matrix is
now of order (I +1).) Derive the equation satisfied by h=*(U;;1 — Uy), and comment on the limit

values obtained as h — 0 with fixed € > 0 and as ¢ — 0 with fixed h € H.

Exercise 61.3 (Artificial viscosity). Consider the model problem (61.1) with d := €l with
constant € > 0. Assume that u € H?(D). Assume that 3 is divergence-free and u > 0 is constant,
and set b := ||B|p~(p). Consider the finite element space Vi, = Pf((7s) on a mesh from a
quasi-uniform sequence (for simplicity). Consider the following nonconsistent approximation: Find
up € Vi, such that ac(up,wn) + sp(un, wn) = (f,wn)r2(py for all wy, € Vj, where sp(vn, wp) =
$bh(Von, Vwy)p2(p) for all vy, w, € Pfo(Ty). (i) Prove the following error estimate:

102 || — un 2oy + (€2 + (0h)2) ||V (u — un) || L2(py < (€2 + (bh)2 + p2h + p~ 2b)hlul ().

(Hint: use the norms [Jv[, := (e—l—%bh)||Vv||i2(D)+u||vH%2(D), HUH%/u = (e+%bh)||Vv||i2(D)+(u+
2bh_1)|\v||%2(D) and adapt the proof of Lemma 27.8.) (ii) Consider the 1D setting of Exercise 61.2
with f := 1. Set Vj, := PP (Tn) = span{wi}icq1. 1}, where the ©;’s are the usual hat basis functions
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in PP (7). Let € :[0,1] — R be a smooth function, called bubble function, s.t. £(0) = £(1) = 0
and £ > 0. For all i € {1:1}, set &(x) 1= (=) if z € [w1, 3], &i(x) = —§(55=) if
T € [75,2i11], and &;(x) := 0 otherwise, and set 1; := p; + &;. Let Wj, = span{t; }ieq1.13. Prove
that the Petrov—Galerkin formulation using the pair (V;,, W},) as trial and test spaces is equivalent
to a Galerkin formulation in V;, with the bilinear form augmented by an artificial viscosity term.
(Hint: verify that [ uj,& dz = h(fol E(x)da) [ up i da for all i € {1:1}.) Explain how to

choose fol &(x) dz so that the stiffness matrix is always an M-matrix. (Hint: use Exercise 61.2.)

Exercise 61.4 (Bound on consistency term). Prove Lemma 61.7. (Hint: observe that
L1 1

|n-dcVon| < AZ||de Vg |2 ey, use that dZ Vuy, is a piecewise polynomial, and adapt the proof of

Lemma 37.2.)

Exercise 61.5 (Divergence-free advection). (i) Prove (61.27). (Hint: use Lemma 22.3 and

[Covn] = [Co]vn, and bound [¢o] using L¢.) (ii) Prove (61.28). (Hint: use that ||on — Cunllr2(x) <

llon — CunllL2(xy + 1€ = Co)vnllL2(x)-) (iii) Prove that [[¢n|lv;, < cllvn|lv;,. (Hint: bound ||Govn v,
and |lon — Covnllv;-)

Solution to exercises

Exercise 61.1 (A priori estimates). Following the hint and integrating by parts, we infer that
ellAullZzpy = (B-Vu, Au)r2(py + polulFp oy = —(f; Au)2(py = (Vf, V) L2(p),

where we used that de = elly, u € Hj(D), p:= po, and f € Hj(D). Using that Bjop = 0, we also
infer that

—(ﬁ-Vu, Au)Lz(D) = — Z (Bi&-u, ajaju)Lz(D)

i,je{1:d}

Z ((0;8:)9iu, Oju) L2(py + (Bi0i(0ju), Oju) 12(Dp)
i,je{1:d}
= {3:1 + ‘IQ.

We have T; = ((VsB)Vu, Vu)r2(py. Using that V-8 = 0 and using again that 3 vanishes at the
boundary, we obtain that

T= Y (BVOu O = [ VIVl dr =0
ije{1:d) b
In summary, we have shown that
ellAullF2(py + (VsB)Vu, Vu) L2(py + polulF (py = (Vf, V) L2 (p)-
Our assumption on Vg3 implies that
ellAull72(py + (o + po)[ulin py < (VF, Vu)L2(p).-

The assertion follows by bounding the right-hand side as in the proof of the a priori estimate (61.5).
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Exercise 61.2 (Advection-diffusion, 1D). (i) The stiffness matrix is given by A = £ tridiag(—1—
1.2, -1+ 2).

2% 2

(ii) Assuming that f := 1, the linear system to be solved is AU = h(1,...,1)T. Since AU° =
(hy...,h, h—l—”yjl(l —2))T (observe that h(I+1) = 1), we infer that AU = 0,...,0,y (3 —1)".
If v =2, then U = 0. Let us assume now that v = 2. Using U; = o + 06*, we infer from the rows
{2:T — 1} of the linear system that

(-1-2)+26+ (-1+ %) 8> =0,

so that 6 = 1 or 6 = gf—l The first row of the system yields # = —p. From the last row of the
system, we finally infer that £(1 — 3)o(1 — 6'*1) = 71 — 1), i.e., bo(1 — §'T') = —1. Notice
that § # 1 because we assumed v = 2% £ 0. Hence, —0 = o = —b~(1 — ¢/+1)~1, that is,

~ 6 —1 2+
U= bt —m-—, 0= ——.
or+l —1 2— 7
When v > 2, the components of the vector U oscillate 15]-

between positive and negative values. The approximate
solutions for v € {0.1,1,10} obtained with h := 1072
are plotted on the figure shown here. We observe that
for v = 10 the approximate solution exhibits spurious
oscillations close to the boundary layer. Instead, the
approximate solutions for v = 1 and v = 0.1 match well
the exact solution.

0 0.5 1

(iii) Setting V := {v € H'(D) | v(0) = 0}, the weak formulation now consists of seeking u € V
such that a(u,w) = (w) for all w € V. Since fol bv'vdz = 1bu(1)? > 0, the bilinear form a is still
coercive on V. The stiffness matrix is of order (I 4 1) and has the following tridiagonal structure:

co cy 0 ... 0
c_
A:% 0 . 0
: o ct
0 ... 0 c= ¢
with ¢ :=2, ¢j =1+ 3, ¢y := -1+ %, and c_ := —1 — 3. We infer that (e + 2)(U;41 — Uy) =

[ forer da, so that

xr
U —Up 2 [ forada
h N 2¢ + bh

Hence, U’L{U’ — 0 as h — 0 with fixed € > 0, whereas
heH.

Ury1—Ug
h

— @ as € — 0 with fixed

Exercise 61.3 (Artificial viscosity). (i) Let us introduce the following stability norm:

lonll¥;, = (e + 56 VonlL(p) + ullvnllZa(p)-
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The coercivity of the discrete bilinear form a. + s, on Vj, in this norm is straightforward (with
coercivity constant o :=1). Let us set Vi := H*(D) N H}(D), V; := Vs + Vj,, and let us equip the
space V3 with the following norms:
[0, = (e + 50h)[IV0l|Z2(py + pllollZ2 (D)
0], = (e + 50R)[IV V]| Za(py + (1 + 2607 ) |[v]|72(p)-
Notice that (27.7) is satisfied with ¢, := 1 (i.e., |vp|lv, < |lvn|lv, on Vi and o]y, < |Jv]lv, on V}).
Recalling Definition 27.3, the consistency error is such that for all vy, w;, € Vj,
(On(vn)swn)vy v, = (f,wn) 2Dy — ae(Vn, wn) — 8k (Vn, wh)
= ae(n, wr) + sp(n, wn) — sn(u, wn),
with 1 := u — vp,. Integrating by parts the advective derivative, we infer that
1. _1 1
(B-Vv,wn)r2(p) < [[v][2(0)0l[Vwallz2(p) < (20)2 072 |[v][L2(D) Sh(Wh, wr)?
This implies that
lac(n, wn)| < [Inllv; [[wnlv,-
Moreover, we have
1 1
Isn(n, wn)| < sn(n,m)2sn(vr,vn)? < [Inllv; Jwr v, -

Integrating by parts, using the Cauchy-Schwarz inequality and the definition of the stability norm
I|lv;,, we finally have

IN

1
§bh||AUHL2(D)HwhHL2(D)

1
§u ébhHAuHL%D)”wh”Vh'

1
|sh(u, wh)| = 5bh|(Au, wh)Lz(D)|

IN

Putting the above bounds together, we infer that
1 1

190 (vn)llvy; < ellu = vallv, + 5p72 bk AullL2(p).

Adapting the proof of Lemma 27.8, we obtain
. 1 1
= wls < (inf = onll + 520 Auloo) )
vp €V 2

Using the approximation capacity of the discrete space Vj, = Pﬁo(ﬁ), we infer that

inf fu—vally; < ¢ (€% + (bh)% + p2 h)hlul 2 (p).-

VhE€Vh

Since ||Aul|z2(py < ¢|u|g2(p), this leads to the expected error bound.
(ii) The Petrov—Galerkin approximation consists of seeking up, € V3, such that

1 1 1
/ () + €) da + / b, (s + &) da = / s+ €) da,
0 0 0

for all 4 € {1:1}. Since wj, is piecewise constant, we infer that fol eup, & do = 0. Moreover, a direct
calculation using again that u), is piecewise constant shows that

Xit1 1 Ti41
/ up& de = h</ &(x) da:)) / up, ) d.
Ti—1 0 Ti—1

i—
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Since f :=1 and [ & da = 0, we finally infer that [ f¢& da = 0. Hence, u, € Vj, is such that

1 1 1
/ (€ + en)up el dr + / buy,p; dor = fpida,
0 0 0

where €;, = bh fo z)dx is an artificial viscosity. To obtam an M-matrix, the condition derived
for which a sufficient condition is

in Exercise 61.2 is v, < 2 with local Péclet number ~; =
fO x)dx >

e+e )

Exercise 61.4 (Bound on consistency term). Let v,,w;, € V,,. Let F € ]-',‘?. Since d. is
symmetric positive definite, we have

n-dd Von| < (neden)® (Vop-dl Vo) b = AZ[|d2 Vo |2 (g

Usmg the discrete trace inequality hi ||<1:1 Voullp2ry < cdtHd Vun| L2k, (this is legitimate since

a:l€ Vuy, is a piecewise polynomial because d. is piecewise constant) and the Cauchy—Schwarz in-
equality, we infer that

1 1
1 2 AR 2
< ( > hF||d3V0h|2L2(F>> ( > hF”wh”N F>>

/ (n-deVop)wy, ds
oD

FeF? FeFy]
1
1 2 AF 2
< Cdt( Z |‘d€2vvh”i2(m)) ( Z h_|wh|%2(F)>
FeF? FeFy r

The assertion follows by rewriting the summation over F' € ]-',? as a summation over K € 7;18[)
and by using the definition of ns.

Exercise 61.5 (Divergence-free advection). (i) Proof of (61.27). The Cauchy—Schwarz in-
equality, together with discrete trace and inverse inequalities and wg > 1 show that

1
la1 (vh, pn — Covn)| < g (A1 + Az + A3) X ( Z A xchi lon = Covnll7ecxe
KeTy

1
2

T (B2 + N chi)lon — Covn i )
We observe that
Ok (Bhi® + M chit) < Brchi + A xhi,

where the bound on the first term follows from dx < 1 and the bound on the second term follows
. As a result, we obtain

from 0 < p}lPeK with Peg := TK>\1> —.

=

la1 (vn, pn — Govn)| < e (A1 + Az + Az) x ( > Brhi' + Mchid)llen — Covhlle(K)>
K€7-h

Invoking Lemma 22.3 and observing that [(ovn] = [Co]vn, [Co] < chixL¢, we infer that

lon = CovnllF2(x) < chi Z Wi LEllonll72(ry < ¢ Ry LEonl 2k
FeFy,
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where we used a discrete trace inequality and the regularity of the mesh sequence (recall that .73%
is the collection of the mesh interfaces sharing at least a vertex with K). Using the assumption
Lg max(A\g, i, Bxhi) < o, we conclude that

1 1
a1 (vn, on — Covn)| < cwg (A1 + A2 + As)pg [lvnll L2(py,

which leads to the expected bound.
(ii) Proof of (61.28). The Cauchy—Schwarz inequality and the triangle inequality lead to

(a2 (ohs on — Con) Sc(A§+Ai+ 5 TK6K|V-<d€th>||iz<K>) x
K€7—h/

1
2
( > o len = Conlliagey + D ﬁKLhKH(ph_CUh'%Q(KL)) '

KeTy FE]—‘;?

1
Using that TK5KHV-(¢1€VU;L)||2L2(K) < c||d? Vvh||%2(K) since T dx N kh> < 1, we obtain after
rearranging some terms that

oa(ons on = Gl < e + Ao+ Aa) x (3 maxtr 0 Behillon — ol )
KeTy

Using the triangle inequality [[¢n — Cunllz2(x) < lon — CovnllLz(x) + 1(C = Co)vnllL2(x), We bound
the first term using as above and the second one using || — ol (k) < chx L¢. This yields

N|=

|az(vn, on — Cup)| < e (A1 + Az + Ag) ¥ < > maX(Txlisxlh?oﬁKhK)LvahH%z(K))
KeTy,

To prove the expected bound, it remains to verify that
max(c 5" hie, Brchi ) LE < po.

The bound Bxhx L? < pio follows from the assumption on L. Let us consider 75" 65" hiLg. Using
the definition of §x, we obtain

TR O WL = maX(Tglh%L?, /\ﬁ,KLg)-

The second argument verifies Ay, KL% < o by assumption on L¢. Using the definition of 7x, we
finally have

T i LE = max(Brchy’, po)hic L = max(Brhi L, pohf LE) < po,

since we assumed that ﬂKhKLg <o and hxgLe < 1.

(iii) Let us prove that |¢nllv, < cllonllv,. The triangle inequality yields |lonllv,, < [[Covnllv, +
[lon, — Covnllv,,, and since (o is piecewise constant, we have [[Covp|lv, < Cillvnllv, . Using inverse
inequalities, we finally infer that

lion — ool < 3 (Mesehil + Brchi + o) o — Govnl3acu.
KeTn

and we conclude as above.



Chapter 62

Stokes equations: Residual-based
stabilization

Exercises

Exercise 62.1 (Pressure gradient). Assume (62.14). Prove an inf-sup condition similar to
(62.14) using the norm ||(vh,qh)|\§/h+ = |[(vn an)lI3;, + Xger, 7 05lIVanle gy (Hint: use an

inverse inequality.)

Exercise 62.2 (Inf-sup partner). The objective of this exercise is to reprove the inf-sup con-
dition (62.14) by identifying an inf-sup partner for all (vy,gn) € Y}, as suggested in Remark 25.10.
(i) Prove that there is p € (0,1) s.t. tn((vn,qn), (1 — p)on + pwn, (1 — p)an)) > 1ll(vn, a3,
with wy, = I}, (wg, ) and wg, defined in (62.16). (Hint: use (62.15) and the bounds on Ty, T3
from the proof of Lemma 62.3.) (ii) Show that the inf-sup condition (62.14) is satisfied with a
constant o depending on p, Sp, n, and the constant ¢,, introduced in (62.18), i.e., ||(wp,0)]y, <

! <
Cw 2 |'wqh

(D). (Hint: identify an appropriate inf-sup partner for (vs, gr) and use Remark 25.10.)

Exercise 62.3 (Approximation). Let |-|s be the GaLS stabilization seminorm, i.e., |-|3 = |-|%. +
12 + 3. Let (n,¢) € (H*(D)xH*(D))NY be s.t. r(n,()jap,n = 0. (i) Prove that |(n,()|s <
ch(p2 2oy + p72|¢lm(py)- (ii) Prove that |(n — Zj4(n), ¢ — ZP(O)|s < ch(p? n|mz(p) +
13 |C i (py)- (Hint: use (62.24).) (iii) Estimate |(Z}4(n),Z2(0))]s-

Exercise 62.4 (Inf-sup condition on t;). Assume that D = 9Dgq so that Vg := H}(D).
Reprove (62.14) by accepting as a fact (see Exercise 63.2) that there is Sy > 0 s.t. for all h € H
and all g, € Qp,

_1 b whaqh
Bopr 2llqnllz2py < sup 2(7”
wp€Vha M2|'wh|H1(D)

+ |Qh|5gp + |qh|5pv

3
with |gn|3e = ZFGE? hTFH[[Vth]]'nFHiz(F) for all g, € Qn. (Hint: use that b(wp,qn) =
t((0n, an), (wh; 0)) — a(vn, wh) = 54 (Vs a1); (wn, 0) for all vy, € Via, and prove that |gn[fe <
C(|('Uh7 an)|% + U|vh|§'—11(D))')
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Solution to exercises

Exercise 62.1 (Pressure gradient). Invoking an inverse inequality, we have hr||Vqy| L2(x) <
cllqn|l2(x) for all K € Ty. This implies that

[(wr, @)y, < [[(vn, gn)lly+ < eq [ (vn, an)llys,,
for all (vp,qn) € Yy,. Therefore, we have

th((vn, qn), (wn, 1))

i 0l (v, an)lly+ < voll(vn, an)llvi, < sup

(wh, 1)€Y, | (wn, 74) |y,
< sup th((Vn, qn), ('whﬂ”h))7
(wnrmevn 1w n)lly+

that is, t;, satisfies the inf-sup condition (62.14) with the constant cfrlvo.
Exercise 62.2 (Inf-sup partner). (i) By linearity, we have
tn((vn; qn); (1 = p)on + pwn, (1 = p)gn)) =
(1= p)ta((vn, an), (Vn, an)) + ptu((vn, qn), (wn, 0)).
Using (62.15) and 1 — p > 0, we have
th((vn; qn), (1 = p)on + pwn, (L = p)gn)) = (1 = p)tn((Vn; an); (v, qn)) + ptn((Vn; an); (wn, 0))

> a1 = p)(p|vnlt (py + [(Vn, @) [%)
+ (e Manllzzpy — T2 — Ta),

where T, T3 are defined in the proof of Lemma 62.3. Using the bounds on T9, T3 from this proof
and p > 0, we infer that

th((vns qn), (1 = p)on + pwi, (1= p)gn)) = a(l = p) (ploalzn (py + (0, a)E) + o Hlanll 72 ()
1
- PC23(M|Uh|H1 () T |(Vn, qn) |%) 2% llanllL2(Dy
for some constant coz. Applying Young’s inequality leads to
th((vhs qn), (1 = p)vn + pwn, (1 — p)gn))
> (a(l = p) = §pchs) (lonlt (py + [(vns an)2) + 500 lanllz2 p)

Taking p := we obtain a(l — p) — $pc3s = 3a, so that

2044?6%3’
th((Vns qn)s (1 = p)on + pwn, (1= p)an)) = nll(vn, an) |3, -

with 7 :=  min(a, p).
(ii) The tr1angle inequality and p € (0,1) lead to

(X = p)vn + pwn, (1 = p)an)llvi, < (1 = p)ll(vn, qn)llvi, + pll(wn, 0)ly;,

and since . )
[(wn, 0)[ly,, < cwp® w, |m(py < cwBp' 1 2 llgnll L2 (D),
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we infer that

101 = p)vn + pwn, (1 = p)an)lly, < (1 = p) + pewBp') | (Vn; an) v, -

Using Remark 25.10, we conclude that ((1 — p)vy + pwp, (1 — p)gn) is a suitable inf-sup partner of
(vn, qn), and the inf-sup condition (62.14) is satisfied with

v Bpn
o ﬂD(l - )—l—pcw’

where the value of p is fixed in Step (i).

Exercise 62.3 (Approximation). Let (n,¢) € (H*(D)xH (D)) NY be s.t. (n,{)jap,n = 0.
Recall that |- — -3, + -3 + |-
(i) We estimate |(n, ()|s: as follows:

|(m,¢)

b= 3 Ve (n, Ol
KeTh

<e Y Mk (M|"7|%—12(K) + M_1|C|311(K))

KeTy

_ 2
< ch®(ulnlfrzpy + 17 ¢ (b))~

We have [¢|s» = 0 since ¢ € H'(D), and |(n,¢)|s» = 0 because r(n,{)jop,m = 0. In conclusion,
we have

(0, O)ls < ch(u? 2y + 172 ¢ ()

(ii) We estimate |(n—Z},(n),(—Z}({))|sr by bounding the three seminorms. Concerning |-|gr, the
definition of the stabilizing bilinear form s} in (62.10a) and the approximation properties (62.24)
lead to

[(n —Zha(n), ¢ = I3 (C) |Sr <c Z p g [ Vhr(n —Tha(n )7<_I}PL)(<))H%2(K)
KeTh

<e 32 b (= Tha() gy + 17— RO (1))
K€7-h

_ 2
< ch* (Il oy + 1S (p)

Concerning |-|sr, we use the triangle inequality to bound the jump norm by the norms of the traces
from both sides, the definition of the stabilizing bilinear form s} in (62.10b), the multiplicative trace
inequality (12.16), the regularity of the mesh sequence, and the approximation property (62.24b)
to infer that

C—TR(O)I% = Y w"—H C= TR < e D hll¢ = TR0
FeFy KeTy,
<dpt TN TRON L2 (IS = TR 2y + Rl = TR (O3 x0)
KeTy

< TR )
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Concerning |-|gn, we invoke similar arguments to obtain

h
(= Tha(m), ¢ = T2 [E = D @ =[x —Tha(m), ¢ = ZR(O)nl T2 r)
FeFp

) ) 2
<ep™ S b (Ul V= Tha)lleom) + I~ TRl 2 om))
KeT?

_ 2
S Cl h2 (/14|'I’]|%_12(D) + 1% 1|<|%11(D)) .
Hence, we have
u 1 _1
[(n —Ihd(n),C—I}Z(C))Is < Ch(ﬁ” |77|H2(D) +po2 |<|H1(D))-
(iii) By using the triangle inequality, we conclude that
u 1 1
[(Zha(m), 2, (O))ls < ch(p? 0l a2y + 12 1¢|m (0))-

Exercise 62.4 (Inf-sup condition on t3). Let (vj,qs) € Y},. Let us set

Si=  sup (n0), (Wn, )]

wrrmevn  (wns )y,
Using the hint and the inequality

_1 b(vn, qn
Bo i Hlanlloimy < sup —Lmanl

T + |qn|ser + |qnlse,
V€ Vha H2|wh|H1(D)

with 8y > 0, we infer that

5 N_%||Qh||L2(D) < swp [th ((Vn, qn), (Wi, 0)) — a(vn, wr) — sp((Vh, qn), (wp,0))]
T wieVia 102 [wh | 11 ()

+ |qn|ser + |qn|s»
<1+ Fo+ T3+ |gnlser + |qnlsv,

where
tn((v wp, 0
{3:1 = sup |h(( lth}l)a( hs ))|,
wp, €Vig /,L§|’LU}L|H1(D)
v, W
Ty = sup la(vn, wn)|

wp€Via N%|wh|H1(D)7
v wp, 0
Tyi=  sup |sn (( lhth)v( ks ))|.
wp €Vha M§|wh|H1(D)

Since D4 = 0D by assumption, we have s;, = s}, + s}, (i.e., s := 0), so that

& + lan|%e-

1
1(vn, an) 1%, = mlvnlzr o) + ;th”%?(D) + [(vn, qn)

Invoking an inverse inequality, we infer that

1(wn, 0%, = slwn i o) + |(wn, 0)[3: < cplwnl p)-
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This implies that T; < ¢S. Moreover, the boundedness of the bilinear form a implies that T
1 . .

202 |vp |1 (py. Finally, since we have sy ((vn, qn), (wr,0)) = s},((vn, qn), (wn,0)) and |(wp, 0)|sr

c,u% |wn |1 (py, we infer that T3 < c|[(vp, gn)|s:. Putting these bounds together yields

M71||Qh||2L2(D) <c($?+ N|vh|ill(D) + [(vn, qn) 3 + lan|ze + lanls)
= ¢ (S + plonlzn oy + 1(0n, an)[5 + lanlze)-

Invoking a discrete trace inequality, an inverse inequality, and the regularity of the mesh sequence,
we infer that (the value of ¢ changes at each occurrence)

h3 h?
janlZee = Y ~EIVhanlnrlliery < e Y =l Vhanllzec)

Fe]:;; KeTy
h2
<c Z LIV -r(vn, an)[z2() + #2 IV (W) 22(x))
KeTh

< ¢ (|(vn, qn) % + plle(vn)lFz k)
< ¢ (|(vn, qn) % + plonlFn py)-

As a result, we have

p M lanll72py < ¢ (S* + plonlF py + (v, an)[2)-

Recalling (62.15), i.e.,
a(plvnlFrpy + 1(wn, an)1E) < Sll(vn, qn)llvi,,

we obtain [[(vn,qn)ll3, < ¢(S* + S|[(vn,qn)lly, ), and we conclude as usual by invoking Young’s
inequality.
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Chapter 63

Stokes equations: Other
stabilizations

Exercises

Exercise 63.1 (Coercivity, CIP). Prove Lemma 63.2. (Hint: see the proofs of Lemma 37.2
and Lemma 37.3.)

Exercise 63.2 (Inf-sup condition on b, CIP). Prove the inf-sup condition (63.13) on b. Here,
we do not assume that Qj, is H'-conforming, that is, the pressure space is either pr (Th) or P,Ep (Th)-

(Hint: use the identities for u~h?||Vaqn||32(p) and 1~ |[qnl|7 () from the proof of Lemma 63.3.)

Exercise 63.3 (Galerkin orthogonality, dG). Prove the Galerkin orthogonality for the stabi-
lized dG formulation from §63.2, i.e., t((u,p), (wn, 1)) = lp(wp, 1) for all (wp, ry) € Y.

Exercise 63.4 (Integration by parts for b,, dG). Let by be defined in (63.19). Prove the
identity (63.27). (Hint: [ab] = {a}[b] + []{b} at all the interfaces.)

Exercise 63.5 (dG fluxes). Derive local formulations of the discrete problem using the fluxes
from Remark 63.7. (Hint: proceed as in §38.4.)

Exercise 63.6 (Inf-sup conditions, dG). Assume that 0D = 9dDq4. (i) Prove the inf-sup
condition (63.29) on by. (Hint: use (63.26).) (ii) Using the inf-sup condition on by, prove again
the inf-sup condition on ¢5. (Hint: use the identity (63.28).)

Solution to exercises

Exercise 63.1 (Proof of Lemma 63.2). Let T2 be the collection of the mesh cells having at
least one boundary face, i.e., 7,77 := UFe}‘,@{Kl}- Let us set D? := int (UKGT}?D K) Proceeding
as in the proof of Lemma 37.2, we obtain

B 1
[nn (v, wn)| < njcas(2p)? [|e(vn)|lL2(poy|wn|su.
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This, in turn, implies that

1
an (v vn) + s (wn, v1) > ()2 + (27)? = 2nj cara®y + "2,

with z° := (2u)%|\®(vh)||Lz(D\Da), 29 = (2u)%||®(vh)|\Lz(Da), and y = |vp|se. We then infer

(63.8) by proceeding as in the proof of Lemma 37.3.

Exercise 63.2 (Inf-sup condition on b, CIP). Let g, € Q) and set B := sup,, ¢y, W.
v h

Let us set
wp, = p hATEY (Vian),

where 7™ is the H'-conforming averaging operator from §22.2. Since D4 = 9D, integrating
by parts gives

1 B Vhanllze oy = 17 R (Vaan — T (Vaan), Vian) L2 (o) + b(wn, qn)

+ Z ([an]nr, wn)L2ry = T1 + To + Ts.
FEFP

Reasoning as in the proof of Lemma 63.3, and in particular using that ||wp||v, < ¢~z h)| Vhanl L2 (D),
we infer that )
%1+ Ts| < clgnlser + lgnlse )w™ 2R VagnllL2(D).-

Moreover, we have )
|Ta| < Bllwnllvi, < eBp™2h||Vihgn| L2 (p)-

Combining these two bounds leads to
1
1 2R VaanllLz(py) < ¢ (B + |gn|s= + |gnlse).

Moreover, let wg, € Vg be the function introduced in (62.16), i.e.,

Vg, = _:uilq}l’ ﬂD|wZIh|H1(D) < M71||(Jh|\L2(D),

with Sp > 0. Letting wy, := I3 (wy, ) € Vi, we have

1 anll22(py = (Vaan, wq, — wn)L2(p) + blwa, qn)
+ Z (lanInr, wh — wy, ) L2(ry = %1 + T2 + Ts.

FeFy

Reasoning as in the proof of Lemma 63.3 and using the above bound on u_%hHthth(D) readily
yields )
12 llgnllz2 oy < ¢ (B + |gnlser + |gnlse),

which is the expected estimate on == llanllz2(D)-

Exercise 63.3 (Galerkin orthogonality, dG). Using the boundary condition r(u,p)zn = 0
for all F' € F}, and using that r(u, p)n is continuous across the mesh interfaces, we have

Ch(wp, ) = L(wp,7h) = (V-r(w,p), wn)p2p) + (Vu,rh) 2 (p)
= (s(u),en(wn))r2(p) — (Vi-wn,p)r2(py + (V-u,74) 12(D)

+ Y (r(up)ne, [wn]) ).

FeFpurd
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Using that [u]r = 0 for all F € FfUFY, sP(p,qn) = 0 for all g, € Qp, and s ((u, p), (wp, 1)) =0

for all (wp,7p) € Y, we infer that

Ch(wn,mh) = (s(uw),en(wn)) 2oy — > ({s(w)}np, [wil)rar)

FeFRuFd

— Y (s(wn)}ng, [u])2cr) + sh(u, wh)

FeFpUFy

— (Vwwn,p)r2ipy + Y, ([wilne, {p})r2(r)
FeFRuFd

+ (Vew,rn) 2oy — Y. ([ulne {ra}) o)
FeFpUFy

= ap(uw, wp + s (w, wr) + bp(wn, p) — b (w, 1)
= tn((w,p), (wh,71))-
We have thus proved that ¢, ((w,p), (wp, 1)) = Ch(wh, 1)

Exercise 63.4 (Integration by parts for b, dG). Integrating by parts elementwise, we have

bun(vn, qn) = — (Vh-vh,Qh)L2(D) + Z ([[vh]]'an{Qh})L2(F)
FeFRuFd

= (vn, Vran)L2(p) — Z (Vn| kMK Gn k) L2 (0K)
K€7—il

+ Z ([vrl'mr, {an}) r2(r),

FeFRuFd

recalling that the jump and average operators return the actual value at boundary faces.

observe that

Z (V| MK, Gh k) L2 (0K) = Z ([vran]-mr, 1) p2(ry + Z (Vnm, qn) L2 (F)
KeTh Fery FeFlurp

> (lwnlnrAan e + Y (ontnr, [an]) e )

FEFy Fery

+ Z (On'1, qn) L2(r),
FeFJuFrp

where the second equality follows by using the hint. Combining the above two identities gives

br(vn, an) = (Vn, Vaan)L2(p) — Z ({vntnr, lan]) 2 r) — Z (Va1 qn) 12 (F)

FeFp FeFp
= (vn, Vhan)r2(p) — Z {vn}nr, [an]) L2r),
FeFSUFD

using again the above convention on the jump and average operators associated with the boundary

faces. This proves the expected identity.

Exercise 63.5 (dG fluxes). Let K € Tj, let 1x be the indicator function of K, and let & € Py, .

Let us use (€1k,0) as a test function in the discrete problem. We obtain

(F:&)r2(x) = an(un, Elx) + bn(Elk, pr) + sp(wn, €1k ) + sp((wh, pr), (€1, 0)).
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Since [€lx]r = ex,rp€ and (L%(v),qh)Lz(D) = (v,{an}nr)L2(p), for all v € L3(F), all q; €
PP(Th; R™*4)and all F € F,, we have
an(un, §lx) = (sn(un), e(€))L2 (k) — nn(wn, Elx) — np(Elx, up)
= (sn(un), (€))L (x) — > {snlwn)}ne, ek r€) L)

FEeFrN(FUFY)

- > (L (Tunl), 2ue (€))L (),

FeFrN(FRUFY)

bn(§lk,pn) = — (Pn, V-§) L2 (k) + Z ({pn}, ek, FEMF) L2 (F)

FeFxN(FLUFD)
= — (pl,e(&))L2(x) + Z {pnl}np, ex ré)L2(r),
FeFrN(FLUFD)
u u 2/’L
sp(up, &1k ) = Z @ h—([[Uh]],EK,FE)Lz(F)7
FeFxN(FPUF) r
and
h
sp((un, pn), (€lk,0)) = Z wnf(rh(uhaph)nu _(2M)®(£)n)L2(F)

FeFrNF}

= — Z QWHhF(LlF(T}L(Uhaph)n)v(B(S))]Lz(K)'
FEFKNF}

Recalling the definition of the global lifting
h
Li(un.pn) = Y Lip(lunl) + Y @" = Li(xn(un, pr)n),
FEFy U]:g Fery H

and the definition of the discrete total stress tensor T, (wn, pn) = rp(un, pp) + 2ull (wp, pp), this
leads to

— (T (wn, pn), @(€))L2(r) + Z ex, 7 (®r(un,pr), &2 ry) = (F,€)L2(k),
FeFk

with the flux

{Jrh(uh,ph)}np—l—w“i—ﬁ[[uh]] ifFE}—;;U.Fg,

Py =
r(Un, Ph) {0 it F e Fp.

Let now ¢ € Py, and let us use (0,(lx) as a test function in the discrete problem. We obtain

(9, Qr2(x) = — balun, Cli) + sy, (pr, Clie) + s ((wn, pr), (0, Cli)).

Using the identity (63.27), we observe that

—bn(un, (k) = — (un, V) L2(x) + Z {un}nr, ex rC)r2(r),
FeFxN(FRUFy)
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h
shon,Cl) = > @ —([pa], exc,r Q)21
FeFxNFy K

and

h
sh((wn,pn), (0,C1k)) = > @ == (za(wn, pn)n. (n) g2 (p).-
FeFxnF} r

Altogether, we obtain

—(un, VQ)rL2(x) + Z ex, 7 (P% (wn, pr), Q2 (py = (95 L2 (k)

FeFk
with the flux
{un}nr + wPLE [py] if I e Fy,
(I)}I)T'(uhvph) =40 1fF€]:}?7

T

u;mz—l—w“%n rp(un, pp)n it F € Fp.

Exercise 63.6 (Inf-sup conditions, dG). (i) Let ¢; € Q5 \{0}. Let w,, € Vg be the function
introduced in (62.16), i.e.,

Vg, = _:u_lq}l’ ﬂD|wZIh|H1(D) < ,U_1||CIhHL2(D),
with 8p > 0. Let wy, := I} (w,, ) be the L?-orthogonal projection of w,, onto Vj,. Recall that
v = I3 (0) |2 (k) + hic[Z3(0) | 1 (x0) < chre 0] b (56,

for all K € Tj and all v € H'(K). Let us set B := sup,, ¢y, W. Recall that we have shown
) } h
in (63.26) that

p anllF2py = bn(wn,an) + Y (lanlne, {wn — wg, P2y = Tr + Ta,
FeFp

where we used that 0D, = 0 to drop the subset F}in T2. We also used that k, > k), to establish
that (Vign, wy, )r2(p) = (Vagn, wn)r2(py. Owing to (63.25), we infer that

1
[%1] < Bllwal[vi, < cBp~2lgnllL2(p)-

Using the Cauchy—Schwarz inequality and since h;% lwn —wq, ||z2(F) < clwg, |1 (k) for all K € T,
and all F' € Fg, we have

1 _1
12| < clanlsep |wy, |mrpy < ¢ anlse ™2 lanllL2(p)-

Putting everything together leads to the expected inf-sup condition (63.29) on by,.
(ii) Let (vn,qn) € Vi, and set S := sup [0 (Conan).(wnrn))| - Recall that we have

wh,TR)EYr T(wn,rn)lly,,

a (lonll¥;, + lanl3e) < Sl(vn, an)llvi.,
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with o > 0 and where we dropped the contribution from s} since 9D, = (). Using the hint (i.e.,
the identity (63.28)) and the inf-sup condition on by, yields

. |bh(wh7qh)|
cuHllall < sup S
h h h

[th((vn; qn), (wn, 0)) — ap(vn, wi) — sj (vp, w)|

+ lqnlsv

= sup + lan|s»
wpEV), ”wh”Vh
ap(vp, wp) + sy (v, wy
< sup Lol ) RO g < oy, + 8+ lanlse,
wpEV), Hwh”Vh,

where we used the boundedness of aj, + 5. in the second line (which follows by using the Cauchy—
Schwarz inequality and a discrete trace inequality to bound ny,) to infer that

an(vn, wp) + s (v, wp
sup | ( ’ ) h( ’ )l SCH'Uh”Vha
wpEVH ||whH‘/h

and the fact that ||(wp,0)|ly, = ||wnl|lv; (since dD,, = () to infer that

sup ltn((vn, qn), (wh,0))] <s.

wi Vi l[wnllv, -

Putting everything together leads to ||(vn,qn)l3, < ¢(S* + S|[(vn,qn)lly;), and we conclude by
invoking Young’s inequality.



Chapter 64

Bochner integration

Exercises

Exercise 64.1 (Strong measurability). Prove the statement made in Example 64.8. (Hint:
use Theorem 1.17.)

Exercise 64.2 (Bochner integral). Let f : J — V be a Bochner integrable function and let
(fn)nen be a countable sequence of simple functions satisfying the assumptions of Definition 64.11.
(i) Show that [ f,(t)dt has a limit when n — co. (Hint: prove that it is a Cauchy sequence.) (ii)
Show that if (f,)nen and (gn)nen are two sequences of simple functions satisfying the assumptions
of Definition 64.11, then lim, o0 [ fn(t)dt = lim, o0 [; gn(t)dt.

Exercise 64.3 (L?(J;V)). Let f be a Bochner integrable function. (i) Prove that || [, f(¢)dt[|y <
[ IF@®))lvde. (i) Prove that LP(J; V) < L'(J;V). (iii) Let (fn)nen be a sequence in L*'(J; V)
s.t. (fn(t))nen converges to f(t) in V and || f,.(t)||v < g(t) with g € L'(J;R) for a.e. t € J. Show
that f € LY(J;V) and (f,)nen converges to f in L1(J; V).

Exercise 64.4 (L((0,1); L?(0,1))). Let p € [1,00). Let J := (0,1) and ¢ : J — LP(D) with
D := (0,1) be defined by g(t) := 1 for all t € J. (i) Show that g is almost separably valued.
(ii) Show that g is weakly measurable. (iii) Let ¢ € [1,00]. Show that g € LI(J; V) and compute
Hg”Lq(J;V)-

Exercise 64.5 (Constants). Let V be a Banach space and f € L{ (J;V). Assume that f is

loc

weakly differentiable and 9,f = 0. Show that there is a € V such that f(¢) = a a.e. t € J. (Hint:
see the proof of Lemma 2.11.)

