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Chapter 56

Friedrichs’ systems

In Part XII, composed of Chapters 56 to 63, we study the finite element approximation of PDEs
where a coercivity property is not available, so that the analysis solely relies on inf-sup condi-
tions. Stability can be obtained by employing various stabilization techniques (residual-based or
fluctuation-based). In the present chapter, we introduce the prototypical model problem we are
going to work on: it is a system of first-order linear PDEs introduced in 1958 by Friedrichs [131].
This system enjoys symmetry and positivity properties and is often referred to in the literature
as Friedrichs’ system. Friedrichs wanted to handle within a single functional framework PDEs
that are partly elliptic and partly hyperbolic, and for this purpose he developed a formalism that
goes beyond the traditional classification of PDEs into elliptic, parabolic, and hyperbolic types.
Friedrichs’ formalism is very powerful and encompasses several model problems. Important exam-
ples are the advection-reaction equation, the div-grad problem related to Darcy’s equations, and
the curl-curl problem related to Maxwell’s equations. This theory will be used systematically in
the following chapters. All the theoretical arguments in this chapter are presented assuming that
the functions are complex-valued. The real-valued case can be obtained by replacing the field C
by R, by replacing the Hermitian transpose Z" by the transpose ZT, and by removing the real
part symbol R.

56.1 Basic ideas

Let D be a Lipschitz domain in R?. We consider functions defined on D with values in C™ for
some integer m > 1. The (Hermitian) inner product in L := L?(D;C™) is denoted by (f,g)1 :=
[ 9" f dz. Notice that (f,g)L = (g, f)r for all f,g € L. Given two Hermitian matrices B,C €
Cm™*™ (ie., B=B" C =M, the inequality B > C means that X"BX > X"CX for all X € C™.
We denote by I,,, the identity matrix in C™*™.




2 Chapter 56. Friedrichs’ systems

56.1.1 The fields £ and A*

Let K, {Ak}ke{l ay be a family of (d 4 1) fields in L>(D;C™*™). We set X' := 3 (1. 4 o A*

where 0y 1= 3 . We make the following key assumptions:

T

Boundedness: K, {Ak}ke{l:d}a and X are in L (D;C™*™), (56.1a)
Symmetry: A = (AF)M for all k € {1:d}, a.e. in D, (56.1Db)
Positivity: Jpo > 0s.t. K+ KN — X > 2401, ae. in D. (56.1c)

Notice that X = X" owing to (56.1b). Using the above fields, it is possible to define the following
differential operators on C*(D;C™):

A) =Ko+ A1(v),  A@) = Y A (56.2)
ke{l:d}
56.1.2 Integration by parts

Let us assume for the time being that the fields {Ak}ke{l:d} are smooth enough to admit a
bounded trace at the boundary 9D. Let (ny) ke{1:dy be the Cartesian components of the outward
unit normal n. We define the boundary field N" € L>(dD; C™*™) by setting

Ni= " meAfyp. (56.3)

ke{l:d}

Notice that N* = A" owing to (56.1b). Integration by parts is a key tool in the analysis of
Friedrichs’ systems. It involves in particular the formal adjoint A of A, which is defined as follows:
For all v € CY(D;C™),

Aw) = (K" = X)) — A1 (v) = (K + KM = X)v — A(v). (56.4)
Lemma 56.1 (Integration by parts). Let L(0D) := L?(0D;C™). The following holds true for
all v,w € CY(D;C™): .
(A(v),w)r = (v, A(w))L + Nv,w)roD)- (56.5)
Proof. Using (56.1b) and the divergence formula, we infer that

(Xv,w)r + (A1 (v),w)r + (v, A1 (w))

/ w (O A v + W AF O + (AFOw) M) d
D et d}

/ Z o (wH Akv) do = / wNvds = (N, w) pop).-
D ge{1:d} oD

Since the field X takes Hermitian values, using (56.4) we then infer that
Nv,w)rp) = (A@),w)L — (Kv,w)r + (Xv,w)r + (v, A1 (w))L
= (A(v),w)r, — (v, KMw)p + (v, Xw) + (v, Ay (w))r
= (A(v),w)L — (v, A(w))L. O
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Lemma 56.2 (L-norm bound). For all v € C*(D;C™), we have

R((A(),v)1) > ol + 5 (N, )10y (56.6)

Proof. Using (56.4) and Lemma 56.1, we infer that

—_
—_

S(A), ) = 50, AW + 5 (e, 0)s0m)

[\]

l——— 1 1
= —§(A(U)7U)L + 5((’C + KN = X)v,0)L + 5(/\/”, V)L(oD)>
since K + K" — X' is Hermitian. This implies that R ((A(v),v)r) = 2((K + K" — X)v,v) +
1(Nv,v) oDy, and (56.6) follows from (56.1c). O

The estimate (56.6) says that the sesquilinear form (A(v),w), is L-coercive up to a boundary
term. The key idea of Friedrichs is to enforce a suitable boundary condition to gain positivity
on the boundary term. This is done by assuming that there exists another boundary field M €
L (0D; C™*™) satistying the following two algebraic properties a.e. on 9D:

M is nonnegative: R(eHM¢E) > 0 for all € € C™, (56.7a)
ker(M — N) + ker(M + N) = C™. (56.7b)

Note that the field M is not assumed to take Hermitian values. Since any function v satisfying
(M = N)vjgp = 0 verifies (Mv,v)@9p) € R (because N is Hermitian), we infer using (56.7a)
in (56.6) that

1
R((A(v),v)z) = pollvlly + 5 M, v)1op) 2 pollvll, (56.8)

for every v € C*(D;C™) such that (M — N)vjgp = 0.

56.1.3 The model problem

Given f € L, our goal is to find a function v : D — C™ such that
A(u) = f in D, (M—=N)u=0 ondD. (56.9)

Under the assumptions (56.1) and (56.7), Friedrichs proved: (i) the uniqueness of the strong
solution u € C*(D;C™) satisfying (A(u),v)r = (f,v)r, for allv € L and (M —N)u = 0 on 9D; (ii)
the existence of an ultraweak solution u € L such that (u, A(v))r = (f,v);, for all v € C'(D;C™)
such that (M" + N)v = 0 on dD. In §56.3, we introduce a mathematical setting relying on
boundary operators instead of boundary fields to define a notion of weak solution for (56.9), and
we prove the well-posedness of the said formulation by using the BNB theorem.

56.2 Examples

This section presents three examples of Friedrichs’ systems: the advection-reaction equation,
Darcy’s equations in mixed form, and the time-harmonic Maxwell’s equations also in mixed form.
These equations are written in dimensional form, and we refer the reader to §57.3.3 for a discussion
on the rescaling of the various components of the unknown field .
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56.2.1 Advection-reaction equation

Let g € L>®(D;R) and let B8 € L>(D;R?) be such that V-3 € L>(D;R). Notice that we work
with R-valued functions. Given f € L := L?(D;R), we want to find a function u : D — R such
that

pu+ BVu=f inD. (56.10)

This equation models the transport of a solute of concentration u by a flow field with velocity 3,
reaction coefficient p (> 0 corresponds to depletion), and source term f. Typical SI units are
s~! for y and m-s~! for 3.

To recover Friedrichs’ formalism, we set m := 1, K := u, and A*¥ := f; for all k € {1:d},
where (8x)req1:ay denote the Cartesian components of 3. The assumption (56.1a) is satisfied since
w € L®(D), B € L>®(D) for all k € {1:d}, and X = V-8 € L*°(D). The assumption (56.1Db)
is trivially satisfied since m = 1. Finally, the assumption (56.1c) is satisfied provided we suppose
that

po = essinf(u — +V-8)(z) > 0. (56.11)
xzeD

The boundary field is N := (3-n, and the integration by parts formula (56.5) follows from the
Leibniz product rule and the divergence formula, i.e.,

V-(,@vw)d:c:/ (B-n)vwds.

oD

/ (V-B)ow + v(B-Vw) + w(B-Vv)) dz :/
D

D

To enforce a suitable boundary condition, we need to consider the sign of the normal component
B-n at the boundary (see Figure 56.1). We define

OD™ :={x € dD | (Bn)(x) <0}, (56.12a)
OD" :={x € 0D | (B-n)(z) > 0}, (56.12b)
oD° :={x € dD | (B-n)(x) = 0}. (56.12¢)

Notice that both 9D and dD~ can be empty (think of a vector field 3 tangential to dD). We
impose the inflow boundary condition

u=0 ondD". (56.13)

This condition can be enforced by using the boundary field M := |3-n|. Indeed, (M — N)u =0
amounts to (|3n| — Bn)u = 0, i.e., u = 0 on 9D~ . Notice that M satisfies (56.7a) trivially.
Moreover, ker(M(x) — N (z)) = R and ker(M(x) + N (x)) = {0} for a.e. ¢ € DT, ker(M(zx) —
N(z)) = {0} and ker(M(x)+N(x)) =R for a.e. x € D, and ker(M(x) — N (x)) = ker(M (x)+
N(x)) =R for a.e. € DY, i.e., (56.7b) is satisfied in all the cases. In conclusion, M satisfies
(56.7). Finally, for all v € C*(D;C™) such that (M —N)vjgp = 0, the L-coercivity property (56.8)
becomes

1
(A0 0)eeo) = ooz, + 5 [ Bnlo?as. (56.14)

Remark 56.3 (Hypothesis (56.11)). The hypothesis (56.11) is not satisfied if x = 0 and V-3 = 0.
A well-posed weak formulation can still be derived if 3 is a filling field, i.e., if for a.e. € D, there
is a characteristic line of 3 that starts from 0D~ and reaches x in finite time. More precisely, a
sufficient condition is that there is a function ¢ € W>°(D) such that 3-V( is uniformly bounded
away from zero; see §61.4. A simple example is the one-dimensional transport equation v’ = f in
D :=(0,1) with u(0) =0, i.e., B := e, and ( := z (for instance); see §24.2.2. O
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o

Figure 56.1: Advection-reaction problem: inflow boundary 0D, outflow boundary 0D, and
characteristic boundary D°.

56.2.2 Darcy’s equations

Let u € L=(D;R) and let d € L>®(D) := L>(D;R%*?) take symmetric values with eigenvalues
in the interval [, (x), \y(x)] for a.e. x € D. Set A, := essinfzcp Ny () and Ny := || Ag]| (D), and
assume that A, > 0 (notice that )4 is finite since d € L>°(D)). Given f € L?(D), we want to find
a field o : D — R? and a function p : D — R (notice that here again we work with real-valued
functions) such that

dle+Vp=s in D, up+V-o=f inD. (56.15)

Typical SI units are m-s~! for o, Pa for p, m?-(Pa-s)~! for d, Pam~! for s, (Pa-s)~! for u, and
s~! for f. It is possible to eliminate o from (56.15), and one then obtains the diffusion-reaction
problem up — V-(dVp) = f — V-(ds) in D. But here, as in Chapter 51, we want to retain both
dependent variables and work with the R*!-valued function u := (&, p). We recover Friedrichs’
formalism by setting m := d + 1 and

where ey, is the k-th vector of the canonical Cartesian basis of R? and QOgyx; the zero matrix
in R¥*!. The assumption (56.1a) is satisfied since p € L>=(D), A\, > 0, and X = O,,xm. The
assumption (56.1b) is satisfied by construction. Finally, the assumption (56.1c) is satisfied provided
we assume that
= inf > 0.
py = essinf p(x)

The boundary field N is

The integration by parts formula (56.5) is a reformulation of the identity

/D(VP""JFP(V'T))CL’C:/ p(T-n)ds.

oD

The Dirichlet condition pjsp = 0 and the Neumann condition opp-n = 0 can be enforced,
respectively, by using the boundary fields

Indeed, setting (Mq — N)u = 0 with u := (o,p) amounts to pn = 0, i.e., p = 0. Being skew-
symmetric, the matrix Mg is nonnegative, i.e., (56.7a) is satisfied. Moreover, the property (56.7b)
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results from ker(Mq — N) = R*x{0} and ker(Mg +N) D {0}xR. Similar arguments can be
invoked for M,. Finally, for all v := (o,p) € C*(D;R™) s.t. either (Mg — N)vjpp = 0 or
(My — N)vjgp =0, the L-coercivity property (56.8) with L := L?(D;R**!) becomes

(A(a,p), (a.0)L 2 X lol|Z(p) + 1Pl 72 () (56.16)

Notice that (A\s/p,)? is a length scale, and the unit in (56.16) is J-s~! (recall that Pa = J.m™3).

56.2.3 Maxwell’s equations

Let D be a Lipschitz domain in R3. We consider the time-harmonic version of Maxwell’s equations
in the low-frequency regime where the displacement currents are negligible; see §43.1. Let o be the
electrical conductivity, p the magnetic permeability, w > 0 the angular frequency, and i2 = —1.
We assume that p,0 € L°°(D), and for simplicity we assume that both p and o are real-valued
and nonnegative. Given js € L?(D) := L?(D;C?), we seek the fields E: D — C3and H : D — C?
satisfying Ampere’s and Faraday’s laws:

oE —VxH=—j, nD,  iwnH+VxE=0 in D. (56.17)

Typical SI units are J-(A-sm)~! for E, Am~* for H, A%s:(J-m)~! for o, s71 for w, J-(m-A2)~!
for yu, and A-m~?2 for js. Notice that having a nonzero right-hand side in the second equation
in (56.17) would not change the structure of the problem. Contrary to Chapter 43, here we do not
eliminate one of the unknown fields from (56.17), i.e., we are going to work with the CS-valued
dependent variable u := (E, H). Let 6 € [0,27) be a number (arbitrary for the time being). Let
us multiply Ampere’s law by €' and Faraday’s law by e~". We recover Friedrichs’ formalism by
setting m := 6 and

where I3 is the identity matrix in C3, ij =g for all 4, j, k € {1,2,3}, and e;1; is the Levi-Civita

symbol (g;55 = 0 if at least two indices take the same value, €123 = €231 = €312 := 1 (i.e., for
even permutations), and €132 = €213 = €321 := —1 (i.e., for odd permutations)). Notice that J*
is skew-symmetric. The assumption (56.1a) is satisfied since o, u € L*°(D) and X = Ogxg. The
assumption (56.1b) is satisfied since, J*¥ being skew-symmetric, we have (—e?JF)H = —e=10(JF)T =

e~ 19J%. Finally, recalling that we supposed that o and p are real-valued, the assumption (56.1c) is
satisfied if we take 6 := 7 and assume that

= inf 0 = inf 0. 56.18
oy = essin o(x) >0, py = essin w(zx) > ( )

We take 6 := T in the rest of this section (see Example 43.2 for a more general setting). The
boundary field N is
N:: __P?_f_g___i__ciifr];_ s
—e~ioT Osx3

where T;; = Eke{1:3} nieiyr for all 4,5 € {1,2,3}. Notice that the definition of T implies that
T¢ = €xn for all € € C3. The integration by parts formula (56.5) is a reformulation of the identity

/(b-(VxE)—E-(be))dx:/ b-(nxE)ds.
D oD
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The boundary conditions Hjsgpxn = 0 and Ejgpxn = 0 can be enforced, respectively, by
using the boundary fields

Indeed, enforcing (Mpy — N)u = 0 with u := (E, H) amounts to TH = 0, i.e., Hxn = 0.
The matrix My is nonnegative since it is skew-symmetric, i.e., (56.7a) is satisfied. Moreover, the
property (56.7b) results from ker(Mpy — N') = C3x span{n} and ker(Mpy + N') = span{n}xC?>.
Similar arguments can be invoked for Mg. Finally, for all v := (E, H) € C'(D;C") s.t. either
(My —N)vgp =0 or (Mg —N)vjsp =0, the L-coercivity property (56.8) with L := L*(D;C°)
becomes

%((A(Ev H)v (E7 H))L) > % (Ub”E”%?(D) + WMbHHH%P(D))' (56'19)

Notice that (oywp,)” 2 is a length scale, and the unit in (56.19) is J-s~ 1.

56.3 Weak formulation and well-posedness

The aim of this section is to devise a weak formulation of Friedrichs’ systems for which the well-
posedness can be established by using the BNB theorem (Theorem 25.9). The material is inspired
from a series of papers by the authors [118, 119, 120].

56.3.1 Minimal domain, maximal domain, and graph space

We consider the space ) := C§°(D;C™) composed of the smooth C™-valued fields compactly
supported in D, and the Hilbert space L := L?(D;C™), which we use as pivot space (i.e., we
identify L and its dual space). Although other functional settings can be considered (see §24.2.1
for an example with Banach spaces), the prominent role played by L? is motivated by a large class
of stabilized finite element techniques studied in the forthcoming chapters.

Let us define the inner product

(v o= po(s ) + g H(Ax (), A1 (), (56.20)

and let the induced norm be denoted by |||y (the scaling factors yo and ' are introduced so
that the two terms composing the inner product have coherent units). Let V3 be the completion
of Y with respect to the norm ||-||y, i.e., Vy := YV. Using L as pivot space gives

YycVy=L=L <V,c), (56.21)

where )’ is the algebraic dual of J and L', Vy, are topological dual spaces. Let us set A (v) =
—Xv — Ay (v) for all v € Y. A density argument shows that the operators A; and Ay can be
extended to bounded linear operators Al,fll : Vy — L (we use the same notation for 4; and
Ay). Following Aubin [16, §5.5], we say that Vy is the minimal domain of A; and A; (or A and
A). One integration by parts and a density argument show that (A1(¢),¥), = (¢, A1(y)), for all

¢, € Vy. For any v € L, Ay (v) can be defined in V5, by setting (41 (v), d)vy vy, = (v, 41(¢)) 1 for
all ¢ € Vy. This definition extends A; : V) — L to a bounded linear operator A; : L — V5, (we
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use the same notation for A;). Since L — VY, it makes sense to define the following space which
we call graph space:
Vi={velL; Ai(v) € L}, (56.22)

where A;(v) € L means that

o KA Dl o, A (9)]

: < o0, (56.23)
beVy 9l scvy |9l

Similarly, we define the extension A; : L — V3, by setting (Al(v),@%yy = (v, A1(@)), for all

v e L and all ¢ € Vy. Still following [16], we say that V' is the mazimal domain of A, and Ay (or
A and A).

Proposition 56.4 (Hilbert space). The graph space V is a Hilbert space when equipped with
the inner product (-,-)y.

Proof. Let (vy)nen be a Cauchy sequence in the graph space V. Then (v, )nen and (A} (vn))neN
are Cauchy sequences in L. Denote by v and w the respective limits in L. Since (v, A1(¢))r =
(A1(vn), D)y, vy = (A1(vn), @)1 for all ¢ € Vy, we infer that

(v, A1()r +— (vn, A1(®))r = (A1(vn), &)L ed (w, 9z

n—oo
Hence, (41(v), d)vy,vy = (v, A1(4))1, = (w, @)L, proving that A;(v) is in L with A;(v) =w. O

In conclusion, the above argumentation has lead us to introduce Vjy, which we call minimal
domain of A; (A;, A, or A), and V, which we call maximal domain (or graph space) of A;. We
have shown that V is a Hilbert space. We have extended the operators A;, A;, A, and A, initially
defined on Y only, to bounded operators from V to L:

A e L(V;L), A eL(V;L), AeL(V;L), AccL(V;L). (56.24)

Example 56.5 (Transport). Let D := (0,1)? and A; (v) := €*d,v, so that A;(v) = —e*v—ed,v.
Then the minimal domain is Vy := {v € L*(D) | d,v € L*(D), v(0,y) = 0, v(l,y) = 0,Vy €
(0,1)}, and the maximal domain is V := {v € L*(D) | d,v € L*(D)}. When solving the first-order
PDE v + A;(v) = f, one enforces an homogeneous Dirichlet condition on the inflow boundary
{z = 0}, i.e., one seeks the solution in Vy := {v € V |v(0,y) = 0,Vy € (0,1)}. Notice that
Vy SV C V. O

Remark 56.6 (Density). It is shown in Jensen [197, p. 21] that the space C°°(D;C™) is dense
in the maximal domain V of the operators (recall that C§°(D;C™) is by definition dense in the
minimal domain Vy). O

56.3.2 The boundary operators N and M

Since A; is a first-order differential operator, defining the trace at the boundary of a function in
the graph space V is not straightforward. For any v € V, the trace A/ vjgp can be given a meaning
in H=2(0D;C™); see Rauch [241], Jensen [197]. Recall that 78 : H*(D;C™) — Hz2(dD;C™)
is surjective (here, 8 is the C™-valued version of the scalar trace operator introduced in Theo-
rem 3.10), and let (v%)" be any right inverse of 4. Then the action of N'vjsp on Hz(dD;C™) can
de defined by setting

N5} 3 oy a1 oy = (AW, (9 () = (0, A4 ()1
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for all s € H=(9D;C™). This construction is explained with more details in §4.3 for 4, (v) := Vxwv
and A;(v) := V-v. This meaning is however not suitable for the weak formulation we have in mind.

This is why we now introduce two additional operators N and M to replace the boundary fields
N and M. We define the operator N € L(V;V’) by (compare with (56.5))

(N@),w)v' v = (A(),w) — (v, A(w))r, Yo, w e V. (56.25)

This definition makes sense since both A and A are in L(V;L). Moreover, the operator N is
self-adjoint since (56.25) can be rewritten as

(N(),w)yvrv = (Xv,w)r + (A1 (v),w)r + (v, A1(w)) L, (56.26)

so that (N (v),w)y, v = (N(w),v)yy. Furthermore, we have V3 C ker(N) and im(N) C Vyl =
{v e V' |Vp € Vy, (V, ¢>V3/}7Vy = 0}. Actually, as shown in [123], the following holds true:
ker(N) =Vy,  im(N) = Vy.

The fact that ker(N) = Vy means that N is a boundary operator.
Boundary conditions in Friedrichs’ systems can be formulated by assuming that there exists an
operator M € L£(V;V’) such that

M is monotone, i.e., |[v]3; :== R((M(v),v)y+,v) >0 forallv eV, (56.27a)
ker(N — M)+ ker(N + M) =V. (56.27b)

Let M* € L(V; V') denote the adjoint operator of M, i.e., (M*(w),v)y: v = (M(v),w)y v. It is
proved in [123] that, under the assumptions (56.27),

ker(NN) = ker(M) = ker(M™),
im(N) = im(M) = im(M™).
In particular, M is a boundary operator just like N.

Remark 56.7 (Other formalisms). A different viewpoint based on Lax’s idea consisting of
enforcing maximal boundary conditions by a cone technique is explored in [123]. The equivalence
between this formalism and the M-based formalism (56.27) and relations with the approach based
on boundary fields can be found in Antoni¢ and Burazin [11, 12, 13]. O
56.3.3 Well-posedness

Let us set Vp := ker(M — N) so that Vyy C Vp C V. Given f € L, the problem we want to solve
(compare with (56.9)) consists of seeking

u € Vo = ker(M — N) such that A(u) = f in L. (56.28)
To recast this problem into a weak form, we introduce the sesquilinear form
a(v,w) := (A(v),w)r, V(v,w) € VxL.
Letting ¢(w) := (f,w)r, we consider the following weak problem:

{ Find v € V4 such that (56.29)

a(u,w) =L(w), Yw € L.
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Lemma 56.8 (L-coercivity). Assume (56.1). Let N be defined in (56.25). The following holds
true:

1
R(a(v,v)) > pollv]|7 + §<Nv,v)v/)v, Yo e V. (56.30)

Moreover, let M satisfy (56.27). The following holds true:
1
R(a(v,0)) > pollely + 5l > polloll, W0 e Vo (56.31)

Proof. One proceeds as in the proof of Lemma 56.2 to establish (56.30). Moreover, (56.31) follows
from (56.30), the definition V; := ker(M — N), and the monotonicity of M. O

Theorem 56.9 (Well-posedness). Assume (56.1) and (56.27). Then the model problem (56.29)
is well-posed, i.e., A : Vo — L is an isomorphism.

Proof. Since V) and L are Hilbert spaces and since a and ¢ are bounded on VyxL and L, respec-
tively, we just have to verify that the two conditions of the BNB theorem are satisfied.

(1) Proof of (BNB1). Let us set S(v) :=sup,cr. Iall(g)ll?‘ for all v € V. We want to prove that there
exists a > 0 such that

allv|ly < S(v), Yo € V. (56.32)
Let v € V. Using (56.31), we infer that ||v||r < %W < ﬁS(v). Using the triangle inequality
and letting pioo := ||| Lo (pscmxm), we obtain

[41@)l < el + 4@ < peollellz + 1AW < (52 +1)8()

1
2

thus yielding (56.32) with a = pg (1 + (1 + £==)2)
(2) Proof of (BNB2). Let w € L be such that a(v,w) = 0 for all v € Vp, and let us prove that
w = 0. Recalling that V) = ker(N) = ker(M) C V; and the definition of A, we infer that the
following holds true for all ¢ € V3 C Vp:

(A(w), vy vy = (A(9), w)r = a(¢,w) = 0.

Hence, fl(w) = 0, thereby showing that w € V. Owing to the properties satisfied by w, we also
infer that B
<N(’U),’LU>V/7V = (A(’U),’LU)L - (1}, A(’LU))L =0-0= O, (5633)

for all v € Vj. Let us now show that w € ker(M* + N). For all v € V, using (56.27b) to write
v =4 +v_ with vy € ker(M + N), we obtain

((M* + N)(w),v)vrv = (M + N)(v),wyv v = (M + N)(vy +v-), w)yv
= (M + N)(v-),w)yrv = 2(N(v-),w)yr v =0,
owing to the self-adjointness of N, the identity N(v_) = M (v_) since v_ € ker(M — N), and the

property (56.33) since v_ € Vj. Since v is arbitrary in V, this shows that w € ker(M* + N). Using
(56.25) and (56.30) together with N(w) = —M*(w), we obtain

R((w, A(w))z) = R((A(w),w)r) = (N(w), w)v"v

1
> pollwllz = SRUN(w), w)vrv) = pollwlz + S lwli > pollwllz-

1
2

Recalling that A(w) = 0, the above inequality implies that w = 0. O
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Remark 56.10 (Graph-norm estimate). In the proof of Theorem 56.9, we used that || A(v)|| =

SUP,cr, lj‘(ii‘“:)‘ . Since the supremum is attained for w := A(v), this identity shows that the control

on the graph norm of v follows from the fact that we can use 4;(v) = A(v) —Kv as a test function.
The whole difficulty of approximating first-order PDEs (see Chapters 57 to 61) has its roots in this
observation. O

Remark 56.11 (Partial positivity). The positivity assumption (56.1c) can be relaxed if the
missing control on |[v]| can be recovered from an estimate on ||A;(v)||z. This is possible in the

context of elliptic PDEs in mixed form by invoking a Poincaré-type inequality; see Exercise 56.5.
O

Remark 56.12 (Localization). Let us define the operator K € £(L; L) s.t. K(v) := Kv, which
means that K (v)(z) = K(v(z)) for all x € D. One says that K is a local operator. Everything
that is said in this chapter and the following chapters holds true for nonlocal operators as well.
More precisely, we can assume that A = K 4+ A;, where K is any bounded operator on L satisfying
the assumption ((K + K*)(v) — Xv,v), > 2uoljv||2. The formal adjoint A is then defined by
A(v) := K*(v) — Xv + A;(v). Such nonlocal operators are found in the Boltzmann equation and
in the neutron transport equation. In this context, K is usually called collision operator; see
Exercise 56.3 for an application to the neutron transport equation. O

56.3.4 Examples

Example 56.13 (Advection-reaction). The bilinear form a associated with the model advection-
reaction equation is defined by setting

a(v,w) := /D (pvw + (B-Vo)w) du,

for all v € V and all w € L?(D;R), with V := {v € L?(D;R) | 3-Vv € L*(D;R)}. Moreover,
(N(@),w)vr,v = [, V-(Bvw)dz. A result on the traces of functions in V' is needed to link the
boundary operator N with the boundary field A/ := 3-n. Such a result is not straightforward since
the trace theorem (Theorem 3.10) for functions in H'(D) cannot be applied. It is shown in [118]
that if the inflow and outflow boundaries are well-separated, i.e.,

. . -0 56.34
(w’y)egggan+ I yHEQ(Rd) ( )

then the trace operator v : C°(D) — C%(0D) s.t. v(v) = vjpp can be extended to a bounded
linear operator from V' to L‘Qﬁvnl(aD;R), where the subscript |3-n| means that the measure ds
is replaced by [3-n|ds. This result implies that (N(v),w)v: v = [, (Nv)wds for all v,w € V.
Furthermore the inflow boundary condition (56.13) can be enforced by means of the boundary
operator M € L(V;V') defined by (M(v),w)y:v = [;,(Mv)wds with M := |B-n|. This
operator satisfies (56.27), and we have [v]y = ([, |B-n|v? ds)z. One can also construct M
without invoking the boundary field M. Since the inflow and outflow boundaries are well-separated,
there exists a € C°(R?) s.t. qpp- = 0 and agp+ = 1. Then one can set (M(v), w)y, v =
Jp V-(aBvw) dz. Notice also that the separation assumption (56.34) cannot be circumvented if
one wishes to work with traces in L‘Qﬁv n| (0D; R); see Exercise 56.8. Alternatively, as shown in Joly
[203, Thm. 2], traces and the above integration by parts formula can be defined by using principal
values. O
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Example 56.14 (Darcy). The bilinear form a associated with Darcy’s equations is defined by
setting

a(v,w) == /D (d"'0)T + upq + Vpr + (V-o)q) da,

for all v := (o,p) € V and all w := (7,q) € L, with V := H(div; D)xH(D). This func-
tional setting corresponds to that of §24.1.2 rather than that of §51.1. The definition of N gives
(N(),w)vrv = [, V-(pT + qo) dz. Since fields in H (div; D) have a normal trace in H~2(dD)
owing to Theorem 4.15, and functions in H*(D) have a trace in Hz (dD), letting (-, ->H,% o

denote the duality pairing between H~2 (9D) and Hz (9D), the boundary operator N has also the
following representation:

<N(va)v (Tv Q)>V’,V = <U'n7 q>H7% + <T'nap>H7

1 1 1.
JH?2 2 H?2

(One should write (N(,p), (7, 0))v.v = (v4(0),7%(9)) ;-1 3 + (V4 (7):75(P)) -y 3) The
Dirichlet boundary condition pjsp = 0 can be enforced by means of the boundary operator
(M(o,p), (T,9))v' v = (on, q>H7%.’H% - <T-n,p)H,%7H%. (56.35)
This operator satisfies (56.27); see Exercise 56.7(i). Notice that |(o,p)|ar = 0 for all (o,p) € V.
We also have (M (v),w)v v = [, V-(qo — pT) da. O

Example 56.15 (Maxwell). For Maxwell’s equations, the sesquilinear form a is defined by setting
a(v,w) := / (eieaEE +ie CwuH b — % (VxH) e+ e_ie(VxE)-E) dz,
D

for all v:= (E,H) € V and all w := (e, b) € L (notice that we use the Euclidean dot product and
write the complex conjugate explicitly), with V' := H (curl; D)x H (curl; D). Recalling the identity
V- (Axa) = (VxA)a— A (Vxa), the definition of the boundary operator N gives

(N(E,H),(e,b))v' v ::/ V-(e YExb — ¢ Hxe)du.
D

Owing to Theorem 4.15 (with p := 2), fields in H (curl; D) have a tangential trace in H~z(dD).

Hence, if e and b are both in H'(D), we also have the following representation:

<N(E5H)a (evb)>V’,V = €i0<HXTI,, 6>H7%,H% - 8_i9<EXTI,, b>H

(One should write <N(E7 H)? (ev b)>V’,V = ei0<’7C(H)7 Vg(e»H’% 7H% _e_i0<7C(E)7 ’Vg(b»H’%,H% )
The boundary condition H xn = 0 can be enforced by means of the boundary operator

11
2,H?Z

(M(E,H),(e,b))y y = /D V-(e YExb+ € H x€) dz. (56.36)

This operator satisfies (56.27); see Exercise 56.7(ii). Notice that |(e, h)|aps = O0forall (e,h) € V. O

Exercises

Exercise 56.1 (Robin condition). Show how to enforce the Robin boundary condition yu —
on=0on9dD (with v € L>*(9dD) and v > 0 a.e. on D) in the framework of §56.2.2.
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Exercise 56.2 (Linear elasticity). Consider the linear elasticity model from §42.1. Verify that
s — d+r9 tr(s)ly = p(Vu + Vu') with 6 := 2 and that 1V-(s +s7) + f = 0. Write this system

using Friedrichs’ formalism. (Hint: identify s € R¥*? with a vector s € R by setting sp;;) 1= %5
with [ij] :=d(j — 1) + 4 for all 4,5 € {1:d}.) Verify (56.1a)-(56.1b) and that the upper left block
of IC, say K®%, is positive definite. What happens in the incompressible limit A — co?

Exercise 56.3 (Positivity, locality). (i) Reprove Theorem 56.9 by replacing the assumption

made on K by those stated in Remark 56.12. (ii) Let D := (0,a)x(—1,1), a > 0, and let K :

L*(D) — L*(D) be such that K(v)(z,y) := v(z,y) — 5 jll v(z,§)d€ with o € [0,1). Assuming

X := 0, prove that K satisfies the assumptions from Remark 56.12.

Exercise 56.4 (Wave equation). Consider the wave equation %—% =finD:=(0,1)x(-1,1)

with the boundary conditions %(t, +1) =0 for all ¢t € (0,1) and %(O,x) = %(O,x) = 0 for all
€ (—1,1). Recast this problem as a Friedrichs’ system and identify the boundary fields N and

M. (Hint: set u = e (%2, 9%) with A > 0.)

Exercise 56.5 (Partial positivity). Assume that there is an orthogonal projection operator
P € C™*™ (ie., PT = P and P? = P) such that

K4+ K" — & > 24P a.e. in D, (56.37a)
sup [(Al), w)e| > a||(@, — P))|| — AM|P()|lL for all v € Vp, (56.37Db)
weL ”wHL

1P|z > (I — P)(w)||1, for all w € Vg s.t. A(w) =0, (56.37¢)

with o > 0 a > 0,y > 0, A, and Vj := ker(M* + N). (i) Assume (56.1a), (56.1b), (56.27), and
(56.37). Prove that A : Vy — L is an isomorphism. (Hint: adapt the proof of Theorem 56.9.) (ii)
Verify (56.37a) for Darcy’s equations with g := 0 and a Dirichlet boundary condition on p. (Hint:
use a Poincaré-Steklov inequality.)

Exercise 56.6 ((BNB1) for Darcy and Maxwell). (i) Prove the condition (BNB1) for Darcy’s
equations with Dirichlet or Neumann condition. (Hint: use the test function w = (7,q) =
(o +dVp,p+ p~'V-o).) (ii) Do the same for Maxwell’s equations with the condition H xn = 0
or Exn = 0. (Hint: use the test function w := (e,b) := (e (E — il VxH),e"(H + MLMVXE))
where 0 := 7.)

Exercise 56.7 (Boundary operator for Darcy and Maxwell). (i) Verify that M defined
in (56.35) satisfies (56.27) and that it can be used to enforce a Dirichlet boundary condition on
p. (Hint: use Theorem 4.15.) How should M be modified to enforce a Neumann condition? (ii)
Verify that M defined in (56.36) satisfies (56.27) and that it can be used to enforce the boundary
condition Hxn = 0. (Hint: use the surjectivity of traces from H(D) onto Hz (9D) and (4.11).)
How should M be modified to enforce the boundary condition Exn = 0?

Exercise 56.8 (Separation assumption). Let D := {(21,72) € R? |0 < 25 < 1 and |z1| < 22}
with B := (1,0)T. Let V := {v € L*(D) | B-Vv € L?(D)}. Verify that the function u(z1,z2) 1= 2%
isin V for a > —1, but wgp € L*(|B3n|;0D) only if a > —3.

Exercise 56.9 (Semi-norm |-|5;). Let V be a complex Hilbert space, N, M € L(V;V’), and
let Vp := ker(M — N). Assume N = N* and R((M (v),v)y/y) > 0 for all v € V. Let |v|3, :=
R((M (v),v)y v) for all v € V. Prove that [(N(v),w)v: v| < |v|p|w|ar for all v,w € V.
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Chapter 57

Residual-based stabilization

This chapter is concerned with the approximation of Friedrichs’ systems using H!'-conforming
finite elements. The main issue one faces in this context is to achieve stability (see (27.11) for
a simple one-dimensional counterexample). As mentioned in Remark 56.10, one has to use the
first derivative of the solution as a test function to control the graph norm. This possibility is
lost when working with H'-conforming finite elements, since the first derivative of the discrete
solution can no longer be represented by discrete test functions. As a result, one needs to devise
suitable stabilization mechanisms. Those presented in this chapter are inspired by the least-squares
(LS), or minimal residual, technique from linear algebra. The LS approximation gives optimal
error estimates in the graph norm, but unfortunately it gives suboptimal L2-error estimates in
most situations. The Galerkin/least-squares (GaLS) method improves the situation by combining
the standard Galerkin approach with the LS technique and mesh-dependent weights. The Gal.S
method gives quasi-optimal L2-error estimates and optimal mesh-dependent graph-norm estimates.
We also show that the GaLLS method can be combined with a boundary penalty technique to enforce
boundary conditions weakly.

57.1 Model problem

Let us briefly recall the model problem from §56.3. We consider a Friedrichs’ operator A(v) :=
Kv + A;(v), where K is the zeroth-order part of the operator and A; is the first-order part with
Ai1(v) = Yhenia A*9pv. We assume that the C™*™-valued fields K and {A*}cq1.qy sat-
isfy (56.1). We have A € £(V; L) with L := L?(D;C™) and the graph space V := {v € L | A;(v) €
L} is equipped with the graph norm |[v]|? := uol|v||Z + 1y *[|A1(v)||%, where po > 0 comes from
Assumption (56.1c). Let N be the boundary operator defined in (56.25) and let M be a boundary
operator satisfying (56.27). Given f € L and upon setting Vo := ker(M — N) C V, the model
problem is

{ Find u € Vj such that (57.1)

(A(uw),w)r = (f,w)r, Ywe L.

This problem is well-posed (see Theorem 56.9). In particular, since A : Vj — L is a bounded
isomorphism, there are real numbers 0 < a < || 4| < o0 s.t.

allolly <[[A@)[c < Al llvllv, Vo€ Vo (57.2)
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57.2 Least-squares (LS) approximation

57.2.1 Weak problem
The LS version of problem (57.1) is as follows:

{ Find v € Vj such that

a(u,w) = (Au), A(w))r = (f, A(w)), Yw € V. (57.3)

Observe that the trial space and the test space are identical. Since A : Vi — L is an isomor-
phism, requesting that (A(u), A(w))r = (f, A(w)), for all w € V} is equivalent to requesting that
(A(u),w)r = (f,w)r for all w € L. Hence, the problems (57.1) and (57.3) are equivalent. The
advantage of (57.3) is that its well-posedness follows from the Lax—Milgram lemma.

Proposition 57.1 (Vj-coercivity). a*° is bounded and coercive on VoxVj.

Proof. The boundedness of a"* follows from |a" (v, w)| < ||A(v)||L]|A(w)||z < [|A||?||lv]|v]w]v for
all (v,w) € VoxVp, and the coercivity of a® follows from a"(v,v) = ||A(v)||2 > o?||v[|} for all
v e V. O

Remark 57.2 (Minimal residual). Consider the functional J : V5 — R defined by J(v) :=
L[JA(v) — f||3 for all v € V). The Fréchet derivative of J is such that DJ(v)(w) = R((A(v) —
[y A(w))r) for all w € Vy, i.e., the problem (57.3) is equivalent to DJ(v) = 0 in (Vp)'. Since the
functional J is strongly convex and continuous owing to (57.2), its unique global minimizer over
Vo is the solution w to (57.3). The LS technique is well known in the context of linear algebra,
where it can be traced back to Gauss ( Theoria Motus Corporum Coelestium, 1809). More precisely,
consider a linear system AU = B, where the matrix A € C/*! is invertible and B € C! is some
given vector. Left-multiplying the system by A" gives the normal equation (A" A)U = A"B, where
the matrix A" A is Hermitian positive definite. O

57.2.2 Finite element setting

Our goal is to use H!-conforming finite elements to approximate the model problem (57.3). Let
(Vi)hewn be a sequence of H'-conforming finite element subspaces based on a shape-regular mesh
sequence (Tp)pen so that each mesh covers D exactly. We assume that V}, is built by using a
reference finite element of degree k > 1. If m > 2, we assume for simplicity that the same reference
element is used for all the components of the solution. Notice that V}, ¢ HY(D;C™) C V.

In this section (and the next one), we assume that it is possible to prescribe the boundary
conditions strongly. In other words, we assume that we have at hand a subspace V3o C V, and
a quasi-interpolation operator Zyo : Vo — Vjo with optimal local approximation properties, i.e.,
there is ¢ s.t.

[v = Zno (V)| () + hic V(0 = Tno ()| L(y < ehg" [0l mier (D cm), (57.4)

for all r € [0,k], all v € H'T"(D;C™) N Vp, all K € Ty, and all h € H, with L(K) := L*(K;C™)
and where Dy = int({K’ € T, | K N K" # 0}) is a local neighborhood around the mesh cell
K € T,. We refer the reader to Chapter 22 for a possible construction of the quasi-interpolation
operator Zpo. (One can also use the canonical interpolation operator defined in §19.4 if r is large
enough. In this case, one can use K in lieu of Dk in (57.4).) One should bear in mind that it is
not always possible, or easy, to build Vj-conforming finite element subspaces. Think for instance
of using Lagrange elements to enforce the value of the normal or tangential component of a vector
field at the boundary of a domain that is not a rectangular parallelepiped. We develop in §57.4 a
boundary penalty technique that bypasses this difficulty.
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57.2.3 Error analysis

We consider the following discrete problem:

{ Find ujp € Vjo such that (57.5)
a"(up,wn) = (f, A(wn))L, Ywp € Vio. '
Theorem 57.3 (Well-posedness, error bound). (i) The problem (57.5) is well-posed. (ii) The
following quasi-optimal error bound holds true:

Al
lu —up|lv < I4l inf |lu—wvp|v. (57.6)
Q. vp€Vho

Proof. Well-posedness is a direct consequence of the Lax—Milgram lemma and the Vj-conforming
setting. The inequality (57.6) follows from the estimate (26.13) in Céa’s lemma since a'¥ is Her-
mitian with coercivity and boundedness constants equal to a? and || A||?, respectively. O

Let 8 := maxge(1.qy [|A*|| oo (p,cmxmy and ¢ := max(3, poh). Assuming u € H* ™ (D;C™) and
using the approximation properties (57.4) of the quasi-interpolation operator Zpg, we infer that

1 1 1
i Il = unllz + pg * AL = wn) 2 < cptp 61 [ul s (prcmy. (57.7)

When 7 = k, the estimate on ||A;(u — up)| . has an optimal decay rate w.r.t. h € H, but this rate
is suboptimal by one order for ||u — up|| L. It is sometimes possible to improve the error estimate
in the L-norm by means of the Aubin—Nitsche duality argument, but this is not systematic since,
very often, first-order PDEs do not have smoothing properties. This improvement is possible for
the one-dimensional transport equation and for Darcy’s equation; see Exercises 57.2 and 57.3.

Remark 57.4 (Literature). The LS technique has gained popularity in the numerical analysis
community at the beginning of the 1970s following Bramble and Schatz [44, 45|, although the
technique was already popular in the Russian literature (see Dziskariani [114], Lucka [222]). We
refer to Aziz et al. [20] for a theoretical introduction in the context of elliptic problems and to
Jiang [198] for a review of applications and implementation aspects. O

Remark 57.5 (Generalizations in H~!(D)). One difficulty with the LS technique is that
it cannot be extended to H'-conforming approximations of second-order differential operators.
Indeed, if the operator A contains a term such as —A, its range is no longer contained in L?(D)
but in H~1(D). As a result, expressions such as (A(v), A(w));, are no longer meaningful in H*-
conforming spaces. One possible work-around is to use H (D) as the pivot space. This strategy
is interesting only if a very fast solver (or preconditioner) for the Laplace operator is available.
Such solvers (or preconditioners) usually involve a hierarchical decomposition of the approximation
space; see Aziz et al. [20], Bramble and Pasciak [43], Bramble et al. [47], Bochev [33], Bramble and
Sun [46], Bochev [34], Bramble et al. [48]. O

57.3 Galerkin/least-squares (GalLS)

We consider in this section the GaLS approximation of the problem (57.1).
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57.3.1 Local mesh-dependent weights

We define for all K € T;, the following local quantities:

R k
fr = p e, A | oo (rcsmxmy. (57.8)

and we introduce the following local weighting parameters:

Tic 1= (max(Bchi o)) = min(B huc, iy ), (57.9)

where pg comes from Assumption (56.1c). The second equality in (57.9) is meaningful only if Sk
is nonzero. We have 7x = 1 Lif Bx = 0. For instance, for the advection-reaction equation i is
the reciprocal of a time, Sx is a local velocity, and 7k is a local time scale. With a slight abuse
of notation, we define the piecewise constant function 7 : D — R s.t. 7 := 7 for all K € Ty,
We denote the Euclidean (or Hermitian) norm of C™*™-valued fields by ||-||,;2. Recalling that
X = Eke{l;d} OpAF, we assume for simplicity that

max (||| o (picmxmy, [|X]| oo (Diemxmy) < ek xpto, (57.10)

and we hide the factor cx x in the generic constants used in the error analysis.

57.3.2 Discrete problem and error analysis

We consider the finite element setting of §57.2.2, i.e., we use H'-conforming finite elements and
we strongly enforce the boundary conditions in the discrete setting. We define the following
sesquilinear forms on VjgxVo:

ap-(vn,wn) = (A(vn), wn)r + 71 (vn, wh), (57.11a)
rr(vn, wr) = (A(vp), TA(wp)) - (57.11b)

The role of 7, is to stabilize the formulation. Our discrete problem is

{ Find uy, € Vi such that (57.12)

aﬁL(uh, wh) = KEL(U)}I) = (f, wp, + TA(’LUh))L, Ywy, € Vi

Although the approximation setting is conforming, we are in the situation where aj* # a and
i #£ ¢, ie., we cannot use the simple setting of §26.3 for the error analysis. Instead, we shall
use the more general setting of §27.2. Recall that the three steps of the analysis consist of (i)
establishing stability, (ii) bounding the consistency error, and (iii) proving convergence by using
the approximation properties of finite elements. Let us start with stability which here takes the
simple form of coercivity. Recall the boundary seminorm |v[3; := R((M (v),v)y+,v) on V.

Lemma 57.6 (Coercivity, well-posedness). (i) The following holds true:
. 1 1
R(ai" (wns vn) 2 pollonllz + 5 lonlis + 172 Alon) 12 = lonlli: (57.13)

for all vy, € Vo, i.e., aj™ is Vio-coercive with constant oy, := 1 once Vi is equipped with the norm
[[lvie- (i) The discrete problem (57.12) is well-posed.
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Proof. We only need to establish (57.13) since well-posedness then follows from the Lax—Milgram
lemma. Using Lemma 56.8 and V3o C Vy = ker(M — N), we infer that for all v, € Vj,

R(ag(vn,vn)) = R((A(vn), vn)z) + |72 A(wn)|13

1 1
Z/Lo|\vh|\%+§|vh|ﬁ4+||7’2A(vh)|\% = [[onllF,, - O

The next step consists of bounding the consistency error. Recalling Definition 27.3, the consis-
tency error is defined by

<6h(’l)h), wh)v/ Vi - = Efﬁ(wh) — aﬁL(vh, wh), Yop, wp € Vi (57.14)

hO?
Recalling (27.2) we set Vi := V) (i.e., no additional smoothness is required on the solution to
(57.1)). Owing to the conformity assumption, we have

Vﬁ = Vo + Vo = V. (5715)

Contrary to what happens with the nonconforming approximation of elliptic PDEs, we need here
to use the setting of Lemma 27.8 which relies on two norms. Specifically, we equip the space Vj
with the following two norms:

1 1

[0l == mollvl|7 + §|U|?w + T2 A(v)]|, (57.16a)
_1

[oll3, == lloll§, + 7207 (57.16b)

Notice that (27.7) holds true with ¢, := 1 (i.e., [|[vnllv; < [[vnllv;, for all vy € Vio, and |v]ly, < ||v]lv,
for all v € Vj = Vj).

Lemma 57.7 (Consistency/boundedness). There is wg, uniform w.r.t. uw € Vy, such that for
all vy, wp, € Vg and all h € H:

[(0n(vn), wh)vir, Vil < wi [|lw = vnllv; [lwnl v, (57.17)

h0?
Proof. Since A(u) = f in L, we have

(On(vn), wn) vy vie = (fswn + TA(wn)) L — (A(va), wn)L — rh(v, wi)
= (A(u), wp, + TA(wh))L — (A(’Uh), wp, + TA(’LUh))L
= (A(n),wn)r + (A(n), TA(wn)) L, (57.18)

with 7 := u —vp. We bound the two terms on the right-hand side of (57.18). Using integration by
parts (see (56.26)), we infer that

(A(n),wn)r = (K = X)n,wn)r, — (0, A1 (wn)) . + (N (1), wn)v: v
= ((K+ K" = X)n,wn)r — (0, A(wn)) L + (N(n), wp)vr,v,

since Aj(wp) = A(wp) — Kwp,. Let 1,%9, T3 be the three terms on the right-hand side. Since
K]z = ||IKCH| g2, using (57.10) and the Cauchy—Schwarz inequality gives |T1| < cpol|n||z|/wnll -
Using again the Cauchy Schwarz inequality gives |To| < |7~ 2n|L|[72 A(wp)||p. Since M is
monotone, N is self-adjoint, and n,wp € ker(M — N), we infer that |T3| < |n|a|wn|ar (see
Exercise 56.9). Putting everything together yields |(A(n),wn)r| < cllnllv;, |wn|lv;,. Finally, us-
ing the Cauchy-Schwarz inequality for the second term in (57.18) gives |[(A(n), TA(wp))n] <
l72 A(n) |2l 7% A(wn) . O
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Theorem 57.8 (Error estimate). (i) There is ¢ such that for all h € H,
lu—wunlly, <c inf [lu—wvp|v,. (57.19)
vh€Vho
(i) If u e HY(D;C™), r € [0, k], then
lu—unly, < > max(Bi, pohr )by ul3prpecms (57.20)
KeTy

and letting ¢ := max(f3, uoh) and B := maxger, fr, we have

i 1
H’U,—’u,hHVb < C¢Bhr+2|’u,|Hl+r(D;Cm). (5721)

Proof. (i) The error bound (57.19) follows from Lemma 27.8 together with Lemma 57.6 (coercivity)
and Lemma 57.7 (consistency/boundedness).

(ii) To prove (57.20), we take vy, = Zpo(u) in (57.19) with Zpo satisfying (57.4). Since 7,
L1l
max(87, 15 hj ), we infer that for all K € Tj,

N[

1
2
hK_

1 11 o1
1 1w = Tno(w) | Lixy < cpEhZhy 2wl gise (pyecmy,s

111
7% (= Tno ()l o) < € max(Be, g hi)hic * ulmrsr(pyeiem)-

Using (57.10), we infer that ||T%A(’U)||L(K) < CTI%((/L()H’UHL(K) + Br||Vv| L(k)) for all v € V. Hence,

taking v := u — Zpo(u) and observing that

3% -1 3139 —1 ~%,3 3 33
Tichi (o + Brchic) S TRhi 27 = 27 P hie = 2max(Bg, pg hi)
Lol 1,41
gives |72 A(u — Tho(w)|lnxy < cmax(Bf, pug hf()hKJr2 |u| 14r(Dgsomy. Regarding the boundary
term |u — Zpo(u)|3;, we observe that u — Zpo(u) € Vp. Using (56.26), we infer that for all v € V) =
ker(M — N),

W[ = (N(v),v)vr v = (Xv,0)L, + 2R((A1(v), v)1)

<e > (mollvllzix) + BelIVoll o) vl L),
KeTy

1
so that |u — Zho(u)|3; < ¢Xger, max(ﬁK,uth)hi((T+2)|u|fql+r(DK;(cm). Combining these esti-

mates gives (57.20). Finally, since max(Sk, pohk) < ¢ for all K € Ty, (57.21) follows from (57.20)
because ZKGTh |u|§{1+T(DK_Cm) < c|u|§{1+T(D_Cm) owing to the regularity of the mesh sequence. [

Assuming u € H*+1(D;C™), the above result implies that

1 1 1 1
pg llu = unllz + 172 Ax(u = up)l|z < cd= ¥ 2 ul grsr (p,em).-

The decay rate of the estimate on ||u — up|| is improved by half a power in h when compared to
that obtained with the LS technique (see (57.7)). Notice also that Aj(u — up) is now estimated
using a mesh-dependent norm.

Remark 57.9 (Literature). The GaLS technique has been introduced in Hughes et al. [190].
A nonsymmetric variant known under the names of streamline upwind Petrov—Galerkin (SUPG)
or streamline diffusion method has been introduced in Brooks and Hughes [55] and analyzed in
Johnson et al. [201]; see Exercise 57.4. We refer the reader to Roos et al. [243, p. 302] for a review
of residual-based stabilization techniques. O
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57.3.3 Scaling

In applications, the dependent variable u is a vector in C™ with components each having its own
physical dimension. Hence, computing [[ul|Z(cmy = Y geqi.my [wnl* does not make a lot of sense in
practice unless the vector u has been made nondimensional from the start. We now address this
question.

When the model problem (57.1) is written in dimensional form, we assume that there exists
an mxm symmetric invertible real-valued matrix S so that the positivity assumption (56.1c) is
replaced by

(K + KM = X)(w), ) > 2p0]|Sw]%. (57.22)

One can think of Sw as a vector in C™ whose components all have the same physical dimension.
Then the problem (57.1) consists of seeking v := Su s.t.

STKS o+ Y STTANS 0,0 =8 (57.23)
ke{l:m}

Since S is symmetric, the positivity assumption (57.22) takes the form

(STHE+ K = X)S™H(w),w)r = 2p0w]2-
Notice also that the matrices {S_lAkS_l}ke{ltd} are Hermitian. That is, we recover the theo-
retical setting discussed in Chapter 56 and in the previous sections of this chapter by replacing

K by ST'KS! and A* by S71A*S™!. We can now write the GaLS formulation of the rescaled
problem (57.23). We define for all K € T}, the following local rescaled quantities:

. —1 gk o—1
ﬂK = kél{léll,Xd} ||S A S ||Loo(K;Cm><7n). (5724)

The local weighting parameters i are still defined as in (57.9), where up now comes from the
rescaled positivity assumption (57.22).

Proposition 57.10 (Rescaled GaLS). Let v, € V}, solve the GaLS formulation associated with

the rescaled problem (57.23). Then uy, := S~ 1wy, solves the following rescaled GaLS formulation:
Find up € Vi, s.t. for all zp, € Vi,

(A(un), zn)r + (ST A(un), 78 A(zn)) L = (f, 21)r + (ST f, 787 A(zn)) -
Proof. By definition of vy, we have for all wy € V3,

(SilA(Silvh), wh)L + (87114(8711)}1), TSilA(Silwh))L
= (S f,wn)p + (ST TSTAS )

Setting uy, := S~ 'v;, and zj, := S~ 'wy,, and recalling that S is symmetric proves the assertion. 0O

All the error estimates stated in Theorem 57.8 are valid for the rescaled GaLS formulation
provided u — up, and u are replaced in the error estimates by S(u — uyp) and Su, respectively, and
provided v is replaced by Su and A(v) is replaced by S7'A(u) in the norms defined in (57.16).
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57.3.4 Examples

Let PZ(7Tn) be the H I_conforming finite element subspace defined in §19.2.1 using finite elements
of degree k > 1.

Example 57.11 (Advection-reaction). Consider the PDE pu + 3-Vu = f with the inflow
boundary condition v = 0 on 9D ; see §56.2.1. Assume that all the boundary faces of the
mesh are subsets of either 9D~ or ID\OD™. Let us define Vi := {vy, € Pg(Tn) | vyop- = 0}. By
proceeding as in §22.4, a quasi-interpolation operator Zpo can be built by setting to zero the degrees
of freedom associated with the boundary faces in 9D~ . Let us set po := essinfp(u — %Vﬁ) and
define the local weights 7y := min(8y hx, pg ') with Bx := ||B]|L=(x). The GaL$ discretization
consists of seeking uy € Vi s.t.

/ (uup + B-Vup)wy dx + / T(pup, + B-Vup)(pwn, + B-Vwy) de = 65" (wp,),
D D

for all wy, € Vyo, with €5 (wp) := [, fwndz + [, 7f(pwp, + B-Vwy) dz. Let § := ||B]| g (p) and
¢ := max(f, uoh). Assuming that u € H*7 (D), r € [0, k], Theorem 57.8 and the approximation
properties of Vjg give

1 1 1,41
g 1w = unll 2oy + 172 8-V (u — un)l L2 (py < ¢dZh" 2 |ul grr (). O

Example 57.12 (Darcy). Consider the PDEs d~'o + Vp = 0 and up + V-0 = f with the
boundary condition p = 0; see §56.2.2. Notice that X = 0. We are in the situation described

in §57.3.3. Let d. and p, be two user-defined reference scales. (Take for instance d, := Ay and

s = p1y.) Setting pio := min(£2, ‘;—;), we rewrite (56.16) as follows:

(€ + K@), (0, )2 = 200 (1032 + allpllEz o) ) -

The above inequality suggests to consider the following scaling matrix:

s |2t Ol (57.25)

We then observe that S~*A*S~1 = ¢, A%, where (, := (d,/p.)? is a length scale (for Darcy’s
equations, the SI unit of d, is m?-(Pa-s)~! and the SI unit of p. is (Pa-s)~!). Then (57.24) implies
that Bx := ¢, and the local weighting parameter is 7 := min(¢; 'hg, ugl).

Let us set Sy, := Py(75,) and Pho := {pn, € P;}(T1) | pnjap = 0}. Referring to Proposition 57.10,
the rescaled GaLS formulation of the problem consists of seeking (o, pn) € Vio 1= Sk x Ppo such
that for all wy, := (7, qn) € Vho,

/ ((dflah + Von)-mh + (upn + V-Uh)qh) dz
D
+ / dor(d oy + V) (d 7, 4+ V) dz
D

+ / 12T (1 + Vo) (agn + V) da = €55 (wn),
D



Part XII. FIRST-ORDER PDES 23

with 5% (wn) == [}, fandax + [, po'7f (pgn + Vo) dz. Assume o € H'"(D) and p € H'*"(D),
r € [0, k], and let ¢ := max(¥s, uph). Then Theorem 57.8 and the approximation properties of V3
give

ug i3 lp — pullao) + i d * o - 0h|\L2(D>+d lr=V(p - ph)HL%D)
+ p : |72V (o — on)llLzp) < cozh ™ (dy : |U|H1+7‘(D)+Nf p| 14+ (D)) O
Example 57.13 (Maxwell). Consider the PDEs cE — VxH = j; and iwuH + VX E = 0 with

the boundary condition H xm = 0; see §56.2.3. We are in the situation described in §57.3.3. Let

o and [1, be two user-defined reference scales. (Take for instance o, := o, and i, := wp,.) Setting
Oh Wi

Lo = \} min(Z*, £2), we rewrite (56.19) as follows:

R((AE. H).(E, H))L) > p1o (0| B2 + s | H |72 ) )

The above inequality suggests to consider the following scaling matrix:

S = ***** I (5726)
Osx3i s

We then observe that S'A*S~! = ¢, A%, where , := (0.Ji,) "7 is a length scale (for Maxwell’s
equations, the SI unit of o, is A%-s-(m-J)~! and the SI unit of i, is J-(s:A%-m)~1). Then (57.24)
implies that Bx := ¢, and the local weighting parameter is 75 := min(¢; A, ugl).

Let us set W), := Pg(Ty) and Wyo == {b, € W, | bnopxn = 0}. Referring to Proposi-
tion 57.10, the rescaled GaLS formulation of the problem consists of seeking (E},, Hp) € Vi :=
Wi xWh such that

/ ((UEh _ VxH,)e, + (iwnHy + VXEh)-Eh) do
D
+/ Ung(UEh - VXHh)~(O'Eh — VXEh) dx
D

+ / p; tr(iwpHy, + VX Ey)-(—iwpby, + Vxey) dz = 65" (wp,),
D

for all wy, = (en,bn) € Vo, with £ (wp) = ijb e, dr + fD L7js-(0€, — Vxby)dz. As-
suming that (E, H) € H*"(D)xH"(D ) for some 7 € [0, k], Theorem 57.3 combined with the
approximation properties of V3 yields

1
nio? | E - By e D)+uou* |H — Hp||L2(p) + fix * IIT2V><(E—Eh)HL2<D>
1 1
+ 0 H[rEVx(H — Hy)llpap) < c6 07 (0F | Bl e o) + 72 1 H prie().

with ¢ := max (., poh). If the boundary of D is not smooth and/or if the coefficients o, are
discontinuous, it is in general preferable to use H (curl)-conforming finite element subspaces based
on edge elements (see Chapter 15) instead of using H!-conforming finite element subspaces; see
§45.4. O
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57.4 Boundary penalty for Friedrichs’ systems

The goal of this section is twofold. First, we introduce a technique to enforce boundary conditions
weakly in Friedrichs’ systems. Then we show how to combine this technique with the GaL.S method.
The boundary penalty technique introduced here will be used again in the following chapters.

57.4.1 Model problem

Recalling that Vj := ker(M — N), we consider the sesquilinear form
~ 1
a(v,w) = (A(v),w), + §<(M —N)(v),w)y v, Yo, w € V. (57.27)

The purpose of the last term on the right-hand side is to enforce the boundary condition u €
ker(M — N) weakly. The test functions are now restricted to be in the graph space V, since the
linear form (M — N)(v) is not bounded on L. The model problem that we consider is the following:

{ Find v € V such that (57.28)

a(u,w) = (f,w), YweV.
If u solves (57.28), taking w in C§°(D;C™) implies that A(u) = f in L?(D;C™). Then we have
(M = N)(u),w)y+v =0 for all w € V, which implies that u € ker(M — N).

Lemma 57.14 (L-coercivity). The sesquilinear form a defined in (57.27) has the following
coercivity property:

~ 1
R(a(v,v)) > pollvlz + §|v|?\/[, Yo e V. (57.29)

Proof. Owing to Lemma 56.8, we infer that

%(E(v,v)) = %((A(U),U)L) + %%(((M - N)(v),v)vf,v)

> ool + SRAN(0), vhvrw) + SR = N) (@), 0)vey),

for all v € V, so that (57.29) follows readily. O

Proposition 57.15 (Well-posedness). (i) The problem (57.28) is well-posed. (ii) Its unique
solution is the unique solution to (57.1).

Proof. Assume that u solves (57.1). Then u € V = ker(M — N) and we have (A(u),w)r = (f,w)L
for all w € L. Hence, a(u,w) = (A(u),w)r, = (f,w)y for all w € V. C L. This shows that u
solves (57.28). The uniqueness of the solution to (57.28) results from Lemma 57.14 and po > 0. O

Remark 57.16 (Inf-sup condition). One should not infer from the well-posedness of (57.28)
that the sesquilinear form a satisfies an inf-sup condition on V xV. Indeed, well-posedness holds
true for all f € L, but it may not be the case for all f € V. O

57.4.2 Boundary penalty method

We now construct a V-conforming approximation of the model problem (57.28) by using H'-
conforming finite elements. We denote by (V3 )new a sequence of H!-conforming finite element
subspaces constructed as in §57.2.2 using a reference finite element of degree &k > 1. We assume
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that we have at hand a quasi-interpolation operator Z, : V' — V}, with optimal local approximation
properties, i.e., there is ¢ s.t. for all r € [0,k], all v € H*"(D;C™), all K € Tp,, and all h € H,

o = Tu@)l o) + BV @ = Zu @)y < bl olas (e cm- (57.30)

Our starting point is the sesquilinear form a defined in (57.27). We would like to localize the
term ((M — N)(v),w)y- v over the boundary faces F' € F2. To this end, we assume that there are
boundary fields M, N € L>(dD;C™*™) s.t.

(M(v),w)v v = (Mv,w)r@op), (N@),wyv v =WNv,w)Lop) (57.31)

for all v,w € H*(D;C™), s > &, and L(dD) := L*(dD;C™). Notice that the field M is such
that %((MU, U)L(aD)) > 0 since the operator M is monotone. But the examples from §56.2 show
that R ((Mo,v) L(op)) may vanish identically (this happens for second-order PDEs in mixed form).
To gain some control on the boundary values, we thus need to introduce an additional boundary
penalty field S? € L>(dD; C™*™) taking values in the set of mxm complex-valued matrices that

are Hermitian and positive semidefinite. We define the following seminorm on H*(D;C™), s > 3:
1
[olaer = (M 0,0)2 5pys M= M+ S0 (57.32)

1
Letting L(F) := L?(F;C™), we define the seminorm vy = (M%Pv,v)z(F), where we use the
subscript p for the restriction of a boundary field to F' € F?. We assume that the field S is
defined in such a way that there is ¢ s.t.

ker(Mp — Np) C ker(MpE — Np), 57.33a

(
1
[v|p < e Bg, vllLiry, (57.33b

)
)
[(MF = Np)v,w) eyl < e B, [vlmellwllnir), (57.33¢)
)

1
[(ME +Nr)v,w) iyl < e Bk 1Vl Limlwl e, (57.33d

for all v,w € L(F), all F € F?, and all h € H, where Bk is defined in (57.8) for all K € T, and
K is the unique mesh cell of which F' is a face, i.e., F' := 0K; N dD. Notice that (57.33¢c) and
(57.33d) turn out to be equivalent (see Exercise 57.5). We retain both (57.33¢c) and (57.33d) as
assumptions since each will appear in the analysis and this avoids distracting technicalities.

Example 57.17 (Advection-reaction). Since Mp = |B-np| for all F € F?, we can take

S9 := 0. The properties (57.33a) and (57.33b) are obvious, and (57.33¢) results from the Cauchy—
1

Schwarz inequality since %IF(|ﬁnF| — Bnrp)owds < |||/8"I’LF|%’U||L2(F)ﬁ12(l||’U}HL2(F). O

Example 57.18 (Darcy). The properties (57.33) are satisfied for the Dirichlet condition p = 0
by taking

89 = [‘Ddxd*o] ,  VFeFp. (57.34)

Recalling the scaling arguments from §57.3.3 and Example 57.12, the inequality (57.33b) requires
1 11

that (ozpp,p)zz(F) < B pi IpllL2(ry- We then set ap := a. Bk, px, where Br, = £y = (d*/,u*)%

is a length scale and a,. > 0 is a user-defined O(1) nondimensional parameter. O
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Example 57.19 (Maxwell). The properties (57.33) are satisfied for the boundary condition
H xn = 0 by taking

., VYFeF?, (57.35)

where T € R3*3 is s.t. T¢ = &xn for all &€ € R3 (see §56.2.3). Recalling the scaling argu-
1
ments from §57.3.3 and Example 57.13, the inequality (57.33b) requires that [|azH xn|[2p) <
L1
cBi ik || H||L2(r). We then set o := a.fk, fix, where Br, := £, = (dyJix) "2 is a length scale and

a, > 0 is a user-defined O(1) nondimensional parameter. O

57.4.3 GalsS stabilization with boundary penalty

Let us now formulate the GaLS approximation with boundary penalty. Recalling that rp, (v, wp) =
(A(vp), TA(wp)) 1, we define the following discrete sesquilinear forms on Vj, xV},:

1
ap’ (vn, wr) 1= (A(vp), wn)r + 5((MBP —N)Uh,wh)L(aD), (57.36a)

azL/BP (’Uh, wh) = GZP(UM wh) trh (Uh7 ’LUh). (5736b)

We consider the following discrete problem:

Find uj € V}, such that
(57.37)

a§ " (upy wp) = £5(wy) = (f,wp + TA(wr))z,  Vwy € Vi,

Note that the boundary penalty technique does not affect the definition of the right-hand side,
unless the boundary condition is non-homogeneous. We perform the error analysis as in §57.3.2
using Lemma 27.8. Let us start with stability which again takes the simple form of coercivity.

Lemma 57.20 (Coercivity, well-posedness). (i) The following holds true:
, 1 1
R(ay ™ (vns o)) = pollonl7 + slonliew + 172 Awn)lIZ = [lonllF; (57.38)
for all vy, € Vj,. (ii) The discrete problem (57.37) is well-posed.

Proof. Similar to that of Lemma 57.6. O

Since the boundary penalty technique invokes traces on 0D, some additional smoothness on
the solution has to be assumed, i.e., we assume that

1
u€ Vy:=H*(D;C™)NYV, 5> 3. (57.39)

We set V4 := Vi + Vi, = Vi (owing to conformity), and we equip the space V4 with the following
two norms:

1 1

[0l == mollvl|7 + §|U|3wsv + [I72 A(v)I7, (57.40a)
1 1

[0l = llvlly, + 7 20ll7 + [l 0l op), (57.40b)

with the scaling factor p € L>°(0D) defined by setting p|p = Pk, for all F' € F2. Notice that
llvnllvi, = llvnlly;, for all vy € Vi, and |vlly, < |lv[ly; for all v € V4, i.e., (27.7) holds true with
C, ‘= 1.



Part XII. FIRST-ORDER PDES 27

Lemma 57.21 (Consistency/boundedness). Define the consistency error as

(On (vn)s whvy ve = L5 (wn) — af™"(

vh,wh), Vvh,wh EVh.
There is wy, uniform w.r.t. u € Vs, such that for all vy, w, € V), and all h € H,
[(6n(vn)s wh)vy v | < wi [lu = vnllv; [[wal]vs, (57.41)

Proof. Since A(u) = fin L, (M% — Ng)u =0 in L(0D) owing to (57.33a), and since we assumed
u e H?(D;C™), s > %, we have

(On(vn), wn)vy,vi, = (A(u), wn + TA(wn)) L — (A(vn), wn)L
— (M = Ao wn)om) — (Afwn), TAGen)
= (A(),wn + TAGwn))r + 5 (M = M), wn) (o),

with n := u — vy,. Integrating by parts, we obtain

(A), wi)s + 5 (M = N, un) o)
= (K + KM = X, wn)z — O, L))z + 5 (M + N, wn) o)

The third term on the right-hand side is bounded by using (57.33d). The rest of the proof is similar
to that of Lemma 57.7. O

Theorem 57.22 (Error estimate). (i) There is ¢ such that for all h € H,

lu—unlly, <c inf |lu—wvaly,. (57.42)
v €Vh
(i) If u € HY"(D;C™), r € [0, k], then

lu—unlly, <c Y max(Bx, poha )z uldir (pyesem)- (57.43)
KeTy,

1
This implies in particular that ||u — up|ly, < c¢§hr+%|u|H1+T(D;Cm).

Proof. Similar to that of Theorem 57.8. O

Exercises

Exercise 57.1 (Least-squares). Write the LS approximation and the resulting error estimate
for the advection-reaction, Darcy’s, and Maxwell’s equations (for simplicity assume that u €
H**1(D;C™) and hide the scaling factors in the generic constant c).

Exercise 57.2 (Transport in 1D). Consider the LS approximation using P Lagrange finite
elements, k& > 1, of the one-dimensional transport problem v’ = f in D := (0,1) with «(0) = 0
and f € H*(D). Prove the optimal L?-error estimate |[u — up || z2(py < ch*™|f|gr(py. (Hint: use
a duality argument.)
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Exercise 57.3 (Duality argument for Darcy). Consider the LS approximation of Darcy’s
equations with homogeneous Dirichlet conditions on p in the mixed-order case k := ke —1 = k, > 1,
i.e., Vio = Pg y (Th) X Pf o(Th). Assume that p =0, d~' := &Iy with x € WH>(D), and that full
elliptic regularity holds true for the Laplacian. The goal is to prove the error bound ||p—pn || z2(p) <
ch* X (|o | grrv2(py + [P+ (py); see Pehlivanov et al. [236]. Let Z, have optimal approximation
properties in Pg,,(75), and let TI} : Hg(D) — P¢y(Tx) be the elliptic projection such that
for all ¢ € H{(D), (V(g —}(q)), Van)L2(py = 0 for all ¢, € PEo(Th) (see §32.4). (i) Setting
en = (In(o) — on, 15 (p) — pn), prove that |lexllv < c([|Zn(0) — o maiv;p) + I} (P) — pll2(D))-
(Hint: use coercivity and the Galerkin orthogonality property.) (i) Show that |[p — pnl/z2(p) <
ch* X (|o | grrvz(py + [Pl re+1(py). (Hint: use a Poincaré-Steklov inequality and Exercise 32.1.)

Exercise 57.4 (SUPG). Assume that hx < fpy’ min(1, 324 for all K € Ty, with jine =
| Kl[Lo (D). Prove that the same error estimate as in the GaLS approocximation is obtained by consid-
ering the following discrete problem: Find uj € Vi such that ai""¢(up, wy) = (f, wn + 741 (wr)) L
for all w, € Vi with the SUPG-stabilized sesquilinear form aj""¢(vp, wp) = (A(vn), wp)r +
(A(vp), TA1(wp)) . (Hint: bound (A(vp), 7Kvp)r and use Lemma 57.6 to establish coercivity.)

Exercise 57.5 (Boundary penalty). (i) Prove that (57.33¢) and (57.33d) are equivalent. (Hint:
consider the Hermitian and skew-Hermitian parts of Mpg.) (ii) Verify that the boundary penalty
operators defined in Example 57.18 for Darcy’s equations and in Example 57.19 for Maxwell’s
equations satisfy (57.33). (Hint: direct verification.)



Chapter 58

Fluctuation-based stabilization (I)

The goal of this chapter and the next one is to approximate the same model problem as in Chap-
ter 57, still with H'-conforming finite elements and the boundary penalty technique introduced
in §57.4, but with a different stabilization technique. One motivation is that the residual-based
stabilization is delicate to use when approximating time-dependent PDEs since the time derivative
is part of the residual. The techniques devised in this chapter and the next one avoid this diffi-
culty. The starting observation is that H'-conforming test functions cannot control the gradient
of H'-conforming functions since the gradient generally exhibits jumps across the mesh interfaces.
The idea behind fluctuation-based stabilization is to gain full control on the gradient by adding a
least-squares penalty on the part of the gradient departing from the H!-conforming space, and this
part can be viewed as a fluctuation. Stabilization techniques based on this idea include the contin-
uous interior penalty (CIP) method, studied in this chapter, and two-scale stabilization techniques
such as the local projection stabilization (LPS) and the subgrid viscosity (SGV) methods, which
are studied in the next chapter. We present in this chapter a unified analysis based on an abstract
set of assumptions. We show how to satisfy these assumptions using CIP, LPS, and SGV in this
chapter and the next one. Notice that in terms of stability and approximation, GaL.S, CIP, LPS,
SGV, and discontinuous Galerkin (presented in Chapter 60) are all equivalent.

58.1 Discrete setting

We assume that for all h € H, we have at hand an H'-conforming finite-dimensional space V;, C V/
built by using a shape-regular mesh sequence (7;)rex and a finite element of degree k > 1. We
assume that each mesh covers D exactly. We also assume that there is a quasi-interpolation
operator 7y, : V' — V}, with optimal local approximation properties, i.e., there is ¢ s.t.

|’U - Ih(v)|Hl(K;(Cm) < Ch}{+T_l|U|H1+7‘(DK7(Cm)7 (581)

for all r € [0, k], every integer [ € {0:14|r|}, all v € H*"(D;C™), all K € Ty, and all h € H,
where Dy == int({K' € T), | KN K' # 0}).

Recall from §57.3.1 the local quantities Bk := maxye (1. ay [[A*| o (r;cmxm) for all K € Ty, and
the local weighting parameters

7ic 1= (max(Brchi’, o)) ' = min(B e, 1), (58.2)
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where p is defined in (56.1c). For the advection-reaction equation for instance, Sk is a local
velocity scale, g is the reciprocal of a time, and 7x is a local time scale. We define the global
quantity S := maxgeT, BSx. With a slight abuse of notation, we define the piecewise constant
function 7: D — R s.t. 7 1= 7 for all K € Tj.

Our starting point is the boundary penalty technique that we used for the GaLS stabilization
(see (57.36a)). Recall that L := L?(D;C™) and L(0D) := L?(0D;C™). The sesquilinear form is
defined by setting

1
ay’ (vns wn) = (A(on), wn) + 5 (M = N)vw, wn)L(op), (58.3)

for all vy, wy € Vj,. The main idea of the fluctuation-based stabilization is to augment a}” with a
Hermitian positive semidefinite sesquilinear form s; whose purpose is loosely speaking to control
the difference between A;(vp,) and a suitable representative of A;(vp,) in V3. We make the following
requirements on sp: There exists a linear operator 7, : Vj, — V}, and two positive constants ¢y, co
s.t. the following holds true for all v, € V}, and all h € H:

lvn]s = sh(vh,vh)% < ClHT_%’UhHL, (58.4a)
2 IT7 2 Tn(on) 13 < 172 Ar(un)l3 + pollvnll3, + [vnl2, (58.4b)
ea |72 A (o) |12 < R((Ar(wn), Tu(on))) + mollonll + onl2- (58.4c)

We are going to give examples for s;, and [Jp, in §58.3 for CIP and in the next chapter for LPS
and SGV. With this new tool in hand, we consider the following discrete problem:

{ Find uj, € V}, such that (58.5)

afll(uh,wh) = Zfll(wh), th S Vh,

with a}'(vn, wr) == a}" (vp, wn) + sn(vp, wr) and £ (wy) == (f,ws)r. Notice that the right-hand
side £}' does not depend on the stabilization.

Remark 58.1 (Simplified setting). Let {p := diam(D) and assume that o > 805" and that the
mesh family (73 )nen is quasi-uniform. Then one can consider the constant coefficient 7 := S~h
and (58.4a) becomes

1
|’Uh|3 <c (%) 2 HUhHLu Yoy, € Vj,. (58.6)

Moreover, if one can devise a linear operator Ay : Vi, — Vj, s.t. for all vy, € Vp,
B\3 B
| A1 (vn) — Ap(vp)|lL < ¢ ((E) 2|up|s + Eth”L)a (58.7)

then (58.4b)-(58.4c) are met with J,(vp,) = %Ah(vh); see Exercise 58.1. Let Py, : L — V}
be the L-orthogonal projection onto Vj, i.e., for all z € L, Py, (z) € V}, is uniquely defined s.t.
(z—Pv, (2),wn)r, = 0 for all wy, € V},. Then under the above assumptions, all the fluctuation-based
sesquilinear forms s;, (whether CIP, LPS, or SGV based) lead to the following decay rates: There
is ¢ s.t. for all v € H*¥1(D;C™), all wy, € V3, and all h € H,

|51 (Pv, (0), wp)| < € B2R¥F 2 0] gus puem) [whl s, (58.8a)

(v = Py, (0), A1 (wn))z] < ¢ B2R*2 ol i (pycm) (58.8D)

1
x (lonls + () lwnllz). O
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58.2 Stability analysis

The goal of this section is to prove that the discrete sesquilinear form a}' defined above satisfies
an inf-sup condition on Vj, XV}, uniformly w.r.t. h € H. We assume that the fields {Ak}ke{lzd} are
piecewise Lipschitz on a partition of D and that the meshes are compatible with this partition,
implying that the fields {Arx}ke{l:d} are Lipschitz for all K € T,. We denote by L 4 the largest

Lipschitz constant of these fields. Recall that & := )7, (1:d} Op Ak, To simplify the tracking of
the model parameters, we assume that

max (|| K| oo (p;cmxm), | X Lo (psemxmy, La) < cx,x,4k0, (58.9)

and we hide ci x4 in the generic constants ¢ used in the error analysis. Notice that we have
HX”LOO(D;C""X"") S dL_A

Lemma 58.2 (Inf-sup stability, well-posedness). (i) Under the conditions (58.4) on sp and
the above assumption on the model parameters, there is o > 0 such that for all h € H,

F1
inf sup il o (58.10)
vn€Vih wyeVi, [[Un v [[wallvs,

with the stability norm
1 1
onll¥, == pollvnll7 + §|vh|i4up +lonls + 172 Ar (on) |17 (58.11)

(ii) The discrete problem (58.5) is well-posed.
Proof. We only need to prove (58.10) since the well-posedness of (58.5) then follows directly. Let

laj (vnwn)|
[lwnllv,,

vp € Vi Set Iy = [lup |y, and 7y := sup,,, ¢y, . Our goal is to prove that there is o > 0

such that al, < rp, for all h € H.
(1) The coercivity of a;” and the positive semidefiniteness of s;, imply that

1 .
pollvnl + §|U}L|3\/lup + |vnlE < R(a), (vh,vn)) < ral. (58.12)

(2) Let us set wy, := Jn(vn) and let us verify that ||Jwp||v, < ¢||7~Zws||r. To this purpose, we
1

bound the four terms composing ||wp||v,. For the first term, pd|wp|/z, we use the fact that
o < TI;I for all K € Tp,. For the second term, we use (57.33b), a discrete trace inequality, and
the fact that Sk, h;(ll < lell. For the third term, we use the property |wp|s < ¢1 |7~ 2wy || from

the design condition (58.4a) on s,. For the fourth term, |72 A;(wy)| 2, we use the definition of
Br, an inverse inequality, and that ﬂKh;{l < 7'[}1. Putting together the above bounds shows that

wrllv, <c T_%wh - Owing to (58.4b) and (58.12), and recalling that {;, := ||vp||n, we infer that
h
1
lwnllvi, < ellm™2wnlle = ellr ™2 Tn(on)lle < ey In. (58.13)
(3) Using (58.12), the condition (58.4¢) implies that
172 Ay (o) |2 < e(R((A1(vn), w) 1) + raln)- (58.14)

Summing (58.12) and (58.14) (which amounts to using the test function vj, + Jp(vs)) gives 17 <
c¢(R((A1(vp),wr)L) + rrlp). The rest of the proof consists of estimating R((A1(vp), wp)r). This
term is rewritten as follows:

%((Al(vh), wh)L) = %(CLZ](’U}I, wh)) - Th,
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where Y}, := %((th,wh)L + %((./\/IBP — N)vn, wn)Lopy + sh(vh,wh)). The definition of r;, im-

1
plies that R(a} (vs, wn)) < |wi|lv,7h, and (58.13) gives |R(a} (v, wp))| < ccy 2lpry. Let us now
estimate |Yp|. Using the Cauchy—Schwarz inequality, the assumptions (57.33b)-(57.33¢c) for the
boundary fields, and ||| L (p,cmxm) < cpo, we infer that

1
Tal < ¢ (kollvnllzliwnlle + [onlaee o wnllomy ) + lonlslunls,

with the scaling factor p € L>(9D) s.t. p|p = Bk, for all F:= 0K;NdD ¢ F?. Using a discrete
trace inequality shows that ||p%wh|\L(aD) < ¢|[7~ 2wp]|L. Invoking (58.12) and (58.13) gives

1
2

1 _1

Tal < e (uollonl? + ol + lvnl2)® (ollwnl} + 17~ Fwnllf + wnf3)
11 5 13
< erfii (lwnlldy + I bwnl} + funfd)” < erfif.

Thus, [R((Ay (vn), wn)1)| < c(raln+r717). Summing (58.12) and (58.14) yields 2 < e(rnly+r717).
We obtain the expected bound by applying Young’s inequality twice. O

Remark 58.3 (Hermitian symmetry). The coercivity argument invoked in (58.12) shows that
it is natural to assume that the sesquilinear form sj; is Hermitian symmetric since it is the real
part of aj' that is L-coercive. O

58.3 Continuous interior penalty

The key idea in CIP stabilization (also termed edge stabilization in the literature) is to penalize the
jump of Ay (vp,) across the mesh interfaces. This idea has been introduced in Burman [57], Burman
and Hansbo [67]. See also Burman and Ern [62, 63] for the hp-analysis and extensions to Friedrichs’
systems, and [121] for nonlinear conservation laws.

58.3.1 Design of the CIP stabilization

Our goal is to construct a stabilization bilinear form s, and an operator [J; that satisfy the
conditions (58.4). We consider the discrete space

Vi i= PE(Th; C™), (58.15)

where PE(Tj,;C™) := PE(T;;C™) N HY(D;C™) and P& (T;;C™) is the broken finite element
space built using a reference finite element of degree k£ > 1 and the mesh 7y, (see §19.2.1).
The main tool in the analysis of CIP is the discrete averaging operator

T PEN (T C") = PE(TC™), (55.10)

which acts componentwise as the discrete averaging operator introduced in §22.2. The essential idea
in CIP is to build the linear operator Jp : Vs, — V3 used in the abstract design conditions (58.4)
by setting Jp(v) == T (TAl(vh)) for all v, € V3. Thus, the operator J; produces an averaged
version, scaled by the weighting parameter 7, of the gradient part of the differential operator in

the Friedrichs’ system.
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The above definition though meets with two technical difficulties. The first one is that A;(vg)
is not a piecewise polynomial whenever the fields {-Ak}ke{l:d} are space-dependent. This can be
fixed by setting

(A (on)) i = Y AiOonr, Ak :_|—11{|/Akdx, (58.17)
ke{1:d} K

for all v, € V3, and all K € Tj,, and by replacing A (vp,) by A;(vy). The second difficulty is that the
local weighting parameter 7 is by definition a discontinuous function across the mesh interfaces.
To avoid dealing with the jumps of 7, we define the continuous mesh-dependent weighting function

¢ = jhg)’lav(T) € PE(Th), (58.18)

where we use the scalar-valued discrete averaging operator of degree one. We have ¢(z) =
card(T2) "' Y geq. Tk With T, == {K € T, | z € K} for every mesh vertex z. Recall the no-
tation T := {K' € Ts, | KN K’ # 0} and Dy := int(Ug e, K') for all K € Tp,. Notice that Dy
represents a local neighborhood of K in D. We will also consider the slightly larger neighborhood
Dg) = int(UK'eﬂf) K') with ’7}((2) = {K' € T, | Dx N K' # 0}. To avoid technicalities, we
are going to assume that the piecewise constant function Sk is mildly graded. More precisely, we
assume that there is ¢ such that for all K € 7, and all h € H,

ﬁKSC min BK’- (5819)
K'eT?

The more general situation, which includes problems with contrasted coefficients, is further dis-
cussed in Remark 58.9.

Lemma 58.4 (Local bounds). Let 7 € PY(Ty) be defined in (58.2) and let ¢ € PE(Ty) be defined
in (58.18). Assume (58.19). There is ¢ s.t. the following holds true for all K € Ty, and all h € H.:

lAllLe (i) < ¢ inf  7xr, (58.20a)
K'eTk
¢~ | poe (i) < cTr" (58.20b)
Proof. See Exercise 58.2. O

We define L(K) := L?(K;C™) and set ||[v| (k) := |[v]|2(k;cm) for all K € Ty, and use a similar
notation for L(Dg) and L(F') for all F' € Fj,. Recall that [-]r denotes the jump across the mesh
interface F' € Fj, (see Definition 18.2).

Proposition 58.5 (J;, for CIP). Assume (58.19) and that sy, is defined so that there is ¢ such
that the following holds true for all vy, € Vi, and all h € H.:

> ehel[Ain)]rlT o < e (pollonll + val3), (58.21)
FeFyg

with
7 = max(Tk,, Tk, ), VF := 0K, NOK, € Fj. (58.22)

Then the conditions (58.4b)-(58.4c) on sy, are satisfied with

Tn(vn) == TE™ (A1 (vh)). (58.23)
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Proof. (1) Let us prove (58.4b). Let K € Tj,. We observe that the local L2-stability of J>* (see
Corollary 22.4) implies that

_1 = av
l7= 2 Tl ey = 7 1T (A (on)I r
B 1
< CTK1H¢A1(’U]I)H%(DK) = C/HﬂAl(vh)H%(DK)’

where we used (58.20a) in the last bound. Summing over K € T, and invoking the regularity of
the mesh sequence, we infer that ||772 7 (vn)|lz < ¢|72A,(vp)|L. Using the triangle inequality
then yields

I7=2 Fu(om)llz < e (17 Avwn)ll + 7% (A1 = Ay (on)lln).
Since the fields A* are piecewise Lipschitz with constant L4 < cpug, using an inverse inequality
1
and 7 < gt gives 72 (A1 — A (o)l < cpd ||vn|| - This proves (58.4b).
(2) Let us now prove (58.4¢). Since (58.20b) implies that 7x < cinfyex [@p(x)], it is sufficient to
bound ||¢pz Ay (vp,)|| . We first observe that

||¢%A1 (’Uh)”% =%+ %((Al ('Uh)v ¢A1(Uh) - jh(vh))L + (Al (Uh)’ (b(Al - Al)(vh))L)’

with Ty := R((A1(vn), Tn(vn))r). Using Young’s inequality gives

1 1 1 1
Sl67 Ara)lZ < Ta+ 1672 (941 (vn) = Tn(wa))IIZ + [162 (A1 — Ap)(on) 1%

Let us denote by Ty, T3 the two rightmost terms on the right-hand side. Owing to Lemma 22.3
applied to the piecewise polynomial ¢ A, (vj,) and since ¢ is a continuous function, we infer that

To= Y (6072 (0A, () — TE (G4 (o)} k)

KeTn

<e Mo M oewy Y N1 (m hrlllA; (on)]lLr),

KeTy, FeFy,

where T3 := {F € F¢ | FNK # 0}. Invoking the bound (58.20b) and since maxpe zo 1Pl Lo (py <
|l Lo (py) < cTr by (58.20a), we infer that

T<e Y x> hellAn)]eli

KeTh, FeFy,

<c Y mehellld )l < ¢ (uollonll + [val?),
FeFy

where we used the definition (58.22) of 7 and the assumption (58.21). Finally, reasoning as above
to estimate (A; — A;)(vp) we obtain

Ty <c Y mrppllvalli g < cpollonll?.
K€7-h

Collecting the above bounds yields [|¢2 A1 (vp)||2 < (%1 + pollvall2 + |val%). We conclude
that (58.4¢) holds true. O
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Lemma 58.6 (s, for CIP). Assume (58.19). Let tr be defined in (58.22). The following

sesquilinear form sy'"* satisfies (58.4):

si"(onywn) =Y Tehe([Ay (o)l r, [A] (wn) F) L) (58.24)
FeFy

Proof. (1) Condition (58.4a). Using that 7 < e¢min(7g,, Tk, ), the triangle inequality to bound

the jump, a discrete trace inequality, an inverse inequality, and the inequality £ Khi_(l < Tgl which
follows from (58.2), we infer that

onls < Y 27| A (o) 3ok S ¢ > Tl A (w17 k)

KeTy KeTn
_ _1
< Y TBEE lonll ey < Clm Tz onllZs
K€7-h

for all vj, € Vj,. This proves (58.4a).
(2) The conditions (58.4b)-(58.4¢) follow from Proposition 58.5 since (58.21) holds true with the
definition (58.24). O

Remark 58.7 (Other example). It is also possible to consider the jumps of A (vp) in (58.24).
Then (58.21) is shown by invoking as above that the fields {A*},c 1.4} are piecewise Lipschitz,
L < cuo, and pg < Tgl for all K € T,. Moreover, assuming that the fields {Ak}ke{lzd} are
continuous over D, another possibility is to set

s (on,wn) = > Brhp([Vonlr, [Vwale)pr), (58.25)
FeFy

where Sr := max(fk,, Bk, ) with F := 0K; N JK,; see Exercise 58.3. This choice is interesting for
time-dependent fields A* since the local assembling can be done only once, which is not the case
for (58.24). O

Remark 58.8 (Simplified setting). Recall the simplified setting of Remark 58.1. Assume that
sesquilinear form sy, is defined in (58.24) or (58.25). Let A, (vp,) be defined in Proposition 58.5 for all
vp € Vi Then the operator Ay, : Vi, — Vi s.t. Ap(vp) = T5* (A1 (vp)) € Vy, satisfies (58.7). O

Remark 58.9 (Contrasted coefficients). When solving problems with heterogeneous materials,
the fields {Ak}ke{l;d}, and thus the coefficients {fx}keT,, can be strongly contrasted. In this
case, the CIP stabilization can be designed using the above ideas provided the mesh cells can be
organized into macroelements where the material properties are smooth. We refer the reader to
Burman and Schieweck [69] for the analysis of CIP stabilization on composite elements. O

58.3.2 Error analysis

We assume in this section that sj is defined in (58.24) or (58.25) and that (58.19) holds true. We
perform the error analysis using Lemma 27.8. Since we have already established stability, it remains
to bound the consistency error and prove convergence by using the approximation properties of
finite elements (i.e., (58.1)). We assume that the solution to the model problem (57.1) has the
following smoothness:

u € Vs = H*(D;C™)NV. (58.26)
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We equip the space V; := Vs 4V}, with the following two norms:

1 1
oI, = pollollZ + S loliew + 17> AL ()12, (58.27a)
[oll%, = l[olIF, + [[ol13,2, (58.27b)

with [[v]|2 5 = Y ke > one{0:2} T h22 o2 n(x)- Notice that (27.7) is satisfied with ¢, := 1 (i.e.,
llvnllv, < llvnllv;, on Vi and |Jv]ly, < [jv]lv, on V}). Notice also that the restriction of [|-[|y; to Vi

is not [|-||v;,, because we have dropped the seminorm |-|s in the definition of ||-||y; (the reason for
this is that |-|s may not be meaningful on V).