Exercise 64.6 (Linear map). Prove Lemma 64.34.
Exercise 64.7 (X?9(J;V,W)). Prove that X?2(.J; V, W) is a Banach space.

Exercise 64.8 (Continuous embedding). Let J := (0,7), T' > 0. The goal is to prove that
XPA(J;V,W) = CO(J; W). Let u € XP4(J; V,W). Set v(t) := dyu(t) and w(t) := [ v(r)dr. (i)
Show that w € C°(J; W). (Hint: use Lebesgue’s dominated convergence theorem.) (ii) Let p(7) :=
neiﬁ if |7 <1 and p(7) := 0 otherwise, with 7 s.t. [, p(7)dr = 1. Let 0 < s <t < T and let

N be the smallest integer s.t. N > max(2, 2=). Define p,,(7) := np(n7) for all n > N. Consider
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the sequence of smooth functions ¢, (7 fo pn(s—=&) — pu(t — &) de. What is limy, o0 &p(7)?
(Hint: [ pn(s — &) f(§)dE — f(s) for a.e. s and all f € LY (R).) (iii) Show that &,(s,t) =

fil pn(y)(u(s—L)—u(t—4))dy = — fOT v(T)pn (1) dr. (iv) Compute lim, o 6, (s,t). (Hint: pass
s . . 1 -

to the limit in the above equality and accept as a fact that lim, o [~ p(7)f(s — E)(_IlT = f(s)

for a.e. s and all f € L'(J;B), where B is either V or W.) (v) Prove that v € C°(J; W) and

we OO T (T, W) if ¢ > 1.

Exercise 64.9 (Time derivative of product). Let a € C*'(J;R) and u € X?(J;V,W). Show
that 0 (au) = udra + adiu (see Definition 64.35).

Solution to exercises

Exercise 64.1 (Strong measurability). Let ¢ € {1:1}. Since v; is integrable and reasoning
on the positive and negative parts of 1;, we infer from Theorem 1.17 that there exists a sequence
of scalar-valued simple functions (g;n)nen such that lim, o gi n(t) = 9;(t) for a.e. t € J. After
observing that the sum of two simple functions is still a simple function, we conclude that f,(¢) :=
Zie{l;l} gin(t)ei is a V-valued simple function. Therefore, we have for a.e. ¢t € J,

T 6~ fo0lv < lm 3 [l6) - gl
ie{1:1}

< Y Jim ) - gin(®lleilly =0,

ie{l:1}
showing that f is strongly measurable.

Exercise 64.2 (Bochner integral). (i) Let z, := [, f,(t)dt. Lemma 64.2 implies that
o= zallv < [ Wnlt) = Fu®lvt
S/J(Ilfm(t)—f(t)||v+IIfn(t)—f(t)Ilv)df

= [ 180 = r0lvae+ [ 18,00 - selvat,

For all € > 0, there is N(e) such that [, | fm(t) — f(t)|vdt + [, | fu(t) — f(t)|lvdt < € for all
m,n > N(e) by assumption. This proves that (z,)nen is a Cauchy sequence. Hence, there exists
z €V st z, = 2z asn — oo since V is complete.

(i) Let (fn)nen and (gn)nen be two sequences of simple functions satisfying the assumptions of
Definition 64.11. Lemma 64.2 implies that

\ dt—/gn )t /Ilfn — ga®llvt

< / 1£6) = 1Ot + [ (6 = 10wt
J
The assumptions of Definition 64.11 imply that

[]fn(t)dt—[]gn(t)dt

<0
v

0 < limsup

n—r oo

)
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which proves the statement.

Exercise 64.3 (LP(J;V)). (i) Let (fn)nen be a countable sequence of simple functions converging
to f. Invoking the triangle inequality, Lemma 64.2, and again the triangle inequality, we infer that

’/Jf(t)dt /an(t)dt

< Lum—ﬂmmhv+zyammw

IN

/uw—nww +
J 1%

\4 \%4

< Lum—ﬁmmhV+Lyhm—fmmm+/]ﬂmv&

The conclusion follows from

lim
n— oo

AU@—&@W

0. Jim [0 = £u0lvar =0,

\% n—

which are consequences of the definition of f being Bochner integrable.
(ii) Since the function ¢ : J 3t — || f(¢)||v € R is integrable and J is bounded, we have

p=1 p=1
Ifllrvy = el < VTP Ielecy = 117 1 F e vy,
which proves the statement for p € [1,00). The case p = oo follows from the inequality

Ifllercrvy = 1@l < NDllneecry = 1 fllLee(rvy-

(i) We first show that the function f is strongly measurable. For all k € N, there is n;, € N s.t.
lf() = far, ®)]lv < (k+1)71, and since f,, is strongly measurable, there is a simple function of
the form >=) .y, 3 vila, (t) s.t.

Then the sequence of simple functions (37, (1:myy 1A, (t))ken converges simply to f. Applying

< (k+1)""
14

fhk (t) - Z vy, (t)

le{l:my}

Lebesgue’s dominated convergence theorem in L(J;R) to the sequence of functions (|| fn||v)nen,
e, |[fn@®)]v — If®)]v and || fo(t)|[v < g(t) for a.e. t € J, we infer that ||f||y is in L'(J;R).
Hence, f is Bochner integrable and f € L'(J;V). Applying again Lebesgue’s dominated conver-
gence theorem to the sequence ([|fn — fl|v)nen, ie., [[fu(t) — f(t)|[v — 0 and | fu(t) — f#)]lv <
g(t) + | f(t)|lv for a.e. t € J, we infer that [, ||f.(t) — f(t)||vdt — 0 as n — oo. This proves that
(fn)nen converges to f in L1(J; V).

Exercise 64.4 (L%((0,1); LP(0,1))). (i) g is almost separably valued since V := LP(D) is separable
for all p € [1,00) (see e.g., Brezis [6, Thm. 4.13].
(i) Identifying (LP(D))" with L?' (D) (with the convention that p’ = oo for p = 1; see, e.g., [6,

Thm. 4.11]), we have

@W@Mwﬂ—/w@MW@M—AUMN%

D

for all w € (LP(D)) = LP (D). The function J > t fot w(x)dz is measurable since it is
continuous. Hence, g is weakly measurable.
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(iil) We infer from Pettis measurability theorem (Theorem 64.4) that g is strongly measurable. To
conclude, we have to prove that fol g(®)[I$-dt < oo if ¢ € [1,00) and esssup,e(gq) [l9(t)llv < oo if

q = co. We have [|g(t)||v = [|g(t)[|Lr(0,1) = tv, and for all ¢ € [1,00), we have

1 4 )
g(t th:/ trdt = ———.
[ taiar= [ e - 2

1
Hence, [|glLa(s;v) = (555)7 < 0o. We also have ||g|[ () =1 < o0.

Exercise 64.5 (Constants). We follow the proof of Lemma 2.11. Let p € C§°(J;R) be s.t.
fJ pdx =1, and set ¢, := fJ d§ € V Let ¢ be an arbitrary function in C§°(J;R) and set
cp = [, @(§)dE. The function w fo cg,p(ﬁ)) d¢ is in COO(J R) by construction, and
we have 9,(t) = ¢(t) — cup(t). Slnce I f( (’%1/1 = — [,(8:f(t))1b(t)dt = 0 by assumption,
we infer that

/Jf(t) t)dt = /f )(0ep(t) + coplt) dt—cw/f dt—cp/]<p(t)d;p_

Hence, [;(f(t) — ¢,)e(t)dt =0 for all ¢ € C§°(J;R). Corollary 64.28 shows that f = c,.

Exercise 64.6 (Linear map). Let v € L] (J;V) and assume that v is weakly differentiable in
loc(‘] V)

Let us first verify that K(v) € L (J;W). Let Jy be a compact subset of J. Then 1;v €
LY(J;V), and Corollary 64.14 implies that K(1;,v) € L*(J; W) which proves that K (v) is inte-
grable on Jy since K (v)(t) = K (v(t)) = K(Ly,(t)v ( ) = K(1y,v)(t) for a.e. t € Jp.

Let us now prove that K (v) is weakly differentiable with 9,(K (v)) = K (d;v). Let ¢ € C§°(J).
We have ¢pdv € L'(J;V) because dyv € L (J;V) and ¢ is compactly supported in J. Ow-
ing to Corollary 64.14, we infer that K(¢d;v) € L'(J;W). But the linearity of K implies that
P() K (Opv(t)) = K(o(t)0v(t)) = K(¢p0wv)(t) for a.e. t € J. Hence, we have

/¢ K (8y(t))dt = /K (1)00) (t)dt = /¢ ()0 (t)
= k(- /()am —— [ Ko

/ K(v(1)3,0(t)

This proves that K (v) is weakly differentiable with 0,(K (v)) = K (0v).

Exercise 64.7 (X?(J;V,W)). Let us consider a Cauchy sequence (v, )nen in XP9(J;V,W).
Then vn —vin LP(J; V) and v, — w € LU(J;W). Let ¢ € C3°(J;R). We have [ ¢(t)v, (t)dt —
J; ¢(t)v(t)dt in V since

As a result, we have

/(b dt<—/¢vndt/¢6tvndt—>/¢

We conclude that 0;v = w, so that v € XP9(J; V,W).

O(valt) - v(t))dtH < V6llon e lom — vl vy
\%

< ST o, —
—H¢||CO(J;R) ?lon = vllze(rv)-
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Exercise 64.8 (Continuous embedding). (i) Observe first that the definitions of v and w imply
_ q—1

that v € LY(J; W) and w(t) € W for all t € J since [|w(t)|lw < [[v|prwy < T @ ||[vllLacrwy-

Let t € J and t,, € J be such that ¢, — t as n — oco. Let J,, be the interval (¢,t¢,) or (t,,t), and

let 17, be the indicator function of J,,. We have

/ttn v(r)dr

The sequence 1;, (7)||v(7)||lw converges a.e. to 0 and || 1y, v||w < ||v||w. Hence, Lebesgue’s dom-
inated convergence theorem implies that ||w(t,) — w(t)|w — 0 as t,, — t, thereby proving that
w € C°(J; W). Notice in passing that if ¢ > 1, we also have

q

-1
s s Ta
/ ’U(T) dT S (/ dT) ”’UHL‘J(J;W)
t w t

_1
< s =t/ 7|l Loy,

) — w(t)w = \

— [ 1l o
w J

(s) — w®llw = ]

which shows that w in C%'~7 (J; W).
(ii) Let us evaluate lim,, oo ¢ (7). Let 1o -y be the indicator function of (0, 7). We have

+oo
fu(r) = / (95— €) — pult — €))Lio.ry(€) dE.

— 00

It is a standard result about mollifiers that fjof pn(s — &) f(€)dE converges to f(s) for a.e. s and
all f € L'(R). Hence, we have

lim ¢n(7’) = ﬂ(oﬂ.)(s) - 1(017.)(15) = IL(s,t) (T), VT ¢ {S,t}.

n—r00

(iii) Observe first that the definition of d,(s,?) makes sense since 0 < s — 2 <t — £ < T for all

€ [~1,1], because we have assumed that n > N > max(%, =) and 0 < s <t < T. Up to two

s> T—t
changes of variable, we have

= [als=2) = putt = 2l
Since @), (T) = pn(s — T) — pn(t — 7), we infer that
On(s,t) = . dr.
(5.0 = [ dhrutr)ar
Notice that ¢, is in C5°(R;R). By definition of v(7) := dyu(7) (see Definition 64.29), we have
Sn(s,t) = " dr = — " dr.
(5.0 = [ dhmutrar == [ 6umntr)ar

(iv) We observe that

Gu(5,1) —I—/Stv(r) dr

< /J 160(7) — Loy (D)0 -
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We now apply Lebesgue’s dominated convergence theorem and conclude that

t
lim 0, (s,t) = —/ o(r)dr = w(s) — w(t).
n—oo s
Notice that we also have

nh_)rrgo On(s,t) = u(s) — u(t),
since f_ll p(y)u(s — L) dy — u(s) as n — oo (recall that u € LP(J; V) < L'(J;V)).
(v) The above argument shows that w and u differ by a constant, i.e., there is a € W such that
u = w+ a a.e. on J. This proves that u € C°(J;W) since we have already established that

qg—1

w € CO(J; W). Actually, we have also established that u € C*"@ (J; W) if ¢ > 1.

Exercise 64.9 (Time derivative of product). Let ¢ € C§°(J;R). Observing that au €
L (J;V), we have

loc

/ w(t)a()0,o(t)dt = / u(t)O (o (t)o(t))dt — / u(t)$(t)Bra()dt.
J J

J

Since C§°(J) is dense in C(J), we can apply (64.3) for every test function in Cg(J) (just apply
Lebesgue’s dominated convergence theorem). By abusing the notation and identifying u with its
image by the canonical injection mapping from V to W, we have

/ w(Ba(B)o(t)dt = — / (Ou(t))a(t)p(t)dt — / w()o ) alt)dt
J J

J

_ /J (a(B)Dyu(t) + u(®)dra(t))d(t)dt,

which proves that 9;(cau) = udia + adyu.



Chapter 65

Weak formulation and
well-posedness

Exercises

Exercise 65.1 (LP-integrability of A(u)). Let u € LP(J; V) and let A(u) be defined in (65.6).
Prove that A(u) € LP(J; V') with ||A(u)||Le(svry < M|ul|Le(syvy. (Hint: use Theorem 64.12.)

Exercise 65.2 (Ultraweak formulation). Write the ultraweak formulation for the heat equa-
tion.

Exercise 65.3 (Gronwall’s lemma). Let J := (0,7), T > 0. Let o,3,u € L*(J;R) be s.t.
aB,Bu € LY(J;R), B(t) > 0, and u(t) < aft) + fot B(ryu(r)dr for a.e. t € J. (i) Prove that
v(t) = e~ Jo Blr)dr f(f B(r)u(r)drisin WHL(J;R). (i) Prove that v(t) < fg a(r)B(r)e= Jo A ds qp,
(iil) Prove that

u(t) < a(t) + /Ota(s)ﬁ(s)efﬁﬁm dr ds. (65.1)

(Hint: use Step (ii) and fot B(ryu(r)dr = v(t)efo A7) (iv) Assume now that o is nondecreasing,
ie, a(r) < at) for a.e. r,t € J s.t. r < t. Prove that for a.e. t € J,

u(t) < aft)elo A, (65.2)

(v) Assume that 3 is constant and o € W!(J). Prove that for a.e. t € J, u(t) < a(0)e* +
fot o (r)ePt=") dr. Note: owing to the assumption 3(t) > 0, Gronwall’s lemma can be used to show
that the function u has at most exponential growth in time, but it cannot be used to show that
u has exponential decay. However, if the assumption u(t) < «a(t) + fot B(r)u(r)dr is replaced by
the stronger assumption v/ (t) < o () + B(£)u(t), then u(t) < elo B dry(0) 4 fot o (r)els Bl ds gy
regardless of the sign of 3.

Exercise 65.4 (Exponentially decaying estimate). (i) Prove the a priori estimate (65.17).

(Hint: adapt the proof of Lemma 65.10 by considering the test function (0,w) € Y with w(t) :=
t L2

e*su(t) and the time scale p := 2-=%.) (ii) Assuming that f € L*((0,00);V"’), prove that

limsup, . lu(t)llz < =2 fllLe(0,00);v7). (Hint: use (65.17).)
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Solution to exercises

Exercise 65.1 (LP-integrability of A(u)). Assume first that p € [1,00). Owing to (65.5b), we
infer the bound

(/J|A(t)(u(t))|p/dt) "< M(/J(u(t)mdt); = M[ul|Lo(siv)-

Bochner’s theorem (Theorem 64.12) implies that A(u) € LP(J; V') since A(u) is strongly measur-
able. A similar argument applies if p = co.

Exercise 65.2 (Ultraweak formulation). The ultraweak formulation for the heat equation
leads to the trial space
Xuw = L2(J; H(} (D))

and to the test space
Yuw = {w € L*(J; H}(D)) | 0w € L*(J; H (D)), w(T) = 0}.
The corresponding forms are
buw (0, ) = /J ({0(6), ~rw(®) + (=) To(t), Vo)) () ),
fo () 1= 0,002y + [ (0wl

Exercise 65.3 (Gronwall’s lemma). (i) Let us consider the function
¢ t
o(t) := e~ Jo A1) dT/ B(ryu(r)dr.
0
The assumptions imply that v is continuous on J. The weak derivative of v is

¢
v'(t) = B(t) <u(t)— / B(r)u(r) dr) e Jo Br)dr,
0
The assumptions imply that v' € L'(J;R) (notice that Su € L'(J;R)), thereby showing that

v e WHH(J;R).
(ii) Observing that v(0) = 0, the above computation shows that

o= [ () (1w = [ Beputoyas) e 5 20y,

which, in turn, implies that
t
u(t) < / a(r)p(r)e” g B(s)ds dr,
0

since 5(t) > 0 for a.e. t € J.
(iii) We follow the hint. The definition of v implies that

/0 t Blr)yu(r)dr = v(t)elo A,
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and Step (ii) implies that

t t
/ B(r)u(r)dr < eJo B(r) dr/ a(r)B(r)e” Jo Bls)ds q,.
0

0

t
= / a(r)p(r)e” Ji B(s)ds dr,
0

observing that a8 € L'(J;R) by assumption. This, in turn, implies the expected inequality: For
a.e. t € J,

u(t) < a(t)+ [ al)Bm)e O ar

(iv) Assume now that « is nondecreasing, i.e., a(r) < «(t) for a.e. r,t € J s.t. » < t. The above
inequality implies that

u(t) < a(t) <1 + /Ot B(r)els Ps)ds dr>

:a@)(L—AZ%([fMQdQeﬁM$“da
::a@)(l—:été;(eﬁﬂ“)m)dr).

We can now conclude that for a.e. t € J, we have
u(t) < a(t)elo A dr,

(v) Let us apply Step (iii) assuming that 3 is constant and o € W(J). We obtain for a.e. t € J,
t
u(t) < aft) —|—/ a(r) e’ ) dr
0

foond s
— at) — L Bl g
a(t) /0 a(r)dre r

= a(t) - a(t) + O((O)eﬁt + /Ot O/(T‘)eﬁ(tfr) dr

¢
= a(0)e’ + / o ()Pt dr.,
0

Exercise 65.4 (Exponentially decaying estimate). (i) Let ¢ € (0,7]. Following the hint,

let us consider the function w € L2(J;V) s.t. w(t) := e2%u(t). We first observe that d,w(r) :=
%e%u(r) + €27 dyu(r) for all 7 € (0,t). Invoking Lemma 64.40 (integration by parts in time over

the interval (0,t)), we infer that

t t
1 z 1 5: 1
[t wtrpe v ar = == [ it ar + 56 ) - gl

Using the boundedness of the embedding V' — L and the definition of p gives

«

— ‘2
2LL7V

V-

ﬂwﬂ@: lu()I} < Sllu(r)
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Hence, we have

t t
« T 1 t 1
| @) wtmpvvar = <5 [ ol ar + 3 ) - 5l

The coercivity property (65.5¢) implies that

3 = glul + g0 [ e urlR ar
< / Bru(r), w(r))yry dr +a / 5 |lu(r) 2 dr
g/0<atu(7),w(7)>v,,vd7+/o 25 (A7) (u(r), u(r))vry dr

:/ <8tu(7'),w(7')>vlyd7'+/ (A(T)(u(T)), w(r))y v dr.
0 0

Moreover, we have
/0 (@) + AT (u(r)), w(r))v v dr = bu, (0,w)) = £((0, w))
- / (), w(r) vy dr
t€2% T | U\T T
s/o 1)l llu(r) v

t .1 1
< [ e Galurl + 5515 ) ar

1
2

1 [t 5 Lo
——a/o 5 |lu(r) |13 dr + /Oleﬂf(f)lfwdﬂ

2

where we used Young’s inequality in the last bound. Putting everything together, we conclude
that

: 1 A
3O = glll < 5= [ 16 £ an

and rearranging the terms leads to the a priori estimate (65.17).
(ii) Since f € L*°((0,00); V"), taking square roots in the a priori estimate (65.17) and recalling
that J; := (0,t), we infer that

_z 1, i
lu@lle < e ?lluollz + a2 [le™ 7 fllL2 (v

-t 1, _gt= 1
< e Fluollz + @™ Hle 2 21 I vy
lLv
(e}

_t
< e 7luollL + I fllzoe (risvrys

. _ot— t _ot—=s —2t 2 . . .
since |le™2 % iy = Jfye 25 ds = f(l—e ) < £ = =~. The conclusion is straightforward

since lim; ..o e » = 0.
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Semi-discretization in space

Exercises

Exercise 66.1 (L%(J;V)-estimate using elliptic projection). Use the notation from §66.3.1.
Assume that the elliptic projection is time-independent and set n(t) := u(t) —II} (u(t)) for all ¢ € J.
Prove that

1 2
lu —unllz2rvy < lInllzcrnvy + E”athL?(J;V/) + ﬁHW(O)HL-

(Hint: use the error equation (66.12).)

Exercise 66.2 (Naive C°(J; L)-estimate). Use the proof of Theorem 66.7 to derive an upper
bound on [|u — unl|co7.1)- (Hint: integrate (66.10) in time over the interval Js := (0,s) for all
s € (0,7T].) Assuming smoothness, is the convergence rate of this error estimate optimal for the
heat equation? What is the term that limits the convergence rate?

Exercise 66.3 (Theorem 66.9). Prove the error estimate (66.15). (Hint: see Exercise 65.4.)
Exercise 66.4 (Lemma 66.17). Let [17(t) € L(HJ(D); V3) be defined in (66.11) for the time-

dependent heat equation. Let u € H'(J; H} (D)) and set n(t) := u(t) — IIE(t; u(t)) for a.e. t € J.
(i) Prove that

M
[0m(®) |1 (p) < 10u(t) = T (8 D) 11 () + o~ — ()] 1 ()-

(ii) Prove (66.21). (Hint: use the adjoint problem a(t;v,&(t)) = (64 (t),v)2(p) for all v € H}(D),
with 0y, () := O, (11} (t; u(t))) — IIE(¢; Opu(t)) for a.e. t € J, and show that

[16n (DI 72 () = alt; 3n(1), E(t) — wr) + alt; n(t), w, — () + a(t;n(t), &(1)),

for all w, € Vp.) (iii) Show that ||II}(¢;u(t))|lar(sv,) < C(O[,M,ATW)”UHHI(J;V) for all u €
C>(J;V) and all h € H.
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Solution to exercises

Exercise 66.1 (L?(J;V)-estimate using elliptic projection). Using the test function wy, :=
en(t) for all t € J in the error equation (66.12), integrating over time, and invoking Young’s
inequality gives

allenl| 72wy < ||at77HL2(J vy + llen(0)[17,

where we dropped |le,(T)||2 on the left-hand side. Dividing by «, taking the square root, using
that ||en(0)||z < 2||n(0)||z, and invoking the triangle inequality yields the assertion.

Exercise 66.2 (Naive C°(J; L)-estimate). Integrating (66.10) in time over the interval J, :=
(0,s) for all s € (0,T), we infer that

1
llen(z < —10m + A®mllZz s + len (O,

where we dropped the term aflen |- (J.;vy on the left-hand side. We now bound the right-hand

side by replacing Js by the full time interval J, then we exploit that s is arbitrary in (0,7] on the
left hand-side (and the bound for s = 0 is obvious). We infer that

lenllgo 7.y < |\3t77+A( Lz (v + len(O)]7-
Taking the square root, observing that ||0:n + A(t)n||z2svry < 10| L2(vey + M0l z2(s;v) and

since |len(0)||z < ||n(0)||L, we infer that

1
llenl] ||<9m|\m v+ _||77||L2 vy + —||n( )z
\/— CO(T;L) ) (J3V) Ja

Invoking the triangle inequality for v — up = n — ep, shows that

1 2
\/—allu unll o7y < Hf?mllw svy + _||77||L2(J v) + \/allnllco@m-

The second term on the right-hand side is the one that gives a convergence rate that is not optimal
for smooth solutions of the heat equation. Indeed, this term typically decays as O(h"), whereas
the other terms on the right-hand side decay as O(h"t1).

Exercise 66.3 (Theorem 66.9). We take v, (¢) := II} (u(t)) for all ¢ € J, i.e., we work with the

error equation (66.12). Let us consider the test function wy, () := eQ%eh(t) for all t € J. Then we
can proceed as in Exercise 65.4 and invoke exactly the same arguments, leading to the bound

len(®)|z < He T 0l L2 (v + €77 len(0)]] .

We conclude by invoking the bound |lex(0)||z < [[7(0)|/z and the triangle inequality on v — up =
N — €Ep.

Exercise 66.4 (Lemma 66.17). (i) Recalling (66.19), and using the coercivity of a and the
boundedness of @, we infer that

0001 (T (85 (1)) = XI5 01 () sy < sup (B2 ~ T Orult), on)
wh €V |wh|H1(D)
alt; _
= sup [a(t; (t), wn)| < p "M [n(t)| 1 (p)-
wp €V} |wh|H1(D)
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Dividing by « and invoking the triangle inequality for

Oin(t) = (Opu(t) — I3 (t; Opu(t))) — (0 (T, (& u(t))) — T (8 Oru(t)))

proves the claim.

ii) Let us set p(t) := O (1L} (¢; u(t))) — I} (¢; Opu(t)). Considering the dual problem suggested in
h h

the hint, we infer that

180 (D) 172y = alt; on(2),£(t))
= a(t;6n(t),§(t) — wn) + a(t; 6n(t), wn)
= a(t; 6n(t), §(t) — wn) + alt; n(t), wn)
= a(t; 6n (1), &(t) — wn) + a(t; n(t), wn = £(t)) + alt; (1), £(1),

for all wy, € Vj,, where we used (66.19) in the third line. Invoking the boundedness of a for the
first term, that of a for the second term, and (66.20) for the third term, we infer that

1600172 (p) < (MI0n() 0y + o~ M In(t) 1 (1)) |€(E) — wil 51 (D)
+ o7 M [n()| - () |€(E) | ra+2 (D) -

Taking the infimum over w;, € V;, and using the approximation properties of finite elements, we
obtain

18032y < (¢h® (MIOW DL (py + o~ M In(®)] 111 0)
+ o M ()0 ) IEB) 14+

The elliptic regularity property |£()|gi+s(p) < Csmo@ 05 *[|6n(£)]| 22(p) leads to

180(t)l|22(p) < ca™ e (hs (MIon ()] 2 (py + = M [1(t) 1 (1))

+ p_lMllln(t”Hl*S(D))-

Since [0p,(t)| 1 (D) < p_l%,|77(t)|H1(D) as established in Step (i), we infer that

— — —S8 S M
18u(®)lz2p) < oot} (h (1+;)M’|n<t>|H1<D>)+M”|n(t>|H1s(m).

Since |[n(t)| L2y < ¢} *In(t)| g1 (p), the Riesz—Thorin theorem (Theorem A.27) implies that
()| - s(py < c( ) hs 0 S(l S)|77( t)| i1 (p). Hence, we obtain

16w (D)l 220y < €p™ 0" 05 cxln(®)] (),

M’

with ¢, = (1 + E) + ( )S M” Finally, the claim follows by applying the triangle inequality

to 9yn(t) = —0n (1) + (Bru(t) - I (1 Dyu(1)).
(iii) Let w € C*°(J; V). Using the coercivity of the bilinear form a, we have

o [|0II5 (5 w1} < alt; OIIE (£ (), Q1T (5 u(t))

;017 (t;u(t)) — T3 (¢; Opu), OTT5 (8 u(t))) + a(t; T (¢; Opuw), D115 (£ u(t))).
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Using the identity (66.19) in Lemma 66.16 and the boundedness of the bilinear forms a and @, we
infer that

Qll DI} (# () 13 < alt ult) — I (1 u(t)), I (1 u(t))) + alt: TI (¢ D), I (t: u(t)))

~

< —[Ju(t) — T (& w() v | 0:TT5 (& w(®) v + M T8 Opw) || v [|0: 1T (& w(t)) [ v-

Hence, we have

MI
al| 01T (& u(t))[lv < 7|IU(t) — (& u(®) v + M (E; dpu) || v

M M M?
< = (1 )@l + = Nl

From this estimate and the Bochner theorem, we infer that
OIL} (tu(t)) € L*(J; Vi),

ie., I} (t;u(t)) € H'(J; V), and since 1 < 2 we have

M? (2M’

1011, (5 )l L2 (73w < “Z \ o1 llull L2 (7v) + HatUHL?(J;V))-

This implies that |15 (¢ u(t)l| s (i) < el M, 20 [l g .
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Implicit and explicit Euler
schemes

Exercises

Exercise 67.1 (Incremental Gronwall’s lemma). Let v € R, v > —1. Let (an), 7. > (bn)nen,
be two sequences of real numbers s.t. (1 + v)a, < ap_1 + by, for all n € N,. Prove that a, <
ag

o T Doke{iin} (1+'v;)+’““ for all n € N;. (Hint: by induction.) Note: it is common to use

the above estimate together with the inequality ﬁ <ezforye (0,1). The reader is referred
to Exercise 68.3 for a discrete form of the Gronwall using an assumption that is weaker than
requesting that (1 +v)a, < ap—1 + by.

Exercise 67.2 (Inf-sup condition). Let X, := (V3,)¥*! and Yy, = Viux(Vi4)Y. Define

Pnllvy = sup,, ey, % for all ¢y, € V}, and consider the following norms:

1 T
lonrll%,. = EHWJLVH% + thrH?z(J;V)+m||5rvhr||52(,1;v,;)+a||5rvhr||52(,1;L)a
1
IthTHf/M = EHyOhH% + |‘y1hr|‘§2(J;V)’

with (§;vp,)" = (v — vz_l), for all vp, € Xpr and all ypr = (Yon, Y1nr) € Yar. Define the

T

bilinear form b, : X %Y} — R s.t.

be(vhrsynr) = (0, yon) e + D 7((ronr)" i)z + a” (R, i) -
neN;

Assume that a is symmetric. The goal is to prove the following inf-sup condition:

b 1
inf  sup 1br (e Y )| >« (ﬂ) °. (67.1)
Vhr €Xhr gy, €Yy, ”thHXhT”yhTHYhT M
i) Let A} : Vi, — V) be s.t. <AZ(Zh)7wh>v,;,vh, = a"(zp,wyp) for all zp,w, € V, and all
n N;. Consider the test function wp, = (wop,Wipr) € Yur with wop = vg and wy), =

S
AP) M ((8rvnr)™) + vpt for all n € N, Prove that by (vnr, wir) > allone|%, . (Hint: use that
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(A7)~ is coercive on V/ with constant M !, see Lemma C.63.) (ii) Prove that ar|w}, ||} <
Mol + §|‘(5TU}L7—)”H2}; + o2 = v 2 + 72| (67vn-)"]|2. (Hint: use the boundedness of
(A7)~! on V; with constant a'.) (iii) Conclude. Note: let T; = T”éq—uhTHg?(J;L) and consider
the bound on ¥ given in Lemma 67.3. Let Ty := ﬁ ||6TuhT||§2(J;V};) and consider the bound on %5
given by the inf-sup condition (67.1) (see Exercise271.8). If the functions (Opu(ty))nenr, are smooth

in space for all n € N, one expects that To ~ LLT’VH&U;”H?Q(J;L) = £ 5% with the time scale

2
‘L.v

pi=2-=
1.

Exercise 67.3 (Implicit-explicit scheme). Let (V,L = L', V') be a Gelfand triple. Let B €
L(V;L) and A € L(V;V’) be two operators. Assume that A is V-coercive with (A(v),v)y:y >
allv||3 for all v € V, and that [[v|L < ¢ v|v]lv. Let ¢ be s.t. ¢ > max(|| Bl zovz), | B*|| c(z:v)-
Let ug € V and f € C°(J;V’). Consider the model problem d,u(t) + A(u)(t) + B(u)(t) = f(t) in
L*(J; V'), and u(0) = ug. (i) Let v > 0, B € W1*°(D), ug € L*(D), and f € C°(J; H'(D)).
Show that the time-dependent advection-diffusion equation dyu — vAu + B-Vu = f, ujpp = 0,
u(0) = ug fits the above setting, i.e., specify the spaces V, L, the operators A, B, and the constants
«, ¢ in this case. (ii) Let f" := f(t,) for all n € N;. Consider the following scheme: u° := ug and

for all v € V and all n € N,

. Hence, To > %5 if p > 7, i.e., controlling T9 is more informative than just controlling

(" —u" ") + T{A@"), o)y + T(B" ), v)L = (" v)vr v

Prove that if 2”LT‘V <1, then
_ 1 _ T
a7 + arflu™[I3 < lu" M7 + garlu” IE+ 2a|\f"|\%ﬂ-

(iii) Assume that (B(v),v); > 0 for all v € V, and that the time step satisfies the bound 7 < 1 4.
(We no longer assume that 2= < 1.) Prove that

_ 1 _ T
a7 + arllu™3 < lu" 7 + gorlu® "+ EIIf”H?//-

Solution to exercises

Exercise 67.1 (Incremental Gronwall’s lemma). We proceed by induction. For n = 1, we
have a; < (1i—?y)1 + ﬁ which is exactly the formula that we want to prove. Let us assume that

ao

an < T +Zk6{1:n} M’%, for some n € N, n < N. We have

(07 bn+l
1+ 1447y

Ap41 S

aq bn-‘rl bk
< [ A
T A+l +y) 144 ke%;n} (14 y)n—h+2

ag b
< ——"n— + E —_—-
— n+1 n—k+2
(1+7) ke{l:n+1} (1+7)

Exercise 67.2 (Inf-sup condition). Let vy, € X, and let us set wp, = (won, Winr) € Yir
with wop, == v} and wf, = (A7)~ ((6rvp,)™) + vp for all n € N;. Notice that A} is self-adjoint
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by assumption.
(i) A straightforward calculation shows that

br (nrswnr) = IRlIE + D2 (0 = o= wh)e +7a" (o, i)
neN;

= ol + D (2007 = v o) + AR R v
neN;

Mo = o (A 0F — o v, )

Using the coercivity of A7 on Vj, (with constant ) and the coercivity of (A7)~! on V/ (with
constant M ~! owing to Lemma C.63), and using the identity (67.9) yields

br (Vs wnr) = lopll7 + (IleH% = oM + ol — oM IZ
neN;

1 _
+arllof I + 5= lok v ) = allonr -

(ii) Another straightforward computation using the coercivity of A}, its boundedness on Vj, (with
constant M), the boundedness of (A7)~ on V; (with constant a~'), and the self-adjointness of
A} shows that

arlwiylly < (AL (W), win)v v
<7 M op = o T T AR (), (A7) T (vl = op T + o)y,
< Mrlloplly + i”vﬁ = v Yy + IRl = llop I + Nk — oIS
= Mr|vp ||y + gl\(&vm)"l\%@; HoRllL =l IZ + 721 (Grvnr) 17
(iii) Summing the estimate from Step (ii) over n € N, we obtain

olwnr |3, = llwonll? + D arllwiylF,
neN;

1
< MthTH??(J;V) + E||3fvhf||§2u;v,;) + THaTUhTH??(J;L) +[loi" 17

Hence, & |lwn-[[3, < llva-|l%,. since a < M, and the assertion follows.

Exercise 67.3 (Implicit-explicit scheme). (i) Let v > 0, 3 € W1°°(D). The time-dependent
advection-diffusion equation dyu — vAu + 3-Vu = f for a.e. (x,t) € DxJ, fits the proposed
framework with L := L?(D), V := H}(D). The operator A : H}(D) — H~ (D) is s.t. A(v) =
—vAw, and the operator B is s.t. B(v) := 3-Vuv. Let us equip V with the H!-seminorm, i.e.,

lv]lv == |[Vv||L2(py. Then the coercivity constant of A is o := v. Moreover, we have
1Bl = sup LYy _ o ~08VWL — (VA w)
wev v wev [lwllv

< (1Bl oy + e,V IV-Bllze o)) IVl 2,

Le., | B*llzczivry < [1BllLe(p) + tL,vIIV-BllLe(p). Moreover, we have ||B(v)|r < [|Bllz=p)llvllv,
ie., HB||£(V;L) < ||ﬁ||Loo(D). Hence, we can take ¢ := H,@HLW(D) + LL7V||V~5||L00(D).
(ii) Let us test the discrete equation with 27u™. We obtain

lu™ 12+ llu™ =T = [Ju" 7T + 2a7]Ju ([ + 20 (B ™), u™) . < 27| £ {lv[[u"|lv,



356 Chapter 67. Implicit and explicit Euler schemes

where we used the V-coercivity of A. As a result, we infer that
w1 + 2aru ()} < [luHIE + 2] f 2 lvellu™ v + 27 [ v [ B (u™) ||y

_ T 1 _
< ML A+ 2= 5 + Sorlut 3 + 2rellu” v [l

2
_ T 1 _
<7+ 2E||fn||%// + §0¢THU"||%/ + 27cup v llu v lu” v
n—1y2 T\ rnp2 1 ny2 v a1y L ny2
< B0 + 217 R + SarfuE + 2 S 1 4+ Larun .

Rearranging the terms, we obtain

C2LL7V H’U,n71

_ T
[u™ |7 + arfu™[[§ < lu"HE + 27 I+ 217115

2,2
Owing to the assumption 2- Lof‘v < 1a, we infer that

_ 1 _ T
a7 + arflu™[I3 < lu" M7 + garlu® I+ QEWHZ)V”

which is the expected inequality.
(iil) Let us now assume that (B(v),v)r > 0 for all v € V. Testing again the discrete equation with
27u"™, we obtain

[ 17 + llu™ = w T = w7 + 207 + 27(B(u" 1), u™ —u" 1)

+2r(B(u" 1), u" L < 27| v " v

Since (B(u™™1),u"1); > 0 by assumption, rearranging the terms, and applying Young’s inequality
to the right-hand side, we infer that

™17+l ="M = a7 + 207l
< 27| f [l lv = 27 (B(u" 1), u" — ")

-
< Y+ arllu I + 7B HIZ + [lu” = u"
After simplification, we obtain
_ _ T
"Iz + ar w5 < ™ HE + 1B DIE + 111

The expected estimate follows by using the boundedness of B and the assumption 7¢? < %a.



Chapter 68

BDF2 and Crank—Nicolson
schemes

Exercises

Exercise 68.1 (Heat equation). Write the error estimates for the heat equation using the BDF2
time discretization in the setting of Remark 68.8.