Lemma 58.10 (Consistency/boundedness). Define the consistency error as
(On(vn)s wi)vy v, = Ly (wn) — ay, (vn, w), Vo, wp, € Vi

Assume that the fields {Ak}ke{l:d} are continuous over D. There is wy, uniform w.r.t. v € Vg,
such that for all vy, wp € Vi, and all h € H,

[(6n(vn)s wn)vy v | < wi llu = vnllv [[wal]vs, (58.28)

Proof. Since A(u) = f in L and (M% — Np)u = 0 for all F € F since u € Vi C H*(D;C™),
s > %, we have

1
(On(vn)swn)vy vi, = (A), wn) 1 + 5((/\/15P — N)n,wn) Loy — Sn(vn, wn),

with 7 := u — vy,. Using integration by parts, the first two terms on the right-hand side can be
bounded as in the proof of Lemma 57.21 since |7~ 27|z + [|p?n]lzop) < c[|nllr2 owing to the
multiplicative trace inequality from Lemma 12.15 (with p := 2). Finally, we have |s;,(vp, wp)| <
|vn|s|wn]s. To bound the third factor, we observe that |vy|s = |n|s since [Vu]r = 0 because
u € Vs, and Lemma 12.15 implies that |n|s < ¢||n]|+.2- O

Theorem 58.11 (Error estimate). Let the assumptions of Lemma 58.10 hold true. (i) There
is ¢ such that for all h € H,

lu—unllv, <c inf |lu—valv,. (58.29)
v €V

(ii) If u € HY"(D;C™), r € [1,k], then

2
o= s < ¢ (3 max(, ok ullon o o) (58.30)
KeTy,

Proof. The error estimate (58.29) follows from Lemma 27.8 and the above stability and consis-
tency/boundedness results. The estimate (58.30) is obtained by using the approximation prop-
erty (58.1) of the quasi-interpolation operator Z; and by proceeding as in the proof of Theo-
rem 57.8 to estimate the various terms composing the [|-||v,-norm. Finally, we use that lelhK =
max(ﬁK,uth). O

Remark 58.12 (Simplified setting). The sesquilinear forms s; defined in (58.24) or (58.25)
satisfy the decay rates (58.8) in the simplified setting of Remark 58.1. Let us prove this claim.
(i) We have sp,(v,wp,) = 0 for all v € H*1(D;C™) (recall that k > 1). Hence, s,(Py;, (v), wp) =



Part XII. FIRST-ORDER PDES 37

sn(Py, (v) — v,wp), and the estimate (58.8a) follows from the Cauchy—Schwarz inequality and
the approximation properties of Py, . (i) With the operator A, = J5*(4;) : Vi, = V}, from
Remark 58.8 and since h < £p, we have

4w (wn) = An(wn) 2 < e (3)F (lonls + () 2.

Hence, (v — Py, (v), A1 (wp))r = (v — Py, (v), A1 (wp) — Ap(wp)) L, and (58.8b) follows from the
Cauchy—Schwarz inequality. O

58.4 Examples

Example 58.13 (Advection-reaction). Consider the PDE pu + 8-Vu = f with the inflow
boundary condition v = 0 on 9D ; see §56.2.1. Assume that all the boundary faces of the
mesh are subsets of either 9D~ or D\OD ™. Let po = essinfp(u — 3V-8), B = |B|lL=(p)

i = (B hrc, g ) with Br = 1Bllz~ (k) for all K € Tp, and 7r = max(7g,,Tx,) for all
F:=0K;N0K, € F;. An example of stabilization bilinear form is

CI1P

st (vp, wp,) Z rhE([B-Vur]r, [B-Vwn]r)r2(r).-
FeFy

The estimate of Theorem 58.11 with r := k gives

1
1 llu = unllz2(py < € max(B, poh)® ™3 Jul s (). O

Example 58.14 (Darcy). Consider the PDEs d~'o + Vp = 0 and up + V-0 = f with the
boundary condition p = 0; see §56.2.2. Recalling the scaling argument from §57.3.3 and proceeding
as in Example 57.12, we introduce the scaling matrix defined in (57.25) with the two reference
scales d, and . (e.g., dx := Ny, fs = f). The (nondimensional) L-coercivity constant is pg :=

mm(ﬁ" , i*) Setting ¢, := (du/p.)?, (57.24) implies that Sx := £,, and the local weighting
parameters are 7p := min({; thp, g Y for all F € Fy. An example of stabilization bilinear form

is

i onywn) = Y b (VL VoD e + 13 (V-0 [V 120 )
FeFy

The estimate of Theorem 58.11 with r := k gives

1 1 1 1
pids ?llo = onllL2py + ud i |l — prll2(p)
_1 1 1 1
+led ? |72V (0 — on)llL2(py + LeppZ |72V (p — i)l L2 (D)

< ¢ max((s, poh) T hF 2 (d*_% o gra oy + 1 IPIHW(D))' H

Example 58.15 (Maxwell). Consider the PDEs o E — VxH = f and iwpH + VX E = 0 with
the boundary condition H xn = 0. Recall the reference scales o, and i, for o and wy, respectwely,

and the (nondimensional) L-coercivity constant g = \1[ min( 2=, =), Setting £y i= (0wflx)” 3,

2
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(57.24) implies that B := £, and the local weighting parameters are 77 := min({; hr, ual) for
all F' € F;. An example of stabilization sesquilinear form is

S (onwn) = > b (7 (VX Bal, [V xen]) pacry + 07 (VXL [V X Bl g2 ).
FEFy

The estimate of Theorem 58.11 with r := k gives

1 1 1
g (02 | E — Enllp2(py + 2 | H — Hpl|L2(p))
1 1
+ .07 [TV X(E — By)| 2y + £fid |7V x (H — Hy)|£2(p)
< e max(lu, poh) W53 (0F | Bl g o) + 5 | H oo (). O

Exercises

Exercise 58.1 (Simplified setting). Consider the setting of Remark 58.1 and assume that (58.7)
holds true. Let Jp(vp) := %Ah(vh) for all v, € V3. (i) Prove (58.4Db). (ii) Prove (58.4c).

Exercise 58.2 (Local bounds for CIP). The goal of this exercise is to prove Lemma 58.4.
(i) Let ¢; < ¢} be positive real numbers. Let aj,as be two positive real numbers such that
cra1 < az < cjay. Verify that there are positive constants ca, ¢, only depending on ¢; and
cy, such that comin(ay,b) < min(ag,b) < ¢, min(aq,b) for any positive real number b. (Hint:
distinguish the four possible cases.) (ii) Assume (58.19). Prove that there is ¢ such that 7% <
CminK/eT}f) T for all K € Ty, and all h € H. (Hint: use Step (i) and the regularity of the mesh

sequence.) (iii) Prove (58.20). (Hint: use Step (i), [|¢[|r=(py) < max, s 77, and 6™ Loe(r) <
K

MaX e Trer -)

Exercise 58.3 (Full gradient). Prove (58.21) for CIP with (58.25).

Exercise 58.4 (1D advection, CIP). Let D := (0,1), f € L°°(D), and a nonuniform mesh 7 of
D with nodes {zi};e 0. 14+1y and local cells Ky 1 := [zi, i41] of size by 1 = @1 — s, Vi € {0:1}.
Let h; := %(hi_% + hi+%), Vi € {1:1}, be the length scale associated with the interfaces. Let
Vi, == {vn € PE(Th) | vn(0) = 0}. Let B # 0. Consider the problem Sd,u = f, u(0) = 0.
(i) Write the CIP formulation for the problem using (58.25) and let up € Vj be the discrete
solution. (ii) Show that the discrete problem has a unique solution. (iii) Let uy, := Zie{l; 1413 Vi
and Uy := 0. Write the equation satisfied by U;_a,...,U;j2, Vi € {2:7—1}. (iv) Simplify the
equation by assuming that the mesh is uniform and interpret the result in terms of finite differences.
(Hint: compare the CIP stabilization with the second-order finite difference approximation of
|B|h30pszzu.) Note: the term |B|h30,400u is often called hyperviscosity in the literature.



Chapter 59

Fluctuation-based stabilization

(IT)

In this chapter, we continue the unified analysis of fluctuation-based stabilization techniques for
Friedrichs’ systems. We now focus on two closely related stabilization techniques known in the
literature as local projection stabilization (LPS) and subgrid viscosity (SGV). The key idea is to
introduce a two-scale decomposition of the discrete H '-conforming finite element space which leads
to the notions of resolved and fluctuating (or subgrid) scales. Both stabilization techniques rely
on a least-squares penalty: LPS penalizes the fluctuation of the gradient and SGV penalizes the
gradient of the fluctuation. As for the CIP technique studied in the previous chapter, we verify
that the abstract design conditions (58.4) are met with LPS and SGV.

59.1 Two-scale decomposition
The starting point is a two-scale decomposition of the H'-conforming finite element space Vj,:
Vi = Ry, + By, (59.1)

where the sum may not be direct. The discrete space Ry, is viewed as the space of the resolved scales,
and By, is viewed as the space of the fluctuating (or subgrid) scales. It is important to realize that
the degrees of freedom attached to By only serve to achieve stability, and that the approximation
error is controlled by the best-approximation error in the space of the resolved scales R;. We
assume the following local approximation property in Rj: There is a quasi-interpolation operator
7y : V — Ry, and a constant c s.t. the following holds true for all r € [0, k], all € {0:1+ [r]}, all
v € HYW"(D;C™), all K € Ty, and all h € H:

[0 = Th ()| giemy < hid ™ol gier (Dyeemy,s (59.2)

where D¢ := int(Jg 7, K') with T :={K' €T, | KNK'+# 0} is a local neighborhood of K.
We assume that the space of the fluctuating scales can be localized in the form By, := @ eT,, Br,
where the functions in Bg are supported in K (one may think of the members of By as bubble-
type functions, as shown in the examples given below). Since r, € Ry, is a continuous, piecewise
polynomial function, the components of its gradient 9;rp,, ¢ € {1:d}, belong to a broken finite
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element space G, = P xeT, Gk, where functions in Gk are supported in K. We then consider
the local L-orthogonal projections

my + L(K) = Bk, 7% L(K) = Gk, VK € Ty, (59.3)

and their global counterparts 77 : L — By, and 7}, : L — G, defined by setting 7T}BL‘ K = Tg and
T -= T for all K € Th.

The key assumption linking the local gradient space G to the local fluctuation space By is
the following inf-sup condition introduced in [146, 144, 148] (see also [226]): There is v > 0 s.t. for
all K € T, and all h € H,

b,
inf sup M >, (59.4)
9€Gx beBy 9l Li)IbllLix)
or equivalently
Ylglloiry < 1Tk (@l L) Vg € Gk. (59.5)

We consider the same local weighting parameter as in the previous chapters:
i = min(Bg hie, g ), VK € Ty, (59.6)

and the piecewise constant function 7: D — R s.t. 7 := 7x for all K € Tj.

Figure 59.1: Two-scale finite elements. In each panel, the resolved scales are on the left and the
fluctuating scales are on the right. The resolved scales are either Py (left column) or P (right
column) Lagrange elements. The upper panels illustrate the use of a standard bubble function
to build the fluctuating scales. The central and the lower panels illustrate the use of piecewise
polynomial bubble functions on a submesh with the same size (central panel) or half the size
(bottom panel) to build the space of the resolved scales.

Let us describe three constructions of H!-conforming finite element spaces of degree k > 1
which satisfy the above assumptions. (1) In the first example, the space of the resolved scales and
that associated with the gradients are

Ry, = PE(Tp,; C™), Gp = PP (Th;C™), (59.7)
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so that Gk is composed of C™-valued polynomials of degree at most (k — 1) on affine meshes. Fol-
lowing Guermond [144] for k € {1,2} and Matthies et al. [226] for all & > 1, we take Bg = bx Gk,
where by is the H}(K)-bubble function proportional to the product of the (d + 1) barycentric
coordinates over K as illustrated in the upper panels in Figure 59.1. (2) Instead of working with
bubble functions, one can use hierarchical meshes; see [144, 226]. In this case, the construction
starts from the mesh defining the space of the resolved scales, say 7. Assume for simplicity that
Th is composed of simplices. Then the mesh 7}, defining Vj, is built by barycentric refinement, i.e.,
for all K € Ty, (d + 1) new simplices are created by joining the barycenter of K to its (d + 1)
vertices. Then we take

Vi, i= P&(Tp,; C™), Ry, == PE(Th; C™), Gp = PP (Th;C™), (59.8)

as shown in the panels in the second row of Figure 59.1. For all K € Ty, we have dim(Pg (K;C™)) =
m(kzd) and g := dim(Gg) = m(kil;rd); see (7.6). The number of shape functions in V}, that are
supported in K is ¢’ :=m(1+ 3(’“;1) + 3(k;1)) in dimension 2 and ¢’ := m(1+ 4(]“;1) + G(kgl) +
4(]“51)) in dimension 3. One always has ¢’ > g. By working on the reference element, one can
prove that among the ¢’ shape functions that are supported in K one can always find g functions,
say {©f Yee{1:g}, such that (59.4) holds true by setting B := span{e{*, ..., ¢ }. The practical
advantage of this construction is that V}, is a standard finite element space. (3) Finally, we mention
the two-scale decomposition considered in [144] for k € {1,2} which also offers the advantage of
Vi, being a standard finite element space. A schematic representation of this decomposition is
shown in the panels in the last row of Figure 59.1. The analysis (not considered here) is somewhat
more involved since the fluctuating scales are represented by functions possibly supported in two
adjacent mesh cells.

Remark 59.1 (Literature). The SGV technique has been introduced in Guermond [147, 146,
144, 148, 149] for monotone operators and semi-groups. The LPS technique has been introduced
in Becker and Braack [28], Braack and Burman [41] for Stokes and convection-diffusion equations;
see also Matthies et al. [226, 227]. The notion of scale separation and subgrid scale dissipation is
similar in spirit to the spectral viscosity technique of Tadmor [269]. This notion is also found in
the Orthogonal Subscale Stabilization technique of Codina [90]. O

59.2 Local projection stabilization

We define the fluctuation operator «§ := Iy, — w}, where Iy, is the identity operator in L.

Proposition 59.2 (J for LPS). Assume that the inf-sup condition (59.4) is satisfied. Let Tk
be defined in (59.6). Assume that the sesquilinear form sy, is defined so that there is ¢ > 0 s.t. for
all v, € Vi, and all h € H,

el (As () I < pollonll? + [vnls. (59.9)
Then the conditions (58.4b)-(58.4c) are satisfied with the operator Jy, : Vi, — Vi, defined as follows:
Tn(on) i= TrEms (A (on). (59.10)

Proof. (1) We prove (58.4b) by using the local L-stability of 7, and 7y, i.e.,

l7=2 T (wn) 2 = 72 whsi (A ()l < 172 As(on)| . (59.11)
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(2) To prove (58.4¢), we use the assumption (59.9) and the inf-sup condition (59.4) to infer that
7% Av ()| = 17275 (An(@n) I + 17255 (Ar (o))
h(Ar(n))IIZ + ¢ (uollvallZ + [vn )
1

< 2llrEmym (Ar(on)) I + ¢ (ollonllZ + onl3)-

< ||T%7T

For the first term on the right-hand side, say T, we have

Y’ T1 = R((mhms (Ax(on)), Tn(vn))) = R((h (A1 (vn)), Tn(vn))r)
= R((A1(vn), Tn(vn))z) — R((5(A1(vn)), Tn(vn))L),

since Jp(vn) € By Let us set Ty := —R((x§ (A1 (vn)), Tn(vn))L). Then using the Cauchy-Schwarz
inequality, Young’s inequality, and (59.11), we obtain |Ta| < 8]|72 Ay (vp)|12 + ¢s]|72 65 (A (vp))]2
with § > 0 as small as needed. The expected bound now follows from (59.9). O

As for CIP, it is convenient to filter out the local variations of the fields {.A* Yeeq1:ay from the
differential operator A;. Thus, for all v, € V4, we define A, (vp,) as in (58.17) by setting for all
K e,

1

Wlo= 3 b A= [ At (50.12)
ke{1:d} K

Lemma 59.3 (s, for LPS). Let 7x be defined in (59.6). The following sesquilinear form s

satisfies the conditions (58.4):

s> (vn, wn) = (T, (A (vn)), £, (Aywn)) - (59.13)

Proof. (1) The proof of (58.4a) follows from the L-stability of &, an inverse inequality, and
Brhp' < T1g'

(2) We now prove that (59.9) holds true and then invoke Proposition 59.2 to establish (58.4b)-
(58.4c). The triangle inequality implies that

T2 k5 (Ar (o)l < IT2 65 (A (0n) L + 7265 (Ar — Ay) (vn)l|z-

Using the L-stability of s}, the Lipschitz continuity of the fields AP and the fact that L4 < cuo

1
and T < pgt, we obtain |72k (A (vp))lz < |72 68 (AL (o))l L + cud ||vnl| L. Hence, (59.9) holds
true. O

Remark 59.4 (Other example). Notice that the choice (59.13) implies that |ry|s = 0 for all
rn, € Ry, le., |Z)(u)|s = 0 for all w € V. This property is important to establish the consistency
of the approximation. Penalizing x§(A1(vy)) instead of ki (A;(vp)) is somewhat delicate since
|Z(u)|s no longer vanishes and bounding |Z;}(u)|s would require strong smoothness assumptions
on the fields A*. Another possibility ensuring |rnls = 0 for all r, € Ry, is to set

s (on, wn) ==Y BT (K5 (Von), 65 (Vwn)) L (). (59.14)
KeTy,

This choice is interesting for time-dependent fields A* since the local assembling can be done only
once, which is not the case for (59.13). O

Remark 59.5 (Simplified setting). Recall the setting of Remark 58.1. Let the sesquilinear form
sp, be defined in (59.13) or (59.14). Then the operator Ay, : Vi, — Vi s.t. Ap(vp) i= 75 (A1 (vn)) € Vi
satisfies (58.7). This follows from || A1 (vs) —An(ve)|l < [[A1(vn) — A (vn) ||z + |55 (A (vp)]| . O
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59.3 Subgrid viscosity

In the subgrid viscosity method, the decomposition of V}, is assumed to be direct:
Vi = Ry © B, (59.15)

and to be locally L-stable, i.e., there is yg > 0 s.t. for all v, € V4, all K € Ty, and all h € H,
VrllTR (0n) L) < vnll p(pyey (59.16)

where D is a local neighborhood of K (DK := K for the four examples illustrated in the upper
and middle panels of Figure 59.1, and Dy = {K’ € T;, | K'NK € F?} for the other two examples
shown in the lower panels). Letting 7} : Vj, — Rj, be the oblique projection based on (59.15), we
define the fluctuation operator s} := Iy, — my, where Iy, is the identity operator in V. Just as
for LPS stabilization, we can choose R, := P¢(Ty). Then Gj, = P,Efl(’ﬁl), ie, Gg :=Pj_1,4 0n
simplicial affine meshes. The simple choice Bx := bx G i is only possible for £ < d, since otherwise
the decomposition (59.15) is no longer direct. For k > d + 1, a simple possibility to get around
E+1

this technicality is to set Bg := b% Gk with « equal to 17 or to the smallest integer larger than

d—kkl’ see also Guermond [144, Prop. 4.1].

Proposition 59.6 (7, for SGV). Assume that the inf-sup condition (59.4) and the assumptions
(59.15)-(59.16) hold true. Assume that sy, is defined so that there is ¢ > 0 such that for all v, € Vj,
and all h € H,

1
cllT2 Av(sh ()17 < pollonllZ + [vnl3- (59.17)
Then the conditions (58.4b)-(58.4c) are satisfied with the operator Jy, : Vi, — Vi, defined as follows:

Tn(vp) == 1mp Ay (7 (vp)). (59.18)
Proof. (1) Proof of (58.4b). We have

1 1 1
ST o)z < lIm2 As(wn)l7 + 51+ T,
Too= 2 (A= AD)(mh ()L, 2= ll77 Ar sy (o)1

where we used the triangle inequality and the L-stability of ;. The Lipschitz continuity of the
fields A*, an inverse inequality, the L-stability of 7% from (59.16), and the inequalities L4 < cpg
and 7 < g " imply |T1] < cpol|vn||?. The term Ty is bounded by using the assumption (59.17).
This proves (58.4b).

(2) Proof of (58.4c). Using the same definitions as above for T; and T, the triangle inequality
yields 1|72 A (vp)]|3 < F1 +To+ Ty with Ty := ||[72 A, (] (vn))||2. Let us now estimate T;. Since
A, (7 (vr)) € Gy, we use the inf-sup condition (59.4) and the fact that Jj,(vy) € By, to infer that

Y Ts < |lr i (A (R n))IF = (T (A (7 (v4))), Tn (vn))

= (A (mh(vn)), Tn(vn))L

= §]“E((Al(ﬂl (vn))s Tn(v))r) = R(((A1 — Ay)(mh (vn)), Tn(vn))1)
R((A1(vn), Tn(vi))L) + Ta + Ts,

with Ty = |[(A1(kj(vn)), Tn(vp))r| and Ts := [((A1 — A1) (75 (vn)), Tn(vn))r|. We observe that
1Ta] < 8|72 Tn(vn)||2 + cs]|72 Ay (k5 (v3))]|2 owing to the Cauchy-Schwarz and Young’s inequal-
ities, where > 0 can be chosen as small as needed. Using the bound on |72 7 (v3)]|2 from
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Step (1) together with (59.17), we infer that [T4| < 8|72 Ay (vn)||2 + cs(pol|vnl|2 + [va|%). We pro-
ceed similarly for 5 and use the above bound on ; to infer that |5 < 6|72 Ay (vp) |12 +cspol|vall2.
Collecting these bounds leads to

L7 Ay (on) |2 < 0172 Ar (o) |12 + R((Ar (o), Tn (o)1) + es(pollvnll2 + [val2)-
Choosing ¢ > 0 sufficiently small leads to (58.4c). O

Lemma 59.7 (s;, for SGV). Let 7 be defined in (59.6). The following sesquilinear form s5¢Y
satisfies the conditions (58.4):

s (vn,wn) = (1A, (kp, (vn)), Ay (K, (wn))) L (59.19)
Proof. See Exercise 59.3. O

Remark 59.8 (Other example). Another possibility is to set

i (onywn) =Y Brrr (V(k} (o)), V(85 (wn))) L) (59.20)
KeTh

This choice is interesting for time-dependent fields A* since the local assembling can be done only
once, which is not the case for (59.19). O

Remark 59.9 (Simplified setting). Recall the setting of Remark 58.1. Let the sesquilinear form
sp, be defined in (59.19) or (59.20). Then the operator Ay : Vi, — Vi s.t. Ap(vp) = 7 (A1 (vn))
satisfies (58.7). This operator is the same as for LPS, but the proof of (58.7) is slightly different.
For SGV, we have Ay, (vy,) = A (75 (vr)) + 75 (A1 (55 (vp,))) since A (7 (vp,)) € G, so that A, (vp,) —

Ap(vn) = (I —75) (Aq (8, (vn)))- Hence, [ Ay (vn) — An(vn)llL < |41 (55 (0n))][L < ¢ (%)%|vh|s- O

59.4 Error analysis

The error analysis proceeds as in the proof of Lemma 27.8 with one modification: we consider the
best-approximation error of u in Rj, and not in V}. This choice is reasonable since the space of the
resolved scales R, has optimal approximation properties as assumed in (59.2). We assume that

1
u € Vy:=H*(D;C™)NYV, 5> 3 (59.21)
We equip V} := Vs + V}, with the norms

1

[vlI¥, = nollvllZ + 5lvliaw + 72 As ()12, (59.22a)
_1 1

0117, = ol +l7720)1Z + 2 vl op)- (59.22b)

Notice that [|-[|y; is the same norm as for CIP (see (58.27a)), and ||-||y, is the same norm as for
GaLsS (see (57.40b)). Notice also that (27.7) is satisfied with ¢, := 1 (i.e., ||vp]lv, < [Jonllv, on Vi
and [lv]|y; < [Jv]lv, on V}). Notice also that the restriction of |||y, to V4 is not [|-[|y; since we have
dropped the seminorm |-|s in the definition of |-||y, (the reason for this is that |-|s may not be

meaningful on V).
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Lemma 59.10 (Consistency/boundedness). Assume that
sn(vn,wp) = 0, V(vp, wn) € RpxVh,. (59.23)
Define the consistency error as
(On(vn), wn)vy vy, = 0y (wn) — ap (vn, wn),  V(vn,wp) € RpX V.
There is wy, uniform w.r.t. w € Vs, such that for all (vn, wp) € RpxVy, and all h € H,

[ (vn), wi)vy v | < wy [l — vnllvg [lwnv,- (59.24)

Proof. Proceed as in the proof of Lemma 58.10 except that we now have sy (vp, wp) = 0 for all
(v, wp) € Ry xVy by assumption. O

Theorem 59.11 (Error estimate). Let the assumptions of Lemma 59.10 hold true. (i) There
is ¢ such that for all h € H,

lu—wunllv, <c inf [lu—ovp|v,. (59.25)
v ERp

(i) If u e HY(D;C™), r € [0, k], then

1
2

lu=unllv, < e (Y (bbb o ) (59.26)
K€7-h

Proof. Similar to that of Theorem 58.11 except that we now invoke the approximation proper-
ties (59.2) of the quasi-interpolation operator Zj'. O

Remark 59.12 (Simplified setting). The sesquilinear forms s; defined in (59.13) or (59.14)
for LPS or in (59.19) or (59.20) for SGV satisfy the decay rates (58.8) in the simplified setting
of Remark 58.1. Let us prove this claim. (i) We have s, (Z}(v),wy) = 0 for all v € H'(D;C™).
Hence, sp(Py, (v),wp) = sp(Py, (v) — v,wp) + sp(v — I3 (v), wp,), and (76.20b) follows from the
Cauchy—-Schwarz inequality and the approximation properties of Py, and Zj. (ii) With the operator
Ap 2 Vi, = V), defined in Remark 59.5 for LPS and in Remark 59.9 for SGV, and since h < /p, we
have

41 (n) = AnCwn)llz < ¢ (2)F (Junls + () *lwnlls ).

We infer that (v — Py, (v), A1 (wn)) L = (v — Py, (v), A1 (wp) — Ap(wp)) 1, and (58.8b) follows from
the Cauchy—Schwarz inequality. O

59.5 Examples

Example 59.13 (Advection-reaction). Consider the PDE pu + 3-Vu = f with the inflow
boundary condition © = 0 on D™ ; see §56.2.1. Assume that all the boundary faces of the mesh
are subsets of either 0D~ or D\OD™. Let po := essinfp(p — 1V-B), B := ||B]|r=(p), and

i = (B hy g ') with B == 1Bl Lo () for all K € Tj,. Examples of stabilization bilinear forms
are

sEPS (vp, wp) == (Tﬁﬁ(g-VUh),nﬁ(g-th))LQ,
s (v, wn) 1= (TB8-V (k] (vn)), B-V (K (wh))) ;2
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The estimate of Theorem 59.11 with r := k gives

1
1w = unll 2oy < e max(B, poh)? W2 ul s )
This is the same estimate as with CIP; see Example 58.13. O

Example 59.14 (Darcy). Consider the PDEs d~'o + Vp = 0 and up + V-0 = f with the
boundary condition p = 0; see §56.2.2. Recalling the scaling argument from §57.3.3 and proceeding
as in Example 57.12, we introduce the scaling matrix defined in (57.25) with the two reference
scales d, and . (e.g., d* = Ay, s := ). The (nondimensional) L-coercivity constant is po 1=

min (£, i—’;) Setting ¢, := (ds/ps)?, (57.24) implies that Bx := £, and the local weighting

)Z,
parameter is Tx := min(/, 1h K Mo ) for all K € T;,. Examples of stabilization bilinear forms are
si (g, wp) = d, (Tﬁh(Vph), K (th))L2 +put (Tﬁ%(v-ah), mg(V-Th))p,

ZGV(’UM wh) = ds (Tv(’ih (ph))v V(KZ(qh)))Lg + M*_l (TV-(K% (o'h))v v'(’i%(Th)))[p

The estimate of Theorem 59.11 with r := k gives

S

pid: %o - onllL2py + ug n?|lp — pullL2(p)
+0.dy P2V (0 — o) a2 () + Lot 172V (0 = pi) 22 ()
< ¢ max(ly, poh) ThE3 (d;% o[ Eres1(py + ul Pl (D)) -
This is the same estimate as with CIP; see Example 58.14. O

Example 59.15 (Maxwell). Consider the PDEs o E — VxH = f and iwpH + VX E = 0 with
the boundary condition H xn = 0. Recall the reference scales o, and fi. for o and wy, respectlvely,
and the (nondimensional) L-coercivity constant pg = \}5 min(Zx, %), Setting (i = (0ufix)” 3,
(57.24) implies Bx := . so that Tx := min(¢;  hy, pg ') for all K € 7T;,. Examples of stabilization
sesquilinear forms are

SEP (g, wp) == ﬁ;l(TIQZ(VXEh), Hg(Vxeh))LQ + Ugl(Tng(VxHh), Ag(beh))Lz,
sp¥ (v, wn) == iy (TV X (k) (Bn)), VX (k] (en))) g2 + 0 (T X (54 (HR)), VX (K (Br))) L2
The estimate of Theorem 59.11 with r := k gives
15 (7418 = Bl + 5 | = Hl o)
+ 0,02 [TV X(E — By)llgao) + it |75V x (H — Hy) | z2(p)
< c max(L, pih) 2 h**2 (Uf |E|prr+1(p) + ﬂé|H|H’C+1(D))-

This is the same estimate as with CIP; see Example 58.15. O

Exercises

Exercise 59.1 (Inf-sup condition). Consider the setting of §59.1 and assume that the functions
in By, vanish on dD. Prove that there is o > 0 such that for all r;, € Ry, and all h € H,

=3 ay’ (rp, wy
ollrnllv, + g Ar(m)|z) < sup 19 )]
wp EVh HwhHVh
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with a}” defined in (58.3) and [vpl}, = pollvnllZ + 5lonl3q + |vnl3e for all vy, € V. (Hint: use

the coercivity of a}” to control ||rp||v, , and use that the fields {A*}c1.qy are piecewise Lipschitz
_1

together with (59.4) to control g 2 || A1 ()| L)

Exercise 59.2 (Full gradient). Prove (59.9) for the choice of s} in Example 59.4.
Exercise 59.3 (SGV). Prove Lemma 59.7.
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Chapter 60

Discontinuous Galerkin

In this chapter, we want to approximate the same model problem as in the previous two chapters,
i.e., (57.1), but instead of using stabilized H!-conforming finite elements we consider the discon-
tinuous Galerkin (dG) method. The stability and convergence properties of the method rely on
choosing a numerical flux across the mesh interfaces. Choosing the centered flux yields suboptimal
convergence rates for smooth solutions. The stability properties of the method are tightened by
penalizing the interface jumps, which corresponds to upwinding in the case of advection-reaction
equations. The method thus obtained is called upwind dG irrespective of the nature of the PDE.
This method gives the same error estimates as those obtained with stabilized H!-conforming finite
elements. Here again, the boundary conditions are enforced by the boundary penalty technique
of §57.4.

60.1 Discrete setting

The dG method uses the broken finite element space
Vi := PP (Tn; C™) := {v), € L°(D;C™) | vy i € Px, VK € Tp}, (60.1)

as discrete trial and test space. PP(Ty;C™) is built by using a finite element of degree k > 0 and a
shape-regular sequence of affine meshes (75,)ne so that each mesh covers D exactly. (More general
meshes can be considered as well.) The above assumptions imply that there is an interpolation
operator ZP : L — V}, (one can consider the L-orthogonal projection onto V;,) s.t.

lo =3 ()l xe) + P IV (0 = TR £y < ehid ol eriem), (60.2)

for all r € [0, k], all v € H*(K;C™), all K € Ty, and all h € H.

The notions of jump (see Definition 18.2) and average (see Definition 38.1) play an important
role in dG methods. We recall that F;, denotes the set of the mesh faces. This set is split into
the subset of the mesh interfaces 77 and the subset of the boundary faces F¢. Each mesh face is
oriented by the fixed unit normal vector np with Cartesian components (nrx)refi:ay- We define
L(F) := L*(F;C™) for all F € Fp,, L(K) := L?*(K;C™) for all K € T, and we denote by Fx the
collection of the faces of K. In the entire chapter, we assume that the fields A* are smooth enough
so that the Hermitian fields

Npi= > nppAly,  VFeF, (60.3)
ke{l:d}



50 Chapter 60. Discontinuous Galerkin

are single-valued and are in L>°(F;C™*™). We also write Nr := Np for all F € F2, with N
defined in (56.3). Recall that

Aw) =Ko+ A1(v),  A@) = Y A (60.4)
ke{l:d}

The formal adjoint A of A is defined by A(v) := (K" — X)v — A;(v) where X := doke{i:d) oAk
Similarly to the notion of broken gradient (see Definition 36.3), we define the broken differential
operator Ay : Vi — L s.t. Aip(vn)|x = A1(vp k) for all v, € Vj, and all K € 7j,. We then set

Ap(vp) = Kop + Aip(vp) and flh(vh) = (KM — X)vp, — Ay (vp,). The following integration by parts
formula (56.5) will be essential in this chapter.

Lemma 60.1 (Integration by parts). Letting

N (Vh, wp) = Z WNF[vn], {wn})L(r), (60.5)

FEeF?
for all vy, wy, € Vy,, the following holds true:

(An(vn), wn)r =(vn, Ap(wr))z + (Nvp, wi) Lap)
+ np (’Uh, wh) + np (wh, ’Uh). (60.6)

Proof. For all K € T, let ng be the outward unit normal to K and set €x p := ng-np = 1
for all F € Fg. Then ex pNp = Nk, where N = Zke{l:d} nKykA‘kK and (nk k)ref1:q} are the
Cartesian components of ny . Proceeding as in the proof of Lemma 56.1, we infer that

(A(vn), wn)r(rey = (vn, Awn)) px) + Z ek, r(NFon, wn) L(r)-
FeFk

We obtain (60.6) by summing this identity over the mesh cells and using the following prop-
erties for all F := 0K; N 0K, € F;: eKhF(w,';'Nth)‘Kl + eKT’F(w,';'J\/'th)‘KT = [wiNFvs]
a.e. on F; [wiNpvp] = {wp}Nplon] + [wn]PNe{vn} since N is single-valued by assumption;
[wp]"NE{vn} = {vn P NF[ws] since N is Hermitian. O
The sesquilinear form ny can be extended to Vyx Vs with
1
Vs :=H*(D;C™)NYV, 5> 5 (60.7)

In this case, Aj,(v) = A(v), Ap(v) = A(v) for all v € Vi, and the integration by parts formula (60.6)
reduces to (56.5) as we now show.

Corollary 60.2 (Jumps in graph space). Let v € V5. Then Ng[v] =0 for all F € F;.

Proof. The proof is similar to that of Theorem 18.8. Let ¢ € C§°(D;C™). Applying (60.6) with

w = ¢ and using that since [¢]r = 0 for all F € Fy and pjop = 0 gives (A(v), 0)r = (v, A(p))r +

Y rers Wrlv],¢)L(r)- But we also have (A(v), )1 = (v, A(g)) L, whence the assertion. O
In the entire chapter, the boundary conditions are going to be enforced weakly by using the

boundary penalty field MY = Mp + Sg introduced in §57.4.2 and satisfying the assumptions
stated in (57.33).
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60.2 Centered fluxes

In this section, we study a dG method based on the use of centered fluxes.

60.2.1 Local and global formulation

Since it is possible to localize the functions in V}, to any cell K € T}, a natural starting point of the
dG method consists of looking for a local formulation. Let us assume that u € Vi with Vy defined
in (60.7). Let K € T, and g € Px. Using Lemma 60.1, we infer that

(uvA(Q))L(K) + Z EK.,F((I)F(U)v‘J)L(F) =(f Q)L(K)a (60.8)
FeFk

where the flux function is defined by ®p(u) := N rup for all F' € Fj,. Notice that the flux function
is a notion attached to the mesh faces and not to the mesh cells. Then the local dG formulation
with centered fluzes consists of seeking a discrete solution uy € Vj, such that

(un, A(@))Lx) + Z ex. (PP (un), @) rery = (Fr o) (60.9)
FeFk

for all K € T}, and q € Pk, where the centered numerical flux is defined by

Np{uh} ifFE]‘—g,

60.10
L(MP + Np)uy if F e Fp. ( )

a'ﬁlt(uh) = {

Notice that the centered flux is consistent with the exact flux in the sense that @%m(u) = Dp(u)
for all F € Fy, since Corollary 60.2 implies that Np{u} = Npujr) and for all F € Ff (since
(MFp — Np)ujgp = 0 implies that (M3 — Nr)ujgp = 0 owing to (57.33a).

Summing (60.9) over the cells in 75, we are lead to define the following sesquilinear form on
Vh X Vh:

1 [
ag™ (o, wp) := (vn, Ap(wn))L + 5((MBP + N)vn, wn) Lopy + nn(wn, vp). (60.11)

Owing to (60.6), the discrete sesquilinear form a$™ can also be rewritten as

1
ag™ (vn, wn) = (An(vn), wn)L + 5((MBP = N)vh, wn)Lop) — 7h(Vn, Wh). (60.12)

The local problems (60.9) are then recast into the following global problem:

(60.13)

cnt

{ Find uj € Vj, such that
ay, (uh,wh) = Kh(wh) = (f, 'LUh)L, Ywy, € Vj,.

60.2.2 Error analysis

We perform the error analysis using Lemma 27.8: we establish stability and consistency /boundedness,
and we prove convergence by using the approximation properties of finite elements. Let us
start with stability which takes the simple form of coercivity. Recall the seminorm |v|ypmr =

1
(MBPv,v)z(aD).
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Lemma 60.3 (Coercivity, well-posedness). (i) The following holds true:

cn 1
R(ai™ (vn,vn)) = pollonllZ + 5 lonl e =t llonllts,, (60.14)

for all vy, € V. (ii) The discrete problem (60.13) is well-posed.

Proof. We only need to establish (60.14) since the well-posedness of (60.13) then follows from the
Lax—Milgram lemma. We take the arithmetic mean of (60.11) and (60.12). Since np(vp,vy) =
np(vn,vp) and since (Ap(vy),vn)r + (vn, Ah(vh))L = (K + K" — X)vp,,vp)p is real, we infer that
R(as™ (v, vn)) = $((K + K" — X)vn, vn)L + 2|val - Then (60.14) follows from (56.1c). O

We assume that max(||K|| e (p;cmxm), | X[ Lo (piemxm)) < cxc,xpto (see (57.10)), and for sim-
plicity we hide the factor ¢k x in the generic constants used in the error analysis. As in the previous
chapters, we set

k
= oo .CmxXm = . 1
Bk Qe A" Loo (¢, cmxmy, B max Bk (60.15)
We assume that the solution to (57.1) is in Vi with Vi defined in (60.7). We set V; := Vi + V}, and
equip the space V; with the following two norms:

1

Iol1%; = pollvllz + v, (60.16a)

W%, = llold, + Y o B (h 1013 ox) + IVl () (60.16b)
KeTy,

Notice that (27.7) is satisfied with ¢, := 1 (i.e., |lvn|lv, < |lonllv, on Vi and [jv]ly, < [lv]|v, on V).
Lemma 60.4 (Consistency/boundedness). Let the consistency error be defined by
(On(on), wn)vy v, = €(wp) — ai™ (vn,wp),  You,wp, € Vi
There is wy, uniform w.r.t. u € Vg, such that for all vy, wy € Vy, and all h € H,
[(6n(vn)s wn)vy v | < wi llu = vnllv; [[wal]vs, (60.17)

Proof. Since Ap(u) = A(u) = fin L, (M —=N)u = 0in L(0D), and Ng[u]r = 0 by Corollary 60.2
(so that np(u,wy) = 0), (60.12) implies that

1
(On(vn)s wn vy vi = (An(n), wn) L — 5 (M =N, wh) @) + nn(n, wn),

with 77 := u—vy,. Let us bound the three terms composing the right-hand side, say %1, %2, 3. Using
the Cauchy-Schwarz inequality and the bound [|An(n)||r < c(pollnllL + ke, ﬁ%HVnH%(K))%),
we infer that [T < c|[n||v;||wallv;,. Using (57.33c), (57.33b), and a discrete trace inequality to
bound ||wy,|| () for all F' € Ff, we also infer that |T2| < c||n]|v; [lwn||v,. The bound on Ts is similar
once the jumps and averages are bounded by a triangle inequality (i.e., [[n]r| < |k, |+ |7k, | with
F :=0K;N0K,, and so on) yielding |T5| < CZKeTh Br Il Lor)l|lwnll Loy - O

Theorem 60.5 (Error estimate). Let u solve (57.1) and assume that u € V. (i) There is ¢ s.t.
forallh e H,

lu—unlly, <c inf |lu—wvaly,. (60.18)
vh€Vh
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(ii) If u € HY"(D;C™), r € [0, k], then

[N

=y < e X onhlufipergon ) (60.19)
KeTy,
with rc = max(uoh%, Brhi, py ' B%).

Proof. Invoking Lemma 27.8 together with the above stability and consistency /boundedness results
yields (60.18). Then (60.19) follows from the approximation properties of Vj, (see (60.2)). O

The convergence result of Theorem 60.5 is suboptimal by one order in the L-norm and does
not convey information on the convergence of derivatives (see the definition of the V,-norm in
(60.16a)). Moreover, no convergence result is achieved for kK = 0. We address these issues in §60.3.

60.2.3 Examples

Example 60.6 (Advection-reaction). Counsider the PDE pu + 3-Vu = f with the inflow
boundary condition v = 0 on dD™; see §56.2.1. Assume that all the boundary faces of the
mesh are subsets of either 9D~ or dD\OD ™. Then ®%(uy) := (Bnp){uy} for all F € Fy and
&)%’t(uh) = 1(Bnr + |Bnp|)u, for all F € FY. The estimate of Theorem 60.5 with r := k gives

1

163 |[u = unllz2(py < cd? h¥|ul g (py with po = essinfp(u — 3V-B), ¢ = max(uoh?, Bh, 1y 5?),
and 3 := ||B|| g (D) O
Example 60.7 (Darcy). Consider the PDEs d~'o + Vp = 0 and up + V-0 = f with the
boundary condition p = 0; see §56.2.2. Recalling Example 57.12 and the scaling argument from
§57.3.3, we introduce the scaling matrix defined in (57.25) with the two reference scales d, and
e (6.8, dy == Ny, pe := ). The L-coercivity constant is po := min(ﬁ—i, i—;), and (60.15) gives
Bx = L. with ¢, := (d./p.)2. Recalling the boundary penalty matrix S9 defined in (57.34), we
have @@ (o, pn) == ({pn}np,{on}-np) for all F € Fp and @5 (o, pn) = (0,0, np + arpr)
forall I € ]-",?, where ap := o, fK, i« with a user-defined O(1) nondimensional parameter a, > 0.
Letting ¢ := max(uoh?, .h, ualfi), the error estimate of Theorem 60.5 with r := k gives

1, 1 1 N 1 1
pé (de 2 \lo = onllezpy + 12 1P — prllrapy) < cd? B (ds 2|0 grrsr () + 12 Dl e (py)- O

Example 60.8 (Maxwell). Consider the PDEs cE —VxH = f and iwuH + VX E = 0 with the
boundary condition H xn = 0. Recalling Example 57.13 and the scaling argument from §57.3.3,
we introduce the reference scales o, and fi. (e.g., 0« 1= 0y, [« := wi,). The L-coercivity constant is
o = % min (>, %), and (60.15) gives Sx = £, where {, := (04fix)" 2. Recalling the boundary
penalty matrix S2 defined in (57.35), we have @%‘“(Eh, H;) = {Ep}xnp,{Hp}xnp) forall F €
]:}CL) and (/I;%‘nt(Eh,Hh) = (Ehan + apnpx(Hhan),O) for all ' € ]:,?, where ap = a*ﬂK;ﬁ*
with a user-defined O(1) nondimensional parameter . > 0. Letting ¢ := max(poh?, £.h, 1y 1 £?),
the error estimate of Theorem 60.5 with r := k gives

11 gt 1 L -
g (02| E = Eyl|p2(p) + i | H — HpllL2(py) < c¢2h* (02 |E|gesi(py + 32 |H|grs1(py). O

60.3 Tightened stability by jump penalty

In this section, we improve on the shortcomings of the centered numerical flux by tightening the
stability properties of the discrete sesquilinear form.
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60.3.1 Local and global formulation

The key idea is to add to the centered-flux-based sesquilinear form a§™* a stabilization term penal-

izing the interface jumps. We then set

a5 (o, wn) = ai (on,wn) + > (Splval, [wal) Lir), (60.20)
FeFyp

where the interface penalty field S% is Hermitian and positive semidefinite for all /' € F}. Notice

that the boundary conditions are accounted for by a™ which incorporates the contribution of the

1
boundary penalty method. We define the seminorm |v|se = (Spv, v)z( Py The above assumptions
on S, imply that [(Szv, w)pr| < v|se |w|se for all v,w € L(F). Moreover, we assume that there
is ¢ s.t. for all h € H,

ker(NF) C ker(S%), (60.21a)
1
lvlse < cBElvlLr)s (60.21b)
1
|(Nrv, w) | < clvlss BElIIwl Ly, (60.21c)

with Bp = ||[Np||Le(pcmxm). Notice that fr < cmin(fk,, Bk,) with F := 0K; N 0K,. The
discrete problem is formulated as follows:

{ Find wy, € V}, such that (60.22)

as™ (up, wy) = Cp(wp) == (f,wn)p, Ywy € Vi

Let us define the stabilized numerical flur (compare with (60.10))

./\/F{uh} +S;~[[’U,h]] if F'e ]'—;;,

60.23
T(MP + Np)uy  if F e Fp. ( )

D3 (up) = {
Then uy, solves (60.22) iff uy, is s.t. for all K € Tj, and all g € P,

(un, A(q)) k) + Z e, r (PP (un), ) (e = (f, @) Ler0)- (60.24)
FeFx

60.3.2 Error analysis

The crucial improvement with respect to the formulation using centered fluxes is that we can now
establish inf-sup stability with the following stronger norm:

1 1
lonll%;, = nollonll7, + glvhlfww + [[vnll3e + 1172 Awn(on)1I7, (60.25)

with the jump seminorm |Jug]]se = (EFleg |[[’Uh]]F|?g%)%, and the piecewise constant function T
such that 7 := 7 for all K € T;, with the local weights 75 defined in (58.2):

Tic = (max(Brehit, o)) = min(Bg e, iy ) (60.26)

We assume that Afy € C%2(K;C™ ™) for all k € {1:d} and all K € Tj,. Letting A% :=
|K|7* [ A¥ da, there is cq s.t.

HAk - AI;("L”(K;CWXW) <ca (MOBKhK)%a (60.27)

and we hide the factor ¢4 in the generic constants ¢ used in the error analysis.
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Lemma 60.9 (Stability, well-posedness). (i) There is o > 0 such that for all h € H,

stb
inf sup A% el o (60.28)

on€Vh wyeVy, [[0nllvallwnllvi,
(ii) The discrete problem (60.22) is well-posed.
Proof. We only need to establish (60.28) since the well-posedness of (60.22) directly follows from

(60.28). Let v, € V3 and set rp, = sup,,, ¢y, Twnly 1 Our goal is to prove that there is o > 0
h

s.t. alvp|lv, < rp, for all h € H.
(1) Owing to the coercivity of af™ (see (60.14)) and by definition of the jump seminorm, we have

1 ast® (vp, vy,
pollonl + Sl g+ I[enZe < O o
ol

(2) Let Ay, (vn) be such that Ay, (vn) e == 2 kei.ay A’;(Bkvhu( for all K € Tp,. Set wy, := 1A, (vn)
and observe that wy, € Vj,. The triangle inequality and the definition of the |||y, -norm imply that

_1 1
I72wnllz < |72 (A1, — Awn)(on)llz + [[onlvi.-

Using (60.27), an inverse inequality, and the definition of 7, we infer that |72 (A, — A1x)(vs)||L <
1
cpd ||vn || Therefore, we have |7~ 2wp||z < ¢l|vnlv,. Furthermore, proceeding as in the proof of

1

Lemma 58.2, one proves that p lunllz + lyn| e + ||T%A1h(yh)||L < CHT_%thL for all y, € V},.
Owing to (60.21b), (60.27), and using a discrete trace inequality, we also infer that |[ys]|se <
c|l7=2yn||L. Applying these bounds to y, = wy, yields

_1
lwnllvi, + 177 2wnllL < ¢llonllv,- (60.29)

cnt

(3) Using the expression (60.12) for af™*, we observe that

72 A (on) 113 = 172 A (on) I3, = a5t® (vn, wn) — (Kvn, wn)z + (TA1avn, (Aun — Ay ) (on)z

- %((MBP — N)vn, wh)op) + nu(vn,wn) = Y (Sg[onl, [wal)zr)-

FeF?

crpllvnllv, - By proceeding as in the proof of Lemma 58.2 to bound T2 + ¥4 and by using the
Cauchy—Schwarz inequality [(Spv, w)r )| < |v|sg [wlsg,, we obtain

Let 1, ..., %6 be the terms on the right-hand side. Owing to (60.29), we have |T1] < 7 ||wp v, <

1 1 1 3
T2 + Ta + To| < crZllonlly, lwnllv, < ¢ r2llonll,

1
where we used again (60.29). Employing (60.21c) gives |T5| < czFef}o [Tonllse B2{wn | L(F)-
The triangle inequality and the bound Sr < c¢min(fk,, Bk, ) imply that

1 1
BEI{wntlary < e Y BEllwnkllza(r)-
KeTr

Using a discrete trace inequality and g Khl}l < 7'[}1, we have

i _1
Bil{wntlrzr) < c Z T * [ wnl L2 (k-
KeTr
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The bound (60.29) on wy, and the Cauchy—Schwarz inequality yield |T5| < cr,% th||‘%,h. Employing
Young’s inequality and the above bound on |72 (4, — A1z)(vs)| L gives

1 1 1 1
|Ts] < §|\T2A1h(vh)|l2L + cpollvnllz < §||T2Alh(vh)”2L + crullvnllvi, -

1 3

4) Collecting the above bounds yields ||vx |3, < er? ||vn||2 +7n||vn|lv, , and we conclude the proof
Vh h Vh h

of (60.28) by applying Young’s inequality twice. O

As we did when we analyzed the method with centered fluxes, we assume that the solution to
the model problem (57.1) is such that

1
ueVy:=H(D;C™")NV, 5> 3 (60.30)
We set V; := V5 + V), and we equip the space Vj with the following two norms:
1 1
IolIT, = pollvllz + Flofiuw + [[0]lse + 72 An ()7, (60.31a)
ol = ol + 3 (e lelid ) + Bxc ol oy ) (60.311)
K€7-h

so that (27.7) is satisfied with ¢, := 1 (i.e., [Jun[ly, < [lvnlv, on Vi and |lvlly, < |v]lv, on V}).
Lemma 60.10 (Consistency/boundedness). Define the consistency error as
<5h(vh),wh>véyvh =l (wp) — a5t (vp, wy,), Yop, wp, € V.
There is wy, uniform w.r.t. w € Vs, s.t. for all v, wy, € Vi, all h € H,
[(On(vn), w)vy v | < wy llu — vnllv; [[wn v, - (60.32)

Proof. Using the same arguments as in the proof of Lemma 60.4, but using now the expres-
sion (60.11) for a$™, we obtain

~ 1 -
(On(vn)swn)vy vi, = (0, An(wn)) L + 5((MBP + N)n,wn) ooy + nn(wn, )

+ Z (Senls [we])ory = F1 + Ta + T3 + Ty,
FEF?

with 17 := u—wvp. The terms T; and T3 can be bounded as in the proof of Lemma 57.21. Proceeding
as in the proof of Lemma 60.9 (bound on Ts5) yields |T3] < (3 et ﬁKHvH%(aK))%H[wh]HSo <
cllvllv, [lwnllv, - Finally, [Ta] < [v|sewnlse < [[v]lv; wallv,- O

Theorem 60.11 (Error estimate). Let u solve (57.1) and assume uw € V5. (i) There is ¢ s.t. for
all h € H,
lu—unlly, <c inf |lu—valv,. (60.33)
v €Vh

(i) If u e HY(D;C™), r € [0, k], then
2
Hu - ’U,h”\/b <c < Z (lelhK)h%—i_l|u|§{1+T(K;(C’VTL)> ; (6034)
K€7-h

B.e., |lu—uply, < cpzhta [u| gr14r (piomy with ¢ := max(maxxeT;, Br, toh).
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Proof. Similar to that of Theorem 60.5. O

Remark 60.12 (Literature). The analysis of dG methods for Friedrichs’ systems started in the
1970s with Lesaint [214], Lesaint and Raviart [215] and was later refined by Johnson and Pitkaranta
[200]. A systematic treatment was given in [118, 119, 120]; see also Jensen [197]. The devising of
dG methods with tightened stability by means of a jump penalty is found in Brezzi et al. [54] for
advection-reaction. O

60.3.3 Examples
Let V3, denote the broken gradient operator (see Definition 36.3).

Example 60.13 (Advection-reaction). Recalling Example 60.6, we consider the PDE pu +
B-Vu = f with the inflow boundary condition © = 0 on D~ . The jump penalty coefficient can
be set to S = a,|B-np| for all F € Fy, where a,, > 0 is a user-defined O(1) nondimensional
parameter. In other words, the jump of w, is penalized across all the mesh interfaces where
|8mpr| > 0. The numerical flux obtained by setting o := % is usually called upwind fluz in
the literature; see Exercise 60.1. We refer the reader to Burman and Stamm [70], Burman et al.
[75] for further insight into the choice of the penalty parameter. Letting 75 := min(ﬁglhK, Ko H
with Bx = ||B]|p~k) for all K € Ty, po = essinfp(u — %Vﬂ), and ¢ := max(f, poh) with

B = [|B|| (D), the error estimate from Theorem 60.11 (with r := k) gives

1
18 1w = unll L2(py + 172 B-Vi(u — un)l|2(py < ¢ 2R3 |ul o (. O

Example 60.14 (Darcy). We consider the PDEs d~'o + Vp = 0 and up + V-0 = f with
the boundary condition p = 0. Recalling Example 60.7 and the reference scales d, and pu., the

1
L-coercivity constant is pio := min(£, i—;), and (60.15) gives Bk = Br := £, with £, 1= (d./p)2.

The following jump and boundary penalty fields satisfy (60.21) and (57.33):

o |onrnp@ngi 04y o | OdxdiOax1
Sp = |- O e Sp = O o
1xd Q9 F Ixd| Q2,F
where oy p = a.Brd; !, as p = qo.Brii., with user-defined O(1) nondimensional parameters

Q14,25 > 0. In other words, the jumps across the mesh interfaces of the normal component
of oy, and of p, are penalized. Letting ¢ := max(/., uoh) and recalling (60.26), we set 7)x =
min(¢;  hy, g *) for all K € Tp,. The error estimate from Theorem 60.11 (with r := k) gives

1 _1 1
(g (di 2 llo = onllLzpy + 2 llp — prllL2(p))
1 1 1 1
+ludi |72V (0 — o)l 2Dy + Captd |72 Vi(p — pi)ll L2 (D)
_1 1
< ORI (A2 o s (py + 12 |l (p))- O

Example 60.15 (Maxwell). We consider the PDEs cE — VxH = f and iwpH + VXE =0
with the boundary condition Hxn = 0. Recalling Example 60.8 and the reference scales o.
and f[i., the L-coercivity constant is pg 1= \/ié min(g—i, %), and (60.15) gives Sx = B =L, with

L, = (0*/1*)7%. The following jump and boundary penalty fields satisfy (60.21) and (57.33):

5 a1, rTETr:  Osxs Osx3! Osxs
Sp = | , Spi= | S ,
Osx3s  asrTpTpE O3x3 o pTpTE



58 Chapter 60. Discontinuous Galerkin

where a1 r = 01.8r0s, Q2 F = a2.0pp. with user-defined O(1) nondimensional parameters
Q1+, 2+ > 0. In other words, the jumps across the mesh interfaces of the tangential components
of Ej, and Hj, are penalized. The matrix Tr is s.t. Tp€ := €xnp for all £ € C? (see §56.2.3).
Letting ¢ := max(/., uoh) and recalling (60.26), we set 7x = min(¢; ' hye, g t) for all K € Tp,.
The error estimate from Theorem 60.11 (with r := k) gives

1,1 1
g (02| E — Eyl|L2(p) + 2 ||H — Hp||L2(p))
1 1
+ 0,02 |73V X (B — En)|2(p) + Lafii | 73 Vix (H — Hp)|2(p)
1 1
< C¢%hk+% (0*2 |E|Hk+1(D) + pi |H|Hk+1(D)).

We refer the reader to Houston et al. [187, 188] for further results on the dG approximation of the
time-harmonic Maxwell’s equations. O

Exercises

Exercise 60.1 (Upwind flux). Consider the advection equation pu + 3-Vu = f. Let F :=
0K, NOK, € Fy. Let ®3P(up) := Bnp{up} + 1|Bnp|[us]. Show that O3 (up) = (B-nr)uyk,
if Bnp >0 and B5P(uy) = (B-np)up K, otherwise.

Exercise 60.2 (Sp). Verify that the jump penalty operators from §60.3.3 verify (60.21).

Exercise 60.3 (Absolute value). (i) Show that a suitable choice for the jump penalty operator
is Sp = |NF| where |[Np| is the unique Hermitian positive semidefinite matrix such that |[Np|? =
NENE = NE. (Hint: |w"Npo| < [w"|Nelv|.) (i) Verify that

Osx3 AT'T || | Osxs |BITTT

Exercise 60.4 (Matrix T). (i) Show that TT = —T. (ii) Show that (TTT)? = TTT.

Exercise 60.5 (Orthogonal subscales). (i) Prove that a5 is coercive on V}, equipped with the

norm ||vpl|3. = pollvnll3 + 3ol + 1[vn]3e. (i) Assume that the fields A* are Lipschitz (with
Lipschitz constant L4 < cjg). Assume that u € Vs := H*(D;C™) NV, s > 1. Prove that there is
¢ such that

[(0n (TR (), wa) vy vi | < e llu— T3 (w) || v, l[wa v,
for all (v,wp) € VyxV), and all h € H, where I}f denotes the L-orthogonal projection onto Vj,
[0ll3, = wollvll + 3lvliee + [v]f5.. and [[v[l}, = vl + X ger, BrllvlF ok (Hint: adapt the

proof of Lemma 60.10.) (iii) Prove that |ju — up|ly, < c¢2hF*2 |u| grw-+1(pycmy using only Steps (i)
and (ii). (Hint: adapt the proof of Lemma 27.8.)



Chapter 61

Advection-diffusion

In this chapter, we want to solve a model problem where the PDE comprises a first-order differen-
tial operator modeling advection processes and a second-order term modeling diffusion processes.
Advection-diffusion problems are encountered in many applications, e.g., heat transfer or pollutant
transport by fluids, and constitute the first step toward the approximation of the Navier—Stokes
equations. The difficulty in approximating an advection-diffusion equation can be quantified by
the Péclet number which is equal to the meshsize times the advection velocity divided by the diffu-
sion coefficient. When the Péclet number is small, i.e., when the mesh is fine enough, the problem
can be approximated by the standard Galerkin method using H'-conforming finite elements as
done in Chapter 32 for the pure diffusion problem. But when the Péclet number is large, the
standard Galerkin approximation is plagued by spurious oscillations. These oscillations disappear
if very fine meshes are used, but a more effective approach using coarser meshes is to resort to
stabilization. In this chapter, we focus on the Galerkin/least-squares (GaLS) stabilization, but
any stabilized H'-conforming method or the dG method can also be used. More generally, the
advection-diffusion problem is a prototype for studying singularly perturbed elliptic PDEs.

61.1 Model problem

Let D be a Lipschitz domain in R? and let f € L?(D). The model problem we want to approximate
is as follows:

Te(u) := =V-(deVu) + A(u) = f in D, (61.1a)
u=0 ondD, (61.1b)

with the diffusion tensor d. € L°(D) := L>®(D;R?*9) taking symmetric positive definite values.
We assume that the smallest eigenvalue of d. is uniformly bounded away from zero by a real number
€ > 0, and the first-order operator A is defined by A(u) := B-Vu + pu with 8 € Wh(D) :=
Who(D;RY), p € L*>®(D), and ;L—%V-,B > po > 0 a.e. in D; see §56.2.1. We focus on homogeneous
Dirichlet boundary conditions, but any of the boundary conditions considered in Chapter 31 can
be considered. Setting V := H}(D), a weak formulation of (61.1) is the following:

{ Find u € V := H}(D) such that (61.2)

ae(u,w) = L(w), YweV,
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where

ae(v,w) := (d Vo, V’LU)Lz(D) + (A(’U),’LU)Lz(D), (61.3a)
O(w) == (f,w)r2(p)- (61.3b)

Lemma 61.1 (Well-posedness, a priori estimates). (i) The bilinear form ac is coercive on
Vv
ac(v,v) 2 €|v|f py + pollvl|72p): Vo e V. (61.4)

(ii) The problem (61.2) is well-posed. (iii) The solution satisfies the a priori estimates

_ _1
lullzzpy < po 1 fllz2pys [ul g1 (py < (dpo€) " 2 (| fll22()- (61.5)

Proof. The coercivity property (61.4) follows from the assumptions on d. and A. The well-
posedness of (61.2) results from the Lax—Milgram lemma. Let us now establish the a priori
estimates in (61.5). We observe that

e lultpy + mollullF2py < I Fll2o) llull L2 (p)- (61.6)

Thus, /LOHUHQN(D) < [ flle2(pyllullz2(py, and this yields the bound on |u|z2(py. Moreover, the
inequality || f| z2(pyllull2(py < %ualﬂfﬂizw) + MoHuH%g(D) combined with (61.6) implies that

e|u|%p(D) < %ualﬂf”%g(m, whence the bound on |u|g1(p). O

Remark 61.2 (A priori H'-estimate). One can also bound the right-hand side of (61.6) by
I f1l22(pyCros €p|u| 1 (py, Where Crs comes from the Poincaré-Steklov inequality in Hg (D) and £p
is a characteristic length of D, e.g., {p := diam(D). This yields

lulr(py < (Ceslp €)M fllL2(p)-

This bound on |u|g1(p) is sharper than that in (61.5) only if € > 40¢%,C%. Otherwise, (61.5) is
sharper and this means that the H'-stability of the solution essentially hinges on the first-order
operator A and not on the diffusion operator. In this situation, |u|g1(p) behaves like O(e’%),
indicating that the value of the solution can have O(1) variations in a layer of width e. We refer
the reader to Exercise 61.1 for a tighter bound on |u|g1(py and a bound on [|Au||z2(py under some
more specific assumptions. [l

Example 61.3 (Boundary layer). Consider the interval D := (0,1) and the PDE —eu” +u’ = f
in D with f := 1, and the homogeneous Dirichlet conditions u(0) = u(1) = 0. One can verify

that the solution is u(x) = (:1: - 81/6*1). The graph of the solution is shown in Figure 61.1 for

el/e—1
€ € {1,1071,1072}. When € < 1, the solution is very close to ug(x) := x in the interval (0,1 — ¢)
(ug is the solution of the first-order problem uj = 1 in D and ug(0) = 0), and swiftly decreases
in the interval (1 —¢,1) to match the prescribed value u(1) = 0. The interval (1 —¢,1), e < 1, is
called boundary layer (or outflow layer). O

61.2 Discrete setting

Our aim in this section is to approximate the model problem (61.2) using a shape-regular mesh
sequence (7,)nen and H'-conforming finite elements of degree k > 1. To avoid technicalities, we
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Figure 61.1: One-dimensional advection-diffusion problem with boundary layer; —eu” +u' = 1
with e € {1,1071,102}.

assume that d. is piecewise constant on a given partition of D and that the meshes are compatible
with this partition. Hence, d. is piecewise constant on 7; for all h € H, and we denote by A, x
and Ay i the smallest and the largest eigenvalues of d g for all K € Tj, respectively. The local
anisotropy ratio is defined by px 1= N\g k /Ny k-

We consider the local mesh-dependent weights

i = min(Bx hic, g ), (61.7)

with Bk := ||B||L~(k) for all K € Tj (see §57.3.1). Notice that 7x represents a local time scale.
The local (nondimensional) Péclet numbers

I

9
TR, K

Pex := VK € T, (61.8)

are of crucial importance in the finite element approximation. One recovers the usual definition
Pey = 'B’iﬁf‘ if T = Bglh;( and d. is isotropic (i.e., Ay k = A\, k =! Ax). When the mesh is
fine enough, the local Péclet numbers are small, and the standard Galerkin approximation can be
used to approximate the solution satisfactorily. However, it can happen that the parameter € is
so small that it requires very fine meshes to have small Péclet numbers. When the local Péclet
numbers are large, using the standard Galerkin approximation generally leads to unacceptable
discrete solutions that are globally plagued by spurious oscillations (see Exercise 61.2). In this
situation, one effective remedy is to use one of the stabilized finite element methods described in
the previous chapters. For brevity, we focus on the GaLS stabilization. In addition, we are going
to enforce the Dirichlet boundary condition weakly by means of the boundary penalty method.
This choice is motivated by the possible presence of boundary layers, where the solution is poorly
approximated by discrete functions vanishing at the boundary (see Example 61.3).
Let us set Vj, := P£(Ty). The discrete problem is the following:

{ Find uy, € V}, such that (61.9)

ach(Un, wp) = Len(wp), Ywy € Vi,
with the bilinear form a.;, defined on V}, x V}, as follows:

aeh(vh, wh) = ae(vh, wh) + T’Eh(vh, ’LUh) + néh(’uh, wh) + ngh(vh, wh), (61.10)
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where
Ten(Vh, wp) = Z TROK (Ten(vn), Ten(wn)) L2 (x). (61.11a)
KeTh
A
neh(vh,wh) = Z (—n-devvh,wh)Lz(F) +th—F(Uh,wh)L2(F), (61.11b)
FeFy? F
1
nan (U, wp,) 1= Z 5((|ﬁn| - ﬁ-n)vh,wh)m(},), (61.11c¢)
FeFp
Cen(wn) = C(wp) + Y 70 (f, Ten(wn)) 22 (xc). (61.11d)
KeTn

The bilinear form 7, is the GaLS stabilization and uses the broken differential operator
Teh(vh) = —Vh-(d€Vvh) + A(vh), (6112)

where the notation V- means that the divergence is evaluated locally in each mesh cell K € 7j,.
The blending parameter dx in (61.11a) is defined as

5 = 8(p' Pek), 5(€) == min(1,¢), V€ € R, (61.13)

The bilinear forms n¢, and ngj, weakly enforce the Dirichlet condition. The bilinear form ney, is built
essentially as in Chapter 37, with the exception that we now account for the possible anisotropy in
d.. In the penalty factor woz—ﬁ, wp > 0 is a user-defined parameter to be chosen large enough (see

Lemma 61.8 below), and for every boundary face F := 0K; N 9D € FY, we set \p := n-(deg,m)
(notice that A\, ik, < Ap < Mg k,). The bilinear form ngj, is needed in the large-Péclet regime
to enforce weakly the inflow boundary condition w = 0 on D~ := {x € 0D | (Bn)(x) < 0};
see §57.4.2 and Example 57.17 where M = |3-n| and N’ = B-n so that (M —N) = 1(|3-n|—Bn).
Finally, the additions to the linear form ¢ in the definition of the discrete form ¢, are introduced
for consistency reasons.

Remark 61.4 (Parameter dx and function ¢). The parameter dx ensures a smooth transition
between the large-Péclet regime (where T dx = T scales linearly w.r.t. the meshsize and mimicks
the GaLS stabilization for the first-order PDE A(v) = f as in §57.3), and the small-Péclet regime
(where T dk decays quadratically w.r.t. the meshsize). The use of the anisotropy factor pi_(l in the
estimation of dx is motivated by the error analysis. Several choices are actually possible for the
function d in (61.13) provided one has ¢; min(1, x) < §(z) < comin(1, z) for some constants ¢y, cs.
For instance, one can use the function §(z) := coth(%)— 2, (sometimes called Scharfetter—Gummel
function in the literature). O
Remark 61.5 (Literature). The finite element approximation of advection-diffusion equations
is covered in many textbooks as, e.g., Quarteroni and Valli [239, p. 269], Roos et al. [243, p. 277].
All the stabilization methods from the previous chapters can be used to approximate singularly
perturbed first-order PDEs. We refer the reader to Burman [57], Burman and Hansbo [67] for CIP,
Guermond [144] for SGV, and Braack and Burman [41], Matthies et al. [227] for LPS. Concerning
dG methods, we mention Houston et al. [186] for the hp-analysis, and Di Pietro et al. [106], Ern
et al. [124] for weighted averages and harmonic penalties (see also Di Pietro and Ern [105, §4.6]).
The weak enforcement of boundary conditions in the advection-dominated (large-Péclet) regime
has been motivated numerically in Bazilevs and Hughes [27] and analyzed in Schieweck [246]; see
also Burman et al. [72]. O
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Remark 61.6 (Dominant reaction). The present GaLS stabilization can also be used in the
dominant reaction regime, e.g., fx < pohx. In this case, T = ual, and the local Péclet number

hic 1o

becomes Pex = popal

i.e., Peg scales quadratically with the meshsize. O

61.3 Stability and error analysis

This section is devoted to the stability and error analysis of the discrete problem (61.9).

61.3.1 Stability and well-posedness

We equip the discrete space V}, with the norm

1
[vnll%, = 142 VorllZa(py + mollvnllZaepy + D Trcdrl|Ten(vn) 12k
KeTh

AR 1 1
+ 3 el + 5 D N1Bnlienlae, (61.14)
FeFy? o FeF?

As in §37.2, we consider the smallest constant cq; such that the discrete trace inequality ||vg [ L2y <

_1

cathp? |vnllL2(k,) holds for all vy, € Vj, and all F := 0K;NID € F?. We denote by ng the maximum
number of boundary faces a cell K; can have (ng < d for simplicial meshes). We start with a bound
on the consistency term associated with the diffusion part of the boundary penalty bilinear form.

Lemma 61.7 (Bound on consistency term). Let 7;1‘9D be the collection of the mesh cells having
at least one boundary face, i.c., T;PP = UFeFS{Kl}' The following holds true for all vy, wp, € Vy:

1

1
1 1 2 )\F 2
<njea( 0 NabVanlten ) (X Flunlam) s (6115)

KeTpP FeFp

/ (n-deVop)wy, ds
oD

Proof. See Exercise 61.4. O

Lemma 61.8 (Coercivity, well-posedness). Assume that the penalty parameter is such that
wo > 1+ %nacﬁt. (i) The following holds true:

1
aep (U, vR) > —||’UhH2Vh, Yon € Vi (61.16)

(ii) The discrete problem (61.9) is well-posed.

Proof. We only need to prove (61.16) since the well-posedness of (61.9) then follows from the
Lax—Milgram lemma. Rearranging the terms, we observe that for all v, € V4,

ach(Vn,vn) = ((devvh, Vun)L2(py + Nen(vn, vh))

+ ((A(Uh), Un) 2 (D) + nﬂh(vh,vh))
+ Teh('Uh, vh) =T+ %+ {3:3.
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1
Owing to Lemma 61.7, we infer that T, > 22 + (:172 —njcatTy + woyz) with

1 2 1 2
2= ( Z H(]jl€2 Vvh||i2(K)) , T = ( Z Hd? V’Uh”i2(K)) )
KETh\'ThaD Ke'ThaD

AR 2
v= (X ol

FeFy?

2

1
Using the quadratic inequality invoked in the proof of Lemma 37.3 (i.e., 2% — n2cayzy + woy? >

1 2
TO—FN0CH (1.2 4 2 -
o (2% +y?)) and since

obtain

1 2
Wo—§NaCT, 1 1,2
ot >3 (because we assumed that wg > 1+ 3nach,), we

1/, 1 AF
T, > 5(|d3Vvhll2Lz<D> + ) h—””h”%%m)
FeFp "

Furthermore, proceeding as in Lemma 57.20, we infer that

1 1
T2 2 pollvnlfapy + 5 D N1Bnl>0nlliar),
FeFp

and we have T3 1= 1o TK6KHT€h(Uh)H%2(K). Collecting the above estimates shows that (61.16)

holds true. (|
Remark 61.9 (Penalty parameter). Any value wy > %nacﬁt yields coercivity, and the present
choice allows us to make the coercivity constant equal to % Let us also mention that the proof

of Lemma 61.7 uses the fact that d. is piecewise constant, making d.Vwv;, a piecewise polynomial
function. In the more general situation where d. is piecewise smooth (e.g., Lipschitz) in each mesh
cell, the scaling of the penalty term in (61.11b) should be wopx, 2—2 O

61.3.2 Consistency/boundedness

We are going to use the setting of Lemma 27.8 to perform the error analysis. Let u be the solution
to the model problem (61.2). We assume that

u€Vy:=Hy(D)nHY (D), r>1. (61.17)

We set V; := V5 + V), and we equip this space with the following two norms:

1
0¥, = llde Vol 32y + pollvollFzy + Y a0 Ten(©)]1F2(x)

KeTh
AF 1 1
+ Y PEleliam +5 X NBnlioliae), (61.18a)
FeF? F FeFy?
Lo 1
Iol%, = llolis, + D2 ki IollEacey + Y hrlldE Vollzs ). (61.18b)
KeTh FeFy?

We observe that (27.7) holds true with ¢, :=1 (i.e., ||vallv;, < ||vnllv;, on Vi, and |Jv]ly;, < [jv]lv, on
Vy). To simplify the tracking of model-dependent constants, we assume (as in Chapter 57) that
max (||l o 0y, IV-BllL>(p)) < cuppio, and we hide the quantity c, s in the generic constants
appearing in the error analysis.
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Lemma 61.10 (Consistency/boundedness). Define the consistency error as
<5h(Uh),wh>v,;,vh =l (wp) — acn(vp, wp), Yoy, wp, € V.
There is wy, uniform w.r.t. w € Vs, s.t. for all v, wy, € Vi, all h € H, and all d.,
[(6n(vn)s wn)vy v | < wg llu = vnllv; [[wal]vs, - (61.19)

Proof. (1) Since u € H'"(D) with r > 1, we infer that n-d.u has a well-defined trace on 9D
and that Te(u) = Tep(u) = f € L*(D). Hence, we can write ac(u,wn) = (Te(u), wn)r2(p) +
(n-deu, wp) r2(ppy for all wy € V. Since u vanishes at 9D, we obtain

Len(wh) = ae(u, wp) + nen(w, wp) + ngp(u, wp) + ren (u, wy).

Putting these identities together, we infer that (6n(vn),wn)vy v, = T1 + T2 + T3 with Ty =

(deVn, Vwn) 2(py + nen(n, wn), Tz := (A1), wn)r2(py + ngn(n, wn), T3 = rep(n, wy), and n =

U — Up.

(2) The term ¥ is estimated as in the proof of Lemma 37.5, where we now use that d. is sym-
L1

metric positive definite to write |n-d.Vn| < AZ[|dZ V1|l ge), and invoking the Cauchy-Schwarz

inequality, we infer that

3 Ap )
( > Enwhnw(m)

FeFp

1
|(n-de Vi, wh) 20| < < Z hF|d€2V77||i2(F)>
FeF?

The term T3 is bounded by using the Cauchy—Schwarz inequality. We proceed almost exactly as
in the proof of Lemma 57.21 to estimate the term To, the only difference being the bound on the
term T := —(n, B-Vwn)2(py. The Cauchy-Schwarz inequality yields

1T < > e 18- Vwnl 2,
KeTy

and we distinguish two cases.
1
(2a) Assume that Pex < p?. Then we have
11
Iz 1B-Vwnll 2y < 1nll L2 Br A, fllde Vsl L2k

i _ 1 1
< piTr Nl L2 |dE Vwn || e ().
since Bic A, 2 = f (PexThz?)? < 3 BhlrE < phrolzd = ph 3
o i = B (PexTrhy”)2 < picBrhy T < piTr T = PiTr’-

1
(2b) Assume now that Pex > p?.. Up to the zero-order term pwj, which is bounded as usual, we
use the triangle inequality and obtain

70l 2 () 1A (wn) || L2 (xy < Ml 2 a6y (1 Ten(wn) || L2 (xy + 1V (de Vwn) |2 (x))
_1 1 1 1 1
< 7 Il 2 o) (TR | Ten(wn) | L2 (i) + ¢ TEREAZ [1dE Vwn || L2(x) ),
where we used an inverse inequality. Since Peyx > p%( by assumption, we have Téh}l/\i K =
11 1
Pe,?pk < pjk, and since the function § is nondecreasing and satisfies 0(z) < z, we also have
_1 1 11 1 1 1
02 = (5(p;<1PeK)) 2 < (5(pK2)) ? < pgy e, prt <07, We finally infer that
11 N 1
[l 2y 1 ACwn) | L2y < epiemre® Inll L2y x ((TK5K)2 [ Ten(wn) L2y + l|dé thHL2(K)>-

Collecting the above bounds leads to the expected estimate. O
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61.3.3 Error estimates

Recall that D is the set of the points composing the mesh cells sharing at least a vertex with the
mesh cell K € Tp,.

Theorem 61.11 (Error estimate). Let u solve (61.2) and assume u € Vs. Assume that the
penalty parameter wy is s.t. wy > 1+ nacdt (i) There is ¢ such that for all h € H and d.,

[l — wnlly, < cvgrg/h lw —vn v, - (61.20)
(ii) Provided r € [1,k], then
1
o=y < (3 (ohluoh + Bch) + Xes W alfnnrin,y ) o (612)
KeTh

and |u|giir(py) can be replaced by [ulgiir gy if 1+1 > %.

Proof. (i) The estimate (61.20) follows from Lemma 27.8 combined with Lemma 61.8 (stability)
and Lemma 61.10 (consistency/boundedness).

(ii) We pick vy, := T, (u) to prove (61.21), where the quasi-interpolation operator Z, : L'(D) — V},
satisfies the following local optimal approximation property (see Theorem 22.6) for all m € {0, 1,2}
(taking m := 2 is allowed since r > 1):

|u—Ih(u)|Hm(K) < Ch};rr_m|u|H1+r(DK). (6122)
We have to estimate ||u — T, (u)||v,. Among the terms composing ||-||v;, we only bound
1
> okl = Th@)lliey and Y Tk | Ten(u — Tn(w))l[72 k),
KeTn KeTh
since the others can be estimated as in the previous chapters. Since 71}1 < uo—l—ﬁKhl}l, using (61.22)
1 1
with m := 0 gives pf(71}1||u—1h(u)||%2(K) < cpje(hohFe +Brhi )Wy [ulFir p,ey- Let us now derive
a bound on Tk || Ten(u — Ih(u))||%2(K). The triangle inequality yields
| Ten(u —Zn(u)l2xy < NJAu = Zn(w) |2 (x) + (Vi (deV(u = Zn(w))l L2 (k) -
Using (61.22) with m € {0,1}, we infer that
[A(u — Zn(w) |2 (k) < ¢ (pohr + Br)hic|ulgier (D)
Moreover, since d. is constant on K, using (61.22) with m := 2 yields

Vi (deV(u = Tn(w))) || L2 (k) < M iclu— Tn(u)| g2 k)

< Chl_(lAﬁ7Kh,’I,{|u|H1+T(DK).

Since dx = min(1, p;( Pey) and T = min(ﬂ;( hK,,ua ), we 1nfer that TK52 (uth + Br) <

Té(,uth + 0k) < (,LLO hi + Bf(iﬁ ) and TK52 hy /\ﬁ K < TKpK2PeKh /\ﬁ K= /\ﬁ - Hence, we
have
7282 | Ten( — Tn(w))|l 2y < ¢ (3 hic + BERE + )\EK)hHMHHr(DK)-

We conclude the proof of (61.21) by using that px > 1. O
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Corollary 61.12 (Asymptotic regimes). Let the assumptions of Theorem 61.11 hold true.

(i) If Pex < plé( for all K € 7Ty, (dominant diffusion), we have
1

1 2
1429 = undlzacoy < (3 Macklufiperion ) (61.23)
KeTy,

(ii) If Pex > plé( for all K € Ty, (dominant advection), we have

1
1 _1 2
ud 1l — wunll 2oy + ( T pKwA(u—um%m)

KeTy

NG

1
(3 okt + B Mulhongp ) (6120
KeTy,

Proof. We have Ti'h%, < poh% + Brhx < 27'h% since i = min(g—i,u—lo) and

IN

1
min(a,b)
11 2 i

++3 < )] for any positive real numbers a, b.

L L 1
(i) Assumelthat Pey < pZ for all K € T,. Then we have p2 (uoh% + Brhi) < 2p12(7'};1h%< =
2X\ kPerpi < 2\ k. Therefore, the bound (61.21) becomes

1

2
lu—unllv, <c < > )‘ﬁ,Kh%W@IHT(DK)) ;

KeTn

and (61.23) follows since Hd%V(u —un)|lz2py < llu— unlly;

I ol=

(ii) Assume that Peyx > p for all K € T;,. We infer that \s x = pKTth%f P,’)eK < pKTK1h2

1

pi-(poh% + Brhi). Therefore, the bound (61.21) becomes [[u — unllv, < (X ger, pK(uth
Brchi )W [ul% s, DK)) Since Mo §llu—unllL2py < [lu— UhH%a this proves the estimate on Mo llu—
up| z2(py in (61.24). Tt remains to estimate (3 et g TK||A(u—uh)HL2(K)) Using the triangle

_1 1
inequality and the inequality p,* < 62 (see Step (2b) of the proof of Lemma 61.10), we infer that
_11 11
P TRIAM@ — un)||l L2 (k) < TEOENTen(u — un)l L2k

_1 1
+ o TRIVA(deV(u — un)) | L2 (r)-

Let us consider the second term on the right-hand side. Using the approximation properties of the
operator Zj, an inverse inequality, and the triangle inequality, we obtain

[V-(deV(u —un)) L2y < [IVA(deV(u = Thu))l 22x) + [V(deV(Zrpu — un))l 22 (k)
1
<c (/\ti,Kh Hul i (pge) + hig 1/\2K|\d3 V(Znhu — uh)HL2(K))
1 1
<d (hl}l/\ﬁ,KhHMHHT(DK) + R A g l[dZV (u — Uh)”L?(K)) :

11 _1 1
Observing that p 72 < hgA 12( if Pex > pj., we infer that

_1 1 1 1
P TR VA(deV (1 = up))l L2y < € (Af,KhHumw(DK) + [|dé V(u— Uh)Hm(K)) :
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Combining these bounds and recalling the definition of |||y, in (61.18a) gives

_1
> ot il Al = un)lleey < el —unlly + 3 Nsch¥lufnerip, )
KeTn KeTy

Since we have already established that Ay x < p%{(,uoh%f + Bkhi), this completes the proof
of (61.24). O

Remark 61.13 (Anisotropy). The dependence of the error estimate on the global anisotropy
1
ratio p := maxgecT, pi is very mild. The error estimate in (61.21) and the bound on pgl|lu —

up| £2(py in Corollary 61.12 both scale as pi. The bound on ||<1:1§V(u —up)| 2(p) is robust w.r.t.
p, and the bound on A(u — uy,) scales as p%. The error analysis with anisotropic diffusion is more
intricate for fluctuation-based stabilization and for discontinuous Galerkin methods than it is for
GalLS since stability then hinges on an inf-sup condition and not just coercivity. (The difficulty in

the proof of the inf-sup condition appears when bounding Hdé V(In(B-Vp))| L2y for all vy, € Vi,
where 7}, is some averaging operator.) [l

Remark 61.14 (Localization). The above convergence results feature a high-order Sobolev
norm of the solution to (61.2) which can be quite large if the solution has internal or boundary
layers. A refinement of the analysis for Gal.S stabilization using Sobolev norms weighted by cut-off
functions with exponential decay gives localized error estimates away from the layers; see Johnson
et al. [201, 202]. These estimates essentially show that the GaLS-stabilized discrete solution is well-
behaved away from the layers, contrary to the standard Galerkin approximation where spurious
oscillations are global. Similar results have been derived for dG methods in Guzmén [173] and for
CIP stabilization in Burman et al. [73]. O

61.4 Divergence-free advection

The above analysis hinges on the assumption that p — %V-ﬁ > o > 0 a.e. in D. The goal of
this section is to analyze the GaLS approximation of the model problem (61.1) under the weaker
assumption p — %Vﬂ > 0 a.e. in D. This setting covers in particular the case of zero reaction
and divergence-free advection. Following Devinatz et al. [104], we assume that there is a function
¢ € C%Y(D) such that

1
—§ﬁ-V§ >po >0 ae. in D, (61.25)

and since ¢ can be defined up to any additive constant, we can assume that ¢ > 1 a.e. in D.
The assumption (61.25) is reasonable whenever the field 3 has no closed streamlines and no sta-
tionary point in D. The one-dimensional version of this problem is investigated in §27.3.2 and in
Exercise 27.4.

We are going to show that under the assumption (61.25), the discrete bilinear form a.p defined
in (61.11) still enjoys stability in the norm ||-||y;, defined in (61.14), but this time stability follows
from an inf-sup condition instead of coercivity. Once the inf-sup stability is established, the rest of
the error analysis is unmodified, that is, the error estimates in Theorem 61.11 and Corollary 61.12
still hold true. Let us set (4 := ||(||r~(p) and let us denote by L¢ the Lipschitz constant of ¢
in D (L¢ scales like the reciprocal of a length). To simplify the tracking of parameter-dependent
constants, we make the mild assumptions that Lg max(M k', Bxhi) < po and Lehg < 1 for all
K € Ty,. The generic constants may depend on (; in what follows.



Part XII. FIRST-ORDER PDES 69

Lemma 61.15 (Stability). Assume (61.25) and p— 1V-B8 >0 a.e. in D. Assume the tightened
stability condition wy > 1+ %nacﬁtCn- There is a > 0 such that for all h € H and d.,

QAeh\Uh, Wh
alonllv, < sup 12cnCOmwn)]

) Yoy, € Vi, (61.26)
wneVi  lwallv,

1
Proof. We only sketch the proof. Let us set A? := [|[d2 V|72, A3 = Yrer? )\Fh;1|\vh||2Lz(F),

1
A3 = ZKGTh TK(SKHTeh(Uh)H%z(K)a and A} := %ZFGJ-'S H|ﬁ'n|2?}h||%2(p)7 so that ||UhH%/h, = A} +
A+ A3 + AG + pollvnll7 2 py for all vy € V. Since wo > 1 + snac3, (recall that ¢; > 1) and since
w— %V-,@ >0 a.e. in D, we infer that

1
aen(Un, vp) > E(Af + A3) + A3 + A3

Let us set ¢ = J2%((ovn), where T2 © PP(T,) — Vi, == P£(Th) is the H'-conforming
averaging operator introduced in §22.2, and (o = I}ih(g) where Ig)h : L*(D) — PY(Tp) is the
L?-orthogonal projection onto piecewise constant functions on 7j. Let us define the bilinear form
a: Vi % P;?(ﬁ) — R by setting

a1 (vn, wp) = (deVon, Vywn) L2(p) + nen(vn, wn) + ren(vn, wa),
for all (vp,,wp) € thP,?(’ﬁl). Let us also define the bilinear form ay : Vi, x H'(7;,) — R by setting
az(vp, w) == (A(vn), w)2(p) + ngn(vn, w),

for all (vp,w) € Vi xH'(Ty) (recall that H*(Ty) := {v € L*(D) | vjx € H'(K) VK € Tp}). We
notice that aep 1= ay)v;, xv;, +a2)v, xv;, - Since (o is piecewise constant, ¢ > 1, and wo > 1+%nacﬁtq,
we have

a(on, Goen) > 5 (4% + 43) + 43
Moreover, one can show (see Exercise 61.5) that there is ¢; > 0 such that
a1 (v, on — Covp) = —clwo% (A1 + A + A3) X ué llvnll 2 (Dy- (61.27)
Using the assumption (61.25), u — %V-,@ >0, and ¢ > 1, we infer that
az(vn, Con) = (pvn + B-Von, Cun) £2(p) + ngn(vh, Con) > piollvnll7z(py + A,
since integration by parts shows that (uwvy + B-Von,Cun)r2py = ((4 — %V-,@)th,vh)Lz(D) —

2((B-V)vn, vn)r2(py + (5(B1)Cvn, vi)r2(9p)- Moreover, one can show (see Exercise 61.5) that
there is ¢o > 0 such that

1
az(Vn, on — Cun) > —c2(Ar + Az + Ag) < pg [|vnllL2(p)- (61.28)
Adding the above four inequalities shows that
1
aen(Vn, on) > 5(/1? + A3) + AZ + AT + pollvnllZz(py

— (a1@§ (A1 + Az + A3) + c2(Ar + Az + Aa))g lonll 22()-
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Invoking Young’s inequality implies that

1 1
aen(Vhs Pn) > 5(/1% +A3) + AF+ AT+ 5#0”%”%2(13)
—3(c3wo + c3) (AT + A2) — 33wy A3 — 3c3 A3

Finally, we set wy, := Avy, + 5, € Vj, with A 1= 6(c§w0 + cg) This yields

2acn(vn, W) = 2Xaeh (Vn, vh) + 2aen(Vn, Pn)
> A2 4 A2 4242 4242 4 #o||vh|\%2(D)
+ (A= 6(cEmo + )42 + (A — 6c3m) 43
+ (20 = 6(cimo + ¢3)) A3 + (2X — 6¢3) A]
> A7+ A3+ 243 + 247 + pollon |32 ) -

Since ||l ||, = AT + A3 + A3 + Af + pol|vnll7 (), this proves that acn(vn,wn) > 1
the conclusion follows from the bound |Jwp]|v, < ¢|lvnllv, - O

lon ¥, and

Remark 61.16 (Literature). We refer the reader to Devinatz et al. [104], Azerad [18], Ayuso
and Marini [17], Deuring et al. [103], Cantin [79], Cantin and Ern [80], Bensalah et al. [30] for
further results on divergence-free advection. O

Exercises

Exercise 61.1 (A priori estimates). Consider the problem (61.1). Assume that d. := ely,
V-B=0,Bop =0, p:=p >0, and f € HY(D). Let VB := %(VB +(VB)T) denote the
symmetric part of the gradient of 3, and assume that there is py > 0 s.t. VB + uly > poly
in the sense of quadratic forms. Prove that |u|g:(py < (16 + po) | f|ar(py and |[|[Aul|2(py <
(4(pf + U0)5)7%|f|H1(D)- (Hint: test the PDE (61.1) with —Aw.) Note: see also Beirao da Veiga
[29], Burman [60].

Exercise 61.2 (Advection-diffusion, 1D). Let D := (0,1) and let €,b be two positive real
numbers. Let f : D — R be a smooth function. Consider the PDE —eu” 4+ bu’ = f in D with
the boundary conditions u(0) = 0, u(1) = 0. Consider H!-conforming IP; Lagrange finite elements
on the uniform grid 7, with nodes z; := ih, Vi € {0:1}, and meshsize h := ?11 (i) Evaluate the
stiffness matrix. (Hint: factor out the ratio £ and introduce the local Péclet number ~ := &)
(ii) Solve the linear system when f := 1 and plot the solutions for h := 10=2 and v € {0.1,1,10}.
(Hint: the solution U € R’ has the form U® + U with U? := b~'ih and U; := o + 66’ for some
constants g,0,4.) (iii) Consider now the boundary conditions u(0) = 0 and u/(1) = 0. Write the
weak formulation and show well-posedness. Evaluate the stiffness matrix. (Hint: this matrix is
now of order (I +1).) Derive the equation satisfied by h=*(U;41 — Uy), and comment on the limit
values obtained as h — 0 with fixed € > 0 and as € — 0 with fixed h € H.

Exercise 61.3 (Artificial viscosity). Consider the model problem (61.1) with d := €l with
constant € > 0. Assume that u € H?(D). Assume that 3 is divergence-free and p > 0 is constant,
and set b := ||B|L~(p). Consider the finite element space Vi, = PP((7s) on a mesh from a
quasi-uniform sequence (for simplicity). Consider the following nonconsistent approximation: Find
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up € Vi, such that ac(up,wn) + sp(un, wn) = (f,wn)r2(py for all wy, € Vi, where sp(vn, wp) =
$bh(Von, Vwy)p2(py for all vy, w, € Pfo(Ty). (i) Prove the following error estimate:

1% |[u — upll 2oy + (€2 + (bh) )|V (u — un)l| L2 (py < (€2 + (bh)Z + p2h + = 2b)hlulg2(p).

(Hint: use the norms [Jv[§, = (e—l—%bh)HVvHiz(D)+u||v|\%2(D), [ol|¥, = (e—l—%bh)HVvHiz(D)—l-(u—l—
2bh‘1)|\v||%2(D) and adapt the proof of Lemma 27.8.) (ii) Consider the 1D setting of Exercise 61.2
with f := 1. Set Vj, := PP (Tn) = span{wi}icq1. 1}, where the ©;’s are the usual hat basis functions
in PP(Tn). Let £ :[0,1] = R be a smooth function, called bubble function, s.t. £(0) = £(1) = 0
and & > 0. For all i € {1:1}, set &(x) 1= (=) if z € [w1, 3], &i(x) = —§(55=) if
T € [w5,2i11], and &;(x) 1= 0 otherwise, and set 1; := p; + &;. Let Wy, = span{t;}ieq1.13. Prove
that the Petrov—Galerkin formulation using the pair (V},, W},) as trial and test spaces is equivalent
to a Galerkin formulation in V;, with the bilinear form augmented by an artificial viscosity term.
(Hint: verify that f;;fll up&de = h(fol E(x)dx) [T u ) da for all i € {1:1}.) Explain how to

LTi—1

choose fol &(x) dz so that the stiffness matrix is always an M-matrix. (Hint: use Exercise 61.2.)

Exercise 61.4 (Bound on consistency term). Prove Lemma 61.7. (Hint: observe that

L1 1
[n-dcVon| < AZ||dE Vg |2 ey, use that dZ Vuy, is a piecewise polynomial, and adapt the proof of
Lemma 37.2.)

Exercise 61.5 (Divergence-free advection). (i) Prove (61.27). (Hint: use Lemma 22.3 and
[Covn] = [Co]vn, and bound [¢o] using L¢.) (ii) Prove (61.28). (Hint: use that ||on — Cunllr2(x) <
llon = CunllLz(x) + 1€ = Co)vnllL2(x)-) (iii) Prove that [onllv, < cflonllv,. (Hint: bound [|Govnlv,
and [|n — Covnllvi,-)
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Chapter 62

Stokes equations: Residual-based
stabilization

Employing inf-sup stable mixed finite elements to solve Stokes-like problems may seem to be a
cumbersome constraint. The goal of this chapter is to show that it is possible to work with pairs of
finite elements that do not satisfy the inf-sup condition (53.15) provided the Galerkin formulation is
slightly modified. This is done by extending the stabilization techniques that have been presented
in Chapters 57-60 to the Stokes problem. Although all these techniques can be adapted to the
Stokes problem, for brevity we only exemplify three of them. We focus on the Galerkin/least-
squares (GaLS) in this chapter. The continuous interior penalty and the discontinuous Galerkin
methods are investigated in Chapter 63. The reader is referred to Braack et al. [42] for a review
of stabilization techniques for the Stokes equations.