Exercise 68.2 (Inverse inequality on Aj). Prove (68.22). (Hint: observe that || Ay (vp)|L =
[(An(vn),wn) L]

Twnliz and use the boundedness of a.)

maXyw, evy,

Exercise 68.3 (Discrete Gronwall’s lemma). The objective of this exercise is to prove the
following discrete Gronwall’s lemma. Let (Yn)nen, (@n)nen,, (bn)nen., (cn)nen. be sequences
of real numbers. Let B € R. Assume that

Y €(0,1),  an>0, b, >0, (68.1a)
an, + Z b < Z Yap + Z o+ B, (68.1b)
le{l:n} le{l:n} le{l:n}

for all n € N.. Then we have

ant+ Y. < Y a [] ! .p 11 L (68.2)

le{l:n} le{l:n} pe{l:n} 1= Tn pe{l:n} 1= T

(i) Let d,, := Zle{l:n} via; + Zle{l:n}(cl —b))+B—a, and let S,, :=d, +a, + Zle{l:n} b;. Show
that S, (1 — ) < Sp—1+ ¢, for all n > 2. (Hint: observe that a, < S,.) (ii) Show by induction
that Sn < 3110y ueqn ﬁ + Bl eqiny L Conclude. (Hint: (68.1b) means that

1=y,
d, > 0.) Note: if one replaces the assumption (68.1b) by the assumption (1 + y)a, < an—1 + ¢y
which implies (68.1b) with b; := 0, B := ag, and v, := — for all [ € {1:n}, the incremental

Gronwall lemma from Exercise 67.1 leads to the same bound on a, as (68.2). The incremental
Gronwall lemma only requires that v > —1, whereas the discrete Gronwall lemma requires that
v € (0,1) (ie., v € (—1,0) if one sets vy, := 7).
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Exercise 68.4 (Variant on BDF2). The objective of this exercise is to revisit the stability
argument for BDF2 proposed in Thomée [43, p. 18]. Consider the setting introduced in §68.2 and
the scheme (68.1). (i) Show that for all k > 2

k— k— k— k—
(Gup — 2up ™"+ qup =% up)n = gl — 1T = §UlplE — [l ?17)

+ k= I — gl —

(ii) Prove that Y2yc 5.y b7~ lup ™M 17 = 3 (a1 = lui~2117) = Flupllg — gllug 17— 3 luhliz +
1lluf||?, and that

D oy 4 [T A T A L T R 1 (T
ke{2:n}

(iii) Show that

1 0 1 3k k—1 1 k—2 k
(up, — up,up)r + E (Sup — 2w, +5u, up)L
ke{2:n}

> Hlupllg — 3llup 12— il — bz

(iv) Assuming that f* € L for all k € N, show that

— k k k
Bllupllz — lup N7+ Y 4ralufly < ladllf + llupll + D 47l el
ke{l:n} ke{l:n}

(v) Letting m € {0:n} be the index s.t. [|u}’|[L := [[unr ||y (7,1, show that

2\ unrlpoo7iny < luplle + lunlle + Y 47 F*le.
ke{l:n}

(vi) Conclude that [[unr|je 7.7y < luplle + S+ > ke{i:n} 27 ¥ L.
(vii) Modify the argument to account for f¥ € V' instead of f¥ € L for all k > 2, and f* = fL, + f1,
where f{., € V' and f} € L, and prove that

5 T =
[unr o 7.12) < Slully + 672217 + —|IF*1%-
(J;L%) = 9 «
ke{l:n}

Exercise 68.5 (Variant of Crank—Nicolson scheme). Consider the following variant of the
Crank-Nicolson scheme: after setting uf, := Py, (u”), we construct the sequence of functions
Unr = (UM nen, € (Vi)Y such that
(up — uﬁ_l, whp)r + %T(a"(uz, wp) + a”fl(uz_l,wh)) = T<fvn7%,wh>v/7v,

for all wy, € Vi, and all n € N, with a™(-,-) = a(tn;-,-), a®1(-,+) := a(tn_1;-,), and fr=2 =
2(f(tn) + f(tn—1)) € V'. Assume that f € C°(J; L) and that the restriction (68.20) on the time
step holds true. Prove again the bound (68.21) on ||u}||? with F*=2 in lieu of f*~2 on the right-
hand side. (Hint: adapt the proof of Lemma 68.12 by starting from the identity u} + %TAZ (up) =
up - %TAZﬁl(uzfl) + fn=2.) Note: deriving an ¢2(J; V)-stability estimate as in Lemma 68.9 is
more delicate with this variant of the Crank-Nicolson scheme.
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Solution to exercises
Exercise 68.1 (Heat equation). Using the estimate (68.10) from Theorem 68.4 and the ap-
proximation properties of the finite element space V},, we infer that there is ¢ s.t. for all h € H, T,
a, and M,
e e N e
T hr|[2(J;V) = \/a Ul co(Ty ;L) Ly tttW|| L2(J;L)
1 (= luoll oy + |
—||U 7‘ — U HT
Ja wollar o) + el s oy
+L|atu|L2(J~H7‘(D))))'
LL,v ’

Notice that the error estimates in space can be localized over the mesh cells. If in addition the
bilinear form a is time-independent and 7 < %, the estimate (68.15) from Theorem 68.7 gives

mz—wunLgcmﬂ(m@whm%m

+e1 (e_ﬁ lwoll frr+1(py + \/5||8_Té’"3tu||Lz((o,tn);HM(D)))>

e’ (efé_y‘l’ [0reullco7,.1) + ﬁ”ff%3tttu||L2((o.,tn);L))-

Exercise 68.2 (Inverse inequality). Lt v, € V3. Using the definition of A, we have

Ay (vp), wp, a(vp, wp,
”Ah(vh)”L: max |( ( )7 )Ll _ | ( ) )l
wi, €V, l[wnllz wieVi |Jwn||L
l[wn llv —1
< Ml|v max =17 venv(h) M|l
- || thwhEVh, H’whHL Lv INV( ) H h”V,

whence the assertion.
Exercise 68.3 (Discrete Gronwall’s lemma). (i) Using the definition of S,,, we have S, =
B+ Z[E{l:n} Yia; + E[e{l:n} c, i.e.,

Sn — Sn—1 = Ynan + Cp.
But S, =d, +a, + Zle{ltn} by > ay, since d,, > 0 and b; > 0 by the assumptions (68.1b) and
(68.1a), respectively. Using that 0 <, and 0 < a,, < S,,, owing to (68.1a), we infer that

Sp(l=7,) < Spo1+cp.
(ii) For s = 1, we have

Si=a1+bi+di =va+ca+B<1S +a+ B,

< 4+ B—L_ which is the expected result. Assume now that n > 2
-7 -7

and that the induction assumption holds true for n — 1. The inequality S, (1 —v5) < Sp—1 + ¢y
implies that

S, c"+zcll_1 11 I  p 1 H11

1= Tn le{l:n—1} n pe{l:n—1} 1= T 1= Tn

> oo Il =—+5 11

le{l:n} pe{l:n} 1= Tu pe{l:n}

since 1 > 0. Hence, S <

IN

IN

1—7,’
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thereby proving that S, < 371y alleq ny ﬁ + Bllciiny ﬁ for all n € N;. This
estimate, in turn, proves (68.2) since Sy, > an + > 1c(1.,,) b because the assumption (68.1b) is

equivalent to d,, > 0 for all n € N.
Exercise 68.4 (Variant on BDF2). (i) We write

3 _ 1 4 _ _
§uﬁ - 2uﬁ 4 guﬁ 2 =2(uf — uﬁ b= Z(uf — uk=2).
Then we use the identity (a — b, a)r = 1||al|2 + 3|la — b]|3 — 3[|b[|2 to obtain the expected result.
(ii) The first identity is just a telescoping sum. For the second inequality, we use the Cauchy—
Schwarz and Young’s inequalities as follows:

1 k— 1 k— 1 k— k— k—
—ZHUQ—% 2”%:—1”“2—% 1||2L_§(u2_uh 17% 1_“h 2)L
1 e k— 1 k— Lo k—
_Z”Uh 1_Uh 2||%2—§Hu§—uh 1”%‘5”“;1 1_Uh 2”%

The telescoping sum argument leads to the expected result.

(iii) Using (uj, — u),up)r = 3luplli + 3llup, — udll3 — 3lluf||3 together with the two identities

established in Step (ii), we obtain
(up, —u,up)e + Y Guf —2ul™ ' + Juy % uf)L
ke{2:n}
> gllupllE + 3l — wd I = gllpllE + Flupl? — 3l
= dlubllE + i + 3lun — w1 — 3llul —ufl2

> Rluply = lun =1 — 2lunlz — gllupll?-
(iv) Using u}, and u? as the test functions in (68.1) together with the coercivity of a™ and the
Cauchy—Schwarz inequality, the lower bound from Step (iii) gives

Blluply — Nl HIZ+ D drallufly < uplZ + lusllz + Y- ArllFllzlab)c.
ke{l:n} ke{l:n}

(v) Letting m € {1:n} be the index s.t. [[up'||z := [[unr |y (7,1, We obtain

Bllupt 1, < iz + (luplle + haplle + > ArllfF ) il
ke{l:n}

This proves the expected bound.

(vi) Using the estimate [ju},||2 < [|udlcllupllz + 7|/ ]|c]lup ||l (which follows by using again the
test function w} in the first implicit Euler step and the coercivity of a'), we infer that |lu}|r <
lufl|L + 7||f*]|. Combined with the estimate from Step (v), this leads to the expected bound.
(vii) To account for f* € V' (instead of f* € L), for all k > 2, and f! := fL, + f} with fL, € V'
and fi € L, we modify the argument from Step (iv) as follows:

Blluply — Nl M2+ D drallully < [lupllz + [lup )iz
ke{l:n}

ik k
+arllfllelunlle + D Al v llud v
ke{l:n}
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Using the inequalities 4T|\fi|\L||u,1I||L < ||u,11||% + 472 f1]|2 together with 4T|\f’“|\w|\uﬁ|\v <
dralluf ¥ + Z|| f*13 for all k € N; gives

_ T 7
Bllupllz — lup =17 < IufllZ +2luply + 47217+ D LA 2
ke{l:n}

Moreover, using the test function u,ll in the first implicit Euler step, the coercivity of a' and the
Cauchy—Schwarz inequality leads to

1
slunllz = 5lubllz + Sl —willz + rallunlly < llfzllolunlle + 7l follv v

Using Young’s inequalities on the right-hand side and discarding the nonnegative term £|juy —uf ||3
from the left-hand side, we infer that

—_

1 T
SlblE + ralld I3 < 50l + glak + 721713 + rallub1f + 2= 1713

which gives [[u}[|2 < 2[uf||2 +472[ fY|2 + Z||f!||?,. Hence, we have
_ 27 =
Bllupllz — lup 17 < 5llupll? + 1200 F207 + P Ll
ke{l:n}
Using the same argument as in Step (v) leads to the expected bound.

Exercise 68.5 (Variant of Crank—Nicolson scheme). For all n € NV, let us define the linear
operator Ay 2 Vi, — Vi, by setting (A} (vn), wn)r = a(tn; vp, wy) for all vy, wy, € Vi, and let us set

™ - Py, (f*~2). Then the modified Crank-Nicolson scheme can be rewritten as
n 1 ni,n n—1 1 n—1 bl
uh+§TAh(uh) =uy, _5714 (upy )+fh '

Squaring this equality, we obtain
1
lhl|Z + o™ (ufs uh) + 714G (i)l
= [lupHIE = ra™ (up T gy )+— 1A T HIE

or(up T TRy — PR AD T Y, Fr )+ R 2

Proceeding as in the proof of Lemma 68.12, we infer that

2

2 T
T . — _1
lhlIZ + arlluhlly + 1 AR @IZ < lup ™" Z + 1+427 AR up D12 + TPHf: 212
p
This estimate takes again the form (1 + v)a" < a"~ ' + b" with a™ := ||u?||? + 4(17—_;)||A2(u2)||%

’ﬂ——

and b" := I7p| f, %[|2. We can now conclude as before.
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Chapter 69

Discontinuous Galerkin in time

Exercises

Exercise 69.1 (Integral identities). Prove the identities (69.11). (Hint: use that the Gauss—
Radau quadrature is of order 2k.)

Exercise 69.2 (Equivalence with Radau ITA TRK). Prove the converse assertion in Lemma
69.11. (Hint: show that

1 [Tt )
Roln )0 =i~ 47 30 5 [ L ) = Anltn) ).

je{lik+1} T T
for all t € J,.)

Exercise 69.3 (Poincaré in time). Let n € N, and H be a Hilbert space. Show that
[0lZ20,0) < 27l DIF + 721000325, gy for all v € H'(Jp;s H). (Hint: use that v(t) =
vty y)+ [ Owdt forall t € J,.)

Exercise 69.4 (Time reconstruction). (i) Show that the definition of R, given in Remark 69.9
is equivalent to Definition 69.5. (ii) Show that the two definitions of 651 given in Remark 69.9
are identical. (Hint: set d(s) := (_Ql)k (Lk = Lit1) = [heqineny % and prove that 6(—1) = 0
and [506'(s)q(s)ds = 0 for all ¢ € Pi(J:R).) (iii) Let (V,L = L', V') be a Gelfand triple. Let
R : Pp(J;R) = Pry1(J;R) be st R(q) := ¢ — q(—=1)0k41. Let Ry, : Pr(Jn; R) — Pria(Jn; R) be
.. Ra(v) = X e piinr1) V R () o Tyt for all v := Dgetikr1y Va¥qo Tt and all n € N7, where

{¥q}qe(1: w41} 1s a basis for Pi(J:R). Accept as a fact that V]| oo (g3v7) < 227%|‘6tRn(U)HL:D(Jn;V/)
for all p € [1,00] and all v € Py(Jn; V') (see Holm and Wihler [27, Prop. 1]). Prove that
1 1

[vllL2(sin) < @) ZOR (s, 101132 s, 1) for all v € Po(J; V) and all n € Ny. (Hint:
el < lléllvlléllv for all ¢ € V)
Exercise 69.5 (dG(1)). Assume that a is time-independent. (i) Verify that the dG(1) scheme

amounts to
IM 3M ynl 3 Aym! 3 muyn—1 3Fn,1
5 5 o) +7( 1 2] = i )+ tene )
_gM gM Un7 ZAU”’ —§MUn ZF"’




364 Chapter 69. Discontinuous Galerkin in time

and U" = U™2, where U™! and U™? are the coordinate vectors of the discrete solution at t,_ + %T
and at t,,, respectively. (Hint: use the Lagrange interpolation polynomials associated with the two
Gauss—Radau nodes & := —3 and & := 1.) (ii) Using the same notation as above, write the
scheme in IRK form. (Hint: see (69.22) and (69.24).)

Exercise 69.6 (IRK final stage). The objective of this exercise is to prove the assertions
made in Remark 69.13. (i) Show that for every s-stage IRK scheme, the update u} is given by
U‘Z = aou;zlil + Zpe{l:s} Oépu;?p? where Qp = qu{l:s} bq(a_l)qpv ap = 1-— Zpe{lzs} Qp, and
(a™1)pq are the coefficients of the inverse of the Butcher matrix (ayq)p gef1:s3- (i) Show that for
the Radau ITA IRK scheme, a;, = 0 for all p € {0:s — 1} and oy = 1

Exercise 69.7 (II¥). (i) Prove the uniform stability of I1¥ in L>°(J,; Z) with Z C L. (Hint: map
to the reference interval J.) Prove (69.27). (Hint: accept as a fact that the standard polynomial
approximation properties in Sobolev spaces extend to Bochner spaces.) (ii) Build the operator
II* with Z := V' as in Remark 69.17. (Hint: use the RieszFréchet operator J* : L2(J,; V) —
(L?(Jn; V) = L23(Jn; V').) Adapt the identity in Lemma 69.16 to the case Z := V'. (Hint: invoke
the integration by parts formula (64.7).) Prove a stability estimate for IT¥ in L°°(J,; V’). (iii) Let
0, € £L(V;Vi). Show that § := ¥ (I, (v)) — I, (IT%(v)) = 0 for all v € HY(J; V). (Hint: show
that 6(t,) = 0 for all n € N, and that fJn (6,q)rdt =0 for all ¢ € Py,_1(J,; Vi) and all n € N;.)

Exercise 69.8 (Symmetrization). Let R be defined in Exercise 69.4(iii). () Prove that B,, =
f711 ﬁ(wq)/d’p ds, (B + IB%T)pq = wq(_l)d’p(_l) + wq(l)wp( ) (BTM IB pq f R wq (d’p)lds
for all p,q € {1:m}. (Hint: use Exercise 28.1.) (ii) Set S, := IMAIM)® (BTM IB)+rA®M.
Prove that VTS,V < VTSV < 2VT8,V for all V € R™. (Hint: note that VTI(M @ B)V =
YT(A' @M~ YZ with Y := (A®@ M)V and Z := (M ® B)V and apply the Cauchy-Schwarz and
Young’s inequalities.) (iii) Verify that & is the stiffness matrix associated with the minimization of
the residual norm HA,:l(atRn(th))—i—th||%2(Jn;vh). (Hint: use again Exercise 28.1.) (iv) Compute

the matrix & for k := 1. (Hint: see Exercise 69.5.)

Solution to exercises

Exercise 69.1 (Integral identities). (69.11a) follows from the fact that the discrete measure

GR

pgt 1 (dt) samples at the interpolation nodes of Z;®, and (69.11b) follows from (69.11a) once we
observe that [, (p, Z;)*(w))rdt = [,(p, T" (w)) L w5 (dt) because the quadrature is of order 2k.

Exercise 69.2 (Equivalence with Radau ITA IRK). Let up, € Xpr = P,? (J-; Vi) and
assume that {uy,* := up-(tn,i) }ic(1:k41} solves (69.22) with s := k41 for all n € V. Let us define
Vpr € Pkgﬂ(jT; V1) by setting vj,(0) := up,(0) and for all ¢t € J,,,

we = v 5 3 006 - At

JE{l:k+1}

Observe that vy, € PP, (J7; Vi) since £; € ]P’;g(f; R). Moreover, vy (1) = u} " = R (upr)(tn—1)
and (69.22) together with (69.23) implies that vp,(tn;) = u;l” =R (uns)(tn,) for alli € {1:k+1}
since T}, ' (tn,;) = & for all j € {1:k 4 1}. This proves that vn, = Rr(unr) € Pg,,(J7:Vi). We
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then infer that

OR ) tni) =7 D2 3L lT 1) (i) — Anltng) ()

je{l:k+1}
= fu(tn,i) — An(tni)(uy").
This shows that up, solves (69.20). Proposition 69.7 shows that uy, solves (69.16).

Exercise 69.3 (Poincaré in time). The assumption v € H'(J,,; H) implies that v has a contin-
uous representative in CY(J,,; H) (see Lemma 64.37 and Remark 64.38). Using the hint, we have

for all t € J,,
t

v(t) = vt )+ Opvdt.

tn—1

The triangle inequality followed by the Cauchy—Schwarz inequality yields

t
o < I+ [ ool

tn—1

: 3
sanqﬂH+@—mlw</’|@wza).

tn—1
Young’s inequality and the fact that (¢,-1,t) C J,, imply that
lo@)I7 < 2ot + 20t = ta-0) 100l 725, .10)-
The result follows by integrating this inequality over J,.

Exercise 69.4 (Time reconstruction). (i) Assume that R, is defined as in Remark 69.9 with
Or+1(8) = Ilic 1.1y g—;i Then, for alln € Ny, we have R, (vn,)(t_ ) = o (81 )—vnr (8 ))+
Uhr(tn—1) = Unr(tn—1). Moreover, for all [ € {1:k + 1}, we have R, (vnr)(tn1) = vnr(tn). Hence,
we obtain the same operator as in Definition 69.5.

(ii) Let us set &py1 = (721)k (L — Lig41) and 6 := &1 — Og+1. By definition, § vanishes at

s = —1. Moreover, since the Gauss-Radau quadrature using (k + 1) points is of order 2k (see
Proposition 6.7), we infer that for all ¢ € Py (J;R),

/jekﬂ(s)q’(s) ds = Z wif+1(&)q' (&) = 0.

le{l:k+1}

In addition, we have [7&11(s)q'(s)ds = 0 owing to the L*-orthogonality of the Legendre poly-

nomials which implies that [5Lx(s)q'(s)ds = 0 = [5Li11(s)¢'(s) ds. Using integration by parts

and the fact that §(1) = &x11(1) — &x1(1) = 0—0 = 0 (recall that Ly(—1) = (—1)¥), we infer that
1

[ 5@ats) s = = [ qs) s+ (e)ao], =0

Since ¢’ is in ]Pk(j; R) and g is arbitrary in ]Pk(j; R), the above identity shows that ¢ is constant,
and since §(—1) = 0 as shown above, we conclude that ¢ vanishes identically.

(iii) Let v € L?(J,; V). Recall that V — L = L' — V’. Combining the hint with the Cauchy—
Schwarz inequality in time leads to

1 1
lollze(nizy < 10l Zaqs, wn ol E2s, -
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This implies that
1 1 1
lvll2g,;0) < 74 ||”Hzoo(,]n;vf)||”sz(,]n;v)-
Applying the inverse estimate from [27] with p := 2 leads to
1
vl Lo (1,5v) < 272(|0:Rn ()| L2(,0v7)-

Combining these bounds proves the claim.

Exercise 69.5 (dG(1)). (i) The Gauss-Radau nodes are & := —% and & := 1 and the corre-
sponding weights are w1 = 3, we 1= % (see Table 6.1). The Lagrange interpolation polynomials

are

Li(s) = %(1 —8), L) = g(s—l- %)

Using these two polynomials, we have

(1/}1(_1)51/}2(_1)) = (%7 _%)7 (1/)1(1)51/}2(1)) = (07 1)5
and the matrices B, M € R?*? become
3.0
) =5 )

This leads to the assertion on the dG(1) time-stepping scheme:

9 3 n,1 3 n,1 3 n—1 3Egn,1
( gM §M> (377,,2) +7 (411‘/4371,2) = ( %Mﬂn—l> +7 (le:znﬂ) ’
—gM M 1A —3M 1
and we set U := U2,
(ii) Using (69.24), we now write the scheme in IRK form as follows:

mum! 7A —pA\ (Ut munt HF™l — SFm2
+7 n2 | = 1) T e 1pn2 )
My SA - A \U™ Mmur SFEml 4 LFm

and we set U™ := U™2. Notice that the two linear systems are indeed equivalent.

&

I
/I_\
00]000|©
o0l enoo|w

Exercise 69.6 (IRK final stage). (i) Recalling (69.22), let us set y; := %(uzz —uph), 2 =
Jn(tn ;) — An(tn ;) (u,?), so that we have

Y = Z aijz;, Vi € {1:s}.
je{l:s}

This implies that

2 = Z (a™N)ijy;s Vi € {1:s}.

je{l:s}
Recalling that u} == u) ™" + T je(i:s} b (fultn,;) — Ah(tn,j)(uZ’j)), we infer that

up =l Z bjzj =up '+ Z b; Z (@™ ") iTys

je{l:s} je{l:s} ie{l:s}

(e Y S ) S S e

i€{l:s} je{l:s} ie{l:s} je{l:s}
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This shows that
up = apuj Tt + Z apuy?,
pe{l:s}
where ay, = 37 01, bg(@ )gp, a0 =1 =30 .y ap, and (a7!), are the coefficients of the
inverse of the Butcher matrix (apq)p,qe{1:s}-
(ii) In the case of the Radau ITA IRK scheme, we have b, = as), for all p € {1:s}. We infer that

Qp = Z bq(ail)qp: Z asq(ail)qp:‘sspv
ge{l:s} qe{l:s}

for all p € {1:s}. As aresult, we have oy, =0 for all p € {1:s—1} and a,; = 1. Finally, this implies
that ag =1 — 1 = 0.

Exercise 69.7 (II¥). (i) To prove the uniform stability of II¥ in L>(J,; Z), we define II* :
HY(J;Z) = Pr(J; Z) s.t. for all v € H'(J; Z),

I* (v)(1) = 3(1),

/A(ﬁk(a) —0,q)dt =0, Vg € Pr_1(J; 2).
7

This gives

. (1 |5, (T @), @)t
1T @) e 77 <€ (IBWN12 + sup_ ST )
GePL_1(J;2) 1 L2(]:2)
< ”i}\”Lm(f;Z)’

where ¢, are generic constants that can depend on k. Since we have I1¥ (v) = IIF (v o T;1), the
uniform stability of II¥ in L>°(J,; Z) follows readily.

We now prove the approximation property (69.27). Let v € Whtloo(J: 7). Since II* leaves
Py (J+; Z) pointwise invariant and is stable in L°°(J; Z) uniformly w.r.t. 7, we infer that

lo =)l poe(rizy = inf [lv =g+ T (g = v)||L=(s:2)
q-€PE(J+;2Z)
<c inf v —gllpeiz)-
lb'E]Pi(Jf?Z)

The expected estimate follows from standard polynomial approximation properties extended to

Bochner Sobolev spaces.
(ii) Let v € HY(J,; V'). We want to build 1T (v) € Py (Jn; V') s.t.

Iy, (v) (tn) = v(tn),

/ <HZ(U) -, q>v/1vdt =0, Vq € Pkfl(Jn; V)

Let J¥ : L2(J,; V) — (L3(Jn; V) = L*(Jn; V') be the Riesz—Fréchet map associated with the
Hilbert space L?(J,,; V) (see Theorem C.24). Since Py_1(J,,; V) is a closed subspace of L?(J,; V),
the L?(J,;V)-orthogonal projection ©F | : L?(J,,;; V) — Py_1(J,; V) is well defined. Let us set

Oy =" 0Oy o (JU) TN LA(Jn; V') = L2 (Jn; V).
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For all ¢ € Py_1(Jpn; V), we have
/ (O (v), gy ydt = / (O (™)L (0)), ghv vt
Jn JIn
— [ @™ v

n

- /J ) vt = / T

Jn

We then observe that for all v € H'(J,; V'), the definition
I, (v)(8) 1= (v(tn) = OF_1 (0)(ta)) Lie(t) + OR_1 (v)(t),  VEE Ty,

satisfies all of the above requirements. Moreover, by invoking the integration by parts for-
mula (64.7), the identity in Lemma 69.16 becomes

| @0 =105 vt = (E) s o (1)) =0,

n

for all v € HY(J; V), all ypr € Xpr, and all n € N,. Finally, let us derive a stability estimate on
Ik in L°°(J,,; V'). We first notice that

”éz—IHﬁ(LZ(V’);LZ(V’)) =©k_10 (JRF)A)Hﬁ(L?(J;V');L?(J;V))
<N Mz nvyzervy = 1.
Moreover, reasoning as above shows that there exists ¢ s.t. for all v € H'(J,,; V'),
(T (V)| oo (v < cllvllpoe (g, vy

(iii) Let v € H'(J; V). We observe that I1¥(IIj,(v)) and II,,(IT%(v)) are both in PP(J;;V4). There-
fore, the assertion is established provided we show that

I3 (0 (v)) () = T, (15 (0) (£0), Vn e N,

/ (IE (T4 (v)) — I, (I (v)), @)L dt = 0, Vg € Pp_1(Jn; Vi), ¥n € N

Jn

By definition of IT¥, we have for all n € N/,
T (I (0)) (tn) = T (v) () = T (v(tn)) = T, (I (0) (£0)) = T (T (0)) (£n).

Moreover, for all ¢ € Py_1(J,;Vs) and all n € N, since the duality between V an V' is an
extension of the L-inner product, we have

/ T (), 0) = / (I (0) )t = / ) @)
where (IT,)* : V3, — V', Since (I1n)*(q) € Pr—1(Jn; V'), we infer that
[y @ = [ (05 M) @)varde = [ (0@, st
JIn Jn JIn

This completes the proof.
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Exercise 69.8 (Symmetrization). (i) We have
1 1
[ R vads = [ 0= 0(-Db) 0, ds
-1 -1
1 1
= [ vds—u,-0) [ G ds
-1
/ 1/1 Vp ds + g (=1)vp(—1) = By,

where we integrated by parts and used that f_ll Ok41rds =0 for all r € ]P’;C_l(f; R), Op41(—1) =1,
and 0;41(1) = 0 to pass from the second to the third line. Furthermore, we have

1
B+B = [ (W 3 ds + 20, (=1 (1)
= wq(_l)wp(_l) + wq(l)wp(l)a

since ¥y, + by = (Yg¢0p)". Finally, the identity
1 o~ o~
(B"™™M'B),, = / R(1y) R(1p) ds
—1

has been shown in Exercise 28.1 with the operator Z : Pr(J;R) — Py(J:R) s.t. Z(r) = (R(r))".
(ii) From Step (i), we observe that the matrix (B + BT) is (symmetric) positive semidefinite.
Indeed, setting (1) = (¢1(£1),..., k1 (£1))T € REFL we have (B+BT) = ¥(-1)@¥(-1)T+
U(1) @ ¥(1)T and XT(B+B")X = (XT¥(-1))2 + (XT¥(1))2. Moreover, the matrix M is positive
definite. This implies that M ® (B + B") is symmetric positive semidefinite. After noticing that
§-8, =M (B+BT), we then infer that VTS,V < VTSV. Since the matrix M is symmetric and
since the matrix 4 ® M is symmetric positive definite, the Cauchy—Schwarz inequality followed by
Young’s inequality applied to Y := (A ®@ M)V and Z := (M ® B)V implies that

VIM @ B+BN)V =2VI(MaB)V
=2V’ A®M)( M) (M @ B)V
= 2YT(A 1)z
<TYTAT @M Y)Y + 77127 A e M )Z
TVT(A®M)V+T*1VT((MA M) B"™M™'B))V
=VTS,V.

Hence, we have
VISV =VTS,V+ VT (M@ (B+B))V <2V'S,V.

(iii) We have

Sj‘l-,ip = / (atRn(<Pj1/}q) + Ah(@ﬂ/}q)v <Pi1/)p)Ldt

= (A, (0 R (05%q)) + 05%q, Pitlp) L2(J0 Vi)
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for all i, € {1:1} and all p,¢ € {l:m}. Moreover, the mass matrix of the inner product
(s ) L2 (Jnsvp) 18 A® 7ML We conclude by invoking the result of Exercise 28.1.
(iv) For k := 1, an explicit computation shows that

21 9
BTM—1P_< 4 ;1), IB+]B%T_(
5 _
In conclusion, the preconditioned symmetric dG(1) system matrix takes the following form:

)+M®<_ >+TA<§ (%)>

o |©
PN IS N[I]

4

15

S=lMA M) e (

IN[IS

INENNNe}
N[N No}
NS IN[I¢]



Chapter 70

Continuous Petrov—Galerkin in
time

Exercises

Exercise 70.1 (Interpolation operators). (i) Let Z{'", be the Lagrange interpolation operator
defined in (70.2) using Z := L. Prove that

/(p,Iﬁil(w))Ldt=/(p,w)L pie (dt), (70.1a)
J J
[z gt = [ )@, (70.11)
J J

for all p € PP(J;; L) and all v,w € L2(J; L). (ii) Let Z C L. Prove that the restriction of Zg | to
PE(J;; Z) coincides with the L?(.J; Z)-orthogonal projection onto PP, (J;; Z). (iii) Prove (70.5).
Exercise 70.2 (Equivalence with KB IRK). Prove the converse assertion in Lemma 70.5.
-1 .

(Hint: show that un(t) = u) '+ 75 5 177 L£5(6) AE(fatn,y) — Anlta,;)(u)y?)) for all
teJ,andalln e ./\/T.)

Exercise 70.3 (Butcher simplifying assumptions). Let s € N\ {0} and let {c;}icq1.5) be s
distinct points in [0,1]. Let & := 2¢; — 1 and £i(§) = [T;cq1. 53\ () % for all ¢ € {1:s}. Let

aij = (297N L;(€)dg, b= L [1 £i(€) de for all i € {1:s}. (i) Show that the set {&;,2b;}ic (1. s
is a quadrature of order kg > s — 1 over the interval [—1,1] (see Definition 6.4). (Hint: observe

that p = Y e (1.4 P(&)Li for all p € Py (J5R).) (if) Show that for all g € {1:s},

Z aijc‘;- , Vie{1:s}, Z bjci " = 7

je{l:s} je{l:s}

»Q|sQ

(Hint: integrate (gﬁ)q_l over (—1,&;) for all ¢ € {1:s} and over (—1,1).) (iii) Assuming that
ko > s, show that for all j € {1:s},

(=l

Z bic? lay; = 21— c§), Vg € {1:kg—s+1}.
ie{l:s} q
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(Hint: integrate the polynomial (1%5)(171 fflﬁj(ﬁ) d¢ over (—1,1).) Note: these formulae are
called Butcher’s simplifying assumptions in the ODE literature (see Butcher [9, Thm. 7], Hairer
et al. [25, §I1.6], [24, §IV.5, Thm. 5.1], see also the order conditions stated in Theorem 78.5).

Exercise 70.4 (cPG(k)). Assume that a is time-independent. (i) Use the IRK formalism and the
tableaux in (70.15) to write the algebraic form of cPG(1) and cPG(2). (Hint: use the coefficients
{ai}ic(o:sy.) (ii) Write again the cPG(1) and cPG(2) schemes in algebraic form using the formalism
described in §70.3.2 and the bases from Remark 70.16. (Hint: for k := 1, it is of the form
M+ 7 AU =2 MU 4 7FL and U™ = 2U™! — U"L, whereas for k := 2, it is of the form

% 2\/273 MUn’l +Z Aun,l B \/gMUn_l—l—%Fn’l
_2\/§+3 3 MU™2 2 \Au™2) — _\/gMUnfl_F%Fn,Q ’

2

and U" := Un~! —3(U™! —U™2))

Exercise 70.5 (II* and II;, commute). Let II;, € £(V;V},). Show that 1% (11, (v)) = II;, (T1¥ (v))
for all v € HY(J;V). (Hint: use Remark 70.10 and prove that II, commutes with =P | by
introducing (I1,)* € L(Vi;V').)

Solution to exercises

Exercise 70.1 (Interpolation operators). (i) The identity (70.1b) follows from the fact that
the discrete measure ug"(dt) samples at the interpolation nodes of Z; |, and the identity (70.1a)
follows from (70.1b) once we observe that [,(p,ZJ" (w))rdt = [,(p,Z;" (w))r pf*(dt) because
the quadrature is of order (2k — 1).

(ii) Since the quadrature is of order (2k—1), we have for all v, € P#(J,; Z) and ally, € PP_,(J;; Z),

/J (T8 1 (02, 7)1t = /J (T8 1 (00,01, () = / (vry2) .

J

This proves the assertion.

(iii) Let us prove (70.5). Let v € H'(J; L) and y, € PP_,(J;; L). We observe that by construction
Z"* (v) coincides with v at the Gauss—Legendre nodes {t,,1}1e{1. 5y over each time interval J,, for
all n € NV;. Hence, we have

[ownit@n = [ @ e @.
J

J

But since (Z;"" (v), yr )1 € Pak—1(J7;R), the quadrature is exact, and we have

[ o = [ @ o).
J J

Exercise 70.2 (Equivalence with KB IRK). Assume that {uZ"l}le{l,S} solves (70.12) with
s :=k and u} is given by (70.13) for all n € N;. Let up, € Pkg(jT; Vi) be s.t. upr(t,) := ujl for all
n € N, and {up,(tn,) := uZ’l}le{l;k} for all n € N;. Let us define vy, € PP(J;; V) by setting
for all t € J,, and all n € N,

T, (1) ,
one () =y T Y %/ L;(€) d&(fn(tn ) — Anltn,)(up?)).
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Observe that indeed vy, € PP(J;;V}) since £; € Pi_1(J:R) for all j € {1:k}. Moreover, (70.12)
together with (70.11) implies that vp,(tn) = u;l” for all 4 € {1:k}. Similarly, (70.13) together
with (70.11) implies that vy, (t,) = u}. Finally, vs, (¢} ;) = u}~'. These arguments prove that
Vpr = Upr € PE(J;; V). Recalling that T, 1(t) = QHT"” — 1, we obtain for all ¢ € {1:k},

O (t) =7 3 S (T b)) (ftg) = Ant s ()
je{1:k}

= fultni) = Anltn) (™).
This shows that up, solves the cPG(k) scheme (70.9).

Exercise 70.3 (Butcher simplifying assumptions). (i) Recall that the polynomials {£;};c1:
are the Lagrange polynomials associated with the nodes {&;};cf1.5. Hence they form a basis of

P,_1(J;R). This implies that for all p = Yic(i:sy P&)Li € P,_1(J;R), we have
1 1
[ oac= 3 we) [ cioa= Y )
-1 ie{l:s} - ie{l:s}

This shows that the set {&;,2b;}ic(1:5) is a quadrature of order kg > s — 1 (see Definition 6.4).
(ii) Since the polynomials {L;};ec(1:5} are the Lagrange polynomials associated with the nodes

{&i}ieq1:s) and they form a basis of ]P’S_l(f; R), we have for all ¢ € {1:s — 1},
1+€ q—1 1+€ q—1
(%) = ¥ (5Y) s
je{l:s}

Integrating over (—1,¢&;) for all 7 € {1:s} and using the definition of ¢; gives

2¢ 2 (1+4+&\T Y1+
T L) e

N4l &
= > (—Hf) L5(6)de.

je{l:s} -

Recalling that ¢; = 1+2£j and a;; = %ffll L;(€) d¢, we obtain

=aQ

G _ Z aijcg_l, Vi e {1:s}.

je{l:s}

= |

Now, we integrate over (—1,1) and get
2 L\t 1+&\" !
[ (5E) - X (5Y) [ s@ae
q -1 2 . 2 1
je{l:s}
Recalling that b; = %f_ll L;(§)de¢ for all j € {1:s}, we obtain

1 _
a: Z b]C(JZ 1.

je{l:s}
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(iii) Let kg > s be the order of the quadrature. Let ¢ € {1:kg—s+1}. Since (#)qil ffl L£;(§)de
is a polynomial of degree ¢ + s — 1 < kg, we infer that

1 a—1 r¢ NI &
1 (58 [ eowa=1 ¥ () [

-1 ie{l:s} -1

_ E : q—1
= bici Q-

ie{l:s}

Moreover, integrating by parts, we obtain

IS R A eI RN Y T
Z/;l (T) [1£3(<)dcd§— —1[15 (T) L;(§)de

q
Since the degree of (1%5) L;(&)is q+s—1<kg, we infer that

1[4\t e 12 »
Z/—1 (T) /_1 £i(Qdcde = — Zacj%J + 152173.

In conclusion, we have established that for all j € {1:s},

b.:
Z bicfflaij = (1 — C?)

ie{l:s} 4
Exercise 70.4 (cPG(k)). (i) Let us start with k = s := 1. The corresponding Butcher tableau
in (70.15) gives
n,l 1 n,l n—1 1 n,l
MU7+§7—AU:MU +§TF',
MU™ = MU 4 7FE — AU

with F?’l = (f(tn1),pi)v,v for alli € I and ¢, 1 := % We can eliminate the intermediate
state U™!. Indeed, according to (70.14) and the coefficients {c;}icfo.53 given below (70.15) for
s:=1, we have U" = —U"~! +2U™!. Hence, U™! = %(U" +Un~1). After inserting this expression
into the first equation, we obtain the Crank—Nicolson time-stepping scheme:

1
MU = U + STA(UT 4 U = R

Now, for k = s := 2, we have (using (70.14) and the coefficients {a;};cf0.5 given below (70.15))

1 3—-2V3 1 3—-2V3
MU™ 4 S AU 4 7\/_TAU"’2 = MUt 4 Sopml 4 7\/_71:”’2,
4 12 4 12

3+2V3 1 3+2V3 1
7_'—12\/_7'.»4U"’1 + MU™? + ZTAU""2 = MU+ 7+12\/—TF”’1 +7 F2,

U = Un—l _ \/g(Un,l _ Un,2)7
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with "' = (f (1), 0i)ve v, FI72i= (f(tn2), i)y for alli € {1:1}, and t,; = =it V37
tn,o = n=itin 4 M,

(ii) We now write again the cPG(1) scheme and the cPG(2) scheme in algebraic form using the
formalism described in §70.3.2 and the bases from Remark 70.16. For k := 1, the basis of P;(J;R)
is ¢o(s) = —s and ¢1(s) = 1+ s, whereas the basis of Pg(J;R) is ¢1(s) = 1. This leads to b1y = 2,
mi1 =1, di =2, a9 = —1, and a; = 2. Hence, we have

M+ 7 AU = 2MU + TF

U =2u™t —urt

The intermediate vector U™! can be eliminated, and the cPG(1) scheme takes again the same form
as the Crank—Nicolson scheme, that is,

MU — U™t + %TA(U" + U = rpml

For k := 2, we have & = —ﬁ, & = i , wy =1, wy := 1, and the basis functions are

¢o(s) = Lo ( )= 3(3s* = 1),

d1(s) = =B (5 + 1) (35— VB), ¢a(s) = —51=(35 — V3),
da(s) = LB (s + 1) (35 + V3),  wals) = 51=(35 + V3).
We obtain
and

dl - \/ga d2 - _\/ga Qo = 17 a1 = _\/57 g = \/g
This leads to

2\/_3

3 1
5./\/lun,l_i_§7_‘/4un,l MunQ \/_Mun 1+ 7_Fnl

2v3 43
o \/_2+ MU”’1+§MUn’2+§TAUn’2:—\/gMUn_l+§TFn’2,

Ur = Unfl _ \/g(Un,l _ Un,2)'
Notice that the formulae obtained in Steps (i) and (ii) are equivalent.

Exercise 70.5 (II* and II;, commute). Let v € H!(J; V). Observe that II,(v) € HY(J;V) so
that IT%(TI;,(v)) is well defined, and that I1¥(v) € H'(J; V) so that I, (I1%(v)) is well defined as
well. Using Remark 70.10, we have

IT* (1T, (1)) = T, (0)(0) + / =b_ (0, (v))) ds
= 10,(0(0) + [ k1m0 ds

since II, commutes with the time derivative. Let us now show that IIj, also commutes with Zp .
We first observe that

/< ,Ezfl(w) — ’w>v/)vdt = O,
J
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for all ¢ € PP (J-; V') and all w € L%(J;V) as a consequence of (69.2). This identity, in turn,
implies that

/ (Eb_ (0 (v)), g-)pdt = / (I (v), g7 1t = / (I (), Py, () 2t
J J J
- / (0, (TL4)* (Py, (¢))) vt = / (Eb_ 4 (0), ()" (Pyy, (.))ve vt

J

= [ @) P = [ (OE @),

J

for all ¢; € PP (J,;L), where we used that Py, (¢-) € PP ,(J-; V) and (I,)*(Py, (¢,)) €
PP (J-;V'). Finally, the above commuting property implies that

117 (I (v)) = L (v(0)) +/0 Ia(ZR_1 (Ow)) ds = I(Z7_4 (v)).

This proves the assertion.
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Analysis using inf-sup stability

Exercises

Exercise 71.1 (Time derivative). Let ¢ € C{°(J;R) and v € X, ie.,, v € L*(J;V) and
O € L2(J;V'). Show that ¢v is in X with 0;(év)(t) = ¢/ (t)v(t) + ¢(t)Opv(t). (Hint: use Pettis
theorem and Lemma 64.33.)

Exercise 71.2 (Inf-sup condition). Prove (71.7) with X equipped with the norm HU||§~( =
o270y + 200001172 gy +70(0) |7 (Hint: use integration by parts in time to bound [lv(0)[|7
by [lvll%)

Exercise 71.3 (Heat equation). Consider the heat equation with unit diffusivity (see Exam-
ple 71.4). Prove that for all v € X,

b(v, (0,41))
lol% = sup = [[0(0)]17s

y1€L2(J;HY) HylHLz(J;Hfl))
(Hint: observe that the supremum is reached for y; := A~1(9v) + v.)

Exercise 71.4 (Ultraweak formulation). Equip the space Xy with the norm |v|x,, =
llv]lz2(s;vy and the space Y,y with the norm defined in (71.10). (i) Prove the inf-sup condi-
tion (71.11). (Hint: consider the adjoint parabolic problem dw,(t) + A*(w,)(t) := (v(t),-)v for
a.e. t € J, with w,(0) := 0, invoke Lemma 71.2, then set w,(t) := w, (T —t).) (ii) The rest of the

exercise considers the heat equation with unit diffusivity. Show that sup,,cy. W < o]l xue

for all v € Xyy. (Hint: prove first that ||[A~1(9,w) — wH%2(J~H1(D)) = |lw|j3  for all w € Yiy.)
b = uw
(iil) Prove that

b
vl x,, = sup Buw (v, w) Yo € Xy

weYe Wi
(Hint: compute b(v,w), where w, € Yy solve the backward-in-time parabolic problem —d,w, —
Aw, = —Av with w,(T) =0.)

Exercise 71.5 (Norm ||-[lys). Let [|-[ly; be defined in (71.13). Let {¢;}ic1.1y be a basis of

V, and let S € R and M € RI*! be the stiffness and mass matrices s.t. Sij = (¢;, pi)v
and M;; == (@;, ;) for all 4,5 € {1:T} (these matrices are symmetric positive definite). For all
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vy € Vi, let V € RY be the coordinate vector of vy, in the basis {%‘}z‘e{hl}, ie., vp = Zie{ltl} Vip;.
T
(i) Prove that [|va|ly; = (VIMS IMV)z. (Hint: use that |jop]lv; = supyegs ﬁ) (i) Let
i > 0. Prove the following two-sided bound due to Pearson and Wathen [37] (see also Smears
[41]):
VT(MS—! SV
(MS™ M+ pS) <2 WeR.

< 1 1 —
TVTI(M A+ p28)S HM + p2S)V

1
2
Exercise 71.6 (Error analysis with ||-||x,). Referring to §71.2 and denoting by wy, the solution

to (71.12), let n(t) := u(t) — Py, (u(t)) for a.e. t € J. (i) With the norm ||-]|x, defined in (71.15),
prove that |b(n, yn)| < vV2M|nllx, ||lynlly for all y, € Yi,. (Hint: use that = < M?) (ii) Prove

\/5}5\4) IInllx,, where B, is the constant from the inf-sup

the error estimate [|u — upllx, < (1 +
inequality (71.16). (Hint: combine inf-sup stability with consistency and boundedness.)

Exercise 71.7 (C°(J; L)-estimate using inf-sup stability). (i) Recalling that ||-||x is defined
in (71.6a), prove that W%HUHCOG;LQ) < ||v||x for all v € X. (Hint: see Exercise 71.2.) (ii) As-

2
sume (71.18). Let ¢ := /2 and ¢ := /5§, where p := 2LL01V and ¢r, v is the operator norm of
the embedding V' < L, i.e., the smallest constant s.t. ||v||z < ¢, v|[v||v for all v € V. Prove that

Brerllu = unllcoz,ny < Breallnllcony + N0z + c2llOml 2;),

with 7(t) := u(t) — I} (¢t;u(t)). (Hint: combine Lemma 71.9 with consistency.) (iii) Compare this
estimate with (66.16) in the context of the heat equation.

Exercise 71.8 (Implicit Euler scheme). (i) Let X, := (Vi,)N¥*! and Y, := Vi x(Vj,)V.
Reformulate the implicit Euler scheme (67.3) using the forms

br(Vnr,ynr) = (U won)L + Y T(((Brvne)™ yin) L + a” (v}, yih)).

neN;
KT(yhT) = (U‘Oa yOh)L + Z T<fn7y?h>v/-,Va
neN;
where (6,vp7)" = L(v) — vp~ 1), (i) Assume that the bilinear form a is symmetric at all times.
Prove that

1 M /1
allunr |22y + M”a‘ruh‘rH??(J;V,{) + 7|0 unrll72 g,y + [up'[|7 < o (a”f”%u;vq + ||U0H%)-

(Hint: use the inf-sup condition (67.1).) (iii) Assume that u € C°(J; V)N C*(J; V') N H2(J; V')
and that Py, is uniformly V-stable (see (71.18)). Prove that

M
0runr — drurlle2svry < [Py, HL(V)E <\/§(M|777'||22(J;V) +2(10ml L2(5yv
+rluulz) + VIl ).

where (6;u-)" = L(u(t,) — u(tn—1) for all n € N7, n(t) := u(t) — vp(t) for all t € J, n, =
(n(tn))nen, , and vy, arbitrary in H(J;V3,). (Hint: use Step (ii) and Lemma 71.8.)

Exercise 71.9 (Inf-sup for cPG(k)). Complete the proof of Lemma 71.20. (Hint: reason as in
the last step of the proof of Lemma 71.18.)



Part XIII. PARABOLIC PDES 379

Solution to exercises

Exercise 71.1 (Time derivative). Let ¢ € C°(J;R) and v € X. The function J > ¢ —
o(t)v(t) € V is strongly measurable owing to Pettis theorem (Theorem 64.4). Indeed V is a
separable Hilbert space (by assumption), and the function J > ¢t — ¢(t)(v',v(t))v',v € R is
Lebesgue measurable for all v/ € V'. Moreover ([, [|¢(t)v(t)[|3dt) < [|¢]| (.m0l 2(s:v). This
shows that ¢v € L?(.J; V) (see Definition 64.17).

Let now ¢ € C°(J;R) and w € V. Since ¢(¢)¢'(t) = (¢pv0) () — ¢' ()¢ (t) for all ¢ € J, we have

/ (w, B(8)o(8)) L2 (1)t = / (w, v(0)) 1 (60) (t)dt — / (w, v(t)) L6 (D ()t
J J J
- / (Bro(t), W)y ey BBt — / (w, v(t)) L6 (D ()dt
J J
- / (GO (8, w)y e vt — / (& (o(t), w)L ()L,

J

where we used that v has a weak time derivative in L?(J;V’) and that the L-inner product is an
extension of the duality between V' and V. The above identity together with the characterization
from Lemma 64.33 shows that ¢v has a weak time derivative in L?(.J;V’) such that 9;(¢v)(t) =

¢ (t)v(t) + o(t)dpv(t).

Exercise 71.2 (Inf-sup condition). Let v € X. Integrating by parts in time and using Young’s
inequality, we infer that

o)7L = Allv(D)Z ~ 27/J<3tv(t)7v(t)>vavdt
gl
<Alu(D)Z + al\atvl\%zu;vq +yallvlZ -

Since ya < 1, this implies that

1 2
Y[[v(0)]17, < al\v(T)H% + El\atv||%2<,1;w> +olZ2(5v) = llvll%-

Hence, ||v||% < 2||v||%. We conclude that

b
it sup 1000)

>B>0
veX yey [0l % llylly ’

with 3 := %[3, and £ is the inf-sup constant in (71.8).

Exercise 71.3 (Heat equation). Let v € X := L?(J; H}(D)). We have
b (0.90)) = [ (010(0) + ACO). 51 ()11 0yl
= [ (AT B0(0) + 0.0 ()2 .5
= [ (VA7 @) + 000, Vs () oyt
Letting y, := A=Y (dw) +v € Y1 := L?(J; H}(D)), this shows that

T
b(v, (0,1)) = / (Voo V1) 22y .
0
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Hence, as claimed in the hint, we have

sup b(v, (0,y1)) _ sup S5 (Vyu(t), Vyi (t)) L2 (pydt
y1€L2(J;H (D)) Hy1||L2(J;Hg(D)) y1€L2(J;HL (D)) Hy1||L2(J;Hg(D))

= Hyv||L2(J;H3(D))-
This gives
v (0.91)
v, » Y1
b0, (0,9.)) = lyolZermoy = | swp o)
y1€L2(J;HL(D)) Hy1||L2(J;Hg(D))
Moreover, since A is self-adjoint and observing that
<A(y)vz>H*1(D),H§(D) = (Vy,Vz)L2(p) = (yvz)Hg(D)a Vy,z € H(} (D),

i.e., A is the Riesz—Fréchet isometry from Hg (D) to H~ (D), we have

b(v, (0,y0)) :/]<6tv(t)+A(U(t))=A_l(atU(t))+U(t)>H*1(D),H5(D)dt
:2/<6tv(t)v’U(t»H*l(D),Hé(D)dt+/<A(U(t))a'U(t»H*l(D),Hé(D)dt
J J

+ [ 00,47 @) 10 oyt
— (D)3 — 100022y + 1012 st oy + 10001t oy
= oll% = 0Ol Z2(p).
where we used integration by parts in time. This proves the inf-sup identity.

Exercise 71.4 (Ultraweak formulation). (i) Let v € X,,. Consider the adjoint parabolic
problem dw,(t) + A*(wy)(t) = (v(t), )v for a.e. t € J, with the initial condition w,(0) = 0 (this
problem is well-posed owing to Theorem 65.9). Since the operators A and A~! have the same
coercivity constants as A* and A™*, respectively, and since w, (0) = 0, Lemma 71.2 implies that

S (Ovwy () + A (wy) (), 1 (£)) v vt

Bllwsllx < sup

B EL2 (V) lyillz2 vy
(v(t), y1(2))vdt
— o L = el
y1€L2(J;V) Hyll|L2(J;V)

Let us now set
Wy (t) = w, (T —1).

Then w, € Yyw and since 0w, (t) = —0yw, (T —t), we infer that —0,w,(t) + A*(w,)(t) = (v(t),-)v,
for a.e. ¢t € J. This implies that buw (v, Wy) = [|[v[|72(.1y- Since ||y [lv,,, = [lwollx < B~ vllL20rv),
we conclude that

buw(vaﬁv)v) 71buw(va{5v) <671 sup buw(vvw)

V|| Xuw = IVIIL2(J;Vv) = = e~ .
Fellxa = ol = o, AR S Tl
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(i) Let w € Yuw. Using that (g, 2) g1 (p),ui(p) = (VA™1(g),V2)p: for all g € H1(D) and all
z € H}(D), we infer that

A~ (Byw) — wH%ﬂ(J;Hé(D)) = []<5tw(t) — A(w(t)), A7H(Qew(t)) — w(t) g1 (py,m3 () dt

= ”wH%Q(J;Hé(D)) + ||atw||2L2(J;H*1(D)) + [w0)l|Z2(py = w3, -

This shows that ||A~!(0w) — W 2rmi (D)) = Wy, for all w € Yiw. Let now v € Xy =
L?(J; H}(D)). Proceeding as above, we have

buw (v, w) = /}@(t)a —0vw(t)) g1 Dy, (p) + (Vu(t), Vw(t)) L2 (pydt
_ /] (Vo(t), V(= A~ (Bnu(t)) + w(t)) g2 (pydt.

This implies that for all v € X,

buw (v, w | = A1 (9w(t)) + w(t) || L2(s;13 (D))
sup Buuw (0, ) < \vllz2(s;m (D)) sup .

weYaw || W] Vi WE Yau lw|ly,,

buw (v, w)
Hence, sup,cy,,, Tl ¥ < ||UHL2(J;H[}(D))-

(iii) Let v € Xyw := L*(J; HY(D)), v # 0. Let w, € Yy solve the backward-in-time parabolic
problem —o,w, — Aw, := —Av in DxJ with homogeneous Dirichlet boundary conditions and the
final condition w,(T") := 0. Setting w,(t) := w,(T — t), we observe that w, € X and that w,
satisfies the heat equation Opw, (t) — Aw,(t) = —Av(T — t) with the initial condition w, (0) = 0.
Defining f € L2(J; H=Y(D)) s.t. f(t) := —Av(T — t) for a.e. t € J, we have

/:](<8twv(t)ae(t»H*l(D),Hé(D) +(va(t%V@(t))m(D))dt:/J<f(t)79(t)>H71(D),Hg(D)dt,

for all @ € L?(J; H}(D)). Theorem 65.9 shows that the problem defining w, is well-posed. Hence,
the function w, € Yy, is well defined. Since A(v) = —dw, + A(w), i.e., v = —A~Y(dw,) + W, we
infer from Step (ii) that byy (v, w,) = Hv||%2(J;H%(D)) = [|[A71 (0 (wy)) — ﬁvH%Q(J;Hé(D)). Therefore,

we have _
buw (1), wv)

1@ v

buw (v, w)
[vllz2(s:m2(Dy) = sup >

= ||V L7l .
Y 1 WYiy, [vll 223 ()

This proves the inf-sup identity.

Exercise 71.5 (Norm ||-[|y/). Note that both matrices S and M are symmetric positive definite.
(i) Since M and S are both invertible and symmetric, using the hint we infer that
ZTMS MV ZTMS~ ' MV

vplly = su T = Su 5
[ hHVh Ze]lsf (ZTMS-1885- 1 MZ)2 Ze]lsf (ZTMS—TMZ)>=

But the Cauchy—Schwarz inequality implies that

T —1
VM-V < sup ZMETMY

up - < (VTMS T MV)3,
zer! (ZTMS~TMZ)2

whence the result.
Note: we can also prove the result using a Lagrange multiplier technique as presented in §49.3.1.
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Using the hint, we infer that [[vv; = VT MW,, where W, € R’ solves the following linear
maximization problem under a quadratic constraint:

W, = arg max W' MV.
WeR!
wrsw=1

The optimality conditions characterizing the unique solution of the above problem can be formu-
lated by introducing a Lagrange multiplier A and the Lagrange functional £(W, \) := WT MV +
SAMWTSW — 1). The pair (W,, A,) is extremal for £ iff (see §49.3.1):

MV + A\ SW, =0, wrisw, =1.

This implies that W, = —\, S~ MV, and inserting this expression into the constraint WISW* =1
and using the symmetry of § and M implies that A, = :I:(VTMSflMV)’%. We conclude that

WIMV = F(VTMS T MV) VT MS T MV = F(VIMS T MV) 3,

which, in turn, implies that A, must be negative. This completes the proof.
(ii) Let g > 0. The upper bond follows from the identity

(M+p28)S H M+ p28) = MS "M +2u3 M + 1S,

and the fact that M is positive definite. To prove the lower bound, we first infer from Step (i)
that for all V € R/,

VT MW VT MV

(VIMS T MV)? = ||uslv; = sup o> -
" werr (WTSW)z — (VTSV)2
where the last bound follows by taking W := V. Hence, we have
VIMV < (VIMS T MV)Z (VTSV)=.
Recalling that ab < %aQ + %b2 for every real numbers a,b € R, we infer that
VIM + p28)S M (M + p2S)V = VIMS MV + 22 VT MV + VTSV
<2VTMS MV +2uVTSY,

which proves the lower bound.

Exercise 71.6 (Error analysis with |-||x,). (i) Let y, € Y},. We have
b 3m) = (1), g0+ [ @en(e) + A)0) (v vl
J

= [ )+ AG)®. s () v

< (10l 25wy + Mlnl L2 (v)) lyanll 20y
< V(1032 + M2l ¥ lmlly
< VaM|nllx, llynlly

where we used that (7(0),yon)z = 0 in the second line and that 7z < 2 in the last line. This

proves the assertion. Notice in passing that it is not possible to prove the uniform boundedness of
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b on X xY}, if X is equipped with the ||-|]|x,-norm unless the initial value of the first argument is
L-orthogonal to Vj,.

(ii) Let us set e (t) := up(t) — Py, (u(t)) for a.e. t € J. Combining the inf-sup inequality (71.16)
with consistency (Galerkin orthogonality) and boundedness (Step (1)), we infer that

b(en, yn b(n, yn
Bllenllx, < sup ) g M) sy
wevi lunlly  yievi lynlly

and the error estimate follows from the triangle inequality.

Exercise 71.7 (C°(J; L)-estimate using inf-sup stability). (i) It suffices to repeat the ar-
gument from Exercise 71.2 by replacing the time integration over J by the time integration over
(¢,T) for all t € [0,T). We obtain

Mo®IIZ = yIlv(DIE - 2v /@ " (Oo(t), v(t))vr,vdt

Y
<Av(M)7 + aHatUH%%(t,T);V/) + ”YOZHUH%z((t,T);V)-

Since yao < 1 and (¢,7T) C J, this implies that
1 v
YeOIZ < <llo(DIE + ZN0wllZzcvy + 101wy = I0l1%

and the claim follows by taking the supremum over ¢ € J on the left-hand side (there is nothing
to prove if t = T).

(ii) Let us set ep(t) := up(t) — I} (t; u(t)) and n(t) = u(t) — I} (¢; u(t)) for a.e. t € J (recall that
II} (¢; u(t)) is the elliptic projection operator defined in (66.11)). Using the inf-sup condition from
Lemma 71.9, we infer that

1 b €hy,Yh
Bt lenllooriny < Ballenllx < sup ACh¥n)
wneYn lunlly

Consistency gives b(en, yrn) = b(n, yr) (this identity is often called Galerkin orthogonality), and the
definition of the elliptic projection implies that

blen,yn) = (1(0), yon)r +/<5t77(f),y1h(f)>w,vdf-
7
Since lynll3 = Zllyonll} + ||y1h|‘%2(J;V)a we obtain

1 1
Bur?llenllcoz,ry < a2 n(0)llz + 10 L2(sv)-

Denoting by ¢,y the operator norm of the embedding V' < L, i.e., the smallest constant s.t.

llvllz < trvlvllv for all v € V, we have 0] z2s;vy < tov]|0ml|L2(s;r). Dividing by a? and

using the triangle inequality, we obtain

1 1

2 2
Wl = unll oo,y < IOz + Bh - Inllcogrny + =510l 2rvy-

2 2 a2
2

This proves the assertion with the time scale p := 2LL01V.
(iii) In the context of the heat equation (i.e., L := L*(D), V := H}(D), the operator A is time-
independent and self-adjoint), the estimate obtained above is very similar to (66.16). However,
(66.16) is sharper for the following three reasons: (1) it includes weights with exponential decay
in time; (2) the norm involving ;1 is only integrated over (0,¢) and not over J; (3) the constant

B1,4/7v/c is smaller than 1 (because 5}, \/v/a < By/7/a < ya < 1).
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Exercise 71.8 (Implicit Euler scheme). (i) Let us set ul) := Py, (up). It is readily seen that
Uy = (U )nen, € (Vi)Y solves (67.3) if and only if (u),up,) =: Gy € Xpr solves

b‘r(ahru yhr) = g‘r(yhr)u Vyhr S th-
(ii) Recall that the norms used the inf-sup condition (67.1) are

1
H’UhTHg(hT' —|| o 13+ HUhTHez T v)+ 6+ Uhr“ﬁ JiV) )+ ||5 Uhr“ﬁ (J:L)>

lyn%,.. = E”yOhHL + lyane 2 vy

We infer from Step (i) and the inf-sup condition (67.1) that

- M b (iipr, yn )2 M O ()2
HuhTHg{hT S -3 sup M S — sup M7
I S ||yh7-Hyhf a3y ey, ”y’””YhT

and the Cauchy—Schwarz inequality implies that
[0 (ne)1? < (1F 7oy + elluollD) lynr |13,

The assertion follows readily.

(iii) Proceeding as in the proof of Theorem 67.6, but using the stability estimate from Step (ii)
(instead of the estimate (67.7) from Lemma 67.3), and keeping only the term related to the time
derivative measured in 62(J ; Vi) on the left-hand side, we infer that

M M
H5 ehTHEQ(JV) ng||zz (J;V7) E”e?zH%v

where g; 1= (¢")nen, € (V )N and g" is defined in the proof of Theorem 67.6. Using the bound
on ||gT||§2(J_V/) from this proof, we obtain

M? M?
16-enr 7 svy < ?3(]‘42”%”52(,1;\/) F0nll7 2 + T2 10wull T2 g00) + THGQH%-

Taking the square root yields
M M 0
lo-enrllezrvyy < E\/g(MHnTHE?(J;V) + 10l L2 (rivry + TNOwull L2 rvr)) + g\/aH@th

The uniform V-stability of the L-orthogonal projection (see Lemma 71.8) gives

M
Iorencllocsar < IPvllecvy o VBl + 0l sz

T Bl ) + ¢a||e2|L).

Furthermore, since n(t,) — n(tn—1) = [ 7. O¢n(s)ds, using the Cauchy—Schwarz inequality, and
recalling that (6,;u,)" := (u(t,) — u(t,—_1)), we infer that

T

I5rr = e locaaen =7 32 7| | dmts)as
= () o >||V/ds)2
neN-
23 - / 10(s)2 ds
neN-

= ”87577HL2(J;V/)'
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Using the triangle inequality for

(wtn) = ) = (tn0) = ™Y) _ lta) = 0ltnt) 5

leads to the assertion (notice that ||Py, |22 > 1 and recall that ||} |z < [|n(0]/2).

Exercise 71.9 (Inf-sup for cPG(k)). Let vy, € Xj, and recall that yj, € Yj, is s.t. yp-(0) :=
vpr(0) and yp, () == I,fil(A,:l([)tth) + vpr)(t) for all t € J. Using the coercivity of Ay at ¢,
for all n € N7 and [ € {1:k+1}, we infer that allys- |3, < [loar(0)]|7 + T3, where

T3 1= /(Ah(yhT),yhT)L il (dt)
7
= /(Ah(Aﬁl(atth) + Ve )y Ay (Opvnr) + v ) pt(dt),
7

where we used (70.1b). Rearranging the terms and since (Oivpr,Vnr)r € Pog—1(Jn;R) for all
n € N;, we obtain

(IS = / 2(8tth;UhT)Ldt —+ /(Ah(th)ath>L H;L(dt)
J J
+ /(Agl(at”hr), Oyonr) L py-(dt).
J
Using the boundedness of Ay (t,,;) with constant bounded by M, the boundedness of Ah(tm)—l

with constant bounded by L for alln € N, and alll € {1:k}, and observing that 2 J5(Oevnr, yns)Ldt =
llon-(T)||2 — |lvn-(0)]|2, we finally conclude that Hy’””%’m < MthTH%(M.

-
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Chapter 72

Weak formulations and
well-posedness

Exercises

Exercise 72.1 (Non-homogeneous Dirichlet condition). Consider the time-dependent Stokes
equations (72.1) with the non-homogeneous Dirichlet condition u = g enforced over the whole
boundary 9D for all ¢t € J. Assume that faD gmn =0 for all t € J. Assume that the data f and g
are smooth so that the solution (u,p) is smooth. Assume that there is a smooth lifting ug of the
boundary datum so that ug-n =g on 0D x J and V-ug = 0 on D x J. (i) Write the equations
satisfied by ug := u — ug. (ii) Verify that

1d

55”“@”%2 + 2pfe(uo)[|F2 = (£, u0) L2 — (Brug, uo)r2 — 2u(e(ug), (ug))L2.

(iii) Establish a priori bound on ug of the form < {lug||%. +2ufe(uo)[|2. < (T, f,ug) + = |l uol|2-.

Exercise 72.2 (Space-time de Rham in L?). (i) Show that the operator V- : L?(J; H}(D)) —
L2(J; L%(D)) is surjective. (Hint: invoke Lemma 53.9, Lemma C.44, and Corollary 64.14.) (ii)
Show that S € L*(J; H™'(D)) satisfies [,(S,w)g-1 gidt = 0 for all w € L*(J; V) iff there is
p € L*(J; L2(D)) st [(S,w)g-1 gadt = [,(p, V-w)2dt for all w € L*(J; Hy(D)). (Hint: use
the closed range theorem.)

Exercise 72.3 (Variable viscosity). Assume that p depends on @ € D, and set 0 < u, :=
essinfgpep pt, pg = esssupyepp < oo. Consider the mixed weak formulation (72.12). Prove

. —2 03
that Mb”“”%%J;v) < %p||f||2Lz(J;Lz) + luo||32 with p := CKP%M—T, ||atu||%2(J;L2) < ||f||2Lz(J;L2) +

2l woll3ys and [|pll72 s 2y < 72 (il FllT2(g.p2) Fe2lluoll3) with e == ppuy (8+263), c2 := prypup (8+

4€,), and &, := Jt. (Hint: adapt the proof of Theorem 72.3.)

Exercise 72.4 (Distributional time derivative). Let V < L = L' < V'’ be a Gelfand
triple. (i) Let v € X(J;V,V’). Show that the action of ;v € H=1(J; V') and of d,v € L2(J; V")
coincide on H}(J; V). (Hint: use the integration by parts formula from Lemma 64.40.) (ii) Let
v € H'(J;L). Show that the action of dv € H~'(J;V') and of 8w € L2(J;L) coincide on
H}(J; V). (Hint: as above.)
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Exercise 72.5 (Space-time de Rham in H~'). (i) Show that the operator V- : H(.J; H3(D)) —
H(J; L2(D)) is surjective. (Hint: proceed as in Exercise 72.2 and use Lemma 64.34.) (ii) Show
that V- : H}(J; H}(D)) — H(J; L3(D)) is surjective. (Hint: use Step (i) and Lemma 64.37.)
(iii) Prove Lemma 72.8. (Hint: use the closed range theorem.)

Solution to exercises

Exercise 72.1 (Non-homogeneous Dirichlet condition). (i) Using the decomposition u :=
ug + ug and the properties of the lifting ug, we infer that the governing equations are

Orug — 2uV-e(ug) + Vp = f — dyug +2uV-e(ug) in DxJ,

Vau=0 in DxJ,
up =20 on 0D Xx.J,
uo(+,0) = ug(-) — ug(+,0) in D.

(ii) Multiplying the momentum equation by wug, integrating over D, using that V-ug = 0 to cancel
the term involving the pressure and that ug = 0 on JD to integrate by parts the terms involving
the divergence of the linearized strain tensor, we obtain the assertion:

1d

55”“@”%2 + 2pfe(uo)[|F2 = (F,u0) 12 — (Brug, uo)r2 — 2u(e(ug), (ug))L2.

(iil) Invoking the Cauchy—Schwarz inequality and Young’s inequality leads to

1d T 1
S luole + 2ulle(uo)|Bs < S1F = drugle + slluol3e + ule(usg)2 + plle(uo)| .

Rearranging the terms gives

d 1
T llwollze + 2ulle(uo) 22 < T f — drugllzs + 2ulle(ug)IE + = uollZ2-

Notice that all the terms have consistent dimensions.

Exercise 72.2 (Space-time de Rham in L?). (i) Owing to Lemma 53.9, the linear operator
V- : H}(D) — L2(D) is surjective. Then, according to Lemma C.44, this operator has a linear
right inverse. Let us denote by div' the right inverse in question. Thus, there exists ¢ > 0 such that
V-(divl(r)) = r and ||divi(7)||v < c||7|l L2(py for all r € L¥(D). Let now ¢ € L*(J; L2(D)). Corol-
lary 64.14 and the linearity of div' : L2(D) — H}(D) imply that div'(q) is Bochner integrable.
Moreover, ||divi(q(t))||v < clq(t)||2(py for a.e. t € J. We infer that

divi (@)l z2rvy < cllallzz(rize)-

In conclusion, V-(div'(¢(t))) = q(t) for a.e. t € J, and div'(q) € L?(J; H}(D)). This proves that
V-: L3(J; HY(D)) — L3(J; L2(D)) is surjective.

(ii) Since V- : L?(J; H}(D)) — L*(J; L%(D)) is surjective, its range is closed. Notice that (V-)* :
12(J;13(D)) — L*(J; H-1(D)) since (L(D)) = L2(D) and (I2(J; HA(D))) = L*(J; H-(D))
owing to Lemma 64.20(i). The closed range theorem (Theorem C.35) implies that (ker(V.))t =
im((V-)*) (here, we use the annihilator notation introduced in (C.14a)). Since ker(V-) = L?(.J; V)
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(indeed, v € L2(J; V) iff v € L*(J; H} (D)) and V-v = 0 in L?(.J)) and since our assumption on the
linear form S € L?(J; H~1(D)) means that S € (ker(V-))*, we infer that thereis p € L?(.J; L2(D))
s.t. § = (V:)*(p). This means that we have for all w € L?(J; H}(D)),

<S='w>L2(H*1),L2(H[}) = <(v')*(p)7w>L2(H*1),L2(Hé)

= (p, V'w)r2(s;02(p)) = /(p(t),V-w(t))det.
J

Exercise 72.3 (Variable viscosity). Using the same arguments as in Step (1) of the proof of
Theorem 72.3, we infer that

2
OKPS

4be2D

(Oru(t), w(t)vr v + wllu®)]3 < £ )2

Using again the same arguments leads to the estimate on ||u||z2(,y). The bound on |9y z2(s;z2)
is derived by repeating the arguments from Step (2) of this proof, the only difference being that
invoking the boundedness of a now yields the estimate

10cnllZ(gen2y < I FI1L2(rn2) + 20gllwoll3o-

Finally, to estimate the pressure, we can still proceed as in Step (3) and use the above estimates
on ||Oyul|r2(s;z2) and on |[u| r2(sy). This yields

14
Blp0) 20 < = (10t o) + 1F () aeoy) + 2pslute) -

Squaring, using the definition of the time scale p, and integrating over time leads to

2
Hy
B2l Z25.2y < 4o (21 FNI 72502y + 2mslluollyy) + 8; (101 F11Z25.2) + 3llwollF2),

2
which leads to the expected bound on the pressure after observing that [[ugl3. < Ce«_zDHUQ”%; =
Pl uoll3, and rearranging the terms.
Exercise 72.4 (Distributional time derivative). (i) Let v € X(J;V,V’). Since V — V/,

we have v € L?(J; V') so that it is meaningful to define the distributional time derivative d;v €
H=Y(J; V'), and we have

<<§tvaw>H*1(V’),H§(V) = —/J(v,&tw>vgvdt,

for all w € H(J; V). Moreover, since both v and w are in X (J;V,V’) and since w(0) = w(T) = 0
by assumption, the integration by parts formula from Lemma 64.40 implies that

/<8tv,w>vlyvdt: —/(v,@twwy/dt.
J

J
This shows that
<6tvaw>H*1(V’),H[}(V) :/(&v,w)vz,vdt,
J

for all w € H}(J;V). Notice in passing that since the duality product between V’ and V is an
extension of the L-inner product, we have

P |

<(9t’l),w>vl7vdt = —/(v,@tw)Ldt.
J

J
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(ii) A short answer consists of saying that the assertion follows from Step (i) since H'(J;L) <
X(J;L; L). (Here, the Gelfand triple is simply L < L = L’ < L’.) One can also answer the
question by redoing the proof. Let v € H'(J;L). Then v € L*(J; L) < L*(J; V'), so that it is
meaningful to define the distributional time derivative Ay, and we have by definition

(Orv, w) g1 (v, a3 (v) = —/

<v,atw>v/7vdt = —/(’U,atw)Ldt,
J

J

for all w € H}(J; V) since v € L?(J; L). Moreover, since the functions v and w are in H*(J; L) =
X(J;L,L) and w(0) = w(T') = 0, the integration by parts formula from Lemma 64.40 implies that
— [;(v,0pw)dt = [,(8pv, w)rdt = (v, w)r2(s,1)- In conclusion, we have shown that

<étvaw>H*1(V/),H§(V) = (O, w)2( ;L) Yw e Hy(J; V).

Exercise 72.5 (Space-time de Rham in H~!). (i) We consider the right inverse operator
divl : L2(D) — H'(D) introduced in Exercise 72.2. Let ¢ € H'(J; L2(D)). We have already
shown that divi(¢) € L2(J; H} (D)) where div'(q)(t) = div'(g(t)) for a.e. t € J. Moreover, since
d,q € L*(J; L2(D)) by assumption, we also have div'(8,q) € L*(J; H}(D)) with

|divT (0r)l| L2 sv) < cllOrall 22

Finally, using the linearity of div' and Lemma 64.34, we infer that div' (0rq) = 6tdivT(q). Hence,
we have

10:divT (@)l| 22 (iv) = iV (9eq) | L2(sv) < cl|OrgllLa(ssLe)-

In conclusion, V-(div'(¢(t))) = q(t) for a.e. t € J, and HdiVT(q)HHl(J;Hé(D)) < cllqllzr 22y
for all ¢ € H'(J;L?(D)). Hence, divl : H'(J;L2(D)) — H'(J; H)(D)) is a right inverse of
V- H'(J; H}(D)) — H'(J; L2(D)).

(i) From the above argument, we deduce that for all ¢ € H{ (J; L2(D)), there exists v := div'(¢) €
HY(J; L3(D)). But |lv(t)|lv < cllq(t)||lr2(p), and this inequality holds true for every ¢ € J since
g € C%3(J; L2(D)) owing to Lemma 64.37. This implies that v(0) = v(T) = 0. We infer that
v € HY(J; H(D)). We have proved that div! : H}(J; L2(D)) — Hg(J; HA(D)) is a right inverse
of V- H(J; HA(D)) — H3(J; I2(D)).

(iii) From Step (ii), we know that the operator V- : H}(J; H3(D)) — H(J; L2(D)) is surjective
so that its range is closed. Notice that (V-)* : H=1(J; L3(D)) — H~*(J; H=*(D)). The closed
range theorem (Theorem C.35) implies that (ker(V-))+ = im((V-)*) (here, we use the annihilator
notation introduced in (C.14a)). Furthermore, v € H}(J;V) iff v € H}(J; HY (D)) and V-v =0
in L?(J). Hence, H}(J;V) = ker(V:) with V- : H}(J; Hj(D)) — Hg(J; L2(D)). Since our
assumption on the linear form S € H~1(J; H~1(D)) means that S € (ker(V-))*, and invoking
the identity (ker(V-))t = im((V-)*), we infer that there is p € H=1(J; L2(D)) s.t. S = (V-)*(p).
This means that we have for all w € H}(J; H} (D)),

<Saw>H*1(H*1),H})(H})) = <(V')*(p)vw>H*1(H*1),H(§(H§)

= (p, v'w>H*1(L2);H5(L2)'
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Monolithic time discretization

Exercises

Exercise 73.1 (Well-posedness). Prove Proposition 73.1. (Hint: adapt the proof of Theo-
rem 72.3.)

Exercise 73.2 (Simplified Gronwall’s lemma). Let a € W11(J;R), let b € L>(J;R), and
let v > 0. Assume that La(t) < %a(t) + b(t) for all t € J. Prove that a(t) < e (a(0) +
min(t,'y)||b||Lm(7t)) with J; := (0,¢) for all t € J. (Hint: observe that fot e ds < min(t,y)e%.)
Note: this is a simplified form of Gronwall’s lemma; see Exercise 65.3.

Exercise 73.3 (BDF2, Crank—Nicolson). (i) Using the setting described in §68.2 for BDF2,
write the discrete formulation and the algebraic realization of the time-dependent Stokes equations
with the time discretization performed with BDF2. (ii) Same question for the Crank-Nicolson
scheme using the setting described in §68.3. (iii) Same question for the Crank—Nicolson scheme
using the setting described in §73.4.