62.1 Model problem

Let D be a Lipschitz polyhedron in R%. As in Chapter 53, we consider the Stokes problem with
homogeneous mixed Dirichlet/Neumann boundary conditions:

Vr(u,p)=f, Vu=yg in D, (62.1a)
upp, =0, r(w,p)op,m=0 ondD, (62.1b)

where the body force f and the mass production rate g are assumed to be in L?(D) and L?(D),
respectively. Moreover, r(u,p) := —s(u) + pl is the total stress tensor, s(u) := 2ue(u) the viscous
stress tensor, e(u) := 1(Vu + (Vu)") the (linearized) strain rate tensor, and p > 0 the dynamic
viscosity. For simplicity, we assume that g is constant and that |0Dg| > 0. We consider the
functional space Y := Vgx(@Q with

Va = {v € H'(D) | (v)jap, = 0}, (62.2)
= D) if 9D # ODq,
Q= {Li(D) = {qe L2(D)| [,qdz =0} ifdD =Dy, (62.3)

with the trace map 78 : HY(D) — Hz(9D). We define the bilinear forms a : VixVyq — R,
b:VaxQ — Rst. a(v,w) = [, s(v):e(w)dz, b(v,q) := — [, ¢V-vdz, and combine them into
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the bilinear form ¢ : YxY — R s.t.
t((v,q), (w,r)) = a(v,w) + b(w,q) — b(v, 7). (62.4)

Setting (w,r) := fD fw dx—i—fD gr dx, it has been established in Theorem 53.11 that the following
problem is well-posed:

{ Find (u,p) € Y such that

t((w,p), (w,r)) = L(w,r), Y(w,r)eY. (62.5)

In particular, Lemma 53.12 shows that the following inf-sup condition on the bilinear form ¢ holds
true uniformly w.r.t. g4 > 0:

inf  sup [#(©, 9), (w, 7)) =9 >0, (62.6)

@0 (wrey |09y |[(w,r)]y

with the norm |[(v,q)|[} == plv[n p) + 1 lal 2 p)-

We want to construct approximation methods for the solution to (62.5) with discrete velocity
spaces Vpq C Vg and discrete pressure spaces @), C () that do not satisfy the inf-sup condi-
tion (53.15). Letting Y}, := Vjqa X @}, the central idea of this chapter and the next one is to modify
the bilinear form ¢ by adding some stabilization terms so as to produce a discrete bilinear form ¢y,
satisfying an inf-sup condition on Y}, X Y}, uniformly w.r.t. h € H and p > 0.

62.2 Discrete setting for GalLS$S stabilization

Let (Tn)new be a shape-regular mesh sequence s.t. for all h € H, T, covers D exactly and each
boundary face of 7, is either in dDq or in dD,,. The sets of the boundary faces in 0Dq and 9D,
are denoted by ]-",‘3 and F}, respectively. Let Viq C Vg and @, C @ be two finite element spaces
constructed on the mesh 7,. Notice that the approximation setting is conforming. In particular,
the velocity approximation is H '-conforming, and the Dirichlet condition is strongly enforced.
The discrete pressures can be continuous or discontinuous. The examples we have in mind are

Via = BE (TN Vi, Qui= PE(Th) or Qu i= PE.(Th), (627
with k, > 1, and either k, > 0 if Qp, := PIEP (Tn) or ky > 11if Qp, == P}fp (Tr).

Remark 62.1 (Pressure space). If 0D = 0Dy, it is implicitly understood that the discrete
pressure space incorporates the zero mean-value condition. To simplify the notation, this condition
is not stated explicitly. In practice, the discrete problem can be assembled without enforcing this
condition since it can be easily handled when solving the linear system. [l

Recall that Y}, 1= VpaxQpn. We construct a GaLS approximation of (62.5) by proceeding
similarly to §57.3. The general idea is to add suitable least-squares (LS) penalties to the bilinear
form ¢ in order to obtain a discrete bilinear form t5, : Y, xY};, — R satisfying the following inf-sup

condition:

t
inf sup (@ an) )l (62.8)

(V00 EYn (wprn)eYn |1 (Vhs @01y || (wn, 70)| s,

where |||y, is a discrete counterpart of ||-||y and vy is bounded away from 0 for all h € H and
all > 0. The above goal is reached by introducing the stabilized bilinear form ¢, : Y, xY, — R
defined by

th(zn,yn) == t(xn, yn) + sn(Tn, yn), Sh 1= 8, + S) + Sp, (62.9)
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with s}, s}, and s} s.t. for all z,y, € Y}, and all g5, 7, € Qp,

n(@h, yn) Zw (Vir(zn), Vir(yn)) L2 (k). (62.10a)
KeTy,
Plgnon) = o2 ([, [rn]) 2 (k) (62.10b)
FeFy
h
sh(@yun) = Y @ (x(zn)n, v(yn)n) 2 (r), (62.10c)
FeFp r

where w", wP, w" are nondimensional constants of order 1, and V- denotes the broken divergence
operator, i.e., (V1) g = V:(r|x) for all K € T}, (recall that r(vy, gn) does not have a weak diver-
gence in L?(D) since the normal component of Vvj, and the pressure g;, can jump across the mesh
interfaces). After a proper modification of the right-hand side, s}, will contribute to the LS penalty
on the residual Vj,-r(up,pp) — f. Moreover, s} is a LS penalty on the pressure jumps across the
mesh interfaces and s, is a LS penalty on the normal stress at the Neumann boundary. Obviously,
sy vanishes identically if one uses continuous discrete pressures, and s} vanishes identically in the
case of pure Dirichlet conditions, i.e., if 9D, = (). The GaLS approximation of (62.5) is as follows:

Find (up,prn) € Y, such that
(62.11)
th((wh, pn), (WhyTh)) = Ch(Wh,Th),  Y(wh,7h) € Ya,
with 12
éh(wh,rh) = 6 wh,rh Z w —K f,vh-l‘(wh,Th))L2(K). (6212)

KeTh

The last term in (62.12) ensures consistency (i.e., the Galerkin orthogonality property as shown
in Theorem 62.5). To sum up, the discrete problem contains LS penalty terms on the momentum
residual, on the pressure jumps across the interfaces, and on the normal force at the Neumann
boundary faces.

Remark 62.2 (Literature). The idea of penalizing the residual is proposed in Hughes and
Franca [189]. Other (equivalent) residual-based stabilization techniques can be constructed by
playing with the structure of the stabilizing bilinear form s;. We refer the reader to Franca and
Frey [129], Tobiska and Verfiirth [276], Braack et al. [42], and the references therein. In the lowest-
order case with k, = k, := 1, s}, penalizes the pressure gradient. This form of stabilization takes
its origin in the work of Brezzi and Pitkéranta [53]. O

62.3 Stability and well-posedness

In order to establish the well-posedness of the discrete problem (62.11), we introduce the following
norm on Yjy:

(o, an)ll3, = l|(vn, an)ll3 + |(vn, an) |3 (62.13)

with |(vn, qn)|% = sn((Vh,qn), (v, qn)). Recall that the product space Y := Vgx@Q is equipped
with the norm [[(v, @)|[3 := ulv|F1 (py + 1 Ipll72(p)- We also consider with obvious notation the

3+ | 1Ee + |3

seminorms |-|gr, |-|gr, ||sn, so that ||2S = |-
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Lemma 62.3 (Stability, well-posedness). Lett), be defined in (62.9) with the stabilizing bilinear
forms defined in (62.10). (i) There is o > 0 such that t, satisfies the inf-sup condition

t
inf sup [£4((0n, gn), (wn, )] > 7 > 0, (62.14)

(0,0 EYn (wn,rnyevn (Vs qn)llvy || (wn, 1) v,

for all h € H and all ;> 0. (ii) The discrete problem (62.11) is well-posed.

Proof. Let (vp,qn) € Y, and S := sup ltn((on.an)-(wrr))l - The proof is similar to that

Wh,Th)EYr (wn 1) [lvy,
of the continuous inf-sup condition (62.6) (see Lemma 53.12). Since we have established in Theo-
rem 42.10 (Korn’s second inequality, see (42.14)) that a(v,v) > 2uC2|v] for all v € Vg, and

since Vi,q C Vg, letting o := min(1,2C2) > 0, we have

a(plonlz oy +1(wn an)[3) < th((vnsan)s (i, an)) < Sl (wns )y, - (62.15)

2
H' (D)

It remains to estimate p~!{|gn ||2L2(D). The surjectivity of the divergence operator (see Lemma 53.9)
and the converse statement in Lemma C.42 imply that there exists a function wg, € Vg s.t.

Vawg, =—p g and  Bplwg, |mip) < 1 lanllL2(p)- (62.16)

Let us set wy, :=Z} 4 (wy, ), where I}, : Vg — Vjq is the R?-valued version of the H'-conforming
quasi-interpolation operator Zpy™ from §22.4 modified so as to satisfy the zero trace prescription
on dDg4. Owing to the stability and approximation properties of Z;'®", we infer that there is ¢ s.t.
forall h e H, all K € T;, and all w € Vg,

|w —Zyq(w)l2(x) + hic|w — i (w) | (1) < chic|wlm Dy, (62.17)

where D is the set of the points composing the mesh cells sharing at least a vertex with K. Using
the definition of the norm [|-||y,, an inverse inequality and a discrete trace inequality to bound
|(wp,0)]s, we infer that

1 1
[(wn, 0)lly;, < p?|wnlmr (D) + [(wn, 0)|s < cp?|wn|m ()

We can bound |wp| g1 (py owing to the H'-stability of Z}; from (62.17) and the regularity of the
mesh sequence. Using the bound on wy, from (62.16), this yields

| (wn, )y, < e?wg, e o) < ¢ u” 2 llan ] 2(p). (62.18)
A straightforward calculation using (wp,,0) as a test function shows that
1 lanl22py = ta((vns an), (wn,0))
— ((s(vn), e(wn))L2(py + (qn, V-(wg, — wn))L2(D))
- (SZ((U}I, qb)v (wa 0)) + SI};((”M qh)? (wh7 0)))

The rest of the proof consists of estimating the three terms on the right-hand side, say %1, %o, T5.
Owing to (62.18), we have

%11 < Sll(wn, 0)lly, < ¢S~ 2 llanllz2(p).

Moreover, we have Ty = (8(vp), @(wg, —wh))L2(D) = (qh, V-(Wg, —wn)) 12Dy — (8(Vh), @(wy, ))12(D).-
Integrating by parts the first two terms, we infer that To = To 1 + Ta o + T 5 + T 4 with

To1 = (Vir(vn, qn), wg, — wr)L2(p), To0 = (x(vh, qn)N, W — Wy, ) L2(oD,,)>

To3: Z ([r(vn, gn)Inr, wn — wg, ) L2(F), Taa 1= —(8(vn), e(wy, ))L2(D)-
FEF?
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Using the Cauchy-Schwarz inequality, the definition of s}, the approximation property (62.17),
and the bound on |wyg, |1 (p) in (62.16), we infer that

|T2.1] < |(vn,qn)

1
2
Sf( > (@) phil w,, — wh”iz(m)
KeTy,
1

2
< C|(Uh,Qh)|Sr( Z /’Lleh|%-Il(DK))

KeTy

_1
seit” 2 lqnll 2 (p)-

1
se 2 [wy, [m1 oy < ¢ [(vn, qn)

< (v, qn)

Proceeding similarly by using the definition of s} yields
1
Ta2| < c|(vn, qn)ls»p™ = llanllL2(p),

1
where we used that hj.||[w — I (w)| L2 (oK) < chi|w|m1(pyy (which follows from (62.17) and the
multiplicative trace inequality (12.15)). Concerning T3 3, we first observe that

12-,3 = Z _(2.u[[®(vh)]]nF7 Wp — thh)Lz(F) + ([[Qh]]nF, Wh — w%)LQ(F)'
FeFyp

We bound the first term involving [e(wvp)] by means of a discrete trace inequality and the ap-
proximation property (62.17), and we proceed as above using the definition of s} to bound
the second term involving [gn]. This leads to [Ta 3] < c(,u%|vh|H1(D) + |qh|5p),u*%|\qh|\Lz(D).
Invoking the Cauchy-Schwarz inequality and the bound (62.16), we finally infer that [T 4] <
cuz |'vh|H1(D)/f% llgnllz2(py. In summary, we have shown that

1 1
T2 <c (/“ |on| e (D) + |('Uh7Qh)|S)M 2 |lgnllL2(p)-
Concerning %3, since the stabilization bilinear form s;, is symmetric positive semidefinite, we have

_1
T3] < [(vn, qn)ls|(wn, 0)ls < c|(vn, gn)lsn™2llanll L2 (D),

where we used (62.18) in the last bound. Putting everything together, we can bound p~!||gp ||2L2(D) =
T1 + To + T3 as follows:

_ 1 _1
w lanll72py < ¢ (S+ w2 onlm oy + (vn, an)ls) ™ 2 llanll 2y,

so that inhH%g(D) < ¢(S? +,u|vh|§ql(D) + |(vn,qn)|%). Recalling (62.15), i.e., (,u|’vh|§ql(D) +
|(vn, an)l%) < &SII(vn, an)llv,, we obtain |[(vn, qn)ll3;, < c(S* + S|[(vn, an)lly;). Invoking Young’s
inequality, we infer that ||(vs,qn)lly, < ¢S, ie., (62.14) holds true. Finally, the well-posedness

of (62.11) is a direct consequence of the inf-sup condition (62.14) combined with Theorem 26.6. [

62.4 Error analysis

The main tool to perform the error analysis is Lemma 27.5. However, the present setting allows
for a slightly simpler formulation based on the Galerkin orthogonality property. Since we are going
to use this property several times, we present an abstract result regarding the following generic
problem: Find y € Y}, s.t. t1(yn, zn) = €n(zn) for all z;, € Yy,
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Lemma 62.4 (Error estimate with Galerkin orthogonality). Let Y, CY be equipped with
a norm |||y, let Ys C 'Y, and assume that Yy := Y5 + Y}, is equipped with a norm ||-||y, that is
the natural extension of the norm ||-||y, to Y;. Assume the following: (i) Stability: the bilinear
form tp, : Y XY, — R satisfies the inf-sup condition (62.14) with the constant vo for all h € H; (ii)
Consistency/boundedness: Lety solve (62.5) and assume thaty € Vs. Assume also that the bilinear
form ty, :=t+sp : Y xY, = R can be extended to a bounded bilinear form ty :==t+4s4 : Yy xY, — R
with boundedness constant ||t4]|, and the following Galerkin orthogonality property holds true:

t(y, 2n) = n(zn),  Ven € Yy, (62.19)

Then the following quasi-optimal error estimate holds true:

ly = ynlly; < ( n ””) £ lly = Gullv- (62.20)
Proof. We apply Lemma 27.5. The consistency error satisfies

(0n(Ch)s 2n) vy vy = Lnl2n) — th(Chy 2n) = t4(y — Cn, 2n),

for all (,zn € Y3, where we used the Galerkin orthogonality property and the fact that ¢y is
an extension of t,. The boundedness of t; implies that [|0n(Ca)lly; < [[telllly — Cully,, i-e., the

consistency /boundedness property (27.4) holds true with wy, = ||t4]|. Since [-||y, is the natural
extension of |||y, to Yj, we infer that (27.5) holds true with ¢; := 1. Thus, (62.20) is just a
rewriting of (27.6). O

We now apply Lemma 62.4 to the GaLS approximation of the Stokes equations. We assume
that there is r > 1 s.t. the solution to (62.5) is in

Ys :i={(v,q) €Y | (v,q) € H'"(D)xH"(D), V-r(v,q) € L*(D)}, (62.21)

and we set Yy := Y5 +Y),. Notice that the solution to (62.5) satisfies V-r(u,p) € L?(D) by
assumption since f € L?(D). Let [|-|ly, be the natural extension to Y; of the norm ||-||y, defined
n (62.13), and let t; :=t + s4 be the natural extension to Y;xY}, of the bilinear form ¢, := ¢+ s,
defined in (62.9). With these extensions, sp((v,q), (wp, 7)) is well defined for all (wp, ) € Y3
(see (62.10)), since the assumption r > 1 implies that for all (v, q) € Y}, V-r(v,q) € L?(D), and
the normal trace of r(v, ¢) and the pressure jumps are well defined.

Theorem 62.5 (Error estimate). Let (u,p) solve (62.5) and assume that (u,p) € Ys as defined
n (62.21). Let (up,pn) € Yy solve (62.11) with the stabilizing bilinear forms defined in (62.10).
(i) There is ¢ such that for all h € H and all 11 > 0,

lw—wnp =)y < ¢ inf = om0~ ai)llg. (62.22)
(vn,qn)EYn

(ii) Assuming (u,p) € H™(D)xH™ (D) with 7 € [1,min(ky, k, + 1)], the following holds true:

h27'
(= wn,p = pn)lly, <c( > uh¥ |ulip+f<;<>+—K|p|%p<K>> . (62.23)
KeTy, H

Proof. (i) We apply Lemma 62.4 to prove (62.22). Stability using the norm ||-|]y, has been estab-
lished in Lemma 62.3, and one readily verifies that the extended bilinear form #; is bounded on
YyxY},. Thus, it only remains to verify the Galerkin orthogonality property. Since the solution



Part XII. FIRST-ORDER PDES 79

o (62.5) satisfies t((w,p), (wp, 7)) = £(wyp,rp) for all (wp,r,) € Yy C Y, Vr(u,p) = f in D,
r(u,p)n =0 on 0D, and [p[r = 0 for all F € Fy (recall that we assumed 7 > 1), we infer that

2
tu((uup)a (whu ’f'h)) = t((uup) whu ’f'h Z w _K f7 Vh'r(whu rh))L2(K)
KETh

L(wp, ) Z @ L (f, Ve (wn, mh)) L2 (x0) = Ch(wh, Th).
K€7-h

This completes the proof of (62.22).

(ii) We consider the quasi-interpolation operator Z}; : Vg — Vjq from the proof of Lemma 62.3,
together with the operator Z : @ — Qp which is either the H L_conforming quasi-interpolation
operator Zp"™ from §22.3 if one uses H I_conforming discrete pressures, or the broken interpolation

operator I,uI from §18.3 if one uses discontinuous pressures. One can then invoke the following
approximation properties:
[w — Tha(w)|m (i) + hiclw = Lig (W) 2 (r0) < chic|w]p2(py), (62.24a)
lg — I (@l r2x Jrhk|q L, @m0y < childlm(pg) (62.24b)

for all K € T, all h€ H, all w € H?(D) N Vg, and all ¢ € H*(D) N M (Dg can be replaced
by K in (62.24b) if one uses discontinuous pressures). Estimating [|(uw — I} (u),p — Z} (p))|ly
is straightforward, and we refer the reader to Exercise 62.3 for the bound on the stabilization
terms. O

Remark 62.6 (Optimality). The error estimate (62.23) is optimal if 7 = k,, = k, + 1. The sim-
plest example is k,, := 1, k, := 0 leading to first-order convergence rates if (u,p) € H*(D)x H(D).
O

We finish by establishing an L?-error estimate on the velocity by using the Aubin—Nitsche
duality argument. Let s € (0,1] be the regularity pickup index in the Stokes problem, i.e., there
is ¢ > 0 s.t. for all 5 € L?(D), the unique solution (¢,() € Y to the problem V-(r(¢,()) =
3, V&€ =0, and 1(§,Q)jop,m = 0 is in H'"*(D)xH*(D) and pl€|pr.py + 11 py <

c,u_lﬂ ||_7||L2(D), where ¢ is a length scale associated with D, e.g., {p := diam(D).

Corollary 62.7 (Velocity L*-estimate). Consider the setting of Theorem 62.5. Assume that
the regularity pickup index in the Stokes problem is s = 1. There is ¢ such that for all h € H and
all p >0,

lw = wnllz2(py < e 2Rl (w = wn, p = pu)ly;-

Proof. Let (n,0) € Y be the solution to the dual problem
V'(T("?a 6)) =U—Up, VT’ =0, T(Ua 6)\8Dnn =0.
We observe that
lu —unlZ2(py = (w—un, V-(x(n,9)))r2(p) = (e(u —up),5(n) — 0Lz (p)
= a(u - Uh;"?) + b(u — Up, 6) = t((u — Up, P — ph)7 (777 _6))7

where we used the symmetry of the bilinear form a and the fact that V-n = 0. Using the Galerkin
orthogonality property, we infer that

lw —un[Ze(py = t((w = wn,p = pn), (,—0)) — tr((w — wn, p = pr), (v, —qn))
=t((w —un,p —pn), (M — Vh, =0+ qn)) — sp((w — wn,p — pr), (Va, —qn)),
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for all (vp,qn) € Y. Owing to the boundedness of ¢ on Y XY together with the symmetry and
positive semidefiniteness of s4, we obtain

[ = unl|Z2py < cll(w—un,p—pu)ly(n—vn,6 = an)lly

+|(w —un,p — pn)|s|(vn, qn)ls-

Let vy, :==TI}!,(n) and g, := Z})(6). Using the approximation properties of these operators, we infer
that |(vn,qn)|s < ch(u%|n|H1+s(D) + u*%|5|Hs(D)) (see Exercise 62.3). Recalling that |-y, :=
(I3 +1-12)2 is the natural extension of |||y, to Y3, we obtain

1 1
lw = unllgzpy < cll(w—wn,p—pu)llv,h(n2 0l E20) + 1721651 (D))
We conclude by invoking the bound
1 1 1
w2 2y + 1 20| a oy < ep” 2 |u — un| L2(p),

which follows from our assumption on the regularity pickup index. O

Exercises

Exercise 62.1 (Pressure gradient). Assume (62.14). Prove an inf-sup condition similar to
(62.14) using the norm ||('Uh,qh)|\?/h+ = |[(on, an) I3, + Xrer, v PN Vanll Tz k- (Hint: use an

inverse inequality.)

Exercise 62.2 (Inf-sup partner). The objective of this exercise is to reprove the inf-sup con-
dition (62.14) by identifying an inf-sup partner for all (vy,gn) € Y}, as suggested in Remark 25.10.
(i) Prove that there is p € (0,1) s.t. ta((va,qn), (1 = p)vn + pwn, (1 = p)gn)) > 1ll(vn, qn)ll3,
with wy, = I}, (w,,) and wy, defined in (62.16). (Hint: use (62.15) and the bounds on Ty, T3
from the proof of Lemma 62.3.) (ii) Show that the inf-sup condition (62.14) is satisfied with a
constant vy depending on p, Sp, 0, and the constant ¢,, introduced in (62.18), i.e., ||(wp,0)|y, <

cwu% |wg, |1 (py- (Hint: identify an appropriate inf-sup partner for (vp, gn) and use Remark 25.10.)

Exercise 62.3 (Approximation). Let |-|s be the GaLS stabilization seminorm, i.e., |-|% = |-|4. +

|1%p 4 ||%n- Let (n,¢) € (H*(D)xH"(D))NY be s.t. r(n,{)jop,m = 0. (i) Prove that |(n,()|s <

ch(p? [n|m2(p) + 172 |¢ (). (i) Prove that |(n — Zjiy(n),¢ = ZR(Q)|s < ch(p?[n|een) +
1 . ees .

12|l (py)- (Hint: use (62.24).) (iii) Estimate |(Z}4(n),Z}, (C))|s-

Exercise 62.4 (Inf-sup condition on t;). Assume that D = dDgq so that Vg := H}(D).
Reprove (62.14) by accepting as a fact (see Exercise 63.2) that there is Sy > 0 s.t. for all h € H
and all g, € Qp,

|b(wh7 Qh)|

_1
Bor 2lqnllz2py < sup  —————— + |qulser + |qn|sp,
Wi €Vha /L2|wh|H1(D)

3
with |gn|3e = ZFG}_’? hf”[[vhqh]]-nFH%Q(F) for all g, € Qn. (Hint: use that b(wp,qn) =
th((vn, qn), (wp,0)) — a(vp, wp) — sp((vn, qn), (wp,0)) for all v, € Viq, and prove that |qh|25gp <
c((vn, qn) % + plvnl3 py)-)



Chapter 63

Stokes equations: Other
stabilizations

We continue in this chapter the study of stabilization techniques to approximate the Stokes prob-
lem (62.1) with finite element pairs that do not satisfy the inf-sup condition (53.15). We now focus
our attention on the continuous interior penalty and the discontinuous Galerkin methods.

63.1 Continuous interior penalty

In this section, we take inspiration from Chapter 58 and construct a stable approximation of the
Stokes problem (62.1) by replacing the control on the residual Vj-r(up,pp) — f, as done in the
GaLS method studied in Chapter 62, by a control on the fluctuations of the discrete pressure.
There are many ways to do that, but for the sake of brevity, we focus on a generalization of the
continuous interior penalty (CIP) method presented in §58.3.

63.1.1 Discrete setting

Let (7n)nen be a shape-regular mesh sequence so that each mesh covers D exactly. In order to
simplify some proofs, we assume that the mesh sequence is quasi-uniform (otherwise one can use
mesh-dependent weights as in §58.3). We are going to enforce weakly the Dirichlet condition on
the velocity by means of Nitsche’s boundary penalty method as in Chapter 37. (It is also possible
to enforce strongly the velocity Dirichlet condition, but this entails distracting technicalities; see
Burman and Schieweck [69]).

Let Vj, C H'(D) be the discrete velocity space, i.e., the velocity approximation is H!-
conforming, but the Dirichlet condition on the velocity is not strongly enforced in V}, (i.e., V}, is not
a subspace of the velocity space Vg). Although this is not a theoretical requirement, the pressure
approximation is assumed to be H!-conforming to simplify the argumentation, i.e., Q, C H*(D).
It is possible to consider discontinuous pressures by using the techniques presented in §63.2; see
also Remark 63.5 below. The examples we have in mind are

Vh = Pkgu (771)7 ku 2 17 Qh = P]Cgp(%)a kp 2 1 (631)

Let us set Y}, := Vi xQp. If 0D = 0Dy, it is implicitly understood that the discrete pressure space
incorporates the zero mean-value condition. To simplify the notation, this condition is not stated
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explicitly (see Remark 62.1). Since the Dirichlet condition on the velocity is enforced weakly, the
discrete counterpart of the bilinear form « is the bilinear form ap : V4 xV;, — R s.t.

ap(vp, wr) = a(vy, wy) — np(Ve, wp) — np (W, V1), (63.2)

with np(vp, wy) = faDd 2u(e(vp)n)-wp ds. The bilinear form b is modified accordingly, i.e., we
introduce the bilinear form by, : Vi, x Qn — R s.t.

bn(vp, qr) == —/D(V-vh)qh d:E—l—/aD (vp-m)ry, ds. (63.3)

In the CIP approximation, the stabilizing bilinear form sp : Y, xY, — R is supported on F},
and takes the form sj, := s} + s7” + s. The bilinear forms s} and s7” penalize the velocity values
at the Dirichlet boundary faces and the jumps of the normal derivative of the pressure across the
mesh interfaces, respectively:

2
SE(’Uh,’wh) = Z wuh—u(vh,wh)Lz(F), (63.4&)
FeFd o
h3
S}glp(qh,,,,h) = Z wgpﬁ([[th]]-nF, [[VTh]]-’nF)Lz(F), (634b)
FeFyp

where @w", we? are nondimensional constants, w" must be taken large enough (as usual with
boundary penalty methods; see Lemma 63.2), and @w®P is of order 1. The bilinear form s} is meant
to enforce the Neumann condition and is defined in (62.10c) (s} := 0 whenever 9D4 = 9D). The
CIP-stabilized bilinear form tj : Y, XY, — R is defined as

th((vn, qn), (Wi, 7h)) = an(vn, wi) + bp(wh, gn) — b (vh, 1)
+ sp (vn, wr) + s¥°(qn, ) + 55 ((Vn, qn), (Wh, Th))- (63.5)

The CIP approximation of the problem (62.5) takes the form

{ Find (wp,prn) € Yy, such that (63.6)

th((wn,pn), (Wh,rn)) = bh(wn, ),  Y(wh,rh) € Ya,

with the linear form £y, (wp, ) = €(wp, qpn) == fD frwpdx + fD gry dz. Notice that £}, does not
depend on the stabilization since the Dirichlet boundary condition on the velocity is homogeneous.
To sum up, we are using LS penalties on the velocity at the Dirichlet faces, on the jumps of the
normal component of the pressure gradient across the interfaces, and on the normal force at the
Neumann faces.

Remark 63.1 (Literature). The present technique has been introduced in Burman and Hansbo
[68], Burman et al. [72]. All the stabilization techniques presented in Chapters 58-59 can be
adapted to the stabilization of the Stokes problem. Without being exhaustive, we refer the reader
to Kechkar and Silvester [204], Silvester [260], Becker and Braack [28], Codina [90], Dohrmann
and Bochev [108], Bochev et al. [35], Matthies et al. [226], Braack et al. [42], and the references
therein. O
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63.1.2 Stability and well-posedness

In order to establish the well-posedness of the discrete problem, we introduce the following norms
on Vh, Qh; and th

lonll;, == 2ulle(vn)llfz(p) + [valEe, (63.7a)
lanll, =1 llanlZzpy + lgnlZe, (63.7b)
[(on, an) 1%, = llonlly, + llanlly, + (v an)|En, (63.7¢)
. n 1 .
with |va3e = Yperg relllvnlllzeey [(Onsan)lss = (s*((vn,an), (vn.an)))?, and |gnlfe =

s¥2(qn, qn) (we do not include the factor @" in |-|gu to mimick the analysis of Nitsche’s method
for elliptic PDEs as in §37.2). Notice that ||-||y; defines a norm on V4. Indeed, if ||e(vs)||L2(py =
|vp|se = 0, vy, is a global rigid motion vanishing on 9Dy so that v, = 0. (One can also invoke a
discrete Korn’s inequality; see Duarte et al. [111], Brenner [49].)

Our first step in the stability analysis is to establish coercivity for aj 4 sj, on Vj,. Recall that
7;1317 is the collection of the mesh cells having at least one boundary face. Let ng be the maximum
number of boundary faces that a mesh cell in TP can have (ny < d for simplicial meshes). Let

cas be the constant so that the inverse inequality ||e(vn)n||p2(r) < cdth;% lle(vn)|lL2(k,) holds true
for all vy, € Vj, all F:=0K;NoD € ]—',?, and all h € H.

Lemma 63.2 (Coercivity of aj + s}!). Assume that @" > noc3,. Then setting o := ml;ig’u‘ﬁt >
0, we have
ap(vp,vp) + sy (vp, vy) > O‘thH%/ha Vv, € Vj. (63.8)

Proof. See Exercise 63.1. O

Lemma 63.3 (Stability, well-posedness). Lett), be defined in (63.5) with the stabilizing bilinear
forms s} defined in (62.10c) and s}!, s} defined in (63.4). Assume that @" > nac3,. (i) There is
Yo > 0 such that

[tn((vn, qn), (wn, 1))

inf sup > v > 0, (63.9)
Wn0) €Y (wpyrn)evy | (0n an) |y, [ (wh, )y,

for all h € H and all > 0. (ii) The discrete problem (63.6) is well-posed.

Proof. We only need to prove (63.9) since the well-posedness of (63.6) then follows directly. Let

[th (Vr,qn),(Wh,Tw))|

(Vn,qn) € Yn and S := Sup 4, 1 )evy T o) We want to show that yo|[(vn, qn)lly, <S

for all h € H and all g > 0. The proof is similar to that of Lemma 62.3. Since o < 1, Lemma 63.2
implies that

a(llvally, + lanlgee + [(vn, an)[E) < Sll(vn, an)llvi.- (63.10)

It remains to bound 1~z [|gp, | L2(py- In contrast with the analysis of the GaLS stabilization, we pro-

ceed here in two steps: we first gain control on =2 h|| Vg, l|z2(p)y and then we control 12 ||gn 2Dy
(1) Let us first observe that the definition (63.5) of ¢ implies that

br(wh, qn) = th((vn, qn), (wn,0)) — an(vn, wn)
- S;]z(’vhv wh) - Srﬁ(('vha Qh)v (whv O))?

for all wy, € V3. Owing to the boundedness of a;, (which follows by invoking a discrete trace inequal-
ity to bound ny), the fact that the stabilizing bilinear forms are symmetric positive semidefinite,
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and the bound (63.10), we infer that

bn(wh, qn)| < ¢ (S+ [Jvnllvi, + [(vn, qn)|s=) | (wn, 0) ||y,

1
< ¢ (S+8%(on an)lI3, )1, )]y, (63.11)
Let us consider wy, := p~'h2T75™ (Vqy), where J5* is the H'-conforming averaging operator

from §22.2. Using inverse and discrete trace inequalities and the L2-stability of 72" shows that

1, _1
I(wn, 0)ly;, + 2™ Hlwhll L2y < cn™ 21| Van] 2 ().
Since the discrete pressures are H'-conforming, integrating by parts gives
p R IVanll 2y = 1 R (Van = T (Van), Van) L2 (o) + bu(wh, gn)

+ Z (gnm, wn)L2(F)-
FeFy

Notice that the contribution of the Dirichlet boundary faces is contained in the discrete bilinear
form by. Let T1,%o, T3 denote the three terms on the right-hand side. The crucial point is that
Lemma 22.3 allows us to infer that

_1 1 L1
1%1] < clanlseop™ 2| VanllL2(py < ¢ S2|[(wn, an)ll3, 11~ 2 hIVanl L2 (D),

where we used (63.10) in the second bound. Using (63.11) and the above bound on ||(wp, 0)]]y,
yields
1
[Tl < e (S+ 8 (on,an)[5, )i 21l Van 2oy
Moreover, the Cauchy—-Schwarz inequality and a discrete trace inequality imply that

_ 21
|¢3|Sc( S 1h|qhn|iz<F>) W wll e o,
FEFp

Since |lgnn||L2(py < ||r(vn, gn)n|| L2 7y +2plle(vi)n| L2 (), recalling the definition of the seminorm
|-|s» and using a discrete trace inequality to bound ||e(vn)n|/L2(r), we infer that
1,
T3] < ¢ (lvnllvi, + [(vn, an)lsn) w20~ wn 22y
1 5 -1
< 'Sz ||(vn, qn) I3, 1~ 2 RIIVanl L2 (D) -

Putting these bounds together leads to
1
1 ER||Vanll L2y < ¢ (S+SE||(vn, an)ll3,)- (63.12)

(2) Let wg, € Va be the function introduced in (62.16), i.e., V-w,, = —p~ g, and Splwg, |g1(p) <
1 lanllL2(py with Bp > 0. Let us set wy, :=I5™ (wg, ) € Vi, where I3 is the R%-valued ver-
sion of the H'-conforming quasi-interpolation operator Z;"*" from §22.3. Notice that we have
[(wp, 0)]|y,, < C/L*%thHLz(D). Since V-w,, = —p 'q, and the discrete pressures are H'-
conforming, integrating by parts gives

1 anll2epy = (Van, wg, — wn)L2(p) + bu(wn, an)

+ Z (gnm, wn — wg, )L2(r) = T1 + T2 + Ts.
FeFy
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Invoking the bounds (63.12) and u%|wqh|H1(D) < cu_%thHLz(D), the approximation properties
of Zp*, and the Cauchy—Schwarz inequality yields

_1 1. _
T4 < p 2 h||VanllLepyp2 b~ Hwg, — whlL2(p)

1
< (S + S| (vn an)l1Z, ) Ellanll 2oy

Using (63.11) and that ||(wn,0)|ly, < cu™2|lanl|z2(p). we obtain

1
Ta| < e (S +S|(vn, an)lIZ, )1 % lanll 22y

Since the term %3 is bounded as above, this leads to

1 1 1
# 2 lanllr2py < ¢ (S+ 82| (v, an)lls,)-
We can now conclude as in the proof of Lemma 62.3. O

Remark 63.4 (Inf-sup condition on b). Assume that 9D = 9D4. One can show that there is
Bo > 0 s.t.

~2 b(wn, qn
Bon*lanllL2(py < sup [b(wn, an)|

+ |gn|ser, (63.13)
v €S th”Vh,

for all g, € Qp, all h € H, and all p > 0; see Exercise 63.2. [l

Remark 63.5 (Discontinuous pressures). Although all the arguments presented in this section
are legitimate when the pressure approximation is discontinuous, say Qp = P,E’p (Th), kp > 0, the
stabilization bilinear form s§* is not necessary in this case. Indeed, as it will be explained for the
dG formulation in §63.2, stability is then obtained by penalizing the pressure jumps across the
interfaces. The lowest-order case corresponds to the (P1, P5) pair with pressure jump stabilization.
This finite element pair is investigated in Barrenechea and Valentin [24], where a divergence-free
post-processing of the discrete velocity field using the lowest-order Raviart—Thomas shape functions

is also proposed. [l

63.1.3 Error analysis

The error analysis proceeds almost exactly as for the GaLS method. The slight difference is that
now we assume that the solution to (62.5) is in

Y= (HY"(D)xHY" (D) Y, r> % (63.14)

and we set as above Y} = Ys + Y};,. Compared to GaLsS, the smoothness requirement on the
pressure is stronger here since we need to consider the normal trace of the gradient of the pressure
at the mesh interfaces. The smoothness requirement on the velocity is instead weaker since we do
not need to penalize the residual in the cells. We denote by |[|-||y, the natural extension to Yj of
the norm |||y, defined in (63.7¢) (one readily verifies that this extension indeed defines a norm).
We denote by t; the natural extension to Y;xY} of the bilinear form ¢, defined in (63.5). These
extensions are meaningful since r > %

Theorem 63.6 (Error estimate). Let (u,p) solve (62.5) and assume that (u,p) € Ys with Y
defined in (63.14). Let (up,prn) € Yy solve (63.6) with the stabilizing bilinear forms s} defined
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in (62.10c) and s}, st¥ defined in (63.4). Assume that @" > ngc3,. (i) There is ¢ such that for all
heH and all p >0,

[(w—=wnp—pn)lly, <c inf [l(u—vnp—an)ly, (63.15)
(Vn,qn)€EYn

(ii) Assuming that k, > 1 and recalling that k,, > 1, the following holds true for all T € (%, ky] and
all 7' € (3,ky + 1]

’ 1
. hQT 2
lw=wnp =l < e X wlulipe i+ Eolplg) - (6310
KeTy,

Proof. (i) The error estimate (63.15) follows from Lemma 62.4 and Lemma 63.3 once the Galerkin
orthogonality property is established. To prove the Galerkin orthogonality property (62.19), we
first extend the bilinear forms to Y;xY}, (we use a subscript 4 to denote these extensions). Let
(wp,m4) € Yy, We have s} (u, wy) = 0 owing to the Dirichlet boundary condition on w, s§°(p,74) =
0 owing to the assumed regularity on p (indeed p € H™ (D) with 7/ > 3 implies that [Vp]r = 0
for all F' € F), and s} ((u, p), (wp,7s)) = 0 owing to the Neumann boundary condition on r(u, p).
We obtain

ts((w,p), (wn, 1)) = a(w, wy) — ng(w, wy) + by(wp, p) — bg(u, 7).
We have

ag(u, wp) — ng(u, wy) = /D 2ue(u):e(wy) dr — /8D 2p(e(u)n)wy, ds,

bownp) = = [ (Vwpds+ [ (wympas.

Putting these two expressions together, integrating by parts, and using the Neumann condition
satisfied by r(u,p), we infer that

a(ua wh) - Tlﬁ(u, wh) + bﬁ(whvp) = (V'H‘(U,p),wh)L2(D) = (fa wh)LQ(D)'

Since by(w,7n) = —(9,7n)12(D), we infer that t((u,p), (wn,74)) = n(wn,7s), ie., the Galerkin
orthogonality property holds true. Invoking Lemma 62.4 and Lemma 63.3 proves the error esti-
mate (63.15).

(ii) The estimate (63.16) follows from (63.15) by bounding the infimum using v, = I3 (u),
qn :=Z;* (p), and using the approximation properties of these quasi-interpolation operators. [

63.2 Discontinuous Galerkin

We finish our overview of stabilization methods for the Stokes problem with the discontinuous
Galerkin (dG) method.

63.2.1 Discrete setting

Let (Th)newn be a shape-regular mesh sequence as in §62.2. We consider the broken finite element
spaces

Vi = PP (Th), Qn = P;?p (Tn), Y = Vi xQn, (63.17)
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where k, > 1, k, > 0, and k, > k,. We consider the usual average and jump operators at the
mesh interfaces and extend these operators in such a way that they return the actual value of their
argument at the boundary faces.

The dG counterpart of the bilinear form a is the bilinear form ay : V,xV;, — R s.t.

ah(vh, wh) = (sh(vh), @h(wh))L2(D) — nh(vh, wh) — nh(wh, ’l}h), (6318&)
na(on,wi) == Y ({sn(vn)}ne, [wi])z2(r), (63.18D)
FeFpurd

where s, (vp,) := 2ue, (vy) and e, (vp,) denotes the broken (linearized) strain tensor s.t. e, (vp,) ==
2(Vavp + (Vaor)T) and Vj, is the broken gradient operator (see Definition 36.3). The dG coun-
terpart of the bilinear form b is the bilinear form by, : Vi xQp — R s.t.

bu(vn, qn) == —(Vavn, qn)L2(p) + Z ([vr]- e, {an}) L2(ry (63.19)
FeFpurd

where Vj,- denotes the broken divergence operator. We also introduce the stabilization bilinear
form

shnw) = Y @l forDzecr, (63.20)

FeFpurd

where @w" is a nondimensional constant to be chosen large enough (see Lemma 63.9 below). The
dG-stabilized bilinear form t;, : Y3, xY;, — R is defined as

th((Vn, qn), (W, 74)) = an(vn, wi) + bp(Wh, qn) — bp(vh, 74)
+ 8" (vp, wr) + sh (qn,rn) + sh((Vh, qn), (Wi, 1)), (63.21)

with s} defined in (63.20) and s}, sj defined in (62.10). To sum up, we introduce a LS penalty
on the jumps of the velocity and the pressure across the interfaces, on the velocity values at the
Dirichlet faces, and on the normal force at the Neumann faces. The dG approximation of (62.5) is

{ Find (up,pp) € Yy such that (63.22)

tn((un, pn), (W, mh)) = €n(wh,a),  V(wn, ) € Ya,
with the linear form £y, (wp, ) := €(wp,r1) = [, fwnde + [, gry da.

Remark 63.7 (Numerical fluxes). Similarly to §38.4, define the lifting operator L} : L2(F) —
PP(Th; R¥4) such that

(L% (v), an)rz(py = (v, {an}nr)L2(r),

for all v € L3(F), all q;, € PP(Tp; RY?), and all F € Fj, with [ € {k, — 1, k,} (the choice for [ is
discussed in Remark 38.18). Define the global lifting

nhe
Li(wn,pn) = Y Li(fua]) + Y @"=Li(ra(un, pr)n).
FEJ:;;U]:,? Ferp K
Let rp(up,pr) = —2uep(up) + ppll and define the discrete total stress tensor (compare with

(38.23)):
T, (wn, pn) 1= v (wn, pp) + 20l (wn, pr).
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Define the momentum fluxes

2 if e FpuFy
B (wn, pn) {{rh(uh’ph)}"l”whpﬂwﬂ HFeFL UL,

0 if e Fp,
and the mass fluxes

{up}-np + wphTF[[ph]] it F e Fg,
(I)I;-.(uh,ph) =<0 if FFe ]:,(Li,
up-n + w“hTFnTrh(uh,ph)n if I e F}.
Let ex,r :=ngnp for all K € T, and all F' € Fg, where Fg is the collection of the mesh faces
composing the boundary of K. One can verify (see Exercise 63.5) that the discrete problem (63.22)
is equivalent to enforcing the following local momentum and mass balance equations: For all
£ €Py, and all ¢ € Py,

— (T}, (wn, pn), ©(€))r2(x) + Z ex, 7 (®p(un,pn), &) r2(r) = (F,€)L2(x0),
FeFk

— (wn, V) L2 (k) + Z ek, F(Ph(un, pr), Q) r2(ry = (9, Q) 22(K)- O
FeFk

Remark 63.8 (Literature). The material in this section is adapted from Cockburn et al. [89),
Di Pietro and Ern [105, §6.1]. The bilinear form s} penalizing the pressure jumps across the mesh
interfaces can be seen as a drawback since the discrete pressure enters the discrete mass conservation
equation and introduces a tighter coupling between the equations which can be cumbersome.
Pressure jump stabilization can be avoided if the discrete pressure space is, loosely speaking,
small enough compared to the discrete velocity space. We refer the reader to Hansbo and Larson
[177], Toselli [278], Girault et al. [135], Burman and Stamm [71] for examples. O

63.2.2 Stability and well-posedness

To establish the well-posedness of the discrete problem, we introduce the following norms on V,,
Qh; and Yh:

lonll%, = 2pllen(wn)llE>(p) + [vnldu, (63.23a)
lanllgy, =1~ Nanll 22 (o) + lanl3e, (63.23b)
(v, an) 1%, = lonlls, + lanllgy, + [(vn, an)lEn, (63.23¢)
with |vp |3, = ZFG}-}?UJ;}? %%”[[vh]]”i%lf) and |gn|se, |(vn,qn)|s» defined as above (we do not

include the factor @w" in |-|gu to mimick the elliptic case). As for CIP, one readily verifies that
I|lv;, defines a norm on V}, (one can also invoke a discrete Korn’s inequality; see Duarte et al.
[111], Brenner [49]).

Our first step in the stability analysis is to establish coercivity for aj + sj on Vj,. Let ng be
the maximal number of faces per mesh cell (ng < d + 1 for simplicial meshes). Let cq; be the

smallest constant so that the inverse inequality ||e(vp)n|z2m) < cdth;% le(vn)||L2(x) holds true
forall v, € V,, all K € Ty, all F' € Fg, and all h € H.

u 2
Lemma 63.9 (Coercivity of aj, + s}}). Assume that @w" > nacj,. Let a = Z525744 > 0. Then

ah(vh,vh) —+ SE('U}I,'U}I) > Oz”'UhH%/h fOT all vy, € V.
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Proof. Proceed as in the proof of Lemma 38.5 and Lemma 38.6. O

Lemma 63.10 (Stability, well-posedness). Assume that the stabilizing bilinear forms sy, sp
are defined in (62.10) and s} is defined in (63.20). Assume that @" > ngc3,. (i) There is vo > 0

such that

t
inf sup [t (0, an), (wn, 74))] > >0, (63.24)

@na) €Y (wprm)evy | (0n an) |y, [ (wh, )y,

for all h € H and all ;x> 0. (ii) The discrete problem (63.22) is well-posed.

Proof. We only need to prove (63.24) since the well-posedness of (63.22) then follows directly. Let
(Vh,qn) € Y, and S := sup y,, ey, Ith((ﬂv(’“ih)’}(;ﬁ:‘/’”))l. Once again the proof is similar to that of
,sTh , wp,ThH n

Lemma 62.3. Recalling that o < 1, Lemma 63.9 implies that

a([lvnlly, + lanlzs + [(vn, an)|En) < th((vn, qn), (O, qn)) < Sll(vn, n)llv;,»

so that it remains to bound u’%thH%Q(D). Let w,, € Vg satisfy (62.16) and let wy, := I} (wy, )
be the L?-orthogonal projection of wg, onto V. Since ||v — I} (v)| r2x) + hilZ}(v)| (k) <
chi|v|mi (k) for all K € Ty, and all v € H'(K), we infer that
1 1
[(wn, 0)l;, < cllwnllv, < ¢ w2 |wg, | (p) < " 12 |lanllL2(p), (63.25)

where we used a discrete trace inequality to bound |(wp,0)|s». Furthermore, since = 1||gy, ||%2(D) =
—(qn, V-wqh)Lz(D), integrating by parts and since w,, vanishes on D4, we obtain

lleQhH%%D) = (Vhan wq, )L2(p) — Z (lan]nr, wq, ) 2r)
FEFQUFD

= (Vnan, wn) L2 (p) — Z ([an]nr, wy, ) L2(r)
FEFRUFD

=bn(wn,qn) + > (lanlne, {wn — wg, }) o), (63.26)
FEFoUFD

where (Viqn, wq, —wn)r2(py = 0 follows from Vyq;, € Vj, (since ky, > k) and where we used the
identity

brn(vn, an) = (Vn, Vaqn)L2(p) — Z {vn}nr, lgn]) L2ry (63.27)
FE]:;;U]:;L‘

for all (vp,qn) € Vi, x Qn; see Exercise 63.4 for the proof. Using that
bn(wh, qn) = ta((Vn, qn), (wn,0)) — an(vn, wn) = sj(vn, wn) = s}, ((vVh, qn), (wn, 0)),  (63.28)
for all vy, € V}, we have
1 gl 22y = th((vns an)s (wh, 0)) = an(vn, ws) = s (v, wp)

+ Y (lanlmr, {wn — wy, })L2e) — 53 ((vn, qn), (wn, 0)).
FeFpury

Let T1,%9, T3, Ty, Ts denote the five terms on the right-hand side. We have

[F1] < Sll(wn, 0)lly;, < ¢Sp™ 2 llanll2(p),

_1
T2 + T3] < cllonllvi wrllvi, < ¢ Nlonllvi ™2 llgnllL2 (o),
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where we used a discrete trace inequality to bound the contributions of nj to aj, and the bound
(63.25) on wy,. Moreover, distinguishing the contribution of the interfaces and of the Neumann
boundary faces, we write T, := T35 + T} with obvious notation. The Cauchy-Schwarz inequality

1
along with the estimate ||wy, — wg, ||z2(r) < ch|wg, |H1(7) implies that

_1
T3] < clanlsellwnllvi, < ¢ lanlsep 2HQh||L2(D)7

whereas for the Neumann faces, we obtain

T = Y (x(vn, qu)n, wi — wy, ) r2r) + ($(00)1, Wi — Wy, ) L2 (k)
FeFp

so that |4 < ¢(|(vn, anls= + |[vnllvi )2 |gnll2(py- Since s is symmetric positive definite, we
have |Ts| < |(vh, qn)| s |(wp,0)|gn, and using (63.25) we infer that

1Ts5| < cp™(vn, qn)lsnllall L2 (p)-

Putting everything together, we infer that || (vn,qn)3, < ¢(S* 4 S|[(va, qn)lly, ), and we conclude
by invoking Young’s inequality. [l

Remark 63.11 (Inf-sup condition on by). Assume that 0D = dDg. One can show that there
is Bp > 0 s.t. for all g, € Qy,, all h € H, and all p > 0,

—2 br(vn, qn
Bou Hianllzaoy < sup 220l

+ lan|sv, (63.29)
v, EV)Y th”Vh

see Exercise 63.6. An alternative proof of (63.24) using the inf-sup condition (63.29) is also given
in Exercise 63.6. g

63.2.3 Error analysis

The error analysis proceeds as for the CIP method. We assume for that the solution to (62.5) is in
the space Ys defined in (63.14), and we set Y; := Y5 +Y},. We denote by [|-||y, the natural extension
of the norm ||-||y; defined in (63.23c) to Y} (one readily verifies that this extension indeed defines a
norm). We denote by ¢4 the natural extension of the bilinear form ¢;, defined in (63.21) to Y3 xY3.
These extensions are meaningful since r > %

Theorem 63.12 (Error estimate). Let (u,p) solve (62.5) and assume that (u,p) € Ys with Y
defined in (63.14). Let (up,pp) € Y3, solve (62.11) with the stabilizing bilinear forms sy, sh defined
in (62.10) and s} defined in (63.20). Assume that @" > napc3,. (i) There is ¢ such that for all
heH and all p >0,

[(w—wn,p—pn)lly, <c inf |[(u—v4p—an)lly,- (63.30)
(Vr,qn)€EYn

(i) The following holds true for all T € (3, min(ky, ky + 1)]:

1
T 1 T 2
[(w —wn,p—pn)lly, <c ( Z Mh%( |“|§11+T(K) + ;h%( |p|%IT(K)> . (63.31)
K€7-h

Proof. (i) The error estimate (63.30) follows from Lemma 62.4. Note in particular that to estab-
lish the Galerkin orthogonality property, we reason as in the proof of Lemma 38.2 to show that
(f,wn)r2(py = (V-(r(u,p)), wn)r2(py = an(w, wr) — np(w, wp) + by (wp, p) (see Exercise 63.3).

(ii) The estimate (63.31) follows from (63.30) by using vy, := I} (u), g5 := ZP(p) in the infima, and
by invoking the approximation properties of the L2-orthogonal projections. O
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Exercises

Exercise 63.1 (Coercivity, CIP). Prove Lemma 63.2. (Hint: see the proofs of Lemma 37.2
and Lemma 37.3.)

Exercise 63.2 (Inf-sup condition on b, CIP). Prove the inf-sup condition (63.13) on b. Here,
we do not assume that Qj, is H'-conforming, that is, the pressure space is either Pkgp (Th) or P,Ep (Th)-

(Hint: use the identities for u~"h?||Vaqn||2(p) and 1~ ||qnl|7 2 py from the proof of Lemma 63.3.)

Exercise 63.3 (Galerkin orthogonality, dG). Prove the Galerkin orthogonality for the stabi-
lized dG formulation from §63.2, i.e., t((u,p), (wn, 1)) = lp(wp, 1) for all (wp, ry) € Y.

Exercise 63.4 (Integration by parts for b,, dG). Let by be defined in (63.19). Prove the
identity (63.27). (Hint: [ab] = {a}[b] + [a]{b} at all the interfaces.)

Exercise 63.5 (dG fluxes). Derive local formulations of the discrete problem using the fluxes
from Remark 63.7. (Hint: proceed as in §38.4.)

Exercise 63.6 (Inf-sup conditions, dG). Assume that 0D = 9dDq4. (i) Prove the inf-sup
condition (63.29) on by. (Hint: use (63.26).) (ii) Using the inf-sup condition on by, prove again
the inf-sup condition on ¢5,. (Hint: use the identity (63.28).)
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Chapter 64

Bochner integration

In Part XIII, composed of Chapters 64 to 71, we start the study of time-dependent PDEs. We focus
on parabolic equations where the differential operator in space enjoys a coercivity property. We
introduce suitable functional spaces for the weak formulation, and we establish its well-posedness
by invoking either coercivity arguments or inf-sup conditions. Then we address the discretization
in space and in time. We investigate the method of lines where the space discretization is done
first. This leads to a finite system of ordinary differential equations which is then discretized by
using some time-stepping technique. Prototypical examples include the Euler schemes (implicit
or explicit), second-order schemes such as BDF2 and Crank—Nicolson, and higher-order schemes
based on a space-time weak formulation leading to discontinuous Galerkin and continuous Petrov—
Galerkin approximations, which are also called implicit Runge-Kutta (IRK) in the literature.

The goal of this chapter is to introduce a mathematical setting to formulate parabolic problems
in some weak form. The viewpoint we are going to develop is to consider functions defined on a
bounded time interval, say J, with values in some Banach (or Hilbert) space composed of functions
defined on the space domain, say D. The key notions we develop in this chapter are the Bochner
integral and the weak time derivative of functions that are Bochner integrable.

64.1 Bochner integral

We give in this section a brief overview of the Bochner integral theory. This theory is useful to
deal with time-dependent functions with values in Banach spaces. Let J be a nonempty, bounded,
open set in R. Let V' be a Banach space (real or complex). The main example we have in mind
is J :=(0,T), T >0, and V is composed of functions defined on some Lipschitz domain D in R?.
The material is adapted from Kufner et al. [207, §2.19].

64.1.1 Strong measurability and Bochner integrability

Definition 64.1 (Simple functions). We say that f : J — V is a simple function if there exist
m € N, a finite collection of vectors {vy}req1:m} in V, and disjoint (Lebesque) measurable subsets
{Aktke(i:my in J; such that f(t) = 3 ycq1.my vila,(t) for all t € J. The Bochner integral of a
simple function is defined by

/Jf(t)dt:: S Al eV, (64.1)

ke{l:m}
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Lemma 64.2 (Bound on Bochner integral). We have || [, f(t)dt|v < [, ||f(t)|vdt for every
simple function f.

Proof. (64.1) and the triangle inequality in V' imply that || [, f(t)dt|ly < > keqr:my vellv]Ak| =
Skertimy Sy lokllvLa (t)dt = [, [If(¢)[[vdt, where the last equality results from the identity
[f®llv = Xkeqi:my lvellvLa,(t) which is a consequence of the sets {Ap}tre(i.my being dis-
joint. O

Definition 64.3 (Strong measurability). We say that f : J — V is strongly measurable if
there is a countable sequence of simple functions (fn)nen such that lim, o ||f(t) — fn(®)|lv =0
for a.e. t in J. Thus, a strongly measurable function is the limit (in the norm of V) of simple
functions for a.e. t € J.

Let V' be the dual space of V. Recall that in the complex case, V' is composed of antilinear
forms (see Definition A.11).

Theorem 64.4 (Pettis). A function f : J — V is strongly measurable if and only if it satisfies
the following two properties:

(i) f is weakly measurable: the function (V', v,y = J >t — W, f{t)v v € R (or C) is
Lebesgue measurable for all v’ € V.

(i) f is almost separably valued: There exists E C J of zero measure s.t. f(J\E) is separable
(i.e., f(J\E) contains a countable dense subset).

Proof. See Pettis measurability theorem in Diestel [107, Chap. IV, p. 25]. See also Showalter [257,
Thm. 1.1, Chap. III]. O

Example 64.5 (V = L*°(0,1)). Let J := (0,1) and f : J — V := L*°(D) with D := (0,1) be
defined by f(t) := Loy for all t € J, ie., f(t)(z) := 1 if z € (0,t) and f(¢)(z) := 0 otherwise.
Then f is not almost separably valued. Let indeed E' C J be a subset of zero measure and F be a
countable subset of J\E. Notice that |[FUF| = 0 so that |J\(EFUF)| = 1. Hence, J\(FUF) is not
empty. Let t € J\(FUF) C J\E. For all s € I, we have |f(t) — f(5)| = Limin(s,t),max(s,t))- Since s
cannot be equal to ¢, we have |(min(s, ), max(s,t))| > 0. This implies that || f(t) — f(s)||L>~p) = 1,
so that there cannot exist any sequence (s, )nen in F' so that || f(¢) — f(sn)| £ (p) converges to 0.
Hence, f(F) cannot be dense in f(J\F). In conclusion, f is not strongly measurable. O

Example 64.6 (V = L?(0,1)). Let J := (0,1) and g : J — V := L*(D) with D := (0,1) be
defined by g(t) := I for all t € J. Observe first that g is almost separably valued since L?(D)
is separable. Identifying (L?(D))" with L?(D), we also have (w, g(t)) 12y 2 = (w,9(t))r2(p) =
Jpw(@)g(t)(z)de = fot w(z) dz for every w € (L*(D)) = L*(D). The function J 3 t ~ fg w(z) dz
is measurable since it is continuous. Hence, g is weakly measurable. In conclusion, g is strongly
measurable. O

Lemma 64.7 (Measurability of norm). Let f: J — V be strongly measurable. Then the map
J3t—|[f(t)]lv € R is Lebesgue measurable.

Proof. See Kufner et al. [207, Lem. 2.19.2]. O

Example 64.8 (Semi-discrete function). Let V}, C V be a finite-dimensional subspace. Let
{@i}ieq1:1y be a basis of Vj, with I := dim(V},), and let {4;};c(1.3 be functions in L'(J;R).
The function f : J — V such that f(t) := > ;cy. 7y ¥i(t)pi is strongly measurable (see Exer-
cise 64.1). Functions of this form play a central role in the semi-discretization in space of the
model problem (65.1); see Chapter 66. O
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Definition 64.9 (Bochner integrability). We say that f : J — V is Bochner integrable if there
exists a countable sequence of simple functions (fn)nen $.t. imy oo || () = fn(®)|lvy =0 for a.e. t
inJ (i.e., fis strongly measurable), and lim, o [, ||f(t) = fu(t)||vdt = 0.

Lemma 64.10 (Limit of integrals). Let f : J — V be a Bochner integrable function and
(fa)nen be a sequence of simple functions as in Definition 64.9. Then ([, fn(t)dt)nen converges
in V. Moreover, if (fn)nen and (gn)nen are two sequences with the above properties, then their
integrals have the same limit.

Proof. See Exercise 64.2. O

Definition 64.11 (Bochner integral). Let f : J — V be a Bochner integrable function. The
Bochner integral of f is defined as limy, o [ fu(t)dt (the convergence occurs in the norm of V),
where (fn)nen is any countable sequence of simple functions as in Definition 64.9.

Theorem 64.12 (Bochner). A strongly measurable function f :J — V is Bochner integrable if
and only if [, | f(t)|lvdt < oco.

Proof. See Kufner et al. [207, Thm. 2.19.8], Diestel [107, p. 26]. O

In this book, we are only going to manipulate strongly measurable functions. Theorem 64.12
then says that to verify that f is Bochner integrable, it suffices to verify that J > ¢t — || f(¢)|[v € R
is in L'(J;R).

Example 64.13 (V = L?(0,1)). Let g be the function from Example 64.6, i.e., J := (0,1),
V := L*(D) with D := (0,1), and g(t) := L4 for all ¢ € J. We have [|g(t)[|} = fol ]l?O.,t) dz = t.
Hence, [, [lg(t)||vdt = fol t2dt = 2. This shows that g is Bochner integrable. O

64.1.2 Main properties

In this section, we state some useful properties of the Bochner integral.

Corollary 64.14 (Linear map). Let VW be Banach spaces and consider a bounded linear
operator K € L(V;W). Let f:J — V be a Bochner integrable function, and define the function
K(f):J — W such that (K(f))(t) := K(f(t)) for a.e. t € J. Then K(f) is a Bochner integrable

function, and [,(K(f))(t)dt = K ([, f(t)dt).

Proof. See Kufner et al. [207, Cor. 2.19.11]. O
Example 64.15 (Linear forms). Let f : J — V be a Bochner integrable function. Let ¢ € V.
Then fj<¢7 f(t)>v/7vdt = <1/}5 fj f(t)dt>V/V O

Example 64.16 (Embedding). Let f : J — V be a Bochner integrable function. Let L be
another Banach space such that V < L. Denote by Ky _r : V — L the canonical embedding.
Then Ky ([, f(t)dt) = [, Ky (f(t))dt. This means that the L-valued and the V-valued
integrals of f can be identified, which we are going to do systematically. O

Definition 64.17 (L?(J;V)). Letp € [1,00]. We call Bochner space LP(J; V') the space composed

of the functions v : J — V that are strongly measurable and such that the following norm is finite:

S le@lnan s ifp e [1,00),
vl Loy : {es;suPteJ @l ifp o (64.2)
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One can verify that the following properties hold true: (i) || [, v(t)dt||y < [, [[v(t)[|vdt =
vl 21wy for every Bochner integrable function v : J — V; (ii) LP(J;V) < L'(J;V). See
Exercise 64.3.

Lemma 64.18 (Lebesgue’s dominated convergence). Let (f,)nen be a sequence in L'(J; V).
Assume that (fn(t))nen converges to f(t) in' V for a.e. t € J and there is g € L*(J;R) such that
lfn®llv < g(t) for a.e. t € J. Then f € LY(J; V) and (fn)nen converges to f in L1(J; V).

Proof. See Exercise 64.3. O

Theorem 64.19 (Banach space). Let V' be a Banach space. Then LP(J;V') is a Banach space
for all p € [1,00].

Proof. See Kufner et al. [207, Thm. 2.20.4]. O

,00). (i) The dual

Theorem 64.20 (Dual space). Let V be a reﬂemwe Banach space cmd pel
. (i) LP(J; V) is reflexive

space of LP(J; V) is isometrically isomorphic to LP (J; V'), - 5 + 4 o
for all p € (1, 00).

Proof. This is Theorem 3.2 in Bochner and Taylor [36]. See also Theorem 2.22.3 and the remarks
on page 125 in Kufner et al. [207]. O

Example 64.21 (LP(J;L?(D)) = LP(JxD)). Let D be a nonempty open subset of R%. Recall
that LP(D) is a Banach space for all p € [1, 00]. Using Fubini’s theorem (Theorem 1.47), one can
identify the Bochner space LP(.J; LP(D)) with the Lebesgue space LP(Jx D) for all p € [1,00). O

Example 64.22 (L9((0,1); L*(0, 1))) Let g be the function from Example 64.6, i.e., J := (0,1),

V := L?(D) with D := (0, 1) and g(t) := 1o, for all t € J. We know that g is strongly measurable
1 1

and we have | g(t)||} = fo (0, dz = t. Let g € [1,00). Then ||g||pacsv) = fo t3dt) 7= (qu_Z) )

Hence, g € L9((0,1); L?(0,1)). O

Theorem 64.23 (Density). Let V be a Banach space and p € [1,00). Then simple functions are
dense in LP(J; V).

Proof. Let f € LP(J;V). Let (fn)nen be a sequence of simple functions converging to f. For
all n € N, we set g, := fp1p,, where B, :={t € J || fa(t)lv < 2||f(#)|lv}. Note that (gn)nen
is a sequence of simple functions. This definition implies that ||g,(¢t) — f(¢)||[v — 0 for a.e. t
in J as n — oo. Moreover, sup,ey [|ga(t) = f(t)llv < supen lgn(@)llv + @)V < 3] F@)]v-
Hence (recalling that p < co), Lebesgue’s dominated convergence theorem applied to | g, — f|}-
in L'(J;R) implies that [ [|g.(t) — f(t)||},dt — 0 as n — oo, which proves the assertion. O

Remark 64.24 (Tensor products). Let LP(J) := LP(J;R) if V is a real vector space and
Lr(J) := LP(J;C) if V is a complex vector space. The vector space LP(J) @ V is by def-
inition composed of all the functions f in LP(J;V) such that there exists a finite collection
of vectors {vk}tre(1:m) in V and functions {¢x}re(1:m) in LP(J), for some m € N, such that
f) = Zke{l:m} vp¢r(t). Simple functions are members of LP(J) @ V. Hence, Theorem 64.23
implies that LP(J) @ V is dense in LP(J; V). O
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64.2 Weak time derivative

In this section, we study the important notion of weak time derivative in Bochner spaces. We also
show that pointwise values in time are meaningful for functions having an integrable weak time
derivative. These two notions are fundamental to the weak formulation of parabolic problems, as
we shall see in the next chapter. In the entire section, we take J := (0,T") with 7" > 0.

64.2.1 Strong and weak time derivatives

Definition 64.25 (Continuity). A function f : J — V is said to be continuous at t € J (in
the norm topology, or strong topology) if for every sequence (tn)nen that converges to t in J, the
sequence (f(tn))ny converges to f(t) in V, and f is said to be continuous if it is continuous at
every point in J.

We denote by C°(J; V) the space composed of the functions v : J — V that are continuous,
and we set C°(J; V) := C°(J; V) N L>°(J; V). This space, equipped with the norm vllco@vy =
sup, 7 |[v(t)|lv, is a Banach space.

Definition 64.26 (Strong time derivative). Let V be a Banach space. Let f : J — V. Assume
that f is continuous in a neighborhood of t € J. We say that f is (strongly) differentiable at t if

S+T)—f ()

the ratio converges strongly in V as T — 0. The limit is then denoted by 0;f(t) € V.

Theorem 64.27 (Lebesgue’s differentiation). Let V be a Banach space and f € L*(J; V). Let
= fot f(&)d¢ for allt € J. Then F' is strongly differentiable for a.e. t € J and O, F(t) = f(t)
for a.e. t € J.

Proof. Let t € J and 7 be small enough so that t + 7 € J. Then w t+T (&) de.
Denoting R.(t) := f(t) — HT £(&)dE, we need to establish that lim, ||RT(t)||V = 0 for a.e.
t € J. Since f is strongly measurable, we infer from Pettis theorem (Theorem 64.4) that f is almost
separably valued, i.e., there is a subset E C J of zero measure such that f(J\E) is separable. Let
{an € V| n € N} be a countable dense subset of f(J\FE). By applying Lebesgue’s differentiation
theorem to the real-valued function ||f — a,||v (see Theorem 2.1), we infer that for all n € N,
there is a subset S, of J of zero measure s.t. || f(¢) — a,|v = lim, o £ ft+T [[£(€) = an||v d€ for all

t € J\S,. Since |[|R.(t)|lv < t+T (&) = an + an — f(E)|v dE, we 1nfer that
e Rl < 2150 anllvs for ac. £ € N\
7—0

Since the above inequality holds true for all n € N and the set {a,, € V | n € N} is dense in f(J\E),
we conclude that limsup, g ||R-(t)[lv = 0 for all t € J\(E,cnSn). By the subadditivity
property of the Lebesgue measure (see page 2, Chapter 1), we have [|J,cySn| = 0. Hence,
limsup, o ||R-(t)||v = 0 for a.e. t € J. This proves the assertion. O

Corollary 64.28 (Vanishing integral in L] (J;V)). Let L _(J;V) be the space composed of
the functions from J to V that are strongly measurable and are integrable over every subset that is
compact in J. Let f € Li, (J;V) be s.t. [, f(t)p(t)dt = 0 for all ¢ € C§°(J;R). Then f =0 for
a.e. teJ.

Proof. Let 7 € J and let ¢ € (7,7). Consider a sequence of functions (¢ )nen in C§°(J;R) such
that ¢, (&) € [0,1] for all £ € J, and ¢,, — ;4 a.e. in J. Then Lebesgue’s dominated convergence
theorem in L'(.J; V) implies that 0 = limy, o0 [; ¢n(€)f(€) dE = f: f(&)d¢ for ae. t € (1,T). We
conclude that f(t) = 0 for a.e. t € (7,T) by invoking Theorem 64.27 with J := (7,T). This proves
the assertion since 7 can be arbitrarily close to 0. O
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Definition 64.29 (Weak time derivative). Let V be a Banach space. We say that the function
v e LL (J;V) has a weak time derivative if there is w € Li (J; V) such that

/ ¢ (t)v(t)dt = / o(H)w(t)dt, V¢ € C;°(J;R). (64.3)
We denote by Osv := w the weak time deriwative of v. When the context is unambiguous, we simply

say that the function v is weakly differentiable and call Owv its weak derivative.

Lemma 64.30 (Constants). Let V be a Banach space and f € L} (J;V). Assume that f is
weakly differentiable and Oy f = 0. Then there is a € V such that f(t) = a for a.e. t € J.

O

Proof. See Exercise 64.5.

Theorem 64.31 (Fundamental theorem of calculus). Let V be a Banach space, f € L'(J;V),
and g € LY(J;V). Then f is weakly differentiable with 0;f = g iff there is a € V s.t. f(t) =

a+ fotg(f) d¢ for a.e. t € J.

Proof. (1) Assume that f(t) = a + fotg(ﬁ) d¢ for a.e. t € J and let us show that g is the weak
derivative of f. Let ¢ € C§°(J;R). Fubini’s theorem gives

/¢ £)dt = lim — /M“LT o) £ dt_hm/gb t_T)dt
T—0 70
/ (1) / §) dédt = lim / / ¢(t)“*77"”(§)dtd§.
THO t—T1 J T
Since [, ¢(t) == ar = 1 [T g(1)dt - ¢(¢) uniformly with respect to € € J as T — 0,

and | [ ¢(t) Mdﬂ < H¢||Co 7 for every ¢ € J, Lebesgue’s dominated convergence theorem

in L'(J;V) implies that g(¢) [, ¢(t) ) L= ”)(g)dt — ¢(&)g(&) in LY(J;V) as 7 — 0. The above
computation shows that

/ &(1)f(B)dt = - / (gDt Yo € C(TiR).
J J

This proves that g is the weak derivative of f.
(2) Conversely, let us assume that f is weakly differentiable with 9, f = g € L*(J; V). Let us set

= fg g(§)d¢. The above argument shows that ]7 is weakly differentiable and ('“)tf =g. We
invoke Lemma 64.30 to conclude that there is a € V s.t. f(t) — f(t) = a. O

Corollary 64.32 (Strong vs. weak). Let V be a Banach space and f € L'(J;V) be weakly
differentiable, i.e., O, f € L (J; V). Then f is strongly differentiable a.e. in J, and its strong and
weak derivatives comczde

Proof. The assertion is a simple consequence of Theorem 64.31 and Lebesgue’s differentiation
theorem. (|

Proposition 64.33 (Characterization). Let V be a Banach space. Let f,g € Li (J;V). Then
I is weakly differentiable with Oyf = g if and only if the map J 3t — (', f(t))v..,v € R (or C) is
weakly differentiable for allv' € V', and 0,(v', fYv: v = (', g)v' v a.e. in J.
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Proof. Let f be weakly differentiable with ;f = g. Then — [, ¢/(t)f =[,0 t)dt for all
¢ € C3°(J;R). Using twice Corollary 64.14, we infer that

/¢ )y vdt = /(b (t)dt)yr v
/¢ t)ydt)y vy = — /¢ (W', g(t))v vdt,

for all v € V', which means that the map J > t — (v, f(t))v/ v is weakly differentiable, and
OV, v, v = (', g)V/ V. Conversely, if 8t< f)V/ v = (v, g)y, v for all v € V', then as above,

we have (v/, [, ¢/(t) dt)V/V_— fJ t)dt)y: v for all ¢ € C°(J;R) and all v’ € V.
This proves that [ ¢' — [, dt for all ¢ € C§°(J;R), ie. f is weakly differen-
tiable with 0; f = g. O

Lemma 64.34 (Linear map). Let V,W be two Banach spaces and let K € L(V;W). Then for
all weakly differentiable v in L, (J; V), K(v) is in LL (J; W) and is weakly differentiable, and we
have K (dyv) = 0y(K (v)) in L, (J; W).

Proof. See Exercise 64.6. O

64.2.2 Functional spaces with weak time derivative

Let V,W be two Banach spaces with continuous embedding V' — W and canonical injection
Kv_,w. We will often be in the situation where we have a function v € L{. (J; V) s.t. 0y (Ky_w(v)) €
Li (J; W), recalhng that KV_>W( )(t) == Kyvw(v(t)). Then as in Example 64.16, we have

Ky w(/f; ¢ (t)o( = [, ¢'(t) Kvw (v(t))dt, and we are going to abuse the notation by iden-
tifying (?t(KVHW( )) and Opv.

Definition 64.35 (X?4(J;V,W)). Let p,q € [1,00]. Let V — W be two Banach spaces with
continuous embedding. We define

XPUJV, W) = {v e LP(J; V) | 8y € LI(J; W)} (64.4)
Consider the norm ||-||xv.acrv,wy = ||llzr(rv) + LWVTlJr B ||(9t l|Lacrwy where vy =
SUp,cy ||‘| Ill\v = |Kvwllz(v,w). Notice that the two terms composing the norm ||-|| x».a(.7;v,w) are

dimensionally consistent. One readily verifies that X?:4(.J; V, W) is a Banach space when equipped
with the above norm; see Exercise 64.7.

The following density result is of fundamental importance to study the properties of the space
XP4(J;V,W). Recall that v € C°°(J; V) if v € C*(J;V) and v and all its derivatives have a
continuous extension to .J.

Theorem 64.36 (Density). C>(J;V) is dense in XP4(J;V,W).

Proof. This is Theorem 1 in Dautray and Lions [100, p. 473]. We propose here a slightly different
proof, somewhat more direct, based on a shrinking mapping in the spirit of §23.1. Let us consider

the kernel p € C*°(R;R) s.t. p(s ) = 77@7ﬁ if s € (—=1,1), and p := 0 outside (—1, 1), where the

real number 7 is chosen s.t. [ p(s)ds = fl ( Yds = 1. Let € > 0 and set o, (t;s) = 72‘5‘;%12@

forall s € (—1,1) and t € J. Notlce that 0 < (1+6) < e(tys) < (tltf) < T, so that p.(t;s) € J for
all s € (—1,1) and ¢t € J. Let w € XP9(J; V,W) and consider the function v, : J — V s.t. for all
teJ,

ve(t) ::/ p(s)u(pe(t; s)) ds.

-1



100 Chapter 64. Bochner integration

Invoking standard arguments, we infer that v. € C*°(J; V).
Let us prove that v — win LP(J; V) as e — 0. Since u(t)—v.(t) = fil p(s)(u(t)—ul(p(t; s))) ds,
we have

[u(t) = ve(®)[v < ||PHL°°(1R)/_1 [[u(t) — ulpe(t; 5))[|v ds.

(Note that [|p||~(®) = ne~'.) Minkowsky’s integral inequality implies that

1 b\
nu—mu%m»swuwm(ﬂ(/waﬁw»—umMAQ w)

SHmem{/t(AHM@Atﬁ)—u@m5&>%d&

Let Tse : LP(J; V) — LP(J; V) be defined by T (u)(t) := u(pc(t;s)) for all s € (—1,1) and ¢ € J.
We can rewrite the above bound as ||u—ve|| e (sv) < [|pll Lo (r) fil 1 Ts,e(u) —ul|Lo(s;v) ds. We are
going to show that T; ((u) — win LP(J; V) as € — 0, uniformly w.r.t. s € (—1,1). Let (up)nen be
a sequence of simple functions converging to u in LP(J; V). We have

”7;6(“) - UHLP(J;V) < ||7;€(u) - TS,E(UH)”LP(J;V) + ||7;€(Un) - unHLP(J;V)
+ |un — ull Lo (s;v)-

Making the change of variable ¢.(¢; s) — z in the first term on the right-hand side, we obtain
[T5,e(w) = ullr vy < N Tse(un) = unllLecrvy + cellun = ull oy,

with ¢ :=1+ (14 e)% Since u, is a simple function, we have lim. o || 7s,c(un) — un| £r(svy) = 0
for all s € (—1,1). We infer that

limsélp | Ts,e(w) — ullpe vy < 2[lun — ullLecrv)-
€e—

The assertion follows readily since limy, o0 [|tn — wl|Lp(s;v) = 0. (Notice that it is essential to
invoke the sequence of simple functions in the above argument.) Finally, using that O;v.(t) :=
%ﬂ f_ll p(8)0:u(pc(t; s)) ds, we can reason as above to prove that Oyv. — Owu in L(J; V') as
e — 0. O

Lemma 64.37 (Embedding). (i) X?(J;V,W) is continuously embedded in Co’lfé(j; W) if
qg > 1 and in C%J; W) if g = 1. (ii) If V,W are Hilbert spaces, XP1(J;V,W) is continuously
embedded in C°(J, |V, W]%72) (see Definition A.22 for the interpolated space [V, W11 5).

bR
Proof. See Exercise 64.8 for the proof of the first part and Lions and Magenes [220, Thm. 3.1] for
the second part. [l

Remark 64.38 (Continuous representative). Lemma 64.37(1) means that for every function
uw in XP9(J; V,W), there exists a function v € C’O’l_é(j; W) s.t. u(t) = v(t) for ae. t € J. It
is then possible to replace u by its continuous representative v. We will systematically do this
replacement in the rest of the book whenever a continuous embedding in a space of continuous
functions is invoked; see also Remark 2.27. For instance, in Theorem 64.31 the function f is
in XL1(J; LY(D), L*(D)), and denoting f¢ the continuous representative of f, we have f¢(t) =
fe(0) + fot O f(s)ds for all t € J. We will systematically abuse the notation and write f in lieu of

c. O
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Theorem 64.39 (Aubin—Lions—Simon). Let V < M < W be Banach spaces and assume that
V' is compactly embedded into M. (i) The embedding XP1(J;V,W) < LP(J; M) is compact for
all p,q € [1,00). (ii) The embedding X°*(J; V,W) < C°(J; M) is compact for all ¢ > 1.

Proof. See Simon [261, Cor. 4, p. 85], Aubin [15, Thm. 2], Lions [219, Thm. 1.5.1]; see also Amann
[8, Thm. 5.1]. O

Let us now specialize the setting to separable Hilbert spaces (real or complex). Let V < L be
two Hilbert spaces with continuous embedding and such that V' is dense in L. We identify L with
its dual L’ so that

Ve L=L <V, (64.5)
where L = L’ is dense in V’. The duality pairing (-, )y~ v is viewed as an extension of the inner
product in L, i.e., (f,v)v.,v = (f,v)r for all f € L and all v € V. Triples (V,L = L', V') with the
above properties are often called Gelfand triples (see Brezis [52, Rmk. 3, p. 136]). Henceforth, we

take p = ¢ := 2 and W := V' in Definition 64.35, and we omit the superscripts p and g, i.e., we
write

X(J;V, V') :={ve L*(J;V) | 0w € L*(J; V)1, (64.6)
The following result justifies integration by parts with respect to time.

Lemma 64.40 (Time trace, integration by parts). Let (V,L = L', V') be a Gelfand triple.
Let X (J;V, V') be defined in (64.6). The following holds true:

() X(J;V, V') = C°(J; L).
(il) The map X (J;V, V') 3 u— u(0) € L is surjective.

(iil) The following integration by parts formula holds true: For all v,w € X (J;V, V'),

/J<atv(t),w(t)>v/,vdt_ _/<atw(t),v(t)>v,,vdt+(U(T),w(T))L — (0(0), w(0))s. (64.7)

J

Proof. Ttem (i) is proved in Dautray and Lions [100, Thm. 2, p. 477], and Item (ii) is proved
in Lions and Magenes [220, Thm. 3.2, p. 21] and [100, Rmk. 8, p. 523]. Let us prove Item (iii).
Owing to Theorem 64.36, there are two sequences (vp, )nen, (Wn)nen in C*(J; V) such that v, — v,
wy, — w in L2(J; V), v, — v, w, — w in C°(J; L), and Oy, — O, yw, — Ouw in L2(J;V').
Then we have

/(8tvn,wm)Ldt: —/(vn,atwm)Ldt—i—(vn(T),wm(T))L — (0n(0), 1w, (0))1.
J J

We conclude by passing to the limit in this identity. Indeed, we have

hrn (8tvn,wm)Ldt: hm <8tvn,wm>vlvdt:/<8tv7wm>v/vdt7

n—oo J n—roo J J

so that limy, oo limp 00 [;(0s0n, wm)r dt = [;(Oiv, w)y v dt, and we use similar arguments for
the other terms. O



102 Chapter 64. Bochner integration

Exercises

Exercise 64.1 (Strong measurability). Prove the statement made in Example 64.8. (Hint:
use Theorem 1.17.)

Exercise 64.2 (Bochner integral). Let f : J — V be a Bochner integrable function and let
(fn)nen be a countable sequence of simple functions satisfying the assumptions of Definition 64.11.
(i) Show that [, f,(t)dt has a limit when n — co. (Hint: prove that it is a Cauchy sequence.) (ii)
Show that if (f,)nen and (gn)nen are two sequences of simple functions satisfying the assumptions
of Definition 64.11, then lim, o0 [, fn(t)dt = lim, 00 [; gn(t)dt.

Exercise 64.3 (L?(J;V)). Let f be a Bochner integrable function. (i) Prove that || [, f(¢)dt[|y <
[ If@®)llvdt. (i) Prove that LP(J; V) < L'(J;V). (iii) Let (fn)nen be a sequence in L'(J; V)
s.t. (fn(t))nen converges to f(t) in V and || f.(t)||v < g(t) with g € L'(J;R) for a.e. t € J. Show
that f € L*(J; V) and (f,)nen converges to f in L1(J; V).

Exercise 64.4 (L%((0,1); LP(O 1))). Let p € [1,00). Let J := (0,1) and g : J — LP(D) with

D := (0,1) be defined by g(t) := 1o for all t € J. (i) Show that g is almost separably valued.
(ii) Show that g is weakly measurable (iii) Let ¢ € [1,00]. Show that g € L(.J; V) and compute

lgllLacr;v)-
Exercise 64.5 (Constants). Let V be a Banach space and f € L _(J;V). Assume that f is

weakly differentiable and 9,f = 0. Show that there is a € V such that f(¢) = a a.e. t € J. (Hint:
see the proof of Lemma 2.11.)

Exercise 64.6 (Linear map). Prove Lemma 64.34.

Exercise 64.7 (X?'9(J;V,W)). Prove that X?2(.J; V, W) is a Banach space.

Exercise 64.8 (Continuous embedding). Let J := (0,7), T > 0. The goal is to prove that
XPA(J; VW) — CO(J; W). Let u € XP4(J;V,W). Set v(t) := dyu(t) and w(t fo

Show that w € C°(J; W). (Hint: use Lebesgue’s dominated convergence theorem ) (ii) Let p( )

7’]6_1*‘1 ? if |7| <1 and p(7) := 0 otherwise, Wlth nst. [pp(r)dr =1. Let 0 < s <t <T and let
N be the smallest integer s.t. N > maux(1 ). Deﬁne pn(T ) = np(nt) for all n > N. Consider

’Tt

the sequence of smooth functions ¢, (7 fo pn(s —&) — pn(t —&))de. What is lim,, o0 ¢y (7)7
(Hint: [ pn(s — &) f(£)dE — [f(s) for a.e. s and all f € LY(R).) (iii) Show that d,(s,t) :=
f_ll pr(y)(u(s—L) —u(t—4))dy = — fo ¢n(7)dr. (iv) Compute lim,_ o 0, (s, t). (Hint: pass

to the limit in the above equality and accept as a fact that lim,, . fil p(1)f(s = L)dr = f(s)
for a.e. s and all f € LY(J;B), where B is either V or W.) (v) Prove that v € C°(J; W) and
we CO' T (JW)lfq>1

Exercise 64.9 (Time derivative of product). Let o € C'(J;R) and u € X?(J;V,W). Show
that 9¢(cu) = udra + adpu (see Definition 64.35).



Chapter 65

Weak formulation and
well-posedness

Let D be a Lipschitz domain in R?, and let J := (0,7) with 7" > 0 be a bounded time interval.
The prototypical example of a parabolic equation is the heat equation which in strong form is
formulated as follows:

Ou—V-(kVu) = f in DxJ, (65.1a)
ujppx.s =0 (boundary condition), (65.1b)
U px{0} = U0 (initial condition). (65.1c)

The unknown is the space-time function v : DxJ — R, and the data are the source term f :
DxJ — R, the initial condition uy : D — R, and the diffusion coefficient x : DxJ — R. The
goal of this chapter is to derive a weak formulation and to establish the well-posedness of a model
parabolic problem in a slightly more general form than (65.1). To this purpose, we use the Bochner
integration theory presented in the previous chapter.

65.1 Weak formulation

In this section, we introduce an abstract parabolic problem with the same generic properties as
the heat equation and we derive a weak (and an ultraweak) formulation of this problem.

65.1.1 Heuristic argument for the heat equation

Let us assume for the time being that the solution to (65.1) is smooth. Let us proceed informally.
We multiply (65.1a) by some smooth space-time function v compactly supported in D J, integrate
over the space-time cylinder D xJ, and integrate by parts in space. We obtain

//v@mdxdt—l—//mVu-Vvdxdtz//fvdxdt, (65.2)
JJD JJD JJD

which we rewrite as T; + T2 = T3. Since the Cauchy-Schwarz inequality implies that |To| <
6l Loe (pxylullL2(rmr (o) [Vl L2 (51 (DY) @ natural idea to make sense of T is to look for the
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solution to (65.1) in L?(J; Hi(D)). Moreover, by assuming that the test functions v are in
L?(J; H} (D)), we can make sense of T; by looking for a solution such that dyu € L?(J; H=1(D))
and writing Ty as [ (Qpu(t),v(t)) g1 gz dt since H=Y(D) := (H}(D))'. Finally, T3 makes sense
if we assume that f € L?(J; H~Y(D)). In conclusion, we use the functional spaces introduced
in §64.2.2 and look for u € X (J; H} (D), H'(D)). Then the boundary condition (65.1b) is satis-
fied for a.e. t € J since u(t) € H}(D) for a.e. t € J, and Lemma 64.40 implies that u € C(J; L?(D)),
so that the initial condition u|py {0} = uo makes sense provided ug is in L?(D).

65.1.2 Abstract parabolic problem

We now reformulate what we have done in §65.1.1 in an abstract setting that will allow us to treat
a general class of equations like the heat equation. Let V' < L be two separable real Hilbert spaces
with continuous and dense embedding forming the Gelfand triple

Ve L=L <V, (65.3)
Inspired by the functional spaces introduced in §64.2.2, we set
X = X(L;V, V) ={ve L*(J;V)| 0w € L*(J;V')}. (65.4)

Let A:J — L(V;V') be an operator satisfying the following properties:

J 3 t— (A(t)(v),w)y, v € R is measurable for all v,w € V, (65.5a)
M >0, [A@)()|lv: < Mlvlly,  VYveV, forae. teJ, (65.5b)
Ja >0, (A)(v),v)vv > alv||E, Yo eV, forae. t e J. (65.5¢)

It is implicitly understood in what follows that M (resp., ) is the smallest (resp., largest) constant
such that (65.5b) (resp., (65.5¢)) holds true.

Lemma 65.1 (Strong measurability). Let p € [1,00] and u € LP(J; V). Let A: J — L(V; V)
and assume (65.5a) and (65.5b). Define the function

Aw) s J 3t Au)(t) == A(t)(u(t)) € V". (65.6)

Then A(u) : J — V' is strongly measurable, and A(u) € LP(J;V') with ||A(u)||lLesvy <
M[ullLe(ssvy-

Proof. We prove the strong measurability of A(u) by using the Pettis measurability theorem (The-
orem 64.4). A(u) is almost separably valued since we assumed that V’ is separable. Let us
now show that for every w € (V’)’, the function J > t — (w, A(u)(t))v+y,y+ is measurable.
Since we have assumed that V' is a Hilbert space, we can identify (V') with V, and the above
property reduces to showing that J 3 t — (A(u)(t),w)v v is measurable for all w € V. Since
u € LP(J;V), we infer that u is Bochner integrable, i.e., there exists a countable sequence of
simple functions (v, )pen s.t. lim, o0 v, (¢) = u(t) for a.e. t € J. Since v,, is a simple function for
all n, there exists a finite index set Z,, C N, a collection of disjoint measurable subsets {.J, k }kez,
in J, and a collection of vectors {wy, i }rez, in V s.t. vn(t) := > cr wnily,  (t) for ae. t € J.
Owing to (65.5a), we infer that J > t — (A(t)(wn k), w)ys v is measurable for all n € N and
all k € Z,,. It follows that J > t — 1, (t)(A(t)(wnr), w)y,v is also measurable (because
the product of two measurable functions is measurable; see Theorem 1.16). Hence, the function
J 3t = (Al)(va (D), w)vi v = D per, (A) (wn,k), w)vr v1y, , (t) is measurable (a finite sum of
measurable functions is measurable; see Theorem 1.16). Using the boundedness property (65.5b),
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we infer that lim,,— o (A(¢) (v, (1)), w)v v — (A(t)(u(t)),w)y: v for a.e. t € J. Invoking Theo-
rem 1.12(ii), we deduce that J > ¢t — (A(t)(u(t)),w)y v is measurable. We can now conclude
that J 3 ¢ — A(t)(u(t)) € V' is strongly measurable by invoking the Pettis measurability theorem.
Finally, we prove that A(u) € LP(J; V') with [[A(u)|| zr(7;v) < M||ul|pe(s,vy by invoking Bochner’s
theorem (see Exercise 65.1). O

Let f € L*(J;V') and up € L. The model problem we want to solve is to find u € X =
X(J;V,V') st.

ou(t) + A(u)(t) = f(t)  in LA(J; V), (65.7a)

u(0) = ug in L. (65.7b)

The initial condition (65.7b) is meaningful since X — C°(J; L) owing to Lemma 64.40(i). More-
over, both d;u and A(u) are in L?(J; V') since u € X.

Remark 65.2 (Real vs. complex). Working with real Hilbert spaces is natural for the heat
equation. It is possible to extend the abstract theory of parabolic problems to complex spaces by
replacing the assumption (65.5¢) by R((A(t)(v),v)v,v) > al[v]|} forallv € V and ae. t € J. O

65.1.3 Weak formulation

To reformulate (65.7) in weak form, we consider the trial space X and the test space Y such that

X =X(J;V,V)={ve L*(J;V) | ow e L*(J; V')}, (65.8a)
Y :=YyxYi, Yo:=L, Yy:=L3J;V). (65.8b)

Notice that L?(J; V') = L?*(J; V)" = Y/ owing to Lemma 64.20(i). We define the bilinear form
b: XxXY — R and the linear form ¢: Y — R s.t. for all v € X and all y := (yp,y1) €Y,

b@w):(d@wwL+[}aww+ﬂumuxm@»wyw, (65.9)
e@w:@mwwL+/}ﬂwwmwwu@t (65.9)

The definitions (65.9a) and (65.9b) are meaningful since the forms b and ¢ are bounded on X xY
and on Y, respectively. We notice that the first component yo € L is used to enforce (65.7b) and the
second component y; € L?(J;V) is used to enforce (65.7a). In conclusion, (65.7) is reformulated

as follows:
{ Find v € X such that

blu,y) = L(y), VyeY. (65.10)

Definition 65.3 (Parabolic equation). Let f € L*(J; V') and ug € L. We say that the model
problem (65.10) is parabolic if the operator A : J — L(V; V') satisfies (65.5).

Lemma 65.4 (Weak solution). Let u € X solve (65.10). Then dwu(t) + A(u)(t) = f(t) in V'
for a.e. t € J and u(0) = ug in L.

Proof. Let ¢ € C§°(J;R), let v € V, and consider the test function y := (0,¢v) € Y in (65.10).
We infer that

L¢@@m@+waw—ﬂmwwya=o
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The function g(t) = (Qu(t) + A(uw)(t) — f(t),v)y, v is in L?(J;R) since du + A(u) — f is a
strongly measurable function (see Lemma 65.1) such that || Oyu+A(w)—f|| L2y < |05l 250+
| Al 2wy + 1 fl 22wy < 0o. Since ¢ is arbitrary in C§°(.J; R), the vanishing integral theorem
(see Theorem 1.32) implies that g vanishes a.e. in J. This proves that dyu(t) + A(u)(t) = f(t) in
V' since the test function v is arbitrary in V. Finally, considering the test function y := (y0,0) € Y’
with yo arbitrary in L readily yields u(0) = ug. O

Remark 65.5 (Variant with Garding inequality). A slightly more general assumption than
(65.5¢) is to assume that the following Garding inequality holds true: There are « > 0 and n > 0
such that

(A(t)v,v)v v > alv||3 — |3, Yo eV, for ae. t € J.