Solution to exercises

Exercise 73.1 (Well-posedness). One first proves by means of the Cauchy—Lipschitz theorem
that there is a unique uj, € H'(J;V},) such that

(Orun(t), wn) Lz + a(un(t), wn) = (F(t), wn)rLe,

in L2(J) for all wy, € V),. Then one infers the existence and uniqueness of the pressure in L*(J; Q)
by invoking the inf-sup condition (73.4) and reasoning as in Exercise 72.2.

Exercise 73.2 (Simplified Gronwall’s lemma). Rearranging the terms, we infer that

t

— (e_?a(t)) < e 7b(t),
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for all t € .J. Integrating from 0 to ¢ gives

t—

¢
7 b(s)ds < eva(0) + (/ e ds) 6/l Lo (1,)-
0

a(t) < e%a(O) —l—/o e

The assertion follows by observing that fg e ds < te> on the one hand and that fot e ds =
”y(e% -1 < ”ye% on the other hand.

Exercise 73.3 (BDF2, Crank—Nicolson). (i) For the BDF2 scheme, we first set u) := S}, (u,0),
then we compute (uj, p}l) € Vi xQ), for all n € N so that the following holds true: For n = 1,

1
;(Uill —up,wp) 2 + a(up, wy) + blws,pr) = (£, wn) e,
b(u}lw Qh) - 07

for all (wp, qn) € Vi XQp, and for all n > 2,

1 _ n— n n n
Z(?)uﬁ —duy Ly 3uy, 2,'wh)L2 + a(uy,wp) + b(wp, pr) = (f",wn) L2,
b(uy,qn) = 0,

for all (wp, qn) € Vi xQp. The algebraic realization of the first time step can be written as follows:

M+TA BT (U FL+ MU°
(57 o) ()= (75 w1

where F! := ((f!, ©i)r2)ieq1: 1y and Ok g is the zero matrix in REXE  The other time steps give

SM+71A BT (UM _ (rF 4 M(2UTt — JUn)
B Ok x pPr) 0

3

where F" := ((f", i) r2)icf1: 1}

1
(ii) For the Crank-Nicolson scheme, we first set u) := S} (uo,0), then we compute (u},p, 2) €
Vi, xQy, for all n € N, so that the following holds true:

— n n— n—3 n—i
;(uZ—uz 1,'wh)Lz+a(%(uh+uh 1),wh)+b('wh,ph %)= (F""2,wn) e,
b(uy,qn) =0,

for all (wp, qn) € Vi xQp. The algebraic realization of the scheme can be written as follows:

M+3A4 BT Ur '\ _ (rF"m2 4 MUnTt — zAUnY
B ®K,K Pn_% - 0 ’

1. : _1 _1. . -1 -1
where F”~2 is the coordinate vector of f"~2, P72 is the coordinate vector of TpZ 2 and pZ 2

T tn—1+in )
-—).

is the approximation of p(t, — 5) = p(

(iii) Adopting the point of view from §73.4, we obtain the linear system

M+ZA BTN (U (MU 4 LrEnes
B Oxx)\P™) 0 ’

and U = 2U™! —Un~1 e, U™ = %(U"—l—U"‘l). This is equivalent to the linear system obtained
in Step (ii), once we set P"~z := 2P™! which is consistent since P"~z approximates 7p(t, — Z)
and P™! approximates 37p(t,,1) = 37p(t, — %) (recall that ¢; = 3).
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Projection methods

Exercises

Exercise 74.1 (Remark 74.1). Prove the stability estimate in Remark 74.6. (Hint: adapt the
proof of Lemma 74.5.)

Exercise 74.2 (Curl-div-grad identity). Let d € {2,3}. Show that |V xwv||3. oy TV v||32 (D) =
HV'UH]L2 ) for all v € H} (D). (Hint: use —Av = —V(V-v) + Vx(Vxv).)

Exercise 74.3 (Inverse of the Stokes operator). Let V := H}(D), V' = H (D), and Q :=
L2(D). The inverse of the Stokes operator S : H~1(D) — V := {v € H}(D) | V-v = 0} is s.t.
for all f € V', S(f) is the unique member of V s.t. the following holds true for all (w,q) € V xQ:

{ 2u(e(S(f)),e(w))L2(py — (1, V-w)2(py = (f,w)v v,
(¢, V-S(f))r2py =0,

where (-, )y v denotes the duality pairing between V' and V. Recall that p||S(f)|lv + ||7]lr2 <
|| fll -2 for all f € H-Y(D) with ||w|ly := |Je(w)|L2(p). We assume that D is such that the
following regularity property holds true: u|S(f)|gz + |r|g < || f||2 for all f € L*(D). (i) Show
that 2u(e(S(v)),e(v))L2 = ||v]|32 for all v € V. (Hint: recall that the duality pairing (-, )y v is
an extension of the L?-inner product.) (ii) Show that for all v € (0, 1), there is ¢(v) such that for
all v in V, 2u(e(S(v)),e(v))r2 > (1 —v)||v]|3: — c(v)||lv — v*||2. for all v* € H. (Hint: integrate
by parts the pressure term.) (iii) Show that the map V' 3 v — |v|, := (v, S(v)>é,)v defines a
seminorm on V’. Prove that |v|, < (2u)"2|v||ly for all v € V'. Note: there does not exist any
constant ¢ so that (241) 2 ||v||y: < c|v|, for all v € H™ (D), i.e., |-|, is not a norm on H~'(D);
see Guermond [21, Thm. 4.1] and Guermond and Salgado [22, Thm. 32]. The inverse of the Stokes
operator is used in Exercise 74.4 to prove Lemma 74.11.

Exercise 74.4 (Lemma 74.11). Consider the perturbed system (74.14), and set e := u® — u
and ¢ := p® — p. (i) Write the PDE system solved by the pair (e, ¢) and show that

1
H5t6||L2+2MH5t€Hv HV¢EHL2+ O ||A<Z5EHL2

2dt 2dt

= Eg(vatpa v(bg)L2 - E(vattp7 V¢E)L2’



394 Chapter 74. Projection methods

where we recall that V' := H{(D) and |jv||v := |e(v)|L2. (ii) Prove that [|[V¢®(t)|3. <
c(p,T)e? for all t € J. (Hint: use Gronwall’s lemma from Exercise 65.3.) Conclude that
|\V-u5||2Lm(J;L2(D)) < ¢(p, T)p'e3. (iii) Show that ||e — Py(e)||%. = €%||V¢©||%., where the
Leray projection Py is defined in Lemma 74.1. Deduce from the above estimates that ||u —
u||L2(s;02(py) < ¢(p, T)e?. (Hint: use the lower bound from Step (i) of Exercise 74.3.)

Exercise 74.5 (Gauge-Uzawa). (i) Write the pressure-correction algorithm in rotational form
using BDF1, p*™ := p"~1 and the sequences @, € (V)V, u, € (H)V, ¢, € (Q)V, p. € (Q)V.
(ii) Consider the sequences v, € (V)¥, v, € (V) r. € (Q)V, ¢ € (Q)V, ¥, € (Q)Y, generated
by the following algorithm (called gauge-Uzawa in the literature, see Nochetto and Pyo [36]): Set
vY = v, 0 := 0, ¢° = ¥ := p(0), then solve for all n € N,

o — ,Unfl
— HAT" £V = f Tl =0,

V" +TVY" =" +7VY T, Vot =0, vy m =0,

,rn — Tnfl _ V’EH, qn — 1/}71 4 ‘u,rn'
Recalling that (6-1,)" := W%W for all n € N, show that the sequences (v, v,, 70,1, q-) and
(Wr,ur, dr,pr) are equal (i.e., the gauge-Uzawa and the pressure-correction method in rotational
form are identical). (Hint: write ¢" = ¢~ +¢™ — p" =1 4 p(r™ — r™~1).) (iii) Show that for all
n e ./\/7-,

~ _ 1 ~
" [z2 + 72V [[Za + prllr[7e + 18" = " Ze + a7l V"I
<o e + T2V T T+ prllr I + Tl

2
with the time scale p := C% %’. (Hint: test the momentum equation with 279", square the second
equation, square the third equation and scale the result by ut, and add the results.)

Solution to exercises

Exercise 74.1 (Remark 74.1). Testing (74.2) with 274", using the coercivity of the bilinear
form a(v,w) = (s(v),e(w))r2(py on V', and the algebraic identity (67.9), we obtain

a1 Ze = "~ T + dprlla ([ < 27(f",a") e,

Since
~ T _ TP _
27(f",u")p2 < Z”an%/’ + 2urlla” |3, < 7||f”|\2Lz + 2pr|| a3,

where we used Young’s inequality, the bound ||f"||v: < Ciilp|| £z, and the definition of the
time scale p, we infer that

~ ~ T
@13 — w12 + 2pr @ |} < 220703
2

Using that ¢ = p™ since 8, = 51 := 1 for BDF1, we recast (74.4) as u™ + 7Vp"™ = u". We square
this identity, integrate over D, and use that u" is divergence-free to obtain

w22 + 72 VD" 22 = [1a" 2.



Part XIV. TIME-DEPENDENT STOKES EQUATIONS 395

Summing this identity to the above estimate yields
ny2 2|y |2 9 a2 < TPy pn2 n—12
[z + 77lIVP" 22 + 2prlla” v < 171z + ™ ze.

Summing the result over n € N, yields the assertion.

Exercise 74.2 (Curl-div-grad identity). Assume first that v € C}(D). Using the integration
by parts formulae (4.8) in the identity

/—Avmdx:/ (= V(Vw) 4+ Vx(Vxv))wvdaz,
D D

we obtain

/Vv:Vvdx:/(V-v)de—l—/(va)zdx,
D D D

which is the expected identity. This identity is extended to H}(D) by density.

Exercise 74.3 (Inverse of the Stokes operator). (i) Owing to the definition of S(v), we have
2u(e(S(v),e(v)), = (r, V-v)r2 + [|v]|Z.,

since the duality pairing (-,-)y~ v is an extension of the L?-inner product. This implies that
21(e(S(v)),e(v)),, = |Jv]|}, for allv € V.
(ii) Assume that v € V := H} (D). Owing to the definition of S(v), we have for all v* € H,

2p(e(S(v)),e(v))2 = (r, V-v) 2 + [|v]| 72
= (r,V-(v = "))z + [|v] 7
= —(Vr,v —v*)p: + ||v]32
> —|rl g llv — v* || L2 + |07
> —c|lv||g2fv —v* g2 + [[v]|7a
> —c(y) o = v*||72 + (1 = 7)|v] Lz,

for all v € (0,1), where the last bound follows from Young’s inequality. This completes the proof
of the assertion.

(iii) For all v,w € V' = H~}(D), we have

(w, S())v,v = 2u(e(S(v)), e(S(w)))L: = (v, S(w))v v

Hence, the bilinear form V'xV’ 3 (v, w) — (w, S(v))v/v € R is symmetric. This bilinear form

is also positive since (v, S(v))v/ v = 2u||S(v)|},. Hence, the map v — |v|, := (v,S(v))%
induces a seminorm on V' = H~1(D). Notice finally that

f; = (v, S()vv < [vllv[IS)llv.

But 2u||S()[3 < ||v|lv/||S(v)|lv, so that 2u[|S(v)|v < ||v|v/. Hence, we have

_1
v« < (2p) 20| v
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Exercise 74.4 (Lemma 74.11). (i) We write e := u® —u and ¢ := p® — p. Subtracting (74.14a)
from (75.1), we find

de—V-s(e) +Vg=0, elop=0, e(0) =0, (74.1a)
Ve —eA¢p® =0, n-Vejyp =0, (74.1b)
ediq = ¢~ — pV-e — dip, q(0) = 0. (74.1c)

Taking the inner product of the time derivative of (74.1a) with de, using the coercivity of the
bilinear form a(v,w) := ($(v), e(w))L2, and integrating by parts the term involving ¢, we find

1d
2dt
Taking the time derivative of (74.1b), multiplying the result by d;¢, and using (74.1c) gives
—(0q, V-0re) 2 = —€(01q, ADLP") 2
= —(¢° —epAg® — e0ip, Ay ¢°) L2

|0cel|Z2 + 2pllOvelly — (Brq, V-Ore)r2 = 0.

1d 1 d
= §E”v¢8”%2 + §€M&HA¢EH%2 —&(Vop,VOr¢7) L2
Loz, + Lo dase 2. — e L (Yo, V) e + &(VOup, Vo) 1o
2dt L=t o at L dt ’ ’
The above two relations lead to
1d 1d 1 d
S l0vele + 2udnely + 5 IV 32 + senT A2

d
= = (Vip, V)2 — =(V0up, V)2
(ii) Since e(0) = 0 and ¢(0) = 0, we also have V¢*(0) = 0 (since A¢®(0) = 0 and n-V¢*(0);op = 0)

and 0,e(0) = V-s(e(0)) — V¢(0) = 0. After integrating in time from 0 to ¢ the identity derived in
Step (i) for all ¢ € J, we obtain

1 1. 1 . ¢
§H3te(t)ll2m +35lVe DIz + SemllAg )72 + 2#/0 1Be(s)]I3ds

t
< elVop()lL2IVe® (1) L2 +€|\Vattp|\L°°(J.,L2)/ [Vé©(s)llL=ds, (74.2)
0

where we used the Cauchy—Schwarz inequality for the first term on the right-hand side and Holder’s
inequality for the second term. In particular, (74.2) implies that

1 t
ZHqu)E(t)H%z < *[Vap(t)lIg + 5||V8ttpHL°°(J,L2)/ [Ve©(s)l|L> ds.
0

Invoking the Cauchy—-Schwarz inequality in time to bound fot IV e (s)| 2 ds, followed by Young’s
inequality, we infer that

1, . Lt .
IV Oz < (IVap)lIze + tVIuplioes2) + 7 /0 IVe*(s)l[72 ds.

An application of Gronwall’s lemma (see Exercise 65.3) leads to

IVe (@)lIZ < clp, T)e?,
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for all ¢ € J. Substituting this bound in the right-hand side of (74.2) yields

t
10ce(®)]1Z2 + [IVe* ()22 + enl A" (2)]|72 + 2u/ 10ce(s)[[ds < c(p, T)e?.
0
From the above inequality, we obtain immediately
||V'u€||%w(,J;L2) = 52HA¢EH%°°(J;L2) < c(p, T)M_153'

(iii) By definition of the Leray projection Pjy, we can write e — Py (e) = Vr with n-Vrjgp = 0.
Consequently, we have V-e = Ar, and from (74.1b), we infer that r = ¢ and

le = Py(e)lz> = IVrilz> = &2V z:-

We take the inner product of (74.1a) with S(e), where S is the inverse of the Stokes operator

1
defined in Exercise 74.3. Recall that |v[, := (v, S(v))y,, y, denotes the associated seminorm. Since

the L2-inner product is an extension of the duality between V' and V and since S(e) € V, we
obtain
1d
2dt
In Step (ii) of Exercise 74.3, it is proved that for all v € (0, 1), there exists ¢(y) such that

le]? + 2u(e(e), e(S(e)))rz = 0. (74.3)

2u(e(S(v)), e(v))L: > (1 =)llvlL: —c(N]v —v*[L2, Yo" € H.

Using this bound with v := 3, v := e, and v* := Py(e), and recalling that ||e — Py(e)||2. =
e2||V¢©||32, we infer that
1d 1 1d
LS lel? + el < 3 el + 2u(e(S(e)), e(e))s +elle ~ Pru(e)l3:
=clle = Py(e)llz> = ce’|[ VeI

This bound holds for all ¢ € J, and we have shown in Step (ii) that ||V (¢)||2. < c(p, T)e? for all
t € J. This implies that % |e|? + L||le]|2. < c(p,T)e". Integrating this inequality in time over J,
we infer that

() + [ le(s)lfeds < clp. T)e"
J
This shows that ||e z2(s,22) = ||u — u®||r2¢s,L2) < ¢(p, T)e>.

Exercise 74.5 (Gauge-Uzawa). (i) We write the pressure-correction algorithm in rotational
form using BDF1 and p*™ := p"~1. We set u” := ug, p” := p(0), then solve for all n € N,

" —un! ~ _
—pAu" +Vp Tt = f" afy, =0,

u" +7Ve"t =u", V-u" =0, ujppm =0,

pn _ pn—l 4 ¢n _ uvﬁn
(ii) The momentum equations in both algorithms are identical if we set v, := uw, and ¢, := p,.
The projection step in the gauge-Uzawa technique reduces to the projection step in the pressure-
correction method by setting ¢" := 9" — "~ = 7(§,4,)". Finally, the gauge-Uzawa technique

gives
"= P — T (=) = T g — uvean,



398 Chapter 74. Projection methods

so that we recover the pressure update in the pressure-correction algorithm in rotational form.
Hence, up to the appropriate change of variables, the two algorithms are identical.
(iii) Testing the momentum equation in the gauge-Uzawa algorithm with 279™ yields

12" Z2 + 8" — 0" 22 + 207 V" [[f2 — 27(V-0", ¢" ) 2
< 0" T + 27 F 22197 2.
We square the second equation, we square the third one and multiply the result by pur. This gives

[v" 22 + T2 IVe 2 = 812 — 27(V0", 9" ) e + 72 V"7 1,

prlr™l2s = prllr g + pr| V00 2e = 2ur (V2" ) e
We add the first inequality to the above two identities and obtain

lo™ |72 + T2 VY™ 122 + prllr®(|7e + 18" — " IZe + 267 VO 122

<oz + P21V T e + prlr I + ol 72

1 ~ ~ ~
+ STV 2 + prl| V" [T + 27 (VA" ¢ = " — ) e,
where we used the Poincaré-Steklov inequality and Young’s inequality to infer that
n ~n ED n ~n n|2 1 ~n|2
27| £ z2 19" lz2 < 27 =1 £ (22 VO™ 2 < o7l F"lIz2 + S a7l VO IL:.
PS

We now use the equation ¢" =1 = "1 4 ur"~! for all n € N, n > 2, and notice that this equation
also holds true for n = 1 since the initialization enforces ¢° = ¢° and ® = 0. Using also that
(IV0"||r2 < [|[VO"||L2 (see Exercise 74.2), we obtain

~ _ 1 ~
" [z2 + 72 V" 32 + prllr[[7e + 19" = " Hge + arllVE" |12

<oz + IV T e + arlr IR + ol 1T
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Artificial compressibility

Exercises

Exercise 75.1 (Lemma 75.1). (i) Prove (75.4). (Hint: test the momentum equation with v and
the mass equation with ¢, use Lemma 53.9 to bound (g, g) 2, integrate in time from 0 to ¢ for all
t € J, and integrate by parts in time.) (ii) Prove (75.5). (Hint: use the inf-sup condition on the
bilinear form b together with the bounds derived in Step (i).)

Exercise 75.2 (Lemma 75.2). (i) Let 6,k" := kn%’w and §,g" == L = for all n € N
Prove that [|6-k-||;2(s,.z2) < |0k p2(s.;12). Let T(t) := 1 ft L 0eg(&) d§ for all t € J.. Prove that

=1 ft Oeeg(§) d€ for all ¢t € J, and that ||(’“)tI‘|\L2(J**7L2 < ||O¢egllL2(s.;n2y. (Hint: use
the Cauchy Schwarz inequality and Fubini’s theorem.) (ii) Derive the system satisfied by the time

sequences 0ty = (M%W)ne/\/f and 0,pr 1= (pnipnil)ne/vf. (ili) Prove the estimate (75.10).

=
(Hint: use the inf-sup condition on the bilinear form b and bound ¢,u, by adapting the proof

of (75.9).)

Exercise 75.3 (Proposition 75.3). The goal of this exercise is to prove Proposition 75.3. (i)
Let e, := u, — w,(u) and 7, := p, — 7, (p). Let ¥(t) := 1 j; (6§ =t 4+ T)0ceudg and ¢(t) :=
—L ' 9epde for all t € J,. Show that

(" —e" 1) — V-s(e") + Vr" =", ejop =0,
(Tn _ ,,,nfl) 1+ Ve = ¢n

(i) Prove the estimates (75.11) and (75.12). (Hint: use Lemma 75.2.)

Exercise 75.4 (Initialization). Let ug be the initial velocity, and assume that p(0) is given. Let

t; := 7. Using the first-order artificial compressibility algorithm (75.6) and Richardson’s extrap-

olation, propose a technique to estimate (9ywu(t1), Opp(t1)) with O(7) accuracy, (O:u(ty), dep(t1))

with O(72) accuracy, and (u(t1),p(t1)) with O(r3) accuracy. (Hint: estimate (u,p) at the times
T T

ty and tp := 27 by using (75.6) with the time steps 7, 7, and 7, keeping A fixed. Conclude by
using finite differences centered at t; := 7.)
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Solution to exercises
Exercise 75.1 (Lemma 75.1). (i) Testing the momentum equation with v and the mass equation

with ¢, adding the two results, using the coercivity of the bilinear form a(v,w) = (s(v), e(w))L2
and Young’s inequality to estimate (k,v)y v gives

4
dt

N =

1 d 1
vz + §€&I\QH%2 +ulvlly < Ellkllfw + (4, 9)12- (75.1)

Owing to Lemma 53.9, there exists Sp such that for all g € L2(D), there is w(g) € V s.t.
V-((g)) = g and Bpllw(g)llv < lgllz2(p). We infer that

(¢,9)r2 = (¢, V-(w(g)) L2
=—(Vg,w(g))r>
=(—k+0v—Vs),w(g))r:
< [kllv lw(g)lv + 2ulvllv[w(g)lv = (Owv, w(g))r:. (75.2)

We integrate the above inequality over time from 0 to ¢ for all ¢ € J, and set J; := (0,¢). Let us
first consider the third term on the right-hand side. Integrating by parts in time and using the
property dqw(g) = w(d:g), we obtain

/0 (Orv, w(g)) 2 ds
. / (0,0(349)) 2 ds + (0(t), w(g(8))) 2 — (0(0), w(g(0))) 12

<lollzz s llw(@ig)l 2,2y + [0l L2llw(g(t)ll 2 + [[0(0)]| L2 [lw(g(0))l| L2

_ 02
< ﬁpl(cfgjm lvllz2(r v 10egll L2502y + v (E)] L2 cl,is g2 + [[vol L2

2 lgollz2).

where we used the Cauchy—Schwarz inequality, the bound Cyps||v||z2 < £p||v|v for all v € V|
and the above bound on the lifting w. Using this bound in (75.2) yields

t
/0 (¢:9)22 ds < B3 (1Kl 2y + 20l w2 )9l 2

2
+ 85 (&

0]l 205 199l L2(522) + 10 (E)]| L2 2= [lg (8 2

KPS

+ Ilvoll 2 & llgoll 2 )-

Integrating (75.1) from 0 to ¢, using this bound and the time scale p := C;2 % we obtain

KPS 7y

1 1
sv®Iz= + 5ela®)lzz + pllvlzze,v,

1 1 1
< §||UO||%2 + §€Hf10||%2 + @HkH%?(Jt;V’)
_ _1 1 1
+ 85 (2 |kl L2risvry + 202 [0l L2(av)) 12 19 2,22
_ 1 1 1 1 1 1
+ 501(#2 vl L2 vy 2 plIO:gll 2,22y + 0] L2202 l9()] 22 + [lvollL2p? p2 H90HL2)-
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Using Young inequalities and since [|gl|%: ..oy = 19ll72(s.02) + £7110t9ll72(s.12), we obtain

1 1 1
TIv@OIL: + Sella®lTe + Sullvlizs vy
4 2 2
1 _
< llwollzz + gellaollze + e(u el (v + mllglir i)

Where we U.SGd that Hk||L2(Jt;V/) S ||k||L2(J;V’)7 HQHHl(Jt;L?) S Hg||H1(J;L2)7 and that p%HQOHLZ S

p? 190l co7.12) < cllgllr(s;2)- Taking the supremum over ¢ € J and then taking the inequality for
t:=1T leads to

1 1 1
ZH’UHQLoo(J;m) + §€||‘J||2Loo(J;L2) + §U||v||2L2(J;V)

< 2||vollz> + ellgollZ> + (™ IkNZ2sovry + HllglEn s.z2y)-

This proves the estimate (75.4).
(v) Using the inf-sup condition on the bilinear form b, we infer that

b
Bollallze < sup L0
S Twlv

[(Opw, w)p2 + (3(v),e(w)2 — (k,w)v: v

= Su
ey [wllv
Ip
< 2= lavwl e + 2ullvllv + [kl v
KPS

Taking the time derivative of the system (75.3) and using the estimate (75.4) for the time deriva-
tives, we infer that

%Hat”H%?(J;Lz) = M%Hat”@?u;m) < /J’”ath%Q(J;V)
< 4|0 (0)[|72 + 2€/|0:q(0) 172 + ¢ (™ 10kl Z2sovry + 1l Ol Frr(g.r2) -
This bound together with the estimate on ||v||z2(s,v gives
B2DHQH%2(J;L2) < 3(MP||at”H%2(J;L2) + 4M2||”||2L2(J;V) + ||k||2L2(J;V/))
e (o (100(0) 3 + a2 + 1 10kl 22 vy + 10001 5,1)
+ (llvol3 + ellaollZz + 1l2 2 + 1219l (rizn) )-
Using that
1912502y = 9117 2(s.02) + P10 2512y + P 10etg T2 (g2
<|lgliFr g2y + 2210l (.12
and ||kl .y = [klIZ2(5.) + P?110eK[|7 2.y, and rearranging the terms proves (75.5).

Exercise 75.2 (Lemma 75.2). (i) We observe that

2
6k ogrizny = D IR KR = 3 | [ aukar]
le{2: N} le{2: N} S

< > 10ck||72dt = [|0cK|72( 1. £2)-
le{2: N}/
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Moreover, the function I'(¢) := 1 ft L Oeg(&) d€ satisfies

1 1
AT() = ~(Bug(t) — gt =) = — [ Oeeg(€) e,
so that we have

1 t 2
HatF”%Z(JWLQ):/ ?H t_765g9(5)d§HL2dt

EES

< [ S 1oxea@esce)’a
/** /tT”aaeg )2 dédt

+(8)
< [ Noeeo@lid [ avae < ool o
T Tt ()

where we used the Cauchy—Schwarz inequality, Fubini’s theorem with ¢_(¢§) := max(t2,£) and
t4 (&) == min(T, € + 7) so that [t (&) —t_(§)| < 7 for all £ € J,.
(ii) By linearity, we observe that the following holds true for all n € N, n > 2:

(Oru" — 6,u" 1) = Ves(6,u") + Vo, p" = 6:k",  drufy, =0,

=

(5719” - 6Tpn_l) +V-oru™ =d-g".

Hence, the pair (§,u,,d,;p;) solves the same system as the pair (u,,p;), except that now the
source terms (k., g,) are replaced by (d,:kr,0,g:).
(iil) Using the inf-sup condition on the bilinear form b, we infer that

b(w,p
Bollp"lzs < sup L2
wev  [w]v
_an—1
= sup |(u ;L 7w)L2 + (s(u”),e(w))m - (knvw)L2|
weV |wlv

1 n_,n—1 1
< (pp)2 [*—=—lr2 + 2ullu”(lv + (pp) 2 [| K" ]| L2
This estimate implies that
71172 7,22y < € (pulldrurocspoy + 12 lwr ooy + prillke s, n2y)- (75.3)

It remains to estimate pul|d;ur |7 ;. p2) since a bound on p?|lur||( .y, follows by multiply-
ing (75.9) by p. Owing to Step (ii), we bound d,u, by proceeding as in the proof of the esti-
mate (75.9). Recalling the notation J, := (t1,T), Jux := (t2,T), observing that I'(¢,) = d,¢™ for
all n € N, and using the bounds derived in Step (i), we infer that

ar T
1872 l7ec (,:n2) + pilldrtar gy S cev (H5T’u1||2L2 + ;|\5Tp1||%2 + o0kl L2 5. L)

1T+ NGB gy + 1021009 B 1) )
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As a result, we have

pel|Orur||Ze g2y = purl|0rut 72 + pulldrur |, o
< PMT”(STul”%? + p2ﬂ2”6‘ru‘r”§2((]*;v)

aT
< pprl|drut|Fe + e (P2MH57U1HQL? + 027000 72 + PPl ikl 2, p2y+
0T + )6791 e 1, 1) + 120 109 e g nm )

and the term pu7||6;u'(|%, can be combined with the term p?p|6-u! |3, since we assumed 7 < 1p.
Finally, the estimate on the pressure follows by combining the above bound with (75.3).

Exercise 75.3 (Proposition 75.3). (i) We have

(€" —e" 1) = Vs(e") + V" =", efyp =0,

==

(Tn _ ,r,nfl) 4 v_en _ ¢n,
where 9" := 1) (t,,) and ¢" := ¢(t,,) for all n € N, and

’l[J(t) — 8tu(t) _ W — 1 /t_ (5 —t+T)8EEUd§,

T T

o(t) == —~ Oep d€.

t—7
Proceeding as in Step (i) of Exercise 75.2 shows that
[rlle2(s,L2) < Tl Ol 252
Moreover, it is clear that [|¢r|[e=(s;r2) < $110up| co(7,12)- We also have
1 1
Orp = = (Oep(t) — Op(t — 7)) = -3 Deep dg,
t—T
and proceeding again as in Step (i) of Exercise 75.2, this implies that
10:0| L2 :02) < AN 7 (10wepll L2(;12)-
(ii.a) Since €’ = 0 and r¥ = 0, the stability estimate (75.9) implies that
2 2 iT 2 2
HeT||Z°°(J;L2) +N||eTHe2(J;V) ScerT (P”attuHL?(J;L?)

+(T'+ p)ﬂ_l Hatp”%o(j;Lz) + N_lp2|‘attp”%2(J;L2))v

where we used that A := A\ypu.
(ii.b) Let us now estimate the error on the pressure by invoking the stability estimate (75.10). We
first observe that

1 L
otp = ;/ (€ =+ 7)0cccu ds, 3t¢=—x/ Ogep d.
t—T1 t—7
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This implies that

-

100 2. s02) < TNOwewl L2(s5n2),  110e@ll L2, ;12) < X”attp”L?(J;L?)u
T T

16707 lle=(.:22) < SN0upllcorzr2ys 100l L2(r.nine) < X”atttpHLz(J*;L?)'

Inserting these estimates in the stability estimate (75.10) implies that

el < ce (p 67! 13 + Zo?5.r
+ p7? (100wl 72,129 +P2H5tttu|\%2(,1;m))

2
T
+ ;(T + p)”atpHéO(j;Lz) + p2HattpHéO(I;L2))

72

+ 2210l + p2|atttp||%z<,]m)).

We need to estimate |6-€|| L2 and |67t L2 to conclude Recall that §,e! = ‘571 and §,r?

since € = 0 and r! = 0. Using that € = 0 and 7° = 0, we have

61 1
_ V'(S(el)) + vrl - 17b17 e\laD = 07 T

T

+ Ve =o'
Hence, we have
Lo g2 12 1.1 > 12
lelize +2urlletlly —7(V-et, )2 < o i ze,
T TA
Sl s+ 7(V-et e < 2612

which gives

1 1 1
Slell +2urllel I + Sl 122 < 57 (NwulFe s, pe) + 51902010 )

_2

It is a this point that optimality is lost since this estimate implies that 7(|0-e' |3 + £[|6;r

3. <

c¢(||8ttu|\%2(J1;L2) + %H@tpHQCO(JLN)) i.e., the decay is O(7) instead of O(72). In conclusion, we

1

obtain [|r-||¢2(,r2) < ¢/(w,p, T)72.

Exercise 75.4 (Initialization). Using the hint, we denote by (u!7,p"") the approximation of
the pair (w(t;4~), p(tH,y)) using the first-order artificial compressibility algorithm (75.6) with the
time step v7 with v € {3, 5,1} and [ € {1,2}. Using Richardson’s extrapolation technique, we

have

l,%:u(t[)—i—ClT-i-Cg +O( )

“ 37 ?7R
2

ubt = ult) + g+t +0F),
2

u” (t[)+clT+02 +0O(T?).
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Similar expressions hold for the pressure. This gives

9 1
u(ty) = §Ul T dubE 4 §ul’1 +0(7%),
9 1
p(t) = 5p"% — b5 + 5p"1 4+ O(%)
Let us denote for all [ € {1, 2},
9 1
ul) = §ul 5 —dub? 4 §ul L
9 1 1 1
. 2 b3 4 l,5 - 171.
p 2p P2+ 2p

We obtain the approximations with the expected order as follows:

(2) — 24 4
u u Ug
5 + O(7),

8ttu(7') =
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Chapter 76

Well-posedness and space
semi-discretization

Exercises

Exercise 76.1 (Maximality). Let V < L be two real Hilbert spaces with norms |||y and ||| 1.
Let R € £L(V;L). Assume that R is a monotone operator, i.e., R((R(v),v)r) > 0 for all v € V. (i)
Show that if R is maximal monotone (i.e., there is 79 > 0 s.t. Iy + 7o R is surjective), then there

W > c1|jv||v — e2|jv||r for all v € V. (Hint:
show that Iy + 7o R is injective with closed image.) (ii) Show that if there are real numbers ¢; > 0
and ca > 0 s.t. sup,¢p, [(Rw)w)r] allvllv = ceflv||r for all v € V, and colp + R*: L' =L -V’

lwllz

are real numbers ¢; > 0 and ¢z > 0 s.t. sup,,¢r,

is injective, then R is maximal monotone. (Hint: consider S(v) := sup,,c, W for all

v € V.) (iii) Assume that Iy + 7R is surjective. Show that the norms ||v|| + 70| R(v)| 1z and |Jv|v
are equivalent.

Exercise 76.2 (Lemma 76.8). Revisit the proof of Lemma 76.8 by using Young’s inequality in

the form a(s)¢(s)z < % + @, where 6 is any time scale, and show that the choice § = T

leads to the sharpest estimate at the final time ¢ = T. (Hint: minimize the function 6 — fe at
fixed T'.)

Exercise 76.3 (Growth and decay in time). Assume that the linear operator —u,I;, + A €
L(Vp; L) is maximal monotone where p, € R, u;, # 0, but there is no constraint on the sign of .
Let f € CO(Ry; L) Ry :=[0,00). (i) Explain why there exists a unique u € C*(R.y; Vo)NC° (R ; Vo)
solving the problem d;u + A(u) = f, u(0) = up. (ii) Assume now that g, > 0. Show that the
solution to this problem satisfies the following estimate for all ¢t > 0:

1 t
lu(t)lI7 < e [luoll7, + u_/ e || £ ()17 ds.
b Jo

(iii) Assume that p, > 0 and f € CO(R4; L) N L>((0,00); L). Show that limsup,_, . [[u(t)|z <
15 1 Loe (0.00):2)

Exercise 76.4 (Wave equation). Consider the wave equation dup — Ap = g in DxJ with the
initial conditions p(0) = py and 9;p(0) = vp in D and homogeneous Dirichlet conditions on p at the
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boundary. Assume that g € L*(D), po,vo € H}(D), and Apy € L?(D). Show that this problem
fits the setting of the time-dependent Friedrichs’ systems from §76.3. (Hint: introduce v := O;p
and q := —Vp.)

Solution to exercises

Exercise 76.1 (Maximality). (i) Since R is maximal monotone, for every f € L, there exists
u(f) € V such that u(f) + 7oR(u(f)) = f. But this u(f) is unique since the monotonicity of
R implies that ||[u(f)|lz < || fllz. Hence, the operator Iy + 7oR is bijective. In particular, this
operator is injective and its image is closed, so that owing to Lemma C.39, we infer that there is
a > 0s.t. sup,er, W > allv||y for all v € V. This also means that for all v € V,

sup (o R(v), w)e| sup [(v+ moR(v), w)L| sup (v, w)i|

wer,  [wlz wel [[wll wer [wlz

> alfvlly —[vll L.

This shows that sup,cr, % > ary Holly — 75 vl for all v € V.

(ii) We now prove the converse. Let us assume that there are real numbers ¢; > 0 and ¢z > 0 such
R(v), . +R(v),
that sup,,c;, % > c1]|v]|v — eal|v|| for all v € V. Let us set S(v) := sup,,¢;, W

for all v € V. Since R is monotone, we have

[(c2v + R(v),v)p| _ |eallvllZ + (R(v), v)w|

S(v) > —
)2 L Tollz
2
Z CQHUHL +§R((R(’U)7’U)L) Z CQHU”L-
Tollz
Moreover, we have
R(v),w
Sw) > sup (LWL > e oy — 2] 2.

wer  |lwllz

Hence, 3S(v) > c1]jv]|yv. This shows that the operator T' := coly + R : V — L is injective with
closed image (here, we use ¢; > 0). Since T* is injective (by assumption), this argument shows
that the operator colyy + R : V — L is bijective. In particular, coly + R : V' — L is surjective, and
so is the operator Iy + 02_1R (here, we use ¢z > 0). We have shown that the operator is maximal
monotone.

(iil) Using Step (i), we know that there is a > 0 s.t.

nollR@)L = afvllv = vz,  VeeV.
Hence, allv|lyv < ||v]|z + 70||R(v)||z. Denoting tr v = sup,cy % (this number is finite since

we assumed that V embeds continuously in L), we also have ||v||r + 7o||R()||z < (tn,v +
7ol Rll vz llvllv-

IS
IN

Exercise 76.2 (Lemma 76.8). Young’s inequality gives a(s)¢(s)
obtain

i~ + 5 Hence, we

0 t
¢(t) < ZHGH%Q((M) +b(t) —|—A @ ds.
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Invoking Gronwall’s lemma (see (65.2) from Exercise 65.3) with a(t) := §|\a|\%2(07t) + b(t) and
B(t) := § shows that for all t € J,

o(t) < ev (GllallZ2(. + (1))

In particular, at the final time ¢t = T', we obtain
T
O(T) < ev (§llall7z(sy + b(T)).

The sharpest bound is obtained by minimizing the function 6 — et (at fixed T'), and computing
the derivative shows that this function reaches its minimal value at 6 = T'.

Exercise 76.3 (Growth and decay in time). (i) The Hille-Yosida theorem applied on the time
interval (0, T'), where T is arbitrary, implies that there exists v € C1(R4; Vp) N C°(R; Vp) so that

0w — v+ A(v) = e"'f,  v(0) = uo.

Hence, we have
Op(e ty) + A(e Mty) = f, e " *0(0) = 0.

Setting u(t) := e *tu(t) € C*(R4; Vo) N CO(R4; Vp) gives the unique solution to
Ou+ A(u) = f, u(0) = up.

(ii) Let ¢t € Ry. Using u to test the equation dyu + A(u) = f, which we recall holds true in
C%(Ry; L), using that p, > 0 and R(A(u), u)z) > w|ul|?, we infer that

1d 1 o
5 ag OIL + @L< IO u@lle < 5= 1F O + Flu@i-
Hence, &[lu(t)]13 + s llu(t)]|3 < LI ()3 . We obtain
d 1
(@ lu®]) < me””llf(t)lli-

Recall that this inequality holds true in C°(R,;R). Integrating it over (0,¢), we infer that

1 t
a1 < e uollt + - [ 0] ds.
b J0

(iil) We still assume that u, > 0. Since f € L*°((0,00); L), taking the square root on both sides
in the above inequality and recalling that J; := (0,¢), we infer that

_ — I 1
lu()lL < e > uollL + p, *lle2 7 fllpa(s,ip)
_ By _1 L 1
<e 2 gl + w, ° ||em( t)||[2/1(Jt)||f||L°°(Jt§L)

o 1
<e 2 uollL + E||f||L°°(Jt;L)=

since "=V 1,y = fot ets (570 ds = ﬁ(l — e mt) < ﬁ The conclusion is straightforward

. . _Eby
since lim;_yooe” 2" =



410 Chapter 76. Well-posedness and space semi-discretization

Exercise 76.4 (Wave equation). Following the hint and setting u := (v, q)", we obtain d;v +
V-q = g and 0,q + Vv = 0. Thus, we can rewrite the wave equation as dyu + A(u(t)) = f with
fi=1(g,0) € L:=L*(D;R™), m:=d +1, and A(u) := 34 (1. 4y A¥Opu with

. Vke{ld},

where (ey)ref1:4y is the canonical basis of R<. Notice that X = O,,,,. The graph space is
V = HY(D)xH(div; D) and since we are enforcing a homogeneous Dirichlet condition on p and
the initial condition pg is in H} (D), we have v € H} (D). Hence, the solution u is sought in the
space C1(J; L) N C°(J; Vp) with Vo := Hg(D)x H (div; D). Notice that ug = (vo, —Vpo)" € Vj.
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Implicit time discretization

Exercises

Exercise 77.1 (Implicit advection-diffusion). Consider the 1D equation pdiu+ 0, u—vdyu =
fin D :=(0,1),t >0, where u € R, B € R, v € Ry, f € L?(D), boundary conditions u(0) = 0,
u(l) = 0, and initial data ug = 0. Let 7j be the mesh composed of the cells [ih, (i + 1)h],
i € {0:I}, with uniform meshsize h := ﬁ Let Vi, = PPo(Tn) be the finite element space
composed of continuous piecewise linear functions that are zero at 0 and at 1 (see (19.37)). Let
(@i)ieq1:1y be the global Lagrange shape functions associated with the nodes z; := ih for all
i€ {1:1}. (i) Write the fully discrete version of the problem in V}, using the implicit Euler time-
stepping scheme. Denote the time step by 7 and the discrete time nodes by t, := n7 for all
n € N;. (ii) Prove a stability estimate. (Hint: consider the test function 27u} and introduce the
Poincaré-Steklov constant Crs s.t. Crslv]|L2(py < €p||020]|12(py for all v € Hg(D).) (iii) Letting
ujl = Zie{ltl} U?; and F; := + Jp feida for all i € {1:1}, write the linear system solved by the

vector U™ = (U?)ie{l:f}' (IV) Prove that maxie{lzl} U,? < imaXie{l:]} Fz + maxie{l:l} U?_l if

v > |B|h and T > B(Qlf‘fhrmh) (Hint: consider the index j € {1:1} s.t. U} = max;ec 1.7y UT)

Exercise 77.2 (Bound on ||é}||1). Prove (77.23). (Hint: use that ¢ = 0 and test (77.19) with
n =1 against wy, == e},.)

Exercise 77.3 (IRK for advection-diffusion). Consider the advection-diffusion problem from
Remark 77.7. Write the time-stepping process in functional and algebraic form using the IRK
formalism from §69.2.4 and §70.1.3.

Exercise 77.4 (Implicit Euler, analysis using Py, ). The objective of this exercise is to derive
an (°°(J; L)-error estimate for the implicit Euler scheme by using the operator Py, instead of the
operator 11 as was done in §77.3. We assume that 7 < %p. (i) Counsider the following scheme:
Given u) € L, one obtains uy € Vj, for all n € N, by solving

(UZ - uzilvwh)l; + Tah(uZa wh) = T¢n(wh)7 vu}h € Vha

with " € V. Set 6, = ("nen, € (VN and 620 ) = Someqrony 7162, with

167y, = supy, ey, Gl and the norm |-y, is defined as [olly, = p~*olf3 + o] ms (this
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is the definition used in the proof of Theorem 76.19; it differs from (77.16)). Show that for all
n e NT,

2t
gl < €% (ladlle + 16z,

(Hint: adapt the proof of Lemma 77.2.) (ii) Let e} := uj; —Py;, (u(tn)) and 0" := Py, (u(t,)) —u(tn)
for all n € M. Prove that (e} — eZﬁl,wh)L + Tap (e}, wy) = —7¢"(wy,) for all w, € Vj,, with
o e V) st

¢"(wn) = (" + K(n") = X", wn)r + sn(Py, (u(tn)), wn)
(M 4 N un) oy — O, Ar(n))i
and " = %fJn (Opu(t) — Owu(ty))dt € L. (Hint: see (76.27).) (iii) Let w solve (77.1) and let uy,,

solve (77.10). Assume that u € C?(J; L) N C°(J; H¥*1(D;C™)). Prove that there is ¢ s.t. for all
heH,al7>0,and all n € N,

Nl=

tn 1
Ju(t) — ufllz < e’ (vlpta)ber(tuin) + (% + (%) max(pB. m) 305 ealtusu) ).
with ¢1(tn;u) == [0l coo,e,):) and ca(tn;u) := |ulcoo b, );m5+1 (Diemy)- (Hint: see the proof of
Theorem 76.19 and use Step (i).)

Solution to exercises

Exercise 77.1 (Implicit advection-diffusion). (i) Let 7 be the time step. The fully discrete
version of the problem in V}, using the implicit Euler time-stepping scheme is as follows: set uf) := 0,
then for all n € N; find u}} € V}, such that

un _ un—l
/ (MM%— T B0} +u<axuz>azwi) dr= [ roris
D T D

for all ¢ € {1:1}.
(ii) To establish a stability estimate, let us test the equation using 27u}. This yields

1
/ <2,u(uZ —ulup + 27'[35890(1/;)2 + 27'V(3zu’,;)2> dz = 27'/ fuy de.
D D

The term involving 8 vanishes owing to the boundary conditions. Moreover, using the identity
2(a —b)a = a® + (a — b)? — b* and the Cauchy—Schwarz inequality, this gives

pllupllZs + plluy — w72 = plluy = 72 + 2rv100upl|ze < 27)1f |2 lluh]l e

Using the inequality 2ab < Aa? + A7'b? with \ := UCE,SKBQ, and dropping the nonnegative term
pljuf — w2, on the left-hand side, we have

T

2 2 p—2 n
+ TvCi 0% |u .
I/CSSKBQHJCHLQ pstD ” h”L2

pllupllis +2rvl|0sup |7 < pllup ™ [7e +

Invoking the Poincaré-Steklov constant (i.e., Cpsl|up||z2 < €p||Ozuj| r2) for the rightmost term,

we infer that
— T lIf12
VOl

plluillze + vl 0auplize < plluy =72 +
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Summing the above inequality over n € N, and since N7 = T, we obtain the following stability
estimate:

T
pll 132+ S Ok < sl + o 11

neN;

(iii) The discrete system takes the following form: For all i € {1:1},

B

(Un 1 +4UT + U ) + _(U? = Uiy) + 5 (U = UY)

n n v n n n n— n
(U 7)+E(Ui_ 1) = hF; +,U (U A (VA Uz+11)

B
2

This can be simplified as follows:

h n /8 n n
Ua( 1 +4U7 + U ) + 2( 1 —Uitg)

+%(—U?71+2U?— 1) = hF; +,U (Un oA 4UrT 1+Uz+1)

(iv) The above equation implies that

h h
pe Ui + For Uiy —2U7 + URyy) + g(U?Jrl - U+ U = Ui y)
ax h n—1l,max
h( UZ ) +2U7 — U7,,) < hF™® +p=U 1,max
where F™* := max;e1. 1y Fi, U™ 1= max;eq1.13 U", m € {n — 1,n}. The above expression

can be rearranged as follows:

h B ph . B e
—ynr - _ U" ur - _F_ Un un < hFmax Zyn—lmax
e Z+(h+2 67 )( H)‘L(h 2 67)( i) < THT

Let j € {1:I} be an index such that U} = Ummax, Writing the above inequality for i := j,

observing that U} — Uj_y > 0, U} — U, > 0, and since S—th>0and 2 -4 -t >0if
v > |Blh and T > w}f‘fhwlh) (indeed, this last inequality is equlvalent to ¥ > g—f + @), we infer

that

h h h
M_Un,max _ M_U_;l S thax _i_u_Unfl,max'
T T T

This proves the assertion.

Exercise 77.2 (Bound on |[|¢}||). Since ) = 0, we have ¢}, = Le}. Testing (77.19) with n := 1
against wy, 1= e,ll yields

lenllZ + Tlen s < A llenllZ +7l(a’, e))Ll.

Since TA <z 3 <1 5, we infer that

gllerllz +7lenlius < Tlatllcllenlle.



414 Chapter 77. Implicit time discretization

Hence, e} || < &7[a'(|L, and it remains to estimate [|o!|L. We have

otz < In(0e)llcocz,;ny + o~ (Wl coyiny + TI0kull ez,
<c ((%)%h’”%c;(u) + Tc}(u))

Hence, we have

. 1 1
léhlle < lehlle < $latllz < e (rel() + (£) 2R Ech(w)).

The result is proved.

Exercise 77.3 (IRK for advection-diffusion). Let us consider an s-stage IRK scheme defined
by its Butcher coefficients {ai;}; jeq1:s}, {bitie{1:s}, {Ci}icf1:s}, and its final stage coefficients
{ai}ieqo:sy defined in Remark 69.13. Let us set t,; = t,—1 + ¢;7 for all j € {l:s} and all
n € N;. We then define f,,(t) := Py, (f(t)) for all ¢ € J. We also define 4, : X;, — X}, by setting
(Ap (o), wn)r == (D(vp),wn)x’ x + an(vp, wy) for all vy, w, € Xp. The time stepping proceeds
as follows. One first sets u) := Py (ug), then for all n € N, one seeks {u}""}icq1.5) C Xp solving
the following system of coupled equations:

uZZ —up =1 Z aij (fatn,;) — Ah(uZ’j)),

je{l:s}

and the update at ¢, is obtained by setting u}! := aou) ™" + Epe{l:s} apup®. Let {@i}icq1:y be a
basis of X},. Recalling the mass matrix M € C'*! and the stiffness matrix A € C'*! introduced
in §77.1.2, the algebraic realization of the IRK scheme proceeds as follows: One first lets U? € C!
be the coordinate vector of Py, (ug). Then, for all n € N, letting U™? € C! be the coordinate
vector of uy? for all p € {1:s}, the IRK scheme consists of solving the linear system:

M+T1a1 A - Ta1sA yrl Gt

Tas1 A o M Tags A yms G™s

with the load vectors defined by G™? := MU" 141 D ge{1:sy g™ € Cl and F'P := (fa(tnp), 9i)L
for all p € {1:s}. Finally, one sets U" := apU"~! + Dopeqi:sy U™

Exercise 77.4 (Implicit Euler, analysis using Py, ). Notice that 7 < %p implies that 7A" <
% < 1, so that the discrete problem is well-posed.
(1) We use wy, := uj as the test function, take the real part, invoke the lower bound (77.5) and the

identity (uf —up ™", ul)p = S[upl|2 — Lup =12 + Slup — up |2, This gives

1 n n n 1 n— T n
“Nluplli + T lupll7 + Tlup s < slup =17 + 7l (up)l.
2 2

Since [¢" (up) < 18" [lvy, lupllv, < glle"I%, + slluill?, = sle" I3, + g llupll + 3luilis and

. 1 1 . .
since 55 — A, < L this gives

1 1 1, o T 1
SuRlE + 5rluklas < gl I3 + Tl + 57le I,
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Dropping the nonnegative term %T|uﬁ|§w s from the left-hand side and summing the inequalities
for all m € {1:n} gives

gl <2+ Y Tz S e,
me{l:n} me{l:n}
We apply the discrete Gronwall lemma from Exercise 68.3 with v := 277 € (0,1) by assumption,
A = W2, by == 0, ¢y = 7-||¢m||2}:b, and B := [[uf)[|7. Since v < 3 by assumption, we have
ﬁ < €27, This completes the proof of the assertion.
(ii) Subtracting (77.1) from (77.10) gives

(eh —en ™t wn)r + 7(an(uf, wn) — (Au(tn), wn)r) = —7(", wh) L,

for all wy, € V3. This implies that

(ep — ez_l,wh)L + Tap(ep,wp) = —7¢" (wp,),

with
O™ (wn) = (", wa) L + (an(Py;, (u(tn)), wn) — (A(u(tn)), wn)L).

Proceeding as in the derivation of (76.27), we can rearrange the second term on the right-hand
side to obtain the expected expression for ¢™(wp,).
(iii) We now estimate [|¢"[|y; . Let us denote by (¢} )ic(1.4y the four antilinear forms composing

o, i.e., '
o1 (wp) =
o5 (wp) =

"+ KM") = A0 wh)L, o1 (wn) = su(Py, (u(tn)), wn),

(
%((MBP + N0 wn)Lopy, ¢4 (wn) == —0", Ar(wn))rL-

Since we assumed that u € C?(J;L), we have [[¢"|; < T0uullcoz, .1y, and our simplifying
assumption on K and X implies that | K(n™) — Xn"||, < cp~ |n™|5. Since p= 2|l < ||-|vi,
invoking the Cauchy—Schwarz inequality gives

1 —
e llvy, < p2(T10uullgogz, .y + ™)

hb T

1 1
< pE7l|Owullcoz, z) + e p” 2 BN ultn) e

where we used the approximation properties of Py, (see Propositions 22.19 and 22.21 and recall
that we are assuming that the mesh sequence is quasi-uniform). The assumption (76.20b) on sy,
implies that

85 [lv:, < eB2 h™ 2 utn)] s

hb T

The assumption (76.19¢) on M"" and the approximation properties of Py, imply that

1 1
195 [lvy, < eB2 ™ 2 u(tn)] s

1
2

Finally, using that |wp|s + (%) lwnllz < |lwn|lv;,, the assumption (76.20c) on s, yields

1 1
1@y, < eBZRM 2 fu(tn)|mrss.
Putting these bounds together yields

1 1 1 1
16" vy, < P2 7llOwullcoz, iy + cp™ % max(pB, h)2 52 fu(t) i

hb —
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We can now apply Step (i) and since ) = 0, we infer that for all n € N,
n 2tn 1 1, 0\ 1oyl
||eh||L <cevr (T(ptn)zHattuHCO([O,tn];L) + (P tn)z HlaX(pﬁ,h)?h 2|U|CO([O)tn];Hk+1))7

where we used that Y
the triangle inequality.

me{1:n} T|u(tm)|§1k+1 < t"|u|200([0,tn];Hk+1)' The conclusion follows by using
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Explicit time discretization

Exercises

Exercise 78.1 (Order conditions). (i) Consider the linear ODE system 9,U = AU + F. Let
p > 1. Prove that

Ut) = D T AU(tno1) + 76y (tr) + O(7H), (78.1)
re{0:p}

with G, defined in (78.13). (Hint: verify that 9;U = A"U + ®,(F) for all r > 1, with ®,.(F) :=
Doge{iir) Ar=197'F) (ii) Let F € C°°(J;C’). Consider the uncoupled ODE system 9;U = F(t).
Let U™ := U(t,—1). Let U™ be given by the RK scheme. Show that a necessary and sufficient
condition for U(t,) — U™ = O(7P*1) is (78.10) with r := 1. (Hint: write a Taylor expansion of
order (p — 1) of F(t, ;) for all j € {1:s}.)

Exercise 78.2 (Condition (78.10)). (i) Show that if (78.9a) holds true, then }_. .  b;(1 —

cj)mel = % for all myn € N st. m+n < p—1. (Hint: recall that (1 + z)™ =

ZTE{O:m} (T),TT, ﬁ = fol 2"t dz, and fol(l —z)mz"da = %) (ii) Show that if (78.9a)

and (78.9¢c) hold true, then 3,y bi(l — ci))™ tay = %(1 —¢;)™ for all j € {1:s} and all
m € {1:¢}. (iii) Prove that (78.10) is met for ¢ := 1 if (78.9a) and (78.9b) hold with n :=p — 1.
(78.10) is met for ¢ := 1 if (78.9a) and (78.9¢) hold with ¢ := p — 1. (v) Show that (78.10) with
q :=11is met for all » € {1:p} if (78.9a) holds and (78.9b) and (78.9¢) hold with n+{+ 1 = p (vi)
Show that (78.10) is met for all » € {1:p} and all ¢ € {1:p —r + 1} if (78.9a) holds and (78.9Db)
and (78.9¢) hold with p < n+ ¢+ 1.

Exercise 78.3 (Explicit Euler). Revisit the proof of Lemma 78.12 by using the test function
wy, = u} instead of wy, = u}~' and assuming that 7 < min(Ao72(h), %m) where w =

h [an (vh, W)l it n—1 ,ny _ n o,mn n—1 n ,n
7 SUDy, wyeVi, Tor Tz TonlE (Hint: use that ap(uy ™", up) = ap(uy,uy) +an(u, — —up,up).)

Exercise 78.4 (First-order viscosity). Let (-, )y be a semidefinite Hermitian sesquilinear form
in V and let |-|y be the associated seminorm. Assume that R((A(v),v)r) > 0 and [|A(v)|| <

Bllv||r for all v € V. Let Vj, C V and set ¢y (h) := maxy, ey, lonlv. - Given u) € Vi, let uft € Vj,

Vi
lvnlle
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solve %(uﬁ — uzfl,wh)L + (A(u™ Y, vp) L + u(uzfl,wh)v =0, for all wy, € V}, and all n € N,
where 1 > 0 is an artificial viscosity parameter yet to be defined (u can depend on h and 7). (i)
Explain why this scheme can be more attractive than the implicit Euler method with p := 0. (ii)
Prove that if 7(8+ pen(h))? < 2u, then [[ul||r < |lu?||L for all n € A (iii) Prove that the above
stability condition can be realized if and only if 287¢ny(h) < 1, and determine the admissible
range for p. Note: the constant S7eny(h) is called Courant—Friedrichs-Levy (CFL) number.

Exercise 78.5 (Explicit Euler, mass lumping). Let 8 € R, § # 0. Consider the equation
Ou + B0,u = 0 over D := (0,1) with periodic boundary conditions. Use the same setting for
the space discretization as in Exercise 77.1. (i) Write the linear system solved by the coordinate
vector (UT,..., U’I‘)T by using the explicit Euler scheme and the Galerkin approximation with
mass lumping. (Hint: use the convention U} := Uy, U7, := Up, U?; := U}?_,.) (i) Show
that 3 e,y (UN? = Yic.n (U2 + 023 e n (UG — U )2 with A == 5%, (iii) Let
a:= (1 —2ixsin(£27)) where k € N and £ ¢ N, i? := —1, and set Uy = ael T2k for all j € {1:1}.
Compute U7 for all n € N and comment on the result.

Exercise 78.6 (Error equation, RK2). (i) Verify that
1 2 1 n—1
u(tn) = ’u,(tn—l) + T@tu(tn_l) -+ 57‘ 6ttu(tn—1) + 57.,¢ ,

with 9"~ 1 = 1 [ (t, —1)?Oyeu(t)dt. (Hint: integrate by parts in time.) (i) Prove (78.26). (Hint:
use the fact that (Qpu(t,—1),wn)r, + (AOwu(tn_1)),wn)r = (O f* 1wy for all wy, € V3.)

Exercise 78.7 (ERK schemes, p = 3). Prove Lemma 78.21. (Hint: proceed as in the proof of
Lemma 78.15, use that [|Ap(wp)||r < C%H’LUhHHl for all wy, € Vj,, and invoke the H!-stability of
Py, (see Proposition 22.21).)

Solution to exercises

Exercise 78.1 (Order conditions). (i) We verify the hint by induction on r > 1. The assertion
is satisfied for » = 1 since ®;(F) = F, so that we indeed have 9;U = AU 4 ®;(F). Assume that the
assertion is satisfied for some 7 > 1, and let us show that it holds true for (r 4+ 1). We have

077U = 0,(97VU) = 0, (AU + @,.(F))
=AU+ > ATIOfF
ge{l:r}
=A(AU+F)+ Y ATTagrnF
ge{2:r+1}
=AU+ Y ATTTgiTE

ge{l:r+1}
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This proves the assertion on the time derivatives of U. The Taylor expansion of order p of U at ¢,
then becomes

U(tn) = U(t,_1) + Z ;—;agu(tn_l)JrO(TP“)

re{l:p}

Ul + S DA Vltn) + 8P ta)) + O )

re{l:p}

S T U(tae) + 76y (tamr) + O,

re{0:p}

since the definition (78.13) gives
T q—1F
. =y = Z Ar=199 E () = 7G,(£).
re{l:p} re{l: p} : ge{l:r}

(ii) By definition, we have

Un = Uni1 + T Z bjf:(tnyj).

je{l:s}
But F(t, ;) = 201} CJT) OrF(tn_1) 4+ O(77). Recalling that 97U = 9]'F, this means that
U=wer Y Y S R ) o)
je{l:s}  qe{0:p—1} ¢

q+1
=U e Y Tt () Y (g Dbyel + O

1)!

01 (¢+1) jefiis)

—ue Y Do) Y gt + 0@,
q€{l:p} ¢ je{l:s}

Hence, we have U™ — U(t,,) = O(7PT1) iff the above identity coincides with the Taylor expansion
of order p of U(t,) at t,—1. This is true iff 7,y qucgfl =1 for all ¢ € {1:p}. This is exactly
(78.10) with r := 1.

Exercise 78.2 (Condition (78.10)). (i) Using (78.9a) and the binomial formula, we obtain

S hamgrg- X (T 3 e

je{l:s} le{0:m} je{l:s}
m) 1
= > )Y
lG{O:m}<l nti+l

where we used that n +1+ 1 <n+m+ 1 < p to invoke (78.9a). But

> (Nevmm - X (e [

le{0:m}
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This shows that

o m!n!
Z bj(l—Cj) Cj =

T
je{l:s} (m+n+1)

Notice in passing that this proves that the quadrature with the nodes {c;};cf1.5; and weights
{bi}ic{1:s} is at least of order p — 1 since it integrates exactly the Bernstein basis {(pn_ll)(l -

x)mxpilim}me{O:p—l}-
(ii) To prove the second identity, we proceed as above and use (78.9¢) to infer that for all j € {1:s}
and all m € {1:C},

Soobi(l—c)" ay = Y <m;1> > bi(—ci) ai

e T e
= (") vra-a--4 P (") (1 = o)
-2 ¥ (™) (0= e
= 20— (1)) = 2 (1)

(iil) Let us now show that (78.10) with ¢ := 1 is met for all » € {1:p} if (78.9a) holds and (78.9b)
holds with n := p — 1. For r := 1, (78.10) boils down to }_,.; ., bj = 1, which is nothing but
(78.9a) with ¢ := 1. Let now r € {2:p}. Using (78.9b) for all ¢ € {1:r—1} (this is legitimate since
r—1<p-—1=mn), we obtain

E Ajyjp X+ - XAy, = E Ajygo X+ oo XA 5y E g, 15y

J2,ejr€{l:s} J2sedr—1€{1:s} Jr€{l:s}
= § ajlj? X Xa/jrfljrflchfl
j27"')j7‘716{1:5}
2 : 1 2
= Ajyjo X e e XAj,_gj._, §er72
J2,--jr—2€{1l:s}
= = ;C”.‘_l
(r=1)1"

Now, invoking (78.9a) with ¢ := r (this is legitimate since r < p) gives

1
E bji@jyjy X - Xaj, 45, = —.

7!
jl;nwjre{l: S}

(iv) Let us now show that (78.10) with ¢ := 1 is met for all r € {1:p} if (78.9a) holds and (78.9¢c)

holds with ¢ := p — 1. For r := 1, (78.10) boils down to Zje{l;s} b; = 1, which is nothing but
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(78.9a) with ¢ := 1. Let now r € {2:p}. Using (78.9¢) (actually the expression from Step (ii) for
all m € {1:r—1}; this is legitimate since r — 1 < p — 1 = (), we obtain

> Y bjaj XX, = > bja (1 = €jy)ajpjs X - .. X5,y j,
J1€{l: s} ja,....5r€{1: 8} J2,-Jr€{1: s}
1
— . . 2 . . . .
= Z §b.73(1 — Cjy) gy X - XA,
3 yeens jre{l:s}

1 r—1 __
=..= > mba‘r(l—cjr) =

jre{l:s}

where the last identity follows from (78.9a) (actually the expression from Step (i) with m :=r—1
and n := 0; this is legitimate since m +n+ 1 < r <p).

(v) Let us now show that (78.10) with ¢ := 1 is met for all r € {1:p} if (78.9a) holds and (78.9b)
and (78.9¢) hold with n+(+1 = p. The case r := 1 has already been proved, and we have already
established the result if either r —1 < norr—1< (. Let now r € {2:p} and assume that r—1 > 7
andr—1>( (i.e.,7—n>2and r — ¢ > 2). Using (78.9b) for all ¢ € {1:n}, we obtain

E jyjo X - s XAy, = E Qjyjo X v o s XA oy E Q5,15

J2,edr€{1l:s} J2,eenjr—1€{1:s} jre{l:s}

E : L
=...= Ay 5y X ... xaijnflefn ﬁcjrfn'
J2s-esdr—n€{1l:s}

Now, invoking (78.9¢) (actually the expression from Step (ii) for all m € {1l:r—n—1}; this is
legitimate since r —n — 1 < ¢ because r <p=n+(+ 1) gives

1
E . . . . AN _
b]l a]l]Q X Xa]T*ﬂfl]T*ﬂ n'ch,n -
Jiseengr€{lis}

1 1

- - @ . A r—n—1.71m

S X bl
Jr—n€{l:s}

We now invoke the result from Step (i) with m :=r —n — 1 and n := . We infer that

1 1 1 (r—m—1)n
s . . .y [
Z b]la.71]2 X Xa]w“fnfl]rfn T]' cj,,‘,.,l - 77' (T —n— 1)' T! .

In conclusion, we have proved that

1
Z bjr@jyja X oo XA,y j, = =k vr e {1:p}.

jl;nije{l:S}

Hence, (78.10) with ¢ := 1 is met for all r € {1:p}.

(vi) Let us finally show that (78.10) is met for all » € {1:p} and all ¢ € {1:p—r+1} if (78.9a) holds
and (78.9b) and (78.9¢) hold with p < n+ (+ 1. Let r € {1:p}. We are going to consider three
cases: 1 —1<(,1<(¢<r—2,and ¢ =0.

Case 1: Assume that r — 1 < ¢. Using first Step (ii) for all m € {1:r—1}, then Step (i) because
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r+q—2+1<r+p—r+1—-1=p, we have

P q—1
E bjr@jija X - X5, 15,5

Jise-njr€{lis}

1
= Z bjz(l - cjz)a’jzjs X Xy Ay 1]7‘0317
j2 ..... jr 16{1'5}
-1
=... ~1) Z by, (1—¢;, ) e
Jre{l:s}
_ 1 (r—l).(q—l). _ (¢g—1)!
(r=1! (r+q¢-1)! (r+q—1)V
Case 2: Assume 1 < ¢ < r — 2. Proceeding as above, we have
-1
Z bjy @jyja X - - Xajr—ljrc_(]{‘
j17"')jT6{1:S}
-1
= > bja(1 = €j2)@jajs X - Xj, 5, 1 @G, 13, CF
J2seenjr—1€{1:5}
1 —1
=...= (C—]_ I Z ijl(l—chl)CajHleQx...xaijlech

Jet1seedr€{l:s}
Then, using (78.9b) (because r —( —1+¢—1<r—(=2+p—r+1=p—(—1<1n), we obtain

. - q—1
E bji @y jy X - - Xaj, 13- Cj,.

1
- 5 Z bjcyr (1 — Cj<+1)caj<+1j<+2 RS Z Ajr_13jy h
D deatseir€{1:s} jre{l:s}
1 (¢ — 1) l+g-1
= = _ b. 1—c. ¢ r—(—1+g—
! j<+lez{1;s} J<+1( CJ<+1) (T “C—1+q-— 1)ICJ4+1

We now conclude by using Step (i) (because (+r—(—14+qg—14+1<r—-14+p—r+1=p),
which gives

E Ca a1
leathX' Xa]'r‘ 1Jr _]

Jiy--dr€{l:s}
1 (g—1)! r—¢c—14+qg-1) (¢g—1)

Ar—¢—1+qg—1) (r+q—1)! C (rdqg—1)

Case 3: Assume ¢ = 0. Proceeding as above and using (78.9b) (because r —14+¢—1<r —2+
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p—r+1=p—1<n+(=n) then using (78.9a) (because r —14+¢—1<p—1 < p), we have

g q—1
E bji@jjp X oo XA, 5, €5

= E bjr@jyjo X - o X E Ajr—1jir gr

J1seendr—1€{1:s} jr€{l:s}
=...= Z b‘&cr l4g-1 _ _(g=1)! 1
ji€{lis) Tr-l4g-Dt (r+q=2)(r—1+44q)
_ (=Dt
(r+q-1)0"

Exercise 78.3 (Explicit Euler). This time we use the identity (u} —u}!™ ", ull) = 3|up||? —

5 L uy, 1HL 2Huﬁ — u;fl”% and we observe that ah(uzfl,u}i) = ap(uj, uy) + ah(u;fl —up,up).
Rearranging the terms, we infer that

iy, = hap = T+ lluh —up IR < ;HUZHQL +prlla™[E + 27|an (ul —up =" up)l-
Notice that the first term on the right-hand side is now Z[uj||7 and no longer %Hu’,fl |2 owing to

our choice of the test function. We need to bound 27|ap(uj — up ™~ ’f)| on the right-hand side,
and to this purpose, we can exploit the nonnegative term ||uj — uz |2 on the left-hand side.
Invoking the estimate |ap (v, wp)| < @wBh ™| vp| L||wn||L for all vy, wy, € Vi, we obtain

2 —
27|an (upy — up "t uf)| < T lluf — i HIE A Aow? Tl

< i — up M2 + Ao g3,
Putting everything together yields

i llZ, = Il 17 < (1+Aow)—|\uh|\L+pT||a M-

We conclude using the discrete Gronwall lemma from Exercise 68.3 with v := (1 + A\ow?)

assumption and using that — < e,

Exercise 78.4 (First-order v150051ty). (i) The explicit scheme only requires solving Hermitian
positive definite linear systems, whereas the implicit Euler scheme involves a non-Hermitian linear
system (think of A being the transport operator B-Vu).
(i) Let us test the equation with ru'~'. We obtain

1, 1

1 _ _ _ _ _
Skl3 = Sl = Sl — i+ 7 (AR, w7 =0

Taking the real part and multiplying by 2 gives

lupllZ = llah =17 + 2rpluy = R < lluh —up ™ 1L

Moreover, testing the equation with 7(u} — uz_l) gives

gy = HIE < Tl Ay clluh —uh ™+ moluy vl = up ™ v
S o e A e L e T

< 7By v lluh — wp e+ e (h) Jup ™ v lug = up |z
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Hence, we have
([up, — UZAHL <7(B+ NCINv(h))WZiHV-
We infer that

il = lluh =2 + 2rpluy = < 72(8 + pen (h)*uh, ™ [3-

Then, provided 7(8 + pew(h))? < 2, we have [[u||z < |[uf~ ||z, which readily implies that
lupll < |ullllr for all n € N;.
(iii) The stability condition is equivalent to

(8 + 2uBenv(h) + pPewe()?) = 20 = i (eow (R)*7) + 2u(Bewe(R)T = 1) + 827 < 0.

The above quadratic function in p can take negative values if and only if the discriminant is
nonnegative, which gives ey (h) < % Let A := Brenw(h) be the CFL number. Thus, the
admissible range for p is

B 1-A-VI=2X_ _ B 1-A+VI-2\
Cle(h) A == Cle(h) A '

Exercise 78.5 (Explicit Euler, mass lumping). (i) A direct computation shows that for

n €N,
TB n— n—
Ul Uit =o,

h(Up = U3+ (U

for all j € {0:1}.

(ii) The above computation gives

gr =yt 7

n—1 n—1
J i ﬁ(UJH - Ujfl)'

Let us set A := % and square the above equation. This yields

(U7)? = (U2 XU = UnT)? = 2a07 U0+ 2a00 o

Summing over j and using that Zje{L n U;‘flU?J:ll = Zje{ltj} AU?flU;-ljll owing to the periodic
boundary conditions, we obtain

P R (Vi S P S (Vi Uiy

je{1:1} je{1:1} je{1:1}

(iii) Let us prove by induction that U} = ant1el 2k for all j € {1:1}. This is true for n = 0. By
definition, we have

ur =urt AU - U

_ anei%2kw _ )\an(ei#ﬂcﬂ' _ ei%Qkﬂ')
_ anei%2kw (1 _ )\(ei§27r _ efi§2k7r))
= a"ei%%”((l — 2iAsin(k27)) = an etk
1
This proves the assertion. Finally, since |a| = (1 4+ 4A*(sin(%27))?)% > 1, we conclude that

U%| = [a|**" — 0o as n — oo for all j € {1:1}. Thus, the explicit Euler scheme with mass
lumping is unstable.
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Exercise 78.6 (Error equation, RK2). (i) Integrating by parts in time, we obtain

3TV :/ 3(t = tn)*Ounu(t)dt

n

= —/ (t — tn)ﬁttu(t)dt — %T2attu(tn_1)

n

= 8tu(t)dt — T@tu(tn_l) — %T2attu(tn_1)
Jn

=u(ty) —u(tn—1) — 7O u(t,—1) — %Tzattu(tn,l).

This proves the assertion.
(ii) Using the result from Step (i), we obtain

(u(tn) = 5 (y(tn—1) +ultn—1)),wn)L
= 37(0pu(tn—1), wn)r + 372 (Oreu(tn—1), wn)r + 37" wn)L,
for all wy, € V. Moreover, we have
(Dvultn-1),wn)r + (A(u(tn-1)),wn)r = (f*~ wn)r,
(Owu(tn—1),wn) L + (AQutn-1)),wn)rL = (O f" ' wp) L.
Hence, we have
(Opultn—1),wn)r, + 7(Onu(tn—1),wn)r + (Aly(ta-1)),wn)r = (f* 1+ 70 f" " wn)r.

Putting everything together yields

(u(tn) - %(y(t - ) + u(tnfl))a wh)L =+ %T(A(y(tnfl))vwh)ll
= 17(8pu(tn-1),wn)r + 72 (Oreu(tn—1), wn)r + (A(y(tn—1)), wn) + 27" wi)L
= %T(f" Ym0 wn)  + %7’(1/)"71,11);1),;.

This completes the proof of (78.26).

Exercise 78.7 (ERK schemes, p = 3). (i) Let @, be the sequence produced by (78.27) with
a™3 replaced by a™? 1= ™3 + TZ’?’. Eliminating the intermediate stages in (78.27), we obtain

up = Iy, —7An + 3 1242 ——T3A3)( )+T(G3(n 1)+ 17“23),
where
Galtn—1) == fi " +37(0fi " = An(fi ™) + 57" (Oufi ™" = An(Oufi ™) + AL(ST).

(If TZ"B = 0, uj exactly reproduces the third-order Taylor expansion of the solution wuy(t) at ty;
see (78.1) and (78.13) with p := 3). Moreover, eliminating the intermediate stages in the ERK
scheme leads to

up = (I, — TAn + 37° A} — §7° A} (up ™) + 7A3,

where

AL = by fr(tna) + bafrtn2) + b3 faltns)
—TAp ((b2a21 + bsazy) fr(tn,1) + b3ag2fh(tn,2)) + 7'2%14% (fh(tn,l))v
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and we used by + by + b3 = 1, baasy + bzasz; + bzazs = %, bsasoan; = % (see Example 78.11).
An induction argument shows that the sequences wup, and . coincide if TZ’B is chosen so that

7% = 3(A% — G3(ty—1)). This is equivalent to setting r}* := 3(Py, (r??) = T AR (Py, (7"33))) with

% = b1 f(tn1) + baf (tn2) + b3 fltns) — f7F — 470, f" 71 — L7200 f 7,
7y 1= (baazy + bzaz1) f(tn,1) + baagaf(tn2) — S — dra fo 1.
This proves the assertion (i) in Lemma 78.21.

EE) tLet us now prove the assertion (ii). Using that 3¢ .3, bjc
a

q—l_l

7 =4 forall g € {1:3}, we infer

T?’?) = Z bj (f(tn,]) — fn_l — ch(?tf"_l - %0?728”][”_1)

je{1:3}

1, [t
= Z 5bj/ (tn,; — )% O f(t)dL.
je{1:3} tn—1

MOI‘GOVGI‘, using that b2a21 + b3a31 + b3a32 = %, bQCLQlCl + bgaglcl + bgCLgQCQ = %, we obtain

tn,1 tn,2
Y = (s + baan) [ Oufdtbaasa [ 0updt = broug !
tn—1 tn—1
tn,1 tn,2
= (boag1 + bzasz) / (tn,1 — t)Ou fdt + bzass / (tn,2 — )0 fdt.
tn—1 tn—1

(Notice that altogether we used all the necessary order conditions from Example 78.11.) Using the
L-stability of Py, , the bound ||Ap(wp)||r < c%||wh||H1 for all wy, € V3, (recall that ps < {p by

definition of p), and the H!-stability of Py, (recall that the mesh sequence is quasi-uniform and
invoke Proposition 22.21), we infer that

Iz < 311 Py, (1)l + 37l AR (P, (5 ) 1

<3P + e HIry P (psemy.-

We can then conclude from the above identities that T‘Z’S satisfies (78.28).
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Scalar conservation equations

Exercises

Exercise 79.1 (Kruzkov entropy pairs). For all k£ € R, consider the entropy n(v, k) := |v —k|.
Compute the entropy flux associated with this entropy, g(v), with the normalization g(k) := 0.

Exercise 79.2 (Entropy solution). Consider Burgers’ equation with D := R and wug(z) := 0.
(i) What should be the entropy solution to this problem? (ii) Let H be the Heaviside function.
Let a € R and consider u(x,t) := 2aH (x) — aH(x — %) — aH(x + %). Draw the graph of u(-, )
at some time ¢ > 0. (iii) Show that u is a weak solution for all @ € R. (iv) Verify that u is not the
entropy solution. (Hint: consider the entropy n(v) := |v|.)