If this is the case, one can rescale the solution u and the right-hand side f of the original problem
by setting z := e~y and g := ¢~ " f so as to obtain a parabolic problem for z with source term
g. [l

Remark 65.6 (Strong enforcement of initial condition). It is also possible to consider a
functional setting where the initial condition is strongly enforced. If ug = 0, one simply considers
the subspace Xj. := {v € X | v(0) = 0}, which is closed in X since X < C°(J;L). The weak
formulation then consists of seeking u € Xi. s.t. bic(u,y) = fic(y) for all y € Yi. := L3(J;V),
where bi(v,y) := b(v, (0,y)) and 4ic(y) := £((0,y)). The general case of a nonzero initial condition
up € L can be handled by using the surjectivity of the trace map vy : X 3 v — v (v) :=v(0) € L
(see Lemma 64.40(ii)). Letting vg € X be s.t. y9(vg) = ug, we then look for v/ € Xj. s.t.
bic(u',y) = 4i(y) for all y € Yic, where ¥ (y) := lic(y) — [, {Bevo(t) + A(vo)(t),y(t))v vdt. Note
that ¢ is bounded on Yi.. Once the solution v’ € Xj. to the above problem is found, the solution
to the original problem is u := v’ + vg. (|

65.1.4 Example: the heat equation
In the context of the heat equation (65.1), the Gelfand triple is
V:=HND), L:=L*D)=L*D), V' =H D). (65.11)

We equip the space Hg (D) with the H!-seminorm, and we recall the Poincaré-Steklov inequality
Cosllvll2(py < €o||VollLzpy for all v € Hg(D), where £p is a characteristic length of D, e.g.,
¢p := diam(D). Let us assume that the diffusivity x : DxJ — R is continuous w.r.t. t € .J
and bounded over DxJ, and that there is k, > 0 s.t. kK > K, a.e. in Dx.J. The operator A :
J — L(H}(D); HX(D)) is s.t. A(t)(v) := =V-(k(t)Vv) € H™Y(D) for all v € H}(D) and a.e.
t € J. The assumption (65.5a) is satisfied since the function J > t — [, k(x,t)Vo(z)-Vw(z) dz
is continuous and thus measurable for all v,w € Hg(D). The assumption (65.5b) is satisfied with
M := ||K|| oo (D). Finally, the coercivity assumption (65.5¢) is satisfied with o := r.

Consider a source term f € L2(J; H=1(D)) and an initial condition uy € L?(D). The weak
formulation of the heat equation fits the abstract form (65.10) with the functional spaces

X :={v e L*(J; H}(D)) | 0w € L*(J; H (D))}, (65.12a)
Y := L*(D)x L*(J; H} (D)), (65.12b)
and the forms b, ¢ such that for all (v,y) € X XY,

by = 0O) )z + | (00 (0) + (5 T0(0). T (1) 1 )

aw;mwmmm+memmw,
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where (-, -) denotes the duality pairing between H (D) and H}(D).

Remark 65.7 (Extensions). The theory developed in this chapter goes well beyond the heat
equation since it allows one to solve the time-dependent version of all the problems studied in
Chapter 31. For instance, one can consider the time-dependent differential operator A(t)(v) :=
=V-(d(-,t)Vv) + B(-,t)-Vv + u(-,t)v. The well-posedness results presented below still apply in
this case provided the space-time fields d, 3, and p are continuous w.r.t. ¢ € J, bounded over
DxJ, and s.t. A(t) satisfies the coercivity property (65.5¢); see Proposition 31.8 for sufficient
conditions yielding coercivity. The theory generalizes to Neumann and Robin boundary conditions
as well. (|

65.1.5 Ultraweak formulation

It is also possible to consider a weak formulation where the smoothness of the weak time derivative
is enforced on the test functions and not on the trial functions. In this setting, the trial and test
spaces are

Xy 1= LA(J; V), (65.13a)
Yiw = {w € L*(J; V) | Opw € L*(J; V'), w(T) = 0}. (65.13b)

(Notice that Xy =Y and Yy = {w € X | w(T') = 0}.) Setting

buw (0, 0) 1= /, (0(8), —Bw(t) + A" (w)(6))y.v-dt, (65.14a)
éuw(w) = (’U,O,’LU(O))L + /]<f(t),w(f)>vl7vdt, (6514b)

with A* (w)(t) := A(t)*(w(t)) (the same argument as in Lemma 65.1 shows that A*(w) € L?(J; V")),
the ultraweak formulation is as follows:

Find u € X, such that
(65.15)

buw(ua w) = guw(w), Yw € Yow-

Although the ultraweak formulation (65.15) uses a larger trial space and a smaller test space than
the weak formulation (65.10), the two formulations are equivalent.

Lemma 65.8 (Equivalence). (65.10) and (65.15) have the same solution sets.

Proof. (1) Assume that u € X solves (65.10). Then u € X, since X C X,w. Moreover, since
Yuw C Y, we have for all w € Yy,

b (t:0) = [ (®),~0p0(0) + A" ()0 v,y
= [ @uu(t) + A0 0O} vt + (u(0),w(0))
= b(u, (w(0), w)) = £(w(0), w) = Luw(w),
where we used integration by parts in time (Lemma 64.40) since u,w € X (J;V,V’) and w(T) =0

since w € Yyy. (Note that (u(t), A*(w)(t))vvr = (u(t), A(t)* (w(t)))v.y = (A@)(u(t)), w(t))v: v
(Au)(t), w(t))vv.)
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(2) Assume that u € Xy solves (65.15). Let ¢ € C§°(J;R) and v € V. Notice that ¢v € Yy, so
that by (u, ¢pv) = lyw(Pv). This yields

/J ~(ult), o) d (1)t = / (F(t) — ALu)(t), o) vo(t)dt.

J
Owing to Proposition 64.33, this identity shows that u has a weak time derivative in L2(J; V'), i.e.,
u is a member of X, and it also shows that d,u = f — A(u) in L?(J;V’). Let now ¢ € C*(J;R)
with ¢(T) = 0, so that ¢uv is again in Y. Integrating by parts in time (Lemma 64.40) and using
Oru = f — A(u), the identity by (u, pv) = Luw (pv) yields ¢(0)(u(0),v)r = ¢(0)(ug,v)r. Choosing
¢ s.t. ¢(0) = 1, and since v is arbitrary in V' which is dense in L, we infer that u(0) = uo. O

65.2 Well-posedness

The objective of this section is to establish the well-posedness of the parabolic model prob-
lem (65.10). More precisely, we prove the following result.

Theorem 65.9 (Lions). The problem (65.10) is well-posed under the assumption (65.5).

This result has been established in Lions [218, Thm. 2.1, p. 219]; see also Lions and Magenes
[220, Thm. 4.1, p. 238] or Dautray and Lions [100, Thm. 2, p. 513]. We prove this result in two
steps. We first establish the uniqueness of the solution using a coercivity-like argument. Then we
use a constructive argument to establish the existence of the weak solution. In Chapter 71, we
revisit the whole well-posedness argument in the context of the BNB theorem (Theorem 25.9) by
establishing an inf-sup condition.

65.2.1 Uniqueness using a coercivity-like argument

In this section, we show that (65.10) admits at most one solution u € X. This is done by establishing
an a priori estimate on the weak solution, that is, by showing that the weak solution depends
continuously on the data f and wg. The continuous dependence is established by invoking a
coercivity-like argument where we use (0,u) € Y as the test function in (65.10).

Lemma 65.10 (A priori estimate and uniqueness). Assume that the function u € X solves
the parabolic problem (65.10). (i) The following a priori estimate holds true:

1
allull 2wy + lu(M)Z < allflliz‘u;w) + [luollZ. (65.16)

(ii) The model problem (65.10) admits at most one solution.

Proof. (1) Proof of (65.16). Owing to the time integration by parts formula from Lemma 64.40, we
infer that [ (Dyu(t), u(t))v: vdt = 3|Ju(T)||3 — [uol|?, where we used that u(0) = ug. Moreover,
the coercivity property (65.5¢) implies that aflul|7> sy < [;(A(w)(t), u(t))v, vdt (recall that
A(u)(t) = A(t)(u(t))). Putting these two identities together, we infer that

1 1
ollulzzwy + SIa@IZ = 5lluolz < /J@tU(t) + A(u)(t), u(t)) v vdi

= b, (0,u)) = £((0,u)) = /J (F(0), u(t))y vt

o 1
< fllzervoyliullLecryy < §|\UH%2(J;V) + %Hf”zmu;w)a
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where we used Young’s inequality in the last bound. Rearranging the terms leads to (65.16).

(2) Proof of uniqueness. Assume that uj, us are two solutions to (65.10). By linearity, the
difference 6 := u; — ug solves the parabolic problem (65.10) with data f = 0 and ug = 0. The a
priori estimate (65.16) implies that § = 0, i.e., u1 = ug. Therefore, (65.10) admits at most one
solution. O

The estimate (65.16) implies that ||u(T)|2 < éHfH%Q(J_V,) + |lug||2. This estimate is not very
sharp since it does not capture the important property of parabolic problems that the influence of
the initial condition decays exponentially fast in time.

Lemma 65.11 (L-norm estimate, exponential decay). Assume that u solves (65.10). The

following holds true for all t € (0,T) with J, := (0,t):

lu@IZ < ~lle™ 7 fllZacvn + e lluollZ, (65.17)

S

2
‘v

with the time scale p := 2= where v,y is the operator norm of the embedding V — L, i.e., the
smallest constant s.t. ||v||p < tp,v|vlv for allve V.

Proof. See Exercise 65.4. O

Example 65.12 (Heat equation). In the context of the heat equation (see §65.1.4) where
o = Ky, Lemma 65.10 yields

1
f%HuH%z(J;Hg(D)) + (D)1 72py < K_b”f“%?(J;H*l(D)) + [luollZ2(pys

2

and defining the time scale p := c%% (toy = é—i owing to the Poincaré-Steklov inequality),

Lemma 65.11 yields for all ¢t € (0,7T] with J; := (0,1)
1 e _ot
[u®)[72py < H—bHe T2y + € luollF2(p)- O

65.2.2 Existence using a constructive argument

The existence of a solution to the problem (65.10) is done by invoking a semi-discrete Galerkin-type
argument.

Lemma 65.13 (Existence). There exists u € X solving the parabolic problem (65.10).

Proof. Let (v;)ien be a Hilbert basis of V' (see Definition 46.19 and Theorem 46.21). Let us set
Vi i= span{v; }icfo:ny for all n € Noand let 11, : L — V}, be the orthogonal projection onto V;, in L.
With u, (0) :=II,,(ug), consider now the following finite set of coupled linear ordinary differential
equations:

(Opun(t),vi) + (At) (un(t)), vi)vr,v = (f(t),vi)vr v, Vi€ {0:n}. (65.18)

Let us set un(t) = > ic10.03 Uin(t)v, Aij (1) 1= (A(t)(v)), vi)ve,v, Fi(t) == (f(), vi)vr,v, My =
(vj,vi)r for all 4,5 € {0:n}. Defining the R"*-valued vectors U, (t) := (Uon,--.,Unn(t))T,
Fo(t) := (Fo,...,Fn(t))", the above system is equivalent to

Mo, (t) + AU, (t) = F,(t), for ae. t e J.
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Owing to the boundedness assumption (65.5b), the Cauchy—Lipschitz theorem implies that the
above problem has a unique solution (see, e.g., Brezis [52, Thm. 7.3]). Multiplying (65.18) by
Ui (t), summing over i € {0:n}, and integrating over J, we infer that (see the proof of Lemma 65.10)

1
olunllZz gy + lun(DIZ < <1700 + luollz-

This shows that the sequence (uy)nen is bounded in L?(J; V). Since L?(J;V) is a Hilbert space
(hence reflexive), Theorem C.23 implies the existence of a subsequence, which we abusively denote
again by (u)nen, that converges weakly to some u € L*(J;V), ie., u, — u in L*(J;V) (and
hence also in L?(J; L)).

It remains to show that u solves (65.10). Let ¢ € C*°(J;R) with ¢(T) = 0. We multiply
(65.18) by ¢(t), integrate over J, integrate by parts in time, and use the linearity of A(¢)* and
un (0) = IL, (up) to obtain

.ot var= |

J

= [ (= e 00+ {10 60 AE) (e ot = (0, (001 ).

((©run(®), 6(t00) + (AW (wn (1)), 6(E)vi) v )t

We can now pass to the limit n — oo since u,, — win L?(.J; L) and ¢/ (t)v; € L?*(J; L), and u,, — u
in L2(J; V) and ¢(t)A(t)*(v;) € L?(J;V'). Hence,

[ ®. 6001wt + (o, 600y = |
J

J

(), =4 (i) + l®), SOAD)" @)vir .

Since the above equality is satisfied for all 7 € N, it is satisfied by replacing v; by any v € V.
Recalling the ultraweak formulation (65.15) shows that byy (u, pv) = Ly (¢pv) for all ¢ € C(J;R)
with ¢(T) = 0 and all v € V. Repeating the arguments from the proof of Lemma 65.8, we conclude
that u € X solves (65.10). O

65.3 Maximum principle for the heat equation

Another important property of parabolic problems is the maximum principle. For simplicity, we
focus on the heat equation.

Theorem 65.14 (Maximum principle, heat equation). Let u solve the heat equation with
f e L?(J; L*(D)) and ug € L*(D).
(1) Assume that essinfzep(uo(x)) > —o0 and f >0 a.e. in DxJ. Then

u > min(0, essinf(ug(x))) a.e. in DxJ.
xzeD

(i) Assume that esssupgep(uo(x)) < oo and f <0 a.e. in DxJ. Then

u < max(0, esssup(ug(x))) a.e. in DxJ.
xeD

Proof. We are going to use a technique known in the literature as Stampacchia’s truncation method
(see Brezis [52, Thm. 10.3, p. 333]). Let G € C'(R;R) be s.t. Gj(_oo,g = 0, Gi(o,l) € (0,2),
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Gl o) = 2. Let K € C?(R;R) be defined by K(v) = Jo G(§) d¢. For instance, we can take
0 if v <0, 0 if v <0,
G(v) == v? ifo<wv<l, K(v) == ¢ 103 ifo<wv<1,
20—1 ifl<w, v —v43 if1<w.

Proofof (i). Let C' := min(0, ess infze p(up(x))). Owing to Lemma 65.15 below, we have G(C'—u) €
L?(J;H(D)). Let t € J and J; := (0,t). Let ¢; and b; be the restrictions of £ and b to J;. Since
—G(C — u) is an admissible test function in L?(J;; H (D)), f > 0, and K(C — ug) = 0, we have

0> — [ (1(6).G(C — u)) 120y ds = ~u(w. 0.G(C =)
_ /J (40:1(5), G(C = u(s))) + (5(5)Vuls), VG(C = u(s))) g 1) .

Using the identities (see Lemma 65.15) (Jyu(t), G(u(t))) = O¢l|K (u(t))||z1(p) for a.e. t € J and
—Vu(s)-VG(C — u(s)) = G'(C — u(s))||Vu(s)||2 > 0, we infer that

0> [K(C —u(t)ll1py — [K(C = uo)lr1(p)
+/J (K(s)G'(C = u(s))Vu(s), Vu(s))) 12 ) ds = [ K(C = u(t))l|z1(p)
This implies that K(C — u(t)) = 0 since K takes nonnegative values. Hence, with an abuse of

notation, we have u(t) > C. Since t is arbitrary in J, we infer that u(z,t) > C for a.e. (z,t) in
Dx.J.

Proof of (ii). We proceed as above with C' := max(0, esssup,cp(uo(x))), but this time we use
the test function G(u — C). Notice that G(u — C) is indeed a member of L?(.J; H}(D)) owing to
Lemma 65.15. O

Lemma 65.15 (Regularity of truncated functions). Let the functions G, K be as above. Let
uwe X(J,HY(D),H(D)). (i) Let C < 0. Then G(C —u) € L*(J,H}(D)) and VG(C — u(t)) =
—G'(C —u(t))Vu(t) for a.e. t € J. (ii) Let C > 0. Then G(u—C) € L*(J, H}(D)) and VG (u(t) —
C) = G'(u(t) — C)Vu(t) for ae. t € J. (iii) K(u) € WHH(J; LY (D)) and (0yu(t),G(u(t))) =

O K (u(t))|| L1 (py for a.e. t € J.

Proof. (i) Since u € L?(J, H}(D)), we have u(t) € H}(D) and C —u € H*(D) for a.e. t € J (recall
that D is bounded). Owing to Corollary 2.24, G(C —u(t)) is in H*(D), and since G(C) = 0 (recall
that C < 0), G(C — u(t)) is actually in Hg (D). Corollary 2.24 also implies that VG(C — u(t)) =
—G'(C'—u(t))Vu(t) for a.e. t € J. This in turn implies that [|[VG(C —u(t))||r2(py < 2||Vu(t)|\Lz(D)
since ||G’|| o) < 2. Hence, G(C' — u) € L*(J; Hy(D)).

(ii) The proof of the second statement is identical except that we use G(—C') = 0 since C' > 0.
(iii) Owing to Theorem 64.36, there is a sequence (uy)nen in C®(J; V) s.t. u, — u in X, i.e.,
up — u in L*(J; HY(D)) and dwu,, — Ou in L*(J; H-Y(D)). Let ¢ € C§°(J). Using that
G(s) = K'(s), we have

/J (G(un (1)), Dytin(£)) 12 () S() AL = /J /D ~ K (un (1))006(t) dadl.

Let us now pass to the limit. Since |G (un(t)) — G(u(t))| < 2|un(t) — u(t)], we have G(u,) — G(u)
in L?(J; L*(D)). Moreover, we have V(G (un(t)) = G'(un(t))Vun(t). But G'(u,(t)) — G’ (u(t))
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and Vu, (t) = Vu(t) for a.e. t € J, and for n large enough, we also have ||G'(un(t))Vun(t)||L2(D) <
4||Vu(t)| £2(py (here we used that u, converges strongly to u in L?(J; Hg(D))). Lebesgue’s dom-
inated convergence theorem implies that

V(G(un(t)) = G (un(t))Vu,(t) = G'(u(t))Vu(t) = VG(u(t)).

This argument proves that G(u,) — G(u) in L*(J; H}(D)). Finally, the inequality |K (u,(t)) —
K(u()| < 2(Jun@#)] + |u(#)])|un(t) — u(t)| shows that K(u,) — K(u) in L*(J; L'(D)). Hence, we
can pass to the limit and obtain

[ @) Gt motva = [ ([ Ko as) oscoar

Since ¢ € C§°(J) is arbitrary and K > 0, we have (Qyu(t), G(u(t))) g1 1 = Ol K (u(t))||1(p)
This also proves that K (u) € Wh1(J; L1(D)).

Exercises

Exercise 65.1 (LP-integrability of A(u)). Let u € LP(J; V) and let A(u) be defined in (65.6).
Prove that A(u) € LP(J; V') with [|A(u)||Le(svry < M|ul|Le(syvy. (Hint: use Theorem 64.12.)

Exercise 65.2 (Ultraweak formulation). Write the ultraweak formulation for the heat equa-
tion.

Exercise 65.3 (Gronwall’s lemma). Let J = (O T) T > 0. Let a,3,u € L'(J;R) be s.t.
af,fu € LY(J;R), B(t) > 0, and u(t) < ) + fo r)dr for a.e. t € J () Prove that
v(t) i= e o Alr)dr fot B(r)u(r)dris in Wt 1(J, R). (ii) Prove that v(t) < f Ye Jo A(s)ds
(iii) Prove that

wwsmw+élem@dwwem. (65.19)

(Hint: use Step (ii) and fot B(ru(r)dr = v(t)elo 247 ) (iv) Assume now that o is nondecreasing,
ie., a(r) <at) for a.e. r,t € J s.t. r < t. Prove that for a.e. t € J,

u(t) < aft)edo AT (65.20)

(v) Assume that 3 is constant and a € WH1(J). Prove that for a.e. t € J, u(t) < a(0)e’* +
fot o (r)ePt=7) dr. Note: owing to the assumption 4(t) > 0, Gronwall’s lemma can be used to show
that the function v has at most exponential growth in time, but it cannot be used to show that
u has exponential decay. However, if the assumption u(t) < )+ fo )dr is replaced by
the stronger assumption u'(t) < o/ (t) + B(t)u(t), then u(t) < efo (r)dry, —i— f r)els B ds qp
regardless of the sign of 3.

Exercise 65.4 (Exponentially decaying estimate). (i) Prove the a priori estimate (65.17).

(Hint: adapt the proof of Lemma 65.10 by considering the test function (0,w) € Y with w(t) :=
t L2

e*su(t) and the time scale p = 2 L) (ii) Assuming that f € L°((0,00);V’), prove that

limsup,_, o [|[u(t)||z < 2] fl| Lo ((0,00);v7)- (Hint: use (65.17).)




Chapter 66

Semi-discretization in space

We are concerned in this chapter with the semi-discretization in space of the model parabolic
problem (65.10), that is, the approximation is done with respect to the space variable but the time
variable is kept continuous. We use V-conforming finite elements for the space approximation.
Error estimates are derived by invoking coercivity-like arguments. Semi-discretization in space
leads to a (large) system of coupled ordinary differential equations (ODEs). This system of ODEs
can then be discretized in time by many time-stepping techniques, as exemplified in the following
chapters. This approach is often called method of lines in the literature.

66.1 Model problem

Let us briefly recall from §65.1 the setting for the model parabolic problem (65.10). We consider
the Gelfand triple V < L = L’ < V’, the time interval J := (0,T) with 7" > 0, and the functional
spaces

X :={vel*(J;V)|owe L*J;V)}, (66.1a)
Y = LxL*(J; V). (66.1b)
Let f € L*(J;V') and ug € L. Assume that the operator A : J — L(V; V') satisfies the proper-
ties (65.5). In the context of finite elements, one usually works with bilinear forms. Thus, we set

a(t;v,w) == (A(t)(v),w)y v for all v,w € V and a.e. t € J. We consider the bilinear and linear
forms

b(v,y) = (v(0),v0)L +/J (<8tv(t),y1(t)>vf,v —i—a(t;v(t),yl(t)))dt, (66.2a)
£(y) := (uo,y0)L +/J<f(t),y1(t)>w,vdt, (66.2D)

for all v € X and all y := (yo,71) € Y. The weak formulation of (65.10) is as follows:

Find v € X such that
(66.3)

blu,y) = Ly), VyeY.

Example 66.1 (Heat equation). The Gelfand triple is realized by taking V := H}(D), L :=
L?(D) = LQ(D)/, and V' = H~Y(D). The space V is equipped with the H'-seminorm, i.e.,
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llvllv == |[vlgvpy = ||Vullz2(py. This is legitimate owing to the Poincaré-Steklov inequality
Cosllvll2(py < €p||VollLzpy for all v € Hy (D), Where {p is a characteristic length of D, e.g.,
(p := diam(D). The blhnear form is a(t;v,w) := [, k(x,t)Vo(z)-Vw(z)dz, where k : DxJ — R
is continuous w.r.t. ¢ € J, uniformly bounded from above and bounded from below away from
zero on Dx.J (see §65.1.4). O

66.2 Principle and algebraic realization

In order to realize the approximation in space while keeping the time variable continuous, we
introduce a sequence (V3,)nen of finite-dimensional subspaces of V' built using a finite element and
a shape-regular mesh family (7, )nep so that each mesh covers D exactly. In the case of the heat
equation, V}, can be one of the H!-conforming finite element spaces (see Chapter 19). Note that
the mesh 7}, used to build V}, is kept fixed in time. We assume to have at hand a basis of V},, say
{®i}ieq1: 1y (for instance the global shape functions). We consider the following semi-discrete trial
and test spaces:

Xp = HYT; Vi) = X(J; Vi, Vi), Y = Vi< L2(J; V). (66.4)

The spaces X}, and Y}, are still infinite-dimensional because the time variable is kept continuous.
A generic function v, € Xj is of the form vi(w,t) := > 1.y Vi(t)pi(x) with V; € H(J) for
all 4 € {1:1}. Similarly, a generic function y;, € Y}, is a pair yp := (yon, y1n) with yop € V3 and
Yin(®, 1) =31y Yilt)pi (@) with Y; € L2(J) for all i € {1:1}. We observe that

X,cX, Y,CY, (66.5)

and in particular we have yvp (@, 1) = >2;c (1. 1y Vi(t)pi(x). The semi-discrete counterpart of (66.3)
is as follows:

Find wu;, € X} such that
{ P (66.6)

b(un;yn) = L(yn), Vyn € Yh.
Owing to (66.5), the approximation setting is conforming. Since the duality pairing between V'

and V is an extension of the inner product in L and since V;, C V < L, we infer that the bilinear
form b restricted to X xY} is s.t.

bon ) = (o0 0) o)z + [ (010 (0 (®)r + alts on(®).yun (1) ) .

J

Let Py, : L — Vj, be the L-orthogonal projection, i.e., for all z € L, Py, (z) is the unique element
in Vi, s.t. (2 — Py, (2),wp) := 0 for all wy, € Vj,.

Proposition 66.2 (Equivalence and well-posedness). (i) A function u, € X}, solves (66.6)
iff for all wy, € Vp,

(Opun (t), wn)r + alt;un(t), wr) = (ft),wp)vr v in L2(J), (66.7a)
un(0) = Py, (uo)- (66.7h)

(ii) The semi-discrete problems (66.6) and (66.7) are well-posed. Moreover, if f € CO(J;V') and
A e COUT; L(V; V"), we have uy, € CL(J; V3).
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Proof. (i) The equivalence of (66.6) with (66.7) follows by taking first the test function (yop,0)
with yop, arbitrary in Vj,, and then taking the test function (0,y15) with y1j arbitrary in L2(J; V},).
(i) Let up(®,t) := > ;1. 1y Ui(t)pi() be the expansion of the semi-discrete solution uj € X, in
the basis {¢;}ieq1. 1. We set U(t) := (U1(¢),...,Ur(t))" € R’ and introduce the (time-dependent)
stiffness matrix A(¢) € R?”*! and the (time-independent) mass matrix M € R?*! such that

Aij(t) = alt; pj, i), Mij = (¢, 0i)L, Vi, j € {1:1}.

The mass matrix is symmetric positive definite, and the stiffness matrix is positive definite for a.e.
t € J; see §28.2.2-§28.2.3. Using the above notation, (66.7) is recast as follows:

{MatU(t) = —AMU) + F(t) in L2(J),

0(0) = Un, (66.8)

where F(t) :== ((f(t), p1)v' vy-- -, (f(t),01)vv)T € R and Uy € R? is the coordinate vector of
Pv;, (up) relative to the basis {@; }ie1:1}. Since (66.8) is a finite coupled system of linear ODEs, the
Cauchy-Lipschitz theorem guarantees the existence and uniqueness of a solution U(¢) in H!(J; RY);
see, e.g., Brezis [52, Thm. 7.3]. Finally, if f € C°(J;V’) and A € C°(J; L(V; V")), then (66.8) is
satisfied for all t € J, and we have U € C'(J;RT), i.e., up € C*(J; V3). O

Example 66.3 (Duhamel’s formula). If the operator A is time-independent, then so is the
matrix A, and the unique solution to (66.8) is given by U(t) = Uy + fot e(sTOMTANL1F (5) ds for
all t € J. This expression is often called Duhamel’s formula. O

Remark 66.4 (Initialization). Other initializations than up(0) = Py, (ug) can be realized if one
replaces b and ¢ by some other consistent approximations, say by, and ¢,. For instance, leaving b
unchanged, one can consider £, (yn) := (Zn(uo),yon)r + [;{f(t), y1n(t))v,vdt, where T}, is some
L-stable approximation operator. This gives up,(0) = Zp (ug). O

Remark 66.5 (Mass lumping). It is sometimes possible to replace M by a diagonal matrix. One
possibility consists of using a quadrature (see Chapter 30) to evaluate the term involving the time
derivative in (66.7a). Assume for instance that {@;};c(1. 1} is a Lagrange basis associated with the
nodes {a;}ic(1. 13- Then the quadrature [, vp(z)dz =37, (1. 1y mivn(ai), with m; == [ p;dz, is
exact for all v, € V3. Using this quadrature, one approximates the (consistent) mass matrix M by
the diagonal matrix M with diagonal entries {mi}ieq1: 1y This process is called mass lumping and
M is called lumped mass matriz. We refer the reader to Thomée [273, Chap. 15] for the analysis
of the lumping technique for parabolic problems. An equivalent viewpoint leading to the same
lumped mass matrix is to consider a piecewise constant reconstruction operator from the degrees
of freedom to evaluate the term with the time derivative in (66.7a); see Raviart [242]. O

Remark 66.6 (Tensor products). Using tensor-product notation (see Remark 64.24), defini-
tions equivalent to (66.4) are X, := H'(J) ® V}, and Y}, := V;, x(L?(J) ® V},). These choices are
reasonable since L?(J) ® V is dense in L?(J;V) and (Vi)nen has approximation properties in
V. O

66.3 Error analysis

In this section, we perform the error analysis of the semi-discrete problem (66.6) using coercivity
arguments. We bound the error in the L?(J;V)-norm and in the C°(.J; L)-norm, and we illustrate
the error estimates in the case of the heat equation.
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66.3.1 Error equation

To gain some insight into the derivation of the error estimates, let us consider a discrete function
v, € HY(J;V4), and let us consider the following error decomposition for all ¢ € J:

en(t) = up(t) — vp(t), n(t) := u(t) — vp(t). (66.9)

The conformity of the approximation setting implies that b(u — up,yr) = 0 for all y;, € Y}, so that
the discrete error e, € X, solves the parabolic problem b(ep, yn) = b(n,yn) for all y, € Y},. This
implies in particular that the following holds true in L?(.J) for all w;, € Vj:

(Oren, wp)r + a(t; en, wr) = (O, wp)v v + a(t;n, wp), (66.10)

where we used the L-inner product for the time derivative of e;. By using the same stability
mechanisms as those invoked in the previous chapter in the continuous setting, the error equa-
tion (66.10) allows us to bound e in terms of n, and the error estimate then results from the
triangle inequality. Thus, the only outstanding question is the choice of vy to bound 1 :=u — vy,

To simplify some arguments, we henceforth assume that u € H*(.J; V) (this assumption requires
that up € V). A simple, but somewhat naive, choice is to set vy, (t) := Zp, (u(t)) for all ¢ € J, where
In V. — Vj is any approximation operator having optimal approximation properties. This
approach entails estimating the two terms composing the right-hand side of (66.10) by invoking
the approximation properties of Z,,. Notice that we indeed have dyv, € L?(J;V},). This follows
from Qv = 9 Zp(u) = Z(0u), where the last equality results from Lemma 64.34 applied to
the time-independent operator Z;, (which is bounded on V') and the fact that du € L?(J; V) by
assumption.

An alternative approach, which was introduced by Wheeler [285] for the heat equation, is to
consider a suitable projection which relies on the differential operator in space. This idea will
be reused in the context of the time-dependent Stokes equations (see §73.2.2) and of the time-
dependent Friedrichs’ systems (see §76.4.3). In the context of parabolic equations, we introduce
the time-dependent projection II}(¢) : V. — Vj, s.t. for a.e. ¢ € J and all v € V| II} (¢;v) is the
unique solution to the following problem:

a(t; 17 (), wp) = a(t; v, wy), Ywy, € V. (66.11)

We henceforth abuse the language by saying that 117 is an elliptic projection onto the finite element
space Vj, (see §32.4 where a(v,w) = (Vv,Vw)g2(py). Setting en(t) := up(t) — II} (t;u(t)) and
n(t) == u(t) — IE(t;u(t)), and assuming that I1E(;u(-)) € H'(J;V4), the error equation (66.10)
becomes

(Oren, wn)r + a(t; en, wp) = (Om, wp)v v. (66.12)

Thus, the crucial advantage of using an elliptic projection is that the right-hand side of (66.12)
can be estimated without invoking ||7||v. One still needs to estimate ;1 in weaker norms (e.g., the
[|I]lv-norm or the ||-|| .-norm). This can be done easily by invoking the approximation properties of
the finite element setting if @ is time-independent. If this is not the case, some mild additional as-
sumptions on the time derivative of a(¢; -, -) are required. The first situation is addressed in §66.3.3
and the second situation in §66.3.4.

66.3.2 Basic error estimates

Let us start with an error estimate in the L*(J;V)-norm.
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Theorem 66.7 (L?(J;V)-estimate). Let u € X solve (66.3) and up, € X}, solve (66.6). Assume
we HY(J; V). Let n(t) == u(t) — Zn(u(t)) for allt € J, where Iy, : V. — V}, is any approzimation
operator. The following holds true:

M 1 1
Ju=wnlzzcrvy < (140 )l + S0l + = InO)e.

Proof. We consider the test function wy = ep(t) for all ¢ € J in the error equation (66.10).
Invoking the coercivity of a(t; -, ) and Young’s inequality on the right-hand side, we infer that

1d
2dt

(Recall that A(n)(t) = A(t)(n(t)) for a.e. t € J; see (65.6).) Rearranging the terms, integrating
over t € J, and dropping the nonnegative term | e, (T)||% on the left-hand side gives

1
—lenllZ +allenll} < —|\3t77+A( MY+ sallenl?-
2

allenllzz(svy < —Ilam +AMIL2(vn + len(O)]7-

(Notice that the above reasoning is the same as in the proof of Lemma 65.10.) Dividing by «,
taking the square root, and since [|0;n + A()||L2(svy < 10l L2 (s5vr) + MInllL2(s;v), we infer
that

1 M
lenllzzrvy < — N0l 2y + —lnllcz vy + \/—Heh( )z (66.13)

The optimality property of Py, implies that ||e(0)||z = ||Pv, (uo — v (0)|lz < |luo — vn(0)||z =
[[7(0)||z. Using this bound in (66.13) and invoking the triangle inequality for v — up, = 1 — e,
proves the assertion. O

Remark 66.8 (Supercloseness). Using the error equation (66.12), i.e., setting ep,(t) := up(t) —
II7 (¢; w(t)) and n(t) := u(t) —II} (¢; u(t)), and reasoning as in the above proof gives a||eh||2L2(J;V) <
1 ||8t77||L2 s+ llen(0)]|2. This estimate exhibits a supercloseness phenomenon, i.e., the error on
the left- hand side is measured in the V-norm, whereas the terms on the right-hand are measured
in weaker norms. This property is central to the method often called in the literature post-
processing Galerkin (see, e.g., Garcfa-Archilla et al. [134], Garcfa-Archilla and Titi [133]) and
nonlinear Galerkin methods (see, e.g., Marion and Temam [224, 225], Guermond and Prudhomme
[159, Rmk. 6.1]). See also Exercise 66.1. O

Let us now bound the error in the C°(J; L)-norm. To this purpose, it is essential to avoid
invoking ||n||yv and this is the reason why we consider the elliptic projection defined in (66.11). To
simplify some arguments, we assume that the bilinear form a is time-independent (we shall return
to the general setting in §66.3.4). Then the elliptic projection II; : V' — V}, is time-independent
and is such that for all v € V,

a(Ij (v),wn) = a(v,wr),  Vwy € Vi (66.14)

2
We introduce the time scale p := 2 LLO’LV , where ¢, v is the operator norm of the embedding V' — L,

i.e., the smallest constant s.t. ||v||r < ¢p,v||v||v for all v € V.

Theorem 66.9 (C°(J; L)-estimate). Let u € X solve (66.3) and up, € X}, solve (66.6). Assume
u€ HY(J; V). Assume that the bilinear form a is time-independent. Letting n(t) := u(t)—1IIF (u(t))
for all t € (0,T], we have, with J; := (0,1),

1w = un)®)llz < [n(®)llz + \/—Ile Ol + e ()]l (66.15)
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Proof. See Exercise 66.3. O

Remark 66.10 (Exponential decay). Similarly to the a priori bound established in Lemma 65.11
in the continuous setting, the error estimate (66.15) shows that the error in the L-norm induced
by the approximation of the initial condition uy decays exponentially fast with time. [l

Remark 66.11 (Bounding the ||-||y/-norm). Since the duality pairing between V/ and V' is an
extension of the L-inner product, we infer that ||¢|v: < vpv|0:dl| for all ¢ € L. Applying this
bound to 9;7, the error estimates from Theorem 66.7 and Theorem 66.9 become

M 1
o= wnllzary < (1 0 )l + g 10l ey + = IOl
and

1w =un) @)z < n®)llz + \/gle_"atnllL2<Jt;L) +e 70z, (66.16)

2
where we used that p := 2LLO;V. O

66.3.3 Application to the heat equation

We now illustrate the above error estimates on the heat equation, where V := H} (D), |jv|y =
Vol L2(py, L := L*(D), and V' = H~*(D) (see Example 66.1). The time scale becomes p := 2%
since (v = % owing to the Poincaré-Steklov inequality. The discretization in space relies on
continuous finite elements, i.e., we take Vi, := P¢ ((Ts) C Hg(D) (see §19.4).

Corollary 66.12 (L?(.J;V)-estimate, heat equation). Letr € [1,k], where k > 1 is the degree
of the finite elements used to build the discrete space Vi,. Assume that w € L*(J; H"Y(D)) N
HY(J; H™(D)) (so that ug € H"(D)). There is ¢ s.t. for all h € H, o, and M,

[l — Uh||%2(J;Hg(D)) <c < hQT / |u(t) |H7+1
K€7-h

p
03562 /|(’“)tu |H’V‘(K)dt+ |uO|H’V‘(K))> (6617)

Proof. We invoke Theorem 66.7 (actually the bound from Remark 66.11) with vy, () := Zy™ (u(t))
for a.e. t € J, where Z;; " is the quasi-interpolation operator with zero boundary trace constructed
in §22.4.2. Owing to the definition of the time scale p, we infer that

M av
lw—unl|L2(ssm1 (D)) < (1 + —) lw = Zis™ ()l L2 ;13 (DY)

O av 1 av
S 10 = T @) oy + o — T (w0l 2.

The estimate (66.17) follows from Theorem 22.14 once we observe that 0;(Z;" (v)) = Zy"™ (9,u)
owing to Lemma 64.34, 8;u € L*(J; L*(D)) by assumption, and that Z;;™ is bounded in L?(D). O

Corollary 66.13 (Improved C°(J;L?(D))-estimate, heat equation). Let r € [1,k], where
k > 1 is the degree of the finite elements used to build the discrete space Vi,. Assume that the
diffusion coefficient k is time-independent. Assume that there is some elliptic regularity pickup
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in the adjoint problem, i.e., there are s € (0,1] and csmo > 0 s.t. for all g € L*(D), the unique
solution &g € V s.t. a(v,&y) = (9,v)12(p) for allv € V satisfies ||Eg|| i+ (p) < Csmo™ 4D |9l L2(D)-
Assume that w € H*(J; H'(D)). There is c, proportional to (2)2, s.t. the following holds true
for all h € H and all t € (0,T]:

0= w) Oy < 6l (3 13 (O ey + € Fluolos
KeTn

t t—7 2
+ p/ 8_2T |8{LL(7')|?{T+1(K) dT)) . (6618)
0

Proof. We invoke Theorem 66.9 (actually the bound (66.16)). Notice that the smoothness as-
sumption on u implies that v € C°(J; H™1(D)). Owing to the elliptic regularity pickup of the
adjoint problem, and adapting the proof of Lemma 32.11 and Theorem 32.15, we infer that for all
ve H Y (D)nHY(D),

v =115 (V)| L2 (py < e1 B*0 ®v — 10} (V)| 2 (py

2

< ey h%};s inf v —wp|m(p) <3 hsﬂ}:;s E h%ﬂvﬁﬁﬂ(m ,
wWhEVh KeT;
h

where the last bound follows from the approximation properties of finite elements. Here, ¢; is
proportional to % and cg, c3 are proportional to (%)2 We conclude by combining the above two
bounds and observing that 0;n = 0 (u — II} (u)) = dyu — II} (Oyu) since a is time-independent. O

Remark 66.14 (Decay rate). If u € L?(J; H"Y(D)) N HY(J; H"(D)), the estimate (66.17)
shows that [|u — unl|p2(s,m1(p)) converges with the rate O(h"), r € [1,k]. Moreover, assuming
w € HY(J; HtY(D)), the estimate (66.18) shows that the error ||(u — up)(t)||L converges for all
times ¢ € (0,7] with the quasi-optimal rate O(h""#%), r € [1,k]. The convergence rate takes the
optimal value O(h"+1) if there is full elliptic regularity pickup for the adjoint problem (s = 1).
Notice in passing that using the error equation (66.10) leads to a bound on |lu — UhHCO(j;Lz(D))
with the suboptimal decay rate O(h"); see Exercise 66.2.

Remark 66.15 (Smoothness of 9;u). In Corollary 66.12, the smoothness assumption on the time
derivative can be relaxed to u € H'(J; H"~(D)), but to do so one needs to consider an interpolant
with superconvergent approximation properties in H (D). One possibility is to use a variant of
the Scott—Zhang interpolation operator preserving mean-values over element patches and boundary
conditions, as done in Tantardini and Veeser [270, p. 337]. This operator, say Z}y, is such that
lv— 7}y (v)]2 m(D) < € KkeT, hi((sfm)|v|2 o(x) for all m € {=1,0,1} and max(0,m) < s <k +1.
Using this operator leads to the bound

T M2
e = unllZa iy oy < € < > Mk (y/ () T (1)t
KeTy J
2

p 1
+C§s%/]|atu(f)|§{rl(x)dt+ Eon@p(K)))-

If one is willing to accept the loss of localization in the error estimate, one can also use the L2-
orthogonal projection, since [[v — Ppro(v)||z-1(p)y < chllv — Pro(v)||L2(p); see Exercise 22.6 and
Remark 22.23. On the other hand it is not possible in Corollary 66.13 to lower the smoothness
requirement on the time derivative to d,u € L?(J; H" (D)), since the elliptic projection does not
have superconvergent approximation properties in H (D). O
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66.3.4 Extension to time-varying diffusion

The above analysis based on the elliptic projection can be extended under reasonable assumptions

to the case where the bilinear form a is time-dependent. In the context of the heat equation, this

means that the diffusion coefficient x is time-dependent. Recall that the time-dependent elliptic

projection II} (t) € L(V;V},) is defined in (66.11) for a.e. t € J. We assume that A: J — L(V; V)

is strongly differentiable and there is M’ such that [|0;A(t)(v)||yv: < p~tM'||v||y for all v € V and
2

a.e. t € J. Here, we used the time scale p := 2LLOLV so that the constants M and M’ have the same
units. We define the bilinear form a(¢; v, w) := (9 A(t)(v),w)y v for all v,w € V and a.e. t € J.
For the heat equation, M’ := p||0| L= (px.j) and a(t;v,w) := [, Opk(2, t)Vo(z)-Vw(z) dz.

Lemma 66.16 (Commuting with time derivative). Assume that u € H*(J;V). Then the
function J >t — E(t;u(t)) € Vi, is in H'(J; V), and we have for all wy, € Vi, and a.e. t € J,

alt; 0, (IE (£ u(t))) — IIE (£ Dpu(t)), wh) = a(t; u(t) — IIE (L u(t)), wr). (66.19)

Proof. We first establish (66.19) for smooth functions. We apply (66.11) with v(t) € C>(J; V), dif-
ferentiate this relation in time, and use the definition of II} (¢; 0;v(t)). The coercivity of a together
with the boundedness of a and @ shows that there is ¢ s.t. |[II; (¢; v(t)) || g1 vy < cllvll g1,y for
all v € HY(J;V) and all h € H (see Exercise 66.4(iii)). We conclude by invoking the density of
C>(J;V) in H'(J;V) (see Theorem 64.36 with V = W, p = ¢ := 2) and the linearity of the map
HY(J; V)3 v TIE(5 () € HY(T; V). O

Lemma 66.16 implies that the function t — n(t) := u(t) — O¥ (& u(t)) is in H*(J;V) (recall
that w € H'(J;V) by assumption). We can then apply the estimate (66.16) with this function.
To derive an error estimate, it remains to establish approximation properties of n and 9;n in L.
For simplicity, we focus on the functional setting of the heat equation where L := L?(D) so that
we can invoke the elliptic regularity theory. The time dependence of II} is irrelevant to estimate
1nll 22Dy, but it makes estimating |9:7]|12(py more delicate.

Lemma 66.17 (Estimate on [|0;(t)|/12(py). Assume that the elliptic regularity pickup from
Corollary 66.13 holds true with s € (%, 1]. Assume that k is continuously differentiable in time
and set M := p||0sk|| L (Dx.7). Assume further that Ok is smooth enough so that

la(t;w, 2)] < p~ "M |w|gi-s(py |2 gres(py,  Yw, z € Hy (D). (66.20)
Letting ¢, == (1+ %)%’ + (%)SMT”, there is ¢ s.t. for allh € H, o, M, M', M", and a.e. t € J,

10| 2(py < [|0cu(t) — 1T, (£ Oru(t))[ L2y (66.21)
+ cpflcﬁhszéb_sﬂu(t) — 105 (t; u(t)) | () -

Proof. See Exercise 66.4. O

2
Remark 66.18 (Lemma 66.17). The estimate (66.21) is somewhat suboptimal since (%)S <

(%)S < 1 (because h < ¢p and s < 1). Optimality is recovered if full elliptic regularity
pickup holds true, i.e., if s = 1. Furthermore, assuming that s is time-independent on the
boundary (so that (0;x)sp = 0) and that Oy satisfies the multiplier property [|0;xVz | mrs(p) <
p’lM”HVzHHs(D), the hypothesis (66.20) follows from |a(t; w, z)| < vaHH*S(D)HatHVZ”HS(D)-

O
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Corollary 66.19 (Heat equation with time-varying diffusion). Let r € [1, k|, where k > 1
is the degree of the finite elements used to construct the discrete space Vi,. Under the assumptions
of Lemma 66.17, if u € H'(J; H"t1(D)), there is ¢, proportional to cn%, s.t. for all h € H and
all t € (0,7,

52 pl1—s? r -2t
1w —un) ()l L2y < ch® L5 ( Z h% (|u(t)|§1r+1(}<) + 720 |uol B g
KeTy

+ / e-ff(p|agu<s>|zmm+p1|u<5>|%m1<m)dé)) . (6622)

Proof. The only difference with respect to the proof of Corollary 66.13 lies in the bound of the
term pfot e 25 10en()I72(py d€ from (66.16), which we now estimate by means of Lemma 66.17.
Let ¢ € J; := (0,¢). The approximation properties of II} (§) imply that

Hagu(f) - Hﬁ(ﬁ;agu(ﬁ))Hm(D) < Clhséi;s < Z h3 |8§'UJ |H7+1(K)>

KeTn

with ¢; proportional to (%)2, and

2

|u(§) - Hg(gvu(g)”Hl(D) <c2 < Z h%ﬂ”(f)@[ﬂd([{))

2
with ¢o proportional to % Since CK% > (%)2 and (%)S < (%)S < 1 since s € (0, 1], inserting
the above bounds into (66.16) proves the assertion. O
Exercises

Exercise 66.1 (L%(J;V)-estimate using elliptic projection). Use the notation from §66.3.1.
Assume that the elliptic projection is time-independent and set n(t) := u(t) —II} (u(t)) for all ¢ € J.
Prove that

1
lu = unllL2(vy < lnlle2evy + E”athL?(J;V’ \/—||77( )z
(Hint: use the error equation (66.12).)

Exercise 66.2 (Naive C°(J; L)-estimate). Use the proof of Theorem 66.7 to derive an upper
bound on [[u — unl|co7.1)- (Hint: integrate (66.10) in time over the interval Js := (0,s) for all

€ (0,7].) Assuming smoothness, is the convergence rate of this error estimate optimal for the
heat equation? What is the term that limits the convergence rate?

Exercise 66.3 (Theorem 66.9). Prove the error estimate (66.15). (Hint: see Exercise 65.4.)

Exercise 66.4 (Lemma 66.17). Let II}(t) € L(H{(D);V},) be defined in (66.11) for the time-
dependent heat equation. Let u € H(J; H} (D)) and set n(t) := u(t) — I1E(t;u(t)) for a.e. t € J.
(i) Prove that

M
[0m(®) |2 (p) < 10u(t) = Tt D) 1 (o) + o7 — (B 11 ()
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(ii) Prove (66.21). (Hint: use the adjoint problem a(t;v,&(t)) = (64(t),v)r2(p) for all v € H}(D),
with 95 (t) := 0. (I} (t; u(t))) — I} (t; Opu(t)) for a.e. t € J, and show that

180 (D) 172y = alt; 6n(2),£() — wn) + a(tn(t), wn — E(1) + alt;n(t), €(1)),

for all w, € Vj.) (iii) Show that ||II}(¢;u(t))||ar(sv,) < C(a,M,MT,)”u”Hl(J;V) for all u €
C>(J;V) and all h € H.



Chapter 67

Implicit and explicit Euler
schemes

In the previous chapter, we studied the space semi-discrete parabolic problem (66.6). The goal
is now to discretize (66.6) in time. Since this problem is a system of coupled (linear) ODEs, its
time discretization can be done by using one of the numerous time-stepping techniques available
from the literature. In this chapter, we focus on the implicit (or backward) Euler scheme and on
the explicit (or forward) Euler scheme, which are both first-order accurate in time. Second-order
implicit schemes called BDF2 and Crank—Nicolson are investigated in Chapter 68. The standard
viewpoint in the literature is to interpret the above schemes as finite differences in time. This is the
perspective we adopt in this chapter and the next one. We broaden the perspective in Chapters 69
and 70 by introducing a discrete space-time formulation and by considering higher-order time
discretization methods.

67.1 Implicit Euler scheme

One of the most basic methods to discretize in time the semi-discrete problem (66.6) is the implicit
Euler scheme. We analyze this method in this section by adopting the finite difference viewpoint.

67.1.1 Time mesh

Let N > 0 be a positive natural number. We divide the time interval J := (0,T) with 7" > 0 into
N subintervals J,, for all n € A, := {1:N}. All the intervals are of equal length to simplify the
notation (this is not a theoretical requirement), i.e., we define the time step to be 7 := %, the
discrete time nodes to be t, := n7, for all n € N, := {0: N}, and we set J,, := (t,_1,t,] for all
n € N, so that J = Unen. T

Given a Banach space B with norm ||-||p and seminorm |-|p, and a collection of members of
B, say v, := (V")nen, € BY, where v € B is associated with the time node t,,, we define the
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time-discrete norms and seminorms

”vTH??(J;B) = Z Tl %,

nENr

v ~ 5y i= max |[v"
H THeoo(J,B) neN . || ||B=

|UT|?2(J;B) = Z v, (67.1a)
neN;
Vrlgoe (7.) = max " |B. (67.1b)

One should think of [[v;||s2(s,p) and ””7”200(7‘3) as the time-discrete counterparts of [|v||z2(s,)

and |[Jv|| co(7.B)> respectively. These norms and seminorms will be useful to state the stability
results and the error estimates.

67.1.2 Principle and algebraic realization

Recall that the model parabolic problem is posed using the trial space X := {v € L2(J;V) | d,v €
L?(J;V')} and the test space Y := LxL?(J;V), where (V,L = L', V') is a Gelfand triple. Let
(Vi) hen be a sequence of finite-dimensional subspaces of V' which are constructed using a mesh
Th and a reference finite element (see §19.2.1 for H!-conforming subspaces). In the entire chapter,
we assume that the same mesh 7}, is used at all times; see Remark 67.2. The semi-discretization
in space uses the semi-discrete trial space X, := H*(J;V},) C X and the semi-discrete test space
Yy, := Vi, x L2(J; V) C Y. Our starting point is the semi-discrete formulation (66.6): Find uj, € X,
s.t.

(Opup (t),wp) L + alt;up(t), wn) = (f(t), wp)v: v, (67.2a)
Up, (O) = th (UQ), (672b)

where (67.2a) holds in L?(J) for all w, € Vj,, and where Py, : L — V}, is the L-orthogonal
projection onto V},. To avoid technicalities with point values in time, we are going to assume that
f € C°J; V') and that the map J 3 t — a(t;v,w) € R is continuous for all ¢ € J and all v,w € V.
As a result, we have uj, € C(J; V3,).

The main idea is to consider the ODEs in (67.2) at the discrete time nodes (t,)nenr, and use
the backward first-order finite difference formula to approximate the time derivative as dyup, (t,) =
w + O(7). Multiplying this approximation by 7 and setting u) := uj,(0) = Py, (uo),
the discrete problem consists of seeking a sequence of functions up, = (u)nen, € (Vi)Y s.t. for
all n € N,

(up — uzfl,wh)L +71a™(uy,wp) = 7" wn) vy, Ywp € Va, (67.3)
where a™(-,-) := a(tn;-,-) and f™:= f(t,) € V'.

Let I := dim(V},) and {p;}icq1: 1y be a basis of V3, (e.g., the global shape functions in V4). Let
U™ € R! be the coordinate vector of u} in this basis for alln € N, i.e., ul (x) := Zie{L n U, ().
Recall that the stiffness matriz A(t) € RI*! and the mass matriz M € R are defined s.t.

Aij(t) == alt; ¢, i), Vi, j e {1:1}. (67.4)

The mass matrix is symmetric positive definite, and the stiffness matrix is positive definite (see
§28.2.2-§28.2.3). Using the above notation, (67.3) is recast as follows: For all n € A, find U" € Rf
s.t.

Mij = (@5, i) L,

MU™ —U" ) 4 7 AU = TF", (67.5)
with A™ := A(t,) and the components of F" € R are ((f™, ;)v'v)ie{1.1}. Rearranging the terms
in (67.5) gives

(M +7AMU™ = MU+ 7F", (67.6)
showing that each step of the implicit Euler scheme entails solving a linear system with the positive
definite matrix M + 7.A".



Part XIII. PARABOLIC PDES 125

Remark 67.1 (Variants). If the source term f or the bilinear form a do not have point values
in time it is possible to consider averaged values over the time subintervals, e.g., one can set
a"(--) =1 [, a(t;--)dt and f":= 1 [, f(t)dt in (67.3). Several choices of the initial condition

are also pos51b1e as long as u) optunally approxunates UuQ.- O

Remark 67.2 (Time-dependent meshes). Considering time-dependent meshes is possible,
but the analysis of the time-stepping schemes becomes more intricate. Moreover, one must bear
in mind that changing the mesh too frequently can be problematic, even in simple problems as
the one-dimensional heat equation. A counterexample by Dupont [113] shows that frequent mesh
changes can introduce excessive dissipation and hamper convergence. [l

67.1.3 Stability

The stability mechanism that comes into play in the analysis of the implicit Euler scheme is the
same as for the continuous and the semi-discrete problems. Recall that o and M denote the
coercivity and the boundedness constants associated with the bilinear form a. To allow for a
more compact notation, we define the sequence of approximate time derivatives d,up, € (Vi)
(0rupr)™ = (up —up™") for all n € N,

Lemma 67.3 ((*(J;V)-stability). Let un, € (Vi)N solve (67.3) with the sequence of source
terms fr = (f")nen. € (VN. The following holds true:

1
ollunr gy + Tlorune oy + I 12 < I fe i + lubllz. (67.7)

Proof. Using wy, := u} as the test function in (67.3) leads to

n—1

(upy —up ™" up)n + 7a" (up, up) = 7(f" up)ve v (67.8)
The key stability mechanism for the time derivative hinges on the identity

n— n 1 n 1 n— 1
(uf ™ e = Sk — 3 g I+ 5k — (67.9)
Owing to this identity, the coercivity of a™, and bounding the right-hand side of (67.8) by using
Young’s inequality, we obtain

_ _ 1
lhllZ = lluh ™M IZ + luh = wp ™M E + orluplly < =71 7117 (67.10)

Summing over n € N, exploiting the telescoping form of the first two terms on the left-hand side,
and rearranging the terms proves the assertion. O

Remark 67.4 (Comparison). The stability estimate (67.7) has the same structure as the a
priori estimate derived in Lemma 65.10 for the continuous problem. Actually, both proofs use the
same arguments, the only difference being that the integration by parts in time is replaced by the
identity (67.9) and a summation over n € ;. The additional bound on TH(ST’U/h-,—”?g(J;L) in (67.7)
provides some (weak) control on the time derivative.

As in the previous chapters, we now derive a sharper stability estimate that captures the
exponentially decaying influence of the initial data. We consider the £>°(.J; L)-norm instead of the
C%(J; L)-norm since the setting is discrete in time. Recall that ¢z v is the operator norm of the
embedding V < L, i.e., it is the smallest constant s.t. |[v||z < t1 v]v]v for all v € V. Define the

”LV

time scale p := 2
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Lemma 67.5 (¢>°(J; L)-stability, exponential decay). Let up, € (Vi) solve (67.3) with
fr = (["nen, € (V)N. Assume (for simplicity) that 7 < 1p. The following holds true for all
n € N;:

_tn 1 _in—
g3 < e Fladlz+= Y e
ake{l:n}

th—1
[V (67.11)

Proof. Using the stability estimate (67.10), we infer that
T n n — n
(127 Il < lhlE + ooz g

_ 1
< lupllz + arlluhlly < lluh =M I1Z + =7l

Applying the incremental Gronwall lemma from Exercise 67.1 with ~ := 2%,

bn = 17| ™13, yields

an = lup]3, and

lupll7 1 [l
lupllz < . =T E — .
’ A+27)" o ke{l:n} (1427t

Since 27 < 1 by assumption, we have (1+ 2%)*1 < e 7. The bound (67.11) follows readily. [

67.1.4 Error analysis

Let us start by estimating the error in the £2(J; V)-norm. Recalling the discussion in §66.3 we first
write the error equation by using a generic operator Z;, : V' — V}, having optimal approximation
2

tL,v

properties, and then we make particular choices. We consider the time scale p := 2=

tr,v is the operator norm of the embedding V' — L.

, Where

Theorem 67.6 (/2(J;V)-estimate). Let u solve the model parabolic problem (65.10) and assume
that w € HY(J; V)N H?(J; V). Let n(t) == u(t) — Zn(u(t)) for all t € J. Set u, := (u(ty))nen, €
(N and n; = 9(tn))nen. € (V)V. Let upr € (V)N solve (67.3). Then we have

lur —unrllezrvy < artllOuull2crvy + callnelle vy + ellOmllzcrvy + eslln(0)|L,  (67.12)

with ¢y 1= L2, ¢ 1= , and c3 := ﬁ

Proof. (1) For all n € N, we set e}l := u}} — Zj,(u(t,)) € Vi, leading to the error decomposition
up — u(t,) = €} —n(t,). The idea is to estimate (e}),ecn,. in terms of n by invoking the stability
estimate (67.7), and conclude by means of the triangle inequality.

(2) We observe that for all n € A and all wy, € V},

(u(tn) — u(tn_1),wn)r + 1a" (u(tn), wn) = 7(f" + ", wi) v, v,
(recall that H*(J; V) — C°(J;V)) with

ultn) — ultn-1) Opu(ty) = —l/ (t — tn_1)O0nu(t)dt,

T T

Y =
where the last equality follows by integrating by parts in time. The above equalities are meaningful
in V’ owing to the smoothness assumptions on u. Notice in particular that H2(J; V') — C*(J; V").
Subtracting the above identity from (67.3) and using the definition of e}, we have for all w, € V},

(ef — eZﬁl, wp)r + Ta" (ep,wy) = 7(g", wp) v v,
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where

(9" wn)vrv = a™((ta), wn) + 771 (0(t) = 0(ta—1),wn)z — (", wi)vry
a™(n(tn), wn) +(£" —¢", wp)vr v,

with £":= 1 fJn Ogn(t)dt.

(3) Applying the stability estimate from Lemma 67.3 with e} in lieu of u}} and g™ in lieu of f"

and dropping the terms related to the time increment and the value of e, at the final time for
simplicity, we infer that

1
olenr lz2(v) < ZNgrllEan + I€nlZ, (67.13)

with epr == (e} )nen, and gr = (¢")nen,.. The boundedness of a”, the triangle inequality, and
the Cauchy—Schwarz inequality imply that

||97H§2(J;V/) = Z T||9n||%//

neN-
< (M) v + 7210 2w + 72 0] 2, )
neN-
<Ml oy + 1072 govry + TNl 2 gvry) -
(4) Taking the square root of (67.13), using the triangle inequality on the error w, —up, = 7y —epr,
and using that [[e? | < |[n(0)| L since u) := Py, (uo) readily yields the assertion. O

Remark 67.7 (Estimate (67.12)). If u € H*(J;V) N H?(J; L), then using ||¢|lyv: < tr.v] 9|z
for all ¢ € L, and the definition of the time scale p, (67.12) implies that

wr = vnrllez vy < ATNOkull 2y + c2llnellez vy + illOenllzzcriny + ealln(0)||z, — (67.14)

with ¢} = \/3—2, and cg,c3 as in (67.12). The first term on the right-hand side of (67.12) and

(67.14) is related to the discretization error in time and converges as O(7), i.e., the method is
first-order accurate in time. The other three terms, which involve the function 7, are related to
the discretization error in space measured in various norms. Notice also that owing to the bound
[vllr2(s:) < VT||0|| 1o (. m), (67.12) implies that

ﬁ”uf — Unrl|e2 vy < 7|0l Loo gy
2 C3
+ ﬁHnTHE?(J;V) + cullOmllpoe vy + ﬁlln(o)llb
under the slightly stronger assumption v € H'(J;V) N W%>(J;V’). A similar variant can be

established for (67.14). O

Remark 67.8 (Supercloseness). Assuming for simplicity that the bilinear form a is time-
independent, another interesting choice for the error decomposition is to set n(t) := w(t) —1II} (u(t)),
where IT} : V' — V} is the elliptic projection defined in (66.14) (that is, a(II} (v), wp) := a(v, wy,) for
all v € V and all wy, € V). This gives the coefficients ¢; := g, co:=1, and c3 := ﬁ in (67.12).
More importantly, we obtain a supercloseness estimate on the discrete error (see Remark 66.8),
ie., setting II} (u), := (II} (u(tn)))nen, , we have

5 (w)r — unrllez(rvy < eatllOwullz2crvry + eallOmll L2y + esln(0)] L,

which avoids the ¢2(.J;V)-norm in the upper bound. O
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We now consider the error estimates in the ¢°°(J; L)-norm. For simplicity, we invoke the

2
embedding L < V', and we use the time scale p := 2LLT‘V.

Theorem 67.9 (Improved (>(J; L)-estimate). Let u solve the parabolic problem (65.10) and
let up, € (Vi) solve (67.3). Assume that w € CO(J;V) N H?(J;L). Assume that T < %p (for
simplicity) and that the bilinear form a is time-independent. The following holds true for alln € N
and all h € H:

lu(tn) = uplle < In(ta)llz + e [In(0)l|z (67.15)
+ V(e dmllza(o.e.ym) + 7lle™ 5 Ouullao.0,:1)),
where n(t) == u(t) — I} (u(t)) and I} : V. — V), is the elliptic projection defined in (66.14).

Proof. We start as in the proof of Theorem 67.6, and we make the choice vy, (t) := II} (u(t)). The
crucial point is that a(n(t,),wy) = 0 for all n € N and all wy, € V},. We infer that

(e —en " wn)z +Ta" (e, wn) = T{E" — ", wn)vy,
where we recall that £" := %fJn dm(t)dt and ¢ = —1 [y (t = tn—1)0wu(t)dt. We now invoke
Lemma 67.5 and infer that for all n € N,
_tn _inthos
el <e #lepll +p > e 7 (10mlF2(sry + 710wl T2si1))s

ke{l:n}

where we used that

1 TP
ETH§IC — |3 < 7H§k — M7 < p(10ll72 (5, m) + T2 100l 225, 1)) -

tn—tk_1 tn

Since e~ ~ » <e 7 forall s € Jx, we obtain

ni2 < o602 —%8 2 2 —%8 2
lerllz <e™ e llenllz + plle™ 2 amllzz0,0):0) + 7 Plle™ 2 Ouulligo,,);L)-

Taking the square root of this estimate, recalling that [|e9|/, < ||7(0)||z, and invoking the triangle
inequality for the error u(t,) — u}} = n(t,) — e} proves the assertion. O

Remark 67.10 (Comparison). The improvement with respect to Theorem 67.6 is twofold.
On the one hand we capture the exponential decay of the influence of the error induced by the
approximation of the initial data. On the other hand the use of the elliptic projection removes the
suboptimal term ||1{|s2((0,t,);v) from the error estimate. O

67.1.5 Application to the heat equation

Let us now particularize the setting to the heat equation with V := H3(D), L := L*(D), V' =

H=Y(D), ||vllv := [[Vv|L2(p), and |[v][z = |[v]r2(py, so that tp,y = Cp'fp, where Cps is the
Poincaré-Steklov constant in H} (D) and ¢p is a length scale associated with D, e.g., {p =
2 ¢

diam(D). The time scale becomes p 1= Z 2.
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Corollary 67.11 (Convergence rates). Let r € [1,k], where k > 1 is the degree of the finite
elements used to build the discrete space Vy,. (i) Assume thatu € CO(J; H™1(D))NH(J; H™(D))N
H?(J; L*(D)). There are c1, ca such that for allh € H, 7, T, a, and M,

P
lur = wnrllee .1 (D)) < TE||8ttu||L2(J;L2(D)) (67.16)
(M P 1
+cah (;'u‘l"Z?(J;HT*l(D)) + E|atu|L2(J;H7‘(D)) + ﬁ|uo|m(p))-

(ii) Assume that there is some elliptic regularity pickup in the associated adjoint problem, i.e.,
there are s € (0,1] and cemo > 0 such that for all g € L*(D), the unique function &, € H}(D) s.t.
a(v,&g) = (9,v)12(p) for all v € Hy(D) satisfies ||| g+ (D) < Csmo™ "9l L2(p)- Assume that
uw € H'(J; H (D)) N H*(J; L*(D)) and (for simplicity) 7 < $p. Then there is ¢ such that for
alheH, r,T,a, M, and all n € N,

|u(tn) = upll2cpy < Tv/lle™ 2 duullL2(o,0,):22(Dy)
r4+spl—s M2 —in
+ch e (E) (|u(tn)|Hr+1(D) + e 2 || gri1(p)

+ \/me_%8tU|L2((0,tn);H7‘+1(D)))- (67.17)

Proof. To prove (67.16), we start from (67.14) and proceed as in Corollary 66.12 to estimate the
terms involving 1. To prove (67.17), we use Theorem 67.9 and proceed as in Corollary 66.13 by
using the approximation properties of the elliptic projection. O

Remark 67.12 (Corollary 67.11). The estimate (67.16) exhibits the optimal decay rate O(h" +
7). Notice that we are using the seminorms |ur|p (s gr+1(pyy and |Osu|r2( 5,57 (py). Moreover, it is
possible to localize the right-hand side of (67.16) to the mesh cells, and it is also possible to make
the weaker smoothness requirement u € C°(J; H'tY(D)) n HY(J; H"~Y(D)) N H*(J; H~*(D))
by starting from (67.12) instead of (67.14) (i.e., avoiding the embedding L?(D) — H~(D)).
Furthermore, the estimate (67.17) exhibits the quasi-optimal decay rate O(h" ¢ +7), and this rate
is optimal if there is full elliptic regularity pickup, i.e., the rate is O(h"™* + 7) if s = 1. Notice

that the seminorm |eft7579'Btu|Lz((07tn);Hr+1(D)) is used in (67.17). As in the semi-discrete setting
of §66.3.1, the use of the elliptic projection is crucial to achieve quasi-optimal decay rates. Finally,
we observe that all the terms on the right-hand side of (67.17) (excluding the factor h®) can be
localized to the mesh cells. O

67.2 Explicit Euler scheme

In this section, we briefly discuss the explicit Euler scheme. For brevity, we focus on the main
stability and error estimates. The salient difference with the implicit Euler scheme is that the
linear algebra involved at each time step is simpler since the inversion of a matrix involving the
stiffness matrix is avoided. But this gain in simplicity is traded against stability since now the
scheme becomes conditionally stable, that is, stability requires that the time step be smaller than a
constant times some power of the mesh size. In the context of the heat equation, the upper bound
on the time step scales as the square of the meshsize (for quasi-uniform mesh sequences).
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67.2.1 Principle and algebraic realization

We use the notation from §67.1.1 for the time discretization, and the notation from §67.1.2 for
the space discretization. As above, the space discretization is done using a sequence of finite-
dimensional and time-independent spaces (V},)nes, but to discretize the time derivative we now
write Opup (th—1) = w + O(7) for all n € N,. After setting u) := up(0) = Py, (uo),
as for the implicit Euler scheme, the discrete problem consists of seeking a sequence of functions
Upr = (U )nen, € (Vi)Y s.t. for all n € A7,

(up — up ™" wp) L+ 7a™ Hup wa) = T wn) vy, Yw, € Vi, (67.18)
where a"1(-,-) :== a(t,_1;-,-) and f*7 1= f(t,_1) € V"
Let U™, U™~ ! be the coordinate vectors of up and uzfl in the basis {cpi}ie{ltl}, respectively.
Recalling the stiffness matrix A(¢) € R?”*! and the mass matrix M € R*! defined in (67.4), the
explicit Euler scheme (67.18) is recast as follows: For all n € A,

MU™ —U"h) AT = (67.19)

with A"! = A(t,—1) and F*~! := ((f" ', ¢i)v'.v)ic(1.1}- Rearranging the terms in (67.19)
leads to
MU" = (M —7A YU 4 7L (67.20)

showing that each step of the explicit Euler scheme entails solving a linear system associated with
the symmetric positive definite mass matrix M. Inverting the mass matrix is significantly easier
than solving a linear system involving the stiffness matrix. Indeed, M is always symmetric and has
better conditioning properties than M+7.A™ (see §28.2.1). Notice also that M is time-independent.

67.2.2 Stability

The stability analysis of the explicit Euler time-stepping method depends on the following mesh-
dependent parameter:

lon v
o | 67.21
cowy () := tp,v max lvnlz | |

This quantity is nondimensional and it is finite since V}, is finite-dimensional. For the heat equation,
we have V := Hj (D), L := L*(D), with [Jv|ly := [[Vv||r2(p), [[v]lz = [[v]l2(p), so that vy =
C,ilp where Chpg is the Poincaré—Steklov constant in H& (D) and ¢p is a characteristic length of D,
e.g., {p = diam(D). If V} is a finite element space based on a quasi-uniform mesh sequence, the
inverse inequality in Lemma 12.1 shows that ¢y (h) < ¢/ph™! for all h € H. On a shape-regular
mesh sequence, the constant ¢y (h) scales like the inverse of the diameter of the smallest mesh
cell.

Recall that av and M denote the coercivity and the boundedness constants of the bilinear form
a. We use the notation vn, = (vV@)nen, € (Vi)V, v = (0} nen. € Vi)V, and 6,vp, =
(L(vp = v )nen, € (Vi)Y, and we use the time-discrete norms defined in (67.1). We consider
LZL,V

as above the time scale p := 2

, where ¢, v is the operator norm of the embedding V' — L.

Lemma 67.13 (¢(J;V)- and (°°(J; L)-stability). Let the sequence up, € (Vi)Y solve (67.18)
with the sequence of source terms f7 = (f" Vnen, € (V)N. Let & := 2. (i) Assume that T is

small enough so that the following parabolic CFL condition holds true:

1
T < gpg;%m(h)*?. (67.22)
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The following stability estimate holds true:
T 2, .-
allunr (i) + 5”571}4}17”?2(,];L) +lup 17 < Sz 72y + Il 12 (67.23)

(i) If in addition to (67.22), the time step also satisfies T < %p, we have for all n € N,

_tn 2 =ty B
g3 < e F gl + 2 Y re (67.24)
ke{l:n}

Proof. (1) Using wy, := u} as the test function in (67.18) and using the identity (67.9) leads to

1 1 _ 1 _ _ _ _
Skl = Sl + Sl — I+ ra 7 g = 7 v

Using Young’s inequality on the right-hand side leads to

1 n 1 n— 1 n n—
Skl2 = Sl + 5l — w1

+7a"  (up g — ZCVTH%H%/ < ETHf Y. (67.25)

We observe that

n—1

g up, =~ )

up ) = @ g ) — an

> auf I} - Ml — v g

> aup 3 — M em(h) Juf — a2 g
3 M2, -1

> Za e} — e e (W)? k- I

where we used the coercivity and the boundedness of a in the second line, the inverse inequal-
ity (67.21) in the third line, and Young’s inequality in the fourth line. Inserting this lower bound
in (67.25) and since MTQLZ?V =2¢2p~1 with &, = % and p =2

2
L

-~ we infer that

I = 3l 0+ (5 — 2 (0 ) I — g

1 " 1 e
+gor upl} < ol (67.26)
Using the bound (67.22) on 7 and summing over n € N, proves (67.23).

(2) The proof of (67.24) starts from (67.26) and proceeds by using the same arguments as in the
proof of Lemma 67.5. O

Remark 67.14 (Parabolic CFL). In the context of the heat equation, the upper bound on
the time step resulting from (67.22) scales as h2£]52. In practice, this is often a quite restrictive
limitation on the time step. Notice also that the upper bound in (67.22) depends on the model
parameters o and M and becomes more stringent if the diffusion coefficient is highly contrasted
(recall that « and M are global lower and upper bounds on this coefficient). This bound also
scales as k=%, where k is the polynomial degree of the finite elements (see the discussion at the end
of §12.1). Notice also that the factor % in (67.22) can be replaced by 1 if one completely discards
the nonessential term §||5Tuh7||§2(J;L) from the left-hand side of (67.23). O
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67.2.3 Error analysis

The error analysis for the explicit Euler scheme is similar to that of the implicit Euler scheme.
To avoid the proliferation of estimates, we just consider the error bounds with L-valued time
derivatives by invoking the embedding L < V’. Error bounds with V’-valued time derivatives can
also be derived by proceeding as in Theorem 67.6. Recall that Z;, : V' — V}, is a generic operator
having optimal approximation properties.

Theorem 67.15 (¢2(J;V)- and (~(J; L)-estimates). Let u solve the model problem (65.10)
and assume that v € HY(J; V)N H?(J; L). Let n(t) = u(t) — In(u(t)) for all t € J. Let us set
ur = (utn))nen. € (V)N and 1, == tn))nen, € V)N, Let up, € (V)N solve (67.18). (i)
Assume that the time step T satisfies the parabolic CFL condition (67.22). Then we have

ur—unrllez(rvy < a7l Onullr2(sir)

+ Il vy + 2l lezcrvy + allomll ey + eslln(0) ||z,

3 '7
with ¢ = %, co 1= @, and c3 = ﬁ with p = 2=, (ii) If in addition to (67.22) the
time step also satisfies T < %p and if the bilinear form a is time-independent, then letting n(t) :=
u(t) — I} (u(t)), where I} : V. — Vj, is the elliptic projection defined in (66.14), we have for all

ne./\/T,

u(tn) — uplle < 7v/2plle™ % OuullL2(o,t, ;1)
+ In(t)llz + e~ 2 In(0) |l + /2plle” % Oumllr2((0,60):1)-

Proof. (1) We follow the proof of Theorem 67.6. Let us set 1(t) := u(t) — vp(t) for all t € J, and
nr = (N(tn))nens,, where vy, is arbitrary in H*(J; V). For all n € N, we set e} := ull — vy, (ty,)
and obtain the error decomposition u(t,) — uj = n(t,) — e}}. A straightforward calculation shows
that for all wy, € V},,

(eh — i~ wn)r + ma" e wn) = 7(g

S WR)V Vs
with (g" " wn)vr v = @ (te-1),wp) + (€°7 =" wp)ve v, €70 = 1 [ 9(t)dt, and
ynli=1 fJn (tn, — t)Oru(t)dt. Invoking now the stability estimate (67.23), we infer that

T

2, _
allenr |77y < EHQT 77y + llenllZ-

The error estimate on ||u,—unz||¢2(s;v) follows from the same arguments as in the proof of Theo-
rem 67.6.

(2) The proof of the estimate on ||u(t,) — u}}| 1 is similar to that of Theorem 67.9, except that we
now invoke the stability estimate (67.24). O

Example 67.16 (Heat equation). Assume that we are approximating the heat equation with
H'-conforming finite elements and with the explicit Euler scheme under the parabolic CFL re-
striction (67.22). Then the bounds from Theorem 67.15 imply that the error estimates (67.16)
and (67.17) still hold true, that is, the error in the £2(J; H}(D))-norm decays as O(h" +7) and the
error in the ¢°°(.J; L?(D))-norm decays as O(h"+* + 1), where s € (0,1] is the elliptic regularity
pickup index (s = 1 if there is full elliptic regularity pickup). O
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Exercises

Exercise 67.1 (Incremental Gronwall’s lemma). Let v € R, v > —1. Let (an), 7. > (bn)nen,
be two sequences of real numbers s.t. (1 + v)a, < an—1 + by, for all n € N.. Prove that a, <
T + 2ke(tin} M’iﬁm for all n € N (Hmt' by induction.) Note: it is common to use

the above estimate together with the inequality 7 T’y < e 3 for ~v € (0,1). The reader is referred
to Exercise 68.3 for a discrete form of the Gronwall using an assumption that is weaker than
requesting that (1 +v)a, < ap—1 + by.

Exercise 67.2 (Inf-sup condition). Let X, := (V3)¥*! and Yy, = Vix(V4)N. Define

onllv; = sup,, ey, % for all ¢, € V}, and consider the following norms:

1
HUhTH%(,” = ||Uh 12 + llvnr Iz JV)+ 167 0n7 |72 Jv')+ ||5 Uhr||z2 (J:L)>

2 . 1
lyn= 15, == ~lyonllZ + llyin=llZa vy,

with (6rvp.)" = %(’U}? — vz_l), for all vp, € Xpr and all ypr = (Yon, Y1nr) € Yar. Define the
bilinear form b, : X, %Y}, — R s.t.

br(vnr, ynr) = (V) yon) L + Z (6r0n)" yin)L + a"(”ﬁayﬂ))'
neN;

Assume that a is symmetric. The goal is to prove the following inf-sup condition:

b T T 2
inf  sup 1br (Vhr i) >a (2)2. (67.27)
vnr€Xnr e, |Vnrllx, [Ynrllvi M
(i) Let Ay : Vi — Vy be s.t. (Ap(2n), wn)vy v, = a"(zn,wp) for all zp,wp € V), and all

n € ./\/7-. Consider the test function wp, = (wop, winr) € Yar with wqp = vg and wy), =
(Ap)~ ((5 vpr)") 4 vp for all n € N;. Prove that br(vnr,wnr) > alloar|%, . (Hint: use that
(Am)~1 is coercive on V; with constant M !, see Lemma C.63.) (ii) Prove that atllwl |3 <
M|} + Z{|(6rvnr)™ HQ, + thHL o2 + 72|(6yvn-)™||2. (Hint: use the boundedness of

(Am)~! on V} with constant a~1) (iii) Conclude. Note: let T; := T||6-,—UhTH§2(J‘L) and consider

;‘S

the bound on T; given in Lemma 67.3. Let T := ﬁH&TuMH?Q(J;V’;) and consider the bound on
%5 given by the inf-sup condition (67.27) (see Exercise 71.8). If the functions (Jyu(t,))nen, are

H?%J;L) = %%‘Il with the

2
smooth in space for all n € N,, one expects that To =~ Ls\/["

2
time scale p := 2LLT’V. Hence, Ty > T if p > 7, i.e., controlling T5 is more informative than just
controlling ¥;.

Exercise 67.3 (Implicit-explicit scheme). Let (V,L = L', V') be a Gelfand triple. Let B €
L(V;L) and A € L(V; V') be two operators. Assume that A is V-coercive with (A(v),v)y: v >
a3 for all v € V, and that [[v]|z < cpv|v]lv. Let ¢ be s.t. ¢ > max(|| Bl zov;z), | B*|| z(zsv)-
Let ug € V and f € C°(J;V’). Consider the model problem d;u(t) + A(u)(t) + B(u)(t) = f(t) in
L3(J; V'), and u(0) = ug. (i) Let v > 0, B € WH(D), ug € L*(D), and f € C°(J; H-1(D)).
Show that the time-dependent advection-diffusion equation dyu — vAu + B-Vu = f, ujpp = 0,
u(0) = ug fits the above setting, i.e., specify the spaces V, L, the operators A, B, and the constants
a, ¢ in this case. (i) Let f™ := f(t,) for all n € A;. Consider the following scheme: u° := ug and
for all v € V and all n € N,

(" — " 0)g + (A", 0)vry + 7B, v)L = (" )y
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Prove that if 2”LT‘V <1, then
_ 1 _ T
a7 + arllu™[I3 < lu" M7 + garlu” "+ 2a|\f"|\%/f-

(iii) Assume that (B(v),v)r > 0 for all v € V, and that the time step satisfies the bound 7 <
(We no longer assume that 2= < 1.) Prove that

_ 1 _ T
w17 + arllu™[3 < [T + gorlu” I+ Ellf”H%/w



Chapter 68

BDF2 and Crank—Nicolson
schemes

In this chapter, we discuss two time-stepping techniques that deliver second-order accuracy in
time and, like the implicit Euler method, are unconditionally stable. One technique is based on
a second-order backward differentiation formula (BDF2), and the other, called Crank—Nicolson,
is based on the midpoint quadrature rule. The BDF2 method is a two-step scheme, i.e., u} is
computed from uz_l and uz_z which are the approximations at the time nodes t¢,,_1 and t,,_».
This feature makes the BDF2 method not well suited to time step adaptation. Moreover, the
stability analysis must account on the way the scheme is initialized at the first time step (we use
here an implicit Euler step). In contrast to this, the Crank—Nicolson scheme, like the implicit Euler
scheme, is a one-step method, i.e., ujl only depends on the preceding time approximation uz_l
at the time node t,_1. We will see however that the stability properties of the Crank—Nicolson
method are not as strong as those of the implicit Euler method.

68.1 Discrete setting

We use the notation introduced in §67.1.1 for the time discretization, and we consider as in §67.1.2

the sequence of finite-dimensional and time-independent spaces (V3)nen for the space discretiza-

tion. The operator Py, : L — V}, is the L-orthogonal projection, i.e., for all z € L, Py, (z) is the

unique element in Vj, s.t. (z — Py, (2),wp)r := 0 for all wy, € Vj,. Letting N > 0 be a positive

natural number, recall that we divide the time interval J := (0,7") with 7' > 0 into N subintervals

Jp for all n € N := {1: N}. For simplicity, we assume that all these intervals are of equal length,
T

i.e., we define the time step to be 7 := . Letting ¢, := n7 be the discrete time nodes for all

n €N, :={0:N}, we set J,, := (tn_1,t,) for all n € N,.. For simplicity, we assume in the entire
chapter that f € C°(J; V') and that the bilinear form a(t;-,-) is well defined for all t € J.



136 Chapter 68. BDF2 and Crank—Nicolson schemes

68.2 BDF2 scheme

We review in this section the time-stepping technique based on the second-order backward differ-
entiation formula (BDF2).

68.2.1 Principle and algebraic realization

The idea is to approximate the time derivative using the BDF2 formula

Drun(t) = 3up(tn) — 4Uh(;7;—1) + up(tn—2) +0(),

for all n € N, n > 2. After setting ul) := Py, (ug), as for the Euler schemes, we construct the
sequence of functions up, = (U} )nenr, € (Vi)Y such that

(up, — up, wa)r + Ta’ (up, wr) = 7(f*, wr)vr v, (68.1a)

(Bup —2u) ™" + 2wl % wy) L + Ta” (uf, wy) = T wR) vy (68.1b)

for all w, € Vj, and all n € Ny, n > 2, with a™(-,-) := a(tn;-,-) and f" := f(t,) € V' for all
n € N,. Notice that an implicit Euler step is used at the first time step. Other choices are possible
for the initialization, for instance, one could use a second-order single-step implicit scheme as the
Crank—Nicolson scheme from §68.3.

Recall the stiffness matrix A(t) € R7*! and the mass matrix M € RI*! defined in (67.4), i.e.,
Aij(t) := alt; 05, 0:) and Myj == (@5, i) for all 4,5 € {1:1}, where {¢;};cf1.1y is a basis of V},
with I := dim(Vy,) ({@i}icf1:1y are usually the global shape functions in V;,). Then the algebraic
form of the BDF2 scheme (68.1) is as follows:

(M +1ANHU = MU° + 7F, (68.2a)
(M +7AMHU" = M(2U" "1 — JU™2) + 7F", (68.2b)

for all n € N7, n > 2 with A" := A(t,) and F" := ((f™, ¢i)v' v )icf1: 1}, and U™ is the coordinate
vector of uy in the basis {¢i}ie(1:1y, L.e., up := 32,04,y Ul'wi. The formula (68.2b) shows that
the computational cost of one step of the BDF2 scheme is comparable to that of the implicit Euler
scheme.

68.2.2 Stability

To account for the structure of the initialization in (68.1a), we assume that f* can be decomposed
into f1 := fL,+fL with f, € V' and f} € L. We define the time sequence f; := (f")nenr, € (V)N
such that
ft= L, =" VneN. n>2 (68.3)
The decomposition f! = f, 4+ f} may not be unique. One only requires that such a decomposition
exists with the quantities || f{.|v+ and ||fL||z being finite. The key idea is that we are going to
derive a stability estimate where the term || f1||1 has an additional factor o2 7 with respect to the
term || fil/||v+ (recall that o denotes the coercivity constant of the bilinear form a.)
Let us first establish a stability estimate by means of a coercivity argument. Recall the time

2
scale p = 2LLT’V, where ¢7, v is the operator norm of the embedding V' < L. We consider the
time-discrete norm H¢TH?2(J-B) =Y en, TIO"1E with ¢7 := (¢")nen, € BN, B:=V or B:=V’
(see (67.1)).
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Lemma 68.1 ((*(J;V)-stability). Let up, € (Vi) solve (68.1) with the sequence of source
terms fr = (f")nen, € V)N, Let f' = fl, + f} and fr € (V)N be defined in (68.3). The
following holds true:

]
2
Proof. The proof is similar to that that of Lemma 67.3. Let us first consider the case n = 1. Let
A € (0,2) and p € (0,1). Taking wy, := 2u}, in (68.1a), using the key identity (67.9) for n = 1, and
Young’s inequality to bound the right-hand side, we infer that

2
alluncl|Zervy + lup 17 < allfTH?z(J;vq +297%| LI + 5 llup 7 (68.4)

lupllz, = llupll7 + [lug, — upllz + 2a7ug I = 27 (fyr, up)vev +27(f1, up) e
2
T T
< )\—Hfé/l\%w + xarflup |+ —IFLI7 + wllupll?-
o I
Rearranging the terms leads to
112 1 02 12 T 12 7 102 02
(1= ) lupllz, + llup, — upllz, + (2 = Natljug ||y < E”fv'Hv' + ZHJCL”L + [Jupllz-
Since 2(1 — ) < 1, we have

1—p
T@H%H% + 2wy, — upll7)

Y

(1= w)llug I + g, —uplly
1—p

= =3 (lunllz + 12w, — w7 + llwall2),

where we used the identity |2u}, —u?||% + [|ud || = 2|lup||3 + 2||uj, — ud||%. Putting the above two
bounds together and rearranging the terms yields

3(2-))
luhlIZ + 12us = ubllz + =T —=orlunlly
3 T 3 24+ p

< — B+ ———7fL]2 + —E|ul)2. (68.5
=0 —,u))\aHfV v + = Il + 1_‘u||uh||L (68.5)
Now we choose A and p so that 3(%_:‘) = 1 and ﬁ = 2, ie, A =1+ @ ~ 1.707 and

p=3%2 —2~0.121. This gives

2 5

lupllZ + [12uy —up |7 + arllugllf < ET”f\l/'H%/' +2972|| fzlI7 + 5||U2||2L, (68.6)

: 3 ~ 24p
sice m ~ 28.14 S 29 and IT% ~ 241 S

of the following identity:

ot

. Let us now consider the case n > 2. We make use

2(3up — dup ™" +up % up)n = [luplf — ey 7
+l12uy; —up I = N120p ™ — 2T g — 20
so that, taking the test function wy, := 4u} in (68.1b), we infer that
gl = b ™ 7+ N2y — M IE — (120~ — w2012

n n— n— n 2 n
luh = 2up ™" + w7 E + 207Ul < Sl (68.7)
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Summing this bound over n € N., n > 2, adding the bound (68.6), canceling the telescoping
terms, and dropping the positive terms ||2uh —uy Y% and > onso llup = 2uf "t 4+ u 2|2 on the
left-hand side gives (68.4). (Notice also that we dropped the factor 2 in front of ar||u}||?, in (68.7)
since this factor is not present in (68.6).) O

We now derive a sharper stability estimate in the £°°(.J; L)-norm that captures the exponentially
decaying influence of the data on the solution.

Lemma 68.2 (¢>°(J; L)-stability, exponential decay). Let up, € (V)N solve (68.1) with the

sequence of source terms fr = (f")nen,. € (V)N. Let f; € (V)N be defined in (68.3). Assume
that T < %p. The following holds true for all n € N;:

n _tn 5 2 _tnthon o
g7 < ™% (01 E + 5ldli2) + 5 D0 we IR (688
ke{l:n}

Proof. Let us set v := %% We are going to show that, provided v < 21, e., % < %, we have
(1+7)a" <a" 40", VneN,, (68.9)
where a™ = |[u}||2 + ||2u} — uf |2 + 1Jr,y||uh||v7 b = 27(|f"|2, for all n € N;, and a° =
9172 fL 117 + 2|uf||2. Let us first consider the case n = 1. We multiply (68.5) by 1+, and we

,\ :

define A\ and p so that (2 ) = ﬁ and ﬁ = %, ie, Ai=1+ @, p(y) =1— W

Notice that u(vy) is a decreasmg function of «, and u(y) > 0 for all v € (0,7,) with 7, := %
Here, we have chosen v < 57 < 7. to fix the ideas. This yields

202 + p(y))

D s + b

(L+7)a' < ——=7|IfL]Z +

‘W

Since #( ) is an increasing function of v, a simple computation shows that #Q(f‘y) < ( y < 91. Since
21

M is a decreasing function of 7, we also have 2)‘(22“(7)) < 2)‘(22“(0)) < 3. This proves (68.9)
for n = 1. Let us now consider the case n > 2. Since we have [|2u} —u} |2 < 6/|up||2 +3[ju} "2,
we infer that |[uf||2 + [|2up —ul |2 < 7||up||2 + 3wy~ "||2. This in turn implies that

1 «

= ([uRllZ + 12uh — w7 12) < alluplly + allup ™1V
L,V

Recalling that % =>—and vy = % the stability estimate (68.7) gives
v

z
P
(L) (g7 + l12up; —up ™ I2) + orublli

3 2
< IIUZ_lH% 120y =y I+ Zarllun T Y+ Sl

7
The assumption v < 2 57 implies that 2 sar < #Z-. This proves (68.9) for n > 2. Having established
that (68.9) holds true for all n € NT, we obtaln the expected bound by invoking the incremental
Gronwall lemma from Exercise 67.1 and by observing that (1+~)~! < eF =e W fory € (0,2)
(see also the proof of Lemma 67.5). O

Remark 68.3 (Literature). The BDF2 scheme belongs to the class of multistep schemes. The
analysis of these schemes was started among others by Zldmal [294], Crouzeix and Raviart [95],
Crouzeix [94]. We also refer the reader to Thomée [273, Chap. 10] and the references therein. The
proof of Lemma 68.1 somewhat differs from the argument in [273, Thm. 1.7] (see also Exercise 68.4)
which combines the stability argument with the error estimate. Here, (68.7) has a telescoping form
and delivers a bound on the discrete second-order time derivative ||u — 2u}™" + u}"?||L. O
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68.2.3 Error analysis

Error bounds with V'-valued time derivatives of the solution to (65.10) can be derived by proceeding
as in Theorem 67.6, but to avoid the proliferation of estimates, we are just going to invoke the
embedding L < V' to estimate the error bounds with L-valued time derivatives. Let us start
by estimating the error in the £2(.J;V)-norm. Recall that o and M denote the coercivity and

2
boundedness constants of the bilinear form a and p := 2°=Y is a time scale. As for the implicit Euler
scheme, we consider a generic operator 7y : V' — V}, having optimal approximation properties.