Exercise 79.3 (Entropy solution). Consider Burgers’ equation with D := R and uo(x) := H(z),
where H is the Heaviside function. (i) Verify that u;(z,t) := H(z — 1t) and ug(=,t) := 0 if z < 0,
ug(x,t) = F,if 0 <z <, uz(x,t) := 1if 2 > ¢, are both weak solutions. (ii) Verify that u; does
not satisfy the entropy inequalities, whereas us does.

Exercise 79.4 (Average speed). Let f be a scalar Lipschitz flux. Consider the Riemann
problem d;u + 0, f (u) = 0, with initial data (up,ur), ur, # ug. Let Amax(ur, ur) be a maximum
wave speed in this problem. Let s := (f(ur) — f(ur))/(ur — ur) be the average speed. Assume
that the interval [ur,ur] can be divided into finitely many intervals where f has a continuous
and bounded second derivative and f is either strictly convex or strictly concave. Prove that
[ Amax (ur, ur)| = |s|.

Exercise 79.5 (Maximum speed). Compute Apax(ur,ur) for the two cases (up,ugr) := (1,2)
and (ug,ug) = (2,1) with the following fluxes: (i) f(v) := $v% (ii) f(v) := 8(v — 3)3; (iii)
fv):=—(w—-1)(2v—=3)if v < 3 and f(v) :=1(3—2v)if £ <.

Exercise 79.6 (Strong solutions). The goal is to justify Remark 79.13. (i) Show that if u is a
weak solution and u € C*(Dx[0,T*)), then u is a strong solution in Dx[0,T*). (ii) Show that if
u is a strong solution, then w is also a weak solution. (iii) Let u be a strong solution to (79.1) and
let (1, q) an entropy pair with 7 of class C2. Show that (79.10) holds true.

Exercise 79.7 (Method of characteristics). Let D := R, f := fe,, and assume that f is
of class C? and wg is of class C'. Recall that there exists 7% > 0 and a unique s(z,t) solving
x = f(ug(s))t + s for all x and all ¢ € [0,7*). (i) Show that u(z,t) := ug(s(z,t)) solves (79.1)
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for all ¢ € [0,7%). (ii) Let sp € R. Show that u(x,t) is constant along the straight segment
{z = f'(uo(s0))t + so |t € [0,T*]}. (iii) Show that the solution found in Step (i) is the entropy
solution.

Exercise 79.8 (Shock interacting with an expansion wave). Consider Burgers’ equation

with the initial condition ug(z) := —1 if z € (—1,0) and ug(x) := 0 otherwise. (i) Derive the
weak entropy solution up to the time ¢ = 2. (ii) After the time ¢ = 2, the shock originating from
x = —1 starts interacting with the expansion wave originating from x = 0, leading to a shock

with a nonlinear trajectory. Derive the weak entropy solution for the times ¢t > 2. (Hint: use the
Rankine-Hugoniot condition.) (iii) Verify that “mass” conservation is satisfied, i.e., [ u(z,t)dz =
J uo(z) de = —1 for all £ > 0.

Solution to exercises

Exercise 79.1 (Kruzkov entropy pairs). By definition, g(u) = [, sign(v — k) f'(v) dv, where
81gn():—11fz<0and51gn()= if z > 0. Ifu<kthenq ) = — [ f'(v)

f f(w)ydv = f(k)— f(u) = sign(u—k)(f(u) — f(k)). We obtain the same result if k < w. Hence7
q(u) = Slgn(u — k) (f(u) = f(K)).

Exercise 79.2 (Entropy solution). Recall that Burgers’ flux is f(v) = $v® and Burgers’
equation is dyv + %811)2 =0.

(i) u(z,t) = 0 is clearly a weak solution to this problem. It also trivially satisfies all the entropy
inequalities. Hence, it is the entropy solution.

(ii) Here is the graph of u(-,t) at some ¢ > 0 with a > 0:

u(z,t)
a
_at
2 T
at
2
—a

(iii) One possibility is to verify that dyu + 9,(3u?) = 0 is satisfied in the sense of distributions.
Let us consider u(x,t) = 2aH (z) — aH(z — %) — aH (z + %). For all a € R, let X(a) := {(:c t) €
RxR, | 2 = at}, and let d5(4) be the line Dirac measure defined s.t. (Js ), ¢) : fR (as, s)ds

for all ¢ € C5°(RxR, ). We have 0;H (z — at) = —adx(q), so that

dru = at(2aH(:v) —aH(z — %t) e a2t))
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Moreover, we have

at
5)
—4a*H (z — 5) 4a’H (z) + 20 H (v — %t)

t
u?(z,t) = 4a*H(x) + o*H (z — %) +a’H(z +

t t
= —aQH(:v—%)—i—azH(x—i—%),

where we used that H(y1)H(y2) = H(max(y1,y2)). We infer that 9,(3u?) = —3a%dse) +
%a252(_%). Hence, dyu + 0, (3u?) = 0, thereby proving that u is a weak solution.

Another possibility is to verify that (79.7) holds true for all ¢ € C}(R x R ). We have

/ /u@@dxdtz// udrpdt dx
o Jr R JO

= —a/ Orpdt dx + a/ Or¢pdt dzx
R_ _ 2z %Tz

R

Q
2

a

=a ¢(z,—2)dz —a qﬁ(:v,%””)dx

R_

=-a o(—%, s)ds—1 2 (%, s)ds

2" g,

Similarly, we have

/ / 26I¢dxdt—a/ B 0,pdadt

—a / (2, 1) — $(—2 1)) dt,
R

which shows that fooo fR (u@tgb + %uz(?x(b) dadt = 0.

(iv) One way to answer this question is to invoke Theorem 79.10. Since u(x,t) = 0 is an entropy
solution and the entropy solution is unique, u(z,t) = 2aH (z) — aH (x — %) — aH (z + %) cannot
be an entropy solution. Another way to answer the question is to exhibit one entropy such that
the corresponding entropy inequality is violated. Let us take n(v) := |v|. Then, the corresponding
entropy flux is ¢(v) = [ sgn(§)€ dé = $|v|v. We have |u(z,t)| = —aH (z— %) +aH (z+ % ). Since
H(y)H(z) = H(z ) for y < z, we obtain

lu(z, t)|u(z,t) = 2a°H(z) — a®H(x — %) — a®H(z + %) = au(x, ).

We infer that

1 1 1 1
On(u) + Opq(u) = §a25% + 5(12(5_% + a6y — 5(12(5% - 5(125_% = a?dp.
But dn(u) + 0.q(u) = a250 is a positive distribution. Hence, the entropy inequality is violated.
(Notice that [* [o(—n(u)did(x,t) — q(u)0zp(z, 1)) dzdt = a® [ ¢(0,t)dt for every smooth func-

tion compactly supported in RxRy.)

Exercise 79.3 (Entropy solution). (i) Let us look at w; first. In the distribution sense, we
have Qyu; = —%6(1: — %t), where § is the Dirac measure, and upon observing that u? = u;, we also
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have 9, (3uf) = —16(x — 4t). Hence, Qyuy + 9,($u?) = 0. Let us now look at ug. Upon observing
that up is a continuous function in RxRy, we have Quz(x,t) = 0 if x < 0, Qua(x,t) = — 35, if
0 <z <t Qua(x,0)=0if z > t, and 0, (Fud(x,t)) =0if 2 <0, p(Fud(z,t) = &, if 0 <z <{,
9 (3u3(x,0)) = 0 if & > . This proves that dyus + 9, (3u3) = 0.

(ii) Let k € (0,1). Let us consider the Kruzkov entropy pair n(u) = |u — k| and ¢(u) = sign(u —
k)(f(u) — f(k)) = sign(u — k)i(u? — k%) (ie., g(u) = q(u)e;). Then, for u;, we have n(u) =
|H(z — 1t) — k| = k if # < 3t and n(w1) = |H(z — 3t) — k| =1 — k if z > ¢. This means that
n(u1) = H(z — §t) — (2H(x — $t) — 1)k. This shows that 9yn(u1) = (—3 + k)d(z — 3t). Similarly,
we have

q(uy) = sign(u; — k)= (uf — k*) = %sign(H(x - %t) — k) (H?*(x — %t) —k?)

|

This means that 0,q(u1) = (3 — k?)0(z — §t)e,. Hence, we have

N | =

K if 2 < 1t,
(1-k?) ifz> it

N[ N[ =

Om(ur) + 0aq(ur) = (— & +k+ 5 — k?)d(x — 5t) = k(1 — k)d(x — 3t),

which proves that u; is not the entropy solution since k(1 — k)§(z — 4t) is a positive measure for
all k € (0,1).

We now do the computation for us. Clearly, 9;n(uz2) + 0zq(uz) = 0 if x < 0 or t < x. Let us
now assume that 0 < x <t. Then n(uz) = |3 — k| =k — § if v <kt and n(uz) = |7 — k| =F — k
if x > kt, meaning that 9;n(uz) = +55 if x < kt and n(uz) = —% if > kt. Similarly, q(uz) =
sign(ug — k)1 (u3 — k?) = —%(f—; — k%) if 2 < kt, and q(uz) = %(f—; — k?) if x > kt, meaning that
02q(u2) = —7z if & < kt, and q(u2) = 7% if © > kt. Hence, 0yn(uz) + 0,q(u2) = 0 a.e. in z and .
In conclusion, usg is the entropy solution.

Exercise 79.4 (Average speed). From Theorem 79.15, we know that

Amax(ur, ur) > max(|f (ur)|, |f' (ur)]), if u, < ug,

Amax(ur, ug) > max(|f' (ur)], |F (ur)]), if ur, <wug.

Assume that uy, < ug. Recall that f(ur) = f(ur) and f(ugr) = f(ur). Hence, we have

/ " P ) dv = flur) — flur).

L
Since f is convex, f’ is an increasing function, and we infer that

UR

f'(ur)(up —ur) > / f'(w)dv = f(ur) — f(ur) > f'(ur)(ur —ur).

ur

This proves that |s| < |Amax(ur,ur)|. Notice in passing that f’ is continuous in the neighborhood
of uy, and ug since, by assumption, either f is locally affine or f is locally equal to f and f is of
class C? in the neighborhood of uj, and ug. This argument shows that the quantities f'(ug) and
f'(ur) are well defined and are bounded. Similarly, if u;, > ug, we have

UR

7 (ur) (ur — ur) < / (o) dv = fur) — flup) > F(ur)(ur — up),

ur
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and again |S| < |)\max(uL7uR)|'

Exercise 79.5 (Maximum speed). (i) For f(v) = $v? we have: (a) uy < ug and f = f, so
that Amax(1,2) = max(]f(1)],]f'(2)]) = 2; (b) in this case, the graph of f is the line connecting
(2,£(2)) to (1, f(1)), so that Amax(2,1) = 3577 = %

(i) Assume now that f(v) = 8(v — 2)* = (2v — 1)%. For case (a), we have uy < ug and f

is convex on the interval [1,2], so that we have f = f1 2. This implies that Apax(1,2) =
max(|f'(ur)|, |f (ur)]) = f'(ur) = 6; (b) ur, > ug but f # f. Over the interval [1,2], the
graph of f is a straight line, so that /\mdx( 2) =|(f(ur) — f(ur))/(ur, —ug)| = 26.

(iii) For case (a), we have uy, < ug but f # f. In this case , the graph of f is the line connecting
(1, £(1)) 0 (2, (2)), 50 that Amax(L,2) = [(F(ur) — f(ur))/(uz — ur)| = |0 (——))/( 2)| =1
In case (b), f # f. Notice though that f/(37) = —43 +5=-1< f'(uz) < -4 = f'(2), that is,
|7 (ur)| < 1. Moreover, f'(ug) = f'(ur) = 1. Hence, Amax(1,2) = 1 is a legitimate choice since

1> max(|f(ur)l, | (ur))).

Exercise 79.6 (Strong solutions). (i) Let u be a weak solution to (79.1) and assume that u €
CY(Dx[0,T*)). Let us first consider ¢ € C3(Dx(0,7*)). Integrating (79.7) by parts and applying
the vanishing integral theorem in Dx (0, T*) (see Theorem 1.32), we infer that u solves (79.1). Let
us now consider ¢ € C§(Dx[0,T*)). We infer that [, ¢(,0)(u(x,0) —ug(2)) dz = 0. This implies
that [, ¥ (x)(u(x,0)—uo(x)) dz = 0 for all 1) € Cj(D) since one can always find ¢ € Cj(Dx[0,T*))
such that ¢(x,0) = ¢ () for all z € D. We conclude that u(x,0) —ug(x) for all z € D by invoking
again the vanishing integral theorem, but this time in D. Hence, u solves (79.1). All the above
operations are legitimate owing to the assumed smoothness of w.

(ii) Let w € CY(Dx[0,T*)) be a strong solution to (79.1). Then (79.7) follows by multiplying
(79.1) with ¢ and integrating by parts. All these operations are legitimate owing to the assumed
smoothness of w.

(iii) Let u € C*(Dx[0,T*)) be a strong solution to (79.1). Let ¢ € C(Dx[0,7*);R;) and let
(n,q) be an entropy pair. Assume that 7 is of class C2. Let ¢(x,t) = ¢ (x,t)n'(u(z,t)). Notice
that ¢ € CL(Dx[0,T*)) because 7 is of class C?. Multiplying (79.1) by ¢ and integrating by parts
gives (79.10).

Exercise 79.7 (Method of characteristics). (i) Let us show that u(z,t) = ug(s(z,t)) solves

(79.1) for all ¢ € [0,T*). First Qyu(x,t) = ui(s(z,t))0rs(x, t) and O, f (u(x, 1)) = f'(u(z,t))0pu(z, t) =

S (uo(s(z, ) ugy(s(z,t))0xs(x, t). But the identity z = f’(ug(s))t + s implies that
0 = tf" (uo(s))ug(s)0es + f'(uo(s)) + s,
L=tf"(uo(s))uy(s)0xs + Ous.

Hence, we have

N (1)
L+ f"(uo(s))ug(s)t’
OxS !

In conclusion, we obtain

Oru(,t) + Ox(f (u(w,1))) = up(s(x, 1))
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(i) Along the segment {z = f'(uo(s0))t + so | t € [0,T*]}, the function s(x,t) solves

[ (uo(s0))t + 50 — f'(uo(s))t + 5 = 0.

But the unique solution to this equation is s(z,t) = so. Hence, u(x,t) = ug(s(z,t)) = up(so), so
that u(x,t) is constant along the straight segment in question.

(iii) Let us show that the solution found in Step (ii) is the entropy solution. Clearly s €
CH(Dx[0,T*)). Hence, u(x,t) = ug(s(z,t)) is also in C'(Dx[0,7*)). This means that u is a
strong solution to (79.1). We conclude by invoking Remark 79.13.

Exercise 79.8 (Shock interacting with an expansion Wave) (i) The Riemann problem

centered at x = —1 leads to a shock moving with speed s = —5 The Riemann problem centered

at x = 0 leads to an expansion wave, and we have u(xz,t) = % in the sector {—1 < § < 0}. This

construction is valid until the left boundary of this sector catches up with the shock. ThlS happens
at the time t = 2 at the position x = —2.

(ii) For all ¢ > 2, let us describe the trajectory of the shock with the function ¢ — x(t), where
X(2) = —2. Let us set

x(t)
t):= 1 t t) =1 t 0
ur(t) m&lt)u(x )=0,  ug(?) mf&lt)“(“’ )=~

Since the shock moves at the speed x'(¢), the Rankine-Hugoniot condition leads to

flur®)) = flur®) _x(®) o o
) >

ur(t) —ur(t) 2t

We infer that y(t) = —(2t)2 for all t > 2, and the weak entropy solution is such that

X'(t) =

0 if z < x(t),
u(z,t) =2 if x(t) <z <0,
0 ifo<z.

(iii) For all t € (0, 2], we have

—t 0 2

T t 1t
t)dx = —1d —dr=—-14+-—-—=-1
/Ru(x’) v /,1,3 $+/,tt v T ’

2

and for all ¢ > 2 we have

/Ru(x,t)dx—/o fdx:%w)z )

We have proved that [, u(z,t)de = [, ug(z)dz for all ¢ > 0.
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Hyperbolic systems

Exercises

Exercise 80.1 (1D linear system). (i) Let up € L3, (R). Show that u(z,t) := up(x — At) is a
weak solution to the problem dyu + Ad,u = 0, u(z,0) = ug(z), i.e., [;° [ou(Bpd + A\0p¢) dadt +
J uo(x)p(x,0)dz = 0 for all ¢ € CI(RXR+). (ii) Let up € LS C(R R™). Consider the one-
dimensional linear system d;u + Adyu = 0, u(z,0) = uo(x), (z,t) € RxRy, where A € R™*™ is
diagonalizable in R. Give a weak solution to this problem. (iii) Solve the 1D linear wave equation,
i.e., consider A := (Coz (1))

Exercise 80.2 (Linear wave equation). Consider the matrix A(n) := (cgn "OT ), where n is a
unit (column) vector in R%. Let {vy,...,vq_1} be such that {n,v;,...,v4_1} is an orthonormal
basis of R%. Show that (c, (1,en)7"), (—¢, (1, —cn)T), (0, (0,v1)),. .., (0,(0,v4_1)) are eigenpairs of
A(n).

Exercise 80.3 (Entropy inequality). Let u. be the smooth function satisfying dyu.+ V-t (u.)—
eAu, = 0 in DxRy, uc(,0) = ug in D, with € > 0. Let (1,q) be an entropy pair with n €
C?(R™;R). Prove that dn(ue) + V-q(ue) — eAn(u.) < 0.

Exercise 80.4 (Convexity). Let o : TxE C R? - S C R be a function of class C? such that
Oeo(r,e) > 0 for all (r,e) € TxE. (i) Show that there exists a function € : TxS — & such
that o(7,e(7,s)) = s for all (1,s) € TxS and ¢ is of class C?. (ii) Show that €(7,0(7,¢e)) = e
for all (1,e) € Tx&. (ili) Show that the following statements are equivalent: (a) The function
€: TxS — & is strictly convex; (b) The function —o : TxE — § is strictly convex. (Hint: recall
that a function ¢ : X C R™ — R of class C? is convex in the open set X iff D¢ (x)(h, h) > 0 for
all h e R™\{0} and all z € X.)

Exercise 80.5 (Euler). Recall from Example 80.10 the conserved variable u := (p,m", E)T, the
specific internal energy e(u) := E/p — +m?/p?, and the function ®(u) := s(p,e(u)), where s is
the specific entropy. (i) Is the function u — e(u) convex? (ii) Set U(u) := —p®(u). It is shown in
Harten et al. [26, §3] that p~ K (D?*¥)KT = —C, where D?W¥ is the Hessian matrix of ¥ and

1 o7 fv’+e Opps +20ps 0T Dpes

K: =10 ply m , C = 0 —0sly O
O OT p 8pes OT aees
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Verify that K is invertible and C' is negative definite. Show that the function w — ¥(u) is
strictly convex. (iii) Show that the set B := {u|p > 0, e(u) > 0} is convex and that the set
B, ={u]|p>0, e(u) >0, ®(u) > r} is convex for all r € R. (See also Exercise 83.3.) (iv) Let p
be the pressure. Show that 0,p(p,s) > 0. (Hint: see Exercise 80.4 and recall that de =T ds—pdr.)
Exercise 80.6 (Wave equation blowup). Consider the linear wave equation in dimension
three, dyu + Vv = 0, v + Vu = 0, with u(x,0) = uo(||x|s), v(x,0) = 0. Assume that
up € C?*(Ry;R). (i) Show that u must solve dyu — V-Vu = 0. (ii) Let f : R — R be such
that f(s) := Suo(s) if s > 0 and f(s) = —f(—=s) if s < 0. Let us write r := |||,z and
W if © # 0. Show that u(x,t) = @ + @ and v(z,t) = v(r,t)e,, where the
function v(r,t) := — 25 fg (rf'(r+7) = f(r+7)+rf'(r—7)— f(r—7)) dr solves the linear wave
equation. (Hint: use spherical coordinates.) (iii) Compute u(0,¢) for ¢ > 0. (iv) Let a € (3,1).
Let up(r) :=0if 0 <7 < 1, up(r) == (r — 1)*(2 —r)? if r € [1,2], and ug(r) := 0 if 2 < r. Show
that u(-, 1) is unbounded but u(-,1) € H(R?).

Exercise 80.7 (1D linear wave equation). Consider the 1D linear wave equation d;u +

e, =

O.f(u) = 0, where u = (p,v)7, f(u) := (pov,p(p))T, plp) := Z—:p, with the constants py > 0
and a > 0. The purpose of the exercise is to show that the maximum principle does not hold
true on p for the linear wave equation. (i) Show that the system is strictly hyperbolic. (ii) Are
the characteristic families genuinely nonlinear or linearly degenerate? (iii) Consider the Riemann
problem with wy, := (pr,vr)" and ug := (pr,vr)". Express the two eigenvectors in terms of up,
and up. (iv) Solve the Riemann problem. (Hint: the solution is composed of three constant states
separated by two contact discontinuities; apply the Rankine-Hugoniot condition two times.) (v)
Give a condition on vy, —vg and pr, — pgr so that mingcg p(z,t) < min(pr, pr). Give a condition
on v, —vgr and pr, — pr so that mingecg p(z,t) > max(pr, pr). Note: this exercise shows that in
general the maximum principle does not hold true on p for the linear wave equation.

Solution to exercises

Exercise 80.1 (1D linear system). (i) Let ¢ € C}(RxR,). Using the change of variable
2/ = x — \t, we infer that

/0 /Ru(atgb + A0, ¢) dxdt = /0 /Ruo(x — At) (0 + A0y ¢p) dxdt

= /OO / up (@) (Opp(x’ + Aty t) + A0z (2" + At 1)) da’ dt.
0 R

Let ¢(2/,t) := ¢z’ + M, t). We have Opp(2/,t) 1= A0y p(a’ + At, t) + Orp(2’ + A, t). Using Fubini’s

theorem, we obtain

/0 h /R WO + ADuy) dardt = /R /0 " o) (! ) da'dt
_ /R wo(a) /0 o ) da'dt
_ —/Ruo(:c’)d)(:c’,()) da’
_ /R wo(z)é(z, 0) dz.
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(ii) Let A = PDP~! be the spectral decomposition of A. We have
(Opu +PDP10,u = 0) <= (9,P'u + DI, (P~ u) = 0).
Setting w := P~ 'u, the above problem is thus equivalent to solving
oyw + Do, w = 0, w(z,0) = wo(z) =P tug(z).
Let (A1,...,\n) be the eigenvalues of A and (v1,...,v,,) be the associated eigenvectors, i.e.,
P = [vy...v,]. Let (wi(z,t),...,wn(z,t)T = w(z,t) and (woi(z),. .., wem(x))" = wo(z). We

obtain dyw; + NOyw; = 0, wi(x,0) = wy(z) for all I € {1:m}. Using Step (i), we infer that
wy(z,t) = wor(x — N\it) is a weak solution to this problem. We conclude that

U(l’,t) = Z P”/ (P_l)l’l”uol” ({I; — )\l’t)'
I,01"e{1:m}

(iii) The eigenpairs of A are (¢, (1,¢)7) and (—¢, (1 —¢)T), i.e.,

11 L1 e 1
]P_<c —c)’ P _%<c —1)'

Upon defining ug(x) = (uo1(x), uo2(x))7, we have

_ 1 (cups +u
_ m—1 _ 1 01 02
wo(w) =P~ uo(z) = 2 (Cum - U02> ’

Hence, we have

wiw,t) = 2¢ \cuor(z + ct) — uga(z + ct)

1 <cu01(x —ct) + ug2(z — ct)> 7

and since u(z,t) = Pw(z,t), we conclude that

(o, t) = 1 < cupr (z — ct) + upa(x — ct) + cuor(x + ct) — uga(x + ct) >

2¢ \ Pug(x — ct) + cuga(z — ct) — ugy (x + ct) + cugz(z + ct)

Exercise 80.2 (Linear wave equation). We just verify the statement by doing the computation

for each pair:
1 c 1
An) (cn> - (c2n> ¢ <cn) ’
Aln) <—in> - (c%i) - (—in) '

Now, let vy, ...,v4_1 be such that (n,vy,...,v4_1) is an orthonormal basis of R?. We have

A(n) (Sl) - (’”6") =0 (3), Vi€ {1:d—1}.

Exercise 80.3 (Entropy inequality). Let (uc)ie{1:m} be the components of u.. Let us multiply
the equation dyu, + V-f(ue) — eAu. = 0 by the column vector Vn(u.) whose components are
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Ov;n(ue) for all i € {1:m}. Using that Ou;qr(v) =3 ;1. ) (V) y, (£ix(v)), we infer that

Z 8vi77(ue)atuie + Z 81; Z 8 1k ue 8:Ekujé

ie{l:m} ie{l:m} ke{l:d}

je{l:m}
Z avi n(ue)Auze

ie{l:m}

= Z Z 'UJ qk ue awku]e

ke{l:d} je{l:m}

Z V'(avi(n( E) uze Z V m )Vuzé

i€{l:m} i€{l:m}

= 0(n(ue)) + V-(q(uc)) — eAln Z Z Dviv; (N(te)) (O uje) (O thie)-

ke{l:d}i,je{l:m}

For every k € {1:d}, the quantity >_, ;1.3 Ov,v; (7(®e)) (02, uje) (O, wic) is nonnegative since 7
is convex, i.e., the matrix 0y, (n(u.)) is symmetric positive semidefinite. We have thus proved
that

O (n(ue)) + V-(q(uc)) — eA(n(ue)) <0

Exercise 80.4 (Convexity). (i) Apply the implicit function theorem.
(ii) The definition of (7, s) implies that

o(r,e(r,o(r,¢e))) = o(r,e), Y(r,e) € TxE.

But o being strictly monotone increasing with respect to the second variable, the above identity
implies that e(7,0(7,e)) = e for all (7,e) € TxE.

(iii) Let us first prove that (b) implies (a), i.e., we want to prove that the function e is strictly
convex if the function —o is strictly convex. Let (7,s) € TxS. Using the hint, we need to prove
that D2e(r,s)((7', ), (7', s")) > 0 for all (7/,s') € R*\{(0,0)}. Using the Fréchet differential
notation (see Appendix B) and applying the chain rule to the identity o(7,€(7, s)) = s, we obtain

Do(1,e(1,8)) (7', De(r, s)(7', ")) = &'
Applying the chain rule again, we obtain

D?o (1, €(T, s))((7', De(r,s) (7', 8")), (7', De(r, s) (7, 5')))
+ Do (7, (T, ))(O D?e(r,5)((7', 8", (T/,S/))) =0.

Using that Do(7,€)(0,h) = 0.o(7,e)h and d.o(r,e) > 0, we infer that

D?o(r,e)((7',€),(7,€))
D2 S /7 S/ ’ /7 S/ = - , , , 7 )
e (. ), (7, ) s
with e := (7, s) and e’ := De(7, s)(7/,s'). Since —o is strictly convex by assumption, the above
identity proves that e is strictly convex. Let us now prove the converse statement. Let (7,¢e) € T xE
and let (7/,¢’) € R?. Let us set s := o(7,e) and s’ := Do(r,e)(7’,¢'). Reasoning as above, we
obtain

D?o (T, e)((T', e, (7, e')) = —0.0(T,e)D?¢(r, s)((T', s, (7, s')).
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This shows that if € is strictly convex, —o is strictly convex.

Exercise 80.5 (Euler). (i) The function e(p, m, F) is clearly not convex since Op,,m,e(p, m, E) =
—1/p? <0 for all i € {1:d}.

(ii) The matrix K is upper triangular, and its diagonal entries are nonzero since p > 0. Hence K
is invertible. The matrix C' is negative definite iff the following matrix is negative definite

o Opps + %Bps Opes
Opes Oes )

Setting o (1, ¢) := s(77 1, €), we obtain

o < 40,0 —72(’“)760)

720, 0 Oe0

We then infer that C’ is negative definite since the function o(r,e) is strictly concave. Hence, C
is negative definite. It is now clear that D?W¥ is positive definite, so that the function ¥ is strictly
convex.

(iii) Let 6 € [0,1] and ug = (po,my, Eo)" and u; := (p;,m], F;)7 be two members of the set
B:={ul|p>0, e(u) >0} Let us set ug := ug + (1 — )us = (pg, m}, Ey)T. Clearly, we have
po = 0po + (1 — 0)p1 > 0. Moreover, we have

(9/)0 + (1 — 9)p1)(9E0 + (1 — Q)El) = 92p0E0 + 9(1 — 9)(p0E1 + plEO) + (1 — 9)2p1E1

1 1 1 1
> 92§m3 +6(1 — 6)(2—0—m% + %§mg) +(1— 9)2§m%

1 1
> 92§m3 +6(1—-60)momq+ (1 — 9)2§m%

pol o pml o
01 —-6) == == — . )
+6( ) (p1 2m1 + o 2m0 mo-m,

Using that mg-mq < %(%m% + Z—‘l’m%), we infer that

(Opo + (1= 0)p1)(0Eo + (1 = 0)E1) > 5 (6mo + (1 - 0)ma)>,

1
2
which shows that pgEy > %mg Since pp > 0, we conclude that e(ug) = Ep/py — %mg/pg > 0.
We have thus proved that ug € 5.

Another way to prove the above result consists of observing that w — pe = p(E/p — $m?/p?)
is a concave function because D?(pe)(v,v) = —%(%a —b)? for all v := (a,b",¢)T € RxRIxR.
Let 6 € [0,1] and ug := (po, my, Eo)T, uy := (p1, m], E1)T be two members of the set 3. We have

(pe)(Ouo + (1 = O)ur) = 0(pe)(uo) + (1 = 0)(pe)(ur) = 0,

which proves that e(fug + (1 — 0)uy) > 0 because p(Qug + (1 — @)uq) > 0.

To establish the convexity of the set B,., we proceed as above. We first observe that the function
u — p®(u) — pris concave. Let § € [0,1] and ug = (po, m{, Eo)T, w1 = (p1,m], E1)" be two
members of the set B,.. We have

(p® — pr)(Ouo + (1 — O)u1) > 0pP(ug) + (1 — 0)pP(w1) — (Opo + (1 — ) p1)r

> Opor + (1 —0)p1r — (Bpo + (1 — 0)p1)r
>0,
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where we used that p®(ug) > por and p®(wuy) > pyr. This proves that ®(Oug + (1 — O)uy) > r
because p(Oug + (1 — 0)ug) > 0.

(iv) Using the hint, we have p(7,s) = —d.€(7,s). With an obvious abuse of notation, we obtain
0,p(7(p),s) = —p% (T, 8) = p%(?”e(r, s), and we know that Or-€(7,s) > 0 since € is strictly
convex. Hence, 0,p(r,s) > 0 for all (7,s) € (0, 00)xR.

Exercise 80.6 (Wave equation blowup). (i) One can eliminate v by taking the time derivative
of the first equation, taking the divergence of the second equation, and taking the difference between
the results. This yields dyu — V-Vu = 0.

(ii) Let us compute dyv = dyw e, and Vu = d,u e,. Using the chain rule, we have

O == (rf'r 1) = fr + ) 47/~ 1) = f(r — 1),
O — %(rf’(r—l—t) Cfr ) f =) — fr—1).

Hence, 0;v 4+ 0,u =0, i.e., v + Vu = 0. Let us compute dyu and V-v = T%(’“)T(r%). We obtain

Oy — %(f’(r )= Fr—1),

¢
T%@T(r%) = _Tiz ; (rf"(r+7)+rf"(r—7))dr
T

1 ! /
= —T—2(7’f (r+t)—rf (r—t)).

Hence, yu + 59, (r?v) = 0, so that dyu+ V-v = 0.
(iil) Using that f is odd, we have f(r —t) = —f(t — r) and

u(0,t) = lim m
T T

rl0

(L0, fe=0)

T T

Recalling that f(t) = Lug(t) for all t > 0, we obtain u(0,t) = tu(t) + uo(t) for all t > 0.

(iv) We obtain for r = ||@|/,2 < 1,

2u(a,1) = T QZ =T oy gyt

since ug(1 +r) = r*(1 — r)? and uo(1 —r) = 0. Hence, lim, o u(xz,1) = co because o < 1. The

function u(zx, 1) is also nonzero for r € [2, 3] where we have 2u(z,1) = r~'(r — 1)(r —2)*(3 —r)2.

Therefore, we have
Vu(x,1) = (r*"2 + O(r*1))e,,

for r = ||z||2 < 3 and Vu(zx,1) = 0 for » > 3. Hence, we obtain
1 1
|u|§11(R3) = / 20242 qp 4 / r2e D2 qr ¢
0 0

The quantity |U|%11(R3) is bounded since o > 1, ie., 2(a —2) +2 > —1.
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Exercise 80.7 (1D linear wave equation). (i) We have d = 1, n = e,, and

A(n) = <£ %0> .

There are two distinct eigenvalues \; = —a, A2 = a with corresponding eigenvectors 7 = (pg, —a)"
and 2 = (po,a)’. The eigenvalues being distinct, A(n) is diagonalizable. This proves that the
system is strictly hyperbolic.

(ii) The two characteristic families are linearly degenerate since DAj(u) = 0 and DAy(u) = 0 for
all u € R2.

(iii) Let us express uy, and wp in terms of the two eigenvectors. We have uwy, = o171 + agre with

oy = 3PL = poVL o, = 2PL + povr
' 2apy ? 2apg

Similarly, ur = S171 + B2r2 with

_ PR — POVR By = apr + PoUR

o 2apg 2apo

(iv) Since the two characteristic families are linearly degenerate, the solution to the Riemann
problem is composed of three constant states separated by two contact discontinuities moving at
speed —a and a. Let u* be the middle state. The Rankine-Hugoniot condition implies that

flur) —f(u’) = A(n)(ur —u’) = —a(ug —u’),

f(u*) —t(ur) = A(n)(u* — ugr) = a(u” —ug).

This, in turn, implies that there are ui, uo € R such that uy — u* = p17r; and u* — up = pors.
Hence, we have
H1T1 + floT2 = UL — UR = Q171 + a2 — B1T1 — BaTo.

Since the two eigenvectors are linearly independent, this implies that
p = ar — P, po = az — Pa.

Thus, we have
u* = Biry + Para + (a2 — fB2)r2 = fi71 + Qara.

In conclusion, we have

b — WPR=POVR | APL +pove  alpr + pr) + po(ve — vR)

2a 2a 2a ’
v* — _OPRZ POVR | APL +povr _ alpr — pr) + po(vr + vR)
2po 2po 2po

The solution is given by
uy, if v < —at,
u(z,t) = Cu*  if —at <z < at,
ugr if at < x.

(v) We have p* < min(pr, pr) if

alpr+pr) +po(ve —vr) _ prR+pL n po(vr — VR)

n(op. o) >
min(pz, pr) %, D %
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which can be rewritten as

PO(UL - UR)
2a

. PR+ PL 1
<min(pr, pr) = ——5— = —5lor — PRl

Similarly, we have p* > max(pr,, pr) if

alpr+pr) +po(vL —vr) _ prR+PL n po(vr, — vR)

max(pr, pr) > ,
( ) 2a 2 2a
which can be rewritten as

po(vr — vR)
2a

PR+ PL

> max(pr, pr) = =

Y |
—2pL PRI

In conclusion, we have p* < min(pr, pr) if po(vr, — vr) < —alpr — pr| and p* > max(pr, pr) if
po(ve — vr) > alpL — prl.
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First-order approximation

Exercises

Exercise 81.1 (1D approximation). Consider the one-dimensional problem du + V- f(u) =0
with D := (—=1,1) and f(v) := f(v)ey. Let I € N, I > 3, and consider the mesh 7, composed of
the cells [x;, x;41] for all 4 € {1:T—1}, such that —1 =: 2y < --- < zy := 1, with h; := z;41 — ;.
Let P§(Tr) be the finite element space composed of continuous piecewise linear functions on 7y,.
(i) Compute ¢;;—1 and n;,;—q for all i € {2:1T}, ¢;; and m; for all i € {2:1—1}, and ¢; 11
and m; ;41 for all ¢ € {1:7—1}. (ii) Assuming that f is convex, compute Amax(72;—1, U, UP ),
Amax (Ti—1,i, UP_ 1, UT), Amax (P i1, UP, U ), and Amax(nigr,i, UR, UR). (ili) Compute dff;
and df;, ;. (iv) Justify (81.11).

Exercise 81.2 (Symmetry). Let i € A5. (i) Show that ¢;; = —¢;; for all j € Z(4). (ii) Show
that Amax(nij, U, U ) l[eijllez = Amax(nji, U5, U ) [l el 2.

Exercise 81.3 (Average matrix). Let A C R™ and f € Lip(A4;R™*¢) with components
(fr1)regr:my,ieq1:ay- Let up, ur € R™ and consider the matrix Ay := fol Oy, (f-n)p(up +0(ur —
upr))dl. (i) Show that (f(ur)—t(ugr))n = A(ur—ug). (ii) Assume from now on that m := 1 and
set A := A, i.e., we are working with scalar equations. Compute A if uy, # ug, lim,, ., 4 and
lim,,; .y, A assuming that £ is C1. (iii) Under which conditions do we have |A| = Apax (1, ur, ug)
if £ is either convex or concave? (Hint: see §79.2.) (iv) Take df; := |A| in (81.9) with n := n;j,
ur, = U?, and up := U;-’. Prove that Theorem 81.8 still holds true if 7 is small enough.

Exercise 81.4 (Entropy glitch). Consider the one-dimensional problem d,u + V-(f(u)e,) =0
with D := (—1,1) and data ug(z) := —1 if x < 0 and ug(z) := 1 otherwise. Let I € N\{0}
be an even number, and consider the mesh 7, composed of the cells [x;,z;41], i € {1:1-1},
such that —1 =: 21 < -+ < zy := 1 and T1 <0< Ty Let h; := xi41 — ;. Let PE(Th)
be the finite element space composed of continuous piecewise linear functions on 7. (i) Take
i = llcijllez|(f(UR) — f(U;I))/(U:‘ — U7)| if U # U and df} = llcijllez| f/(UR)| otherwise. Prove
that Theorem 81.8 still holds true if 7 is small enough. (ii) Consider Burgers’ flux f(u) := fu’e,.
Take uf (x) = Y ;c 4, Udpi(x) with UY := —1if i < 47 and U} := 1if i > 37+ 1. Using the
above definition of df};, show that the scheme (81.9) gives uj = uj for any n > 0. Comment on
this result.
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Solution to exercises

Exercise 81.1 (1D approximation) (i) We have ¢; ;-1 = —%em and n;;—1 = —e, for all
ie{2:I},¢;; =0and m; = Bicathe 1+h for all i € {2:1—1}, and ¢; 141 = ew and n; 41 = e, for all
ie{1:1-1}.

(ii) Since the function f = e,-f is convex, we have

fur)=f(ur)

/\max(em,uL,’u,R) — UL —UR |
max(|f'(ur)|,|f'(ur)]) otherwise.

if up, > UR,

Since n;_1,; = e,, we obtain

FUE_)—fUY) .
o FUT > Un,
Amax(Mi—14, Ul 1, UT) = ’ Ur_,—U" if U 1> U
max(|f (UL [f/(UR)])  otherwise.

Since n; ;-1 = —e, so that n; ;—1-f = —f is a concave function, we have
I )—f) .
’74’ if ur | > ur,

)\max 1,0— ,U?,U?,
i )= {max(|f( Db 1 (UM)])  otherwise.

We observe that Apax(—ez, U 1, UP) = Apax(eq, U, U ;). Using the above relations with the
index 4 shifted by 1, we finally infer that

FUE ) FUF)
’ﬁ lfU >UH_1,

max(|f (U )], [f/(U7)])  otherwise,

)\max(ni,iJrlv U Uz+1) {

and
FUP)=FUD)

ogn if Uy > U,
Amax (Pit1,i, Uiy, Uf) = { S e o
max (| f (U7, [f'( #1)|) otherwise.

(iii) The above computations show that
. _ 1 [|ERe if U, > Uz,
Wl T max(|f’(U§Ll)|, |f/(UR)]) otherwise,

f(U 1 f(U”) e n n
=3 w7 (U2 )l [/(UR))  othervise

(iv) In the case of the linear transport equation, we have f(u) = fBu, so that f’'(u) = 8. Hence,
di;_q = d};,; = |B|. Using that

urtt =up + s (f(Uy) = f(ULq)) + S (Ui = U7 + midi,i-i—l(Ui-',-l - U7),
we obtain
urtt = Uy + 2mzﬂ( = Ul + —2mi|ﬂ|( i = Ul + (Ui, —U7)
ny T no_yn T _ o yn
= U7 + 5 (3 + BV U + 518 V)
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This is (81.11).

Exercise 81.2 (Symmetry). (i) Since i € Aj,, we have ¢;5p = 0, so that integrating by parts,
we infer that

Cij :/ <p1V<pJ d.’,E = —/ (pJV(pZ d;zj — _Cji-
D D

(ii) The identity ¢;; = —cj; implies that n;; = —nj;. This shows that up to the change of variable
x — —z, the Riemann problem with flux f'n;; and data (ur,ugr) has the same solution as the
Riemann problem with flux f-n;; and data (ug,wr). This implies that the maximum wave speeds
in the two Riemann problems are identical.

Exercise 81.3 (Average matrix). (i) Let us define () := t(ug + 6(ur — ugr))n. Let (f-n),
for all & € {1:m}, be the components of f-n and let (ur — ug)w, for all ¥ € {l:m}, be the
components of u;, — ug. Using the chain rule, we have

Opr(0) = D Ou, (En)i(ur + 0(ur — ug))(ur — up)y.

k'e{l:m}

This proves that
1
(F(us) ~ £(ur))n = / Do (6)

= 3 ([ st + s~ ) 00 s we

k'e{l:m}

= A(’U,L — UR).

(ii) Let us take m := 1 from now on. Then A := A is a scalar. From Step (i), we infer that A =

W if uy, # ugr. Moreover, limy, ., A= (fn)(ur) and lim,, ., A= (fn) (ur).

(iii) Let f and f be the lower and upper convex envelopes of f-n over the interval conv(ur, ug),
respectively. Notice first that A = f' if f(v)n is concave and A = f' if f(v)-n is convex. In
conclusion, if f(v)-n is convex, we have |A| = Apax(n, ur,ur) only if uy, > ug, and, if f(v)-n is
concave, we have |A| = Apax(n, ur, ur) only if u;, < ug. The solution to the Riemann problem is
a shock in both cases.

(iv) Let us set A;; £ )mj_f(u DM i Uj # U; and A;; := f'(U;)-n;; otherwise. Let d}; :=
([ s o | A s i (51.9). We b

Ut —up "
m e 3 (- ey )
JEL(1)
- X ((f(U?) — FU))misles e + iy (U = Up))
JET(@)\{4}
= > (df = Agjlleijlle) (U7 — UP).
JET(@)\{4}

This, in turn, implies that

n T T n T mn n
Uit = (1 - > —(d; — Aij||cij||fz2)) Ur+ Y ——(dij = Aijlleislle2)U;
JETON{i} " JET@N{} "
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Provided 7 is small enough so that 1 — 7. 7.\ (3 7 (45 — Aijlleijllez) = 0, we have a convex

mn
j
combination, because d; — Ajjl[cijli2 > 0 by definition of d};. This means that U?* s in the
convex hull of {U}};cz¢;). In conclusion, the local maximum principle holds true.

Exercise 81.4 (Entropy glitch). (i) The statement is proved in the solution of Exercise 81.3.
(i) Let us consider the approximate initial data uf = >, 4 Ui(z) with U := —1if i < 37
and U? =11if 7> %I + 1. Let n > 0. The definition for the update U?H is

Uit = Up + (f(UiLy) = f(UE)) + Ediifl(uifl - U+ EdiiJrl(UiJrl - Ui),

2m1‘

for all i € {2:1—1}, whereas Uf = —1 and U} = 1. It is clear that U} = U for all i < £ —1 and

a11§—|—2§i. Fori:%,wehave
0o _ 0 _ 0o _
Ur_, =-1, U%——l, Ur =1,
giving
U W )=ta-1=o0
f( £+1)_f( L 1)_5( - )_ ’
1 1
0 _ 1110y 0 _
diga =3 UDI=3 dp =0

i1+1 142
giving
J(U} )~ F(UD) = 50— 1) =0,
3 2 2
d%ﬂ,é =0, d%+1,§+2 - %|f/(U%+l)| = %
Hence, U} = = U9 In conclusion, uj = uf, so that u}! = uY, for all n > 0. This shows that

L1 L

2 2

the numerical solution is a stationary discontinuity, whereas it should be an approximation of an
expansion wave. Hence, the method does not converge to the entropy solution.



Chapter 82

Higher-order approximation

Exercises

Exercise 82.1 ((a—f3) vs. Butcher representation). (i) Consider the ERK scheme de-
fined by the Butcher tableau (82.11), i.e., the matrix A € R**® and the vector b € R*. Con-
;‘r 8 of order (s + 1), with 0 := (0,...,0)T € R®. Set u() :=
u” + sze{l;i_l} a;jk; for all i € {1:s}, where a;; are the entries of the matrix A. Consider
the vectors U := (u™,...,u®) w7 and F(U) := (L(t, + cim,u™), ... Lty + csm,u®)),0)T.
Show that U = u"E + 7AF(U) with E := (1,...,1)T € R**!. (i) Consider the scheme defined
by the (a-f) representation (82.6) with v; := cgx4q for all k € {0:s—1}. Let a and b be the
(s +1)x(s+ 1) strictly lower triangular matrices with entries 8,41 g+1 := ik, bix1 k41 = Bix for
all1 < k+1<i<s. Show that (I — a)E = E; with E; := (1,0,...,0)T € R**!. (iii) Consider
the vectors W = (0@, ...,w)T F(W) := (L(t, + c17,w®), ..., Lty + com,w®Y),0)T. Show
that W = w"E + 7(I — a)"'bF(W). (iv) Compute the matrices a, b, and (I — a)~'b for the
SSPRK(2,2) scheme. Note: this exercise shows that given the (a-f3) representation (82.6), there is
only one associated Butcher tableau. But given a Butcher tableau, there may be more than one
(a-3) representation since the factorization A = (I — a)~'b may be nonunique.

sider the matrix A :=

Exercise 82.2 (Quadratic approximation). (i) Give the expression of the reference shape
functions for the Lagrange element (K Py1,{01,02,05}) where K :=10,1], 51(p) := p(0), 52(p) :=
p(3), 93(p) := p(1). (ii) Compute the reference mass matrix My with entries [z @(E)@\, () dz.
(iii) Compute the lumped reference mass matrix M . What should be the sum of the entries of
Mf(? (iv) Let D :=(0,1). Let No > 1, [ := 2N+ 1,and let 0 =: 27y < ... < xy := 1. Counsider the
mesh 7, composed of the cells K, := [Zom—1,Z2m+1], Ym € {1:No}. Let hyy = Zomi1 — Tom—1.
Let P§(Tn) be the H'-conforming space based on 7T, using quadratic polynomials. Give the
expression of the global shape functions of P5(7},) associated with the Lagrange nodes {x;}ic 4,
with Ay, := {1:T}. (v) Give the coefficients of the consistent mass matrix. (vi) Give the coefficients
of the lumped mass matrix. What should be the sum of the entries of M“? (vii) Is it possible to use
the above Lagrange basis together with the theory described in §81.1.2 to approximate hyperbolic
systems? (viii) Is it possible to apply Corollary 81.9 and Corollary 81.157?

Exercise 82.3 (Quadratic Bernstein approximation). Consider the following reference shape
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functions on K := [0, 1]:
0.(2) = (1—-%2)2, 0(2):=22(1-7), 053):=2>

(i) Show that {51,@\2,53} is a basis of P21. Show that these functions satisfy the partition of
unity property and that p(z) = p(0)6:1(Z) + p(3)02(2) + p(1)85(z) for all p € Py 1. (ii)-(viii) Redo
Questions (ii)-(viii) of Exercise 82.2 with the above reference shape functions.

Exercise 82.4 (Gap estimates). The objective is to prove Lemma 82.10. (i) Let UM"*! be
the update given by (81.9) with the low-order graph viscosity d{; Consider the auxiliary states

U?j = 5(U} + Up) — (F(U}) - f(U?))2§Ljn defined in the proof of Theorem 81.8 for all j € Z(i),

i—)
and set U]"" 1= % DT\ 2rdi; U,;. Show that

my

n n n nj*,n T m s n n
Ut = (1 =4V +97V; ‘f’ﬁ Z (d/ij_dz% J(U7 = Ui).
' jET(i)\{i}

(i) Using that Uj;" < U", dii < d;7", and U}M"™ — U™ 5 0, show that
n+1 M,n m,n M,n n n n T L.n n
UPF < UM (U U (L= 0 (=) = 0 > —d3).
JjeL(i—

(iii) Using that d}; > d{-“j’"z/}f and ! > 0, prove the upper bound in (82.23). (iv) Prove the lower

bound in (82.23).

Solution to exercises

Exercise 82.1 ((a—f) vs. Butcher representation). (i) Using the notation from (82.12), we
set

uM =y

u® = u" 1 Z aijk;, Vi € {2:s}.
je{l:i—1}

Then we have k; = L(t,, + ¢;7,u?) for all i € {1:s}. This implies that

u ="+ Z aij L(t, + cjr,u?), Vi e {1:s},

je{ili—1}
u" ="+ Z 7b; L(t,, + cimyu™).
ie{l:s}
Let us define the vectors
U:= (u(1)7 7u(s)7un+1)T7
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Setting E := (1,...,1)T € R**! the above identities can be rewritten as
U = u"E + rAF(U).

(i) The identity (I —a)E = E; is a consequence of 3,y ; 4y a; = 1 for all i € {1:s}.
(iil) Let W := (w© ... w) T F(W) := (L(t,+erm,w®), ... L(t,+cor,w®=),0)T. The scheme
(82.6) is equivalent to
W = u"E; + aW + 7hF(W).
The identity (I — a)E = Eq, in turn, implies that W = u"E + 7(I — a) " *bF(W).
(iv) For the SSPRK(2,2) method, we have

0 0 0 00 0
a=(1 0 0], Db=[1 0 0],
1 1 1
3 2 0 0 3 0
leading to

100 0 0 0
I-a)?t=1[1 1 0}, I—a)'b=[|1 0 0

131 : 30

We recover the leftmost Butcher tableau in (82.13).
Exercise 82.2 (Quadratic approximation). (i) We have

0,(2) = (1 —2)(1—27), 0:(2)=42(1—17), 03(z)=z(2z —1).
(ii) We have

1
Ms=—
K 15

Nl= = DN
— 00
[N R I

(iii) Recall that the entries of M are My 0ij, where Mg ;= > .y mp ;. and N = {1,2,3}.
This yields

L, {t 00
Mg=2{0 40
0 0 1

Owing to the partition of unity, we have Mz ; = >\ [z @@ dz = [ 9; dz. Hence, the sum of

the entries of Mz is >, Mg s = Yien J7 0;dz = |K| = 1. This is indeed the result that we
have obtained above.
(iv) Setting 7 := =2~ we have

Gom_ 11, (1) = 01(D),  Pomik,, (r) = 02(D),  Poms1|x,, (&) = O3(F).

(v) Let m;; denote the generic coefficient of the mass matrix. We have

1
mii 5 1, Mi2 5 1, M3 30 1

For all m € {1: N}, we have

1 8 1

_hm; m,2m — _hm; m,2m = _hm
15 maom,2 15 mMam. 2m+1

15

mMam,2m—1 =
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If N, > 2, then we have for all m € {2: N, },
1 1

Mam—1,2m—3 = —%hm—h Mam—1,2m—2 = Ehm—h
M2 —1,2m—1 = 1—5(hm—1 + hum),
1 1
Mo —1,2m = ma, M2y —1,2m+t1 = _%hm-
Finally, we have
1 1 2
MIN,+1,2Ne—1 = —%hNe, M2N,+1,2N, = 1_5hNea MIN,+1,2Ne+1 = 1_5hNe-

(vi) Let m; denote the generic diagonal coefficient of the lumped mass matrix. We have
1
ml - ghl

For all m € {1: N}, we have

mzm - ghm

If N, > 2, then we have for all m € {2: N,},

1
Mom—1 = g(hmfl + hm)

Finally, we have
_ 1
MaN,+1 = gth-
Using the partition of unity, the sum of all the entries of the lumped mass matrix M is equal to

ica, 2jea, Jppivide = 34, [ppide = |D| = 1. This is indeed what we have obtained
since

1 1 1 2
E m; = —hi +—=h E —(hm—1 + hm E —hm
_ mi = ch + g/ + 6( 1+ hin) +
i€ Ap me{2: No} me{1l: Ne}

“(r3), X, =it

me{l: Ne}

(vi) It is possible to use the above Lagrange basis together with the theory described in §81.1.2 to
approximate hyperbolic systems because the coefficients of the lumped mass matrix are positive
(see (81.5)). This is the only required condition.

(viii) Tt is not possible to apply Corollary 81.9 and Corollary 81.15 because the shape functions
can take negative values.

Exercise 82.3 (Quadratic Bernstein approximation). (i) Assume that there are aq,as2, a3
$.t. @101 (%) + a202(T) + asb3(z) = 0 for all ¥ € K. Then

a3E2 — 2&2@2 + a1E2 + 2&257\ - 20,1./%\ +a; = O,

Le., a3 —2az + a1 =0, 2a3 — 2a1 = 0, arid a; = 0. This immediately implies that a; = 0, as = 0,
and a3z = 0. Hence, the functions 61, 65, 03 are linearly independent. Finally, we verify that

0.(7) + 02(2) + 05(3) = F+1-2)>=1, VieK,
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thereby proving the partition of unity property. Let now p € Py;. There are ai,as,as s.t.
D = a161(Z) + a202(Z) + a3b3(Z). Then p(0) = ay, ]3(%) = %al + %ag + %ag, and p(1) = as. Assume
now that p € Py 1. Then p(3) = 2(p(0) + p(1)) = 2(a1 + a3), ie., Tar + 3az + Tas = $(a1 + a).
This implies that as = %(al +ag) = ﬁ(%) Hence, for all p € Py 1, we have

P(@) = D(0)61(Z) + B(5)02(T) + p(1)03(2).
(ii) We have

1 1 1
SN I
R=5(2 3 2
§ 2 1
(iii) We have
[t 00
Mez==[0 10
3
0 0 1
Clearly, > ;o Mz ;i = |K| =1 as expected.
iv) Setting 7 := T=2m=1 e have
(iv) ) h

Gam_ 11K, () = 01(D),  Pamik,. (@) = 02(F),  Pami|k,, (x) = O3(%).

(v) Let m;; denote the generic coefficient of the mass matrix. We have

1 1
—hi, miz= %hl-

1
mi1 = ghh miz = 15

For all m € {1: N.}, we have

1 2 1
mam2m—1 = 1_Ohmu mam,2m = 1_5hm7 mam2m+1 = 1_Ohm

If N, > 2, then we have for all m € {2: N, },

1 1
Mam—1,2m—3 = %hm—h Mam—1,2m—2 = Ehm—h
1
Mom—12m—1 = g(hmfl + h),
1
mMam—1,2m = Ehmv mom—1,2m+1 = %h’m-
Finally, we have
1 1 1
M2N,+1,2Ne—1 = %hNe, M2N,+1,2N, = 1_OhNea MIN,+1,2Ne+1 = ghNe~

(vi) Let m; denote the generic diagonal coefficient of the lumped mass matrix. We have
_ 1
my = §h1

For all m € {1: N}, we have

1
mzm - ghm
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If N, > 2, then we have for all m € {2: N, },
1
Mom—1 = g(hmfl + hm)

Finally, we have

_ 1

MaN,+1 = ghNe'
Clearly, > ;¢ 4, ™i = | D| as expected.
(vi) It is possible to use the above basis together with the theory described in §81.1.2 to approximate
hyperbolic systems because the coeflicients of the lumped mass matrix are positive; see (81.5). This
is the only required condition.
(viii) Tt is possible to apply Corollary 81.9 and Corollary 81.15 because the shape functions are

nonnegative.

Exercise 82.4 (Gap estimates). (i) Let us denote by UL"*! the update given by (81.9) with
the low-order graph viscosity d{; Subtracting (81.9) from (82.17), we obtain for all i € Ay,

n ,1 T mn s n n
Ui+1 = U? i +— Z (dij _d?j )(Uj - U7).

" JET()
Introducing the auxiliary states U?j = (U +Up) = (£(U}) = F(U})): 2;;_;” as defined in the proof
of Theorem 81.8, we have the identity (81.14), i.e.,

2rd" 2rd"
Ln+l _ ' n 17 ij n
Vi _Ui<1— > —i)+ > i U,

JeZ(\{7} JeT(W\{7}

An important property of the auxiliary states is that UZ— e [u™™ UM (see Lemma 79.18 and

% %
2rd"

Remark 79.19). Owing to the definition of 4" and di;", we have /" := 2o e} m—”a so that

n 1 27'd?j’n_n
Ui = > — U

T jezangy

. . . —n
is a convex combination of {U;;}iez(;). Hence, U7" € [U?",UIZVI"] Thus, we have U{-“’"H =

(1 —4™M)UZ +~U™, and this, in turn, implies that

n n n nyk.n T m sn n n
Ui+1:(1_7i WU+ U; +E Z (dij_dq%j )(Uj - Up).
" JET()\{i}

(i) Using that Uj;" < UM we infer that

Ut S UM (UF - UYL+ DT (df - (U - 7).
" JET()\{i}
Then, using that dj; < d;" by definition, the above inequality gives
Uptt S UM (U7 - U (=) 4 T (d" - dg)(UF - U)
' jET(i)

SUM (U U ) o DT (d - (U7 - U,
' jeT(iv)
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Now, using that Ui-\/[’" — U™ 2 0 and that U? is in the convex hull of Ui-\/[’n and U;™", we have
Up = 07UM" 4+ (1 — 07)U™™ where 67 € [0,1] has been defined in (82.20). Hence, U} — UM™"™ =
—or(U™™ — UM™Y and UP — UM = (1 — 07) (U™ — UM™). With these definitions, the above
inequality is rewritten

n N m,n ,n 7n n 7n T \n mn
U S UM (U = UM (L= ) =) =07 3 (d" - d)).
" JET()

(iii) Using that d; > di7"4 and ¢ > 0, we infer that —df; < —d;;"¥?, which, in turn, implies
the following inequalities:

n ,n m,n N n n n n T N
U S UM (U = U (L= ) =) 0 - Y dy")
" JET(T)

= U (U U (1= 6) (1= ) = 81— )"

7 7 7 7

by definition of ~; "".
(iv) The other estimate is obtained similarly. More precisely, using that U™ > U™", we infer that

UPFt > U (U = U (=) Y (dy = dg MUt = Uy
' jez(it)
> U (U - U (07 (1= A7) — (1= ) (1 — ) 577,

3 3

by definition of ~;7".
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Chapter 83

Higher-order approximation and
limiting

Exercises

Exercise 83.1 (Dispersion error). Let u(z,¢) be a smooth function satisfying diu + S0,u =
0,z € D := (0,1), t > 0, where 8 € R. Let I € N\{0} and consider the uniform mesh 7},
composed of the cells [z;,x;41], Vi € {1:1—1}, with size h := I—il = xiy1 — x;. Let PE(Tp) be
the finite element space composed of continuous piecewise linear functions on 73, and let {¢; }ic.a,
Ap = {1:1}, be the associated global Lagrange shape functions. (i) Compute the coefficients
of the consistent mass matrix, M, and the coefficients of the lumped mass matrix, M. (ii)
Keep the time continuous and write the Galerkin approximation using the lumped mass matrix
of the Cauchy problem (with the boundary condition equal to the initial condition as above) for
a test function ¢;, Vi € A9 = {2:1—1}. (iii) Let Z-(u) be the Lagrange approximation of u.
Using Taylor expansions, estimate (informally) the leading term in the consistency error RY(t) :=
mﬂ@tu(:ﬁ, t) + [ (B0 (u) i da, Vi € Aj;,. (iv) Keep the time continuous and write the
Galerkin approximation using the consistent mass matrix of the Cauchy problem for a test function
@i, Vi € A5 (v) Using Taylor expansions, estimate (informally) the leading term in the consistency
error R;(t) := m Ip (0:(Zf (w) + BO(T (u))) s A, Vi € A5, (Hint: w(w; + h,t) = u(x;) +

hoyu(z,t) + %hQ(’“)mu(:vi, t)+ %h38wmu(gci, t)+ ﬁh‘lammu(:vi, t)+ %Q()hf’('“)mmmu(:vi, t) + O(nb).)
Exercise 83.2 (FCT counterexample). Consider 1D Burgers’ equation, f(u) = f(u)ey,
f(u) == 2u?, D := (—1,1), with initial data ug(z) := —1 if 2 < 0 and ug(z) := 1 otherwise. Let
I > 3 be an odd number, and consider the (nonuniform) mesh 7;, composed of the cells [z;, 2;41],
where the nodes z;, Vi € Ap, := {1:1}, are such that —1 =121 < - - <zy:=land zp <0< x4
with I’ := I—ng Let PE(Ty) be the finite element space composed of continuous piecewise linear
functions on 7, and let {y;}ic4, be the associated global Lagrange shape functions. (i) Compute
Cii—1, Cii, Ciit1, and m; for all 7 € AZ = {2]—1} (11) Let U% = ZiEAh U?(pl(x) with U? =—1
ifi <I'and U} := 1if i > I’. Compute the Galerkin solution at t := 7 using the lumped mass
matrix, say ul,j’l. (iii) What is the maximum wave speed in the Riemann problem with the data
(—=1,1)? (iv) Compute the low-order solution at ¢ := 7, say ukl (v) Using the notation of the
FCT limiting, compute a;; for all i € A5, and all j € Z(i) := {i — 1,4,i + 1}. (vi) Show that
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l;j =1for alli € Ay and all j € Z(i). (vii) Does the approximate solution converge to the entropy
solution?

Exercise 83.3 (Quasiconcavity). (i) Let B C R™ be a convex set. Show that a function
U : B — R is quasiconcave iff for every finite set {U;}icr C B and all numbers {6;},c; C [0, 1]
with 3 ,c;0; = 1, one has (3, ; 0;U;) > min;e; U(U;). (ii) Let A C R™ be a convex set. Let
¢ : A — R be a quasiconcave function. Let z € R™, and let L : A — R be defined by L(u) := z-u
for all w € A. Let ¢ : A — R be a continuous function. Let B := {u € A| L(u) > 0} and
assume that B # (). Assume that ¢ : B — R defined by ¢(u) := L(u)p(u) is concave. Prove
that ¢;p : B — R is quasiconcave. (A first example for the Euler equations is B := A = {u €
R™ | p > 0} with L(u) := p, ¢(u) := e(u) := p 'E — 1 p~?m?, where e(u) is the specific internal
energy. Another example is B := A= {u € R" | p > 0,e(u) > 0}, ¢(u) := ®(u), where ®(u) is
the specific entropy.)

Exercise 83.4 (Harten’s lemma). (i) Consider the following scheme for scalar conservation
equations Ut = Ur—C | (Ur—UP_ )+ D (Ur, —U?) for all i € Z. Assume that 0 < C*, 0 < DP,
Cr+Dp < 1foralli € Z. Let |V|py := 3,5 [Vig1 — Vi be the total variation of V € R%. Prove that
the above algorithm is total variation diminishing (TVD), i.e., [U" "Y1y < |U?|py. (ii) Consider
the method described in (81.9)-(81.10) in dimension one. Assume that Z(i) = {i — 1,4,i + 1} and
that the mesh is infinite in both directions. Show that the method can be put into the above form
and satisfies the above assumptions if 47 sup;cy l:ln—%‘ < 1. (Hint: see Exercise 79.4.)

Exercise 83.5 (Lax—Wendroff). Let u be a smooth solution to the scalar transport equation
Oy + adyu = 0 with a € Ry. (i) Using finite Taylor expansions, show that w(x,t,11) = u(x,t,) —

Ta0yu(z,ty) + “2272 Opgu(w,t,) + O(73). (ii) Consider now the time-stepping algorithm consisting
of setting u® := ug and for all n > 0, u"*(z) := u"(z) — Tad,u™(x) + “2272 Opzu™(x). What is
the (informal) order of accuracy of this method with respect to 77 (iii) Let 7;, be a uniform mesh
in D := (0,1) with grid points ; := (i — 1)h, Vi € A, := {1:1}, h := +25. Let {¢i}ica, be
the piecewise linear Lagrange shape functions associated with the grid points {x;}ica,. Let a;
be an interior node, i.e., i € Aj := {2:1—1}. Write the equation corresponding to the Galerkin
approximation using the lumped mass matrix of the equation u"*!(z) = u™(x) — Tadu"(z) +
LQTQ o0 (2) with homogeneous Neumann boundary conditions using the test function ¢;, where
both u"*! and u" are approximated in P{(7y) := span{e;}ica,. (iv) What is the (informal)

order of accuracy of this method with respect to 7 and h? (v) Let uI};’"H =D e, U%’HH% be

the first-order approximation of u using (81.9)-(81.10). Show that m; U = m,; Ul 4 G\ -
U7, —U7) + F (A= 1)U = U7}), where v := 7. Note: the scheme is now ready for FCT
limiting. Actually, there exists in the literature a plethora of limiting techniques (like FCT) that,

after applying the limiter, make the scheme TVD in the sense of Exercise 83.4; see Sweby [42].
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Solution to exercises

Exercise 83.1 (Dispersion error). (i) Let m;; := |

p Pipj dx be the coefficients of the consistent
mass matrix M for all i,j € A, := {1:1}. We have

mij:0 1f|2—]|22,

1 1
mip = gh, mig = Eh,
M —lh m»-—éh M —lh Vie Ay ={2:1-1}
11—1—67 11—67 u+1—67 h — . ’
1 1
mrr+1 = Eh’ M1, 1+1 = §h'

Let m; = f D Pi dex = Zje A, Mij be the diagonal coefficients of the lumped mass matrix M for
all i € Ap, (all the off-diagonal coefficients are zero). We have

1 1
mi = gh, m; = h, Vi € AZ, mry1 = gh

(ii) We have Z(i) = {i — 1,4,4 + 1} for all i € A5, and recalling Example 81.5, we have ¢; ;-1 =

—%em and ¢; 41 = %ew, where e, is the unit vector orienting R. The Galerkin approximation of

the Cauchy problem using the lumped mass matrix M is formulated as follows: Find uy(t) :=
> iea, Uj(t)p; such that

1
hoU;(t) + §(Ui+1(f) —U;—1(t)) =0, Vi€ Ap,

with Uy (t) and Uy(¢) prescribed by the boundary condition coming from the initial condition.
(iii) By definition, we have

1
RlL(t) = h@tu(:ci,t) + §(u(:vi+1,t) — u(:vi_l,t)),
for all i € A5,. Using x;41 = x; £ h and the Taylor expansion

1 1 1
u(w; £ h,t) = u(z;) + hoyu(x,t) + §h2azzu(xi, t) + Eh38mxu(:zri, t) + ﬂh4azzzzu(xi, t) + O(h®),

we infer that
h2
RY(t) =(8yu + BOu) (x4, t) + ﬁgammu(:ci, t) + O(h*).

In conclusion, we have RF(t) = B%zazmu(xi, t)+O(h*). The leading term of the consistency error
at x; is second-order in h and proportional to a third-order partial derivative of w with respect to
T

(iv) The Galerkin approximation of the Cauchy problem using the consistent mass matrix M is
formulated as follows: Find vy (t) := 3", 4, U;()p; such that

éh(atui—l(t) +40,U;(t) + 0, Uiy (1)) + %(Uz‘ﬂ(f) = Ui () =0,
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for all i € Aj.
(v) Using the definition of the mass matrix, we have

1 1
7 Z myjOu(z;,t) = Opu(x;, t) + 6(8tu(:171-,1,t) — 20pu(w;, t) + Opu(witq, t))
je{i—1:i+1}

Using Taylor expansions shows that
1
Opu(x; £ hyt) = Opu(x;) £ hdgru(z, t) + §h28mtu(xi, t)

1 1
+ Eh38mmtu(:vi, t) + ﬂhélammwmtu(xia t) + O(h4)7

whence we infer that
1 h? ht
7 Z mi;Opu(z;,t) = Opu(x;, t) + E(?tmu(xi, t) + Eﬁmmxu(zi, t) + O(hﬁ)
je{i—1:i+1}
h4

n . 6

h2
= 6tu($iu t) - BFammmu(xu t) - ﬁ
By using again that

1 1
u(z; £ h,t) = u(x;) + hozulx,t) + §h28mu(:vi, t)+ Eh38mmu(xi, t)
L4 L s 6
we infer that
’U,(J,'H_l, t) - u(aci_l, t)
2h

1
- Z mi;Opu(z;, t) +
je{i—1:i+1}
1
This shows that R;(u) = B%‘Oh‘l[)zmmu(xi, t) + O(h"). The consistency error is fourth-order in h
at the interior grid points. This means that the Galerkin approximation using the consistent mass

matrix is superconvergent at the interior grid points, which is not the case when the lumped mass
matrix is used.

Exercise 83.2 (FCT counterexample). (i) We have ¢; ;1 = —%ez, cii=0andcj;y1 = %ex,
i = % The equation for U;”“l is
T T T
urtt =up + 9 (f(Uy) = f(ULq)) + oo ric (Ui = U) + e ri1 (Ul — U7,
1 1 1
with the convention that U} := —1 and U} := 1.

(i) Let U™! be the Galerkin solution at ¢; := 7 which is, by definition, obtained by solving the
above equation with d}; = 0. Since f(U)_;) — f(U},,) = 0 for all i € {0:2N}, we obtain

Uttt = .

(iii) The entropy solution is an expansion wave. The maximum wave speed is max(f/(—1), f'(1)) =
1. See also Example 79.17.
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(iv) Let us compute the low-order solution UM, Tt is clear that U?’l = UY for all i < I’ and
all i > I'+ 1. We have U}, _; = =1, U}, = —1, U}, ; =1, and f(UY, ;) — f(UY_;) = O for all
i € {I')I' + 1}. Note also that dI;,’?I,H = dI;,’ilJ, =  since the maximum wave speed in the
Riemann problem with the data (—1,1) is 1. We infer that

L,1 0 T 0 0 T
Up" =Up + —drra(Upyy —Up) = -1+ —,
my my
L,1 0 T 0 0 T
UI’+1:U’+1+ d]/+17]/(UI/_U/+1):1_ .
mip 41 mr 41
(v) In the FCT notation, we have
m UHJ -m UL,l _ I(UO _ UO )
Yy =Yy 2 '+1 g
H,1 L,1 T 0 0
m1/+1U1,+1:m1/+1UI,+1—§(U ’_UI’+1)'
This means that ap 1 = —Z(U},; —U}) = —7 and apqrp = =3 (UY, — U9 ;) = 7.

vi) Let us now compute the limiter coefficient £/ /11 wi 2 =Ur% =1an in — ymin =
i) Let te the limit flicient £1/ /1 with U = U9 = 1 and UP™ = UP,
—1. We evaluate the FCT coefficients as follows:

+ _ - _ + _ - —

P; =0, P, = -, Pr =T, Pryy =0,
+ — + —

QI/ = 2m[/ - T, QI/ = -7, Q1/+1 =T, Q[/+1 - _2m1'+1 +7-7
+ _ - _ + _ - —

Rj =1, Ry =1, Rb., =1, Ry, =1,

which gives £; ;711 = 1. Hence, Ut = U™ so that Ut = U° since U™ = U°. (vii) In conclusion,
up = uf, ie., uf = uy for all n > 0. This proves that the numerical solution is a stationary
discontinuity, whereas the entropy solution of the problem is an expansion wave. Hence, the

method does not converge to the entropy solution.

Exercise 83.3 (Quasiconcavity). (i) Assume that U : B — R is quasiconcave. Let {U;}ier C B
and {0;}icr C [0,1] with >°,.;0; = 1. Taking A := min;e; ¥(U;), the upper level set Ly(¥) is
convex. Since U; € Lx(V) for all i € I, we infer that ), , 6;U; € Lx(V¥). This proves that
WD e 0:U;) > A = minger ¥(U;). Conversely, assume that for all {U;}ie; C B and {0;}icr C
[0,1] with } ., 6; = 1, one has W(},.; 0;U;) > min;er ¥(U;). Let A € R and consider the upper
level set Ly(®). If Ly(¥) is empty, there is nothing to prove. Otherwise, let Uy,Us € Ly (7)
and let t € [0,1]. Then our assumption with I := {1,2}, 6; := ¢, 63 := 1 — ¢ implies that
U(tU; + (1 — t)U2) > min(¥(Uq), ¥(Uz2)) > A. Hence, tU; + (1 — t)Us € Lx(¥). This proves the
convexity of Ly(¥), and therefore the quasiconcavity of U.

(iif) Let A\ e Rand Ly :={u € B| ¢(u) > A} and Gy :={u € B | ¢(u) — AL(u) > 0}. Let w € L.
We have ¢(u) = L(u)p(u) > L(u)X because L(u) > 0. Hence, u € Gy. Conversely, let u € G.
Then ¢(u) = L(u)p(u) > L(u)A implies that ¢(u) > A because L(u) > 0 (recall that u € Gy
implies that w € B). This proves that Ly = Gx. The function ¢ (u) — AL(u) is concave since ¢(u)
is concave and L is linear. Hence, G, is convex since it is the zero upper level set of (u) — AL(u)
and B is convex. This proves that L) is convex for all A € R. Hence, ¢|p is quasiconcave.

Exercise 83.4 (Harten’s lemma). We have

Uit = U7 — CF 4y (U] = UYL y) + D (U] — U7,

n+l _ n n n n n n n
Ul =V — G (U, —UY) + DY (Ul s — U y).
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Taking the difference, we obtain

Ur = Ut = U, — U = O (U7 — U7 + Oy (U — U7 y)
+ Dy (Ui g — Uiy) — D (U, — UF).
Rearranging the terms, we infer that
Uﬁﬁl uptt = (Ui —UH)(A = CF = D) + Ly (U = Uiy) + Dy (U, — Uy

We take the absolute value on both sides and use the given assumptions 0 < C', 0 < D7,
C? + D} <1 to infer that

U = UF T < (U = UFI(L = CF = D) + G714 U = Uiy | + Diy [UR, — U, .

Summing over the index i € Z, we obtain

PV Vi I N (VA VA T Wy oy v o N e VA VA

1E€EZL 1€EZL 1€EZL

+ZD1+1 2 — Uity
i€EZ

< Y U = UF(L=CF = D)+ > CRUR, — U7
i€ €L

+ZDn|Uz+1 |

1E€EZL

= > IUz - ug.

i€EZ
This proves that >, , U — UPH | < 3., (U — URY

(11) Recalling that Cii—1 + Ci + Ciit+1 = 0 and that di,ifl + dzz + di,i+1 = O, the scheme (819)—
(81.10) can be put into the following form:

U?H =Ul"+ mL((f(Uf) — fUy))eciion —di 1 (U — ?71))
+ m%((f(u?) = F(U)ciivn +di 1 (U g — uy))
=Uj - L( - f(U;l)if(U?l) "Cii—1+ dl i— 1)(U;I -UiLy)

m; ur—ur_

FUT)—FU)
(T o Can + Ay ) (Ui — UD)).

Thus, UP* = U — € (UP — U ) + DP(UZ,, — U2) with
n r FUD)—FUF ) n
Ty = (- T i ),
n T UIL Un
Di = H( i +1),Uz(z ) *Ci i1 + dz z+1)
Recall that ¢;; := e, [}, ¢i0spj dx. Let us set f(v) := f(v)e, and ng; := ¢;;/||cijlle2. Recalling

Exercise 79.4, we know that Amax(ni;, U, U™ ) > |%|

Thus, we have
CRNICHENY

A1 2 ||Ciio1[[Amax(niz, U7 Uiy) = fleiiall X | =ga=gr
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Hence, C* ; > 0. We prove similarly that D} > 0. The same argument shows that

CP+ D} <2 (dfyy ;4 dfyyy) = 42d7 ; < 4-|d} | < 1.

-
m; i+1,0 = Fmy

Exercise 83.5 (Lax—Wendroff). (i) Let us start by observing that d;u = —adu and Opu =
—a0,(0yu) = a?d,,u. Using a finite Taylor expansion with respect to t, we infer that

w(x, tpy1) = u(z, ty) + T0ru(z, ty) + %zattu(ac, tn) + O(T?)
u(x, ty,) — Tadyu(x, t,) + L;Q eett(T, 1) + O(T2).

(ii) The local truncation error is O(r?), but after 1 time steps, the error is (informally) O(7?).
Hence, the scheme is (informally) second-order accurate in time.

(iif) Let us set uj(x) == > ,c 4, Ul'yi and ult (z) = Diea, Uty We observe that m; :=
J p widx = h. After integrating by parts the second-order derivative, we obtain

0272
m Ut = mU? —ar Z U?/D%-azgaj dz — —~ Z U?/D(?xgpiazgpj dz
€A i€Ap

a2T2

2h

aT

7( 1 — Uiy +

=m;Uj’ — Uiy —2UF + ULy).

The boundary terms have been removed to account for the homogeneous Neumann boundary
conditions.

(iv) Since we did not change anything on the time stepping, the (informal) accuracy in time is 72.
The approximation in space being exact for linear solutions, the (informal) order of accuracy in
space is h?. Hence, the method is (informally) second-order accurate.

(v) Using the computation done in Example 81.5, we obtain

mUP" T = mUr — ar(UP — U2 ).
Upon introducing the quantity v = 9=, we infer that

aT a27'2

miUp = miUf = ar(U7 = UiLy) = o (Ui = 207 + Uiy + = (U = 207 + URL)

%

= mUP T = 1)U — 207 + U

:mz‘U%’ H"'?(/\—l)( i+1—Ui)+7()\—1)( i —Ui).
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