Theorem 68.4 (¢%(J;V)-estimate). Let u solve (65.10) and assume that v € HY(J;V) N
H3(J;L). Let n(t) = u(t) — Zn(u(t)) for all t € J. Set ur = (u(tp))nen, € (V)N and
N = Mtn))nen, € (V)N. Let up, € (Vi)Y solve (68.1). There is ¢ s.t. for all h€ H, T, a,
and M,

1
lur = tnrlle2 vy < c (T2 (TH@WHCOQI;L) + LLHatttu”L%J;L))

# (1 ) il + L Wl + = O ). (6510

Proof. (1) Using the usual notation e} := uj — Ih(u(tn)), we have for all wy, € Vp,
(e, — ep,wp) L + Ta' (e}, wp) = 7{g", wp)vr v,

with <glawh>V’,V = a/l (n(tl)awh) + <§1 - ¢17wh>V’,V7 51 = %f]l 8tn(t)dt7 and 1/11 = %le (tO -
t)0xu(t)dt (see the proof of Theorem 67.6). The key idea to achieve optimality in the error
estimate is to split g'. We set g' := g{,, + g}, with g{, € V" and g} € L, where (g{,,, wp)v' v =
at(n(ty),wn) + (€', wp) v v for all wy, € Vi, and g} := —¢1. This implies that

(er, — e wn)r + 7@ (e, wn) = (g, wp)vr,v + 7(97, W)L (68.11)

The triangle inequality, the boundedness of a', and the Cauchy-Schwarz inequality imply that

1 . .
H911//||V/ < M|n(t)|lv + 7'75||8t17|\L2(J1;V/), and since |||y < tp v|¢llL for all ¢ € L, we infer
that

_1
lgir llve < Mln(t)llv + 7~ Ze,v 10mll 20,0

Moreover, we have ||g} || < ) 0uull co7,.1)- Notice that u € H3(J; L) implies that u € C%(Jq; L).
(2) We have for all n € N, n > 2,

(Bep —2ep ! + 2ep % wp) L + Ta" (ef, wr) = T(g" wr)vr v, (68.12)

with (g", wp)ve v = a"(n(tn), wn) + <§n 1/1" wp)yr v, § =T (E0(tn) — 20(tn—1) + 31(tn—2)),
and " =71~ (% ( ) = 2u(tn—1) + 3u(tn—2) — TOu(t,)). A direct calculation shows that

/am dt——/ dun(t)

1
Y= / (t — tn—1)*Opru(t)dt — _/ (t = tn—2)*Opru(t)dt.
T/, AT J g, 10,

The triangle inequality and the Cauchy—Schwarz inequality imply that
n (3 1 I s
H§ ||V/ S T (572 ||8thL2(Jn§VI) + 572 ||8t77||L2(Jn—1?V,))

_1 1
<772(3) 210l 22 (g, _ 00V -
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Similarly, we have

-

1l 5 1 5
”wn”V/ S T 1( % 27-5”atttuHLQ(JTL;V’) + (%)27—2 H(?tttu||L2(Jnilan;V,))
3 1

< 72(8)  0ueull L2, 0gmivy,s

since (%)% + (%)% < (2)5 Invoking the triangle inequality, the boundedness of a™, and the

boundedness of the embedding V' — L implies that

i1
g™ v < Mln(ta)llv + (3)* 7~ 2eLvllOmll L2 (s, - vty
1
+ (g)zT”L vIOweul L2, 0a,:0)-

(3) We now adapt the proof of Theorem 67.6. The stability estimate (68.4) established in Lemma 68.1
implies that

allenr (v ngl\ezuw +207%|lglI7 + 5 IIG?IH%, (68.13)

with g' := g{,, and §" := ¢" for all n € N, n > 2. Using the above bounds on ||g{. |[v+ and ||g" /v~
for all n € Ny, n > 2, we infer that

lg 172y = D TNG 15 = 7lgv i+ Y ~lg"l3
neN; neEN-,n>2

_1 2
< (M) lv + 7 ey lomlzon)’+ > r(Mlntta)llv
neN; ,n>2
1 1 3
+(3)7 7 2 v llOmll e, 0sn) + (5) 272LL,V||3tttu|\L?(Jn,lwn;L))

<c 3 (M) + 3 v 10l + T v 100wl )
neN;

=c (M2H777'H§2(J;V) + L%,VHatn”%?(J;L) + T4L%,v|\3tttu||%2(J;L))-

Using this bound together with the above estimate on ||g} ||z on the right-hand side of (68.13) and
dividing by a > 0 leads to

2., 2
lenrllzzcry < ¢ ( H777He2 sv)y T —o ‘8t77||L2(J Lt —T4||8tttu”L2 JiL)

Ly 2 012
S T auehnL).
Taking the square root and rearranging the terms, we infer that
1 M p
lensllercsavy < e (2l O)ls + T lllecaw + =0l oo

1
+ ET2||attu||co(7l;L) + %7‘2Hatttu||[‘2(‘];[,))u (6814)

2
where we used that p = 2-2Y and ||e})||, < [|7(0)||z (which results from u) := Py, (ug)). We
obtain (68.10) by invoking the triangle inequality on uj — u(t,) = e — n(t,). O
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Remark 68.5 (Initial split g' = g, 4+ g} ). Observe that the error estimate (68.10) scales
optimally like O(72) although the first time step is only first-order accurate in time. The special
treatment we gave to the consistency tem g' is the key to obtain optimality. More precisely, since
the consistency term [l [|7 in (68.13) is multiplied by 72, the corresponding error 74| 0seu| co(7,. 1)
scales optimally with respect to 7.

Remark 68.6 (Supercloseness). Assuming that the bilinear form « is time-independent for
simplicity, another interesting choice for the error decomposition is to set 7(t) := u(t) — ITf (u(t)),
where II} : V' — V}, the elliptic projection defined in (66.14) (that is, a(II}(v),ws) = a(v, wp)
for all v € V and all wy, € V). This leads to a supercloseness estimate on the discrete error e,
where the term 2 |[n.[|s2(.v) disappears from the upper bound in (68.14) (see Remark 67.8 for a
similar result for the implicit Euler scheme). O

We now derive an error estimate in the ¢>°(.J; L)-norm. The improvement with respect to
Theorem 68.4 is twofold. On the one hand we capture the exponential decay of the influence of
the initial errors. On the other hand the use of the elliptic projection allows us to avoid estimating
the error using the ¢2(J; V)-norm.

Theorem 68.7 (Improved (> (J; L)-estimate). In addition to the hypotheses of Theorem 68.4,
assume that T < 5p and that the bilinear form a is time-independent. Let n(t) := u(t) — I (u(t)),
where IIE : V' — V), is the elliptic projection defined in (66.14). There are c1,cq s.t. for all h € H,
7, a, and M, we have for alln € N,

lup, = u(tn)ll < In(tn)llL + 1 (6_# In(O)]lz + \/ﬁHe_%amHL?((O,tn);L))
+ep7? (efé_z 10seull o7,y + \/ﬁllef%3tttu||L2<<0,tn>;L>) : (68.15)
Proof. We set vy, (t) := I} (u(t)) in (68.11) and (68.12), i.e., e} = up — I} (u(ty)) and n(t) =

w(t)—TII¥(u(t)). This implies that we now have g{,, := ¢!, g} := —¢! (as before), and ¢g" := " — ™
for all n € N, n > 2. The stability estimate (68.8) established in Lemma 68.2 becomes

_tn 5 2 _tnotkon
lel? < e % (91eghl + llefl2) + =7 D e gt
ke{l:n}

with g := g{,, and g" := g" for all n € N, n > 2. Using the bounds on on ||gi~ v/, |9} ||z, and
llg"|lv+ derived in the previous proof, we infer that there is ¢ s.t. for all h € H, 7, o, and M,

_tn 5
leqll? < e (917 10nwullZu s, 1) + 5 IR

1 Ctn—tp_q
tc— Z e L%,V(Hath%?(Jk;L)+T4|‘8tttu||%2(Jk;L))v

_In—tk—a
where we used that e Ip < el

tn—ty_o tn—tp_1 _tp—s

e~ 4 since 7 < %p. Moreover, since e~ 2 < e

|~

[

2
for all s € Ji, and recalling that p := 2LLT’V and |[e?]|z < |n(0)||L, we obtain

In

. _ 5
lepl? < e (1 0uulog, .. + 5 In(O)I3)
+cp (|‘6_%8t77|‘%2((0,tn);L) + T4||6_Té7;3tttu|\%2((o,tn);1:)) :

Taking the square root, invoking the triangle inequality on u} —u(t,) = e} —n(t,), and rearranging
the terms proves the assertion. O
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Example 68.8 (Heat equation). Let us consider the approximation of the heat equation with
H'-conforming finite elements and BDF2. Let r € [1,k], where k > 1 is the degree of the finite
elements used to build the discrete space Vj,. Assume that u € CO(J; H™*Y(D))n H'(J; H" (D)) N
H3(J; L*(D)). Then Theorem 68.4 implies that the error in the ¢2(.J; Hi(D))-norm decays as
O(h™ +7%) and if u € HY(J; H1(D))N H3(J; L*(D)), Theorem 68.7 implies that the error in the
¢>°(J; L*(D))-norm decays as O(h"* + 72), where s € (0,1] is the elliptic regularity pickup index
(s = 1 if there is full elliptic regularity pickup). O

68.3 Crank—Nicolson scheme

We review in this section a method introduced in [93, Eq. (5)] which is now known in the literature
as the Crank—Nicolson scheme. This scheme is, as the implicit Euler scheme, a one-step method.

68.3.1 Principle and algebraic realization

The Crank—Nicolson scheme is based on the midpoint rule 8tuh(tn_%) = %(uh(tn) —up(tn—1)) +

O(7?), where tn_1=lpn_1+7. After setting u9) := Py, (up), as for the Euler schemes, we construct

the sequence of functions up, = (u})nen, € (Vi)Y such that

- n—1i n n— n—1
(UZ_UZ 17wh)L+Ta 2(%(uh+uh 1)7wh) :T<f 27wh>V’,V7 (68'16)

for all wy, € V, and all n € Ny, with a"~2(-,-) := a(t,_1;-,-) and f"7% = f(t,_1) € V".
Let U™, U"~! be the coordinate vectors of u} and uz_l in the basis {¢;}ieq1. 1}, respectively.
_1
Consider the stiffness matrix A"~ 2 € RI¥T st A} 2 = a(t,—13¢j. i) and recall the mass

matrix M € R st My, = (¢j, )1 for all i, € {1:1}. Then the algebraic realization of the
Crank-—Nicolson scheme is

1 1
MU™ 4 Sr AT EUT = MU = S AU (68.17)

with Fr=2 := (<.fn7%;‘;0i>V/,V)ie{1:I}- This expression shows that the computational cost of one
step of the Crank—Nicolson scheme is comparable to that of the implicit Euler scheme.

68.3.2 Stability

We start by establishing some stability estimates using the coercivity argument. Recall that «
denotes the coercivity constant of the bilinear form a. As above, we consider the time-discrete
norm ||¢T||§2(J;B) = nen. TN 1B with ¢r == (¢")nenr, € BN, B:=V or B:=V’ (see (67.1)).
Moreover, for every sequence ¥, := (v)),vpr) € (Vi)N 1, we set 07! := L (v +v)! ") for all n € A
Denoting up, € (V)Y the solution to (68.16), we set i, = (u),up,) and define 4} accordingly.

Lemma 68.9 (¢2(J;V)-stability). Let up, € (Vi)Y solve (68.16) with the sequence of source
terms fr = (f""2)nen. € (V/)N. The following holds true:

_ 1
alline | vy + lup 17 < allfrl\?zu;vq +[lupllZ- (68.18)
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Proof. Using wy, := %(ul +uy~') =: 4} as the test function in (68.16), observing tlhat (up —
uphap), = Lupl|2 — $llup |3, and employing Young’s inequality to bound (f"~ =, a})v/ v,

we obtain
1 1 i 1 _ 1 _1
Sl + sarlal < Slup= I3 + 5ol IR
We conclude by summing the above inequality over n € N-.. [l

Remark 68.10 (Comparison). The stability estimate (68.18) only controls the ¢2(J;V)-norm
of @p,, whereas the implicit Euler scheme and the BDF2 scheme both control the £2(J; V')-norm
of up, (see Lemma 67.3 and Lemma 68.1, respectively). Notice that the left-hand side of (68.18)

still defines a norm on wj, since OéHﬂhTH?z(J;V) + [[ul¥||2 = 0 implies that ulY = 0, ulY = 0,
uthl =2u) —u) =0, ﬂthl =0, and so on until u) = 0. Moreover, it is also possible to establish

an inf-sup condition for the bilinear form associated with the Crank—Nicolson scheme in the spirit
of what was done in Exercise 67.2 for the implicit Euler scheme. We do not detail this result here
for brevity since it is a particular case of the inf-sup condition established in Lemma 71.20 for the
more general class of continuous Petrov—Galerkin schemes of arbitrary order (the Crank—Nicolson
scheme is the lowest-order scheme in this class). O

Remark 68.11 (f-schemes). The implicit Euler, the Crank—Nicolson, and the explicit Euler
schemes are part of a family of methods parameterized by 6 € [0, 1] which approximate the bilinear
form a over the time interval J,, as a(t,—1 + 07, (1 — 0)u}' "' + 6u},wy,) and the time derivative by
L(up™ — ). This leads to

(up —up ™" wp) L+ 7a (1 = O)up ™+ Gupwr) = (T wndve v

for all wy, € Vj, and all n € N, with a”~'*9(-,.) :=a(t,_1 +07;-,-) and f"~ 110 := f(t,_1 +07) €
V’. The 6-scheme can be shown to be unconditionally stable when ¢ € (3,1] and conditionally
stable when 6 € [0, %) The method corresponding to 6 = %, which is the Crank—Nicolson scheme,
is said to be marginally stable. Notice that the Crank-Nicolson scheme is the only one in this
family that is second-order accurate in time. O

We now establish a sharper stability estimate in the £°°(.J; L)-norm that captures the exponen-
tially decaying influence of the data on the solution. However, contrary to the implicit Euler and
BDF2 schemes, this sharper estimate hinges on some assumptions on the data and on the time
step. In particular, the bound on the time step involves the following mesh-dependent parameter
already introduced in §67.2.2 for the analysis of the explicit Euler method:

CINV(h) = lp )y max ||UhHV (68.19)

oneV |lonlln
This quantity is nondimensional and it is finite since V}, is finite-dimensional. For the heat equation,
we have V := Hj(D), L := L*(D), with |[v|ly := ||Vv||r2(py and ||v|z := |[v] z2(p), and in this
context we have ¢, v 1= Cptlp, where Cpg is the Poincaré-Steklov constant in Hg (D) and £ is a
characteristic length of D, e.g., £p := diam(D). Assuming that V}, is a finite element space based on
a quasi-uniform mesh sequence, the inverse inequality in Lemma 12.1 shows that ¢y (h) < cfph™!
for all h € H.

Lemma 68.12 (¢>°(J; L)-stability, exponential decay). Assume that f € C°(J;L) and that
the bilinear form a is time-independent. Let up, € (Vi,)N solve (68.16) with the sequence of source
terms fr = (f" 2 )pen. € (L)N. Assume that

< gmin (1,5;101Nv(h)*1), (68.20)
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with &, = % The following holds true for all n € N, :

_tn po P _
lhllZ < e # (unllz + - lunlly) + < > e

< —3 3. (68.21)
ke{l:n}

Proof. For all n € N, let us define the linear operator Ay : Vj, — V}, by setting (Ap, (vp), wp)r =
n_1 . .
a(vp,wy) for all vy, wy, € Vi, Let us set f, > = Py, (f"’%) and notice that by assumption we

have ||f,?_% Iz < |If" 2]||z. The Crank Nicolson scheme (68.16) can be rewritten as follows:

1 1 1
up + gTAh(uZ) = uZ_l — gTAh(UZ_l) + f;; 2,
Squaring this equality and developing the squares, we obtain
1
lup 1L +raluh, up) + ZTQIIAh(UZ)H%
= Jlup T — raluyt up ™) + TQHA (up M7

n_1
+2r(up =t ) — A L+ R
Using the coercivity of a on the left- and right-hand sides, we infer that

2
-
lhlIZ + el |} + I AnuR) 1
< lup 7 HIE = arlluy T + —I\Ah( IR

n—1 n—1 n—1 n—1
+27—(u271, h 2)L_T(Ah(uh )s [ 2)L+72Hfh QH%

We now estimate the third, fourth, and fifth terms on the right-hand side. For the third term, we
use the bound (see Exercise 68.2)

[ An(vp)llL < Lzl e (B)M ||| v, Vup, € Vh, (68.22)
Vv
applied with vy, := uﬁ‘l and proceed as follows:
72 78
—||A =1 |4 2 _||A
H n(up DI = =1 AR (uh DI + T I AR (uh 2
T2
<2 _|4 + A i
13z AR (uh I H n(up DI
T2 1
< lf z 1A (™ DIE + Jorllun ™ I

where we used that 7 LL2VCIN\ (h)2M? = ar3p~2cpy(h)?E2 < JaT owing to the condition (68.20)

on the time step. For the fourth term, we use the Cauchy—Schwarz inequality, the embedding
inequality ||v||r < ¢p v|v||v for all v € V, and Young’s inequality to infer that

2 n—1 ’ﬂ—% < 2 n—1 _% < 2 n—1 _%
Tl(up ™y o] <27l MLl 2l < 2mep vl HivIg, 2l
2

YLV n— -1
sl o+ ollsy * I

_1
< sorluy Y + 7ol £y 2L

N



Part XIII. PARABOLIC PDES 145

For the fifth term, we use the Cauchy—Schwarz inequality, the above bound (68.22) applied with
v = uzfl, and Young’s inequality to obtain

_1
[T (An(up ™), fr *)] < —I\Ah( “HIE +2m0ll IR
1 n—1 "_% 2
< qorl S + 27pllfy 2L
where the last bound uses the same arguments as above. Putting everything together, we infer

that

2
-
lhllZ + arlluills + 1A @Il

7_2

n_1
< lup M7 + g 1A (DT + BT+ 72)1f, 211

1 +
Letting v := —T and invoking one more time the embedding V' — L, we have

L+ Dluplly < el + arllui iy,
S) that the above estimate can be rewritten as (1 + ¥)a, < an—1 + b, with a, = |[u}||? +

_1
4(1+'y s AR(up)[7 and by = 7ol £y %12 (note that 37p + 72 < Z7p since 7 < 1p by assump-

tion). Invoking the incremental Gronwall lemma from Exercise 67.1 and since ag < [|ul|% +
7742||Ah(u2)||% < udllz + SENufll3 (where this last bound is again a consequence of (68.22) and
the restriction (68.20) on the time step) leads to

1 Y0 12) ka*2 Iz
lupllz < s (lubllE + = [lup L5 . ?
2T \n n +1°
(1 + 4 ) 8 ke{l n} ( P
The assertion follows by recalling that 277 <1 yields (14 277)_1 <es. O

Remark 68.13 (Assumptions). For the heat equation, the condition 7 < §&; ¢iwy(h) ! leads
to an upper bound on the time step proportional to h. This is significantly less restrictive than the
parabolic CFL required for the explicit Euler scheme which imposes an upper bound on the time
step proportional to h?. Moreover, the assumption that the bilinear form a is time-independent
can be lifted by slightly modifying the Crank—Nicolson scheme (see Exercise 68.5). O

Remark 68.14 (Literature). The analysis of the Crank—Nicolson scheme was started among
others by Douglas and Dupont [109], Baker et al. [21], Douglas et al. [110]. We also refer the
reader to Thomée [273, Thm. 1.6 & Chap. 7] and the references therein for a thorough review of
this topic. To the authors’ knowledge, the argument in Lemma 68.12 seems new. O

68.3.3 Error analysis

The error analysis of the Crank—Nicolson scheme is similar to that of the BDF2 scheme. It is done
in §70.2.2 in the framework of continuous Petrov—Galerkin time schemes. The error estimate for
the Crank—Nicolson scheme is obtained by setting & := 1 in Theorem 70.11. Consider the approx-
imation of the heat equation with H'-conforming finite elements. Under appropriate smoothness
assumptions one obtains an error estimate in the ¢2(J; H}(D))-norm that decays as O(h" + 72)
and an error estimate in the ¢>°(.J; L?(D))-norm decays as O(h"** + 72), where s € (0,1] is the
elliptic regularity pickup index (s = 1 if there is full elliptic regularity pickup).
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Exercises

Exercise 68.1 (Heat equation). Write the error estimates for the heat equation using the BDF2
time discretization in the setting of Remark 68.8.

Exercise 68.2 (Inverse inequality on Aj). Prove (68.22). (Hint: observe that ||Ap(vp)|r =
[(An(vn),wn) L]

Twnlz and use the boundedness of a.)

maXy, ev;,

Exercise 68.3 (Discrete Gronwall’s lemma). The objective of this exercise is to prove the
following discrete Gronwall’s lemma. Let (Yn)nen, (@n)nen,, (bn)nens (¢n)nen. be sequences
of real numbers. Let B € R. Assume that

Y €(0,1),  ap>0, by >0, (68.23a)
ant+ > < Y ma+ >, a+B, (68.23D)
le{l:n} le{l:n} le{l:n}

for all n € NV;. Then we have

ant+ Y. < Y oa [] L B 11 11 . (68.24)

le{l:n} le{l:n} pe{l:n} 1 G

(i) Let d,, := Zle{l:n} Yiap + Ele{l:n}(cl —b))+B—a, and let S,, :=d, +a, + Ele{l:n} b;. Show
that S, (1 —~,) < Sp—1+ ¢, for all n > 2. (Hint: observe that a, < S,.) (ii) Show by induction
that Sn < > cqiny @l eqin ﬁ + Blleqi:ny ﬁ Conclude. (Hint: (68.23b) means that
d, > 0.) Note: if one replaces the assumption (68.23b) by the assumption (1 4+ v)a, < an—1 + ¢n
which implies (68.23b) with b; := 0, B := ag, and ; := —v for all [ € {1:n}, the incremental
Gronwall lemma from Exercise 67.1 leads to the same bound on a,, as (68.24). The incremental
Gronwall lemma only requires that v > —1, whereas the discrete Gronwall lemma requires that

v € (0,1) (ie., v € (—1,0) if one sets vy, := 7).

Exercise 68.4 (Variant on BDF2). The objective of this exercise is to revisit the stability
argument for BDF2 proposed in Thomée [273, p. 18]. Consider the setting introduced in §68.2 and
the scheme (68.1). (i) Show that for all k > 2

(G — 2up ™"+ qup 2 up)p = gl = g™ T = GOl lE = [y ~?02)
+ k= IRl —
.. k— — _
(ii) Prove that Y2yc 5.y b7 = llup " 17 = 3 (1 = lui~*117) = §luplig = gllug 17— Flubllz +
$lluf||?, and that

D o v 4 [T A T A L T R 1 (T
ke{2:n}
(iii) Show that

1 0.1 3k k=1, 1 k-2  k
(up, — up,up) L + E (Sup — 2wy~ + 5up ", up)L
ke{2:n}

> Hlupl? — 3llup 12 — Tlunllz — Tlubliz-
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(iv) Assuming that f¥ € L for all k € A, show that

Blluply — Nl M2+ D drallufly < luplZ + lusllz + Y- Arllllzlab)z.
ke{l:n} ke{l:n}

(v) Letting m € {0:n} be the index s.t. [|u}’|[L := [[unr ||y (7,1, show that

2l|unrll g 7.0y < luflle +llupllic + D 47l ¥z
ke{l:n}

(vi) Conclude that [[unr |y 7.y < lupll + FIF L + Xheqiiny 2715z
(vii) Modify the argument to account for f¥ € V’ instead of ¥ € L forall k > 2, and f! = e+ 1L
where f{, € V' and f} € L, and prove that

5 Tz
Jun e gey < SIBIE + 6720020+ 3 TIPANR
ke{l:n}

Exercise 68.5 (Variant of Crank—Nicolson scheme). Consider the following variant of the
Crank-Nicolson scheme: after setting uf, := Py, (u”), we construct the sequence of functions
Unr = (UM )nen, € (Vi)Y such that

(uﬁ — uZ*1, wh)L + %T(a"(uz, wh) + a"_l(u2*17 u}h)) = T<fn_% , ’wh>vl7v,
for all wy, € Vi, and all n € N, with a"(-,-) := a(t,;-,-), a" *(-,+) == a(tp_1;-,-), and f"_% =
$(f(tn) + f(tn—1)) € V'. Assume that f € C°(J;L) and that the restriction (68.20) on the time
step holds true. Prove again the bound (68.21) on [[u?||2 with f*~2 in lieu of f5~% on the right-
hand side. (Hint: adapt the proof of Lemma 68.12 by starting from the identity u} + %TAZ (up) =
upt — %TAZ_l(UZ_l) + fn=2.) Note: deriving an ¢2(J; V)-stability estimate as in Lemma 68.9 is
more delicate with this variant of the Crank—Nicolson scheme.
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Chapter 69

Discontinuous Galerkin in time

In the previous two chapters, we have used finite differences to approximate the time derivative
in the space semi-discrete parabolic problem (66.6). We now adopt a different viewpoint directly
relying on the space-time weak formulation from Chapter 65. The time approximation is realized
by using piecewise polynomial functions over the time mesh. The test functions are discontinuous
at the time nodes, thereby allowing for a time-stepping process, i.e., the discrete formulation
decouples into local problems over each time step. This leads to two new families of schemes.
In the present chapter, we study the discontinuous Galerkin method in time, where the trial
functions are also discontinuous at the time nodes. In the next chapter, we study the continuous
Petrov—Galerkin methods where they are continuous. The lowest-order version of the discontinuous
Galerkin technique is the implicit Euler scheme, and the lowest-order version of the Petrov—Galerkin
technique is the Crank—Nicolson scheme. All these schemes are implicit Runge—Kutta methods.

69.1 Setting for the time discretization

Recall that we divide the time interval J := (0,T), T > 0, into N subintervals .J,, for all n € N; :=
{1: N}, where N is a positive natural number. To simplify the notation, we assume that all the
time intervals are of equal length, i.e., we define the time step 7 := %, the discrete time nodes
tn i=nt, for all n € N'; := {0: N}, and we set J,, := (t,_1,1,] for all n € A.. Notice that here .J,,
is open at its left end and closed at its right end. The time mesh is defined as J; := U, cpr. Jn-
For all n € N, we define the mapping

~ 1 1 ~
T,:J:=(-1,1] = Jyu, T.(s) = E(tnil +tn) + 575 Vs e J. (69.1)

Let H be a real Hilbert space composed of functions defined on the space domain D C R?. Let
k > 0 be the polynomial degree used for the time approximation of the functions in L'(J; H). We
denote by P (J;R) the real vector space composed of the restrictions to J of the polynomials in

Pi(R; R). We adopt a similar definition for Py (.J,,; R) for all n € N, and observe that p € Py (J,,; R)
iff poT, € Py(J;R). We define

Pk(Jn;H) = Pk(Jn;R)@)H, (69.2)
ie., v € Pr(Jn; H) if there are m € N and {(Vi,p;) € HxPr(Jn;R)}icqo:my such that v(t) =
Zie{&m} Vipi(t). Also, given any basis {41 }ico:x} of Pi(J:R), v € Py(Jn; H) if there are {V; €
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Hhbieqory 8t v = 3 cq0.0y Ym(¥i 0 T 1). Notice that functions in Py (J,,;R) are not defined at
ty,—1 since J, is open at t,_1. The (broken) space composed of the H-valued functions that are
piecewise polynomials of degree at most k on the time mesh J. is defined as

PR(Jr H) == {v:: (0,T) = H | vy, € Pe(Jy; H), Yn € N} (69.3)

The functions in P,?(JT; H) are not necessarily continuous at the discrete time nodes, and they are
unspecified at t = 0. If H is finite-dimensional, then PP(J;; H) has dimension N (k + 1) x dim(H).
We also consider the space

PY(Tr H) == {v, : J:=[0,T) = H | v, 0,1) € Py (Jr; H)}. (69.4)

Hence, every function v, € PP(J.; H) can be represented by the pair (v-(0),v,((0.71) € HXPP(J,; H).
This means that the space PP(J,; H) is isomorphic to Hx PP(J,; H). By definition, every function
vr € PP(J;; H) is left-continuous at the discrete time nodes t,, for all n € N, i.e., v(t,) = v(t,) ==
limyq,, v(t), and we define the jump of v, at the left end of the time interval J,, (i.e., at t,_1) by

[vr]n-1 =0t ) — vr(tn_1), vt ) = 1}%151)7.(15”,1 + h). (69.5)

The time-discrete setting is illustrated in the left panel of Figure 69.1. Another useful space is the
subspace of PP(J,; H) composed of the functions v, : J — H that are continuous in time: For all
k> 1, we set

PE(J. H) == PP (J; H)NC°(J; H). (69.6)

If H is finite-dimensional, then Pg(J,; H) has dimension (Nk + 1) x dim(H).

"/(ﬁ\ﬁfﬁ(b)

’L)T(tl) ,’l

H H

v-(0)

Figure 69.1: Example of time-discrete function v, € Pp(J7; H) (left panel) and its time recon-
struction Rr(v,) € P¢,,(J-; H) (right panel, bold dashed curve, see Definition 69.5).

Recall that the model parabolic problem (66.3) is formulated using the Gelfand triple (V, L =
L', V"), the Hilbert spaces X := {v € L3(J;V) | v € L*(J;V')} and Y := LxL?*(J; V), and the
forms b: X xY — Rand £ : Y — R such that b(v,y) := (v(0),w)r + [, ((Ow(t), 2(t))vr,v +
a(t;v(t), z(t)))dt and £(y) = (uo,w)r + [,(f(t), 2(t))v,vdt for all v € X and y := (w,z) € Y.
In the entire chapter, we assume for simplicity that it is possible to consider pointwise values in
time of the bilinear form a. Let (Vj)re be a sequence of finite-dimensional subspaces of V. Let
us set Xy := HY(J; Vi), Yy := VixL2(J; V},). Given ug € L and f € C°(J; V') (for simplicity),
our starting point is the semi-discrete problem (66.6):

Find uj, € X}, such that
{ P (69.7)

b(un,yn) = L(yn), Vyn € Y.
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Recalling that Py, : L — V}, is the L-orthogonal projection from L onto V},, (i.e., (2—Py, (2), wp) 1 =
0 for all z € L and all wy, € V), let us set fi(t) := Py, (f(t)) € V}, for all t € J. Let us also define
Ap(t) : Vi, = Vi st (Ap(t)(vn), wr) L = ap(t;vp, wp) for all vy, wp, € Vi, and all t € J. Then,
setting up(0) = Py, (up), the semi-discrete problem (69.7) amounts to finding u, € H(J;V}) so
that the following holds true for all ¢ € J:

Oyun(t) = fn(t) — An(t)(un(t))- (69.8)

Remark 69.1 (Method of lines vs. Rothe’s method). In the method of lines, one starts with
the discretization in space using, e.g., finite elements. This leads to a finite set of coupled ODEs
(see(69.8)) which is then discretized in time. An alternative approach consists of applying a time
discretization technique to the weak formulation (66.3) first. This leads to a finite set of coupled
PDEs which is then discretized in space using, e.g., finite elements. This viewpoint is sometimes
called Rothe’s method in the literature. In many situations, both methods yield the same fully
discrete problem. O

69.2 Formulation of the method

Let k > 0 be the polynomial degree for the time discretization. In this section, we study the dG(k)
scheme to approximate in time the semi-discrete problem (69.7). This leads to a nonconforming
time approximation. The lowest-order version, dG(0), is the implicit Euler scheme studied in §67.1.

69.2.1 Quadratures and interpolation

Let {&1}ieq1: k413 be the (right-sided) Gauss—Radau nodes in the reference interval J:=(=1,1], and
let {wi}ieq1:k+1} be the corresponding weights. This set of nodes and weights gives a quadrature
of order 2k (see Proposition 6.7). Using the mapping T, : J = Jp, defined in (69.1) for all n € N,
we obtain a quadrature in .J,, with t,,; 1= T,,(&) and w,; 1= Fw; for all I € {1:k+1}. Notice that
setting ¢ := HTEL € (0,1], we have t,; = t,—1 + ¢7. We introduce the discrete measure Pyt (de)
defined on J so that

/Jg( pt 1 (dt Z/ Hugi )= > > wnagltna),

neN; neN; le{l:k+1}

for all g € C°(J;R). We slightly abuse the terminology by using the same symbol for the discrete
measure on J and its restriction to the intepzal In-

Let £;(€) := Hje{l;k+1}\{l} % € Pr(J;R) be the Lagrange polynomial based on the Gauss—
Radau nodes and associated with the I-th node, i.e., we have £;(§) = &y for all [,1" € {1:k+1}.
Let Z € {V',L,V}} and Ig* : HY(J;Z) — PP(J;;Z) be the Lagrange interpolation operator
associated with the Gauss-Radau nodes, i.e., we set for all v € H'(J; Z) — C°(J; Z),

I](C;R(U)‘J = Z U(tn,l)ﬁl © T1:17 Vn e NT' (699)

le{l:k+1}

Since Z¢* is L>°(J; Z)-stable uniformly w.r.t. 7 and leaves PP(.J,; Z) pointwise invariant, there is
c such that for all 7 and all v € H*"1(J; 2),

o = T ()l 2212y < e ol grs (g,2)- (69.10)
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Moreover, we shall use the following identities (see Exercise 69.1): For all p € PP(J;; L) and all
v,w € HY(J; L),

[z L gt = [ oo, (69.11a)
J J

[z it = [ (ow)e st @), (69.11)
J J

69.2.2 Discretization in time

The time-discrete trial and test spaces are defined by
Xpr 1= PP(JT1; Vi), Yir i= Xnr. (69.12)

We then consider the bilinear form b, such that for all (vpr, ynr) € Xpnr XYir,

b, (Uh7'7 yhT) = (Uh‘l' (0)7 Yhr (0))L + Z / (atUhT (t)v Ynr (t))LM(Iiil(dt)

neN, "

+ Z ([[Uhf]]n—lvyh‘r(tvt—l))lz‘i'/a(t?vh‘r(t)ayh'r(t)) iy (dt). (69.13)
neN; J

Similarly, we consider the linear form ¢, such that for all y,, € Yir,

Cr(Ynr) = (uo, ynr(0))r + /]<f(t)7yh7(t)>V’,V g (dt).

We observe that for all n € N,

[ @t e ) (@) = [ @one®) (0t (69.14)
In In
since the integrand is in Pop_1(J,; R) C Pop(J,; R) and the quadrature is of order 2k. The same
remark applies to the integral [ 7 a(t; vpr(t), ynr (t)) Ldt if the bilinear form a is time-independent.
The dG(k) scheme consists of solving the following space-time discrete problem:

{ Find up, € Xp, such that

69.15
br(uhru yhr) = E‘r(yhr)a Vyhr €Yy, ( )

Notice that (69.15) is a square linear system of size dim(Xp,) = dim(Ys,) = (1 + N(k 4+ 1)) x
dim(V4). The time approximation is nonconforming since the trial functions can jump at the
discrete time nodes. Hence, Oyup, is not necessarily integrable in time over J, but it is integrable
over all the time intervals J,, n € N,. To account for these discontinuities, the time integral of
the time derivative has been transformed into a sum over the time intervals {J, }nen,., and the
corresponding jump terms have been added in (69.13).

Proposition 69.2 (Localization). The dG(k) solution up, (if it exists) is such that up-(0) =
Py, (uo) and for all q € Py(Jn; Vi) and all n € N,

[ @uunr@),a®)dt + ([unrlor,a(t ) (69.16)

n

+ [ attsun .00 @) = [ (£O.aO)vy i@,

n n
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Proof. The assertion on uy,(0) follows by considering the test function yp, € Y5, with yp,-(0) := wy,
arbitrary in Vi, and y5,,((0,77 := 0. The identity (69.16) follows by taking the test function yn, € Y,
with y4-(0) == 0, Ynr|J, := q arbitrary in Pp(Jn; Vi), and ypr(0,77\s, = 0 for all n € . O

Proposition 69.2 shows that the dG(k) scheme leads to a time-stepping procedure, where . (0)
is computed first as up,(0) := Py, (uo), and then the restrictions uy,|;, are computed sequentially
by solving (69.16) for n = 1,2,..., N. Notice that the value up,(t,—1) from the previous time
interval (or the initial condition if » = 1) is needed to compute [up,]n—1 as defined in (69.5).

Example 69.3 (Implicit Euler, dG(0)). Let us take k := 0. Then dsup,|s, = 0 and [ups]n—1 =
up(tn) — up(tn—1) for all n € N;. Since the test function ¢ in (69.16) is constant in time and since
for £k = 0, the only (right-sided) Gauss—Radau node in J, is t,1 := t,, we obtain (up(t,) —
up(tn—1),wp)r + Ta(tn, up(tn), wn) = 7(f(tn), wn)v: v for all wy, € V, and all n € N;. Thus, we
recover the implicit Euler scheme studied in §67.1. Notice that (s, = u(t,) for alln e N;. O

Remark 69.4 (Literature). Discontinuous Galerkin methods in time have been originally con-
sidered by Hulme [192], Lesaint and Raviart [215], Jamet [196], Delfour et al. [102], Johnson et al.
[201], Eriksson et al. [116]. We refer the reader to Schétzau and Schwab [248], Akrivis and Makri-
dakis [7], Chrysafinos and Walkington [87], Schotzau and Wihler [249], Thomée [273, Chap. 12],
Schmutz and Wihler [247] for further results on the analysis of dG(k) methods for parabolic prob-
lems. g

69.2.3 Reformulation using a time reconstruction operator

A useful reformulation of (69.16) consists of combining together the time derivative and the jump
terms by means of a suitable time reconstruction operator in the same spirit as the discrete gradi-
ents introduced in §38.4 in the context of discontinuous Galerkin methods in space.

Definition 69.5 (Time reconstruction). The time reconstruction operator
Ryt Xpr o= PP (Tr;s Vi) = P2 (T3 Vi)
is defined by setting for all v € Xpr and all n € N,
Rr(vpr)(tn-1) = vpr(tn-1), (69.17a)
Rr(vnr)(tni) = vnr(tng)s Vie{l:k+1}. (69.17Db)
This definition makes sense since over each interval J,,, R, (vpr) is the Lagrange interpolation of

vpr at the Lagrange nodes {t,—1, {tn1}ic{1:k+1} ). The time reconstruction operator is illustrated
in the right panel of Figure 69.1. The key property of R, we are going to use is the following.

Lemma 69.6 (Derivative of R;). The following holds true for all vy,r € Xpr, all ¢ € Pr(Jpn; Vi),
and all n € N,

”/” (O4(Ro (vnr)) )t = ]f (Ortme, D)1t + ([omrlors altr )z (69.18)

n n

Proof. Recalling that the (right-sided) Gauss—Radau rule is of order 2k, using (69.17), and (R, (vpr)—
Uhrs Otq) 1 € Paog(Jpn; R), we obtain the identity fJn (R+(vnr)—Uhr, Orq)dt = 0. Then an integration
by parts gives

[ @R 010) = ). )1 = (R (1) = )i

n—1

= ([vnrln-1, Q(t:zr—l))Lv
since (R, (vpr) — vpr)(tn) = 0 and (R, (vpr) — th)(t:Ll) = —[vnr]n-1- O
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Recalling that Py, : L — V}, is the L-orthogonal projection from L onto V},, we set fj,(t) :=
Py, (f(t)) € V4, for all t € J. We also define Ay (t) : Vi, = Vi, s.t. (An(t)(vn), wr) L = an(t; vn, wp)
for all vy, w, € Vj, and all t € J.

Proposition 69.7 (Reformulations). (i) (69.16) is equivalent to

/ (ORo (e )(1), 4(£)) .t + / ot une (£), () 15 (dF)

n n

Z/ (f@t),q@)ve v pgii(dt), Vg € Pi(Jn; Vi), Vn € N (69.19)

n

(ii) (69.19) is equivalent to the following equations: For alll € {1:k + 1} and all n € N,
8tRT(uhT)(tn,l) + Ah(tn,l)(uhf(tn,l)) - fh(tn,l)- (6920)

Proof. The equivalence of (69.16) and (69.19) is a direct consequence of (69.18). To prove the
equivalence of (69.16) and (69.20), we observe that, since the Gauss-Radau quadrature is of order
2k, (69.19) can be rewritten as follows: For all ¢ € Py (Jp;R),

Z wn,lq(fn,l)(5tRT(uhT)(fn,l) + Ah(tn,z)(uZ’l) — fu(tn,), ’Uh)L =0.

le{l:k+1}
Using {L;}ieq1:1+1) as test functions yields the assertion. O
Example 69.8 (k = 0). Consider the implicit Euler scheme dG(0). The linear Lagrange inter-
polant of vy, over J,, using the time nodes t,,—1 and ¢,, is R, (vp,)(t) = t"T—ftvh(tnfl)—l- H%’lvh(tn)
for all t € J,, and all n € N;. (Recall that vy, = vn(t,) for all n € N, since vy, is piecewise
constant in time.) O

Remark 69.9 (Other definition). Letting 0x41(s) ‘= [[1eq1. 4413 % € Pry1(J:R), an equiv-
alent definition of R, is R+ (va-)(0) := vpr(0) and Ry (vpr))g, = Vhr|s, — [ons]n—10k+10T, * for

all n € N;. Moreover, as shown in Smears [262], one also has 041 := #(Lk - Lk+1), where
Ly, € P (J;R) is the m-th Legendre polynomial (see §6.1). We refer the reader to Exercise 69.4
for the proofs. O

Remark 69.10 (Literature). The operator R, was introduced in Makridakis and Nochetto
[223, Lem. 2.1] and used, e.g., in Schotzau and Wihler [249], Ern and Schieweck [122], Ern et al.
[125], Holm and Wihler [185]. O

69.2.4 Equivalence with Radau IIA IRK

It turns out that the dG(k) scheme (69.16) (or (69.19)) is related to an implicit Runge—Kutta
(IRK) scheme known in the literature as Radau ITA (see Makridakis and Nochetto [223, §2.3]).
More precisely, let s > 1 be some integer. An s-stage IRK scheme for solving (69.8) is defined by
a set of coefficients, {ai;}i jeq1:s}, {bitie{1:s}, 1Ci}icf1:s}, and is represented in the literature by
its Butcher tableau as follows:

€1 | @i -+ Q1s

(69.21)

Cs | as1 ... Ggs

| by -+ b
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Using the Butcher tableau, the time stepping for the semi-discrete problem (69.8) is done as follows
(see Hairer and Wanner [174, §2.2], [175, §IV.5], [176, §I1.7]): One first sets u) := Py, (uo), then for
all n € N, using the abbreviation t,, ; := t,,_1 +¢;7 for all j € {1:s}, one seeks {u;:’i}ie{lzs} cW
solving the following system of coupled equations:

upt —upt =1 Z aij (fn(tn,j) — Ah(’fn,j)(“Z’j))a (69.22)
jE{l:s}

and one sets u}! := u} ' +7 > jeqi:sy b (fatn;) — An (tnj)(uzj)) The s-stage Radau IIA method
is defined by setting (see [174, §3.3])

o 1 &i - 1 1 B gl +1
o=y [ L@ =g [ now o= (69.23)

for all 4,5 € {1:s}, where {&;};c(1.5) are the right-sided Gauss-Radau quadrature points in J and
L; € ]P’sfl(f; R) is the Lagrange polynomial associated with the i-th node. Notice that here we
have b; = a,; for all j € {1:s}, which means that u} = u,"* (recall that & = 1). Notice also that
tn—1 + ;7 = Ty (&;) for all j € {1:5} so that the above notation for ¢, ; is consistent with that

used for the Gauss—Radau points in J,,. The Butcher tableaux of the one-stage (implicit Euler),
the two-stage, and the three-stage Radau ITA IRK schemes are as follows:

4—/6 88—76 296—169v6  —2+3v6

115 1 10 360 1800 225
111 3 | 12 12 446 | 296+169/6 88+7/6 —2-3V6
1] 3 1 10 1800 360 225 (69.24)
1 1 1 1 16—/6 16+16 1 :
3 1 36 36 9
4 4 ‘ 16—/6 1646 1
36 36 9

The following result is proved in Makridakis and Nochetto [223, Lem. 2.3].

Lemma 69.11 (dG(k) < Radau ITA IRK). Let k > 0. Let up, € Xpr = P,E(jT;Vh) and set
{uZ"l i= Unr(tn1) Yief1: k1) for allm € N Then up, solves (69.15) iff {UZ’l}le{lzs} solves (69.22)
with s == k+1 for alln € N;.

Proof. Assume that up, solves (69.15), i.e., (69.20) by Proposition 69.7. Since ;R (un-)|s, €
Py (Jn; Vi), (69.20) implies that for all n € N7,

8tRT(uhT)|Jn = Z (fh(tn,j) — Ah(tn_’j)(uz’j))ﬁj o T;l
je{l:k+1}

Integrating this identity over (¢,—1,%, ;) for all i € {1:k+ 1}, using the definition of a;; in (69.23),
and since t,,; = T,,(&;), this gives

wpt =yt =y ai(Fulteg) = Anltag)(wh?)),
je{l:k+1}
since R, (upr)(tn—1) = tpr(tn_1) =: u’,fl and Rr(upr)(tn,i) = Unr(tn,i) =: uZZ (see (69.17)). This

shows that {UZ’i}ie{l:k-rl} solves (69.22) with s := k + 1 for all n € .. The converse assertion is
shown in Exercise 69.2. g

Remark 69.12 (Collocation). In view of (69.20), we say that the dG(k) scheme (or the Radau
ITA TRK scheme) is a (k+1)-point collocation method using the Gauss-Radau points {t,, 1 }icf1: k413
for all n € N; (the precise meaning of this assertion is clarified in §70.1.4, see Definition 70.6). O
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Remark 69.13 (Final stage). For any s-stage IRK scheme, the update u} is given by u}} =

a0u271 + Zpe{l:s} Oépu;?p’ where Qp = qu{l:s} bq(a_l)qlm Qo = 1- Zpe{l:s} Qp, and (a_l)Pq
are the coefficients of the inverse of the Butcher matrix (apq)p qe(1:s}. For the Radau IIA IRK
scheme, we have a;, = 0 for all p € {0:s — 1} and a; = 1. See Exercise 69.6. O

Remark 69.14 (Order conditions). The coefficients of any RK scheme must satisfy some order
conditions for the scheme to be of order p; see Theorem 78.5 and Exercise 70.3. In particular, it is
necessary to have Y je{1:s} b; =1 to get first-order convergence at least. [l

69.3 Stability and error analysis

In this section, we study the stability and the convergence properties of the dG(k) scheme (69.15).

69.3.1 Stability

The key stability mechanism we are going to invoke is a coercivity property of the bilinear form
br defined in (69.13). Let a > 0 be the coercivity constant of the bilinear form a. We equip
X, = P,E’(JT; V1) with the following norm:

Jone By, = lone sy + g (None (DIF + lens O3 + 3 Neneln-alf)-
neN;
Lemma 69.15 (Coercivity). (i) The following holds true:
br(Vnr,vnr) > @ HU’”'”%(}LT’ Yopr € Xpr. (69.25)
(ii) The discrete problem (69.15) is well-posed.

Proof. (i) Let vy, € Xp-. Using the coercivity of a(t;-,-) at the (k + 1) Gauss-Radau nodes and
the positivity of the weights w;, we obtain

‘/] a(t; Uhr (t)u Uhr (t)) quil (dt) = Z wn,la(tn,l; Uhr (tn,l)u Uhr (tn,l))

le{l:k+1}

2o 3 wnilveltadl} =a [ @l

le{1:k+1} In

since the integrand is in Poy (J,,; R) and the quadrature order is 2k. Moreover, using that % lon- |2 =
2(04vnr, Vnr )1, the identity 2(a — b)a = a® — b + (a — b)? with a := v, () ;) and b == vp, (t—_1),
and the definition (69.5) of [vp,]n—1 gives

[ @t (0 00 ()1t + (oo, vne (651

(]

neN; "
1
=3 3= (Ionr @I = lonr DI+ 2([onTn-1, vnr (1))
neN;
1
=5 2~ (Ionr(ta) I3 = onr (tn-)lI3 + 1 onrdas ]} )
neN;
1 21 21 2
= Slonr DI = Sllenr O +5 3 lllonrln-1l3.

nENr



Part XIII. PARABOLIC PDES 157

Combining this identity with the lower bound on a proves (69.25).
(ii) The well-posedness of (69.15) results from the Lax—Milgram lemma. O

69.3.2 Error analysis

Let Z € {L,V4} and recall that H'(.J; Z) < C°(J; Z). To handle the consistency error optimally,
we introduce the operator I1¥ : HY(J,,; Z) — Py(Jpn; Z) for all n € N s.t. for all v € H(J,,; Z),

Hﬁ (V) (tn) = v(tn), (69.26a)

/ (I5 (v) —v,q)dt =0, Vg e Py 1(Jy; Z). (69.26b)
Notice that the statement (69.26b) is void if & = 0. The above definition can be extended to
Z := V' by replacing the L-inner product in (69.26b) by the duality bracket between V' and V
and by taking ¢ € Pr_1(J,; V).

We then define II¥ : H'(J;Z) — PP(J-;Z) by setting II%(v)(0) := v(0) and IT¥(v);, =
I1% (v, for all n € N;. Since II¥ leaves P} (J,; Z) pointwise invariant and is L>°(J; Z)-stable
uniformly w.r.t. 7, there is ¢ s.t. for all 7 > 0 and all v € WF+1°(J; Z),

[[v— HE(U)HL“’(J;Z) < CTk+1|U|Wk+Lw(J;z)- (69.27)

The definition of IT* is motivated by the following result.

Lemma 69.16 (Orthogonmality). The following identity holds true for all v € H*(J;L), all
Yr € P};(JT;L), and alln € N,:

[ (00 = 1))t = (1,06 = 0 (69.29)
Proof. Let § := v —1II¥(v). We integrate by parts in time and use the definition (69.26) of IT% and
the fact that 0y, s, € Pr—1(Jn; L) for all n € N;. Recalling that §(t,) = 0, this yields

/J (046, y2) pdlt = — / 6.0w)0 + [G.9m)0]" = (1) ()

J n—1
JIn

Then (69.28) follows from [IT¥(v)],—1 = —6(t} ) since IT¥(v)(tn—1) = v(ta—1) = v(t} ;) (recall

that v € C°(J; L)). O

Remark 69.17 (Other definition). Let Lj be the k-th Legendre polynomial and let =, :
L?(Jp; L) — Py_1(Jy; L) be the L2(J,,; L)-orthogonal projection. Then an equivalent definition of
ITF is to set IIE (v)(¢) == (v(tn) — Z2_, (v)(tn)) Li(t) + Z2_, (v)(¢) for all v € HY(Jy; L), all t € Jy,
and all n € N-. O

To separate the time approximation and the space approximation, we assume that we have
at hand a time-independent space approximation operator IT;, € L(V;V;) with [[TIx|lzv,v;)
uniformly bounded w.r.t. h € H. We could take, for instance, the quasi-interpolation opera-
tor Zp¥ or the elliptic projection II} if the bilinear form a is time-independent. We extend IIj,
to L(L*(J;V); L*(J; V) by setting I, (v)(t) := I (v(t)) for all v € L?(J;V). Notice that
Oy (v) = I, (0pw) for all v € HY(J;V) owing to Lemma 64.34. We are also going to use the
commuting property I1¥(ITj,(v)) = II,,(IT%(v)) for all v € H*(J;V); see Exercise 69.7.

We can now state the main result of this section. We extend the ||| x,.-norm defined above to
LZL,V
« )

HY(J;V)+ X, (we use the same notation for simplicity). Recalling the time scale p := 2 we

set py == max(p,T).
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Theorem 69.18 (L%(J;V)-estimate). Let u € X solve (66 3) and up, € X;W solve (69.15).
Assume that w € HFF2(J; V) N WHEFLS(J: V). Let c1(u) := L |u|grsa(ryn + £:T2 |u|yy, o (J3V)
with the contrast factor &, 1= % There is ¢ s.t. for all h € 7-[, o, M, and T,

V2
=l < =l = TaCuo) 1.+ (7447 er () (69.29)

1 1
+ 110w = Ha(ew)l 2 (v + &wpg llu — Hh(“)”L‘”(J;V))-

Proof. Let ypr € Xpr. Owing to the regularity assumption on u, we have (Oyu(tni),ynr)r +
a(tni;u(tng) ynr) = (f(tn1) Ynr)ve,v for all n € Ny and all I € {1:k+1}. This gives

by (s ) = (110, yr (0))1, + / CF, oYy G (d8)
J
= (uO,yhT(O))L+R(yh7)+/(8tu,yhT)Ldt+/a(t;u,ym)uﬁil(dt),
J J

with R(ynr) = [;(0ut, ynr) g, (dt) — [ (Opu, ynr) Ldt. Let us introduce vy, = Ik (10 (uv) € Xpr
and let us set ep, := upr — vpr and ) := u — vp,. Using the above calculation for b, (upr, ynr), we
obtain

bT (u’hT — Uhr, th-) - (UO — Uhr (O) Yhr (O)>L + R(yhT)
+ Z / (Oe(u = vnr ) ynr) £dt — ([Vnrln—1, yn- (65 _1))L

neN-

+ / a(t; U — Vhr, yhr)ﬂjcil(dt)
J
By definition of IT¥, we have vy, (0) = TI¥(IT;(u))(0) = I, (u)(0) = II;(uo) (notice that ug =
u(0) € V since u € W*+L.2°(.J; V). Moreover, using Lemma 69.16 for the function v := IIj, (u) and
since Oy (I, (u)) = M (Jpu) (recall that u € H(J; V) by assumption), we infer that for all n € N,

(8tvh7-7yh7-)Ldt+ (Tonsln—1,yn= (1))

\

/J (), ynr) pdt + ([T (T ()1, ynr (6 _1))

(O¢(p(w)), ynr)pdt = / (Ip(O¢wr), ynr ) pdt. (69.30)
I Tn

Hence, we have
br(enr,yYnr) = (uo — Iy (uo), ynr(0)) + R(ynr)
+ /(&u — Op(dyu), ynr)pdt + / a(t; 0, Ynr ) pi 1 (dL).
J J

Let T4,...,%, denote the four terms on the right-hand side. We have

1] < [luo — Tx(uo)l 2 lynr(0) |-

Furthermore, since [ ( 8tu Yne) Lt (dt) = [[(ZF%(Owu), ynr)Ldt by (69.11b) with Zg® defined
n (69.9), we have R(yp,) fJ (Z7* (Oyu) — Oy, Y- ) pdt. Using the approximation property (69.10)
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of Zg® with Z := V’, this gives
|Ta| < NZ™(0ew) — Owull 2w llyns | L2 (svy
< e Mulgree v lunel L2 vy

Moreover, we have |T3| < [|8yu— 1, (pu) || 2(7:v) |Ynr| L2,y - Finally, since IT% and IT; commute,
the stability of II, and the approximation property (69.27) of II¥ imply that for all [ € {1:k-+1}
and all n € A,

InCn v < (=T () (tn ) v+ [Tl v [ (o = T () (1) | v
< = ()l Lo vy + CTk+1|u|W’C+1’°°(J;V) =: C(u).

Invoking the boundedness of a, the Cauchy—Schwarz inequality, and since the quadrature is of
order 2k and }-, cns > je1 1y Wit = T, we infer that

1
Tl < > Y wnaMCW)|[ynr (tn)lv < MT2C(w)llynrll2(sv)-
neN; le{l:k+1}

Combining the above estimates and recalling the definition of the ||| x, -norm and the definition
of ¢1(u) in the assertion shows that

b
sup b7 (enr, Ynr) < \/%HUO — 10, (uo) | -i-COchJ'_lCl(u)
Yrhr EXhr Hyh‘rHX}m—

+ [0 — T4 (D) || L2 (gevry + MTE ||u = T (w)]| oo (v -

We now invoke the coercivity property (69.25) which implies that

b
allenrllx,. < sup [br(enr, ynr)l
Ynr €EXhr ||yhTHXhT

Combining the above two bounds and using the definition of &, yields

luo = Tn(uo)llz + 7+ er(u)

< —
fenrlx,, < 22
1 1
+ a”atu = (Opu) | 2(avry + & T2 |lu = T (w) || Lo (v
Finally, the triangle inequality implies that ||u—up| x,. < |lenr|lx,. + 7l x,.- Using the definition
of the time scales p and py yields

LL,v 3
Ml x0, < lInllz2vy) +e Ja 0l (rvy < EpglnllLe(rvy-

Reasoning as above then shows that [|7]|ze(svy < lu — Ia(w)|| oo (svy + ¢ TFFulpprsrce (7,1

)

Putting everything together concludes the proof. [l

Remark 69.19 (Optimality in time). The identity (69.30) satisfied by the operator IT¥ is the
key to achieve an optimal error estimate in time. O



160 Chapter 69. Discontinuous Galerkin in time

Remark 69.20 (Supercloseness). Assume that a is time-independent so that one can use the
elliptic projector II;, := 11} in the proof of Theorem 69.18. Since the operators 1% and II} commute
and [ a(I1¥ (u) — IIE (TIF (u)), ynr)dt = 0, we have [ a(u—n,yn-)dt = [; a(u—TII5(u), ys,)dt. This
in turn implies that || [, a(u —n,-)dt||x; < Mllu— I (w)| L2 gyvy < eMTRul geve( gy One
finally obtains

V2 1
lenrllx,, < ﬁ”“@ —TI5 (uo) || + e 7 ey (u) + gllatu — 5 (0w L2 (gyvry.-

This estimate delivers optimal order in space since ||-||y/ < %HHL O

Remark 69.21 (Convergence, heat equation). Let us consider the approximation of the heat
equation with H!-conforming finite elements. Let r € [1,k'], where &’ > 1 is the degree of the
finite elements used to build Vj,. Assume that v € H*2(J; H-Y(D)) n Wkthee(J; HE(D)) N
Wheo(J; H¥+1(D)). Then the estimate from Theorem 69.18 implies that |ju — Unr || L2(ssm3)

’ 1
decays as O(7Flci(u) + h¥ ca(u)) with co(u) = pi [ullwr.ce (g g1y Moreover, the estimate

from Remark 69.20 implies that ||(u — up-)(T)||r2(p) decays as O(T*F ey (u) + WF 5053 eo(u)),
where s € (0,1] is the elliptic regularity pickup index (s = 1 if there is full elliptic regular-
ity pickup). Finally, since the constant ¢ in the estimate does not depend on 7T, the error
sup,en. [|(u — uns)(tn)||22(py decays with the same rate. O

Remark 69.22 (Literature). Further developments on the error analysis can be found in Thomée
273, Chap. 12]. In particular, [273, Thm. 12.2] shows that ||u—unr(| 7.1y < c(TF (plul gree i)+
Vaplulyrieerv)) + lu = I (u)|| £2¢s;2)), and under more restrictive smoothness assumptions,
[273, Thm. 12.3] shows that the error in time decays as O(72*+1) for k > 1. O

69.4 Algebraic realization

Let us set m := k + 1. Recall that the quadrature induced by the mapping T3, : Ji= [-1,1] = J,
defined in (69.1) has nodes {t,; = Tn(§)}ieq1:my and weights {w,; = Fwiticfi:m}. Let
{@i}ie{l:]} be a basis of V}, e.g., the global shape functions in the finite element space V}, (recall
that these functions are also defined by invoking a mapping to a reference element, see Propo-
sition 9.2 and §19.1). Let the mass matrix M € R!*!  the time-dependent stiffness matrices
AP € RIIand the load vectors F»? € R! be such that for all p € {1:m}, all n € N, and all

1,5 € {1:1},

Mij = (g0, AGY = altnp; 05, 0i), FP = (Ftap) pi)ve v (69.31)

69.4.1 IRK implementation

Since the solution produced by the dG(k) scheme and the Radau ITA IRK scheme are identical
according to Lemma 69.11, one way to implement the method is to use the IRK strategy (69.22)
with s := k+ 1 = m stages. Recall that u) := Py, (uo), uprs, = 2 ope{im} uyPL,0T, 1, and
up™ = up(t,) for all n € N;. We define U™ to be the coordinate vector of u}' in the basis
{@iticqr. 1y for all n € N;. Likewise we define U™ to be the coordinate vector of u),” in the basis
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{@iticqi:ny for all p € {1:m}. Then at each time step n € N7, (69.22) amounts to solving the
following linear system:

M + T(lllAn’l .. T(llmAn’m Un,l an,l
Tam A1 oo M+ Tamm AT™ ynm Gnm

with the coefficients {apq}p.qe{1:m} defined in (69.23) and the load vectors GmP = MU 4
T ge{1:my WwaF™1 € R’. Finally, we set U" := U™,

69.4.2 General case

We now write the linear system corresponding to the dG(k) scheme (69.16) for a general basis
{¥q}qer1:my of Pr(J;R). For all n € N and all ¢ € {1:m}, we introduce the coordinate vectors
U e R s.t. up,(z,t) == D11} 2ge{iim) U % (T (t)) () for all (,t) € Dx.J,. For all
n € N, an all p,q € {1:m}, we define

A= 3T D@ () A € R, (69.33)
le{l:m}
1
bpg = 1 UL+ (1)1, (69.34)

Considering test functions of the form ¢; ()¢, (T, 1(t)), we rewrite the dG(k) scheme (69.16) in
the following block form: For all n € N,

bllM + T.An"ll ce blmM + TAn’lm Un’1 Gn"1
s z =1 ] (69.35)
bmlM + TAn,ml L bmmM + TAn,mm ynm Grom

and set U™ := }° .,y ¥p(1)U™P. The load vectors are defined by G™* := Yp(—1)MU L +

T ge{1:m} 229y (Eg)F™? € RY for all p € {1:m}.

The algorithmic complexity of the time-stepping schemes (69.32) and (69.35) is a priori high
since one has to assemble at each time step m = k + 1 stiffness matrices, and one has to solve a
globally coupled linear system of size Ixm. Moreover, even if the bilinear form « is symmetric,
the system matrices in (69.32) and (69.35) are nonsymmetric for all k > 1. If the bilinear form a
is time-independent, the assembling of the matrix on the left-hand side of (69.35) simplifies since

A™P4 = m,, A with the time-independent stiffness matrix A € R/*! and the coefficients m,,, given
by

1 1
’Aij = a(‘/)jv (pi)v Mpq = 5 /;1 1/%1(8)%(8) dS, (6936)

for every 4,7 € {1:1} and p,q € {1l:m}, that is, it is only necessary to assemble one stiffness
matrix. The same remark holds for (69.32).

The algebraic formulations (69.32) and (69.35) can be rewritten in a more compact form using
tensor notation. Let us focus on (69.35). We introduce the matrices B,M € R™*™ with entries
Bpg := bpg and M, := myp,. Consider the notation (M ® B)sp jq := M;jbpe for all 4,5 € {1:1}
and p,q € {1:m}, where ip € {1:mxI} abbreviates (p — 1)I + ¢ and jq € {1:mxI} abbreviates
(¢ — DI + j. Using the same notation for A ® M, we can rewrite (69.35) as follows:

SU" = G", S=MB+1ARM c RIm*I™ (69.37)
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with U™ := (U1 ... U»™)T € R™ and G" := (G™',...,G™™)T € R'™. Notice that the matrix
M is diagonal if one chooses {1 := Li}icf1:m}-

Remark 69.23 (Symmetrization, preconditioning). Assume that the bilinear form a is time-
independent so that the linear system at each time step takes the form (69.37). Assume that
a is symmetric so that the stiffness matrix A is symmetric (recall that the mass matrix is by
construction symmetric). Observe that the system matrix & in (69.37) is nonsymmetric owing to
the lack of symmetry of the matrix B (recall that M is by construction symmetric). An interesting
option to symmetrize (69.37) is to precondition it on the left by the matrix P := ST (A~ ® iM1)
leading to the preconditioned symmetric linear system SU™ = H" with

S=8TA''elMNs, H':=8TA'zilM G (69.38)

Recalling that (C®X)T = CT@XT and (C®X)(DP®Y) = (CD®XY), a straightforward calculation
shows that
S=1(MA'M)@ BM'B) + M@ (B +B") + 7A@ M.

Let Ry, : Pie(Jpn; H) — Pryi(Jn; H) be sit. Ry, (v) :=v —v(t,) )01 0 Tt for all v € Py(Jp; H)
and all n € N, with 6.1 defined in Remark 69.9. One can show that S is the stiffness matrix
of the least-squares minimization of the residual norm || A, (9, R (vnr)) + 1;;”||2L2(vah)7 with
the inner product (vVpn, Whn)r2(J,:v,) = fJn (An(Vhn), Whin ) pdt for all v, why € Pr(Jn; Vi), The
least-squares minimization viewpoint is adopted, e.g., in Nouy [231], Andreev [9, 10], Boiveau et al.
[37]. We refer the reader to Smears [262] for further insight on how to precondition efficiently the
symmetric system (69.38). See also Exercise 69.8. O

Exercises

Exercise 69.1 (Integral identities). Prove the identities (69.11). (Hint: use that the Gauss—
Radau quadrature is of order 2k.)

Exercise 69.2 (Equivalence with Radau ITA TRK). Prove the converse assertion in Lemma
69.11. (Hint: show that

Re(un)®) =i~ 47 3 / (€) A€ (fi(tny) — An(n ) (D))

je{lik+1} T T
for all t € J,.)

Exercise 69.3 (Poincaré in time). Let n € A, and H be a Hilbert space. Show that
Hv||2L2(Jn;H) < 27|t )% +7-2H8WH%2(JMH) for all v € HY(J,; H). (Hint: use that v(t) =

SO+ wdt for all t € J,,.)

Exercise 69.4 (Time reconstruction). (i) Show that the definition of R, given in Remark 69.9
is equivalent to Definition 69.5. (ii) Show that the two definitions of 0541 given in Remark 69.9

are identical. (Hint: set d(s) := (_1)k (Lk — Lg41) — Hle{l:kﬂ} g—;f and prove that 6(—1) =0
and [506'(s)q(s)ds = 0 for all ¢ € Pk(J R).) (iii) Let (V,L = L', V') be a Gelfand triple. Let
R Po(J; R) — Pry1(J;R) be s.t. R(q) == ¢ — q(=1)0i1. Let Ry : Pe(Ju;R) = Pryy(JusR) be
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st Ru(v) = X pe(i kr1) Vqﬁ(wq) oT,; ! for all v := 2 ge{i:k+1} Va¥a ol ! and all n € N, where

{thq}qe{1:k41} is a basis for ]P’;C(f R). Accept as a fact that [|v|| Lo (s, ;1) < 227%H6,5Rn(v)|\Lp(Jn;V/)
for all p € [1,00] and all v € Pk(Jn,V') (see Holm and Wihler [185, Prop. 1]). Prove that

lvllz2(s.:0) < (27)2 |0 R (v )||L2(J V’)Hv||L2(J 4y forall v € Pi(Jn; V) and all n € Nz (Hint:
617 < llgllv-li¢lly for all ¢ € V)

Exercise 69.5 (dG(1)). Assume that a is time-independent. (i) Verify that the dG(1) scheme

amounts to
9 3 n,1 3 n,1 3 n—1 3Fn,1
( gﬁ gﬁ) <3n,2) +7 <%j3n,2) = < %ﬁﬂnl) +7 <411:;12> ’
8 8 1 2 L
and U = U™2, where U™! and U™? are the coordinate vectors of the discrete solution at t,_ + %T
and at t,,, respectively. (Hint: use the Lagrange interpolation polynomials associated with the two

Gauss-Radau nodes & := —3 and & := 1.) (ii) Using the same notation as above, write the
scheme in IRK form. (Hint: see (69.22) and (69.24).)

Exercise 69.6 (IRK final stage). The objective of this exercise is to prove the assertions
made in Remark 69.13. (i) Show that for every s-stage IRK scheme, the update u} is given by
uf = aoup ! + Dopeil:s) apuy®, where o, 1= Dgeil:s) by(a™ V) gp, ag =1 — > pefi:s} Ops and
(a™1)pq are the coefficients of the inverse of the Butcher matrix (ayq)p gef1:s3- (i) Show that for
the Radau ITA IRK scheme, a;, = 0 for all p € {0:s — 1} and oy = 1

Exercise 69.7 (II¥). (i) Prove the uniform stability of I1¥ in L>°(J,; Z) with Z C L. (Hint: map
to the reference interval J.) Prove (69.27). (Hint: accept as a fact that the standard polynomial
approximation properties in Sobolev spaces extend to Bochner spaces.) (ii) Build the operator
II* with Z := V' as in Remark 69.17. (Hint: use the RieszFréchet operator J* : L2(J,;V) —
(L?(Jn; V) = L3(Jp; V').) Adapt the identity in Lemma 69.16 to the case Z := V. (Hint: invoke
the integration by parts formula (64.7).) Prove a stability estimate for IT¥ in L>°(J,; V’). (iii) Let
0y, € £L(V;Vi). Show that § := ¥ (I, (v)) — I, (IT%(v)) = 0 for all v € HY(J; V). (Hint: show
that 6(t,) = 0 for all n € N, and that fJn (6,q)dt =0 for all ¢ € Py,_1(J,; Vi) and all n € N;.)

Exercise 69.8 (Symmetrization). Let R be defined in Exercise 69.4(iii). () Prove that B,, =

S RG) Uy ds, (B+BT)pg = g(=1)iip(=1) + g (1) (1), (BTM'B)pg = [, R(sy)R(y) ds
for all p,q € {1:m}. (Hint: use Exercise 28.1.) (ii) Set S, := (MA~* M) @ (BTM~ 1B)+TA®M.
Prove that VT&,V < VTSV < 2VTS,V for all V € R'™. (Hint: note that VT(M @ B)V =
YT(A ' @M YZ with Y := (A® M)V and Z := (M ® B)V and apply the Cauchy-Schwarz and
Young’s inequalities.) (iii) Verify that & is the stiffness matrix associated with the minimization of
the residual norm || A, ' (9, Ry (vhr)) +vnr ||2L2(Jn;Vh)' (Hint: use again Exercise 28.1.) (iv) Compute

the matrix & for k := 1. (Hint: see Exercise 69.5.)
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Chapter 70

Continuous Petrov—Galerkin in
time

In this chapter, we continue the study started in the previous chapter on higher-order time ap-
proximation schemes using a space-time functional framework. Recall that the test functions are
discontinuous at the time nodes so as to obtain a time-stepping procedure. In the previous chap-
ter, the trial functions are also discontinuous at the time nodes, and the resulting method is a
discontinuous Galerkin scheme in time. In the present chapter, the trial functions are continuous
in time and piecewise polynomials with a polynomial degree that is one order higher than that of
the test functions. The resulting technique is called continuous Petrov—Galerkin method, and its
lowest-order version is the Crank—Nicolson scheme studied in §68.3. Like the dG(k) schemes, the
continuous Petrov—Galerkin schemes are implicit one-step methods. They can also be interpreted
as implicit Runge-Kutta methods.

70.1 Formulation of the method

We describe the continuous Petrov—Galerkin method in this section. We use the notation as in §69.1
for the time discretization.

70.1.1 Quadratures and interpolation

Let k& > 1 be the polynomial degree for the time discretization. Let {&};c1.x} be the Gauss—

Legendre nodes in the reference interval J = (—=1,1], and let {wi}ieq1:%) be the corresponding
weights. This set of nodes and weights gives a quadrature of order (2k — 1) (see §6.2). Notice that
in the previous chapter on dG(k) schemes, we used k > 0 and (k 4+ 1) Gauss—Radau nodes for the
quadrature. Using the mapping T, : J— Jp defined in (69.1), we obtain a quadrature in J,, with
tny = Tn(&) and wy, = Fw; for all I € {1:k}. We introduce the discrete measure pg"(dt) defined
on J by setting

/Jg(t)uib(df) = /J g () ==Y > wnagltn), (70.1)

neN- neN- 1e{1: k}
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for all g € C°(J;R). Notice that we slightly abuse the terminology by using the same symbol for
the discrete measure on J and its restriction on the time interval .J,,.

Let Z € {V',L,V}} and recall that H'(J; Z) — C°(J; Z). Let I¢" , : HY(J;Z) — PP _,(J+; 2)
be the Lagrange interpolation operator associated with the Gauss—Legendre nodes such that for
allv e HY(J; Z), Zg" ; (v)(0) := v(0) and for all n € N,

W, = Y vlte)Lio T, (70.2)
le{1:k}

where £,(€) = ITjcpiapy t=2 € Pe-1(JiR), Le., Li(€) = dur for all 1,1 € {1:k}. In view of
the error analysis, we observe that Zg™, does not have optimal approximation properties since it
is a piecewise polynomial of degree (k — 1) in time. This motivates the introduction of another
Lagrange interpolation operator based on the Gauss-Legendre nodes and one of the two endpoints
of each time interval (we choose the right one to fix the ideas). Recalling that Ly is the k-th
Legendre polynomial, we define ZJ"" : H'(J;Z) — PP(J;;Z) by setting for all v € H'(J; Z),
Z;*"(v)(0) = v(0) and for all n € N,

t— tn —
I,fH(v)Un =v(ty) Lo Tt + g u(tn,l)it ; LyoT; L. (70.3)
n, — ln
le{1:k} ,

Since Zy"" is L°°(.J; Z)-stable uniformly w.r.t. 7 and leaves PP(.J; Z) pointwise invariant, there
is ¢ such that for all 7 and all v € H*1(J; Z),

o = T2 () l2(s:2) < T ol a7,y (70.4)

Moreover, the following identity holds true for all v € H'(J;L) and all y, € PP | (J-; L) (see
Exercise 70.1):

/m%n@wm=/ﬁ$wm%nw. (70.5)
J

J

70.1.2 Discretization in time

The idea behind the continuous Petrov—Galerkin cPG(k) time scheme is to consider a trial space
composed of continuous, piecewise polynomial functions in time of degree k£ and a test space
composed of discontinuous, piecewise polynomial functions of degree (k — 1). This leads to a
conforming approximation in time. (Recall that the approximation setting is nonconforming for
the dG(k) schemes studied in Chapter 69.)

The time-discrete trial and test spaces are taken to be

Xpr i= PE(T3 Vi), Yie i= PP (Tr;Vi). (70.6)
We consider the bilinear form b, such that for all (v, ynr) € Xpr X Ypr,
b‘r (UhTu yhT) = (UhT (0)7 Yhr (0))L (707)

+ / (Orvnr (£), yne (1))l + / alt onr (1), yne (6) ().

Notice that the time derivative of vy, is integrable over J since vy, is continuous in time by
construction. Observe also that if the bilinear form a is time-independent, we have for all n € N,

[ atwnr®me(0) 1200 = [ alwne(e), s ()t

n n
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since the integrand is in Pax—1(J,; R) and the quadrature is of order (2k—1). Similarly, we consider
the linear form /¢, such that for all v, € Y,

02 ynr) = (0, e (0)) 1 + / ),y (D) v ().

The cPG(k) scheme consists of the following space-time discrete problem:

Find up, € Xj, such that
{ b= (70.8)

by (uhTu yhr) ={; (yhr)a VYnr € Yir.

This problem amounts to solving a square linear system since dim(Xp,) = dim(Yy,) = (1+ Nk) x
dim(V},). The size of this linear system is smaller (for fixed k) than that induced by the dG(k)
scheme. As we shall see below, the price to pay for this slight reduction in complexity is that the
cPG(k) schemes have somewhat weaker stability properties than the dG(k) schemes.

Proposition 70.1 (Localization). The cPG(k) solution un, (if it exists) is s.t. up-(0) = Py, (uo)
and for all g € Px_1(Jn; Vi) and all n € N,

/ (Brune (1), 4(£)) Lt + / alt une (1), g(£)) pu§(dt) = / PO gy i§HdD). (70.9)
Jn In

JIn

Proof. Proceed as in the proof of Proposition 69.2. O

Proposition 70.1 shows that the cPG(k) scheme gives a time-stepping procedure, where one first
sets up-(0) := Py, (uo) and then one computes sequentially the restrictions uy, |, by solving (70.9)
forn=1,2,...,N.

Recalling that Py, : L — V}, is the L-orthogonal projection from L onto V3, let us set fi,(t) :=
Py, (f(t)) € V4 for all t € J. We also define Ay (t) : Vi, = Vi, s.t. (An(t)(vn), wr) L = an(t; vn, wp)
for all vy, wp € Vi, and t € J.

Proposition 70.2 (Reformulation). The scheme (70.9) is equivalent to the following: up(0) =
Py, (uo) and for alll € {1:k} and all n € N7,

Ounr (tn) + An(tn)(un(tn)) = frtn). (70.10)
Proof. Proceed as in the proof of Proposition 69.7. O

Example 70.3 (Crank—Nicolson, cPG(1)). Let us take k := 1. This means that uy, is
continuous and piecewise affine in time. Let us write u} := wup,(t,) for all n € N, so that

_ n_ ., n—1
ups(t) = t“—T_tuZ_l + HT"’IUZ for all t € J,, and Qpup,(t) = % on J,. Since the test
function gy, in (70.9) is constant in time over J,,, and since the 1-point Gauss—Legendre quadrature
is the midpoint rule, letting ¢, 1 := 2 (tn—1+1t,) we obtain (ull —uy ™' wy) L + Ta(t,_1; Lupt+
up),wn) = 7(f(t, 1), wp)v,,v for all wy € Vi, Le., we recover the Crank-Nicolson scheme studied

in §68.3. O

Remark 70.4 (Literature). Continuous Petrov—Galerkin methods have been studied by Hulme
[191], Aziz and Monk [19]. We also refer the reader to Wihler [286], Schotzau and Wihler [249],
Hussain et al. [193], Ahmed and Matthies [2], Bause et al. [26], Holm and Wihler [185] for other
results. -
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70.1.3 Equivalence with Kuntzmann—Butcher IRK

We show in this section that the cPG(k) scheme (70.9) (or (70.10)) is equivalent to an implicit

Runge-Kutta (IRK) scheme often called Kuntzmann—Butcher (KB) method in the literature (see

Butcher [77, §3], [78, §5], Hairer and Wanner [175, §IV.5], [176, §I1.7], Kuntzmann [208]).
Referring to §69.2.4, we consider a s-stage IRK scheme with the Butcher tableau s.t.

—1

for all 4,5 € {1:s}, where {&;}icq1.5) are the Gauss-Legendre quadrature points and £;(§) :=
Hje{l:s}\{i} éj%; € Ps_l(f; R) is the Lagrange polynomial based on these nodes and associated
with the i-th node. This leads to the following time-stepping technique to approximate in time
the semi-discrete problem (69.8): One first sets u := Py, (ug), then for all n € A, one seeks
{u}?}jeq1:s) C Vi such that for all i € {1:s},

up —up =1 Y a4 (faltag) = Anlta,)(up?)), (70.12)
je{l:s}

with t,, j :=tn—1 +¢;7 =T, (&) for all j € {1:s}, and finally one sets

uz = uzil +7 Z bj (fh(tn,j) — Ah(tn)j)(uZ’j)). (70.13)
je{l:s}

The expression (70.13) is not very convenient to compute u}’, and a better way mentioned in
Remark 69.13 (to be justified in Lemma 70.5 below) is

ne n . 2£,(1
up =aoup 4+ Y aupt, agi= (=1, = : 11' (70.14)
le{l:s} t

~—

The Butcher tableaux of the one-stage, the two-stage, and the three-stage KB IRK schemes are as
follows (see also [77, Tab. 2]):

5—1/15 5 10-3V15  25-6V15
3—/3 1 3-2V3 10 36 15 180
1] 1 6f 4\[ 12 1 104315 2 10-3v15
2 | 2 3+v3 | 3423 1 2 72 9 72
6 12 1 5+v15 | 254615 104315 5 (70-15)
1 ‘ 7 T 10 180 15 36
2 2 ‘ 5 4 5
1 9 1

The corresponding coefficients (aq)eq0.53 are (—1,2) for s = 1, (1,—v/3,v/3) for s = 2, and
(-1, %, —%, %) for s = 3. Notice that the one-stage scheme is nothing but the Crank—Nicolson
method since we have u}"' = L(up =" +u) so that uf! = up ™! +T(fh(tn7%) - Ah(tnfé)(l (up~t +

up))-

Lemma 70.5 (cPG(k) <& KB IRK). Let k > 1. Let upr € Xp, = PE(J;; V) and set
uf = up,(t,) for alln € N, and {uZl = Unr(tn1) ieqr:ky for alln € Ny, (i) un, solves (70.9) iff
{UZ’l}le{l:s} solves (70.12) with s := k and u} is given by (70.13) for alln € N-. (ii) u} := up,(tn)
is also giwen by (70.14) for all n € N.
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Proof. We argue as in the proof of Lemma 69.11. Assume that up, solves (70.9), or equivalently
(70.10) owing to Proposition 70.2. Since Oyupr|j, € Pr—1(Jn; Vi), we infer that for all n € N7,

Ounr = Y (faltna) = An(tn,)(uph) Lro T,
le{1:k}

Integrating this identity over (¢,—_1,t,;) for all ¢ € {1:k}, using the definition of a;; in (70.11),
and since t,, ; = T5,(&;), this gives

upt —up Tt =1 Z ai (fa(tng) — An(tan) (),

le{l:k}

since u} " := up, (tn—1) and uZZ ‘= Upr(tn,;). This is exactly (70.12). Moreover, using ¢(t) = 1 in

(70.9), we obtain

1 n
up =up T Y @i (Frtng) — Anta)(uph).
le{l:k}

But recalling that w; = fil Ly(t)dt (see Lemma 6.4), we have b; = Sw; for all | € {1:k}. The above
identity is (70.13). This shows that (70.9) implies (70.12)-(70.13). The converse is established in
Exercise 70.2.

(i) Recall that Ly is the k-th Legendre polynomial, Li(1) = 1, and Li(—1) = (—=1)*; see §6.1.
Then {(=1)FLj, o T, {21 £, 0 T, '}ieq1:1}} are the Lagrange polynomials associated with

tn,i—tn—1 ©
the nodes {t,,—1, {tni}ie{1:x}}- Since up, is a member of PZ(J7; Vi), we have

_ _ i t—1Tp_1 _
GV i AR
ie{l1:k} Tt n—l

The conclusion follows by evaluating the right-hand side at ¢,, since L (1) = 1 and %Ei(l) =:
a; for all i € {1:k}.

70.1.4 Collocation schemes

We now briefly discuss a connection that exists between IRK schemes, dG(k) and ¢cPG(k) schemes,
and another class of methods called collocation schemes.

Definition 70.6 (Collocation). Let s € N\{0}. Let {{}ieqi:s) C J = (=1,1] be s distinct
numbers and set t,; = T,(&§) € Jp for all | € {1:s} and all n € N.. A collocation scheme
associated with the s points {§ }1eq1.5y for the time discretization of (69.8) seeks a function i, €
P&(J.;Vh) as follows: First one sets iip,(0) := Py, (uo) and then for all n € N, one solves the
following equations on {tnr(tn1) bieqi:sy C Vas

(%ﬂhﬁ,-(th) =+ Ah(tn,l)(ﬁhr(tn,l» = fh(tn,l)7 Vi e {138}. (7016)

Notice that since the (s 4+ 1) numbers {—1,{{}ieq1:5)} are distinet, @, 7 is uniquely deter-
mined by the values it takes at these points for all n € N-..

Proposition 70.7 (cPG(k) and dG(k) are collocation schemes). (i) Let k > 1. Then
Upr € P}f(jT; Vi) solves the ¢cPG(k) scheme (70.9) if and only if tp, := upr solves the collocation
scheme (70.16) associated with the s := k Gauss—Legendre nodes. (ii.a) Let k > 0. If up, €
PP(Jr; Vi) solves the dG(k) scheme (69.16), then tnr = Rr(unr) € Pg i (J7; Vi) solves the
collocation scheme (70.16) associated with the s :=k + 1 Gauss—Radau nodes. (ii.b) Conversely if
Upr € P%_H(jq-; Vi) solves this collocation scheme, up, := I (i, ) € PP(J7; Vi) solves the dG (k)
scheme (69.16).
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Proof. The assertion (i) follows from Proposition 70.2. The assertion (ii.a) follows from (69.20)
(see Proposition 69.7) since R, (upr)(tn,1) = unr(tn,) for all I € {1:k+1} and all n € N, whereas
the assertion (ii.b) follows from the same identity once we observe that Z7® (R, (up-)) = upr. O

Combining the equivalence result of Proposition 70.7 with those from Lemma 69.11 (dG(k)
< Radau ITA IRK) and Lemma 70.5 (cPG(k) < KB IRK) establishes that both IRK schemes
are collocation methods. The connection between IRK schemes and collocation methods has
been explored in Guillou and Soulé [172, p. 18] (see also Vlasék and Roskovec [282] for a related
discussion on dG(k) schemes).

70.2 Stability and error analysis

In this section, we study the stability and the convergence properties of the cPG(k) scheme (70.8).

70.2.1 Stability

The choice of the spaces in (70.6) does not make it possible to take the discrete solution as the test
function to prove a stability property for the bilinear form b, associated with the cPG(k) scheme.
One must approximate in time the discrete solution with a polynomial of degree (k — 1). To this
purpose, we use the Lagrange interpolation operator Zg*, associated with the Gauss-Legendre
nodes and defined in (70.2). Let us equip X}, with the norm

., 1
lonell,, = I Onr) 32y + 5 (lone (D)3 + lone O)13), (70.17)

where o > 0 is the coercivity constant of the bilinear form a. Notice that ||| x,, defines a norm on
Xhpr. To show that this is indeed the case, we use that vy, 7, = I | (vnr) + A s, for some A, € R
and @7, = Lgo Tn_1 for all vyr € Xp,, and all n € N, where L, is the k-th Legendre polynomial

on J. If [vnellx,, = 0, then Zg" | (var)s, = 0, and vx-(0) = 0. Because vy, € C°(J1; V) and
Li(—1) = (=1)F # 0, this implies that A\; = 0, i.e., Vs, = 0. We conclude that vy, 7, = 0 by
induction on n € N-.

Lemma 70.8 (Biased coercivity). (i) The following holds true for all vy, € Xpr:
bT(UhmIl(c;il(Uh'r)) >« HUhngg,”- (70'18)
(ii) The discrete problem (70.8) is well-posed.

Proof. (i) Let vpr € Xpr. Using the coercivity of a(t;-, ) at the & Gauss-Legendre nodes and the
fact that the weights w; are all positive, we obtain

/a(t;UhT(t)azgil(UhT)(t))Nzh(dt): Z wn,la(tn,l;Uhr(tn,l)avhr(tn,l))

n le{1:k}

>a Y wnlloar(tag)lly = a/ IZ5% 1 (onr ) (D17 dt,

le{1:k} In

since the integrand is in Pog_2(Jp; R) and the quadrature is of order (2k —1). Moreover, evaluating
the time integral using the Gauss—Legendre quadrature, we observe that

/ (Oconr (1), Ty (onr ) (1)) LAt = / (Orvnr (1), vnr (1)) AL,

n n
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since Opvp, is a polynomial of degree (k — 1) at most and the quadrature is of order (2k — 1).
Summing over n € N, we infer that

[ om0, 2 ) O) 1t = 3 one (DI, = 3 len OV,
J

Using this identity, the lower bound just established above, and observing that Zg" | (vs,)(0) :=
vp-(0), we obtain

, . 1 1
br (Unr, Te" 1 (0nr)) 2 (var(0), 2121 (var ) (0) 2 + §|\th(T)|\% - 5||vhf(0)||2L
+all T ()22 vy = allon %, -

(ii) The well-posedness of (70.8) follows from dim(Xj,) = dim(Y},) and the uniqueness of the
solution implied by (70.18). O

70.2.2 Error analysis

Let Z € {L,V,,} and recall that H'(J; Z) — C°(J; Z). We proceed as in §69.3.2, but this time
to handle the consistency error optimally it is convenient to introduce the approximation operator
¥ : HY(J; Z) — PE(J,; Z) defined as follows: For all v € H'(.J; Z),

1% (v)(0) = v(0), (70.19a)

/ (O (T (0) = v), )Lt =0, Var € PE(T,: Z). (70.19)
J

The above definition can be extended to Z := V’ by replacing the L-inner product in (70.19b) by
the duality bracket between V’ and V and by taking ¢, € P%(J.; V). Since II¥ leaves PE(J,; Z)
pointwise invariant and is L*°(J; Z)-stable uniformly w.r.t. 7, there is ¢ s.t. for all 7 > 0 and all
ve H(T, 2),

o =15 (0) | 222y < e ol gasr (g,2)- (70.20)

The definition of IT* is motivated by the following result.

Lemma 70.9 (Orthogonality). The following identity holds true for all v € H*(J;L) and all
yr € PP (T L),

[ @o=TEw). gyt =0, (70.21)

Proof. Let yT e pPh 1(7 L) and let 2, € PP(J.; L) be s.t. 2.(0) := Z¢% | (y-)(0) = y,(0) and
2 (t) == y-(0) + fo y-(s)ds for all t € J. By construction, we have z, € P£(J;; L) and 9z = y,.
As a result, we have [ (0¢(v —IIE(v)), y-)pdt = [;(9¢(v — IIE(v)), atzT)Ldt =0. O

Remark 70.10 (Other definition). Let = | : L?(J;L) — PP 1(7T,L) be the L2(J;L)-
orthogonal projection. Then setting for all v € HY(J;L), TI¥(v)(t) = ) + fo =1 (0p)ds
for all t € J, is equivalent to defining II* using (70.19). O

To separate the time approximation and the space approximation, we assume that we have
at hand a time-independent space approximation operator IT;, € L(V;V;) with [[TIx|lzv,v;)
uniformly bounded w.r.t. h € H. For instance, we could take the quasi-interpolation operator
Zp¥ or the elliptic projection II} if the bilinear form « is time-independent. We extend 1l
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to L(L*(J;V); L*(J; V) by setting I, (v)(t) := I (v(t)) for all v € L?(J;V). Notice that
Oy (v) = I, (0pw) for all v € HY(J;V) owing to Lemma 64.34. We are also going to use the
commuting property I1¥(ITj,(v)) = II;,(IT%(v)) for all v € H*(J;V); see Exercise 70.5.

We extend the |-||x, . -norm defined in (70.17) to H'(J;V) (we use the same notation for

2
LLv
«

simplicity). Recalling the time scale p := 2
V — L, we set py := max(p,T).
Theorem 70.11 (L?(J;V)-estimate). Let u € X solve (66.3) and up, € Xp. solve (70.8).
Assume that u € HFP2(J; V)N WHETL (T V). Let e1(u) i= L |u|grsz(ryn + .12 |t rs1.00 (11
with the contrast factor &, 1= % There is ¢ s.t. for allh € H, o, M, and T,

, where ¢, v is the operator norm of the embedding

V2
=l < = llwo = TaCuo) 1.+ (7447 er () (70.22)

1 1
+ 110 = Ha(ew)ll L2 (v + &wpg llu — Hh(“)”L‘”(J;V))-

Proof. Let ynr € Y, = P,?_l(jT; V1). We have
br(Unr, Ynr) = (uo, ynr(0))L +/<f, Ynr) v, v g (di)
J

— (0, ynr (0))1, + Rlynr) + / Oyt ynr) ot + / alts u, g ug(de),
J J

with R(ynr) := [ (0w, ynr)Lpgt (dt) — [;(Osw, ynr)pdt and where we used that (dyu(tn,1), ynr)r +
altni;u(tng), ynr) = (f(tnt), ynr)vr v for all n € N, and all | € {1:k} owing to the regularity
assumption on u. Let us introduce vy, := IF(Il,(u)) € X5, == PE(J-;V3) and let us set ey, :=
upy — ¥ (I}, (u)) and 1 := u — ¥ (I, (u)). Using the above calculation for b, (., yns), we obtain

bT (u’hT — Uht, th-) - (UO — Uhr (0)7 Yhr (O))L + R(yhT)

+ /(&e(u — Upr ), Ynr) At + / a(t;u — vpe, ynr) g (dt).
J J

By definition of IT¥, we have v, (0) = I (ug). Moreover, using Lemma 70.9 for the function
v 1= II(u) and since 0, (11}, (u)) = I, (Ou), we infer that

br(enrynr) = (1(0), ynr(0))r + R(yn-) + /](atu — 11 (Osu), ynr) Ldt

+ / a(t: 7, e Gt (dE).
J

Let T4, ..., %, denote the four terms on the right-hand side. We have |T1| < [Jug—1ITj (wo)| £ ||yn-(0)|| -
Since (70.5) implies that [ (Owu, ynr)Lps(dt) = [T (9u), ynr)Ldt, we infer that R(yn,) =
[T (Ovu) — Oy, ynr) £ dt. The approximation property (70.4) of Z*™ gives

1Ta| < e ulgrsa s lynell L2 (-

Moreover, we have |T3| < [|8yu— 1, (0pu) || 2(7:v |Ynr| L2 (7 - Finally, since IT% and IT; commute,
the stability of ITj, and the approximation property (70.20) of IT¥ imply that for all I € {1:k} and
all n € N,

In(ta0)lv < [1(w = Ta () (tn0) v + Tkl 20 | (@ = T (w)) () [l v

< lu = a (W) Lo vy + CTk+1|u|W’C+1’°°(J;V) =: C(u).
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Invoking the boundedness of a, the Cauchy—Schwarz inequality, and since the quadrature is of
order (2k — 1) and }°, s > c(1 5y Wn = T', we infer that

Tal < Y0 Y waaMOW)lyne (b)) lv < MT2C W) |lynr | p2v)-

neN; le{1:k}

Let us set [[ynr I3, = [lynrllZ2csp) + L1|lyn-(0)[|2. Combining the above estimates and recalling
the definition of ¢1(u) in the assertion shows that

b
sup | (ehﬁ yh7)|

< V2allug — Iy (uo)|| . + car™ ey (u)
Ynr €EXnr HyhTHYh,T

1
+ 00w — T (Oeu) | L2(gyvry + MT? [ — Hp ()] oo (150
We now invoke the biased coercivity property (70.18) which gives

br(epr, I7" (e b ,
allensllx.. < r(enr, Ip" 1 (enr)) <e sup bz (enrs ynr)|

lenrllxn, 7 wneexn, lUnrllvi

where we used that [|Z5" (ens)|lvi. < llenr|x,. since Zg™ | (enr)(0) = en-(0). Combining the above
two bounds and using the definition of &, yields

V2
lenellxi. < =l = Mu(wo)llz + ert e (w)

1 1
+ a”@t’u — Hh(at’u)”Lz(J;V/) + §HT2 Hu — Hh(u)HLOO(J;V)'

Finally, the triangle inequality implies that |u—up| x,. < |lenr|lx,. + 7l x,.- Using the definition
of the time scales p and py yields

L v 1
||77||Xh,T < ||77||L2(J;V) +c \/E ||77||L°°(J;V) <d Pf H77HL°°(J;V)-

Reasoning as above then shows that [|n]|ze(svy < lu — Ia(w)| oo (rvy + T ulyprrce (7,0
Putting everything together concludes the proof.

Remark 70.12 (Optimality in time). The identity (70.21) satisfied by the operator IT* and
using the interpolation operator I,f“ are the two key ideas to achieve an optimal error estimate
in time. (|

Remark 70.13 (Supercloseness). Assume that a is time-independent so that one can use the
elliptic projector IIj, := II}} in the proof of Theorem 70.11. Arguing as in Remark 69.20 for dG(k)
schemes gives

V2 1
lenrllx,, < ﬁ”uo — I0} (uo) || + e 7 ey (u) + 5||3tu — 1L, (Owu) || 2 (s ry- O]

Remark 70.14 (Convergence, heat equation). Let us consider the approximation of the heat
equation with H!-conforming finite elements. Let r € [1,k’], where &’ > 1 is the degree of the
finite elements used to build Vj. Assume that u € H**2(J; H1(D)) n Wkthee (], HY(D)) n
Wheo(J; H¥+1(D)). Then the estimate from Theorem 70.11 implies that |ju — Unr || L2(g;H2)

’ 1
decays as O(7*1ci(u) + h¥ ca(u)) with co(u) = pi lullyyr.oo (g, w41y Moreover, the estimate
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from Remark 70.13 implies that |[(u — un-)(T)||r2(p) decays as O(T" ey (u) + RF 5053 eo(u)),
where s € (0,1] is the elliptic regularity pickup index (s = 1 if there is full elliptic regular-
ity pickup). Finally, since the constant ¢ in the estimate does not depend on T, the error
sup,en, [|(u — uns)(tn)||22(py decays with the same rate. O

Remark 70.15 (Literature). Further developments on the error analysis can be found in Aziz
and Monk [19]. In particular, [19, Thm. 3.4] shows for the heat equation with full elliptic regularity
that [[u — wnr| oo 7.0y < (TR (plul grez ) 4+ aplulwrrroo gvy) + llu =115 (u) || 252 ) - Under
more restrictive smoothness assumptions, [19, Thm. 4.2] establishes that the error in time decays
as O(12%) for k > 1. O

70.3 Algebraic realization

Let {tn,l}le{1:k} be the Gauss-Legendre nodes in the time interval J, for all n € N,. Let
{®i}icqr:1y be a basis of Vj,, e.g., the global shape functions in the finite element space V. Re-
call the mass matrix M € R’*! the time-dependent stiffness matrix A™P € R’*! and the load
vectors F™P € R! defined in (69.31) for all n € A and all p € {1:k}, that is, M;; == (¢, %)z,
AP = altnp; @5, ¢i), and F"P i= (f(tnp), pi)vo,v for all 4,5 € {1:1}.

70.3.1 IRK implementation

Since the solution produced by the cPG(k) scheme and the KB IRK scheme are identical according
to Lemma 70.5, one way to implement the method is to use the IRK strategy (70.12)-(70.14) with
s := k stages. One first sets U’ € R! so that Py, (ug) = Zie{l:]} U%¢p;. Then for every n > 1,

letting U™? € R’ be the coordinate vector of uy” for all p € {1:k}, (70.12) amounts to solving the
following linear system with {apq}p.qef1:5} given in (70.11):

M+ Ta AV a1 A™F ymlt Gl
: : : = : ; (70.23)
T A s M+ Tag AmE ymk Gk

nd the load vectors defined by GnoP = ./\/luZ_1 +7'qu{1:k} apF™? € RY for all p € {1:k}. Finally,
one sets U" := apU" ! + Zpe{l:k} ap,U™? with {ay}peq1:5y defined in (70.14).

70.3.2 General case

We now consider the general case and write the linear system corresponding to the ¢cPG(k) formu-
lation (70.9) for general bases of Py (J;R) and Pr_1(J;R). Let {¢g}qeq0:x} be a basis of Pi(J;R)
and {tp}peq1.x) a basis of ]P’;C_l(f; R). For simplicity, we assume that

¢0(_1) =1, ¢O(§l) =0, and ¢l(_1) =0, (7024)

for all [ € {1:k}, where {&}1e(1:) are the Gauss-Legendre nodes in J. This implies ¢o(t) =
(—1)FLi(t); see §6.1.

For alln € N, and all ¢ € {0:k}, we introduce the coordinate vectors U7 € RY s.t. up,(z,t) ==
Yictiny gefo-ky Ui 0a (T (1) wj () for all (2,t) € DxJ,. For all n € N, we also introduce
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U™ € R! so that up,(z,t,) = ull(x) = > jeqi:1y Uje(x). The constraints (70.24) and the identity
Upr (T, tn—1) = uy~" imply that U™® = Un~1. Thus, at the beginning of the n-th step in (70.9),
U™? is known either from the initial condition (n = 1) or the previous time-step (n > 2).

For every integers p,q € {1:k}, we introduce the coefficients

by = / O Ay - / b5 (s) d. (70.25)

Then, considering test functions of the form o; (@)1, (T, *(t)) for all i € {1:1} and all p € {1:k},
we rewrite the ¢cPG(k) scheme (70.9) in the following block form:

bllM +TA”’11 s blkM +TA”’1]€ Un71 Gn’l

bklM + 7_~An,kl . bkkM + TAn’kk Un,k Gn,k

with the stiffness matrices A™P9:= 37,y 1y G g (§)Vp(8) AT € R™*! for all p,q € {1:k} and all
n € Ny, and the load vectors G™P := d, MU~ + T ge{i:k) S1hp(&g)F™1 € RY for all p € {1:k}
and all n € N;. To prepare for the next time-step, we finally set U™ := qu{():k} o U™ with
ag = ¢g(1) for all ¢ € {0:k}.

The cPG(k) scheme is only slightly less expensive than the dG(k) scheme since for all n € N,
it requires assembling k stiffness matrices (instead of (k + 1)) and solving a globally coupled linear
system of size Ixk (instead of Ix(k 4 1)). The global system matrix is nonsymmetric for both
schemes even if the bilinear form a is symmetric. If the bilinear form a is time-independent, the
assembling of the global system matrix is simplified since we have A4"?? = mp,A with the time-
independent stiffness matrix A € RI* s.t. A;; == a(ypj, ;) for all i,j € {1:1} (see (69.36)), and
the coefficients mpq s.t. myq 1= % fil ¢q(8)p(s)ds for all p,q € {1:k}. Hence, it is only necessary
to assemble one stiffness matrix. As for the dG(k) scheme, the algebraic formulation of the cPG(k)
scheme can be rewritten in a more compact form using tensor notation as follows:

(M@B+71A®MU" =G", (70.26)

with U™ := (U™, ..., U"")T € R’F and G" := (G™1,...,G"F)T € R’¥, The linear system (70.26)
can be symmetrized and preconditioned by proceeding as in Remark 69.23.

Remark 70.16 (Diagonal M). One can choose for {¢,}4c0.%) the Lagrange interpolation poly-
nomials associated with the nodes {—1,&1,...,&} and for {1, }pc(1.%} the Lagrange interpolation
polynomials associated with the nodes {{,}pe1:x}- This choice is compatible with the assump-
tion (70.24). One advantage of this choice is that the matrix M becomes diagonal, mp, = pq <2,
and the load term becomes G™? := d, MU" ! 4+ 752F™P. We also have d, = —w,¢}(&,). See

Exercise 70.4 for k :=1 (Crank—Nicolson) and k := 2 (see also Hussain et al. [193]). O

Exercises

Exercise 70.1 (Interpolation operators). (i) Let Z;", be the Lagrange interpolation operator
defined in (70.2) using Z := L. Prove that

/ (P, Zp" 1 (w)) L dt = / (p,w)r pi-(dt), (70.27a)
J J

[z i = [ @ pga, (70.27D)
J J
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for all p € PP(J;; L) and all v,w € L2(J; L). (ii) Let Z C L. Prove that the restriction of Z¢: | to
PE(J;; Z) coincides with the L?(.J; Z)-orthogonal projection onto PP, (J-; Z). (iii) Prove (70.5).

Exercise 70.2 (Equivalence with KB IRK) Prove the converse assertion in Lemma 70.5.

(Hint: show that (1) =« " +7 ey 2 S5 @ L£5(€) dE(futng) — An(ty) (1)) for all
teJ,andalln e ./\/T.)

Exercise 70.3 (Butcher simplifying assumptions). Let s € N\ {O} and let {c;}icq1:5) be s
distinct points in [0,1]. Let & := 2¢; — 1 and £i(§) = [Tjeq1. o\ () 5 5 for all ¢ € {1:s}. Let

aij =1 [297NLi(€)dg, by =1 1 £i(€) e for all i € {1:s}. (i) Show that the set {&;,20;}icq1.s)
is a quadrature of order kg > s — 1 over the interval [—1,1] (see Definition 6.4). (Hint: observe

that p =3, (1.5 P(&)L; for all p € P,_1(J;R).) (ii) Show that for all ¢ € {1:s},

E q—
aijcj

je{l:s}

, Vie{l:s}, Z bjcj =~

je{l:s}

»QLQ

(Hint: integrate (#)qil over (—1,&;) for all ¢ € {1:s} and over (—1,1).) (iii) Assuming that
kg > s, show that for all j € {1:s},

_ b;
Z bicd ;= -L(1 - c§), Vg € {1:kg—s+1}.
ie{l:s} q
(Hint: integrate the polynomial (H'g)q ! fE (&) d¢ over (—1,1).) Note: these formulae are

called Butcher’s simplifying assumptions in the ODE literature (see Butcher [77, Thm. 7], Hairer
et al. [176, §11.6], [175, §IV.5, Thm. 5.1], see also the order conditions stated in Theorem 78.5).

Exercise 70.4 (cPG(k)). Assume that a is time-independent. (i) Use the IRK formalism and the
tableaux in (70.15) to write the algebraic form of ¢cPG(1) and cPG(2). (Hint: use the coefficients
{ai}ieqo:sy.) (ii) Write again the cPG(1) and cPG(2) schemes in algebraic form using the formalism
described in §70.3.2 and the bases from Remark 70.16. (Hint: for k := 1, it is of the form
M+ AU =2 MU 4 7FL and U™ = 2U™! — U" L, whereas for k := 2, it is of the form

2\/373 Mun,l N Z Aun,l B \/gMUn71 + %Fn,l
2 2+3 % MUyn2 2 Aun2 | — _\/gMUnq_'_%Fn,z )

and U™ := Un~! —/3(U™! — U™2)))

Swlw
w

Exercise 70.5 (II* and II;, commute). Let II;, € £(V;V4). Show that TT¥ (11, (v)) = I, (T1¥ (v))
for all v € HY(J;V). (Hint: use Remark 70.10 and prove that II, commutes with = | by
introducing (II,)* € L(V},; V').)



Chapter 71
Analysis using inf-sup stability

In this chapter, we revisit the well-posedness of the model parabolic problem (65.10), i.e., we
give another proof of Lions’ theorem (Theorem 65.9) using the framework of the BNB theorem
(Theorem 25.9). In other words, we establish the well-posedness by proving an inf-sup condition.
Then we exploit the inf-sup condition to revisit the stability and the error analysis for various
approximation techniques investigated in the previous chapters: (1) the space semi-discrete prob-
lem considered in §66.2; (2) the implicit Euler scheme introduced in §67.1; (3) the dG(k) scheme
investigated in Chapter 69; (4) the cPG(k) scheme investigated in Chapter 70.

71.1 Well-posedness

The goal of this section is to give another proof of Lions’ theorem by using the BNB theorem.

71.1.1 Functional setting

Let (V,L = L', V') be a Gelfand triple and recall the functional spaces
X :=X(;V,V)={ve L*(J;V) | 0w € L*(J;V')}, (71.1a)
Y = Yox Y7, Yy =1L, Y, = L*(J; V). (71.1b)

Let A : J — L(V;V’) be a linear operator that satisfies the properties (65.5). Let «(t) and
M (t) denote the coercivity and boundedness constants of A(t) € L(V; V') for a.e. t € J. The real
numbers o and M introduced in the assumptions (65.5b)-(65.5¢) are then a := essinfiey a(t) > 0
and M := esssup,c; M(t) < oo.

The model problem we consider in this chapter is (65.10), i.e.,

We seek u € X s.t. b(u,y) = £(y) for all y := (yo,y1) €Y, (71.2)

with the forms b: XxY - Rand ¢:Y — R s.t.

b(v,y) == (v(0),y0)r + /]@v(t) + A) (), y1 (8)) v, v dt, (71.3a)

y) = (o, yo)s, + /J (), 1 (1) v v, (71.3b)



178 Chapter 71. Analysis using inf-sup stability

Since we do not assume that A takes self-adjoint values, we denote by Mjg(t) the boundedness
constant of Ag(t) := 1(A(t) + A(t)*) and we set My := esssup,; Ms(t). We also need to consider
the coercivity constant of A(t)~!. Since the operator A(t) € L(V;V') is coercive for a.e. t € J,
its inverse A(t)~! € L(V';V) is also coercive (see (C.29)). Let v(t) be the coercivity constant of

A(t)L. If A takes self-adjoint values, we have y(t) = ﬁ owing to Lemma C.63. In the general
situation, Lemma C.64 shows that ~(t) € [%, ﬁ(t)] for a.e. t € J. We then have

v :=essinfy(t) € [, 7] (71.4)
In what follows, we will use that va < yMs <1, a < Mg < M, and
(0, A N D)) v v > vlIdly, Yo eV, forae. te . (71.5)

We equip the spaces X and Y defined in (71.1) with the following norms:

¥ 1
ol = llolZ2r) + 10000 + 0D (71.6a)

1
Iyl := EHyOH% Y122 v)- (71.6b)

The last term in (71.6a) is legitimate owing to the continuous embedding X — C°(J; L) from
Lemma 64.40. Other choices for the X-norm are possible (see Exercise 71.2). We also notice
that the norms in X and Y are dimensionally consistent. The present choice appears to deliver
relatively sharp bounds on the inf-sup and boundedness constants of the bilinear form b.

71.1.2 Boundedness and inf-sup stability

Let us start with the boundedness of the bilinear form b.
Lemma 71.1 (Boundedness). Let us set 0 := § esssup,¢ ; ||C(1)|| zvy with C(t) := A(t) " A(t)—
Iy € L(V). The following holds true:

b 1+6)2
supsup7| (v.9)] < M, = 7( * )2.

< (71.7)
vex yev [vllxlylly

Proof. Let (v,y) € X xY. The Cauchy—Schwarz inequality implies that

(v )| < (10w + A@)IIZ2 vy + allo(O)IIT) * lylly-

Using the coercivity of A(t)~!, rearranging the terms, and dropping the time dependency in the
integrals to simplify the notation, we infer that

1
O + A(v)H%z(J;V,) < ;/@v + A(v), A=Y (Ow) + )y v dt
J
1

- ;/J (<8t’U,A_1(8t’U)>V’,V + (A(v), v)vr v + 20, v)vr v + (O, C(v)>vgv)dt.

Using the boundedness of A™!, ie., [|[A(t) ™| zvv) < a7 ! for ae. t € J (see Lemma C.51), the
boundedness of Ag, the integration by parts formula from Lemma 64.40, and the definition of the
constant 8, we infer that

1/1
[0 + A(U)||2L2(J;Vf) < ; (a”atU”Qm(J;V/) + MS”’UH%Q(J;V) + ||U(T)||2L

1
+ 20100l v ol o) ) = = 0O
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Since a < My, Young’s inequality gives

14+6/1
1000+ A2y < ——(

1
— MOl Z2 vy + Msllolza vy + Hv(T)H%) - ;IIU(O)H%-

Since ya < yMg < 1, we infer that

146 1
Hatv—i_A(v)H%Q(J;V’) < 7”””%{ - ;”U(O)H%

Since a < 41, we have ||0;v + A(U)H%Q(J;V,) + aljv(0)]]2 < {Y#HUH%(, and this concludes the
proof. O

Let us now establish the inf-sup stability of the bilinear form b.

Lemma 71.2 (Inf-sup condition). Let § := 3 eSS Sup,¢ ||C~'(t)||£(vf) with C(t) :== A(t)A(t) ™ —
Iy € L(V'). The following holds true:

b 1
inf sup b, y)l >p:= a(—a7~) >0 (71.8)
veX yey [lvllx(lylly 1+6

Proof. Let v € X and set y, = (v(0), A=*(0yv) + v). By applying Lemma 65.1 to J > t
A(t)~* € L(V'; V), we infer that the second component of y, is strongly measurable, and Bochner’s
theorem (Theorem 64.12) implies that this component is in L?(J; V). Moreover, v(0) € L owing
to Lemma 64.40. Hence, y, € Y, i.e., y, is an admissible test function. This yields

wum>—[}av+waA*@wo+wvw@r+mmﬂ%

= [ (4@ vy + 0, A7 @y + 200, vy )t + [o(0)]}
J
> allolag + N303ary + I = allol,

where we used the coercivity of A(t) and A(t)~! for a.e. t € J and the integration by parts formula
from Lemma 64.40. Using the coercivity of A(t) for a.e. t € J, rearranging the terms, and using
again the integration by parts formula from Lemma 64.40, we also infer that

. 1
lyolls = 11477 (000) + vllZ vy + =0 (O)IIZ

< 5 [ AT 00) + 4. A7 0) + v vt + IO

«

l/J (<8t'U,A7*(8t’U)>V/vV + <A(v)’v>vl’v)dt

«

IN

20 1
+ E||8tv||L2(J;V’)Hv||L2(J;V) + EHU(T)”QL'

Using Young’s inequality to bound the term involving 6 and the boundedness of A(t)~* and Ag(t)
for a.e. t € J, we obtain

1+6 1 1
Iyl < ——=(MsllvlZarvy + 10012 + =IO
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Since ya < yM; < 1, this yields ||y,[|3 < 1(;9 |lv]|%. Putting everything together, we obtain

b(v, y)| o [6(v, yo)l

sup > > Bllvllx,
vey lylly lyolly
with 8 as defined in the assertion. This concludes the proof. O

Remark 71.3 (Self-adjoint case). If A takes self-adjoint values, we have v = % owing to
Lemma C.63, so that the X-norm becomes

1 1
1ol = lolZecvy + g7 10wllZe v + = (DL (71.9)

Since § = 6 = 0, the boundedness and inf-sup constants of b estimated in (71.7) and (71.8)

are My := M and ° := a(%)%. If A(t) is not self-adjoint, we have 6,6 € [0, Ms), My =
esssupye s || Ass(0)|l 2ovivry, Ass(t) := 3(A(t) — A(t)*), and v € |15, J\Lk] owing to Lemma C.64, so

that M, € [Ms, (1+ 2)3 2 pf] and 8 € [(1 4 s)~2 20, (&)%al. O

Example 71.4 (Heat equatlon) Let us consider the heat equation with unit diffusivity (s := 1).
Then we have « = v = M = 1, § = 6 = 0, and o3 = H’UHL2(J ) + HB,:UH%%J;H,I) +

Hvuwui%amdb@ay)::«moxyOLz+-L,(av 01 (O) 1 sy + (Volt), Vi (1))g2)dt. The inf
sup condition (71.8) becomes (see Ern et al. [125] and Exercise 71.3)

b 2
lol% < sup (v y)
X
yey HyOH + HylHLz(J HY)

, Vv € X. O

71.1.3 Another proof of Lions’ theorem

We now reprove Lions’ theorem, that is, the parabolic model problem (65.10) is well-posed under
the assumption (65.5) (see Theorem 65.9). This is equivalent to saying that the operator B : X —
Y’ = LxL*(J; V') s.t. (B(v),y)y+y := b(v,y) is an isomorphism.

Proof. We prove the assertion using the BNB theorem. Since the boundedness and the inf-sup
stability of the bilinear form b have already been established in §71.1.2, it only remains to prove
that the condition (BNB2) holds true. Let y := (yo,y1) € Y be such that b(v,y) = 0 for all
v € X. Let ¢ € C°(J;R) and z € V. The function vy : J 3 t — wvg(t) := ¢(t)z € V is in X with
0o (t) = @' (t)z (see Exercise 71.1). Since the function vy vanishes at the initial time, we obtain

0 = b(vo,y) = / (&' (1) (2,51 (1)1 + dE)(A(L)(2), y1 (8))vr,v ) dt
/(ZS =0 (t) + A(t)" (11 (1)), 2)vr,vdt.

Since ¢ is arbitrary in C§°(J;R) and z is arbitrary in V, we infer that d;y1(t) = A(t)*(y1(t))
for a.e. t € J, which in particular shows that d;y; € L*(J;V'). Let us now use the function

vy 2 J 3t vi(t) :=tz € V. Notice that v; € X with dyv1(t) = 2z, and v1(0) = 0. Integrating by
parts in time (Lemma 64.40), we infer that

0=0b(vi,y1) = /] ((z,p1(8)) L + t{A@) Y2 (t), 2) v,y )dt
—L«am@n+w@mm@WWM—T@mawb
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Since z is arbitrary in V and V is dense in L, we obtain y;(7T) = 0. We finally use the function
ve + J 3t va(t) :=ty1. Notice that vo € X with dyva(t) = Oyy1(t) + t0y1(t) (see Exercise 71.1)
and v2(0) = 0. Since y1(T) = 0, we have

[ @untrm@nsie = [ ~5amolia = [ Siml

Using the coercivity property (65.5¢), we infer that

0= o) > [ (Gl 0l + atlln ()17 )

which yields y3 = 0. Therefore, we have (v(0),y0)r, = 0 for all v € X. Considering constant
functions in time shows that (v,y¢)r = 0 for all v € V. Since V is dense in L, we have yo = 0. In
conclusion, we have shown that y = (yo,y1) = 0, i.e., (BNB2) holds true. O

Remark 71.5 (Literature). Theorem 65.9 has been established in Lions [218, Thm. 2.1, p. 219];
see also Lions and Magenes [220, Thm. 4.1, p. 238] or Dautray and Lions [100, Thm. 2, p. 513]. The
proof using an inf-sup condition and the BNB theorem has been presented in a previous book by
the authors [117], and later in Schwab and Stevenson [250]. Sharp estimates of the inf-sup constant
are discussed in Urban and Patera [279], Tantardini and Veeser [270] for parabolic operators and
in Ern et al. [125] for the heat equation. O

71.1.4 Ultraweak formulation

Recall from §65.1.5 that in the ultraweak formulation the trial space is X, := L?(J; V') and the test
space is Yoy = {w € L*(J; V) | yw € L*(J; V'), w(T) = 0}. The ultraweak formulation consists
of seeking u € Xy S.t. buw (0, w) = Kuw( ) for all w 6 Yiw, with by (v, w) := [, (v(t), —0uw(t) +
A*(w)(t))v,vrdt and Ly (w) = (uo, w(0))r + [,{f(t), w(t))y, vdt. We equip the trlal space Xuw
with the norm [|v||x,, := [[v||£2(s;v) and the test space Y,y with the norm (compare with (71.6a))

o 1
Jwll,, = lwllZ2r0 + al\atwl\izu;vq + al\w(o)lli- (71.10)

Then one can show that (see Exercise 71.4)

inf sup [Buve (v, )]

_wwio >8>0, (71.11)
VEXuw 1wV [[V]] X 10| Vi

where £ is the same constant as in the inf-sup condition (71.8). Since Lemma 65.8 asserts that
the weak formulation and the ultraweak formulation have the same solution sets, Lions’ theorem
implies that both formulations are well-posed. In particular, the operator By : Xuw — Y, s.t
(Buw (v),w)y /v, = buw(v,w) is an isomorphism (see also [125]).

uw?

71.2 Semi-discretization in space

We now adopt a point of view slightly more abstract than the pragmatic approach from §66.3
and revisit the error analysis of the semi-discrete problem (66.6), which we recall is formulated as
follows:

Find € X}, such that
{ et & An BT (71.12)

b(un,yn) = L(yn), Vyn € Y.
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Our goal is to derive an error estimate that is quasi-optimal by invoking inf-sup stability. We want
to bound the error by the best-approximation error with both the error and the best-approximation
error measured in the same norm (see §26.3.2 for the definition of quasi-optimality).

Since the bilinear form b satisfies an inf-sup condition on X XY (see Lemma 71.2) and since the
approximation setting from §66.2 is conforming (see (66.5)), one may wonder whether b restricted
to X xY), satisfies an inf-sup condition, uniformly w.r.t. h € H, when the spaces X} and Y}, are
equipped with the induced norms. We are going to see that the answer to this question is somewhat
subtle.

71.2.1 Mesh-dependent inf-sup stability

Since V;, C V, we equip V; with the V-norm, and since V}, is finite-dimensional, we identify
Vi, = Vh' by means of the inner product in L. Let Ax(t) : V), — V}, be the discrete operator s.t.
(Ap(t)(vn), wn)r == a(t;vp,wy) for all vy, wy € V3 and ae. t € J. Then Ay () is coercive and
bounded, uniformly w.r.t. h € H and a.e. t € J, with the constants a and M, respectively. To
reproduce the arguments from the proof of Lemma 71.2, one needs to invoke the coercivity of
Ap(t)~1 on Vj,. For this property to hold true uniformly w.r.t. h € H, we consider the following
additional norm on Vj,:

||¢h||v); = sup M

s V¢h € V. (71.13)
onevi, llonllv

Let us set

(o, An(t) " (o)1 '

hi=essinf inf 71.14

K ted GneVi 16nlI%, (71.14)

The argument to prove (C.29) shows that v, > 112> where ay, and M), are, respectively, coercivity
h

and boundedness constants of Aj that are uniform w.r.t. t € J. Since o < ap, < My, < M, we infer
that v, > 37z > 0, i.e., v, is bounded from below away from zero uniformly w.r.t. h € H.

Lemma 71.6 (Mesh-dependent inf-sup condition). Let us equip Y, with the Y -norm defined
in (71.6b) and X, :== H'(J; V},) with

Vh 1
lonll%, = llonll72(0y + EHatvhH%%J;v,;) + Eth(T)HQL- (71.15)

Let 0}, := S esssupyey | An(t)An(t) ™ — Ivilleevyy and By = a(%)%, then

b
inf sup UL S gy (71.16)

un€Xn y,evy |Vnllx, [Ynlly

Proof. Proceed as in the proof of Lemma 71.2 and use that a < ay,. O

Remark 71.7 (Value of ;). Proceeding as in Remark 71.3, we infer that 8, > 3, := (1 +

%)_% T @, i.e., By, is bounded from below away from zero uniformly w.r.t. h € H. If A, and hence
Ap, take selfadjoint values, Lemma C.63 implies that v, = ML} and v = %, so that -y, > . Since

] o

0n, = 0 in this case, we conclude that 8, > oa(M)% = (%, where [3° is the inf-sup constant of b on
X xY in the self-adjoint case. O
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71.2.2 Inf-sup stability in the X-norm

The discrete inf-sup condition from Lemma 71.6 is not entirely satisfactory since the mesh-
dependent norm |||y is used to measure the time derivative. To avoid this situation, one needs
to equip the subspace X; with the norm of X. The key question is then to compare the norms
[-lv; and [[-lv+ on V.

Lemma 71.8 (Comparison of dual norms). The following holds true:

1 Loy ol

_— mn
Pvillzory  énevi [@nllve

0< <1 (71.17)

PnEVR H(bhHV’

Proof. The value for the infimum is the identity (26.23) in Example 26.22 (see Lemma 26.19 and
Tantardini and Veeser [270, Thm. 2.1]):

1 ’
inf  sup (on, wn)L _ onllvy

—_—_ = 1 .
IPvilleevy  ¢n€Viwpev, 1nllvellwnllv  énevi [[gnllv

The upper bound on the supremum is obtained by extending the supremizing set from V;, to V in
the definition (71.13). O

Lemma 71.8 means that the uniform V-stability of the L-orthogonal projection is a necessary
and sufficient condition for the uniform equivalence of the norms |||y, and |-[[v+ on Vj (see
also Andreev [10, Lem. 6.2]). In the context of the heat equation where V := H}(D) and L :=
L?(D), sufficient conditions on the mesh sequence for the uniform H!-stability of the L?-orthogonal
projection are identified in Remark 22.23. In the rest of this section, we assume that there is ¢p
s.t. for all h € H,

1Pvillcvy < cp. (71.18)

Lemma 71.9 (Inf-sup condition with X-norm). Let X}, be equipped with the X -norm and let
Yy be equipped with the Y -norm. The following holds true with B, := Bn|Pv, | - V)(%)z and By,
defined in Lemma T1.6:

b

inf  sup o, yn)| > 3, > 0. (71.19)
vn€Xn yyev;, |lvnllxllynlly
Proof. The lower bound in (71.17) implies that
T Oh
HPVh”L HatUhHm(JV) = _HatUhHm(J V)

Hence, [Py, llzv)(55 )2 |lunllx, = llvnllx. Recalling the definition of the X-norm in (71.6a) and
the definition of the Xh norm in (71.15), we infer that (71.16) implies (71.19). O

Remark 71.10 (Value of ;). Under the assumption (71 18), ﬁh is bounded from below away

from zero uniformly w.r.t. h € H, since we have 3} > ﬂbc; (+7 AA{[‘ )2, where we used that 7z < v

and v < 1 , and where 8, > 0 is defined in Remark 71.7. In the self—ad301nt case, we have vy, >y
and f3), > a( )2 = (%, so that g}, > ﬂ*cp ) O

Theorem 71.11 (Quasi-optimal error estimate, X-norm). Let u € X solve (71.2) and let
up € Xp, solve (71.12). The following quasi-optimal error bound holds true:

M,
||u—uhHX (1+ﬂ_h) 1g§h|\u—vh||x (71.20)
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Proof. Combine the abstract error estimate from Lemma 26.14 (see also Lemma 26.18) with the
inf-sup stability from Lemma 71.9 and the boundedness of b on X XY (recall that the approximation
setting is conforming). [l

In the case of the heat equation, where A takes self-adjoint values, we have v = %, My = M (see
Lemma 71.1), and 8% = a(ﬁ})% (see Lemma 71.2) with a := k,, M = kg, and 0 < K, < K < Ky
in Dx.J. Note that M,b < (%)%CP. As mentioned in Remark 71.3, the X-norm is ||v||% =

2
H’UHL2(J T QMH&UHLQU H-1) + L{|v(T)||%2. Recall the time scale p := Ci%%

Corollary 71.12 (Convergence rate, heat equation). Let r € [1, k]|, where k > 1 is the
polynomial degree of the finite elements used to build the discrete space Vi,. Assume that u €
L2(J; H™Y(D)) N H'(J; H""Y(D)). Under the assumption (71.18) and letting &, := 2L and ¢, :=
=, the following holds true for all h € H,

|u—uh||xscs§/f< /J (max(p, &)ut) Bpois ) + € |atu<>|zm<m)dt> . (L21)

Proof. We use vp,(t) := Py, (u(t)) in the right-hand side of (71 20) for a.e. t € J. Thus, we need to
bound ||| x with 7(t) := u(t) — Py, (u(t)). Letting ¢(t) := L, we have

1
5”77(T)||2L2 :/J<at(¢77)u¢77>H*1,H[}dt:/](¢/¢H77H%2 +¢2<8t77777>H*1,H(})dt'

Using Young’s inequality and {1 = < we obtain

M
a3
(@, m) s g < Il Nl < Sk (Il + Il ).

Since T'(|¢'|| (1) = [¢llL=(s) = 1, Coslnllzz < €plnl|zz owing to the Poincaré-Steklov inequality,
and §, = £, we infer that [, ¢/¢||n[|7.dt < § ||77||L2 w3y Putting the above bounds together leads
to

1 1

~IIn(TZ2 < (€ + &MLz ) + 5,1 ||at77HL2(J H1)-

Thus, we have proved that

1
||77||X (1+§P+§"”~)HT]HL2(J H) (1"‘53) HatW”m JiH=1)

and it remains to bound the two terms on the right-hand side. We invoke Proposition 22.21 for the
first term. For the second term, we observe that ;Py, (u) = Py, (0;u) and that for all n € L*(D),
11 =Py, (Ml z-1(py < chlln =Py, ()|l 2(p)y (see Exercise 22.6). Combined with Proposition 22.19
this implies that [|n — Py, (n)||z-1(p) < ch”|n|gr—1(py for all r € [1,k]. This proves (71.21) since

3
1 <& and 1+ 52 < €2 O
h

Remark 71.13 (Localization in space). The upper bound in (71.21) is not localized over the
mesh cells because we used the L?-orthogonal projection to bound inf,, e x, |0 (u—vp) | 2(7;5-1 (D))
Using a variant of the Scott—Zhang interpolation operator that preserves mean-values over element
patches, it is possible to localize this upper bound over the mesh cells. We refer the reader to
Remark 66.15 and [270, p. 337] for more details. As done in §66.3, it is also possible to localize
the upper bound by making the slightly stronger smoothness assumption v € L?(J; H™1(D)) N
H'(J; H"(D)) and by using the bound (|0 r2(s.m-1(pyy < Cos'epll0in||L2(s;2(D)), Which is a
consequence of the Poincaré-Steklov inequality. O
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Remark 71.14 (Literature). Quasi-optimal error estimates using the discrete norm ||-||x, have
been derived by Dupont [113]. Quasi-optimal error estimates in the X-norm have been established
by Chrysafinos and Hou [86] under the assumption (71.18) requiring that the L-orthogonal pro-
jection be uniformly V-stable. That this assumption is not only sufficient but also necessary for
quasi-optimality in the X-norm has been proved in [270]. O

Remark 71.15 (C°(J; L?(D))-estimate). The estimate (71.21) gives the suboptimal convergence
order O(h") on [lu — unl|go(7,12(py, under the smoothness assumption u € L*(J; H"*'(D)) and
Owu € L?(J; H"~Y(D)). Using the elliptic projection and under the same smoothness assumption
on u but with d;u € L?(J; H"T(D)) and other appropriate assumptions if the bilinear form a
is time-dependent, the estimate (66.18) gives O(h""*) where s is the index of elliptic regularity
pickup. This extra smoothness requirement appears to be the price to pay to achieve optimal error
decay rates. It is also possible to combine the use of the elliptic projection with inf-sup stability
to obtain an error estimate in the C°(.J; L)-norm; see Exercise 71.7. O

A quasi-optimal error bound in the L?(J; V')-norm on the solution to the semi-discrete problem
(71.12) can be established by invoking the ultraweak formulation (see §71.1.4).

Theorem 71.16 (Quasi-optimal L?(J;V)-error estimate). Let u € X solve (71.2) and let
up € Xp, solve (71.12). (i) Under the assumption (71.18) there is ¢ s.t. for all h € H,

- v < inf — - 71.22
[|w UhHL2(J,V) >c vhengl(J;vh) | u UhHL?(J,V) ( )

(ii) Assuming for the heat equation that u € L*(J; H™ (D)), we have

1
2
lw = unllp2(.m2 (D)) < ¢ (/} Z h%|u(t)|§p~+1(z<)dt) : (71.23)

KeTh

Proof. (i) Recall from Lemma 65.8 that the solution to (65.10) is in X, := L?(J; V) and satisfies
buw (1, w) = Ly (w) for all w € Vi := {w € L*(J;V) | Ow € L?(J; V'), w(T) = 0}. Reasoning
as in the proof of Lemma 65.8, one can show that the semi-discrete solution wu, to the prob-
lem (66.6) is in Xuw.n := L?(J;V3) and satisfies by (un, wp) = Loy (wp) for all wy, € Yoy n =
{wp, € HY(J;V3,) | wp(T) = 0}. The formulation (66.6) is a conforming approximation of the
ultraweak formulation since Xuw  C Xuw and Yuw,, C Yuw. By proceeding as in §71.1.4 and
Exercise 71.4, we deduce that the inf-sup condition (71.19) implies that

inf sup M > B, >0,
€ Xuwe gy € Vo VR X oo 1Y Vi
with ([0l xpy = [0l and w3 = 0l + 21003 n + (O] Since by is
bounded on Xy X Yyw using the above norms, we can now invoke the abstract error estimate from
Lemma 26.14 (see also Lemma 26.18) to infer that (71.22) holds true.
(ii) (71.23) readily follows from (71.22). O

Remark 71.17 (Estimate (71.23)). The advantage of the estimate (71.23) w.r.t. (71.21) is that
(71.23) only requires optimal smoothness on u, but does not assume anything on d;u; see also
[270, p. 338]. (Notice though that, letting x be constant for simplicity, the identity d;u — f = kAu
implies that assuming v € L?(J; H"(D)) is equivalent to assuming d,u — f € L?(J; H"2?(D)).)
Obviously, (71.23) is less informative than (71.21) since the latter also bounds the error on the
time derivative and estimates the error pointwise in time. O
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71.3 dG(k) scheme

Let k£ > 0. In this section, we revisit the dG(k) scheme introduced in Chapter 69 and strengthen
the stability analysis for this scheme by proving an inf-sup condition. Our goal is to obtain a
discrete counterpart of (71.2) for the bilinear form b, defined in (69.13).

To avoid distracting technicalities, we assume that the bilinear form a is symmetric. We identify
Vi, = V) by means of the L-inner product, and we define Ap(t) : Vi, = Vi s.t. (An(t)(vn), wn)r =
a(t; v, wy) for all vy, wy € Vj, and all t € (0,T]. Recalling that R, is the reconstruction operator
defined in (69.17), we equip the spaces X, := PP(J,;V3) and Yy, := Xp, (see (69.12)) with the
following norms:

1 1 1
||Uh-r||§(hf = ||’Uh‘r||%2(J;V) + m”atRT(UhT)”%?(J;V,:) + EHUhT(T)H% + « Z H[[UhT]]n—l”%a
neN,

1
lynr I3, = lonrll 2y + = lynr (),

where o > 0 and M < oo are the coercivity and boundedness parameters of the bilinear form a.

W. Notice that ||-||x,, defines a norm on Xp,. Indeed,

llvnr |l x,,, = 0 implies that vj,;, = 0, and v, (0) = 0 follows from [vn-Jo = 0. (Notice that the
coercivity norm considered in Lemma 69.15 is slightly different.)

Recall that [jvp]ly; = sup,, cv,

Lemma 71.18 (Inf-sup stability). Assume that the bilinear form a is symmetric. The following
holds true:

b 1
inf sup [0 (hr who )| > a(g) ‘) (71.24)
onr €Xnr gy €Y, Vel X0 1Ynr |y M

Proof. (1) Let v, € X, and let us set 7, := R, (vp,) for conciseness. Since the function ry, is
globally continuous in time and piecewise smooth, we have d;r,, € L'(J;V},). Owing to (69.18)
and the identity derived in the proof of Lemma 69.15, we also infer that

/J(@,grhﬁvm)dtz Z (/n(atvhnvhr)Ldt—i— ([[Uhr]]n—lath(t:g_l))L)

neN,

1 1 1
= 5llonr (D)2 = SllonrON7 + D S llvnrla-1llz,
2 2 nen, 2

where we dropped the time dependency to simplify the notation.

(2) Since we assumed that a is symmetric, i.e., A;l = A, ", we would like to consider the
test function A,:l(atr;w) + vpr, but unfortunately this is not a polynomial function in time
if the operator Ay is time-dependent. To fix this issue, we invoke the interpolation operator
Zg" defined in (69.9). Thus, we consider the partner yn, € Yj. s.t. yn-(0) := v,-(0) and
Ynr(t) = TE%( A} (Oyrns))(t) + vnr(t) for all ¢ € J,. Recalling the identity (69.18) we have
br (Vnry Ynr) = T1 + Ta + ||vp-(0)||2, where

El = /(&rhT,I,S“(A,:l(atrhT)) + ’Uh-,—)Ldt,
J

Toi= [ (Anone) T AL @) + o)1 2 (),
J

We have T; = fJ(atrhT,Agl(atrhT))L pghy (dt) + [, (8¢rnr, vnr)rdt owing to (69.11b).  Since
A,:l(tnyl) is yp-coercive on V) with v, > v = % (see Remark 71.7) and since the weights of
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the quadrature are all positive, we infer that

- ; 1 1
I G P LT R v ) M e
n le{1:k+1}

where we used that ||8trh7|\%/}: € Por(J,; R). This implies that

1
%> MnatrhTH%z(Jn;Vé) + [](atrhT’UhT)Ldt'

Similarly, owing to (69.11a) we infer that
T, = /J (An(vne), A (Orrne) + vnr) 1 i ()
= /J(Ufm Oirhr + An(vnr)) L py, (dt)

= /J(th,atrhT)Ldt + /J('Uh'raAh(Uhr))L Ngz{rl(dt)v

where we used that (vsr, Ornr )L € Pop(Jn; R) for all n € N, Invoking the ay-coercivity of A, (t,1)
on Vj, with oy, > «, using the positivity of the quadrature weights, and that ||v,||?, € Poy(Jn; R),
we infer that

Ty > /(atThT,UhT)Ldf + 04||Uhr||%2(,1;\/)'
J

Putting everything together, and recalling the identity from Step (1), yields br (vir, ynr) > aflunr %, -
(3) Using the coercivity of Ay at t,; for every integers n € N; and | € {1:k+1}, we infer that
allyn-l13, . < llva-(0)]17 + Ts with

Ty = /(Ah(yh7)7yhT)L pgy (dt)
J

= /J(Ah(A;:l(atrhr) + Ve )y Ay H(Ornr) + Ve )1 et (dt),

where we used (69.11a). Rearranging the terms and since (9;7r, Vnr ) € Pag(Jpn; R) for all n € N,
we obtain

T = / 2O, vl + / (A (o), v 1 155 (1)
J J

+ / (Agl(atrh‘l')a 8tThT)L Hgil (dt)
J

Recalling that HA;L(th)(wh)HVé < M||wp ||y and [|Ap(tng) " Hwn)|lv: < lehHV,; for all wy, € Vy,

h— «
all n € Ny, and all | € {1:k+1}, and using the identity from Step (1) proves that [lys-[l3, <
M |vnr|1%, - Combining this bound with the lower bound from Step (2) gives (71.24). O

Remark 71.19 (Inf-sup condition). The inf-sup condition (71.24) is the counterpart of the
condition established for the continuous parabolic problem in Lemma 71.2 with the same constant.
The only difference is that the time derivative is now measured using the ||'||V’:—n0rm. One can
replace this norm by the ||-||y-norm whenever the L-orthogonal projection onto V}, is uniformly V-
stable, as done in §71.2.2. (The uniform stability holds true if the mesh sequence is quasi-uniform,
see also Remark 22.23.) The reader is referred to Smears [262], Neumiiller and Smears [229] for
further results on the inf-sup stability of dG(k) schemes with a time-independent bilinear form
a. O
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71.4 cPG(k) scheme

Let k > 1. In this section, we revisit the cPG(k) scheme introduced in Chapter 70 and strengthen
the stability analysis for this scheme by proving an inf-sup condition. To do so, we equip the spaces
Xpr = PE(J; Vi) and Y, := PP (J+; Vi) (see (70.6)) with the following norms:

1 1
2 . 2 2 2
lvne %, = T2 (e )l 227y + mHatUhTHB(J;V,;) + EthT(T)”La
1
lyne 1%, = lunr 720y + EHyhT(O)H%,

where a > 0 and M < oo are the coercivity and boundedness constants of the bilinear form a.

Recall that [vn v := sup,,, cv, \(mzuﬂu,

Lemma 71.20 (Inf-sup stability). The following holds true:

. |b‘r (Uhru wh7)| a %
inf sup >a( ) . (71.25)

Onr € Xnr eV, V0l X0 |Ynrllvi,

Proof. We are going to use the integral identities (70.27). Let v, € X}p,. Taking inspiration
from the proof of Lemma 71.18, we consider the partner yn, € Yi, s.t. ynr(0) := vp-(0) and
Ynr(t) = Igil(Agl(atth) + v, )(t) for all t € J.. Notice that indeed yp, € Yj,. Moreover, we
have b (vnr, Ynr) = T1 + T2 + |Jon- (0)]|2 with

Ty = / (00 ynr) Lt — / (Oponrs I8 (A (Bronr) + vnr))
J J
= /(&evhnA;l(atth))L pit(de) +/(6tUhTaUhT)Ldtu
J

J

where we used (70.27a) and that (Opvpr, var)r € Pok—1(Jpn;R) for all n € Ny, and the quadrature
is of order (2k —1). Since A} " (t,,,1) is Yp-coercive on V} with v, > v = 3 (see Remark 71.7) and
since the weights of the quadrature are all positive, we infer that

_ . 1 1
/J (Orvnr, Ay (Oevnr)) L pH(dt) > > Mwl”atvhr(tn,l)H%/}; > Mﬂatvhrﬂiz(,]n;v};),
n le{l:k}

where we used that ||8tvh7-||%,’: € Por_o(J,; R). This implies that
1 2
T > M||atvh7|‘[/2(]n;v}i) + J(atvh‘r;vh‘r)Ldt-
Similarly, owing to (70.27b) we infer that
Toim [ (An(ne) T (45 @uone) + o)) i ()
J
= [ Anton). A7 @) + o) (@)
- / (0hr Byonr + Ap(one)) 1 15 (A1)
J

= /J(vhr,atth)Ldt+/](vhnAh(vhr))L fi 1 (d2),
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where we used that (vpr,Ovnr)r € Pag—1(Jn;R) for all n € N.. Reasoning as in the proof of
Lemma 70.8 for the second term on the right-hand side, we infer that

T, > / (Ornrs yhr) Lt + Al|TE" L (0he) | 2o
J

Putting everything together and since 2 [ (0;vnr, ynr)rdt = |[vnr(T)[|7 — [lva-(0)||7 proves that

1
br(Unr,Ynr) > allvnr %, - Finally, we have [[yn-ly,, < ()2 |vpr|lx,, (see Exercise 71.9), and
combining these two bounds proves the assertion. [l

Exercises

Exercise 71.1 (Time derivative). Let ¢ € C{°(J;R) and v € X, ie., v € L*J;V) and
O € L2(J;V'). Show that ¢ov is in X with 9;(¢v)(t) = ¢'(t)v(t) + ¢(t)Opv(t). (Hint: use Pettis
theorem and Lemma 64.33.)

Exercise 71.2 (Inf-sup condition). Prove (71.7) with X equipped with the norm HU||§~( =
o120y + 200001172 gy +70(0) |7 (Hint: use integration by parts in time to bound [lv(0)[|7
by [lvll%)

Exercise 71.3 (Heat equation). Consider the heat equation with unit diffusivity (see Exam-
ple 71.4). Prove that for all v € X,

b(’U, (07 yl))2

5 + [[0(0)]I7-
y1€L2(J;HY) HylHLQ(J;H%)

lol% =

(Hint: observe that the supremum is reached for y; := A=1(9v) + v.)

Exercise 71.4 (Ultraweak formulation). Equip the space Xy with the norm ||v|x,, :=
llvllz2(s;vy and the space Y,y with the norm defined in (71.10). (i) Prove the inf-sup condi-
tion (71.11). (Hint: consider the adjoint parabolic problem dw,(t) + A*(w,)(t) := (v(¢),-)v for
a.e. t € J, with w,(0) := 0, invoke Lemma 71.2, then set w,(t) := w, (T —t).) (ii) The rest of the
Rt < ol o

v flwllvaw

for all v € Xyy. (Hint: prove first that ||[A™(dw) — wHiz(J.H%(D)) = [lwl]3,  for all w € Yiy.)
(iil) Prove that

exercise considers the heat equation with unit diffusivity. Show that sup,,cy.

b
lv]|x,. = sup 7uw(v,w), Vo € Xuw.
weVaw W[ vi

(Hint: compute b(v, w), where w, € Yy solve the backward-in-time parabolic problem —o;w, —
Aw, = —Av with w,(T) =0.)

Exercise 71.5 (Norm ||-[lys). Let [|-]ly; be defined in (71.13). Let {¢;}ic1.1y be a basis of
V3, and let S € R™*T and M € R*T be the stiffness and mass matrices s.t. Sij = (@), 0i)v
and M;; == (@;, ;) for all 4,5 € {1:T} (these matrices are symmetric positive definite). For all
vy € Vi, let V € R be the coordinate vector of vy, in the basis {%‘}z‘e{hl}, ie., vp = Zie{ltl} Vip;.

(i) Prove that oy ]lvy = (VIMS™'MV)2. (Hint: use that |[og]lv; = supyep: ﬁ) (ii) Let
2
w1 > 0. Prove the following two-sided bound due to Pearson and Wathen [235] (see also Smears
[262]):
T ~1
VMS" MApSV_ 5 yyerl,

1
- <
2 7 VT (M4 p28)S~ 1 (M + pzS)V ~
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Exercise 71.6 (Error analysis with ||-||x,). Referring to §71.2 and denoting by wy, the solution
to (71.12), let n(t) := u(t) — Py, (u(t)) for a.e. t € J. (i) With the norm ||-]|x, defined in (71.15),
prove that |b(n, yn)| < vV2M|nllx, ||lynlly for all y, € Yi,. (Hint: use that o < M?) (ii) Prove
the error estimate [|u — upl/x, < (1 + %) IInllx,, where B, is the constant from the inf-sup
inequality (71.16). (Hint: combine inf-sup stability with consistency and boundedness.)

Exercise 71.7 (C°(J; L)-estimate using inf-sup stability). (i) Recalling that ||-||x is defined
in (71.6a), prove that W%HUHC()@LQ) < ||v||x for all v € X. (Hint: see Exercise 71.2.) (ii) As-

2
sume (71.18). Let ¢; := \/g and cg = \/g, where p 1= 2LL01V and ¢z, v is the operator norm of
the embedding V' < L, i.e., the smallest constant s.t. ||v||z < ¢, v|[v||v for all v € V. Prove that

Brerllu = unllco,ny < Brerllnllcog,ny + MOz + e2ll0ml 21y,

with 7(t) := u(t) — I} (¢t;u(t)). (Hint: combine Lemma 71.9 with consistency.) (iii) Compare this
estimate with (66.16) in the context of the heat equation.

Exercise 71.8 (Implicit Euler scheme). (i) Let X, := (V,)N¥*! and Y, := Vi x(Vj,)V.
Reformulate the implicit Euler scheme (67.3) using the forms

br(Vnr, ynr) = (U won)L + Y T(((Brvne)™ yin) L + a” (v}, yih)),

neN;
KT(yhT) = (U‘Oa yOh)L + Z T<fn7y?h>v/-,Va
neN;
where (6-vp7)" == L(v) — vp~"). (i) Assume that the bilinear form a is symmetric at all times.
Prove that
1 M /1
04Huhf||§2(,1;\/) + M||5ruhr|\?2u;v,;) + THCST’UJhTH??(J;L) + lup(|7 < o (a”f”?z(,];w) + ||U0H%)-

(Hint: use the inf-sup condition (67.27).) (iii) Assume that u € C°(J; V)N CY(J; V)N H2(J; V')
and that Py, is uniformly V-stable (see (71.18)). Prove that

M
[07thr = Srurlizany < 1Pl g (VO Inr vy + 210l sz
+ 1l ) + Vel ),

where (§,u )" = L(u(t,) — uty—1) for all n € Ny, n(t) := u(t) — vu(t) for all t € J, n, =

T

(n(tn))nen, , and vy, arbitrary in H1(J;V3,). (Hint: use Step (ii) and Lemma 71.8.)

Exercise 71.9 (Inf-sup for cPG(k)). Complete the proof of Lemma 71.20. (Hint: reason as in
the last step of the proof of Lemma 71.18.)



Chapter 72

Weak formulations and
well-posedness

The four chapters composing Part XIV deal with the time-dependent version of the steady Stokes
problem investigated in Chapter 53. The present chapter focuses on the weak formulation of the
time-dependent Stokes equations. We consider two possible weak formulations. The first one
enforces the divergence-free constraint on the velocity field without introducing the pressure. This
formulation can be handled by using the same analysis tools as for parabolic problems. The second
weak formulation includes the pressure. This formulation entails some subtleties concerning the
smoothness in time of the pressure and of the time derivative of the velocity. Both formulations
hinge on the Bochner integration theory exposed in Chapter 64. The next three chapters deal with
the approximation of the mixed weak formulation in space and in time. The discretization in space
relies on stable mixed finite elements, and the approximation in time relies on either monolithic or
fractional-step schemes.

72.1 Model problem

Let J := (0,T), T > 0, be the time interval and D be a Lipschitz domain in R?. We want to
model the time-dependent flow of an incompressible fluid in D assuming that the inertial forces
are negligible. Let f : Dx.J — R? be a vector-valued field (the body force acting on the fluid)
and ug be a divergence-free velocity field (the initial velocity field). Let 0D = dDgq U dD,, be a
partition of the boundary, and assume for simplicity that |0Dq4| > 0. The time-dependent Stokes
problem consists of seeking the velocity field w : Dx.J — R% and the pressure field p : DxJ — R
such that

ou—Vs(u)+Vp=f in DxJ, (72.1a)

Vau=0 in DxJ, (72.1b)

upp, =0, (s(u)n —pn)sp, = an on 0DxJ, (72.1c)
u(-,0) =ug(-) in D. (72.1d)

The equations (72.1a)-(72.1b) express the balance of momentum and mass, respectively (note that
the mass balance does not involve any time derivative owing to the incompressible nature of the
motion). The equation (72.1c) enforces the boundary conditions, and (72.1d) enforces the initial



192 Chapter 72. Weak formulations and well-posedness

condition (the velocity field is prescribed initially, but the pressure is not). The second-order tensor
$(u) in (72.1a) is the viscous stress tensor defined as

s(u) == 2ue(u), e(u) = %(Vu + (Va)"), (72.2)

where e(u) is the (linearized) strain rate tensor and p > 0 is the dynamic viscosity. For simplicity,
we assume that p is constant. In the steady-state situation, the time derivative O;u vanishes
in (72.1a) and the initial condition (72.1d) becomes irrelevant, i.e., we recover the steady Stokes
equations studied in Chapters 53-55.

Remark 72.1 (Dirichlet condition, bulk viscosity). As for the steady Stokes equations, one
can consider the non-homogeneous Dirichlet condition usp, = aq. One recovers the homogeneous
condition by introducing a suitable lifting of aq (see Remark 53.6). One can also define the viscous
stress tensor as s'(u) = 2ue(u) + A(V-u)l, where A > 0 is the bulk viscosity and I the dxd
identity tensor. Then (72.1a) becomes dyu — V-s'(u) + Vp' = f with the pressure redefined as
p = p+ AV-u (see Remark 53.5). O

Let us briefly recall the functional setting for the steady Stokes equations (see §53.2.1). The
trial and test space for the velocity is the Hilbert space

Va:={ve H' (D) |vpp, =0}, (72.3)

where v|sp, = 0 means more precisely that v8(v)sp, = 0 and 78 : H'(D) — Hz(dD) is the
trace map acting componentwise. Since |0Dq4| > 0, Korn’s second inequality (see (42.14)) implies
that there is Cx such that Cx||Vv|[L2(p) < [le(v)||L2(py for all v € V4. The Poincaré-Steklov
inequality (applied componentwise) then implies that there is Cyps > 0 such that

Curslollzao) < Colle@)liapy, VYo Va. (720
We equip the velocity space Vg with the norm ||v||y; := [|e(v)||L2(p) (We could also use the norm
llvllvy :== [[VollL2(py = [v|m1(py as in the steady case). Moreover, recalling that the pressure is

defined up to an additive constant if only Dirichlet conditions are prescribed, i.e., when 0Dy = 0D
(see Remark 53.4), the trial and test space for the pressure is the Hilbert space

0 {LQ(D) if 9D # dDq, 25)

L3(D):={qe L*(D)| [,qdz =0} ifdD =aDy.

We equip the space @ with the L2-norm and we identify Q with Q’. We define the bounded bilinear
forms a : VgxVyq — R and b: V3x@Q — R such that

a(v, w) ::/Ds(v):@(w)dx, b(v,q) := —/DqV~vd:1:. (72.6)

These bilinear forms satisfy the following coercivity property and the following inf-sup condition
(see Lemma 53.9):

L Ja@ o)

b
5 > Q= 24, inf sup [b(v, q)]
veVq ”'U”Vd

O > 5>0. (72.7)
1€Q veVv, HqHQ”'U”Vd

Recall that the inf-sup condition means that the operator B : Vq — Q s.t. (B(v),q)r2(p) =
b(v,q) = —(V-v,q)r2(p) is surjective.
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72.2 Constrained weak formulation
To account for the incompressibility constraint, we consider the subspaces

Hq:={ve L*D)| Vv =0, vjop,n = 0}, (72.8a)
Vi = {v e HY(D) | Vo = 0, vop, = 0}, (72.8b)

where in (72.8a) V-v = 0 and v|pp,-n = 0 mean that (v,Vq)r2py = 0 for all ¢ € HY(D) s.t.
v8(q)jap, = 0 (or for all ¢ € H'(D) s.t. (q,1)2(py = 0 if 9D = dDg). Notice that Vq = {v €
Vg | V.o = 0} = ker(B). One important property of the pair (Vq4,#Hq) is that the space Vg is
dense and embeds continuously in H4. Thus, we have a Gelfand triple Vq — Hq = H) — V).
These statements are established in Temam [272, pp. 15-18] if 0Dgq = dD.

The constrained weak formulation of the time-dependent Stokes equations hinges on the above
Gelfand triple and the abstract setting for parabolic problems introduced in §65.1.2, where V4
plays the role of V' and Hq4 plays the role of the pivot space L. Thus, we consider the functional
space (see (64.6))

X (J;Vaq,Vy) :={v € L*(J;Va) | v € L*(J; V}))}. (72.9)

Let us assume that the data satisfies f € L*(J; V{) and a,, € L?(J; L?(0D,,)). Then by setting

(P).w)vgv, = (FO W, + [ anbwds (72.10)
for a.e. t € J and all w € Vq, we define a linear form F € L?(J;V)) = L*(J;Va)' (see Theo-
rem 64.20(i)). Notice that the action of f(¢) on w is meaningful since f(¢) € V] by assumption
and w € Vg C V4. Moreover, assuming ug € Hq, we infer from Lemma 64.40(i) that the initial
condition u(0) := wug is meaningful whenever u € X (J; Vq, V}). The constrained weak formulation
is as follows:

{ Find u € X(J;Va, V) s.t. u(0) = up and for all w e L*(J; Va), (72.11)

[, (<3tu,w>v;,vd + a(u,w))dt = [H(F w)y vy, dt.

The initial condition can also be enforced by means of a test function yo € Hq as we did for
parabolic problems.

Proposition 72.2 (Well-posedness). Assume that F € L?(J;V)) and ug € Hq. Then the
model problem (72.11) is well-posed.

Proof. We apply the well-posedness theory for parabolic problems (see Theorem 65.9). We consider
the Gelfand triple (V4,Ha = M, V)). The operator A : Vq — V) associated with the bilinear
form @ := ajy,xy, satisfies the hypotheses (65.5). Moreover, F € L?(J; V) and ug € Hq by
assumption. [l

72.3 Mixed weak formulation with smooth data

The well-posedness statement in Proposition 72.2 is somewhat unsatisfactory since it does not give
any information on the pressure. The objective of this section is to fill this gap. To simplify the
argumentation, we assume from now on that 0Dgq = 9D, and we simplify the notation by using
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V := H}(D) instead of Vg and V := {v € V | V-v = 0} instead of V4. Both spaces are equipped
with the norm ||v|v := ||e(v)|L2(p)-
In the previous section, we assumed that f € L*(J; H~1(D)) and

ug € H:={veL*D)|Vwv=0, vypn=0}

and we established the existence and uniqueness of the weak solution in X (J;V,V’), ie., u €
L3(J;V) and dpu € L3(J;V'). In the present section, we assume a bit more smoothness on
the data, i.e., f € L?(J;L?(D)) and up € V (a setting with less regularity is treated in §72.4).
We consider the following mixed weak formulation: Find w € X(J; H}(D),L?*(D)) and p €
L2(J; L3(D)) s.t. u(0) := ug and

{ (Dru(t), w) 2 + afu(t), w) + b(w, p(t)) = (F(£), )z, (12.12)

b(u(t)7 Q) =0,

for allw € H}(D) and all ¢ € L2(D), where the two equalities hold in L?(.J). Notice that in (72.12)
we have O;u € L?(J; L?(D)). Moreover, the second equation in (72.12) implies that u € L*(J; V).
An equivalent restatement of (72.12) is that for all y € L?(J; H}(D)) and all r € L?(J; L%(D)),

/ ((8tu, y)r2 + a(u,y) + b(y,p) — b(u, r))dt = /(f, y)r2dt. (72.13)
J J

To prove the well-posedness of (72.12), we are going to use the well-posedness of the constrained
weak formulation (72.11), establish some a priori estimates on the time derivative of the velocity,
and deduce the existence of the pressure in L?(.J; L2(D)). Recall that the bilinear forms a and b
satisfy the coercivity property and the inf-sup condition stated in (72.7). To simplify the notation,
2

we introduce the time scale p := C’K}%%’.

Theorem 72.3 (Well-posedness, a priori estimates). Assume f € L?(J; L?(D)) andug € V.
(i) The mized weak formulation (72.12) is well-posed, and the following a priori estimates hold true:

2MHU||2L2(J;V) < %prH%?(J;LQ) + HUOH%% (72.14a)

Hatu||2L2(J;L2) < Hf”%Q(J;LQ) + 2 w3, (72.14b)
2 1 2 2

HPHL?(J;H) < EPM(lOHfHLQ(J;L% + 12MHUO||V)- (72.14¢)

(ii) We have for all t € (0,T] with J; := (0,1),
lu()lz: < 5ple™ 7 Fllf2(sLe) +e 77 luollZe. (72.15)

Proof. (1) Estimates on u. Owing to Proposition 72.2, there is u € X(J;V,V’) solving the
constrained weak formulation (72.11) with the right-hand side replaced by (f(t),v)rz. The esti-
mate (72.14a) is obtained by proceeding as in Lemma 65.10: one uses the test function w := u
in (72.11) and invokes the coercivity of a, Korn’s inequality, and Young’s inequality. Moreover,
the estimate (72.15) is obtained by using the test function w(t) := ezﬁu(t) in (72.11) and by
proceeding as in Lemma 65.11.
(2) Estimate on dyu. We proceed as in the proof of Lemma 65.13. Let (v;);en be a Hilbert ba-
sis of V (recall that V € H{(D)). Let n € N and set V,, := span{v; };c(0.n}. Let ugn be the
V-orthogonal projection of uy onto V,,. We consider the following set of ordinary differential
equations:

(Opun (1), v) g2 + alun(t),v) = (f(t),v) e, (72.16)
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for all v € V,, and a.e. t € J, supplemented with the initial condition u,(0) = wg,. Owing to the
Cauchy—Lipschitz theorem, (72.16) has a unique solution w,, € X (J; V., V,). Moreover, using the
test function v,, := d,u,,(t) in (72.16), for a.e. t € J, and integrating over the time interval J leads
to

1 1
10eunZa(5,z2) + 50(un(T), un(T)) = [I(f(t)v Orun () 2dt + 5 a(ton, ton).

Invoking the coercivity and the boundedness of a, the Cauchy—Schwarz and Young’s inequalities,
and the bound ||ug,||v < ||uollv, we infer that

10vunll3ag s,z + 20llan(T)3 < Iz + 20lluclly (72.17)

Moreover, integrating from 0 to ¢ for all t € (0,7] shows that 2#”’“”2&(];‘/) < ||f||%2(J;L2) +

24||uol|},. The estimate (72.17), which crucially hinges on the assumptions on f and wug, shows
that the sequence (9yu,,)nen is bounded in L?(J; L?(D)). Similarly, testing (72.16) with w,, and
proceeding as in Lemma 65.10 shows that the sequence (u,),en is bounded in L?(.J; V). Hence,
there is a subsequence (that we do not renumber for simplicity) such that d,u, — w. weakly in
L?(J; L*(D)) and w,, — wu, weakly in L?(J;V) as n — oo. Uniqueness of the weak limit implies
that dyu. = w., showing that u, € X(J;V, L?(D)). Moreover, fixing m € N and a test function
v € V,,, we can pass to the limit n — oo in (72.16) and show that (O;u.(t),v)r2 + a(u.(t),v) =
(f(t),v)pz in L?(J). Since v is arbitrary in V,,, m is arbitrary in N, and the family {V,, }men is
dense in V, the above equality holds for every test function v € V. Furthermore, (72.17) shows that
the sequence (wy,)nen is bounded in X°2(.J;V, L?(D)) := {v € L>(J;V) | v € L*(J; L*(D))}.
The compactness result from Theorem 64.39(ii) then implies that, up to a subsequence, (w,)nen
converges in C°(J; L?(D)). By uniqueness of the limit, we infer that wu,(0) — w.(0) in L?(D)
as n — 0o, and since ug, — up, we conclude that u.(0) = w(0). Invoking the uniqueness of the
solution to the constrained weak formulation (72.11) shows that w. = w. This proves that u €
X(J;V,L*(D)) C X(J; H}Y(D),L?(D)) and that ||8tu||2L2(J;L2) < limsup,, H(?tunH%Q(J;LZ) <
Hf”%z(,];z,z) + 2pfluoll}, ie., the estimate (72.14b) holds true.

(3) Existence of p and well-posedness of (72.12). Since f and dyu are in L?(J; L*(D)), we can
define the linear form S € L?(J; H-Y(D)) = L*(J; H}(D))' (see Lemma 64.20(i)) such that

(S, w)r2(rr-1),12(m3) = /] ((Qru(t) — £(t), w(t))r2 + a(u(t), w(t)))dt,

for all w € L2(J; H3(D)). Since u solves the constrained weak formulation (72.11), S annihilates
L?(J; V). Owing to Lemma 72.4, this implies that there exists p € L?(J; L2(D)) such that the pair
(u, p) solves the mixed weak formulation (72.12). Moreover, the inf-sup inequality (72.7) implies

that ’

D
t 2 <

Blp(Dlz» < =

KPS

(lowu(®)llLz + 1 £(B)llz2) + 2pllu®)]v.,

for a.e. t € J. Squaring and using the definition of the time scale p yields

B lp0Z2 < 4pp(0ru®)z: + I FONL2) + 8p* [u@®)]5-

Integrating over .J, and using the above estimates on ||0;wl|12(s,£2) and on ||u|[z2(s;v) proves the
estimate (72.14¢) on the pressure. Finally, uniqueness of the solution to (72.12) follows from the a
priori estimates. O

Lemma 72.4 (Space-time de Rham). Let S € L?(J;H '(D)). Then, the linear form S
satisfies (S, w)p2(g-1y,L2(my) = 0 for all w € L2(J;V) iff there exists p € L?(J;L%(D)) s.t.
<Saw>L2(H*1),L2(H(1)) = (p, V-w)r2(s;02(py) for all w € L*(J; Hy(D)).
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Proof. See Exercise 72.2. O

Remark 72.5 (Pressure gradient). Defining the gradient operator
V: L*(J; L(D)) — L*(J; H (D))
such that for all ¢ € L*(J; L3(D)),
(Vg w) 21y, 02(mp) = — (¢, V-w)r2(5,2(D))s

for all w € L?(J; HY(D)), Lemma 72.4 means that S € L*(J; H1(D)) annihilates L?(J; V) iff
there is p € L?(J; L2(D)) s.t. 8§ = —Vp. O

Remark 72.6 (V' vs. V'). In §71.1 and, in particular, Lemma 71.2, we showed that the right test
function to obtain an optimal estimate on the weak time derivative in L?(J; V') in the parabolic
equation 0;v + A(v) = f is A=*(Ow). Let A : V — V' be the Stokes operator defined by
(A(v),w)yr v = a(v, w) for all v,w € V. The operator A is bijective, self-adjoint, and its inverse
is compact (recall that the embedding ¥V € H'(D) — L?(D) is compact). The constrained weak
formulation (72.11) consists of seeking u € X (J;V,V’) so that dyu + A(u) = f in L*(J; V).
Testing this equation by A~*(9yu) gives ||dyul r2(5,v7) < || fllL2(s5v7)- So, a natural question that
comes to mind is whether the norms ||-||y» and ||-||y+ are equivalent (recall that V' = H~(D)). If
it were the case, the above inequality would give us an estimate on [|Q;u|[2(s;v). It is clear that
[lv|ly < |||y for all v € V, but unfortunately the converse is false; see Guermond [142, Thm. 4.1},
Guermond and Salgado [161, Thm. 32] for counterexamples. In conclusion, when f € L?(J;V”)
and ug € H, one only has u € X (J; V,V’), and it is not possible to derive an a priori estimate on
Oyu in L2(J; V7). O

72.4 Mixed weak formulation with rough data

In this section, we revisit the question of the regularity in time of the pressure and of the time
derivative of the velocity by considering data with minimal regularity, i.e., f € L?(J; H (D))
and ug € H :={v € L*(D) | V-v = 0, vjpp-n = 0}. We will see that in this setting the notion of
weak time derivative for the velocity in L?(.J; H~1(D)) is not sufficient and the pressure may not
be in L?(J; L2(D)). As a result, we have to introduce distributional time derivatives to extend the
notion of weak time derivatives.

We first introduce the notion of distributional time derivative. For every separable Hilbert
space V', we define

HYJ; V) :={w e L*(J;V) | Opw € L*(J; V)}, (72.18a)
H3(J;V) = {w e H'(J;V) | w(0) = 0, w(T) = 0}. (72.18b)

The definition of H}(J; V') is meaningful owing to Lemma 64.40. Notice that H(.J; V) = X (J; V, V).
It can be shown that H'(J;V) is a Hilbert space when equipped with the inner product

(0, 0) 01 (1) = / (W(t), w(t))v + T2(@u(t), () )dt

and that Hg (J; V) is a closed subspace of H!(.J; V). We denote the dual of H}(J; V) by H=1(J; V).
For all v € L*(J; V'), we define the distributional time derivative d;v to be the linear form in
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H=Y(J; V") == (H}(J; V)) s.t. the following holds true for all w € H}(J;V):
<3tv,w>H71(V,)7H%(V) = —/<’U,8t’w>v/7vdt, (72.19)
J

where H (V') means H1(J; V') and Hg(V) means H}(J; V). The distributional time derivative
is an extension of the weak time derivative, i.e., ;v = dyv for all v € H(J; V'); see Exercise 72.4.

Theorem 72.7 (Pressure regularity). Assume that f € L?(J; H (D)) and ugp € H. Let u
solve (72.11). Then there exists p € H'(J; L2(D)) such that for all w € H}(J; H3 (D)),

<(§tuaw>H*1(H*1),Hé(Hé) +/Ja(u(t)7w(t))dt =P, Vw) g-1(12) 13 (12)
:/<f(t),w(t)>H71,H5dt. (72.20)
J

Proof. Since u € L?(J;V) by assumption and L?(.J; V) — L?*(J; H~1(D)), w has a distributional
time derivative 9yu € H~1(J; H=1(D)) which satisfies

<(§tu,w)H71(H71)7Hé(Hé) = —/(u,@tw>H71)Hédt = —/(u,@tw)det,

J J
for all w € H(J; H}(D)). Moreover, the weak time derivative ,u € L?(J; V') satisfies for all
w € Hy(J; V) C LA(J; V),

<6t’u,w>v/)vdt = —/(u, &gw)det,

(Oru, w)r2(vry;r2(v) = / :

J

owing to the integration by parts formula from Lemma 64.40, since u,w € X (J;V, V'), w(0) =
w(T) = 0, and (u, dw)y v = (w,dw)gz. Thus, du € H-1(J; HY(D)) and du € L*(J; V')
coincide on H}(J; V). Consider now the linear form S € H~1(J; H (D)) such that for all
w € Hy(J; Hy (D)),

<va>H*1(H*1),H(1)(H[1)) =

(O, w) g (g -1) by (1) +/] (a(u(t), w(t)) — (F(t), wt) g1, my ) dt-

Since u solves (72.11), the identity on the time derivatives shows that (S, w)y—1 (1) g1 (H1) =0

for all w € H}(J; V). Owing to Lemma 72.8, there is p € H~!(J; L2(D)) so that (72.20) holds
true. g

Lemma 72.8 (Space-time de Rham in H~'). Let S € H *(J; H Y(D)). Then, the linear
form S satisfies (S, w) g1 (g-1),m1 (1) = 0 for all w € H}(J; V) iff there is p € H-(J; L2(D))
ERA <S,w>H71(H71)7H(1)(H%) = (p,V-w>H71(L2)7H(1)(L2) fOT allw € H&(J,H&(D))

Proof. See Exercise 72.5. O

Remark 72.9 (Pressure gradient). For all ¢ € H~1(J; L?(D)) (which is by definition the dual
space of H}(J, L%(D))), we define

Vqe H'(J;H (D)) = (Hy (J: Hy (D))’
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so that the following holds true for all w € H}(J; HE(D)):

<@Q7w>H*1(H*1),H(%(H})) = _<Q7V'w>H*1(L§),H})(L§)-
Lemma 72.8 means that S € H~1(J; H~!(D)) annihilates H{ (J; V) iff thereis p € H~ (J L2(D))
s.t. 8§ = —Vp. Moreover, (72.20) can be rewritten dyu — V-s(u) + Vp = £ in H1(J; H-(D)).
Notice that only V-s(u) and f are in LQ(J;H’l(D)) The sum dyu 4+ Vp is in L2(J; H Y(D)),
but this may not be the case of the terms d;u and Vp taken individually. (|

Remark 72.10 (Finer regularity results). Using a Fourier technique and assuming only f €
L2(J; H-(D)), it is possible to prove w € H2~¢(.J; L%(D)) and p € H~2~¢(J; L2(D)) for all ¢ > 0;
see Lions [217], [219, I§6.5]. Furthermore, let ¢ € (1,00), r € (1,00), and € > 0. Assume that the
Laplace operator and the Stokes operator, both with homogeneous Dirichlet boundary condition,
are isomorphisms between W24(D) N Wy (D) and L?(D) and between W7 := W24(D) N
W, (D) N HY and H? := {v € LIYD)|V-v = 0, vjgpn = 0}, respectively (these properties
hold true if D is either convex or dD is of class C1). Then for all f € L"(J;L(D)) and all
o € Wi=te4(D) N M, the time-dependent Stokes problem (72.1) has a unique solution with
we L(J; W), dpu € L™ (J; HY), p e L"(J; LL(D)), Vp € L"(J; LY(D)); see Sohr and von Wahl
264, Thm. 2.12]. O

Exercises

Exercise 72.1 (Non-homogeneous Dirichlet condition). Consider the time-dependent Stokes
equations (72.1) with the non-homogeneous Dirichlet condition w = g enforced over the whole
boundary 9D for all ¢t € J. Assume that faD gmn =0 for all t € J. Assume that the data f and g
are smooth so that the solution (u,p) is smooth. Assume that there is a smooth lifting ug of the
boundary datum so that ug-n =g on 0D x J and V-ug = 0 on D x J. (i) Write the equations
satisfied by ug := u — ug. (ii) Verify that

1d

5 alols + 2ulle(uo)2: = (F,u0)z> — (Brttg, o)z — 2n(e(ug), e(uo))is.

(iii) Establish a priori bound on ug of the form & [lug||%. +2ufe(uo) (2. < (T, f,ug) + 2 |l uol/22

Exercise 72.2 (Space-time de Rham in L?). (i) Show that the operator V- : L?(.J; H}(D)) —
L?(J; L3(D)) is surjective. (Hint: invoke Lemma 53.9, Lemma C.44, and Corollary 64.14.) (ii)
Show that S € L*(J; H™ (D)) satisfies [;(S,w)g—1 gadt = 0 for all w € L*(J; V) iff there is
p € L*(J;LZ(D)) st. [(S,w)g-1 gadt = [,(p, V-w)edt for all w € L?(J; Hy(D)). (Hint: use
the closed range theorem.)

Exercise 72.3 (Variable viscosity). Assume that p depends on @ € D, and set 0 < p, =
essinfpep pt, g = esssupyepp < oo. Consider the mixed weak formulation (72.12). Prove
that || w72y < 30U F720s02) + 3llucllZ with p = CKP%;M Mol e, pe) < IFI720sp2) +
24z [|woll3, and [[p[|7 2 5.2y < %(01||f||L2(J;Lz)+C2Hu0||v) with c1 := pp, (8+28), c2 1= ppypiz (8+
4¢,), and &, := % (Hint: adapt the proof of Theorem 72.3.)

Exercise 72.4 (Distributional time derivative). Let V < L = L' < V'’ be a Gelfand
triple. (i) Let v € X (J;V,V’). Show that the action of d,v € H=1(J; V') and of v € L*(J; V')
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coincide on H}(J; V). (Hint: use the integration by parts formula from Lemma 64.40.) (ii) Let

v € H'(J;L). Show that the action of dv € H~'(J;V') and of 8w € L2(J;L) coincide on
HY(J; V). (Hint: as above.)

Exercise 72.5 (Space-time de Rham in H~!). (i) Show that the operator V- : H!(J; H}(D)) —
H(J; L3(D)) is surjective. (Hint: proceed as in Exercise 72.2 and use Lemma 64.34.) (ii) Show
that V- : H}(J; HY(D)) — H}(J; L3(D)) is surjective. (Hint: use Step (i) and Lemma 64.37.)
(iii) Prove Lemma 72.8. (Hint: use the closed range theorem.)
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Chapter 73

Monolithic time discretization

The present chapter deals with the approximation of the time-dependent Stokes equations. We
use stable mixed finite elements for the space discretization in a conforming setting. The time
discretization can be done with any of the techniques considered for the heat equation. For brevity,
we focus on the implicit Euler scheme and on higher-order implicit Runge-Kutta (IRK) schemes.
The discretization process gives at each time step a saddle point problem coupling the velocity
and the pressure, so that the linear algebra is in general more involved than when dealing with the
heat equation. Fractional-step methods based on a sequential computation of the velocity and the
pressure are discussed in the next two chapters.

73.1 Model problem

In this chapter and the following two chapters, we consider the mixed weak formulation (72.12),
i.e., we assume that homogeneous Dirichlet conditions are enforced on the velocity over the whole
boundary, f € L?(J; L*(D)), and ug € V, where

V:i={veV|Vwv=0} V := H}(D). (73.1)

The solution to (72.12) satisfies u € X (J; V, L*(D)), i.e., u € L?(J; V) and dyu € L?(J; L*(D)),
and p € L*(J; Q) with @ := L?(D). The weak formulation is as follows:

(Gru(t), w) 2 + a(u(t), w) + b(w, p(t)) = (f(t), w)Lz, (73.2)
b(u(t),q) =0,
for all w € V := H}(D) and all ¢ € Q := L?(D), where the two equalities are understood to
hold in L?(.J). Notice that the second equation in (73.2) means that w € L?(J; V). Recall that
|lv|lv :=||e(v)||Lz for all v € V, and that @ is equipped with the L2-norm.
We henceforth assume that there is some regularity pickup for the steady Stokes problem (53.1),
i.e., there are real numbers ¢y, and s € (0, 1] such that the solution to the steady-state Stokes
problem with source s € L?(D), say (¢(s),0(s)) € V x@Q, is such that

o 1C(8) | Err+e ) + 10(8) | 712 (D) < CsmolplI8] L2(D) (73.3)

where ¢p is some characteristic length of D, e.g., {p := diam(D).



202 Chapter 73. Monolithic time discretization

73.2 Space semi-discretization

In this section, we discuss the space discretization of (73.2) using conforming mixed finite elements
and we perform the error analysis.

73.2.1 Discrete formulation

We adopt the same discrete setting as in §53.3. We assume that D is a polyhedron in R% and
(Th)nen is a shape-regular sequence of matching meshes so that each mesh covers D exactly. Let
(Vi newn and (Qn)newn be sequences of finite-dimensional spaces built using (75)new. We assume
that the approximation setting is conforming, i.e., Vs, C V := H}(D) and Q, C Q := L%(D) for
all h € H (this means in particular that the velocity boundary conditions are strongly enforced).
We assume that the pairs (Vi,, Qn)new are uniformly compatible, i.e., there exists a constant 5 > 0
such that for all h € H,

V-, dx
inf sup fD%—h > B. (73.4)
@ €Qn v, eV, [[vnllvilanllz2 ()

Let us set
YV = {’Uh eV, | b('vh,qh) =0, th (S Qh} (73.5)

Recall that V), is not in general a subspace of V. The discretization is said to be well-balanced
when V), C V (see Remark 53.22).

Let up(0) € V), be uniquely defined by requiring that a(up(0), wr) = a(ug, wy) for all wy, € Vy,
(recall that @ is coercive on V4, and thus on V},). The space semi-discrete problem is as follows:
Find w, € H*(J;V,,) and p, € L?(J;Qp) such that the following holds true in L?(J) for all
wyp, € Vi, and all g, € Qp:

{ (Orun(t), wn)re + alun(t), wn) + blwn, pu(t)) = (f(t), wn) e, (73.6)
b(un(t), qn) = 0.

Notice that the second equation in (73.6) implies that u, € H'(J;V},).

Proposition 73.1 (Well-posedness). The discrete problem (73.6) is well-posed.

Proof. See Exercise 73.1. O

73.2.2 Error equations and approximation operators

To gain some insight into the derivation of the error estimates, let us consider some discrete func-
tions vy, € HY(J; V) and g, € L?(J;Qp), and let us consider the following error decompositions
for all t € J:

en(t) = up(t) — vp(t), n(t) := u(t) — vp(t), (73.7a)
on(t) == pn(t) —an(t),  C(t) :=p(t) — qn(t). (73.7b)

Notice that ey (t) € V), for all ¢ € J. Moreover, subtracting (73.6) from (73.2) and using the
conformity of the approximation setting, we infer that for all ¢t € J and all wy, € V,

(Oren, wn)r2 + alen, wr) = (Oum, wp) L2 + a(n, wn) + b(ws, (). (73.8)

Notice that b(wp, d,) = 0 whenever wy, € V.
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Taking inspiration from the error analysis for the heat equation (see §66.3), a natural way to
proceed is to consider the counterpart of the elliptic projection introduced for parabolic problems.
For the time-dependent Stokes equations, we define the operators 8y : VxQ — V;, and S :
VxQ — Qp such that for all (v,q) € VxQ, 8§} (v,q) € V}, and S} (v,p) € Qj are defined as
follows: For all (wp,rp) € Vi xQp:

a(S} (v, q), wr) + b(wp, SE (v, q)) == a(v, wy) + b(wp, ), (73.9a)
b(S)(v,q),mn) = b(v, ). (73.9b)

Notice that S}, (v,q) € V), whenever v € V. Then setting ey (t) := wuy(t) — Sy (u(t),p(t)) and
n(t) == u(t) — 8} (u(t),p(t)) for all t € J and all w;, € V), we observe that ey (t) € V;, for all
t € J and that the error equation (73.8) becomes

(atehu wh)L2 + G(Eh, ’LUh) = (atlrlu wh)L2 . (7310)

The error equation (73.10) shows that we need to measure the approximation properties of S}
to derive a velocity error estimate. But this is precisely what has been done in Chapter 53 in
the context of the steady Stokes equations. Indeed, Theorem 53.17 and Theorem 53.19 (see also
Corollary 50.5 and Remark 50.6 for a more abstract setting) show that there is ¢ s.t. for all
(v,q) € VxQ and all h € H,

1
v— 87 (v, <c( inf |lv—w + — inf — ),
o= Siwaly < e( it lo-ovily -+ inf o= anlse

- SP(©,0)llz2 < (p_inf flv- inf g - anllz2),
llg =8y (. ll> < c(p inf fv—ovnlv+ inf fg—anfr

1
v— 87 (v, <ch5€1_s( inf |lv—w + — inf — )
v~ Si(w.0)lze < ety int o —villv + 7 inf g aulus
One possible drawback of using the approximation operator 8} to estimate the velocity error

is that the field 7 depends on the pressure. An alternative is to consider the projection operator
Pp .V — V), such that

a(Py(v), wp,) = a(v,wy), V(v,wp) € VXV, (73.11)

Notice that P;(v) = S} (v,0) for all v € V. Then setting ep(t) := uy(t) — Py (u(t)) and n(t) :=
u(t) — P;(u(t)) for all t € J, we observe that e, (t) € V), for all t € J and that (73.8) now becomes

(atEh,'UJh)L2 + G(Eh,’UJh) = (at'r],’UJh)L2 + b(whup - qh)7 (7312)

for all g, € H*(J; Qp). This shows that the velocity error estimate is still dependent on the pressure
approximation, but at least the dependence on the viscosity can be avoided. This topic is further
discussed below. For the time being, we recall from Lemma 53.20 that the projection operator P
enjoys optimal approximation properties. Indeed, provided the inf-sup condition (73.4) is satisfied,
the following holds true for all v € V' and any Fortin operator II;, € L(V; V},):

lo =Py (@)llv < &n if [lv—on]v, (73.13)
Vh h

with ¢ 1= M(1 + |4l £(v;v;))- Notice that the ratio ”(;L” is independent of the viscosity and

(0%
only depends on the constant Cx from Korn’s inequality, whereas ||TI | z(v.v;) can be bounded by

”—gH (see Lemma 26.9).
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Remark 73.2 (Initialization). The initialization for the space semi-discrete problem (73.6) can
be rewritten u,(0) := Py (ug) = S)(uo, 0). O

Remark 73.3 (L?-orthogonal projection). Yet another error equation can be derived if one
considers the error decomposition using the L2-orthogonal projection from V onto Vj,. This choice
eliminates the term (9yn, wy)r2 from the right-hand side of (73.8). However, strong assumptions
on the mesh sequence are required to obtain optimal approximation properties in the ||-||y-norm
for the L?-orthogonal projection (see Proposition 22.21 and Remark 22.23.) O

73.2.3 Error analysis

We are now ready to perform the error analysis of the semi-discrete problem (73.6). We start with
the natural approach where we use the approximation operators (S}, S}’) defined in (73.9).

Theorem 73.4 (Error estimates). Let (u,p) solve (73.2) and assume that w € HY(J; V') and
p € HY(J;L2(D)). Let (un,pn) solve (73.6). Let n :=u—S8)(u,p), ¢ :=p—3Si(u,p) for allt € J,
and let €9) := 8} (0,p(0)). (i) The following holds true for all h € H:

lw = wunll2vy < I0ll2vy + call@mll2oz2y + c2ll€f ]|z, (73.14a)
Ip = pullr2crzzy < Nl 2(rne) + csllOmlLarne) + callen|lv, (73-14]0)

with ¢; = %, Co 1= ﬁ, c3 = %\/12p , Cq = %wlOpu, and the time scale p 1= CKP% L (i)
We have for all t € (0,T] with J, := (0,t),

[(w —wn) (@) 2> < [In()llL> + \\/f—lle 7 0mllL2(s;n2) + €7 [lmol| 2

Proof. (1) Let us set e, := up — Sy (u,p), n := u — Sy (u,p), and o, := p, — S} (u,p) for all
t € J (these quantities are well defined since w € H'(J; V) and p € H(J; L?(D))). Notice that
en(t) € V), for all t € J, and proceeding as in the derivation of (73.10), we have for all ¢ € J and
all wy, € Vj,

((9,56}“ wh)Lz + a(eh, wh) + b(wh, 5}1) = (8t77, ’wh)Lz. (73.15)

Using the test function wy, := ey, (¢) in (73.15) for all ¢ € J and using that b(ey(t),d,) = 0 since
e (t) € Vp, together with the coercivity of a and Young’s inequality gives

1d

3plenliss + 2ullenlly < 7-10mI + lenl

Since ||0m|lv: < CilpllOim|| Lz owing to (72.4), recalling the definition of p, integrating over
t € J, and dropping the nonnegative term ||eh( )|%2 from the left-hand side yields

2ullenllZa vy pH@mHLz (iz2) + len(0)lIZ-.

Invoking the triangle inequality yields (73.14a) since ej,(0) = S}, (ug, 0) — S} (uo, p(0)) =: —ef) ow-
ing to the linearity of S} . Note that the above arguments are the same as those used for the heat
equation (see Lemma 65.10) and for the a priori estimate on the solution to the time-dependent
Stokes problem (see Theorem 72.3).

(2) To derive the pressure error, we first bound |0iep||12(s;z2) and then invoke the inf-sup condi-
tion (73.4). Proceeding as in the proof of (72.17), we now use the test function wy, = dren(t) for
all t € J in (73.15). Since Oep(t) € V), for all t € J, we infer that

d
10senllz> + —alen, en) < _HathL2+ HatehHQLz-

dt



Part XIV. TIME-DEPENDENT STOKES EQUATIONS 205

Integrating over t € J, using the coercivity and the boundedness of a, and dropping the nonnegative
term 2u/es,(T)||3, from the left-hand side, we infer that

0enllZa(rn2) < N0mIL2(sn2) + 2llen(O)]V-

We can now invoke the inf-sup condition (73.4) and use (73.15) for all w;, € Vj, to infer that for
allt € J,

b 1)
Blonllpe < sup 1202R0n)]
wpLEV), ”whHV

— sup |(Oren, wn) > + alen, wrn) — (0im, wn) 2|
wpEV) ”whHV
Vor(llomlie + [|0cenllz2) + 2ullenllv,

IN

where we used the triangle inequality, (72.4), the definition of p, and the boundedness of a. Squar-
ing, integrating over t € J, and using the above bound on ||8t6h||%2((]‘L2) gives

52||5h|‘%2(J;L2) < 4PMH5t77||2L2(J;L2) + 4PMHateh||2L2(J;L2) + SNQHehHQL?(J;V)
< SPMHaﬂ"I”QL?(J;L?) + 8pp®|len(0) |13 + SﬂzHeh”QL?(J;V)'

Invoking the bound on Heh||%2(J.V) from Step (1) and using that [le,(0)]|2. < pullen(0)|3,, we
infer that
B110n 1 Z2(si2) < 10pmll0mllZz(sz2) + 12012° €n (0]

This yields (73.14b) after taking the square root and invoking the triangle inequality. Notice that
the above arguments are the same as those invoked to derive the a priori estimate (72.14c) on the
pressure.

(3) The third error estimate is obtained by using the test function wy, := 62%eh(t) in (73.15) for
all t € J, proceeding as in the proof of Theorem 66.9 since we still have w;, € Vy, for all t € J,
and additionally invoking as above that ||0in(t)||v: < /pp||0im(t)|z2 for all t € J. O

Remark 73.5 (Convergence rates). Let r € [1,k], where & > 1 is the polynomial degree
of the finite elements used to build V},, and let k" > k — 1 be the polynomial degree of the finite
elements used to build Q. Assume that w € X (J; H™(D), H"(D)),p € X(J; H"™Y(D), H" (D)),
ug € H™(D), and p(0) € H"(D). The bounds from Theorem 73.4 imply that the error on the
velocity in the L?(J; H'(D))-norm and the error on the pressure in the L?(J; L?(D))-norm decay
as O(h"). Moreover, the error on the velocity in the C°(J; L?(D))-norm decays as O(h"**), where
s € (0, 1] is the regularity pickup index (s = 1 if there is full regularity pickup). Just like parabolic
equations, the error induced by approximating the initial data converges to zero exponentially as
T grows. O

The velocity error estimate derived in Theorem 73.4 may not be sharp whenever the space dis-
cretization scheme is not well-balanced, i.e., whenever Vj ¢ V. In this situation, the error induced
by the approximation operator 8} can be dominated by the approximation error on the pressure
if the body forces have a relatively large curl-free part (as for instance when hydrostatic forces are
applied). Provided the observation time is sufficiently small so that T < u~142%, a sharper velocity
error estimate for the time-dependent Stokes equations can be derived by considering a different
error decomposition. Taking inspiration from §53.3 and the above discussion on the error equa-
tion, we now consider the error decomposition resulting from the use of the projection operator
PP :V — V), defined in (73.11).
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Theorem 73.6 (Velocity estimate). Let (u,p) solve (73.2). Assume that w € H'(J; V) and
p € HY(J;L2(D)). Let (up,pp) solve (73.6). Set en(t) := un(t) — PS(u(t)) and n(t) == u(t) —
P(u(t)) for all t € J. Assume that Qy, is H'-conforming. The following holds for all h € H with
C5 1= 6(1 + \/5)7

lenll Lo (7.2 + 2vEllenllL2vy < esllenllr

1 (|0 : inf V(p - ; . (73.16
+ (L4 )WV (|0l L2(5:02) + e ERTon) IV = an)llz2(L2). ( )
Proof. Let q, € H*(J;Qp) and set ((t) := p(t) — qn(t) for all t € J. Using the test function
wy, := ep(t) for all ¢ € J in (73.12) (notice that we have wy, € V) and using the coercivity of a

gives
1d

2dt
Using that Qy, is H'-conforming, we have b(ey, () = —(V(, en) 2. Invoking the Cauchy—Schwarz
and Young’s inequality implies that

lenlZ2 +2ullenlly < (9. en)z2 + blen. Q).

d 2
gllenlze + dullenlls < T(10mlz= + 1VCIZ2) + Zllenllze.

Using a simplified form of Gronwall’s lemma (see Exercise 73.2) and taking the square root yields
HehHLw(j;p) <e(lle 2+ VT (|0l 25,12+ I V¢ 22(5.L2))) - Moreover, the above bound shows
that 4ullen|Z2( vy < T2 502y + 1VCIT2(5.L2) + QHE’LHiw(j;L?)' Taking the square root,
putting everything together, and taking the infimum over q, € H'(J;Q},) yields the assertion. [

Remark 73.7 (Theorem 73.4 vs. Theorem 73.6). The velocity error estimate from The-
orem 73.6 does not use the viscous dissipation to bound the error, so that the estimate on
llenll Loo(T;L?) depends on the pressure approximation but not on the viscosity. More precisely,
the pressure contribution in this estimate scales like Th*’ |p|L,,o(J;Hk/+1), where k&’ > 1 is the degree
of the finite elements used to approximate the pressure (see Remark 73.5). On the other hand the
pressure contribution in the estimates of Theorem 73.4 depends on ;! since ) therein depends
on the pressure. More precisely, in the third estimate on ||ep|| Lo (T:L2) the pressure contribution
scales like hsﬂ};suflhk/“|p|Loo(J;Hk/+1). Assuming for simplicity s := 1, one sees that the first
estimate is smaller than the second if T < h?. The practical consequence of this observation is
that when the pressure term is dominant, one can observe the pre-asymptotic convergence rate
Th* when VT =: hg < h, whereas the asymptotic rates predicted by Theorem 73.4 are recovered
when the mesh is fine enough, i.e., h < hg. We refer the reader to Linke and Rebholz [216] for a
discussion on this topic together with numerical experiments. O

73.3 Implicit Euler approximation

We show in this section how the semi-discrete problem (73.6) can be discretized in time by means
of the implicit Euler scheme.

73.3.1 Discrete formulation

As in §73.2.1, the discretization in space uses the discrete spaces (Vi,)nen and (Qp)nep built
using the shape-regular sequence of matching meshes (7;)newn. The approximation setting is
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conforming, i.e., V;, C V := H}(D) and Q;, C Q := L2(D) for all h € H, and we assume that the
inf-sup condition (73.4) holds true for all h € H. We use the notation introduced in §67.1.1 for the
time discretization. We divide the time interval J := (0,7"), T > 0, into N subintervals J,, for all
n € N; :={1:N}. We take all these intervals to be of equal length for simplicity (although this is
not a theoretical requirement). Thus, we define the time step as 7 := %, the discrete time nodes
t, :=n7, foralln € ./T/T_:: {0: N}, and we set J,, := (tn_1,t,) for all n € N.

We assume f € C°(J; L?(D)) and we set f" := f(t,) € L*(D) for all n € N.. We construct
an approximating sequence (wp,,ppr) = (W, pM)nen, € (VaxQn)V as follows: First we set
u) = 8} (up,0) = P(ug), then we compute (u?,p?) € V,xQy for all n € N; so that the
following holds true:

~(uf — i wn) g+ alu wn) + b, ) = (£, wn)

- - sy Wh)L2 s Wh hs = s Wh)L2,

~\Un h L h h L (73.17)
b(uZa qh) = Oa

for all (wp,qn) € Vi, xQp. Notice that u} € Vj,. At each time step, we must solve a problem of
the following form:

a(up,wp) + b(wp, 7pr) = g™ (wy), Yw, € Vi, (73.18)
b(up, qn) =0, Van € Qn, '
where a(uy,wp,) = (u},wp)rz + Ta(u},wy) and g"(wy) = (w)} ™' + 7F", wp)Le, ie., at each

time step we need to solve a time-independent Stokes-like problem similar to that described in
Chapter 53. Since solving this saddle point problem at each time step may be computationally ex-
pensive, the reader is referred to Chapters 74 and 75 for more computationally effective techniques
where the velocity and the pressure are uncoupled at each time step.

73.3.2 Algebraic realization and preconditioning

Let {¢i}ic{1:1y be a basis of V;, with I := dim(V}). Let {¢r}req1:x} be a basis of Q) with
K := dim(Qp). Let U™ € R be the coordinate vector of uj in the basis {@;}icq1.ry for all
n € N, ie, ul(z) = Yicqiny Uipi(x). Let P" € R be the coordinate vector of 7p} in
the basis {¢r}reqr:xy for all n € N7, ie., mpf(x) = Zke{l;K} Pl (x). We introduce the
stiffness matrix A € R™*! with A;; := a(p;, i), the velocity mass matrix M € RI*! with
Mij = (¢, 9i)12(D), the divergence matrix B € R¥*! with By, := b(p;, ¢x), and the pressure
mass matrix N € R**X with Ny = (¢1,¢r)2(p), where i, € {1:1} and k,l € {1:K}. At each
time step, the problem (73.18) is equivalent to solving the following linear system:

(5™ o) () = (5), (a1

where G™ := (g"(¢:))ic(1: 1} € R! and O k is the zero matrix in R¥*X.

It is shown in §50.2.2 that the above linear system amounts to solving
SP™ = B(M 4+ 1A)"'G", (73.20)

with the Schur complement matrix S := B(M + 7.4)~!BT. In Proposition 50.14, it is established

~ 2
that the condition number of S, say x(S), is bounded from above by k(N )%, where (N
is the condition number of the pressure mass matrix, a the coercivity constant of the modified
bilinear form a and |[a|| its boundedness constant, 8 the constant in the inf-sup condition (73.4),
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and ||b]| the boundedness constant of the bilinear form b. At this point we are facing a major
difficulty. The only reasonable bound from below we can deduce on « is a > 27u. Moreover,
lla]] < (pp + 271) where p := C’;P%%. Thus, assuming that @ ~ 1 and k(N) ~ 1, the bound
from above on (S) behaves like £, i.e., we must expect that this number grows unboundedly like
£ when % — 0. Actually, the definition of S shows that S ~ BM~'BT when % < 1, and one can
then prove that x(S) ~ h™2(2,, i.e., the condition number of S behaves like that of the Laplace
operator. As a result, solving (73.20) by means of a standard gradient-based iterative technique
entails very poor convergence rates as % — 0; see Proposition 28.21. The situation worsens when

2
the viscosity is so small that p := CK_P%%

large and as a result = = %% goes to zero even faster.

Two strategies are usually adopted in the literature to tackle this difficulty: either one pre-
conditions (73.20) or one reformulates the time-stepping algorithm so as to uncouple the velocity
and the pressure. We refer the reader to §50.2.3 and §50.3 for a brief overview of preconditioning
techniques. Some uncoupling techniques are reviewed in Chapter 74.

> T, since in this case the time scale ratio % becomes

73.3.3 Error analysis

We are going to proceed as in §67.1 for the error analysis of (73.17). For any Hilbert space B related
to the velocity or the pressure, we consider the time-discrete norm ||¢T||§2(J_B) =Y nen, TlO" B

with ¢, := (¢")nen, € BY (see (67.1)). Recall the time scale p := C;2 %

KPSy *

Lemma 73.8 (Stability). Let (un,,pnr) € (VixQn) solve (73.17) with f; = (f")nen,. The
following stability estimates hold true:

p
2pllunslZ vy + i 22 < S1Fr e + lunlze, (73.21a)
N Ctn p tntg_y
lu(tn) —uhllze <e™ 7 luplze +5 > mem 7 [fEe, (73.21b)
ke{l:n}
lpnrllZosip2y < B72pp(L0llF- 72 g, 2) + 120l uoll¥)- (73.21¢)

Proof. The proof of (73.21a) is the same as that of (67.7) (with « := 2u). Indeed, taking the test
function wy, := w} in (73.17) for all n € N;, using that b(uj, p}') = 0, and proceeding as in the
parabolic setting leads to

1 | 1

2 2
Then (73.21a) follows by using Young’s inequality, summing over n € N, and using the telescopic
form of the sum. The proof of (73.21b) is the same as that of (67.11). To derive the estimate
on the pressure, we first obtain an estimate on the discrete time derivative of the velocity. Let
us set 0,up, € (Vi)Y with (6,up, )" = %(u}; — uzfl) for all n € N,. We take the test function

vy = (6rup)™ in (73.17) and obtain after invoking the usual arguments

_ 1 _
[uillze = Slun " Ize + 5 lwr = uh ML + 2p7luhlly < 7(F", up)pe.

||5fuhr||§2(J;L2) < ||fT||§2(J;L2) + 2 up[3 -

(Notice that the proof of (73.21a) already yields the much weaker bound T|\5Tuh7||f2((]‘L2) <
g”frH??(J;m) + ||u?||22.) Then using the inf-sup condition (73.4), we infer that for all n € N,

‘p
e <
Bllppllz: < C

KPS

(I@rune)™ 22 + £ 22) + 2ullupllv-.

The bound on the pressure follows readily by proceeding as above. O
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We are now in a position to establish error estimates.

Theorem 73.9 (Error estimates). Let (u,p) solve (73.2) and assume that w € H?(.J; L*(D))N
HY(J;V) and p € H'(J; L*(D)). Set ur = (u(tn))nen, and pr = (p(tn))nen, - Let (Wnr,ppr-) €
(VixQn)N solve (73.17). (i) There is ¢ such that for all h € H, all T > 0, and all u >0,

1
[wr — unrllezrvy < M lle2 vy + —=lmol|z2 (73.22a)
(V) V) + o

Nor;

+ =10l r2(s.L2) + Tl|Oweul L2(s:12))

Vi
NZT
lpr — Prrlle2(ss02) < NG llezain2) + 7(m||5t?7||L2(J;L2)

+ 4/ 12/1,|"I70||V + \/%HTHattqu(J;p)). (73.22b)

(i) With () := w(t) — S} (u(t),p(1)), ((t) = plt) = SF(w(t),p(t)) for all t € J, the Siokes

elliptic projections (S}, Sy) defined in (73.9), n (M(tn))nen, & = (C(tn))nen,, and € =
S1(0,p(0)), the followmg holds true for all n € /\/

[upllLe < [In(ta)llLz + e 2 |lep]| L2 (73.23)
+ \/ﬁ(”e_%athL%J;L?) + THG_%attUHL%J;L?))-

Proof. Let us set e} := u} — 8} (u(tn),p(tn)) and 87" := pi' — S} (u(ty),p(t,)) for all n € N;.
Proceeding as in the proof of Theorem 67.6, we infer that

(ep — ezfl,wh)Lz + ra(e}, wy) + Tb(wp, o)) = 7(€" — Y™, wp) L2,

with &= 2 [, 9ym(t)dt and @™ := —2 [ (t —t,—1)dyu(t)dt. Letting fri= (" —Y")nen, we
have (see again the proof of Theorem 67.6)

1 FrlZer,z2) < 2002 (,n2) + 2721 0cul|7 2 g, 2y

The error estimate (73.22a) follows by applying Lemma 73.8 and invoking the triangle inequality.
Moreover, the proof of (73.23) is the same as for parabolic equations (see Theorem 67.9). Finally,
we use the same arguments as in the proof of Theorem 73.8 to bound ||0x. | ¢2(;r2) With 0pr :=
(01)nen. and (73.22b) follows by invoking the triangle inequality. O

Remark 73.10 (Convergence rates). Under the assumptions and notation from Remark 73.5
the bounds from Theorem 73.9 imply that the error on the velocity in the L?(J; H'(D))-norm
and the error on the pressure in the L?(J; L?(D))-norm decay as O(h” + 7). Moreover, the error
on the velocity in the C°(J; L?(D))-norm decays as O(h™** + 1), where s € (0, 1] is the regularity
pickup index. O

Remark 73.11 (Stabilization). All the stabilization techniques presented in Chapters 62 and 63
for the steady Stokes equations can be reused for the time-dependent (Navier—)Stokes equations.
Examples include continuous interior penalty as in Burman and Ferndndez [65], local projection
stabilization as in Arndt et al. [14], Dallmann et al. [99], Ahmed et al. [3, 4], and subgrid viscosity
as in Guermond et al. [164]. Many other techniques can be used as well (see for instance Codina
[90]), and the literature is prolific on the subject. We refer the reader to John [199, Chap. 8] for a
review. O
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73.4 Higher-order time approximation

We now briefly show how to achieve high-order accuracy in time by using the techniques developed
in Chapters 69 and 70. To avoid duplicating the arguments for dG(k) schemes and cPG(k) schemes,
and since we have shown in §69.2.4 and §70.1.3 that these methods are equivalent to implicit
Runge-Kutta (IRK) techniques, we adopt the IRK point of view. We consider an s-stage IRK
method defined by its Butcher coefficients {c;}icq1:sy, {0i}icqi:s)> 1@ij}ijeq1: s}, and we set ,, ; :=
tn—1 + ¢7 for all i € {1:s} and all n € N, see (69.24) for Radau ITA IRK (i.e., dG(k) with
s:=k+1,k>0)and (70.15) for KB IRK (i.e., cPG(k), with s :=k, k > 1).
Our starting point is the constrained weak formulation (72.11). We do the approximation
in space by using the setting described in §73.2.1. Let A}' : V), — V) be the operator s.t.
(A3 (vp), wn) 2 = a(vp,wy) for all vy, wy, € V), with V), defined in (73.5). We extend AF
as an operator in L%(J;V}) by setting APt (vy,)(t) := AT (v, (t)) for all t € J. We also define
Ste L2(J;Vn) by [,(£75 wh)2dt := [,(f,ws)2dt for all w, € Vi, We then construct an
IRK approximation of (73.6) as follows: First we set ul) := SJ (ug,0), then for all n € N;, we
solve the following set of coupled equations: Find {UZ’i}ie{Ls} C Vy, s.t.

upt =t =1 Y g (£ () - AT (). (73.24)
je{l:s}

Finally, uf := agu} ™' + Dic(i:s} aul’, where a; i= Dic(i:s) bj(a=1)j; for alli € {1:s}, ap =
1— Zie{l;s} a;, and (a™');; are the coefficients of the inverse of the Butcher matrix (@ij)ijef1:s}s
see Remark 69.13.

Since constructing a basis for V), is in general difficult, let us reformulate the above technique
using V;,. We define Ay, : Vi, = Vi, and By, : Vi, = Qp by (An(vp),wp)r2 = a(vp, wy) and
(Bn(vn),qn) 12 := b(vn, qr) for all vy, wy, € Vi, and all g, € Q. We finally define f;, € L2(J; V},)
by [;(fn,wn)r2dt = [;(f,wy)g2dt for all wy, € Vi, These definitions imply that

> ai (A (up?) — An(up?) + £ (tng) = Faltn,s)) € ker(By)*t. (73.25)
je{l:s}
Since ker(By,)* = im(B;), we infer that (73.24) is equivalent to seeking pairs {(uZ’i,pZ’i)}ie{L 51 C
Vi xQp, s.t.
wpt —up = =B ) A7 Y ai(Falte) — An(up?)),
je(tis) (73.26)
Bh(uZ"Z) =0.

Adopting the notation from §73.3.2, the algebraic realization of (73.26) using finite elements
consists of solving for all n € N, the linear system

[ M+ 71a 1 A - Ta1sA BT oo Orxx 1T UL T [ Gl ]
Tas1 A M+71as,A | Ok BT uns . G™s
B Oxxr Orxkx ++ Okxk pt 0
Oxxr B Ogxx -+ Ogxrx | L P™° | L 0 |

Here, U™* € R! is the coordinate vector of u;l” in the basis {‘Pi}ie{l:[} and P™? € RE is the
coordinate vector of 7¢;p),* in the basis {4k }req1: k) for all n € N and all i € {1:s}. The entries
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of the load vector are G/"! := MU 4 T Y omeii:s) UmFy ™ with F"™ i= (f(tn,m), i) 2 for all
ie{l:1}.

Exercises

Exercise 73.1 (Well-posedness). Prove Proposition 73.1. (Hint: adapt the proof of Theo-
rem 72.3.)

Exercise 73.2 (Simplified Gronwall’s lemma). Let a € W(J;R), let b € L>(J;R), and
let v > 0. Assume that La(t) < %a(t) + b(t) for all t € J. Prove that a(t) < e (a(0) +

min(t,7)||b||Loo(7t)) with J; := (0,t) for all t € J. (Hint: observe that fg e ds < min(t,v)e%.)
Note: this is a simplified form of Gronwall’s lemma; see Exercise 65.3.

Exercise 73.3 (BDF2, Crank—Nicolson). (i) Using the setting described in §68.2 for BDF2,
write the discrete formulation and the algebraic realization of the time-dependent Stokes equations
with the time discretization performed with BDF2. (ii) Same question for the Crank—Nicolson
scheme using the setting described in §68.3. (iii) Same question for the Crank—Nicolson scheme
using the setting described in §73.4.
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Chapter 74

Projection methods

The goal of this chapter and the next one is to give a brief overview of some splitting techniques to
approximate the time-dependent Stokes problem in time. The common feature of the algorithms
is that each time step leads to subproblems where the velocity and the pressure are uncoupled.
The linear algebra resulting from the space approximation is therefore simplified, making these
methods attractive for their efficiency. In this chapter, we review a class of techniques known in
the literature as projection methods where the accuracy in time is limited to second order. The
algorithms reviewed in the next chapter are based on an artificial compressibility perturbation of
the mass conservation equation and can reach arbitrary accuracy in time. Projection methods
are among the most popular strategies to discretize in time the time-dependent Stokes equations.
These methods have been pioneered in the work of Chorin [83, 84] and Temam [271]. The material
in this chapter is adapted from Guermond et al. [165].

74.1 Model problem and Helmholtz decomposition

For simplicity, we assume that homogeneous Dirichlet boundary conditions are enforced on the
velocity over the entire boundary and that the viscosity p is constant. We consider the mixed
weak formulation (73.2), i.e., we assume that the source term satisfies f € L?(J;L?(D)) and
that the initial condition satisfies ug € V := {v € V | V-v = 0} with V := H{(D). Denoting
(u,p) the weak solution, we have w € L*(J;V), dyu € L*(J;L*(D)), and p € L?(J;Q) with
Q= L(D) :={q € L*(D) | [, qdz = 0} (see Theorem 72.3). Recall that the spaces V and V
are equipped with the norm [|v||v := ||e(v)|L2(p), and Q is equipped with the L*-norm. Combining
Korn’s inequality with the Poincaré-Steklov inequality, we have Cyps||v||L2(p)y < £pl|v|lv for all
v € V, where {p is a characteristic length of D, e.g., {p := diam(D). We define the time scale

217
p = CKPSTD'
Let us state a decomposition of L?(D) that plays an important role in projection methods. We

define the following spaces:

H!(D):= HY(D)n L*(D), H:={veL*D)|Vwv=0, vppn=0},

where V-v = 0 and vjgp-n = 0 mean that (v,Vq)r2py =0 for all ¢ € H!(D).

Lemma 74.1 (Helmholtz decomposition). The following L*-orthogonal decomposition holds
true:

L*(D) = H © V(H!(D)). (74.1)
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The L?-orthogonal projection Py : L?(D) — H resulting from (74.1) is often called Leray projec-
tion in the literature.

Proof. Let v € L*(D). To project v onto V(H}(D)), we pose the following problem: Find
p € HY (D) st. (Vp,Vq)r2py = (v,Vq)r2(p) for all ¢ € H}(D). Then we set u := v — Vp. By
construction, we have u € H since u € L*(D) and (u,Vq)r2py = 0 for all ¢ € H!(D). The
orthogonality of the decomposition v = u + Vp follows from the construction. (|

74.2 Pressure correction in standard form

We use the same notation as in §73.3.1 to describe the time discretization, and for the time being
the space variable is not discretized. Recall that the time interval J := (0,T), T > 0, is divided
into N subintervals J,, for all n € A := {1: N}. We assume that the time step 7 := % is constant.
We set t,, := nt for all n € N, := {0:N}, and J,, := (t,_1,t,] for all n € N;. We approximate
the time derivative of the velocity with the Backward Difference Formula of order ¢ (BDFq) as
du(ty) = L(Byu(ty) — Y jeii:qy Bim1ultn—;)) + O(77) with g € {1,2}. For g :=1, we set f; := 1,
Bo = 1 (i.e., BDF1 is the implicit Euler scheme), and for ¢ := 2, we have By := %, B = 2,
By = —% (i.e., BDF2 is the time-stepping scheme studied in §68.2 for parabolic equations). For
simplicity, we assume that f € C°(J; L%(D)) and we set f" := f(t,) € L*(D) for all n € N, .

74.2.1 Formulation of the method

Let n € N;. In a projection method, each time step from ¢,,_1 to t,, is composed of three substeps.
In the first substep, the pressure is made explicit by using some extrapolation formula, and a
provisional velocity field u™ is computed using the momentum equation. The extrapolated pressure
is denoted by p*™, and the two most frequent choices are p*™ := 0 (zero-order extrapolation) and
p*" := p"~1 (first-order extrapolation). In the second substep, the velocity field u™ is obtained
by projecting the provisional velocity field u™ onto the space of incompressible (divergence-free)
vector fields by using the Leray projection Pz;. The pressure p™ is updated in the third substep.

The method, known in the literature as pressure-correction method in standard form, proceeds
as follows. One sets u’ := wug and if first-order pressure extrapolation is used, one assumes that p(0)
is available (see Remark 74.4) and one sets p** := p(0). Then one generates the three sequences
U = (@)new, € (V)N uy = (u)uen, € (H)V, pr = (p")new, € (Q)N by performing for all
n € N, the following three substeps:

1. One computes u” € V := H}(D) such that
1 ~n n—j ~n n n
(B = D Bt ) - V(@) + Vot = £ (71.2)
je{l:a}

If one uses BDF2, then one sets ¢ :=2if n € N, n > 2, and ¢ := 1 if n = 1, whereas if one
uses BDF1, one sets ¢ := 1 for all n € N;. The weak form of (74.2) is

By(™,w)r2 + Ta(u”, w) 4+ b(w, p*") = (¢", w) 2, (74.3)

for all w € V with g" = 7f" + Zje{l;q} Bj—1u™7 and the bilinear forms a(v,w) =
(8(v), e(w))L2(p) and b(v, q) == —(q, V-v) 2 (D).
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2. Since the divergence of @™ is (in general) nonzero, this vector field is then projected onto
H, ie., we set u” := Py (u"). Owing to Lemma 74.1, the second substep thus consists of
seeking u” € ‘H and ¢" € H(D) s.t.

u" + 7Vt =u", V-u"=0, ujppm =0. (74.4)

In practice, one first solves a Poisson equation with Neumann conditions, i.e., one seeks
" € HE(D) st. 7(V¢",Vq)r2(py = (@™, Vq)r2(py for all ¢ € H}(D), and then one sets
u" :=u" — 7V

3. The pressure is updated by setting

p" = By +p7" (74.5)

It is in general more computationally effective to solve the two independent problems (74.2) and
(74.4) than to solve the coupled problem (73.17) resulting from the use of the implicit Euler method
for the fully coupled problem. Indeed, (74.2) corresponds to one implicit step for a parabolic
problem and (74.4) just amounts to solving an elliptic problem, whereas (73.17) requires solving a
saddle point problem.

To motivate (74.5), we multiply the first equation in (74.4) by 8,2 and add the result to (74.2).
This yields

D™ — Ves(@") + V (B,¢" +p*") = (74.6)
with DWyn = L(Bum — Diciia) Bi—1u"), ie., DMy = L(um — u"~1) and D&y =

13w —2u"~! 4+ Lun~?). Using (74.5) in (74.6) leads to the following consistent approximation

of the momentum conservation equation: ng)u" — V-s(u")+ Vp" = fm.

Figure 74.1: Projection algorithm. At step n, ones computes u” € V with full Dirichlet boundary
conditions, but without enforcing incompressibility so that w™ pops out of H. Then one projects
u"*t! onto H to enforce incompressibility and the Dirichlet condition on the normal component,
but the tangential component of «™ may be nonzero so that u™ pops out of V. Neither ©™ nor u”
is in general in YV = V. NH.

Remark 74.2 (u” vs. u™). The velocity a™ € V is an approximation of u(t,) that satisfies the
boundary conditions but is not divergence-free. This defect is corrected by projecting u™ onto H
(whence the name of the method). Although w™ is divergence-free, it is not necessarily a better
approximation of u(t,) since it does not satisfy the no-slip boundary condition, i.e., its tangential
component is in general nonzero. Moreover, 4" is not necessarily in V. Hence, neither u™ nor u"
is in general in ¥V = V. N#H. A schematic representation of the pressure-correction algorithm (or
projection method) is shown in Figure 74.1. O
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Remark 74.3 (Elimination of u™). It is possible to avoid computing the sequence u, by using
u" " =u"J —7V¢" I for all j € {1:¢q}. Then for all n > g, one rewrites (74.2) as follows:

DOF" — V(@) + V(p*’" + 3 Bj_lqs"—j) - (74.7)

je{l:a}
The projection step (74.4) can be solved without invoking u™ as follows:
—AP" = —77'V-a", n-Vefy, =0. (74.8)

The pressure update is unchanged: p™ = B,¢™ +p*™. The scheme (74.7)-(74.8)-(74.5) is equivalent
to (74.2)-(74.4)-(74.5), but it is somewhat easier to implement; see §74.4. O

Remark 74.4 (Initial pressure). The algorithm proposed by Chorin [83, 84] and Temam [271]
uses the zero-order pressure extrapolation p*" := 0 and BDF1. Theorem 74.7 shows that the
accuracy is rather poor. The accuracy is improved by using the first-order pressure extrapolation
p*™ = p"~! with BDF1, as pointed out in Goda [137]. Notice that algorithms based on first-order
pressure extrapolation assume more smoothness than the Chorin—Temam algorithm since they
require the existence of p(0) in some reasonably smooth space, although p(0) is not an initial data
for the time-dependent Stokes problem (72.1). If ug € H?(D)NH,, one can compute p(0) by solving
(Vp(0), Va)L2(py = (£(0) + V-s(uo), Vq)L2(p) for all ¢ € H} (D). Notice that (V-s(uo), Vq)L2(p)
is in general nonzero; indeed the field V-s(ug) is divergence-free but its normal component at 0D
is in general nonzero. [l

74.2.2 Stability and convergence properties

Lemma 74.5 (Stability). Let u,, u,, pr solve (74.2)-(74.4)-(74.5) with BDFq, ¢ € {1,2}, and
the first-order pressure extrapolation p*™ := p"~1. Let f, := (f")nen,. There is ¢ such that for
all™>0 (c=1 for BDF1),

~ P
a3+ IV 13 + 20l vy < € (G5 Wagsian) + [0l + 7 1V6°032)- (74.9)

Proof. We restrict ourselves to BDF1 for brevity. The proof for BDF2 is similar. Testing (74.2)
with 274", using the coercivity of the bilinear form a(v,w) := (s(v),e(w))L2(py on V, and the
algebraic identity (67.9) already invoked in the context of the implicit Euler scheme, we obtain

[a" g =l T + dprl|a”, < 27(f", @) pe + 27(p" 1, Vou") o,

Since
_ T _ TP _
27(f",u")p2 < Z”an%/’ + 2prlla”|f3, < 7||f”|\2Lz + 2pr|| a3,

where we used Young’s inequality, the bound ||f"||v: < Ciilp|| £z, and the definition of the
time scale p, we infer that

~ _ _ T _ _

[a" (|72 = "~ IZ + 207w} < gpl\f"llzp +27(p" 7, Va2
Using that ¢ = p™ — p"~ ! since B; = B = 1 for BDF1, we recast (74.4) as u™ + 7Vp" =
u” 4+ 7Vp" 1. We square this identity, integrate over D, and use that u" is divergence-free to

obtain

lu[z2 + (VP |22 = [@" (|72 = 2r(p" 71, Voa") 2 + 72 VD" o,
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Summing this identity and the above estimate yields
~ T _ _
[u"l|Z2 + 72 VP" |22 + 2u7 "3 < 7p||f”|\2m + " ge + 72 VP T 2e
Summing the result over n € N, yields the assertion. [l

Remark 74.6 (Zero-order pressure extrapolation). Using BDF1 and the zero-order pressure
extrapolation p*" := 0, the stability estimate in Lemma 74.5 reduces to

~ p
[N (|72 + 721V Dr 122 g2y + 20| 8r |72 vy < 5Hfrl\?zu;m> + a7z

The proof of this inequality is simpler than that of (74.9) since there is no need to bound
(p"~ 1, V-u™)2; see Exercise 74.1.

Let us now review some convergence results. We introduce the discrete time sequences 7, (u) :=
(w(tn))nen, and m-(p) := (p(tn))nen;,, where (u,p) denotes the solution to (73.2). Moreover,
¢(u,p,T) denotes a generic constant that depends on u, p, and T, but is independent of 7.

Theorem 74.7 (Convergence: BDF1, p*" := 0). Assume that the solution (w,p) to (73.2) is
sufficiently smooth. Then the sequences @,, u,, pr generated by (74.2)-(74.4)-(74.5), with BDF1
and the zero-order pressure extrapolation p*™ := 0, satisfy

[70r (w) = wrllpe (gi2) + 1707 (w) = Urlle 22y < c(u,p, T),
_ 1
HT‘-T(U) - uTHZZ(J;V) + HFT(p) - p‘r”lz(J;Q) < C(’u,p, T)T2 .
Proof. See Rannacher [240]. (Note that in general u, & (V)V.) O

Despite its simplicity, using the zero-order pressure extrapolation p*™ := 0 is not satisfactory
since the convergence rate is limited to O(7) for the velocity in the L?-norm and O(T%) for the
velocity in the H!'-norm and the pressure in the L?-norm. The convergence loss comes from
the fact that the method is basically a first-order artificial compressibility technique as shown in
Rannacher [240], Shen [252]. Numerous variants have been proposed to cure this problem. One of
them consists of using the first-order pressure extrapolation p*™ := p™~1.

Theorem 74.8 (Convergence: BDF1, p*" := p"~1). Assume that the solution (u,p) to (73.2)
is sufficiently smooth. Set u® := w(0) = wug and p° := p(0). Then the sequences U,, u,, pr
generated by (74.2)-(74.4)-(74.5), with BDF1 and the first-order pressure extrapolation p*" :=

p"L, satisfy
707 (w) = wr g (g;02) + l70r(0) = Urlle(s22) < c(u,p, T)r,
e (w) = Urlle2giv) + 72 () = Prlle2(r0) < cu,p, T)T.
Proof. See Shen [253], Guermond and Quartapelle [160]. O
The first-order pressure extrapolation p*™ := p"~! became popular after it was informally

shown in van Kan [280] to increase the accuracy of the method when used together with a second-
order time-stepping scheme.

Theorem 74.9 (Convergence: BDF2, p*" := p"~1). Assume that the solution (u,p) to (73.2)

is sufficiently smooth. Set u® := w(0) = wug and p° = p(0). Then the sequences ., W,, pr
generated by (74.2)-(74.4)-(74.5), with BDF2 and the first-order pressure extrapolation p*™ :=
n—1 ;

P, satisfy

[l (u) — uTHﬁ(J;LZ) + |77 (u) — ﬁTHﬁ(J;L% < C(uvpaT)Tzv

[ (u) — ﬁTHP(J;V) + || (p) —eré?(J;Q) < c(u,p,T)T.
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Proof. See Shen [256], Guermond [145]; see also E and Liu [115], Strikwerda and Lee [266], Brown
et al. [56] for different proofs based on normal mode analysis in the half-plane or in a periodic
channel. (|

Remark 74.10 (Higher-order extrapolations). Higher-order pressure extrapolations, like
p*m 1= 2p" 1 — p"=2 for n > 2, have been considered in the literature. Whether using a second-
order or higher-order pressure extrapolation yields a stable scheme is not yet clear. At the time of
this writing no proof of stability has been published. A singular perturbation argument advanced
in Shen [254] actually indicates that some of these higher-order extrapolation algorithms should
not be stable for small time steps. This issue is an open question. O

74.3 Pressure correction in rotational form

Theorem 74.9 shows that the scheme (74.2)-(74.4)-(74.5) with BDF2 and the first-order pressure
extrapolation is second-order accurate on the velocity in the L?-norm, but it is only first-order
accurate in the H'-norm. The reason for this loss of convergence is a numerical boundary layer
effect. Actually, we observe from (74.4)-(74.5) that n-V(p" — p*")sp = 0. If the first-order
pressure extrapolation is used, this implies that

VPl = NV = - = n gl (74.10)

It is this nonrealistic Neumann boundary condition on the pressure that introduces the boundary
layer in question and consequently limits the accuracy of the scheme.

74.3.1 Formulation of the method

Projection methods in rotational form exploit that the viscosity p is constant (as we are assuming
here). Using that V-u = 0, one observes that V-s(u) = uV-(Vu + (Vu)") = pAu since u is
divergence-free. One key ingredient to derive a more accurate algorithm is to use the rotational
form of the vector Laplacian in (74.2), namely, —Au" = —V(V-u") + Vx(Vxa"™). Using this
identity in (74.6) yields

DDu™ + uVx (Vxa™) + V (B,0" + p*" — uV-a™) = f. (74.11)

It is again possible to read this equation as a consistent approximation of the momentum balance
equation if the quantity B,¢" +p*™ —puV-u™ is interpreted as an approximation of the pressure. An
alternative way of writing the third substep of the projection algorithm thus consists of updating
the pressure as

p" = By +po"t — uV-u. (74.12)

Henceforth, we consider the scheme composed of the three substeps (74.2)-(74.4)-(74.12). To
understand why the modified scheme performs better than (74.2)-(74.4)-(74.5), we observe from
(74.4) that Vx(Vxu") = Vx(Vxu"). Therefore, (74.11) can be rewritten as

DOu™ + yVx(Vxu™) +Vp" = f*, V" =0, ujppmn =0, (74.13)

from which we deduce that n-Vpf,, = n-(f" — uVx(Vxu"))pp. Unlike (74.10), the pressure
now satisfies a consistent pressure boundary condition. Hence, the splitting error is only due to
the inexact tangential boundary condition on the velocity uw”.
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74.3.2 Stability and convergence properties

In order to give the reader some intuition on why the algorithm (74.2)-(74.4)-(74.12) is formally
second-order accurate, we now consider a singular perturbation of the time-dependent Stokes
problem that behaves like (74.2)-(74.4)-(74.12). Let us take 3, := 1 and p*™ := p"~! in (74.12),
then setting € := 7 and replacing p" — p*™ by edyp, the continuous version of (74.12) is edyp =
¢ — uV-u. Similarly, the continuous version of (74.4) is eA¢ = V-u, and the continuous version of
(74.2) is Oyu — V-s(u) + Vp = f. This leads us to the following problem:

Ou® — Ves(u®) + Vp® = f, ujyp =0, u®(0) = uo, (74.14a)
Vs — eA¢F =0, n-Véiyp =0, (74.14b)
e0p® = ¢ — uVus, p°(0) = p(0). (74.14c)

It turns out that the following lemma exhibits the essential properties of this singularly perturbed
system, and its proof is the main guideline for the proof of Theorem 74.12 which essentially says
that (74.2)-(74.4)-(74.12) is stable and second-order accurate in time.

Lemma 74.11 (Stability under perturbation). Assume that the pair (u,p) is smooth enough
in time and space, and that the regularity pickup for the Stokes problem is s = 1. There is a
constant ¢(p,T) such that the following holds true for all £ > 0,

IVuf|| Lo (;02(p)) < clp, T)Lf%E%v (74.15a)
|| — u€||L2(J;L2(D)) < ¢(p, T)EQ. (74.15b)
Proof. See [163, Lem. 3.1&3.2] and Exercise 74.4. O

Theorem 74.12 (Convergence: BDF2, p*" := p"~1). Assume that the solution (u,p) to
(73.2) is sufficiently smooth. Set u® = w(0) = ug and p° := p(0). Then the sequences u.,,
ur, pr generated by (74.2)-(74.4)-(74.12), with BDF2 time stepping and the first-order pressure
extrapolation p*™ := p" !, satisfy

70 (1) = wr oo (giz2) + 1707 (0) = rlgoo 02y < eu,p, T)7?,
_ 3
|7r(w) = @rllezrvy + |70 (p) = Prllez (i) < elu,p, T)T2.
Proof. See Guermond and Shen [162, 163]. O

Remark 74.13 (Terminology and literature). In view of (74.13) where the operator VxV x
plays a key role, we refer to (74.2)-(74.4)-(74.12) as pressure-correction scheme in rotational form,
and we refer to (74.2)-(74.4)-(74.5) as pressure-correction scheme in standard form. The method
(74.2)-(74.4)-(74.12) has been first proposed in Timmermans et al. [275]. O

Remark 74.14 (Elimination of the projected velocity). As already mentioned in Remark 74.3,
it is not necessary to compute the sequence of projected velocities (u"),ecp;, when implementing
the above projection algorithms since these quantities can be algebraically eliminated. O

74.4 Finite element approximation

We now describe how the space semi-discrete setting from §73.2.1 can be used in conjunction with
the pressure-projection algorithms introduced above. For the sake of brevity, we restrict ourselves
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to the algorithm (74.7)-(74.8) where the velocity (u™),ear. has been eliminated, and we consider
the first-order pressure extrapolation p*™ := p"~!. Extensions to other variants of the method
are straightforward. The discrete velocity spaces are V;, C V and the discrete pressure spaces
are Qp, C L2(D), for all h € H. We assume that @, is H'-conforming. Although this hypothesis
is not required by the approximation theory of the Stokes problem, it somewhat simplifies the
presentation and the implementation of the method.

To avoid minor technical details, we initialize the algorithm by setting @) := S} (ug, p(0)) and
pY = SF(ug,p(0)), where the Stokes elliptic projections (S},SY) are defined in (73.9). We also
set ¢° := 0. Then using ¢ := 1 if n =1 and ¢ := 2 if n > 2, we consider the following sequence of
problems:

(1) Find @} € V4 such that for all wy, € Vj,

(Dq(-q)a;zlu wh)L2 + a(ﬂ;zlu wh) + b(whupz’il + Z ﬁj—l(bn_j) = (fn, ’l,Uh)LZ. (7416)
je{l:q}

(2) Find ¢} € @y, such that
T(VoR, Van)r2 = —=(V-ug,qn)r2,  Van € Qn. (74.17)
(3) If the standard form of the algorithm is used, set
Ph = Bedh + 3", (74.18)
whereas if the rotational form of the algorithm is used, set
Ph = Bedh + ;" + O (74.19)
where 0} € Qp is s.t. (0}, qn)r2 = (—uV-ay, qn) 2 for all g, € Q.

Theorem 74.15 (Convergence). Assume that the solution (u,p) to (73.2) is sufficiently smooth.
Assume that full regqularity pickup holds true. Then there is c¢(u,p,T) such that the sequences u,,
Ur, pr generated by (74.16)-(74.17)-(74.18), with BDF2 time stepping and the first-order pressure
extrapolation p;’" 1= pzfl, satisfy

||7T7-('U,) - uhTH@“’(J;L2) + ||7T~,-(’LL) - ﬂhTH@“’(J;L2) < C(U,p, T)(hk+1 + 7—2)5
|7 (u) = nrllezr,v) + 72 (P) — Pirlle2(ri0) < clu, p, T)(h* + 7).
Proof. See Guermond [145, 143], Guermond and Quartapelle [160]. O

Although at the time of this writing no error analysis for the fully discrete scheme (74.16)-
(74.17)-(74.19) has yet been published, it is generally believed, and confirmed by numerical tests,
that with this scheme the second error estimate in Theorem 74.15 should be replaced by c(h* +72 ).

Remark 74.16 (Discrete space for u}). Notice that the discrete velocity u} has been elimi-
nated from the algorithm (74.16)-(74.19). Recalling that we assumed that @, is H'-conforming,
the discrete space that is implicitly used in the projection step (74.17) for u} is V3, + V Q. Hence,
if needed, one recovers uj by setting uj = uj — 7V} . Another possibility when working with
discontinuous pressures (i.e., Q, is not H!'-conforming) is to replace the discrete Poisson prob-
lem (74.17) by a discrete version of the Darcy problem (74.4), where the discrete velocity u} is
sought in an H-conforming finite element space, e.g., built using Raviart—-Thomas elements (see
Chapter 14), and ¢} in a discontinuous finite element space. The reader is referred to Guermond
[143] for further insight into these questions. O
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Remark 74.17 (Inf-sup condition). Notice that the two discrete problems (74.16) and (74.17)
can be solved in sequence and that none of them requires the inf-sup condition (73.4) (since they
both involve a coercive bilinear form). One may be tempted to conclude that the scheme (74.16)-
(74.17)-(74.18) (or (74.16)-(74.17)-(74.19)) is a way of solving the (Navier—)Stokes equations with
finite elements without bothering about the inf-sup condition. This intuitive argument is false since
the inf-sup condition must be satisfied for the above algorithms to yield the expected accuracy (see
[143, 160] for the convergence proof). We also refer the reader to Burman et al. [76] for an analysis
of projection methods using equal-order velocity and pressure finite element spaces together with
fluctuation-based stabilization. O

Exercises

Exercise 74.1 (Remark 74.1). Prove the stability estimate in Remark 74.6. (Hint: adapt the
proof of Lemma 74.5.)

Exercise 74.2 (Curl-div-grad identity). Let d € {2,3}. Show that | Vxv|[Z2 )+ V-v[|72p) =
HVUHEQ(D) for all v € H}(D). (Hint: use —Av = —V(V-v) + Vx(Vxv).)

Exercise 74.3 (Inverse of the Stokes operator). Let V := H}(D), V' = H (D), and Q :=
L2(D). The inverse of the Stokes operator S : H~ (D) — V := {v € H}(D) | Vv = 0} is s.t.
for all f € V', S(f) is the unique member of V s.t. the following holds true for all (w, q) € V xQ:

{ 2u(e(S(f)), e(w))Lz(py — (r, V-w)p2(py = (f,w)v,v,
(¢, V-S(f))r2py =0,

where (-, )y v denotes the duality pairing between V' and V. Recall that p||S(f)|lv + ||7]lr2 <
| fllg-1 for all f € H™'(D) with ||w|ly := [|e(w)|L2(p). We assume that D is such that the
following regularity property holds true: u|S(f)|gz + |r|m < c||f||2 for all f € L?(D). (i) Show
that 2u(e(S(v)),e(v))L2 = ||v]|2. for all v € V. (Hint: recall that the duality pairing (-, )y v is
an extension of the L%-inner product.) (i) Show that for all v € (0,1), there is ¢(7) such that for
all v in V, 2u(e(S(v)),e(v))2 > (1 —7)||v][2: — c(v)||v — v*||2. for all v* € H. (Hint: integrate
by parts the pressure term.) (iii) Show that the map V' 3 v — |v|, := (v, S("’)>‘%/’.,V defines a
seminorm on V’. Prove that |v|, < (2u)" % ||v||y for all v € V. Note: there does not exist any
constant ¢ so that (2u)~2|jv|v: < clvl, for all v € H-1(D), i.e., ||, is not a norm on H~1(D);
see Guermond [142, Thm. 4.1] and Guermond and Salgado [161, Thm. 32]. The inverse of the
Stokes operator is used in Exercise 74.4 to prove Lemma 74.11.

Exercise 74.4 (Lemma 74.11). Consider the perturbed system (74.14), and set e := u® — u
and ¢ := p® — p. (i) Write the PDE system solved by the pair (e, ¢) and show that

1d 1d 1 d
L Lol + 2mlonely + 3 IV + Lot A7
d
= EE(VBtp, V¢E)L2 — E(Vattp, V¢E)L2,
where we recall that V' := H{j(D) and [jv|lv := |e(v)|i2. (ii) Prove that [[V¢©(t)|7. <

c(p,T)e? for all t € J. (Hint: use Gronwall's lemma from Exercise 65.3.) Conclude that
HV-uSH%o@(J;Lz(D)) < c(p,T)p 'e®. (iii) Show that ||e — Py(e)||%. = %||V¢°||%., where the
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Leray projection Py is defined in Lemma 74.1. Deduce from the above estimates that ||u —
u||2(s;02(py) < ¢(p, T)e?. (Hint: use the lower bound from Step (i) of Exercise 74.3.)

Exercise 74.5 (Gauge-Uzawa). (i) Write the pressure-correction algorithm in rotational form
using BDF1, p*™ := p"~1 and the sequences @, € (V)V, u, € (H)V, ¢, € (Q)V, p. € (Q)V.
(ii) Consider the sequences v, € (V)¥, v, € (V) r. € (Q)V, ¢ € (Q), ¥, € (Q)Y, generated
by the following algorithm (called gauge-Uzawa in the literature, see Nochetto and Pyo [230]): Set
v? =g, 10 := 0, ¢° = ¥° := p(0), then solve for all n € N,

~n _ ,yn—1
WA VT = B, =0,

V" TVY =" + VYT Vot =0, wypm =0,

="l v, q" ="+ pr”.
Recalling that (6,¢,)" := W%W for all n € N, show that the sequences (v, v, 70,%:, ¢;) and
(Wr,ur, s, pr) are equal (i.e., the gauge-Uzawa and the pressure-correction method in rotational
form are identical). (Hint: write ¢" = ¢" ! + ™ — "~ + pu(r™ — r™~1).) (iii) Show that for all
n e NT,

~ _ 1 ~
" [z2 + 72V 32 + prllr[[7e + 19" = " ge + SarlVE" 12
< o Hge + T2V T [T + prllr T I + Tl I,

2
with the time scale p := c% %3. (Hint: test the momentum equation with 270", square the second
equation, square the third equation and scale the result by ur, and add the results.)



Chapter 75

Artificial compressibility

In this chapter, we study a time-stepping technique for the time-dependent Stokes equations based
on an artificial compressibility perturbation of the mass conservation equation. This technique
presents some advantages with respect to the projection methods studied in Chapter 74. It avoids
solving a Poisson equation at each time step, and it can be extended to high order in a rather
straightforward manner. To obtain O(7*) accuracy, k& > 1, the cost per time step is that of
solving k vector-valued parabolic equations implicitly (notice that solving a Poisson equation is
more expensive than taking an implicit time step for a parabolic equation). The material of this
chapter is adapted from [150, 151, 152].

75.1 Stability under compressibility perturbation

As in the previous chapter, we assume for simplicity that homogeneous Dirichlet boundary condi-
tions are enforced on the velocity over the entire boundary and that the viscosity u is constant.
Recall that V' := H{(D) and ||v||v := ||e(v)|[L2(p). The main idea of the artificial compressibility
method is to replace the time-dependent Stokes equations

du—V-s(u)+Vp=Ff, u0)=uy, ugp=0,
2 (u) +Vp=f, u(0) 0 |oD (75.1)
V-u =0,
by the following perturbed problem:
dut — V-s(u)+ Vp = f, u(0)=wug, ujyp=0,
h (uf) (0) =wo, ujyp (75.2)
€0p® + V-ut =0, p(0) = p(0),
with the perturbation parameter € := Eﬁ, where p = C'Kj?s% is the time scale and € > 0 is a

positive (nondimensional) number s.t. € < 1. In the context of the time discretization, we shall set
€= 1 with A := Aop and )¢ is a positive (nondimensional) number of order 1 (so that € = )\LO%)
Notice that in (75.2) the compressibility perturbation involves the time derivative of the perturbed
pressure, so that an initial condition for p¢ is needed. In what follows, we assume that the solution
to (75.1) is smooth enough so that the initial pressure p(0) is available (see Remark 74.4).

The cornerstone of the analysis of the artificial compressibility method is the stability of the

time-dependent Stokes equations under a compressibility perturbation. Consider the following
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abstract problem: Let k € L?(J; V') and g € H'(J; L?(D)), and let (v,q) solve

75.3
€dyq+ Vv =g, q(0) = qo, (75.3)

{ ow—Vs(v)+Vg=k, v(0)=v, wvsp=0,

with the initial data vy € L*(D) and g9 € L?(D).

Lemma 75.1 (Stability under perturbation). Let (v,q) solve (75.3). (i) There is ¢ s.t. the
following a priori estimate holds true for all e > 0:

1
5”””%&(,1;142) + fHQH%w(J;m) + H||’U||%2(J;V) <
Allvol| 72 + 2¢lloll7e + ¢ (RN T2 svry + 1llgl T (gi22))-  (75:4)

(ii) If in addition k € H'(J; L*(D)), g € H?(J;L?(D)), and (vo,qo) is smooth enough so that
the momentum and the mass equations in (75.3) hold true at the initial time, i.e., 0w (0) =
k(0) + V-s(vg) — Vgo € L*(D) and €drq(0) = g(0) — V-vg € L?(D), then we have

ez < (u(p2(|atv<o>||%z + € 2a(0)132) + Ilvoll2 + ellaoll3 )

1R ey + #2|9||%12(J;L2)>- (75.5)

Proof. See Exercise 75.1. O

75.2 First-order artificial compressibility

In this section, we construct an artificial compressibility method that is first-order accurate in
time. This is done by using the implicit Euler time-stepping scheme to discretize the momentum
and the mass conservation equations in (75.2). Let 7 be the time step. Let A := A\gu, where \g
is a positive (nondimensional) number of order 1. Let us set € := . To initialize the first-order
artificial compressibility method, we set u’ := uy and p° := p(0). Then for all n € N, the pair

(u™, p™) is computed by using the implicit Euler time-stepping scheme in (75.2):

(u" —u"t) = Ves(u") + Vp" = ", uly, =0,
(75.6)
(" —p" )+ Vu" =0,

M= =

where (u"~1,p"~1) is known from the previous step or the initial condition. Notice that we

replaced = by % A crucial observation is that the velocity and the pressure are uncoupled: the
second equation gives p” = p"~! — A\V-u", and substituting the value of p™ in the first equation
we obtain

{ u' —7(Vs(u") + AVVu") = u" (7 - Vpth), (75.7)

p" =" = AV-u".
The main advantage of the above technique with respect to the saddle point problem (73.17) is

that the complexity of solving (75.6) is the same as solving one implicit step of a parabolic problem
on the velocity.
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To analyze the stability and convergence properties of the first-order artificial compressibility
method, we set (ur,p;) = (U™, p")nen. and recall the notation m,(u) := (u(tn))nen,., where
(u,p) solves (75.1). We also use the notation d,v; := (6;0")pen, with d,0" := ”"%”"71 for all
n € N;. Recall the norms [|¢:[|72 .5y = Y., 710" 1B and [|ér]le= (v = maxnen, 19”5
(notice that the maximum is taken over n € N; in the norm ||¢-|/;2(s,5), whereas it is taken over
n € N, :={0: N} in the norm [+l poe (7, 5))-

Lemma 75.2 (Stability). Let k € C'(J;L*(D)), g € C?(J;L3(D)), u° € L*(D), and p° €
L*(D). Assume that T < Xp. With the notation k™ := k(t,) and g" := g(t,) for all n € Ny, let
(wr,pr) be the time sequence s.t.

(u" —u"" ') — Ves(u™) + Vp" = k", ujpp =0,
(75.8)

>l ==

(pn _pn—l) LV = gn

(i) Letting J. := (t1,T), there is ¢ such that for all 7 > 0,

AT T
[wrlFoe (gin2y + pllwr oy < cew (HUOHiz + ;llpolliz‘ + pllkrllZzg,n
+ T + p)grll7= (g 2y + up2|\3tg||i2<J*;L2>)- (75.9)

(i) Letting Ju. i= (t2,T) and ||r i (7.:5) = maxnc(o: vy 6715, we have

aT T
IprllZ2siL2) < cpee <|u0||2L2 +p2llorut |z + ;(Ilpol\%z + %160 172)

+ (k- llZ2( 5.2y + P 10KNT 21, . 12))
+ 1T + p) (97122 (5,22 + P°N10- 977 (1, .12))

t 102 (180120 + p2||attg|izu*;m>)- (75.10)

Proof. We only prove the estimate (75.9) and refer the reader to Exercise 75.2 for the proof
of (75.10); see also Shen [255, Prop. 5.1]. Testing the momentum equation in (75.8) with 27u"
and the mass equation with 27p™, adding the two results, using the coercivity of the bilinear
form a(v, w) := (s(v),e(w))2 and Young’s inequality to estimate (k™,u™)r2, and dropping the
nonnegative terms [|[u™ — u™" |3, and §[[p"” — p" {7, from the left-hand side leads to

_ T T _
lu™lZe = ™ ze + P22 = S 12" l2e + 3prlu™ % < o7k [ze + 270", g") 12

Owing to Lemma 53.9, there exists Sp and a linear map w : LZ(D) — V s.t. for all g € L2(D),
V-(w(g)) = g and Bpllw(g)|lv < ||lgllz2(py (this map is a right inverse of the divergence operator;
see Lemma (.44). Setting w™ := w(g™) and using Young’s inequality and ||[w™||z2 < (pp)2 |w"||v,
we infer that

(", 9" 12 = (p", Vew™) 2 = (k" + 22 =4""" _ V.g(u), w") e

s
1 1 n_m—1

< p2l[k" | p2p? lw” v + 2pllu” (v [[w"|lv + (4—=—, w") >
1 3 1 1 _

< oK Ize + plu Iy + Spllw" [y + (" ") pe = —(u" T w") e,



226 Chapter 75. Artificial compressibility

Inserting this bound into the previous estimate shows that

_ T T _
™ ze =l M Ze + " l2e = S llp" e + prll” (5
< 207 K72 + Berw [ + 2(u”, w) s — 2w, w) e
We write the above estimate for any index [ € {1:n} and sum over I. Using the notation

H¢>TH§2((0¢");B) = Zle{l:n}7-||¢l”2B for a time sequence ¢, = (¢")en. € (B)Y and a Banach
space B equipped with the norm ||| 5 yields

i3z + "2 + pllee oo, vy
< Ju®lle + S1°1E + 20llRr 2 0 00y, + Bullwr oo i)
+2(u"™, w2 — 2(u’, wh) e — Z 2(ul, wtt —wh)po,
le{l:n—1}
l -1 l

where we used that (u!, w')p> — (u!~! w2 = (v, w)pe — (w1 w2 — (w1 w! —w! 1) .
Owing to the Cauchy—Schwarz inequality, we infer that

1 T
A A A
T
< 2[lu’||72 + XHPOHQH + 20l 1kr [l F2((0,0)52.2) + 31w 12 (0,0,

T
e P [ e [ e v [ SO (73
le{l:n—1} T le{l:n—1}

We observe that HwTH%((O’tn);V) < BB2HQTH§2((0¢");L2) < ﬁB2T||gT||§m(J;L2). Moreover, using

that |w!||2, < ppllw!|} < Bpluplg'l|2. for all I € N, we obtain 2[|w"||2, + |w!|2. <

385 2140l| g1 2,12+ Finally, observing that w1 —w!ly = [w(g™ ")y < Bl [, Orgdtr
owing to the linearity of the map w, we infer that ||w!*! —w!||y, < 5517-% 10:gll 225, 1512) owing

to the Cauchy—Schwarz inequality. These bounds give

1 n T 7
5”“ 172 + XHP 172 + M|\Ur|\§2((o,tn);V)
T _
< 2|’z + Xllpol\%z + 2p[lKr1[72((0,6,):22) + 3807 1(T + Pl grll2 (7,122

_ T
+ 5D2up2H5t9||%2((t1,tn);m) + Z — a7z
le{l:n—1}

To conclude, we apply the discrete Gronwall lemma from Exercise 68.3 with ~ := 27", observe

‘;\hat ﬁ < €27 since 7 € (0, 3) by assumption, drop the nonnegative term % |[p"[|., and use thaDt
= AgM.

We now establish a convergence result for (75.7). The generic constant ¢(u,p,T’) depends on
u, p, and T, but is independent of 7.

Proposition 75.3 (Convergence). Let (u,,p;) solve (75.7). Let (u,p) solve (75.1). Assume
that w € H*(J; L*(D)) and p € H*(J; L2(D)). Assume that 7 < p. (i) There is c(u,p,T) s.t.
for all T >0, )

HWT(U‘) - uTH@“’(J;L2) + /L§ ||7T7'(u) - UT”P(J;V) < C(U,p, T)T (7511)



Part XIV. TIME-DEPENDENT STOKES EQUATIONS 227

(ii) If w € H3(J; L?(D)) and p € H*(J; L2(D)), there is ¢ (u,p,T) s.t

1

77 (p) = prllez(rn2y < ¢ (u,p, T)72. (75.12)
Proof. See Shen [255, Prop. 5.1] and Exercise 75.3. (By proceeding as in Shen [255, Lem. 3.2], one
can also prove that 3 - min(%, Dp(tn) — p™ |22 < " (u,p,T)7.) O

Remark 75.4 (Grad-div stabilization). The weak form of the first equation in (75.7) amounts
to
(u™, w)p2 + 7(a(u”, w) + A(V-u", V-w)2) = (g", w)re,

for all w € V, with g" := u"~* + 7(f* — Vp"~ 1), i.e., artificial compressibility adds a grad-div
stabilization to the momentum equation. [l

Remark 75.5 (Literature). The artificial compressibility regularization can be traced back in
the Russian literature to the group of Yanenko [281], [287, §8.2]. The variant (75.3) has also been
proposed by Chorin [82, Eq. (3)] and analyzed by Temam [271, Eq. (0.3)]. O

75.3 Higher-order artificial compressibility

In this section, we use a Taylor series argument and a bootstrapping technique to construct a
higher-order version in time of the artificial compressibility method introduced in §75.2. We start
with the Taylor series argument. The method is general and can be deployed to any approximation
order, but for simplicity we exemplify it for the third order. Let us set u; := dlu for all | € N
(with the convention that ug := w), and let us set w} := wu;(t,) for all n € N;. Invoking Taylor
expansions, we have for all n € N,

_ .n—1
Brus(tn) = % +O(7), (75.13)

n n—1
so that using dyus (t,) = “L—2— + ZOiua(t,) + O(7?) yields

n—1 n n—1
ul —uy T Uy — Uy

Oruy (t,) = +0(1?), (75.14)

T 2 T

n n—1
and using dyug(tn) = “—2— + ZOuy(t,) — %28tu2(tn) + O(73) yields

T

n n—1 n—1 2 n—1
Uy — U Tul —u T ul —u
Oy (tn) = =2 ——+3 L ——+ 5 2 ——+0(7%). (75.15)

We now explain the bootstrap argument to improve the accuracy. Assume that we have at
hand a function r that is an O(e!) approximation of d;p for some integer I € N, and assume that
both p and r are smooth functions of time. Then we consider the following perturbed problem:

{ dw — Ves(w) + Vs = f, w(0) =ug, wjp =0, (75.16)

e€os + V-w = er, s(0) = p(0).

Owing to the stability result from Lemma 75.1, we expect that the pair (w,s) is an O(e'T1)
approximation of the solution (u,p), i.e., the accuracy has been increased by one order. The
following result formalizes this argument.
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Proposition 75.6 (Bootstrapping). Let (u,p) solve (75.1), let (w, s) solve (75.16), and assume
that r € H?(J; L2(D)). Let e :==u —w and § := p — s. There is ¢ s.t. for all € > 0,

HeH%OO(J;LQ) + GH(SH%OO(J;L?) + /1'”6”%2(J;V) < CNEZHatP - TH%II(J;L?)v
16017252y < € (upel|0p(0) = 7(0)|| 72 + €[00 — 7l 212y ) -

Proof. By the linearity of the time-dependent Stokes problem, we infer that

de—V-s(e)+Vs=0, e(0)=0, eyp=0,
€dd +V-e=€(Op—r), §(0)=0.

We apply Lemma 75.1 with vp := 0, g0 := 0, k := 0, and g := ¢(9yp—r). The estimate (75.4) leads
to the bound on [l€[|Fw .2y + €l0lF (. 12) + 1ll€lZ2( 5.y Moreover, since dye(0) = 0, we can
also invoke the estimate (75.5) to bound ||6||%2(J;L2) since 9;0(0) = e 1g(0) = dyp(0) — r(0). O

We are now in measure to construct a third-order version of the artificial compressibility method
introduced in §75.2. Let u;, p;, fi be the [-th partial derivative of u, p, f with respect to t, i.e.,
uy i= Olu, p; = dlp, fi:=0Lf, for all | € {0,1,2}. Taking time derivatives of the time-dependent
Stokes equations (75.1) and, for the time being, forgetting about the initial conditions on (u;, p;)
for all [ € {0,1,2}, we have

dyuy — V- + Vps = fo, =0,

U s(usg) p2 = f2, U20p (75.17a)
V'UQ - 07
0 - V. +Vp = ’ =0,

L uy s(u1) p1=f1, wiep (75.17b)
v'ul - 07
0, - V- +V - ) = O’

o $(uo) + Vpo = fo, uojap (75.17¢)
Vg =0.

Let us first apply the first-order artificial compressibility method to the pair (us, p2), i.e., we
replace V-us = 0 by €dyps + V-us = 0 and we approximate (75.17a) as follows: For all n € N,

Lug — ug) — Ves(ug) + Voh = £, uljop = O,

76' (75.18)
—(py =P+ Vus =0,

where we have set f* := fi(t,) for all n € N; and all [ € {0,1,2}. Proposition 75.3 shows that
the sequence (ug,r,p2.7) := (U5, ph)nen;, is an O(7) approximation of (uz,p2) (at least informally
and if (u2(0),p2(0)) is known).

Let us now consider the pair (w1, p1). Using (75.14) to approximate diu1 (t,) in (75.17b) gives a
second-order accurate approximation. Next, we replace V-u; = 0 by €0ip1 + V-uq = er, where r is
some O(7) approximation of dyp;. But recalling that the purpose of p, is precisely to approximate
O¢p1, we are going to substitute r by pa. Then replacing 9:p; (t,,) by the first-order approximation
L(pt - p" 1) and putting everything together gives the following time discretization of (75.17b):
For all n € N,

S — ) - Ves(ud) + Vo = 7Tl = 0,
Z (75.19)
—(pf =) + Veul = epy,
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where ]?1" = fi' = $0-uy and 0, v" 1= ”n%’ﬂkl for any sequence (v™), e, . From Proposition 75.6,
we expect (75.19) to give an O(er) = O(7?) approximation of the pair (uy, p1) (at least informally
and if (u1(0),p1(0)) is known).

Let us finally take the reasoning one step further by considering the pair (ug, po). Using (75.15)
to approximate Oyug(t,) in (75.17¢c) gives a third-order accurate approximation. Next we replace
V-ug = 0 by €dipo + V-ug = er, where r is some O(72) approximation of d;pe. But recalling
that the purpose of p; is precisely to approximate 0;pg, we are going to substitute by p;. Then
replacing 9ypo(t,) by the second-order approximation %(pg — pg_l) + %Tpg (this follows from the
Taylor expansion pj~" = pii — 79,po(t) + $720upo(tn) + O(7%)) and putting everything together
gives the following time discretization of (75.17¢): For all n € N,

(uf —uf™") = Ves(ug) + Vop = £ ufjop =0,
(75.20)

_ 1
(P —p6~") + Voug = ep — sept,

Sl 3=

with the shorthand notation f{f = fo — $0,;uy — %&ug.
After uncoupling the velocity and the pressure in (75.18)-(75.19)-(75.20), the final form of the
algorithm proceeds as follows: For all n € N,

uy —7(Ves(uy) + AVV-u) = g5, ufjyp, =0,
{ n __ ,n—1 n (7521a)
py =py = AVeug,
wi — r(Vs(uy) + AVV-ul) =gl ufi,p =0,
o0 ior o
Py =pi 4715 — AV-ul,
uf —7(Vs(ul) + A\VV-ul) = g, ulyp =0, (75.21c)
po =1 TP — 3705 — AVoug,

with

g5 =y () = VP,

n n— n n— n 1 n
g, ‘= (3] 1—|—T(f1 —V(pl 1+Tp2)——57—u2),

2
n n—1 n n—1 n T2 n T n T2 n
9o ‘= Uq +T(fo -V (ps "+t - 7192) - §6Tu1 - E5TU2)-

This shows that each step of the third-order artificial compressibility method requires to solve
three implicit parabolic time steps.

Remark 75.7 (Initialization). The initialization of the scheme (75.21a)—(75.21c) requires the
specification of (u;(0),p;(0)) for all I € {0,1,2}. This is the price to pay for replacing V-u = 0 by
€dip+ V-u = 0. The initialization of py(0) is discussed in Remark 74.4. A third-order initialization
strategy is proposed in Exercise 75.4. Notice that the initialization is trivial if the initial state is
rest and the source term starts very smoothly from zero, i.e., ug = 0, f(0) =0, 9, f(0) = 0, and
du f(0) = 0. O

Remark 75.8 (Navier—Stokes). A nonlinear version of the above scheme has been proposed in
Guermond and Minev [152, Eq. (3.12)-(3.14)] to solve the Navier—Stokes equations. O
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75.4 Finite element implementation

We now give some details on how the above algorithm can be implemented with mixed finite
elements. Let M be the mass matrix for the velocity. Let N be the mass matrix for the pressure,
or its lumped version, or any diagonal matrix with entries scaling like those of the mass matrix
(say, for each row i, take the volume of the support of the i-th pressure shape function). Let A be
the stiffness matrix associated with the operator —V-s(-). Similarly, we denote by B the matrix
associated with the divergence operator V-. Then BT is the matrix associated with the negative
of the gradient operator.

At every time step the fully discrete versions of the systems (75.18)-(75.19)-(75.20) require
solving linear systems of the form (1M + A)U = F + ABTP and NP = N'Q — ABU. Notice
here that the exact matrix version of p = ¢ — AV-u induced by the Galerkin formulation implies
that N is the pressure mass matrix. But this constraint can be relaxed since, without loss of
accuracy, instead of approximating ed;p + V-u = 0, we could also approximate the perturbation
€0 L(p) + V-u = 0, where L is any perturbation of the identity operator in the pressure space.
As said above, instead of using the consistent mass matrix for the pressure, one does not lose
the properties of the scheme by using either the lumped mass matrix or any appropriately scaled
diagonal matrix. In conclusion, one eliminates the pressure in the velocity equation by using
P = Q — M ~1BU, and one obtains (%M + A+ ABTN7IB)U = F + A\BTQ. We insist again that
N need not be the consistent pressure mass matrix. Actually, we recommend to use either the
lumped mass matrix or any appropriately scaled diagonal matrix. We refer the reader to [152]
for additional details on this technique. The above method has been tested in [152] and has been
shown numerically to deliver third-order accuracy in time on the velocity and the pressure in all
the relevant norms. Fourth order and higher orders can be obtained by using the appropriate
Taylor expansions.

Exercises

Exercise 75.1 (Lemma 75.1). (i) Prove (75.4). (Hint: test the momentum equation with v and
the mass equation with ¢, use Lemma 53.9 to bound (g, g)r2, integrate in time from 0 to ¢ for all
t € J, and integrate by parts in time.) (ii) Prove (75.5). (Hint: use the inf-sup condition on the
bilinear form b together with the bounds derived in Step (i).)

Exercise 75.2 (Lemma 75.2). (i) Let 0,k" := k"%’w and 6,¢" = qn%q%l for all n € N..
Prove that ||0:k-|l¢2(s..02) < |0kl r2(s..22)- Let T'(t) := 1 ft L Oeg(&)dE for all t € J,. Prove that

=1 ft 8{59 df for all t € J and that ||8tFHL2(J** L2) H8§§g||L2(J* ;L2)- (Hint: use
the Cauchy Schwarz inequality and Fubini’s theorem.) (ii) Derive the system satisfied by the time
sequences §,u, = (L=2"1) \- and §,p, = (B2 ), e (iii) Prove the estimate (75.10).
(Hint: use the inf-sup condition on the bilinear form b and bound ¢,u, by adapting the proof

of (75.9).)

Exercise 75.3 (Proposition 75.3). The goal of this exercise is to prove Proposition 75.3. (i)
Let e, := u, — 7.(u) and r, := p, — 7. (p). Let (t) := 1 ft (& —t+ T)0ceud€ and ¢(t) :=
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— L [* 9pde for all ¢ € J,. Show that

(e" —e" ) = Vs(e") + Vi =", elyp =0,

=

(Tn _ ,r,nfl) 4 v_en _ ¢n

(ii) Prove the estimates (75.11) and (75.12). (Hint: use Lemma 75.2.)

Exercise 75.4 (Initialization). Let ug be the initial velocity, and assume that p(0) is given. Let
t; := 7. Using the first-order artificial compressibility algorithm (75.6) and Richardson’s extrap-
olation, propose a technique to estimate (9ywu(t1), Opp(t1)) with O(7) accuracy, (O:u(t1), d:p(t1))
with O(72) accuracy, and (u(t1),p(t1)) with O(r3) accuracy. (Hint: estimate (u,p) at the times
ty and tp := 27 by using (75.6) with the time steps 7, 7, and 7, keeping A fixed. Conclude by
using finite differences centered at t; := 7.)



232 Chapter 75. Artificial compressibility




Chapter 76

Well-posedness and space
semi-discretization

The three chapters composing Part XV deal with the approximation of time-dependent Friedrichs’
systems and more generally systems of first-order PDEs. We study the approximation of these
systems by using implicit and explicit time-stepping techniques combined with stabilized finite
elements. The prototypical example we have in mind is the linear transport equation where one
seeks a space-time function v : DxJ — R s.t.

Ou+ B-Vu=f in DxJ, (76.1)

where D is a Lipschitz domain in R, J := (0, T is the time interval with 7' > 0, 3 : D — R% is the
transport velocity, and f : DxJ — R is the source term. More generally, v and f are C™-valued,
m > 1, and the generic form of the evolution problem (76.1) is

Ou+ Alu) = f in DxJ, (76.2)

where A is a Friedrichs’ operator, i.e., the problem A(u) = f is one of the symmetric positive
systems of first-order linear PDEs introduced in Chapter 56. In this chapter, we first derive a
functional setting for (76.2) and establish its well-posedness. For simplicity, we assume that the
differential operator in space is time-independent, e.g., the transport velocity in (76.1) is time-
independent. Then we construct a space semi-discretization of the problem using stabilized finite
elements. We focus on the fluctuation-based stabilization techniques introduced in Chapters 58-59.
Implicit and explicit time discretization techniques are investigated in the next chapter.

76.1 Maximal monotone operators

The notion of maximal monotone operators provides a suitable functional setting to formulate
noncoercive time-dependent problems. Let L be a separable (real or complex) Hilbert space. We
identify L with L’. Let V; be a proper subspace of L and let A : Vy — L be a linear operator. The
setting we have in mind is

Vo CV:=D(A) C L, (76.3)

where D(A) := {v € L| A(v) € L} is called the graph (or the domain) of A. In general, the
operator A is unbounded on L, i.e., V is a proper subspace of L (if A is bounded on L, then
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V = L). The purpose of V} is to enforce appropriate boundary conditions. More precisely, we
assume that Vj is such that the restriction of A to Vj is maximal montone in the sense defined
below. We denote by Ix : X — X the identity operator for any subspace X C L.

Definition 76.1 (Maximal monotone operator). The operator A : Vo — L is said to be
monotone if
R((A(v),v)) >0, Yov € Vo, (76.4)

and it is said to be maximal monotone if in addition there exists a real number 1o > 0 such that
Iy, + 10A : Vo — L is surjective:

VfeL, JveVy st v+mAW)=f. (76.5)

Given a source term f € C'(J; L) and an initial condition ug € Vj, we consider the following
model problem:

: 1(7. 0(7. =
{Flnd u e CHJ;L)NCO(J; Vo) st u(0) = ug and (76.6)

deu(t) + A(u(t)) = f(t), Vtel.

Notice that in this setting the time derivative is defined in the strong sense.

Remark 76.2 (Time scale). The formulation of the model problem (76.6) shows that the oper-
ator A has the same dimension as the reciprocal of a time. Therefore, the real number 7 in (76.5)
is a time scale. O

Example 76.3 (Transport operator). Let us set A(v) := 3-Vv with 8 € L*°(D) and assume
for simplicity that V-8 = 0. Let L := L*(D) and V := {v € L?(D) | B-Vv € L*(D)}. Notice
that V' is a proper subspace of L, i.e., A is unbounded on L. Let the inflow and outflow parts
of the boundary be dD* := {& € dD | + (B-n)(x) > 0} and assume that 9D~ and D" are
well-separated. Then, as discussed in Example 56.13, the trace operator v : C°(D) — C°(9D) s.t.
7(v) = vjgp can be extended to a bounded linear operator from V' to L‘Qﬁvnl(aD;R), where the
subscript |3-n| means that the measure ds is replaced by |3-n|ds. Owing to the integration by
parts formula (3-Vov,w)r + (v, 3-Vw)r, = ((8:n)7(v),¥(w))12ap) for all v,w € V, we have

1 1
(A(v),v)L = §||7(U)H%2(|5.n|;az)+) - §||7(U)H%2(\g.n|;a[r)a

which shows that A is not monotone on V' but is monotone on the proper subspace Vy := {v €
V | 7(v)j9p- = 0}. Hence, enforcing the condition y(v) = 0 at the inflow boundary D™ yields
the monotonicity property (76.4). Moreover, the well-posedness theory for Friedrichs’ systems (see
Theorem 56.9) shows that A is maximal monotone for any real number 75 > 0. O

Lemma 76.4 (Density, Hilbert space). Let A : Vo — L be a mazimal monotone operator. The
following properties hold true:

(i) Vo is dense in L.
(i) Iv, +70A : Vo — L is an isomorphism and ||(Iv, +10A) | z(r;n) < 1.

(iii) Equipped with the graph norm |[v||% = |[v||2 + 7¢||A(v)||% and the associated inner product
(v,w)r, + 8 (A(v), A(w)) L, Vo is a Hilbert space.

Proof. (i) Let us apply Corollary C.15 which gives a characterization for density. Let f € L = L’
be such that (f,v), = 0 for all v € Vj. Since Iy, + 10A : Vy — L is surjective owing to the
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maximality property, there is vy € Vj so that vo+79A(vg) = f. The monotonicity property implies
that

[vollZ < llvoll7 + 70R((A(vo), vo)r) = R((vo + T0A(v0),v0)z) = R((f,v0)z) = 0.

Hence, vy = 0, i.e., f = 0. This shows that V} is dense in L.

(ii) Let us set B := Iy, + 104 : Vo — L. Maximality means that B is surjective. Monotonic-
ity implies that B is also injective since B(v) = 0 implies that 0 = R((B(v),v)r) = [[v|% +
ToR((A(v),v)r) > ||v||2, so that v = 0. Hence, for all f € L, there exists a unique v := B~(f) € 1}
so that B(v) = v+ mA(v) = f. Since [[vo]|7 < 0] + 7oR((A(v),v)r) = R((f,0)2) < [ fllzllv]L,
we have |[v]|y < || f||z. This shows that [|B™!|| s,y < 1.

(iii) Let (vp)nen be a Cauchy sequence in Vp, i.e., the sequence is Cauchy for the graph norm

1

(Ilvall3 + 75| A(va)[|7) ®. This implies that both (vn)nen and (A(vy))nen are Cauchy sequences
in L. Hence, there are v € L and f € L so that v, — v and A(v,) — f as n — oco. Using the
boundedness of (Iy, +79A)~! : L — V C L and since v,, € Vj, we have

V=V = (IVO + T()A)il(’l}n + T()A(’Un)) — (IVO + T()A)il(’v + Tof).

Hence, v = (Iy, + 10A) "' (v + 710 f). This shows that v is in the range of (Iy, +70A) ™!, i.e., v € Vj,
and A(v) = f, i.e., |Jon, —v||ly — 0. O

Corollary 76.5 (Bijectivity). Let A : Vo — L be a mazimal monotone operator. For any
real number T > 0, the linear operator Iy, + 7A : Vo — L is bijective, and we have ||(Iv, +
TA) ey < 1

Proof. (1) Since the norms (||v]|2 + 72||A(v)|[2)2 and (|[v]|2 + 72||A(v)]|2)? are equivalent for
all 79,7 > 0, and since Vj is a Hilbert space when equipped with the former inner product by
Lemma 76.4(iii), it is also a Hilbert space when equipped with the latter inner product. Consider
now the bilinear form a(v,w) := (v + 7A(v),w)r defined on VyxL. We need to verify the two
conditions of the BNB theorem (Theorem 25.9).

la(v,w)|

(2) Let us first prove (BNB1). Let v € Vj and set S(v) := sup,,¢, Tolr - Takingw:=veVy C L
in the definition of S(v) and invoking the monotonicity property of A, we infer that

av, )] . Rla(w.v) _ el

ol = vl vz

S(v) >

= [lvllz-

Moreover, taking w := A(v) € L in the definition of S(v) and since

la(v, A(©)| = |(v, A(v)) + T A(v) L]
> R((v, Aw))z + 7lIAW)[T) = Tl A@)]1Z,

owing again to the monotonicity property of A, we infer that

|a(v, A(v))]

S0 2 AW

> 7| Av)[|L-

Combining the two above bounds leads to v/2S(v) > ||v|lv. This shows that (BNB1) holds true

. 1
with the constant 7

(3) We now prove (BNB2). Let w € L and assume that a(v,w) = 0 for all v € V. Since
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Iy, + 10A : Vj — L is bijective by Lemma 76.4(ii), there is vy € Vp such that vy + 79 A(vo) = w.
Using the monotonicity of A, we obtain

0= %(a(vo, w)) = §R((v0 + 7A(vg), vo + ToA(vo))L)
= [lvollZ + (7 + 70)R((A(v0), v0) ) + T70l| A(vo) |7 > [lvollZ-

Hence, vg = 0, which implies w = 0 and proves (BNB2). We establish that || (Iv, +7A) ! z(r.0) < 1
by proceeding as in the proof of Lemma 76.4(ii). O

Remark 76.6 (Literature). The reader is referred to Showalter [257, p. 22|, Yosida [289, p. 246],
Brezis [52, Prop. 7.1] for more details on maximal monotone operators. An interesting physics-
oriented extension of the theory is presented in Picard [238]. O

76.2 Well-posedness

The setting of maximal monotone operators is useful to derive an existence and uniqueness result
for the time evolution problem (76.6). The main interest of this setting lies in the fact that the
study of the evolution problem reduces to the study of the properties of the operator A : Vj — L.
The price to pay to use this setting is that the operator A is time-independent. The main result
of this section is the following.

Theorem 76.7 (Hille-Yosida). Let A : Vo — L be a maximal monotone operator. For all
f € CYJ;L) and all ug € Vi, there exists a unique u € CY(J;L) N C°(J;Vp) solving (76.6).
Moreover, the following a priori estimate holds true: For allt € J,

-+ L
lu@®)ll < e ()| fllcoo.n:L) + luollL- (76.7)
In particular, for t =T we have ||u(T)|| L < €%T|‘f|‘co(j;L) + [Juol| .-

Proof. For the existence and uniqueness result, we refer the reader to Yosida [289, p. 248] or Brezis
[52, Thm. 7.4]. Notice that one cannot invoke Lions’ theorem (Theorem 65.9) since the bilinear
form (v,w) — (A(v),w)r is not coercive on V' xV. Let us prove the a priori estimate (76.7). Let
up € CY(J;L) N C°(J; Vo) solve Qyuy(t) + A(ui(t)) = 0 for all ¢t € J and uy(0) = ug, and let
us € C(J; L) N CO(J; Vp) solve dyus(t) + A(ua(t)) = f for all t € J and uz(0) = 0. By linearity,
we have u = u; + ug, so that we are going to bound wu; and wug separately. Since the equation
Oyur(t) + A(uq(t)) = 0 holds in C°(J; L), we can take the L-inner product of this equation with
u(t) for all t € J and infer that

5 (Ol = R((@na (1), (1))
S %(8,511,1(15) + A(u1 (t)),ul(t))L) = O,

where we used the monotonicity of A. Similar arguments show that
5 llua®lZ < R((Qeuz(t) + Aluz(t)), uz(t))r) = R((f (1), u2(t))2).

Integrating the above two estimates on £ <|jui(t)]|? and £ <L |jus(t)]|? from 0 to ¢ for all t € J, and
using the initial conditions u1(0) = ug, uz(0) = 0 and the Cauchy—Schwarz inequality, we infer
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that

t
lur@®IZ < lluollZ,  lua(DIZ < /0 2|1 £ (s)l[Llluz(s)] 2 ds.

Invoking a modified version of Gronwall’s lemma (see Lemma 76.8 below, with ¢(t) := [luz )2,
a(t) == 2| f(t)|lr, and b(t) := 0), we infer that we have for all t € J,

lua ()1 < eT TN A Z2qp0,0:0) < €T TN F 1 Eogp0,01:1):

where the last bound follows from the Cauchy—Schwarz inequality. Since ||u(t)||z < ||ui(t)|z +
[|ua(t)| 1, this completes the proof. O

Lemma 76.8 (Gronwall’s lemma). Let ¢ € L'(J;R). Assume that there is a function a €
L?(J;R) and a nondecreasing function b € L*(J;R) such that ¢(t) < fo )2 ds + b(t) for all
t € J. The following holds true for all t € J (with the convention that HaHLz 0 =0ift=0):

(1) < et (llallZzqo,s) +b(1)). (76.8)

Proof. Since a(s)¢(s)% < T“ff)z + ¢£Fs ) owing to Young’s inequality, we obtain

T ¢
Z||a||L2(O )+ b(t

(1) <

We now apply Gronwall’s lemma (see (65.20) from Exercise 65.3) with «a(t) := %HQH%Q(O nt b(t)
and B(t) := 4. This yields the assertion. O

Remark 76.9 (Time growth/decay). Contrary to the parabolic setting where the influence of
the initial data decays exponentially fast as ¢ grows (see Lemma 65.11), the estimate (76.7) shows
that the influence of the initial data is permanent. Moreover, the source term f may induce a
linear growth of ||u(7T)||r with respect to T'. This is a characteristic property of evolution PDEs
without coercivity. However, if it turns out that there is y5 > 0 s.t. R((A(v),v)L) = psllv[|7 for
all v € Vj (which is a stronger property than the monotonicity property (76.4)), then the estimate
(76.7) can be replaced by the following sharper estimate:

oy I
e < o F ol + - / e =) £(s)]2 ds, (76.9)

for all t € J; see Exercise 76.3. ([

Remark 76.10 (Dimensionality and Young’s inequality). Notice that blindly applying
Young’s inequality in the form a3 < 2a? + % is questionable from the dimension point of view if
the real numbers «, # do not have the same dimension. For instance, the 1nequahty invoked in the
proof of Lemma 76.8 is dimensionally consistent since the bound ¢(t) < fo 2 )z ds+b(t) shows
that the square root of the dimension of ¢ is equal to the dimension of a multlphed by a time scale.
More generally, we could have invoked Young’s inequality in the form a(s)gf)(s)% < 0“51—5)2 + @,
where 6 is any time scale, but the sharpest choice is § = T (see Exercise 76.2). O

Remark 76.11 (Contraction semigroups). Let f := 0. Then Theorem 76.7 shows that the
linear map Vo 3 ug — u(t) € Vo C L is s.t. |Ju(®)||r < |luol|r for all ¢ > 0. Since Vj is dense
in L, we can extend this map by density. Let us denote by Sa(t) : L > ug — u(t) € L the
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bounded linear operator thus defined. This operator has the following properties: (i) For all ¢ > 0,
SA(t) € E(L;L) and ”SA(t)HE(L;L) < 1; (ii) For all t1,t2 > 0, Sa(ts -i-tg) = Sa(ty) o SA(tg);
(iii) limyyo [[Sa(t)(uo) — uollz = 0 for all ug € L. Any family of operators (R(t))ier, in L£(L;L)
satisfying the above three properties is called a contraction semigroup of class C°. A striking
result is that for every contraction semigroup of class C% on L, say (R(t))icr,, there exists a
unique maximal monotone operator A such that R(t) = Sa(t); see e.g., Yosida [289, Chap. 9] (see
in particular the theorem p. 246 and the Phillips—Lumer theorem p. 250 therein) and Brezis [52,
Rem. 5]. O

Remark 76.12 (Hille—Yosida vs. Lions). On the one hand the Hille-Yosida theorem is slightly
more general than Lions’s theorem since it does not require the bilinear form (v, w) — (A(v),w)r,
to be V-coercive. On the other hand the Hille-Yosida theorem is somewhat more restrictive since
the time derivative is taken in strong form, and this is reflected by the relatively strong assumptions
made on [ and ug. The solution considered in the Hille—Yosida theorem is called strong solution,
whereas the one considered in Lions’ theorem is called weak solution. It is however possible to
weaken the assumptions on f and wug in Theorem 76.7. In particular, it is shown in Ball [22]
that for all f € L'(J;L) and all ug € L, there exists a unique u € L*(J;L) such that we have
fgu(s) ds € Vp and u(t) = ug + A( fo s)ds) + fo s)ds for all ¢ € J. This solution is given by
u(t) = Sa(t)(ug) + fg Sa(t—s)(f(s))ds. This type of solutlon is often called mild solution in the
literature. O

If instead of being monotone, A : Vy — L satisfies the weaker assumption
i, >0, Yoe Vo, R((AW),v)r) > —mwlv|7, (76.10)

then py Iy, + A is monotone. Notice that u;l is a time scale. If in addition to (76.10) there exists
pg > p, so that pyly, + A is maximal monotone, then the following result shows that one can
extend the Hille-Yosida theorem to the problem dyu + A(u) = f, u(0) = ug.

Proposition 76.13 (Well-posedness with weaker monotonicity assumption). Let A :
Vo — L satisfy the weaker monotonicity assumption (76.10). Assume that there is a real number
7 € (0,1, ") s.t. Iy, + 1A is surjective. Let f € CY(J;L) and ug € Vo. There exists a unique
u € CLY(J; L) N CO(J; Vo) solving the problem (76.6). Moreover, introducing the time scale p :=
(1y + 57) ', we have for all t € J,

i 1
u@®)||z < e? (tT)2 | fllcoqo,; L) + €*lluol| - (76.11)

In particular, for t =T we have ||[u(T)||r < e%T||f||Co(j‘L) + e T ||ugl| .-

Proof. Let us set Ay := Iy, + A : Vo — L. By assumption, Ay is a monotone operator. Moreover,

setting 7 1= 7 TT o (this is legitimate since 7, < 1 by assumption), we have
Iy, + A =(1+T/Lb) Iy, +7Tu A 271 (IV +1n,A)
() LEEs t o T 1Y Tti,ub T— o 0 )
where we used that 7, = 1+T o and 1474, = ‘n, = 1= TI;HI; . This shows that the operator Iy, +74A4

is surjective. In conclusion, Ay : Vp — L is a maximal monotone operator. Owing to the Hille-
Yosida theorem, there is a unique v € C1(J; L) N C%(J; Vp) s.t. v(0) = ug and dyv(t) + Ag(v(t)) =
e Mt f(t) for all t € J. Setting u(t) := et*'v(t), we have u € C*(J; L) N C°(J; Vo), u(0) = ug, and
a direct calculation shows that
Oru(t) = €0 (t) + myu(t) = e (= Ay(v(t)) + e~ "' f (1)) + pyu(t)
= —Ay(u(®)) + () + wyu(t) = —A(u(t) + £ ().
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Hence, u solves (76.6). In addition, the a priori estimate (76.11) follows from ||u(t)||, = e**||v(¢)| L
and by applying the a priori estimate (76.7) to v. Finally, uniqueness follows from the a priori
estimate. (|

Remark 76.14 (Time growth). If u, < X, the a priori estimate (76.11) implies that |Ju(t)| <
T (tT)2 Ilfllcogo.a:L) +eT ||lugl| for all ¢ € J, which exhibits essentially the same behavior in time
as the a priori estimate (76.7). Instead, if s, > £, the factors s and et in (76.11) can become
very large as ¢ T T (notice that % >y, so that er > e, O

76.3 Time-dependent Friedrichs’ systems

Let us illustrate the above framework with the theory of Friedrichs’ systems introduced in Chap-
ter 56. We make the assumptions (56.1a)-(56.1b) (boundedness and symmetry), but we do not
make the positivity assumption (56.1c). Specifically, let m > 1 and let {Ak}ke{l:d} be a family of
fields in L>°(D;C™*™). We assume that A* = (A*)H for all k € {1:d} and a.e. in D. Defining
X:=>enay O AF € L>(D; C™*™) we further assume that X € L°(D;C™*™). Notice that X
is Hermitian. We consider the first-order differential operator

Ai(v) == Y AFop. (76.12)
ke{l:d}

As in Remark 56.12, we specify the zero-order operator by means of an operator K € £(L; L) with
L := L?(D;C™). A simple example is K (v) := Kv with a field KX € L (D;C™*™). Here, K is
local, but it is not a requirement. For instance, the Boltzmann equation and the neutron transport
equation can be formulated as Friedrichs’ systems where the collision operator K is nonlocal.

Let us define the graph space V := {v € L | A;(v) € L}. Proposition 56.4 shows that V is a
Hilbert space when equipped with the inner product (v,w)r, + ¢%,872(A1(v), A1 (w))r. Here, to
be dimensionally consistent, we introduced the length scale ¢p := diam(D) and the real number
B :=maxge (1. g} || A*|| oo (p;cmxmy. Following (56.26), we define the self-adjoint boundary operator
N e L(V; V') s.t.

(N(),w)yvr v = (Xv,w)r, + (A1(v),w)r + (v, A1 (w))L. (76.13)

It has been shown in Chapter 56 that the boundary conditions for Friedrichs’ systems can be
formulated by postulating the existence of a monotone operator M € L(V; V') such that ker(N —
M) + ker(N + M) = V (see §56.3.2). Homogeneous boundary conditions can be enforced by
considering Vj := ker(M —N). Notice that V; is a closed subspace of V. Moreover, since C§°(D; C™)
is dense in L (see Theorem 1.38), the inclusions C§°(D;C™) C Vy C V C L imply that Vp and V
are dense in L.

Let us define the operator A : Vy — L such that

A(v) == K(v) + A1 (v), (76.14)

and let us consider the time evolution problem (76.6), i.e., we seek u € C1(J; L) N C°(J; Vp) s.t.
Ou(t) + A(u(t)) = f(t) for all t € J, and u(0) = wug, with f € C1(J;L) and ug € Vy. To be
dimensionally consistent (see Remark 76.2), the operators A; and K have both the dimension of
the reciprocal of a time. This implies that the fields {Ak}ke{l,d} and the real number 3 have the
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dimension of a velocity. The following real number will play an important role in the forthcoming
stability and error analysis:

A, = inf %((K(v),v)L) 2— %(X’U,’U)L
veL lvll%

(76.15)

Notice that |A,|~! is a time scale, and A, is indeed real since X is Hermitian. Setting A=
max(0, —A,) > 0, we introduce the time scale

pi= (20, + Bl (76.16)

Proposition 76.15 (Well-posedness for Friedrichs’ systems). Let A, Vy, and L be defined
as above. (i) For all f € CY(J;L) and all ug € Vjy, there exists a unique solution u to (76.6).
(ii) The solution satisfies the a priori estimate (76.7) if A, = 0, the a priori estimate (76.9) with
wy =Ny if Ay >0, and the a priori estimate (76.11) with w, := —A, if A, < 0.

Proof. The definition (76.13) of N implies that R((A1(v),v)r) = —3(Xv,v)r + 3(N(v),v)y,y for
all v € Vp. Since Vy = ker(N — M) and M is a monotone operator, we infer that

%((A(U),U)L) > Ayljv)|2 + %<N(U),U>V’,V

1
=M |lvll + (M), v)vry 2 Aol

If A, > 0, the above lower bound shows that the operator A is monotone, whereas if A, < 0, the
operator A satisfies the weak monotonicity property (76.10). Moreover, the theory of Friedrichs’
systems shows that for any real number p > max(0, —A,) > 0, the operator B := ply, +A4: V) — L
is an isomorphism (see Theorem 56.9). This implies that the operator Iy, + 104 : Vo — L is
surjective for any 79 € (0,p~1). We conclude by applying the Hille-Yosida theorem if A, > 0 (see
also see Exercise 76.3) or its variant stated in Proposition 76.13 if A, < 0. O

76.4 Space semi-discretization

In this section, we present the space discretization of the model problem (76.6) with H'-conforming
finite elements. We enforce the boundary condition by means of the boundary penalty method
introduced in §57.4 and we use the fluctuation-based stabilization techniques presented in Chap-
ters 58-59. We comnsider the setting of the time-dependent Friedrichs’ systems from §76.3. The
operator A is defined in (76.14) and we assume that all the assumptions stated in §76.3 for the
fields {A*},c(1.4) and the operator K hold true. The fields {A*} (1.4 are also assumed to be
Lipschitz in D.

76.4.1 Discrete setting

As in §58.1, we consider a shape-regular mesh sequence (7Tj,)new S0 that each mesh covers D exactly,
and for all h € H we consider an H'-conforming finite-dimensional subspace V;, C V built by using
a finite element of degree k > 1. To simplify the argumentation, (75)nes is assumed to be quasi-
uniform, and the typical meshsize of T} is denoted by h. From now on, we assume that there is
s > 3 so that the solution to (76.6) is s.t. u € C°(J, H*(D;C™)), and we set V := H*(D;C™)+V},.
Let Py, : L — Vj, be the L-orthogonal projection onto V4, i.e., for all z € L, Py, (z) is the unique
element in Vj, s.t. (z — Py, (2),wp)r = 0 for all wy, € Vj,.



Part XV. TIME-DEPENDENT FIRST-ORDER LINEAR PDES 241

We enforce the boundary condition by means of the boundary penalty method introduced
in §57.4. Setting L(OD) := L?*(0D;C™), we assume that there are boundary fields

M € L®(9D; Cm*m)
s.t. for all v,w € V4,
(M(v),w)v'v = (Mv,w)r@op), (N@),wyv v =WNv,w)Lop). (76.17)

We also introduce a boundary penalty field S? € L>(9D; C™*™) taking values over the set of the
mxm Hermitian positive semidefinite matrices, and we set

1
MT = M+8%, folper = S(MP0,0)F o), Yo €V (76.18)

1
2

Setting £ 1= maxye(1.qy ||AkHLoo(D;(Cm><m)7 we assume that S? is defined in such a way that there
is ¢ s.t.

ker(M — N) C ker(M" — N), (76.192)
|wn|per < ¢ (7)) ||wnllz, (76.19b)
(M + N, w) ] < e 82 |[v]| Lo lwlpmer, (76.19¢)

for all v,w € V4, all w, € Vj, and all h € H. We have shown in §57.4.2 how to construct
boundary penalty fields S? satisfying (57.33). Then (76.19a) and (76.19c) are satisfied since they
are restatements of (57.33a) and (57.33d), respectively. Moreover, (76.19b) is also satisfied as a
consequence of (57.33b) and a discrete trace inequality.

We now introduce a Hermitian semidefinite stabilization sesquilinear form s;, on Vj xVj,. We
can use the continuous interior penalty (CIP) stabilization described in §58.3 or the two-scale
stabilization techniques described in Chapter 59, i.e., the local projection stabilization (LPS) or the
subgrid viscosity (SGV) methods. Since we do not want to be specific about the type of fluctuation-
based stabilization we use, we introduce generic properties that s;, should satisfy. Setting |v,|s 1=
sn(vp, vh)%, we assume that the following simplified assumptions stated in Remark 58.1 hold true:
There is ¢ s.t.

1
WhiS S C\ T WhI|L, . a
wnls < c(2) 7 |lwal] (76.20a)
|51 (Pv, (v), wh)| < € B2RF 2 0] grrsa (paem) [whl s, (76.20b)
1
(0 — Py, (v), Ay (wp)) ] < € B2RFT2[0] grs (paem) X (Iwhls +(5)* IIthIL), (76.20c)

for all v € H*1(D;C™), all wy, € V3, and all h € H. In what follows, we assume that s, is defined
in (58.24) or (58.25) for CIP, in (59.13) or (59.14) for LPS, or in (59.19) or (59.20) for SGV. Then
the assumptions (76.20) are met, as shown in Remark 58.1, in Remark 58.12, and in Remark 59.12.

Remark 76.16 (Variants). Stabilization by discontinuous Galerkin methods can be considered
as well but it is not discussed here for brevity. Residual-based stabilization techniques could be
also used, but they introduce additional technicalities because the residual depends on the time
derivative of the solution. The reader is referred to Johnson et al. [201], Burman [59] for results
in this direction. O
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76.4.2 Discrete problem and well-posedness

We define the sesquilinear form aj on Vi, xV}, such that
1
ah(vh, ’LUh) = (A(vh), wh)L + 5((MBP - /\/)vh, wh)L(BD) + sh(vh, wh). (76.21)

Proceeding as in the proof of Proposition 76.15, we obtain the following important lower bound
on the sesquilinear form ay: For all vy, € Vj,

R(an(vn,vn)) = MpllonllT + lonlius:  |valias = [onliee + ol (76.22)

The space semi-discrete problem is as follows:

{Flnd up € CH(J; V) s.t. up(0) = Py, (uo) and (76.23)

(Orun(t), wn)r, + ah(uh(t),wh) = (f(t),wn)r, Vt € 7, Ywy € V.

Setting f(t) := Py, (f(t)) for all t € J and defining Ay, : Vi, — Vi, s.t. (An(vn), wn)r = an(vn, wp)
for all vy, wp, € V3, (76.23) becomes

{Find up € C*(J; Vi) s.t. up(0) = Py, (uo) and (76.24)

8tuh(t) + Ah(uh(t)) = fh(t), Ve J.

Proposition 76.17 (Well-posedness, a priori estimate). (i) The semi-discrete problem (76.23)
is well-posed. (ii) wy, satisfies the a priori estimate (76.7) if A, = 0, the a priori estimate (76.9)
with pg == Ay if Ay > 0, and the a priori estimate (76.11) with p, :== —A, if A, <O0.

Proof. Since V}, is finite-dimensional, the well-posedness of (76.23) follows from the Cauchy—
Lipschitz theorem. The a priori estimates follow by observing that [|un(0)|r < |luollz since
1Py, (wo) |l < |luoll, and by proceeding as in the proof of the Hille-Yosida theorem if A, = 0, as
in Exercise 76.3 if A, > 0, and as in the proof of Proposition 76.13 if A, < 0. (|

76.4.3 Error analysis

The starting point of the error analysis is the identity (dyun (t), wn)r+an(un(t), wn) = (f(t), wn)rL =
(Bpu(t), wn)r + (A(u(t)), wn)r, for all wy, € Vi, Let v, € C'(J;V4) and set ep, := uj, — vy We then
obtain the following error equation: For all ¢ € J,

(8teh7wh)L =+ ah(eh, wh) = ((A(u),wh)L — ah(vh,wh)) + ((%(u — vh), wh)L.

There are essentially two possibilities to proceed from here depending on the way one wants to
handle the two terms on the right-hand side.

In the first approach, one chooses vy, so as to eliminate the consistency error induced by the
approximation of the differential operator A. This is the most natural approach in the context of
the Hille-Yosida theorem. Recalling the time scale p defined in (76.16), we are led to define the
approximation operator II : V' — V}, s.t.

p~ (I (v), wp) 1z + an (117 (v), wn) = p~* (v, wn) L + (A(v), wn) L, (76.25)

for all v € V and all wy, € V},. This problem is well-posed since the sesquilinear form ay, (vy, wy) =
p Y (vn,wp) 1 + an(vp, wy) satisfies an inf-sup condition on V}, xV}; see Lemma 58.2. Notice that
ap is L-coercive on Vj, with the constant jug := p~ ! + A, > [3651 +A; > %p‘l. The approximation
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properties of I} are stated in Theorem 58.11 for CIP and in Theorem 59.11 for LPS and SGV.
Setting ey, := up, — IIp (u), n := II; (u) — u, the error equation becomes

(Oren, wr)L + an(en,wrn) = p~ " (n,wn) L — (Oem, wa) L. (76.26)

The second choice is to use the all-purpose L-orthogonal projection operator Py, to eliminate
the consistency error on the time derivative. Recall that Py, has optimal approximation properties
in L? and H! since we are using quasi-uniform mesh sequences; see Propositions 22.19 and 22.21.
Setting vp, 1= Py, (u), en := up — Py, (u), n := Py, (u) — u, we observe that (9n, wp)r, = 0 since
0(Py,, (u)) = Py, (Oyu). The error then equation becomes

(Oren,wn)r + an(en, wn) = (0, A1(wn))r — (K(n) — Xn,wa)L (76.27)
— (M Ny n) o)
where we used that A(n) = K(n) + A1(n) (see (76.14)), the integration by parts formula (76.13),
and (76.19a) (which implies that (M"" — N)u = 0).

We now derive an L>(J; L)-error estimate using the above two approaches. To simplify the
tracking of model-dependent constants, we set ¢ := pmax(|| K| z(z;5), | X Lo (D;cmxm), La), where
L 4 is the Lipschitz constant of the fields {-Ak}ke{l:d}a and we hide the constant ¢ in the generic
constants used in the error analysis. (Notice that ||X'[|e(p,cmxm) < dL4.) We also use the
nondimensional function &(t) := min(%, 1) for all t € J.

= sn(Pv, (u), wp)

Theorem 76.18 (L>(J; L)-estimate using II}). Let u solve (76.6) and let uj, solve (76.23).
Assume that u € C(J; H*TY(D;C™)). There is c s.t. for all h € H and all t € J, with J; := (0,1),

lu = unllpoe 7,0y < cer max(pB, h)2hFt3 ey (tu), (76.28)

with ey (t;w) = [ulco (0,141 (Diemy) + E(E) 2 plO| oo o,11; 1141 (Dsem)) -

Proof. Using wy, := ey, in (76.26), taking the real part, and using the lower bound (76.22) on the
sesquilinear form ay, yields

1d _ 1 _
szllenllZ + AsllenllZ + lenlius < p= @5 + 5o lenllZ,
2dt 2
with ®7 := [|n]|7 + p*||9m||7 and where we used the Cauchy-Schwarz inequality and Young’s

inequality on the right-hand side. Since —A, < A", we have 1p=! — A, < p~!. Dropping the
nonnegative term |e, |35 from the left-hand side, we infer that

d — —
gllenllz <207 leallZ + 207127,

Invoking a simplified form of Gronwall’s lemma (see Exercise 73.2), this bound implies that for all
teld,

2t
lenll2 7,10y < €% (llen(@)Z + €N 12 5, ).
Taking the square root, invoking the triangle inequality, and recalling the definition of ®,, yields
t 1
=l oo 7,.0y < €7 (len (Ol + 20l oo F,.z) +EOZ 2l L= 7,.1)) -

Applying Theorem 58.11 (for CIP) or Theorem 59.11 (for LPS or SGV) with po := % gives
v =T} )|z < emax(pB, h)2 h* 2 |v|geer for all v € HFL(D;C™). This estimate allows us
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to bound ||n]] Loo(TyiL)" Moreover, since the differential operator A is time-independent, we have
9y (I, (u)) = I3 (0pu), and we can bound [|9yn|| (7, similarly. Altogether this yields

1 1 ptd
2H77|‘Loo(7t;L) + §(t)2p|‘8t77||Loo(7t) < cmax(pfB, h)2h 2 et u),

Finally, we have [lex(0)[| < [[(IL — Py,)(u(0))[[z + In(0)[[z < 2[In(0)][z, and [In(0)|[~ has been
bounded above. This completes the proof. O

Theorem 76.19 (L>(J; L)-estimate using Py, ). Let u solve (76.6) and let uy, solve (76.23).
Assume that u € C°(J; H¥*1(D;C™)). There is c s.t. for all h € H and all t € J, with J; := (0,1),
= nll oo 7,y < € (B + e E()® max(pB, b)) hF 3 ea(t u), (76.29)

with Cg(t;u) = |U|CO([07t];Hk+1(D;Cm)).

Proof. Using wy, := ey, in (76.26), taking the real part, and using the lower bound (76.22) on the
sesquilinear form ay, yields

Sllenld + ollenl + lenlius < [2y(en),

with the antilinear form ®,, € V) s.t. @, (wy) := (n, A1 (wn)) L — (K () —Xn, wp) L —sn(Py;, (w), wp)—
L((MP” + N)n,wr)rop) for all wy, € Vi. Let us equip the space Vj, with the norm lonll¥, =

_ D, .
p~ onll3 + [onl34s, and let us set | @[ly: = sup,, v, '”wffﬁi)' Since
1 2 1 2 1 2
g (en)l < 5l18qll, + Sllenlly, = H%Hw +5 HehIIL Ieths,

proceeding as in the previous proof leads to
d 2 -1 2 2
lenlls < 27 enll? + 12113,

so that for all t € J,

2t

Heh”ioo(jt;L) <er ( )Qp”q) HLoo(Jt VL)

where we used that e, (0) = 0. Taking the square root and invoking the triangle inequality gives
t 1
flu— uh”Loo(jt;L) < ||77||Loo(7t;L) ter \/ng(t)fﬂ ”q)n”Loo(jt;v}:b)

The approximation properties of Py, in L? imply that 0l oo 7,0y < ch¥t'ey(u). To bound

[ @y]lv;, forall t € J, we invoke (76.20c) and B < p~1 for the first term, the Cauchy—Schwarz
1nequahty for the second term, (76.20b) for the th1rd term, and (76.19¢) for the fourth term. Using
the approximation properties of Py, in L? and H! (see Propositions 22.19 and 22.21), we infer
that ) ) )

P2 ([ ®yllvy, < ¢ max(pB, k)2 R 2 ul grss (picm)-

Putting everything together yields the assertion. [l

Remark 76.20 (Comparison). The estimates from Theorem 76.18 and Theorem 76.19 lead to
the same decay rates in h. Using the operator Il is more natural in the setting of the Hille-
Yosida theorem. This is reflected by the fact that the proof of Theorem 76.18 is simpler since
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it does not invoke the structural assumptions related to the boundary penalty method and the
fluctuation-based stabilization. Indeed, the proof just uses the approximation properties of II;
which have been established in Theorems 58.11 and 59.11 using these assumptions (notice that these
approximation properties only require shape-regular mesh sequences). The proof of Theorem 76.19
goes through these arguments again when bounding |[®||y, . Theorem 76.18, however, requires a

stronger regularity assumption than Theorem 76.19 since it assumes that u € C*(J; H*+1(D;C™))
instead of u € C°(J; HT1(D;C™)). Moreover, Theorem 76.18 uses that the differential operator is
time-independent. Finally, Theorem 76.19 relies on the approximation properties in H! of Py, , but
these properties are more delicate to establish beyond the setting of quasi-uniform mesh sequences
(see Remark 22.23). O

Exercises

Exercise 76.1 (Maximality). Let V < L be two real Hilbert spaces with norms |-}y and |||
Let R € £(V;L). Assume that R is a monotone operator, i.e., R((R(v),v)r) > 0 for all v € V. (i)
Show that if R is maximal monotone (i.e., there is 79 > 0 s.t. Iy + 7o R is surjective), then there
W > c1|jv||v — e2|jv||r for all v € V. (Hint:
show that Iy + 7o R is injective with closed image.) (ii) Show that if there are real numbers ¢; > 0
and ¢z > 0 s.t. sup,er, (Rw)r] alvllv = co|lv||l for all v € V, and colp, + R* : L' = L — V'

llwll
is injective, then R is maximal monotone. (Hint: consider S(v) := sup,,c, W for all

v € V.) (iii) Assume that Iy + 7R is surjective. Show that the norms ||v|| + 70| R(v)| 1z and |Jv|v
are equivalent.

are real numbers ¢; > 0 and ¢z > 0 s.t. sup,¢,

Exercise 76.2 (Lemma 76.8). Revisit the proof of Lemma 76.8 by using Young’s inequality in

the form a(s)¢(s)z < % + @, where 6 is any time scale, and show that the choice § = T

leads to the sharpest estimate at the final time ¢ = T. (Hint: minimize the function 6 — fev at
fixed T'.)

Exercise 76.3 (Growth and decay in time). Assume that the linear operator —p, I, + A €
L(Vp; L) is maximal monotone where p, € R, p, # 0, but there is no constraint on the sign of wu,.
Let f € CO°(Ry; L) Ry :=[0,00). (i) Explain why there exists a unique u € C* (R ; Vo)NCO (R ; Vo)
solving the problem dyu + A(u) = f, u(0) = up. (ii) Assume now that p, > 0. Show that the
solution to this problem satisfies the following estimate for all ¢ > 0:

1 t
lu(t)lI7 < e [luollf, + ﬂ—/ e U= f(s)|7 ds.
b Jo

(iii) Assume that g, > 0 and f € C°(Ry; L) N L*((0,00); L). Show that limsup,_, . [[u(t)|r <
15 1F 1l oo (0,000:L)

Exercise 76.4 (Wave equation). Consider the wave equation dup — Ap = g in DxJ with the
initial conditions p(0) = py and 9:p(0) = vy in D and homogeneous Dirichlet conditions on p at the
boundary. Assume that g € L?(D), po,vo € Hi(D), and Apy € L?(D). Show that this problem
fits the setting of the time-dependent Friedrichs’ systems from §76.3. (Hint: introduce v := Oyp
and q := —Vp.)
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Chapter 77

Implicit time discretization

In this chapter, we continue the study of the time-dependent Friedrichs’ systems introduced in
Chapter 76. In the previous chapter, we established the well-posedness of the continuous model
problem (76.6) and we discretized the problem in space using H!-conforming finite elements, a
boundary penalty technique, and fluctuation-based stabilization. In this chapter, we now discretize
the problem in time and focus on the implicit Euler scheme. The explicit Euler scheme and explicit
Runge-Kutta schemes are investigated in Chapter 78.

77.1 Model problem and space discretization

In this section, we briefly review the model problem under consideration and recall the setting for
the space discretization introduced in §76.4.

77.1.1 Model problem

Let D be a Lipschitz domain in R? and let .J := (0,7) be the time interval with 7> 0. Let m > 1
and let {A*};cq1.4) be a family of fields in L°°(D;C™*™) such that X := doke(1:d} O AF €
L>(D;Cm™*™) and AF = (AF)M for all k € {1:d} and a.e. in D. We consider the first-order
differential operator A1 (v) := 3 i1, AFOpv. Recall that the graph space V := {v € L | A;(v) €
L} is a Hilbert space when equipped with the inner product (v,w)r + ¢%372(A4;(v), A1 (w))r
with the length scale £p := diam(D) and the velocity scale 8 := maxye(q.ay [|A"|| oo (pcmxm).
Homogeneous boundary conditions are enforced by considering the subspace Vj := ker(M —N) C V,
where N € L(V; V') is the self-adjoint boundary operator defined in (76.13) and M € L(V; V")
is the monotone operator s.t. ker(N — M) + ker(N + M) = V. Let K € L(L; L) and define the
Friedrichs’ operator A : Vj — L such that A(v) := K(v) + A;(v). Let f € C*(J;L) and ug € V.
The time evolution problem is the following:

{Find u € CHJ; L) N CO(J; Vi) s.t. u(0) = ug and (77.1)
duu(t) + A(u(t)) = f(t), vt € J. '
From now on, we assume that u € C°(J, H*(D;C™)) with s > 3.
We introduce the real number
R(K - i
Ay = ing DUECL VL) =50 0 (77.2)

veL IlvliZ
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Notice that |A,|~! is a time scale. No assumption is made on the sign of A,. As in the previous
chapter (see (76.16)), we introduce the time scale

pi= (20, + BLp") 71, (77.3)

where A" := max(0, —A;) > 0. If A, > 0, then p := (pB~t. If instead A, < 0, then p < £pB~1.
The time scale p is invoked repeatedly in this chapter. In particular, we use that p~' + A, > % p !

and 2pA,” < 1.

77.1.2 Setting for the space discretization

As in §76.4.1, we consider a shape-regular mesh sequence (73)new so that each mesh covers D

exactly. To simplify the argumentation, (75, )nex is assumed to be quasi-uniform, and the typical

meshsize of 7y, is denoted by h. For all h € H, we consider an H'-conforming finite-dimensional

subspace V}, C V built by using a finite element of degree k > 1. We set V; := H*(D;C™) 4 V},.
To enforce the boundary condition, we assume that there are boundary fields

M, N € L®(dD;Cm™*™)

st. (M(v),w)v,v = (Mv,w)rep) and (N(v), w)yvv = (Nv,w)r@ep) for all v,w € V;, and
L(0D) := L?*(@D;C™). The boundary penalty method is based on a field S € L>(9D;C™*™)
taking values over the set of the mxm Hermitian positive semidefinite matrices. Setting M"" :=
M + 87 and defining the seminorm |v|por := (M v, ’U)%(QD) on V4, we assume that S? satisfies
(76.19). The fluctuation-based stabilization is based on a Hermitian semidefinite bilinear form s
defined on V;xV;. Letting |v]s := sp,(v,v)2 for all v € V;, we assume that s, satisfies (76.20). We
define the sesquilinear form ap on Vi, xV}, such that

an(om wn) = (Alon), wn)z + 3 (M = Ny, wn)pop) + su(omwn). (774)

An important property of ay, is that for all v, € V3,
R(an(vn,vn)) > Aylloall + |vnl s, (77.5)
with [v]3s = |[v|3m + [v|%. As we did in the space semi-discrete case, we assume that the fields

{A*}ie(1.qy are Lipschitz with constant L4, we set
¢ = pmax(”KHg(L;L), ||XHL°°(D;(C7"><7")7 LA), (776)

and we hide the constant ¢ in the generic constants used in the error analysis.
The space semi-discrete problem is as follows:

{Find up € C1(J;Vp) s.t. up(0) = Py, (uo) and (77.7)

((?tuh(t), wh)L + ah(uh(t),wh) = (f(t), wh)L, VYt € 7, Ywy, € V.

Setting f(t) := Py, (f(t)) for all t € J and defining Ay, : Vi, = V3, s.t. (Ap(vp), wn)r = an(vn, wp)
for all vy, wp, € Vi, (77.7) can be rewritten as follows:

{Find un € C'(J; Vi) s.t. up(0) = Py, (uo) and (77.8)

8tuh(t) + Ah(uh(t)) = fh(t), Yt e J.

Let {pi}icq1:1y be a basis of Vj, with I := dim(V},) (the functions {@;}ie(1:7y are usually the
global shape functions in V},). Let U(t) € C! be the coordinate vector of uy(t) in this basis for all
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teJ, ie, up(t,z) = Yicqi:ny Vilt)pi(x) for all @ € D. The stiffness matriz A € CI*! is defined
s.t. Aij = an(pj, i), and the mass matric M € CI*! is defined s.t. M;; = (¢, )L, for all

i,j € {1:1}. The mass matrix is Hermitian positive definite, but the stiffness matrix is in general
neither Hermitian nor positive definite. Let F(¢) := ((f(t), i) )ieq1: 1y € C! for all ¢ € J, and let
U? be the coordinate vector of Py, (ug). Then (77.7) is recast as follows: Find U € C*(J;C!) s.t.
U(0) = U% and

MO U(t) + AU(t) = F(2), vt e J. (77.9)

77.2 Implicit Euler scheme

In this section, we use the implicit Euler scheme to approximate in time (77.7), and we perform
the stability and error analysis for the fully discrete problem.

77.2.1 Time discrete setting and algebraic realization

As in §67.1, given a positive natural number N > 0 we set 7 := % and t,, :=n7 for all n € N, :=
{1: N'}. This defines a partition of the time interval J := (0,7') into N subintervals J,, := (t,—_1, t;]
for all n € N,. Although this is not a theoretical requirement, we make all these intervals of equal
length to simplify the notation. We also assume that the meshes used for the space discretization
are time-independent.

The time discretization of (77.7) by the implicit Euler scheme is as follows: First we set
uY) := Py, (up), then letting f™ := f(t,) € L for all n € N, we obtain u} € V}, by solving

(up — uZﬁl, wp)r + Tap(up,wp) = 7(f", W) L, Ywy, € V. (77.10)

Proposition 77.1 (Well-posedness). Assume that TA,” < 1 (there is no condition on the time
step if Ay > 0). Then (77.10) is well-posed.

Proof. Letting b(vy, wp) := (vp, wr) 1 + Tap (vk, wp), the lower bound (77.5) yields
%(b(vh,vh)) > (1+7Ab)H’Uh||%, Yy, € Vi, (7711)

so that by is L-coercive on Vj, if 7A,” < 1 (since Ay, > —A_", we have 1 +7A, > 1 —7A" > 0).
Therefore, there is a unique u}} € Vj, such that by (u], wy) = (uz_l +7f™ wp) g for all wy, € Vy,. O

Let U™ € C! be the coordinate vector of ] in the basis {¢;}ieq1.ry for all n € N7 := {0:N}.
The algebraic realization of the scheme (77.10) is as follows: For all n € N, find U" € C! s.t.

(M +7AU" = MUt 4 7F", (77.12)

with F™ := ((f™,¢i)L)ieq1: 17 € C'. The proof of Proposition 77.1 shows that the matrix M + 7.4
is positive definite (hence invertible) if 7A~ < 1.

77.2.2  Stability

We establish in this section a stability estimate for the implicit Euler time-stepping scheme (77.10).
To prepare for the error analysis, we consider a variant of the time-stepping scheme (77.10), where
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we allow for a slightly more general right-hand side. Specifically, given u% € L, we obtain uj, € Vj,
for all n € N, by solving

(up — uz_l, wp)r, + Tap(up,wy) = 7(a", W) L, (77.13)

for all wy, € V3, with @™ € L. The scheme (77.10) is recovered by setting o™ := f™ in (77.13).
For any time sequence o, = (a"),en. € (L)N, we set lorllZ(0,00):0) = 22 7lla™ |3 for

me{l:n}
all n € N;.

Lemma 77.2 (Stability). Assume that 7 < %p. Let up, € (V)N solve (77.13) and assume that
o is bounded in the ||-||;2(y,)-norm. For all n € N, we have

n 2tn 1
luplle < e (luplle + p2 [l lez(o,60):L))- (77.14)

Proof. Notice that 7 < Ip implies that 7A, < & < 1 so that the discrete problem (77.13)
is well-posed (see Proposition 77.1). Just like in the space semi-discrete case, we test (77.13)
with u}} and take the real part of the equation. Using the lower bound (77.5) and the identity

(uhy —up ™ up)n = sl — sllup =7 + Slluh —uh ™ 17, we obtain

1 Lo
SRl + T8l lIZ + Tluhlius < Sl IZ + 7l uf)el.

Since |(a™, u) | < [la™|LlludlL < &lla™||3 + QLPHUZH% and since % - A < %, this gives

1
2

1

_ T 1
lup |7 + 7lup|jas < L Iz + ;IIUZII% + §mll¢”|\%-

Dropping the nonnegative term T|u}f|§\/[ s from the left-hand side and summing the inequalities for
all I € {1:n} gives

n 27 m m
laplz < Mlpll + - =luillz+ > erle™li.
me{l:n} me{l:n}

We apply the discrete Gronwall lemma from Exercise 68.3 with v := 277 € (0,1) by assumption,

Remark 77.3 (Growth in time). The stability estimate (77.14) allows for an exponential growth
on the right-hand side if p < T. This growth can be avoided if A, > 0 by replacing p by
p :=max(p,T) in (77.14). O

77.3 Error analysis

In this section, we establish the convergence of the implicit Euler scheme.
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77.3.1 Approximation in space

As we did in §76.4.3 for the space semi-discrete problem, there are essentially two ways to perform
the analysis. We focus here on the approach that is the most natural in the context of the Hille—
Yosida theorem and which relies on the use of the approximation operator Il : V- — V}, s.t.

p~ (15 (v), wa) L+ an(IT; (v), wp) = p~ (v, wa) 1 + (A(v), wn)r, (77.15)

for all v € V and all wy, € V}. This problem is well-posed (recall that the sesquilinear form
an(vn,wr) == p~ (vn, wn)r + an(vs,wy) is L-coercive on V}, with the constant ug := p~1 + A, >

2p1). Let us equip the space V4 with the norm

_ h
lvll¥, = p 1||v|\%+|v|3/ls+BI\Al(v)H% (77.16)

The approximation properties of Il using this norm are stated in Theorem 58.11 for CIP and
in Theorem 59.11 for LPS and SGV. For simplicity, we assume in the rest of this chapter that
h < pB. The convergence results from Chapters 58-59 with pg = % then imply that for all

v e HL(D;C™),

lo = @)l < p v - TG @), < ¢ (PB)ERF ol gess (pucm)- (77.17)

77.3.2 Error estimate in the L-norm

Theorem 77.4 (¢>°(J; L)-error estimate). Let u solve (77.1) and let up, solve (77.10). Assume
that u € C*(J; L) N C*(J; H*F1(D;C™)). There is ¢ s.t. for all h € H N (0,pf], all T € (0, 3p],
and all n € N7,

lulta) = wille < ce™ ((tap)iret () + (AR et () + (pA) PR A (), (77.18)
with c’f(u) = |u|cz([07tn];[‘), ch(u) = p|atu|co([07tn];Hk+l)+|U|CO([01tn];Hk+l), and cg(u) = |U0|Hk+l+
|u(tn)| e

Proof. Let us set e} := uf — 113 (u(t,)) and 5™ := n(t,,) for all n € N, with n(t) := I} (u(t)) —u(t).
Subtracting (77.1) from (77.10) gives for all wy, € V4,
(ef — e wn)r + 7(an(up, wi) — (A(u(tn)),wp)n) = —(0" — 0" wp) L — 7(¥™, w1,

with " = %I]n(ﬁtu(t) — Owu(ty))dt € L. Since we have (A(u(ty)),wn)r = p~t(n™, wpn)rL +
an (I3 (u(ty)), wy,) owing to (77.15), rearranging the terms leads to

(ef — e ™" wp)r + Tan(ef, wy) = T(a", wp) 1, (77.19)

with o™ := =L (g™ —pn71) + %77" — o™, Invoking Lemma 77.2 (stability), we infer that

2tn 1
lenlle < e (leplle + o2 llorllez(0,m)5L))

where o, = (a")nen. € (L)N. Invoking the triangle inequality and since ||€?|; < [[(IL —
Py, ) @Oz + [In°[l2 < 2[n°||, we infer that

2tn 1
u(tn) = uplle < 0"z + e @ln°IL + o2 lorlleo.)n)-
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Owing to the approximation property (77.17), we infer that ||1"||z 4 2||n°]|z < c(pB)2h¥ 2l (u).
It remains to bound |a||e2((0,,);2). The triangle inequality yields [[a™|; < L|n™ — "7t +
%Hn"HL +|¥" ¢ Since A is time-independent, we have 9;IT (u) = II} (dyu). This implies that ™ —
= [, Om(u( = [, n(0u(t))dt, so that [|n" — 7"~ |r < 7[n(0u)| oz, ) Moreover,
we have |0 < Hn( )HCU (Foil)- Invoklng again the approximation property (77 17), we obtain

L = e + S < e (2) 2053 (il o s, ey + loloog, o))

Moreover, since u € C2?(J; L), we have |[¢"| < T|0uullc2(7,,r)- Using that [lar|lezo,t.);) <

t,%l max,,c(1:n} [[@™ ]|z, the above two bounds give
1 1 n B % k+1 n
pHlar oy < e (tap)? (rei(w) + (2) e (w). (77.20)

The assertion is obtained by putting everything together and using e > 1. This completes the
proof. O

77.3.3 Error estimate in the graph norm

Let us set ||UTH§2((0,tn);V>) = Y me(iin) rllv™ 3, for all v, = (V")nen, € (Vi)Y and all n € ..
We now derive an error estimate in the ||-[|,2(s,v,)-norm. This allows us to gain some control on
the error on the spatial derivatives.

Theorem 77.5 ((2(J;V,)-error estimate). Let u solve (77.1) and let up, solve (77.10). Assume
that w € C3(J; L) N CY(J; H**1(D;C™)) and f € C?(J; L). Let e; = (u(ty) — u})nen, € (Vi)V
There is ¢ s.t. for all h € H N (0, pf], all T € (0, ip], and all n € N,

-

12t

lerlloimms) < ¢ ()2 €5 (p7és (u) + (pB) B R+ (u)), (77.21)

with & (u) = £"¢} (u) + (tnp) 3 e ?(A(}L)) & (u) = "5 (u) + (tap) 25 (Dpu), ¢4 (), c5(-) defined in
Theorem T7.4, and £™ := max( e 1)z,

Proof. Proceeding as in the proof of Lemma 58.2, one can show that there is § > 0 such that for
all h € H,

—1
inf  sup lan (v, wn) + p~ (v, wh) |

>6>0. (77.22)
Vh€Vh w;, eV, thHVwahHVb

The main idea to establish an ¢2(.J;Vj)-error estimate is to invoke the inf-sup condition (77.22),
but to do so we first have to derive an estimate on the time derivative of the error.

(1) Recall that e} := u? — II# (u(t,)) and 7™ := n(u(t,)) for all n € N, with n(t) := n(u(t)). For
any time sequence (v}!), . € (Va)VT, we set Dot := L(vp — o~ ") for all n € N;. We infer
from (77.13) that for all n € {2: N},

(DT/U’Z - DTu2717 wh)L + Tah(DTuZ7wh) = T(DTfnu wh)L7

for all wy, € Vj,. Moreover, taking the time derivative of the time-dependent Friedrichs’ system
leads to

(8tu(tn) — 8tu(tn71), 'LUh)L + T(A(atu(tn)), wh)L = T(DTfn + ”y", wh)L,
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with 4" =1 fJn (9(t)—g(tn))dt and g := Opu—0.f = A(Oyu). Let us set €} := Druy —II} (Oru(ty))
and " := n(dyu(ty,)) for all n € N;. Proceeding as in the proof of Theorem 77.4, we infer that

2ty . 1, 1 1 1.
léqlle < ce (Ilehlle + (tap)ret (A(w) + (tap) ¥ (2) A5+ g (u)).
Moreover, we have (see Exercise 77.2 for the proof)

lebllz < e (rebu) + (2)*hF+E e (w)). (77.23)

1
Letting énr = (€} )nen, and since |[énr|le2((0,t,):0) < B2 MaXpeq1:ny |67 L, the above two bounds
imply that

. 1 2tn 1.
P lens ooy < o (tnp)2e’ (7(ch () + (tup) 2t (Aw)))

() HHRE (ch(w) + (tap) e (Or) ).

(2) Combining the inf-sup condition (77.22) with (77.19) yields for all n € N,
n i n N —1.n
0 llenllv, < p2 (lla”llz + lénllz) + o2 llenllz,

which implies that [[enr|¢2((0,00):v) < €0 (lar o206 ):2) + énrlle2(0,00):0)) + 0~ lenr le2(0,60:1)-
We use the bound (77.20) on pz ||, lle2((0,¢,,);1) already established in the proof of Theorem 77.4 and
the bound on p%||éh7|\gz((07tn);L) established in Step (1). Since c}(u) < cf(u) and ci(u) < ¢4 (u),
this gives

2tn

lenrllezonsvsy < e (tap) e (T(ci(u) + (tup) bt (A(w))

1 1.0 in n 3 m
+ (22 (5 () + (tap) F 5 () ) + (%) a2
Finally, |le}*||r is bounded using Theorem 77.4. The assertion follows from the triangle inequality
and the approximation property (77.17). O

Remark 77.6 (Literature). The material is adapted from Johnson et al. [201], Guermond
[149], Burman and Ferndndez [66]. The higher-order discretization by means of the discontin-

uous Galerkin method in time is analyzed in Ern and Schieweck [122]. Space-time discontinuous
Galerkin methods have been studied by Monk and Richter [228]. O

Remark 77.7 (Singular perturbation). The above theory can be adapted to solve the time-
dependent version of problems like the advection-diffusion problem investigated in Chapter 61, that
is, Opu + B(u) = f with B:= A+ D : X C Vj — X', where A : Vj; — L is a maximal monotone
(first-order) differential operator and D : X — X’ is a coercive second-order differential operator
with X C Vo C L= L' C Vj C X’ (think of X := H}(D) and X’ = H~!(D)). The coercivity of D
(with £ := 1) implies that the evolution equation is parabolic in the sense of Definition 65.3. Let
Ay = infoex (D(v),w)x: x/||v||x. Let {Xp}nen be some X-conforming approximation sequence
for X. The approximation theory from Chapter 67 to Chapter 70 fully applies if the Peclet number
Pe := ﬁ—ff is O(1) (see Chapter 61 and (61.8)). But the coercivity is not strong enough to guarantee
that the Galerkin approximation is satisfactory if Pe > 1, since one essentially has B ~ A in this
case. The stabilization theory presented above can be applied to this problem. The time-stepping
can be done, e.g., using the implicit Runge-Kutta (IRK) schemes from §69.2.4 and §70.1.3, see
Exercise 77.3. We refer the reader to Guermond [149], Burman and Ferndndez [66], Burman and
Ern [64] for further developments; see also Exercise 77.1. O
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Exercises

Exercise 77.1 (Implicit advection-diffusion). Consider the 1D equation pdiu+ 0, u—vdyu =
fin D:=(0,1),t >0, where p € R, B € R, v € Ry, f € L?(D), boundary conditions u(0) = 0,
u(1) = 0, and initial data uwgp = 0. Let 7T; be the mesh composed of the cells [ih, (i + 1)h],
i € {0:I}, with uniform meshsize h = ﬁ Let Vi, == PPo(Tn) be the finite element space
composed of continuous piecewise linear functions that are zero at 0 and at 1 (see (19.37)). Let
(@i)ieq1:1y be the global Lagrange shape functions associated with the nodes z; := ih for all
i€ {1:I}. (i) Write the fully discrete version of the problem in V}, using the implicit Euler time-
stepping scheme. Denote the time step by 7 and the discrete time nodes by ¢, = nr for all
n € N;. (ii) Prove a stability estimate. (Hint: consider the test function 27u} and introduce the
Poincaré-Steklov constant Cps s.t. Crsl|v]|2(py < £p||02v]|12(py for all v € Hg(D).) (iii) Letting
up = Zie{l:l} Urg; and F; := + Jp feida for all i € {1:1}, write the linear system solved by the

vector U™ := (U})icq1. 13- (iv) Prove that max;eq. ) Uf < ﬁmaxie{lzl} Fi + max;cqi.y U?_l if

v > |flh and 7 > 3(2%’% (Hint: consider the index j € {1:1} s.t. U} = max;eqy. 1y UT)
Exercise 77.2 (Bound on |é}||1). Prove (77.23). (Hint: use that ¢ =0 and test (77.19) with
n =1 against wy, := e},.)

Exercise 77.3 (IRK for advection-diffusion). Consider the advection-diffusion problem from
Remark 77.7. Write the time-stepping process in functional and algebraic form using the IRK
formalism from §69.2.4 and §70.1.3.

Exercise 77.4 (Implicit Euler, analysis using Py, ). The objective of this exercise is to derive
an (°°(J; L)-error estimate for the implicit Euler scheme by using the operator Py, instead of the
operator 11> as was done in §77.3. We assume that 7 < ip. (i) Counsider the following scheme:
Given uf) € L, one obtains u} € V, for all n € N by solving

(upp — up ™ wn) L+ Tan (ul, wy) = 7" (wy), Ywy, € Vi,

with ¢" € V. Set ¢, := (¢")nen, € (V/)Y and H(bT”%%(O,tn);V,;b) = Zme{lzn}T”QbmH%/};b with
16™ vy, = 5Py, ev;, Gl and the norm ||y, is defined as [ully, = p~"|oll3 + [lellms (this
is the definition used in the proof of Theorem 76.19; it differs from (77.16)). Show that for all
n e NT,

n 20, 0

luplle < e (lunlle + o leo.e)vr,))-
(Hint: adapt the proof of Lemma 77.2.) (ii) Let el := uj =Py, (u(t,)) and ™ := Py, (u(tn))—u(tn)
for all n € N.. Prove that (e}l — ez_l,wh)L + Tap (e}, wpy) = —7¢"(wy,) for all wy, € Vj,, with
¢ e Vy st
¢"(wn) = (" + K(n") = Xn", wn) L + sn(Py;, (u(tn)), wn)
1
+ 5((MBP + N)n"™, wn) oy — (0", A1 (wn)) L,

and ™ = %fJn (Opu(t) — Owu(ty))dt € L. (Hint: see (76.27).) (iii) Let w solve (77.1) and let wuy,,
solve (77.10). Assume that u € C?(J; L) N C°(J; H**1(D;C™)). Prove that there is ¢ s.t. for all
heH,al7T>0,and all n € N,

lultn) = uille < e’ (r(ota) ber(tniw) + (b + (L) max(pf, ) A5 ) e (tas ),
with ¢ (tn;u) = ||0sullcoo,e,);2) and ca(tn;u) = |u|co(o.t,);m4+1 (psemyy- (Hint: see the proof of
Theorem 76.19 and use Step (i).)



Chapter 78

Explicit time discretization

In this chapter, we continue our investigation on the time approximation of the semi-discrete

problem (77.8), i.e.,
{Find un € C*(J; Vi) s.t. up(0) = Py, (ug) and (78.1)

3tuh(t) =+ Ah(uh(t)) = fh(t), YVt € j,

where the setting for the space discretization is described in §77.1. We first discuss generic proper-
ties of explicit Runge—Kutta schemes (ERK). Then we analyze the explicit Euler scheme, second-
order two-stage ERK schemes, and third-order three-stage ERK schemes. The key advantage
of explicit schemes over implicit schemes is that the linear algebra at each time step is greatly
simplified since one has to invert only the mass matrix. However, the stability of ERK schemes
requires that the time step 7 be limited by a CFL condition of the form 7 < X\g7,(h) with the

time scale 7, (h) := (%)’Ypl”y for some real numbers \g > 0 and v > 1 (the time scale p is defined

in (77.3)). For v := 1, this condition takes the usual form 7 < /\0%. The acronym CFL stands

for Courant—Friedrichs—Levy. The nondimensional number % has been introduced in the context
of the approximation of the wave equation in [91, §I1.2, p. 61] (see also [92, §I1.2, p. 228] for the
English translation).

78.1 Explicit Runge—Kutta (ERK) schemes

We start by reviewing generic properties of explicit Runge—Kutta schemes.

78.1.1 Butcher tableau

Just like IRK methods introduced in §69.2.4 and §70.1.3, s-stage ERK methods, s > 1, are char-
acterized by their Butcher coefficients {ai;}; je{1:s}, {0i}icf1:s}> {Ci}icf1:5}- Recall that the time
discretization of (78.1) by any RK scheme, whether implicit or explicit, is as follows. One first
sets _u% := Py, (uo), then for all n € N; one sets t, ; := t,—1 + ¢;7 for all j € {1:s} and seeks
{up"}ieqr:sy C Vi by solving the following system of equations:

upt —up =1 > ag (faltay) — An(up?)), Vi€ {l:s). (78.2)
je{l:s}
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Finally, the update at the time t,, is obtained by setting
up =y T > b (faltng) — An(up?)). (78.3)
je{l:s}

The key difference between implicit and explicit RK schemes is that the Butcher matrix a of an
explicit scheme is strictly lower triangular, so that the Butcher tableau becomes (compare with
(69.21))

c1| O
co a0
(78.4)
Cs |asy -+ ass—1 0
| by -+ be1 by

- up ' =0, and for all 4 > 2 the summation in (78.2) can be restricted

to j € {1:i—1}. Hence, uZZ can be explicitly evaluated in terms of the previously computed values
{uZ"J}je{l;i_l} for all ¢ S {28}

Recalling the mass matrix M € C/*! and the stiffness matrix A € C'*! introduced in §77.1.2,
the algebraic realization of (78.1) is MJ,U(t) + . AU(t) = F(t) (see (77.9)), which we rewrite as

oU) = AU() + F(t), A:=—-M"TA,  F(t):= M 'F(¢). (78.5)
The algebraic realization of (78.2)-(78.3) is then

As a result, we have u}’

uni _yn-1 — o, Z ai; (AU"’j + |~:w’)7 Vi e {1:s}, (78.6a)
je{l:s}

Un:=urt4r Z b; (AU"’j + IE"’j). (78.6b)
je{l:s}

where F™7 € C! is the coordinate vector of fy,(t, ;) in the basis {witicqr: 1y of Vi, UmJ e C! that
of uj?, and U™ € C that of u}.

An equivalent way to proceed, which is often used in the literature, consists of introducing the
discrete time derivative K™ := A(U™) 4 F(t, ;) for all i € {1:s}. Then one proceeds as follows at
each time step for ERK schemes. One first sets U™! := U~ and K™! := AU""! 4 F(t,1), then
for all ¢ > 2 one computes

K j\(unfl +r Y ainn’j) L E (78.7)
je{l:i-1}
and the update at time ¢, is U™ := U"~! + sze{lzs} biK™.

78.1.2 Examples

Examples of ERK schemes are the first-order one-stage Euler method, the second-order two-stage
Heun scheme, the midpoint rule, and the third-order three-stage Heun scheme. The Butcher
tableaux for these four methods are shown here from left to right, respectively:

010
olo 00 0]0 1
. 111 0 513 0 Sl 2 o (78.8)
1 1 3 3
3 32 0 1 Ty @
4 4
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Example 78.1 (Explicit Euler). One computes the discrete time derivative K™1! := Aun—t 4
Fr—1 with tp,1 = ty—1 and sets U™ := un—1 4 7K1, [l

Example 78.2 (Second-order Heun). One computes the discrete time derivatives K; :=
AU + Bl and Ky := AU + 7Ky) + F™2 with ¢, 1 = t,—1 and t, 2 := t,, and one sets
Um:= U1+ 1r(Ky + Ky). O

Example 78.3 (Midpoint rule). One computes the discrete time derivatives K; := Aun—t 4 frol
and Ky := AU + %TKl) + F2 with t,1 = t,—1 and tp0 == t,—1 + %T, and one sets U™ :=
Uni1 + TKQ.

O

Example 78.4 (Third-order Heun). One computes the discrete velocities Ky := AUn—t g Frl,
K2 = A(Un—l + %TKl) + Fn,27 K3 = A(Un_l + %TKQ) + Fn’3 with tn71 = tnfl, tn72 = tn,1 + %7’,
and t,,3 = tp_1 + %T, and one sets U™ := U1 4+ %T(Kl + 3K3). O

78.1.3 Order conditions

Let 9,U(t) = L(t, U(t)) be some nonlinear ODE system in C!. For instance, we have L(t, V) := AV+
F(t) for the semi-discrete time-dependent Friedrichs’ system. Let n € N, set U1 := U(t,_1),
and consider any RK scheme (whether implicit or explicit) to step from U"~! to U". Assuming that
U € C*(J;CT), we call truncation error at t,, of the RK scheme the quantity U(t,,)—U™. If the local
truncation error is O(7P*1) in some norm, then the method is said to be of order p (here the precise
definition of the norm does not matter since C! is finite-dimensional and, for the time being, we
are not concerned about the size of the constant multiplying 7771). The Butcher coefficients must
satisfy algebraic relations to guarantee the order of the method. The following order conditions
were established in [77, Thm. 7] and are often called Butcher’s simplifying assumptions in the ODE
literature; see also Hairer et al. [176, §I1.7, Thm. 7.4], [175, §IV.5, Thm. 5.1], and Exercises 70.3
and 78.2.

Theorem 78.5 (Butcher). Consider an s-stage RK method with Butcher coefficients {ai;}; je{1: s},
{bj}jeri:sy, {¢itjeqi:sy- A sufficient condition for the method to be of order p > 1 is that there
exist n,¢ € N with p < min(2(1 +n),1 4+ n+ ¢) such that the following is satisfied:

1

> bttt =2, Vg € {1:p}, (78.9a)
je{l:s} q
g

Z aijcg-*l = C—Z, Vi e {1:s}, Vg € {1L:n}, (78.9b)
je{l:s} q
_ b

> bl lay =21 —¢f), Vje{lis}, Vg€ {1:(}. (78.9¢)
ie{l:s} q

By convention, (78.9b) is empty if n =0 and (78.9¢) is empty if ¢ = 0.

The reader is invited to verify that p = 1, n = 1, ( = 0 for both the explicit and the implicit
Euler schemes, p = 2, n = 1, ( = 1 for the two-stage Heun scheme, p = 2, n = 1, ( = 0 for the
midpoint rule, and p = 3, n = 1, { = 0 for three-stage Heun scheme (notice that p > 1+n+ ( in
this case).

Remark 78.6 (Coefficients {c;};cf1:53)- Whenever > 1 (78.9b) with ¢ := 1 gives ¢; =
Zje{l:s} a;j for all i € {1:s}. This implies that ¢; = 0 for ERK schemes s.t. > 1 in (78.9b).
Note that a1 := 0, by := 1 with any ¢; € (0,1] is a legitimate 1-stage ERK scheme for which



258 Chapter 78. Explicit time discretization

n = 0. For simplicity, and as usually done in the literature, we henceforth assume that ¢; € [0, 1]
for all i € {1:s}, and we take ¢; := 0 unless stated otherwise. O

Lemma 78.7 (Necessary order conditions). Consider an s-stage RK method with Butcher
coefficients {aij}ijeqi:sy, 10j}ieq1:s1, 1¢itjeq1:sy- A necessary condition for the scheme to be of
order p > 1 is

(¢ —1)!
Z bjy Qs - - - Qjp_yj, gT ! m, (78.10)

Ji,--njr€{l:s}
for all v € {1:p} and all ¢ € {1:p—r+1}, where we use the convention jrjy - - QG g = 1 if
r = 1. Moreover, when applied to any linear system of the form 8,U = AU + F, the condition
(78.10) is also sufficient to guarantee that the scheme is of order p.

Proof. (1) By linearity, U solves 0;U = AU + F with U(tn) = U" 1 iff U = Uy 4 Uy where U,
solves 9;U; = AU; with Ui(tn,—1) = U1 and 0Uy = AU2 + F with Us(tn—1) = 0. Hence, an
RK scheme is of order p for the solution of 9;U = AU + F with U(tn—1) = Un~1iff it is of order
p for the solution of 9;U; = AU, with Ui(t,—1) = U1 and it is of order p for the solution of
0Uy = AUQ + F with Ug(tnfl) =0.

(2) Let us prove that the condition (78.10) with ¢ := 1 is necessary and sufficient to have a scheme
of order p for the linear system 9,U = AU, 1e , letting U™ be the update produced by the RK
scheme, we need to show that U" =3° 1 % z ATU"_1 + O(rPTh) iff

1
Z bjlajlj2 RPN S ﬁ, Vr € {1p} (7811)
J1seensgr€{1:s} ’

To prove this claim, we replace the values of U™ repeatedly p times. Since A does not depend on
time and the matrix-vector multiplication is linear, this process gives

Ur=urt4r > b, AU

jr1e{l:s}
= Un_1 + 7 Z bjl./IUn_l + 7'2 Z bjl Cle_’j2A2Un’j2
jie{l:s} Ji,j2€{1:s}

=yt Z 7" Z bjlajlj2 .. .ajrfleATUnil
re{l:p} j1;~~~7j7‘6{1:5}
+ Tp+1 Z le Ajyjo - - Ajpiipin Ap+1Un7jp+l . (7812)

Jiyesdpr1€{1: 8}

The last term in the above identity is O(7P*!). Hence, (78.11) are necessary conditions to get the
order p (they are also sufficient for the linear ODE under consideration). Notice in passing that
the term O(7PT1) is zero for explicit methods with s = p stages (see Remark 78.10(i)).

(3) Tt remains to consider the system 8;U = AU + F with U(t,,_;) = 0. The Taylor expansion of
U(t,) up to the order p gives U(t,) = 7Gp(tn—1) + O(7PT!) with

r—1

Gy(t) = > TT, S AR, (78.13)

re{l:p}  q€{l:ir}

The above sum can be reorganized as follows:

—1

G = 3 A Y ﬁag—lﬁ(t).

re{l:p} ge{l:p—r+1}
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Moreover, proceeding as in Exercise 78.1(ii) by successive elimination of the intermediate stages,
we infer that the RK scheme leads to U" = 7G} + O(rP*1) with

CZ = Z (T.,Zl)r_l Z bj1 Qjrjo -+ Bjr_17, IN:n’jT. (7814)

re{l:p} Jise-njr€{l:s}

Writing the Taylor expansion of F™i up to the order (p — r) and equating the coefficients with
Gp(tn—1) leads to the assertion. O

Remark 78.8 (Theorem 78.5 vs. Lemma 78.7). (78.9a) is equivalent to (78.10) with r := 1.
Moreover, it is shown in Exercise 78.2 that if (78.9a) is met and (78.9b)—(78.9¢c) hold with p <
7+ ¢ + 1, then (78.10) holds for all » € {1:p} and all ¢ € {1:p—r+1}. O

Remark 78.9 (Minimal consistency requirement). The minimal consistency requirement to
have a first-order method is obtained by taking p := 1 in (78.10). Then r = 1, ¢ = 1, and this

gives 3. 05 = 1. O

Remark 78.10 (Consequences). (i) A consequence of (78.12) is that any ERK scheme of order
p = 1 with s = p stages is such that U" = 37 o ;—;ATU"*. Indeed, the O(7P*1) remainder
in (78.12) is necessarily zero (the only way a term in the sum is nonzero is if j1 > ja ... > jp+1, but
these inequalities cannot be satisfied since we have p + 1 indices in {1:s} and s = p). (ii) (78.10)
with r := 1 (or equivalently (78.9a)) is a necessary and sufficient condition to guarantee that an
RK scheme is of order p for the uncoupled ODE system 0;U = F. Indeed, in this case, the only
nonzero contribution to ég in (78.14) is obtained for r := 1; see also Exercise 78.1(ii). O

Example 78.11 (ERK schemes, p € {2,3}). Consider a p-th-order ERK scheme with s = p

stages. For p := 2, the relations are by + bs = 1, bicy + baco = %, and boas; = % For p := 3, the

relations are by +by+bs = 1, bycy +baco+bzes = %, blc%+bgc%+b3c§ = %, boasgy +bszaszy +bsaszs = %,

b2a2161 + b3a3161 + b3a3202 = %, and b3a32a21 = % The reader is invited to Verify that these
identities hold true for the second-order Heun scheme, the midpoint rule, and the third-order
Heun scheme. O

78.2 Explicit Euler scheme

The explicit Euler scheme is defined by the leftmost Butcher tableau in (78.8). It is the simplest
explicit Runge-Kutta method. First we set ul) := Py, (ug), then we obtain uy € V, for all n € N;
by solving

(up — uzfl,wh)L + Tah(uzfl,wh) = T(a"’l,wh)L, (78.15)

for all wy, € Vj,, with o™ := f(t,1) := f*~! € L (since t,, 1 := t,,_1 for the explicit Euler scheme).
The algebraic realization of (78.15) is

MU" = (M — AU 4 7P (78.16)

which only requires to invert the mass matrix at each time step (compare with (77.12)). The

difficulty with the explicit Euler scheme is that its stability requires a rather stringent condition on

the time step. More precisely, setting 7o (h) 1= (%)2;)*1, we introduce a positive (nondimensional)

number Ay and say that the 2-CFL condition is satisfied whenever 7 < Ag7a(h). Since all the
stability constants are going to be increasing functions of Ao, one should in practice pick A\g = O(1).
We perform the stability analysis using generic functions o™ € L. We set o, = (a™!),en, €

(L)N and consider the norm HaTH%((O_’tn)‘L) = Y me{1in) a2,



260 Chapter 78. Explicit time discretization

Lemma 78.12 (Stability). Let o € (L)N and let up, € (Vi)Y solve (78.15). For every Ao > 0,
there are c1,co (depending on Ag) s.t. the following holds for all h € HN(0, pB], all T € (0, Ao72(h)],
and all n € N7,

o o

il < e (bl + comllor e o)) (78.17)

Proof. We use the symbols ¢, c1, co to denote generic constants that may depend on Ao but are

uniform w.r.t. 7 and h and whose value can change at each occurrence. Consider the test function
wy, = uy}” ' in (78.15), take the real part, use the identity (u} — up™ ' up '), = L(u}|? —
a2 = 4jup — u} "2 and the lower bound (77.5) on the sesquilinear form aj. Dropping the

nonnegative term T|uZ_1 |3\/t s from the left-hand side and rearranging the terms, this gives
1 ni2 1 n—1y2 n—1y2 n,l , n—1 1 n n—1)2
§||uh||L_ gHuh 12 < =mMpllup (I + 7l(@™, ujy )L|+§”uh_uh -

Since |(a™, u} ™| < o™ llu) L < 2lla™ |2 + %Hu271||2L and since # A, < %, we infer
that

_ 27 .- _
luplly = llup =17 < ;IIUZ HIE + prlla™ 17 + lupy —up I

The novelty with respect to the implicit Euler scheme is the positive term [u} —u}~*||2 which we
need to bound. This is done by using the CFL restriction on the time step. Invoking an inverse
inequality and the bound |wp|ms < cﬁéh’%ﬂwhHL, using that h < pf by assumption, we infer
that |an(vn, wn)| < eBh™|vp| LllwnlL for all vy, w, € Vi, where ¢ depends on the constant &
defined in (77.6). Using (78.15), we obtain

|y =y~ wn) 2] < er gl lnllwnllz + 7lla™ |z llwnl| -

Hence, we have
2
g — g < err el + ear® a2,
For the first term on the right-hand side, we invoke the 2-CFL condition which implies that
2
725—2 < )\0%. For the second term, we use the bound 7 < Agp, which results from the 2-CFL

condition and the assumption h < Bp. This gives [[u} —u} |2 < 01%Hu2_1||2L + copt|la™3.
Putting everything together, we obtain

2 —1y2 Ty, n—=12 12

lupllz = llup ™1z < 01;||UZ IZ + caprlla™ (L.
We conclude by induction using that 1 + v < e with v := 01%. O
Remark 78.13 (CFL condition, error estimate). In general, the CFL condition 7 < Ag72(h)
is too stringent to be useful in practice since the upper bound is quadratic with respect to the
meshsize. Nevertheless, assuming that the solution to (76.6) is smooth enough, it is possible to

proceed as in §78.3 and show that there are ¢, ¢’ s.t. for all h € HN (0, pg], all 7 € (0, A\o72(h)], and
all n € N,

lu(tn) = wille < €% (7(tap) e} (u) + (max(ta, p)8) *A* e (),

with ¢f'(u) == [|07ul|co(o,t,);2) and ¢ (u) = |ul|co((o,t,];mr+1). The same estimate can be obtained
for any Butcher coefficient ¢; € [0, 1]. O
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Remark 78.14 (Variants). The stability of the explicit Euler scheme can be obtained under the
usual CFL condition 7 < )\Oﬁ if some first-order linear stabilization is introduced. In this case, the
accuracy in space reduces to O(h) at best (see Exercise 78.4). It is shown in Bonito et al. [38] that
high-order accuracy in space can be preserved under the usual CFL condition if the stabilization
is nonlinear, i.e., the dependence on uz_l is nonlinear. Moreover, it is shown in Exercise 78.5 that
the explicit Euler scheme with mass lumping and without linear stabilization is unconditionally

unstable, i.e., no time step restriction can make the method stable in any reasonable sense. O

78.3 Second-order two-stage ERK schemes

The goal of this section is to establish an £°°(.J; L)-error estimate for second-order two-stage ERK
schemes. Since there are many such schemes, we are going to study the stability of one represen-
tative scheme and then show that the error analysis is valid for all second-order two-stage ERK
schemes. The representative scheme we have in mind is as follows: Setting as usual u) := Py, (uo),
one builds two sequences up, == (U} )nen,. € (Vi)Y and ynr == (Y )nen,. € (Vi)Y so that for all
n € Ny and all wy, € Vj,,

n

(yh - U‘Zilvwh)L + Tah(uzila wh) = T(O‘nJ

s Wh)L, (78.18a)
2 w1, (78.18b)

(uh = 5y +up ™) wn)z + 37an(yp, wn) = 37(a™
with a™?! := f*=1 and a™? := =1 + 79, f"~1. Notice that (78.18) is not an ERK scheme since
the right-hand side of (78.18b) requires the evaluation of 9; f, whereas ERK schemes only sample
values of f in J,, (see Remark 78.6). The reason we specifically consider the scheme (78.18) is that
eliminating y;’ gives

up = (Iy, — TAL + %TQA,QL)(uﬁ_l) + 7Ga(tn—1), (78.19)

with Ga(tp—1) = n-l 4 %Tatf,’;_l — %TAh( ,7;_1). In other words, u} exactly reproduces the
second-order Taylor expansion of the semi-discrete solution up(t) at t, (see (78.30) and (78.13)
with p :=2).

Lemma 78.15 (ERK schemes, p = 2). Consider a second-order two-stage ERK scheme defined
by its Butcher coefficients {aij}; je{1:2}, 1bitie{1:2}, {Citieq1:2)- Let upr be the sequence approz-
imating (78.1) that is produced by this second-order two-stage ERK scheme. For all n € N,
set

TZ’2 =Py, (2b1f(tn1) + 2baf(tno) — 2/ — 70, " H). (78.20)

The following holds true: (i) up, is also the sequence produced by (78.18) with the data a™? replaced
by a™? == a™? + TZ’Q in (78.18b). (ii) There is c that only depends on {b;}ic(1:2} 5.t

12z < e 72108 oo, - (78.21)

Proof. (i) Let @y, be the sequence produced by (78.18) with a”? replaced by a2 := a™? + ">,
Owing to (78.19), we have

ap = (Iv, — 7Ap + 372 AD @Y + 7(Ga(tn—1) + 1777).
Moreover, eliminating the intermediate stage in the ERK scheme leads to

up = (Iy;, = TAp + 372 A7) (up ™) + 7 (bufa(tna) + bafu(tn2) = 57 AR ),
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where we used by + bs = 1, boag; = % (see Lemma 78.7). Recalling the definition of Ga(t,—1),

an induction argument shows that the sequences uj, and %y, coincide if TZ’2 = Py, (r™?) with
r™2 e L such that

212 = by f(tny) + baf(tno) — [ — 370 S

(i) Since ||r7"%(| < |72 1, it suffices to bound #™2. Using that by + by = 1, byci + bacy = i
(notice that altogether we used the three necessary order conditions from Lemma 78.7 for p := 2),
and f(ty ;) — f" ' —crofrt = ftt:i (tn,; — )0 f(t)dt for all j € {1:2} gives
tn,j
=) bj/ (tnj — t)Os f(t) dt.
jefii2y  in—r
Hence, (78.21) is satisfied with c only depending on {b;}c(1.2)- O

Example 78.16 (Heun scheme and midpoint rule). For the second-order Heun scheme, we
have r"™? := fm — fr=l — 79, f"=1 ie., Py, (a™?) := f7, whereas for the midpoint rule we have
2= 2(f(tn_1 + %7’) — Y —ro L e, Py, (@2) = 2fn(th—1 + %7’) — }?_1' O

The scheme (78.18) turns out to be conditionally stable. More precisely, setting 74,3(h) :=

4
(%) 3 p*% , the stability analysis will reveal that the stability constants depend on the ratio 7/7,/3(h).

To account for this phenomenon, we introduce a positive (nondimensional) number Ay and say that
the pair (7, h) satisfy the 4/3-CFL condition if

7 < AoTass(h). (78.22)

Since all the stability constants are going to be increasing functions on Ao, one should in practice
13

pick A\g = O(1). Notice that T% < (%)4)\6‘ when 7 < Ag7y/3(h), and that 74/3(h) < p when

h < pB. Hence, 7 < Agp when h < pf and 7 < Ag7y/3(h).

Lemma 78.17 (Stability, 4/3-CFL condition). Let ol := (a'"),en,, a2 = (a®™)nen,, both
in (L)Y, and let up, € (Vi)Y solve (78.18). For every Ao > 0, there are c1,co (depending on \o)
s.t. the following holds true for all h € H N (0, pB], all T € (0, XoT4/3(h)], and all n € N7,

2 tn 02 102 22
upllz < e (”uh”L +cap(llazllZz(o,t)in) + Har”é?«o,tn);m))' (78.23)
Proof. We use the symbols ¢, ¢1, ¢co to denote generic constants that may depend on Ag but are
uniform w.r.t. 7 and h and whose value can change at each occurrence. Taking wy := uzfl

in (78.18a) and vy, := 2y} in (78.18b), adding the two equations, taking the real part, using the
lower bound (77.5) on the sesquilinear form aj, and rearranging the terms, we infer that

il = lluh ™M 17+ rluh ™ s + 7lyi s < luh — vi 3

(= Mallg R+ e ] = Al + 10, i) l)-
Using the Cauchy-Schwarz inequality and since 2p=! — A, < p~!, we obtain

_ 1 _ 1
i1 = ™13 + 571~ s + 510R e < g — w13

+;(|Iuh A+ llyrliz) + 5 (™I + fla™21Z)-



Part XV. TIME-DEPENDENT FIRST-ORDER LINEAR PDES 263

We still need to bound ||uf — y7'[|2. Combining the two equations in (78.18) yields

1 1

(up — ypwn)L = 37(a™? — o™ wp) L — dran(yp — up wn),

for all w, € Vj. Let us denote by Tq(wp), Ta(wy,) the two terms on the right-hand side. The
Cauchy—Schwarz and the triangle inequality yield

[T1(wn)l < 57(lle™ L+ la™? ) ]lwallz-

Moreover, invoking an inverse inequality and since |wp|ms < ¢ B2h 2 ||wp || 1, we have ap (v, wp )| <
cBhop||Lljwn| L for all vy, wy € V3. This implies that

[Ta(wn)| < er i lyi —up ™l ellwn] -
Combining the bounds on ¥ (wy,) and Ta(wy) we infer that
2 —
lufy = ynllE < exm® Gzllyi = upHE + ear®(la™ |7 + la™2(12)-
Similar arguments using (78.18a) imply that
2
lyh = up =M E < e FxllupHIE + oo™ 7 (78.24)
Using that T% < )Xo, the above two bounds give
4
lupy = yilZ < e fxllup~HIE + co? (o™ 13 + lla™ ).

We can now invoke the 4/3-CFL condition (78.22) which yields 7'45—2 < ZXg- Putting everything
together, recalling that our assumptions imply 7 < Agp, and dropping the seminorms on the
left-hand side we obtain

_ T _
I = 17 < ﬁ;(llu;i HZ A+ lilz) + carp(lla™ T + lla™2|17).

Since ||lypllr < luf n + lyp —up iz < elluf ™z + cam?|la™ ||z (owing to (78.24) and T% <

3
A¢ ), and using 7 < Agp, we obtain
— T —
lully = [l =17 < Cl;I\UZ HZ +carp(lla™HE + lla™?12).
We conclude by induction using that 1+ v < e” with v := 01%. O

We can now derive an error estimate in the £>°(.J; L)-norm for any second-order two-stage ERK
scheme.

Theorem 78.18 (¢*°(J;L)-error estimate). Let u solve (76.6). Assume u € C3(J;L) N
CY(J; H*Y(D;C™)) and f € C*(J;L). Let up, be given by any second-order two-stage ERK
scheme. For every Ao > 0, there are c,c’ s.t. for all h € H N (0,pB], all T € (0, X\o7a/3(h)], and all
n e ./\/7-,

4 (bnB)E R (0) + (pg)%hmécg(u)), (78.25)

with i (u) = [|07ullco(o,t,):0)s €5 (W) = 3 cr0.1y PO Ul co((0,,):041)s €5 (u) = [u(ty)|grsr, and
dy = (|0 fllcoo,t,):1)-
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Proof. (1) We draw the attention of the reader on two points concerning the way the error equations
are constructed. First, since we only want to estimate the error on the end-of-stage update u}
and not that on the intermediate stages of the ERK scheme, we invoke Lemma 78.15 and consider
that the sequence uy,, is produced by the scheme (78.18) with a™?! := f*~! and a™? := f*~! +
70 f* + 7% where 7)°* € Vj, is defined in (78.20) and satisfies |1}, < chHattfHCO(jn;L)
(see (78.21)). Second we realize that if we are not careful and write the error equation for the
first step (78.18a) like we would for the explicit or implicit forward Euler scheme, the consistency
error would scale like O(7), and the global error would then be O(7) owing to (78.23). To avoid
this difficulty, we define y(t) := u(t) + 70;u(t), and we compare u}} with II} (u(t,)) and y; with
113 (y(ty,)) for all n € Ny, where II2 is the approximation operator introduced in (77.15). We set

en = uy — I (u(tn)), n" =1, (u(tn)) — ultn),
2y =y — I (y(tn)), "= (y(t) — y(ta)-
(2) We are now ready to derive the error equations. We observe that y(t,—1)—u(t,—1) = 70:u(t,—1)
which gives
(Y(tn—1) = u(tu-1),wn)r + 7(A(u(tn-1)),wn)z = 7(f" ', wn)z,

for all wy, € Vj,. Subtracting this equation from (78.18a) gives
(zn — e wn)r + 7(an(up ™ wa) = (A(u(tn=1)),wn)r) = ("~ = 0", w)L.
Since the definition of ITj; implies that (A(u(tn,—1)), wn)r) = p~ (0", wn) L+an (T} (u(tn—1)), ws) L,
rearranging the terms we obtain
(zp — ez_l, wp) L + Tah(ez_l, wp) = T(ﬁ"’l,wh)L,

with gl = —l(n"—n"_l)—i—%n"_l. Moreover, since 0yy(tn—1)+ A(y(t,— )) = f(tn-1)+7f(tn-1),

and u(tn) — 2(y(tn) + u(tn_1)) = 7Oy(tn—1) + ZY", with ¢" := 1 fJ — 1)20u(t)dt, a direct
calculation (see Exercise 78.6) shows that for all wy, € Vj,,

(u(tn) — 2(y(tn-1) + ulta-1)),wn)r + S7(AW(Ea-1)), wa)rL
Lr((W™ wp)n + (f" 70 wp)r). (78.26)

Subtracting this equation from (78.18b) with a™? := f*~! 4 79, "1 + TZ’Q, and reasoning as
above gives

(ef — (21 +ep D wn) L + Tan(z), wy) = 27(B™% wp) L,
with 872 = 10" = 2(0" — 5"+ 0" 1) + 5ry — U
(3) We now invoke the approximation property (77.17) of II;;. The inequality [|8™(|, < L[n"
"L+ %Hn”HL implies that

18" e < e (5 )RR ),

with x5 (u) := [ulcoz, . gr+1) + POl o7, prsr)- We proceed similarly to bound ||™?||1. Us-
ing that ¢((¢) = n(t) + 78,577() for all t € J, we obtain —||C"HL < c( )2 it 2(|ulgog, ey +
T|8tu|CO(Jn mr1y) < c( )2 hk+2x (u) since our assumptions imply that 7 < A\gp. Moreover, since

" —1m gt = %(77” — ") = 290" and T < Agp, we infer that

— i 1
H%(H" _ %(Cn + " 1))HL < cp(%) 2 pk+s |atu|cf)(7n;H’“+l)'
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Finally, setting x7 (u, f) = HaguHcﬂ(jn;L) + ||at2f||00(7n;[,)7 we have ||7°Z"2 + "L < em?x7(u, f).
Altogether this yields

18720 < e (722w, )+ (£) PR g ()

The error estimate follows from Lemma 78.17 with ™% in lieu of o™ for all i € {1:2}, the
triangle inequality, the approximation property (77.17), max,,cf1:n} X7'(u, f) < cf (u) + d7(f),
and maX,,e(1:n} X5 (1) = 5 (u). O

Remark 78.19 (Literature). The convergence for linear H!-conforming finite elements in the
scalar case was analyzed in Ying [288] under the 4/3-CFL condition (78.22). The general case
concerning the order of the spatial discretization was treated in Zhang and Shu [292] for scalar
equations discretized using discontinuous finite elements and in Burman et al. [74] for Friedrichs’
systems discretized using either stabilized H'-conforming or discontinuous finite elements. The
material in this section is based on [74, Lem. 3.2 & Thm. 3.1]. Moreover, it is shown in [292, 74]
that in the case of linear elements, i.e., k = 1, the same stability and convergence results hold
true under the usual CFL condition T% < Ao with Ag > 0 small enough; see, e.g., [74, Thm. 3.2].
Finally, the ¢£>°(.J; L)-error estimate can also be established by deriving the error equations using
the L-orthogonal projection Py, instead of IT) (recall that (75, )nen is quasi-uniform). In this case,

the regularity assumption on the solution is v € C3(.J; L) ﬂ;zo Ce(J; H-1=9(D;C™)). O

Remark 78.20 (4/3-CFL condition). The 4/3-CFL condition (78.22) is not very restrictive
when used with finite elements of degree k > 2. Indeed, since the RK2 scheme is second order in
time, the time discretization error converges essentially as O(h%), whereas the space discretization
error converges as (’)(hk*%). Thus, if £ = 2, both sources of error are almost equilibrated asymp-
totically, whereas for k > 3, a stronger restriction on the time step is needed to equilibrate the
time and space errors. O

78.4 Third-order three-stage ERK schemes

The convergence analysis for third-order three-stage ERK schemes proceeds as for second-order
two-stage ERK schemes. The representative scheme we consider is as follows: Setting as usual
u) = Py, (up), one builds three sequences up, = (uf)nen, € Vi)™, ynr == UM )nen, € Vi)V,
and zpr == (20)nen;, € (Vi)Y so that the following holds true for all n € N; and all wy, € Vj:

(it —uf ™ wp) + Tap(u) "t wy) = T(a™ wy) g, (78.27a)

(21 = 5(uh +up ™), wn)z + 37an(yy, wn) = 37(a™? wa)z, (78.27b)

(up — %(2}} +yp+ uzfl), wr) L + %Tah(z;f, wp) = %T(a ,Wh) L (78.27¢)

n,3

with o™t = =1 a2 = =1 4 79, " ! and a™3 := f" 1 4+ 70, "1 + %7’28ttf”71.
Lemma 78.21 (ERK schemes, p = 3). Consider a third-order three-stage ERK scheme defined
by its Butcher coefficients {aij}; je(1:3}, {bitie(1:3}, {Citieq1:3). Let upr be the sequence approz-
imating (78.1) that is produced by this third-order three-stage ERK scheme. For all n € N, set
TZ’?’ = 3(Pv, (T?’?’) — 7Ap(Py, (r;lg))) with

PP = by f (1) + baf(tn2) + bafltns) — 71 — 7O = AP0

3 = (byagy + bzasy) f(tn.1) + bsasaf(tno) — 1t - %Tatfn_l-
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The following holds true: (i) up, is also the sequence produced by (78.27) with the data o™ replaced
by @3 == o™ + "% in (78.27c). (i) There is ¢ that only depends on {aij}ijeqi:sy, {bitieqa:s
s.t.

)3
[

1
b < e (198 flleoisny + 5190 lleoi,omm)- (78.28)
Proof. See Exercise 78.7. O

The main difference between RK2 and RK3 is that the stability for the scheme (78.27) can be
established under the usual CFL condition 7 < Ag71(h) with 7 (h) = %, ie, 7 < /\0%, provided
Ao is chosen small enough (see Burman et al. [74, Eq. (4.18)]). For brevity, we skip the stability
result (see [74, Lem. 4.3]) and just state the £>°(.J; L)-error estimate.

Theorem 78.22 (¢>°(J;L)-error estimate). Let u solve (76.6). Assume u € C*(J;L) N
C?(J; H*Y(D;C™)) and f € C3(J; L) N C?(J; HY(D;C™)). Let un, be given by any third-order
three-stage ERK scheme. There exists A\g > 0 and there are c,c, s.t. for all h € H N (0, pS], all
7 € (0, X071 (h))], and all n € N,

lutta) = uille < ¢ €% (7 (tnp) (¢ () + ()

+ () ERME D (u) + (pﬂ)%thr%cg'(u)), (78.29)

with ¢} (u) == [|0fullco(o,t,1:0)s €5 (W) = X peqo. 2y PUOTUlCO (0., 741), 5 (w) = [u(tn)|prsr, and
(f) defined in Lemma 78.21.

Proof. See Burman et al. [74, Thm. 4.1] for time-dependent Friedrichs’ systems discretized using
either stabilized H!'-conforming or discontinuous finite elements. See also Zhang and Shu [293,
Thm. 5.1] for nonlinear scalar conservation laws, discontinuous finite elements, and the SSPRK(3,3)
scheme. O

Exercises

Exercise 78.1 (Order conditions). (i) Consider the linear ODE system d,U = AU + F. Let
p > 1. Prove that

Ut) = > %A’“U(tn_l)+TGp(tn_1)+O(TP“), (78.30)
re{0:p} ’

with G, defined in (78.13). (Hint: verify that 9;/U = A"U + ®,(F) for all r > 1, with ®,.(F) :=
Doge{iir) Ar=9997F.) (i) Let F € C°°(J;C’). Consider the uncoupled ODE system 8;U = F(¢).
Let U1 := U(t,_1). Let U™ be given by the RK scheme. Show that a necessary and sufficient
condition for U(t,) — U™ = O(7P*1) is (78.10) with r := 1. (Hint: write a Taylor expansion of
order (p — 1) of F(t, ;) for all j € {1:s}.)

Exercise 78.2 (Condition (78.10)). (i) Show that if (78.9a) holds true, then Zje{l;s} bi(1—

cj)me} = % for all myn € N st. m+n < p—1. (Hint: recall that (1 + z)™ =

Zre{o:m} (™M), ﬁ = fol "l dz, and fol(l —x)mz"dx = %) (ii) Show that if (78.9a)

and (78.9¢) hold true, then Y,c ;. bi(1 — i)™ Lay; = Z(1 — ¢;)™ for all j € {1:s} and all
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m € {1:¢}. (iii) Prove that (78.10) is met for ¢ := 1 if (78.9a) and (78.9b) hold with n :=p — 1.
(Hint: show that 3. . o jrjs - Qj_yj, = ﬁcgfl for all » € {2:p}.) (iv) Prove that
(78.10) is met for ¢ := 1 if (78.9a) and (78.9¢) hold with ¢ := p — 1. (v) Show that (78.10) with
q :=11is met for all » € {1:p} if (78.9a) holds and (78.9b) and (78.9¢) hold with n+{+ 1 = p (vi)
Show that (78.10) is met for all » € {1:p} and all ¢ € {1:p —r + 1} if (78.9a) holds and (78.9Db)

and (78.9¢) hold with p < n+ ¢ + 1.

Exercise 78.3 (Explicit Euler). Revisit the proof of Lemma 78.12 by using the test function

wp, = uj instead of wy, := u’,;*l and assuming that 7 < min(Ag72(h) where w =

1
' 2 1+)\pow2)
%SUPyh,whth % (Hint: use that ah(uz_l,u’,;) = ap(ul,uy) + ah(uz_l —up,uy).)
Exercise 78.4 (First-order viscosity). Let (-, )y be a semidefinite Hermitian sesquilinear form
in V and let |-|y be the associated seminorm. Assume that R((A(v),v)r) > 0 and [|A(v)]|L <

Bllv||z for all v € V. Let Vj, C V and set ¢y (h) := maxy, cv, lonlv. - Given u) € Vi, let u €'V,

llonllz
solve 2 (u} —up ™ wp)r + (A" 1), o) + p(u) ™" wp)y = 0, for all wy, € Vj, and all n € N,
where 1 > 0 is an artificial viscosity parameter yet to be defined (u can depend on h and 7). (i)
Explain why this scheme can be more attractive than the implicit Euler method with w := 0. (ii)
Prove that if 7(3+ pey(h))? < 2u, then |[ul||L < ||u?]|L for all n € A;. (iii) Prove that the above
stability condition can be realized if and only if 287¢ny(h) < 1, and determine the admissible
range for p. Note: the constant S7eny(h) is called Courant—Friedrichs-Levy (CFL) number.

Exercise 78.5 (Explicit Euler, mass lumping). Let 8 € R, § # 0. Consider the equation
Ou + B0,u = 0 over D := (0,1) with periodic boundary conditions. Use the same setting for

the space discretization as in Exercise 77.1. (i) Write the linear system solved by the coordinate

vector (UT,..., U’})T by using the explicit Euler scheme and the Galerkin approximation with

mass lumping. (Hint: use the convention U} := Uy, U7, := U}, U"; := U}_,.) (i) Show
that 3 e,y (UD? = Xic.n(UF )2 + XX cn. n (UfE — UjD))? WiFh A= S5 (i) Let
a:= (1 —2ixsin(£27)) where k € Nand £ ¢ N, i? := —1, and set UY := ae'7?*" for all j € {1:1}.
Compute U? for all n € NV, and comment on the result.

Exercise 78.6 (Error equation, RK2). (i) Verify that
1 2 1 n—1
U(tn) = U(tnfl) + T&tu(tn,l) + 57’ (%tu(tn,l) + 57’1/) s
with 9"t := L [ (t, —1)20usu(t)dt. (Hint: integrate by parts in time.) (ii) Prove (78.26). (Hint:
use the fact that (Opu(t,_1), wn)r + (A(Qyu(tn_1)),wp)r = (O f" L wy)p for all wy, € Vj,.)

Exercise 78.7 (ERK schemes, p = 3). Prove Lemma 78.21. (Hint: proceed as in the proof of
Lemma 78.15, use that ||Ap(wp)||r < C%H’LUhHHl for all wy, € Vj,, and invoke the H'-stability of
Py, (see Proposition 22.21).)
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Chapter 79

Scalar conservation equations

In Part XVI, composed of Chapters 79 to 83, we consider scalar conservation equations and
hyperbolic systems. The first two chapters deal with the fundamental mathematical properties
of such problems. The other three chapters deal with the finite element approximation, first using
a low-order scheme and then extending it to higher order in time and in space. The present
chapter gives a brief description of the theory of scalar conservation equations. We introduce the
notions of weak and entropy solutions and state existence and uniqueness results. Even if the
initial data is smooth, the solution of a generic scalar conservation equation may lose smoothness
in finite time, and weak solutions are in general nonunique. Uniqueness is recovered by enforcing
constraints that are called entropy conditions. We finish this chapter by exploring the structure
of a one-dimensional Cauchy problem called Riemann problem where the initial data is composed
of two constant states. Understanding the structure of the solution to the Riemann problem is
important to understand the approximation techniques discussed in Chapter 81.

79.1 Weak and entropy solutions

In this section, we introduce the key notions of weak and entropy solutions.

79.1.1 The model problem

Let D be an open polyhedron in R%. Let f € Lip(R;R?) be a Lipschitz vector-valued function
hereafter called fluz, and let ug € L*°(D) be some initial data. We consider the scalar-valued
conservation equation

O+ V-f(u) =0, u(z,0) = up(x), (z,t) € DxRy4, (79.1)

where Ry := [0,00). Problem (79.1) is called Cauchy problem. To simplify questions regarding
boundary conditions, we assume that either periodic boundary conditions are enforced, or there is a
compact subset S C D s.t. ugp\g is constant over each connected component of D\S' (there is only
one connected component if d > 2), and there exists some time 7' > 0 such that u(z,t) = uo(x)
for all € 9D and all ¢ € [0,T]. For more general boundary conditions, we refer the reader to
Bardos et al. [23].

The PDE in (79.1) is called conservation equation. To better understand the origin of this
terminology, let O be an open set in D. Then if u solves (79.1) we have 0, [, u(x,t)dz =
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fao )nds. Calling fo x,t) dz the mass in O, this identity means that the rate of change
of the mass is the opposite of the mass flux at the boundary of O. In particular, the mass in O is
conserved over time if f(u)|90-n = 0.

Example 79.1 (Linear transport). The linear transport equation dyu + 8-Vu = 0, where
B € R is a constant vector field, can be recast into the form (79.1) by setting f(u) := Bu. The
solution to the Cauchy problem in R? is u(x,t) = ug(x — Bt), i.e., the graph of the solution at any

time ¢ > 0 is the same as that of ug, up to the translation x — x — 3t. [l
Example 79.2 (Burgers’ equation). In dimension one, the flux f(u) := %uQez gives Burgers’
equation, where e, is the unit vector giving the orientation of R. The conservation equation is
Oru + %&Cuz =0. O

Example 79.3 (Traffic flow equation). Setting f(u) := vmaxu(1— -*—)e, we obtain the traffic
flow equation. This equation models automobile traffic on a one-lane road. Here, u is the number
of cars per unit length (car density), vmax is the speed limit, and wmax is the maximum density
observed in a traffic jam when all the cars are at rest bumper to bumper. The velocity of the cars
is v(u) := L f(u) = vmax(1 — -~ )e,. When the density is small (u close to 0), the velocity is close
t0 Umax€s, Wthh means that all the cars move along at the speed limit. When the density is close
to maximum density (u close to umax), the velocity is close to 0, i.e., there is a traffic jam. O

Example 79.4 (Buckley—Leverett). The flow of a mixture of oil and water in a porous medium
can be approximated by the Buckley—Leverett model. In this case, the dependent variable is the
water saturation v € [0,1], and the flux is given by f(u) := BWM, where 3 is the total

velocity, which we assume to be a constant field in R?, and M > 0 is the ratio of the water viscosity
to the oil viscosity. O

79.1.2 Short-time existence and loss of smoothness
In this section, we are concerned with smooth solutions to (79.1).

Definition 79.5 (Strong solution). We say that u is a strong solution to (79.1) over the time
interval [0, T*) for some T* > 0 if u € C1(Dx[0,T*)) and u solves (79.1) for all (x,t) € Dx[0,T*).

Assuming that u is a strong solution, we can recast (79.1) as dyu+ f/(u)-Vu = 0. In other words,
looking for a strong solution to (79.1) is equivalent to solving a nonlinear transport equation with
velocity f'(u). For Burgers’ equation, we have f’(u) = ue,, for the traffic flow equation, we have

F (1) = Umax (1— 2% )e, and for the Buckley-Leverett equation, we have f'(u) = ﬁ%
We are now gomg to show that an implicit representation of a strong solution to (79.1) can be
obtained by the method of characteristics for short times in dimension one if f(u) := f(u)e, is of
class C? and wuyg is of class C1. It is not our goal here to give a detailed description of the method
of characteristics. We are just going to outline the main idea which consists of considering the

following ordinary differential equation:

{f%x( 1) = f(ulx(s,1),1), t=0,
(s,0) =

where the parameter s spans R and u is assumed to be a smooth solution to (79.1). The curves
{(z,t) € RxRy | x(s,t) = z} defined in the half plane RxR and parameterized by s € R are
called characteristics. After setting v (s,t) = u(x(s,t),t), one observes that dy(s,t) = 0, so
that u(x(s,t),t) = ¥(s,t) = ¥(s,0) = u(x(s,0),0) = u(s,0) = up(s), which in turn implies that

(79.2)
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x(s,t) = f'(uo(s))t + s. In conclusion, we have obtained an implicit representation of the strong
solution to (79.1) in the form

u(x(s,t),t) = up(s), Vs € R where x(s,t) := f'(uo(s))t + s. (79.3)

For the linear transport equation where f(u) = fu, we have x(s,t) = St + s, so that s =
X(s,t) — Bt. Hence, u(x(s,t),t) = uo(x(s,t) — Bt) for all s € R. Since x(+,t) : R — R is surjective
(bijective actually), the above identity implies that u(z,t) = ug(x — pt) for all x € R. This
argument shows that one can obtain an explicit representation of the strong solution if one can
invert the map x(-,t) : R — R.

Let us suppose for a moment that there exists 7" > 0 such that x(-,¢) : R — R is invertible for
all t € [0,7*). Then we have

u(z,t) = ug(x (1)), V(z,t) e R x [0,T7). (79.4)

The rest of the argument consists of proving that indeed there exists T* > 0 such that x(-,¢) :
R — R is invertible for all ¢ € [0,7%). Let x € R and ¢ > 0, and consider the equation

G(s,z,t) :==x — f'(uo(s))t —s =0, (79.5)

where s is the unknown. Using the implicit function theorem, we infer that the equation G(s, z,t) =
0 has a unique solution if 9,G # 0, i.e., if f”(uo(s))up(s)t +1 # 0. If f"(ug(s))uy(s) > 0 for
all s € R, we set T* := oo. If there exists some sg s.t. f”(uo(so))ug(so) < 0, we set T :=
infgepr min(f”(u;(i))u()(s),O)' Then, provided T* > 0, we infer that for all x € R and all t € [0,7™),

there is a unique s € R such that z = f'(uo(s))t + s, and we set x~!(z,t) := s. Note that the
implicit function theorem implies that x~! is of class C! w.r.t x and t. We refer the reader to
Exercise 79.7 for other details. In conclusion, we have shown the following result.

Proposition 79.6 (Existence time for a strong solution). Assume that f is of class C2, ug

is of class C*, and infscg min(f” (ug(s))uf(s),0) > —oo. Then (79.1) has a unique strong solution

over the time interval [0,T*), where T* := oo if infser " (uo(s))ui(s) > 0 and otherwise we have
-1

= suelﬂg min(f" (uo(s))uy(s),0) <00 (79.6)

Example 79.7 (Burgers). Consider Burgers’ equation, i.e., f(u) := Ju?. Then f”(uo(s))uj(s) =
ug(s). Consider first the increasing function ug(s) := tanh(s) as the initial condition. Then
Proposition 79.6 leads to T" = oo, i.e., the strong solution exists at all times. But for the decreasing
function ug(s) := — tanh(s), we obtain T* = 1, i.e., the strong solution exists in this case up to
the time T* = 1, and it turns out that no strong solution exists for longer times. [l

The striking property here is that smoothness can be lost in finite time. To better understand
this phenomenon, consider Burgers’ equation with the initial data ug(z) := 1if x < 0, up(z) :== 1—x
if 0 < <1, and up(x) := 0if 1 < z, as shown in the bottom panel of Figure 79.1. Here, ug is
not of class C'', but it can be shown that the solution produced by the method of characteristics
is still legitimate. Let us apply the method. For s < 0, we have x(s,t) = t + s, which gives
s = x Yx,t) = x — t. Hence, u(x,t) = ug(s) = 1if x " H(z,t) <0, ie., ifx <t. For 0 <s <1,
we have x(s,t) = (1 — s)t + s, which gives s = y " '(z,t) = £=. Hence, u(z,t) =1 — s = =% if
0<x Ha,t) <1,ie,ift <z <1. For 1 < s, we have x(s,t) = s, which gives x " (z,t) = z.
Hence, u(x,t) = ug(s) = 0 if 1 < x~Y(z,t), i.e., if 1 < x. Note that y~!(x,t) is well defined for
all t € [0,1), but the above solution is not well defined for ¢ = 1. We have u(z,1) = 1 if z < 1,
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T
rz=0 r=1
Uu u U
— — 1—x —
u=1 u=1 U = =—= u=1
1—t
u=1—=x
T T T
=0 r=1 =0 rz=1 r=0 rz=1

Figure 79.1: Top: characteristics for Burgers’ equation. Bottom, from left to right: (i) solution at
t = 0; (ii) solution at t € (0,1); (iii) solution at t = 1.

u(l,1) = %, and u(z,1) =0 if 1 < z, so that u is multivalued at x = 1. Actually, the solution is
defined almost everywhere at ¢ = 1, and we say that there is a shock at x =1 at t = 1. Let us
compute T*. We have f”(uo(s))ug(s) = ui(s), up(s) =0if s <0 and s > 1, and ug(s) = =1 < 0 if
0 < s < 1. This computation shows that 7% = 1, which indeed is the time when the solution given
by the method of characteristics produces a shock. The characteristics for this problem are shown
in the top panel of Figure 79.1. We observe that the solution is multivalued at x = 1 when ¢ = 1,
i.e., many characteristics cross at this point. This feature is generic: for every flux, the solution

given by the method of characteristics ceases to make sense once some characteristics cross.

79.1.3 Weak solutions

In order to make sense of solutions to (79.1) that are not of class C!, because either the initial
data is not of class C! or smoothness is lost at some time T*, we now introduce the notion of
weak solutions. A weak formulation of (79.1) is obtained by testing the equation with smooth
test functions that are compactly supported in DxR., say ¢ € C}(D xR, ), integrating over the
space-time domain DxR, and integrating by parts as follows:

/OO/ (u0p + f(u)-Vo) dxdt—i—/ o(z,0)up(x) dz = 0. (79.7)
o Jp D

Since Ry := [0,00), ¢(0,-) can be nonzero over a compact subset of the line Dx{t=0} (see
Definition 1.31 for the notion of support). Moreover, the space L (DxRy) is by definition

loc
composed of functions that are bounded on each compact subset of DxR .

Definition 79.8 (Weak solution). We say that uw € L{S.(DxR,) is a weak solution to (79.1) if
u satisfies (79.7) for all € CF(DxR,).

If w is smooth and is a weak solution to (79.7), then restricting the test functions in (79.7) to
C§°(Dx(0,00)) shows that u solves yu + V- f(u) = 0.
Example 79.9 (Linear transport). Assuming that D := R? and uo € L2, (D), let us show that

loc
u(x,t) = up(z — Bt) is indeed a weak solution to the linear transport equation dyu + V-(Bu) = 0,
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where 8 € R? is a constant vector field. Let us denote T := [ [, (udip(x, t) +uB-V(x, 1)) dadt,
and let us make the change of variable ' = x — Bt. We obtain

- /OO / (uo(@)0p(a’ + Bt, 1) + uo(x')B-Vé(z' + Bt 1)) da'dt.
0 D

For all ' € D, let us set ¥(2',t) := ¢(x’ + B, 1). Then op(x',t) = B-Vo(x' + Bt t) + Op(x' +
Bt,t). Applymg Fubini’s theorem gives T = [, uo(x’) [0 (x', t)dt da’ = [—~uo(x)p(x,0) da =
Jp—uo(x)é(x,0) dz. In conclusion, the identity (79.7) holds true. O

In general, there are infinitely many weak solutions to (79.1). Consider for instance Burgers’
equation in dimension one with ug(z) := H(x), where H is the Heaviside function (i.e., H(z) :=1
if x >0and H(z) :=0if  <0). Let us verify that the following two functions:

if x <0,
if 0 < x <t, (79.8)
if x > t,

up(z,t) == H(x — 1t) and wug(w,t) =

— sy O

are weak solutions, that is, let us show that (79.7) holds true with D := R in both cases for every
test function ¢ € C3(RxRy). Let us denote by T; the double integral on the left-hand side of
(79.7) with w := uy. Using Fubini’s theorem for the double integral involving 9;¢, we obtain

T = // H(z at¢dtdx+/ / —H?*(z )0, ¢ dadt
2 [e’e)
:/ 8t¢dtd:z:+/ / — 0, ¢ dadt
0 0 0 i 2

= [ 6tw20) w0 s - 5 [ ol 00 = -3

with Tp = [;° ¢(2,0)dz = [ ug(x)¢(x,0)dz since ug(x) = 0 if z < 0. Let us denote by Ty the
double integral on the left-hand side of (79.7) with u := uz. Then Ty := Ty 1 + T2 2 with

T ::/ /8t¢dt+/ —atgbdt)dx
_/0 (. 0) dx+/ / —(bdtd:z:

where we used Fubini’s theorem and integrated by parts in time, and

oo, (P g2
Tys :=/ (/ §t—28w¢d:c+/ - I(bd:v dt / / Z ¢ dadt,
0 0

where we integrated by parts in space. Invoking once again Fubini’s theorem and observing that
{zeRy, t>a}={teRy, z€(0,t)} leads to Ty = Ty 1 + T22 = —Fy. The reader is referred to
the Exercises 79.2 and 79.3 for more details on the uniqueness question.

79.1.4 Existence and uniqueness

The nonuniqueness problem can be solved by invoking additional considerations on viscous dissi-
pation. We say that u is a physically relevant solution to (79.1) if it is a weak solution and if it is
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the limit in some appropriate topology of the unique solution to the following perturbed problem
as e — O
Oyue + V-f(ue) — eAu. =0, ue(x,0) = up(x), (x,t) € DxRy. (79.9)

We say that u. is the wviscous regularization of u or the viscous approximation to (79.1). The
limiting process has been studied in detail in Oleinik [232, 233], Kruzkov [206], where it is proved
that requesting that a weak solution to (79.7) be such that lim. o [[ue — ulz1(px(0,7);r) = O is
equivalent to requiring that u satisfy the additional entropy inequalities 9yn(u) + V-q(u) < 0 (in
the distribution sense) for any convex function 7 € Lip(R; R) with associated flux g € Lip(R; RY)
st qi(u) == fou 7' (v)f{(v)dv for all | € {1:d}. The functions n and g are called entropy and entropy
fluz.

Theorem 79.10 (Entropy solution). Let f € Lip(R;R?) and ug € L>(D). Let the assumptions
on the boundary conditions stated in §79.1.1 hold true. There is a unique entropy solution to
(79.1), i.e., there is a unique function u € LS. (DxRy) that is a weak solution and that satisfies
the following entropy inequalities:

_/OO/ (n(u)0rd + q(u)-Vo) d:cdt—/ d(x,0)n(up) de <0, (79.10)
o JbD D

for all the entropy pairs (n,q) and all ¢ € CE(DxRi;R.) (note that ¢ here takes nonnegative
values). In other words, we have 9n(u) + V-q(u) < 0 in the distribution sense in Dx(0,00).

Theorem 79.11 (Maximum principle). Let us set umin = essinfzep ug(®) and umax =
esssUp,ep Uo(x). The entropy solution satisfies the following mazimum principle:

w(x,t) € [Umin, Umax], for a.e. (z,t) € D x Ry. (79.11)

Remark 79.12 (Kruzkov entropies). It can be shown that Theorem 79.10 holds true if the
inequality (79.10) is satisfied only for the Kruzkov entropies ny(u) := |u — k|, with flux g (u) :=
sign(u — k)(f(u) — f(k)) for all k € [tmin, Umax]; see Exercise 79.1. O

Remark 79.13 (Strong solution). Strong solutions are also weak solutions and they satisfy all
the entropy inequalities. This follows from the definition of the entropy flux and the chain rule.
See also Exercise 79.6. O

79.2 Riemann problem

In this section, we introduce the notion of Riemann problem and give a brief overview of the
construction of its solution. Understanding the structure of the solution to the Riemann problem
is important to understand the technique presented in Chapter 81 to approximate the Cauchy
problem (79.1). In the entire section, we assume that f is at least Lipschitz, i.e., f € Lip(R; R%).

79.2.1 One-dimensional Riemann problem

The Riemann problem is a particular instance of the Cauchy problem (79.1), where the space
is one-dimensional and the initial data consists of two constant states. More precisely, setting
f(v) == f(v)e,, the Riemann problem consists of solving the following Cauchy problem:

up if x <0,

. (79.12)
ugp if x >0,

Oyu+ 0, f (u) = 0, u(z,0) == {
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with ur, ur € R. Since the solution to (79.12) is trivial if u;, = ug, we focus on the case uy, # ug.
The key idea is that the solution to (79.12) is self-similar, i.e., it only depends on the ratio 7. In
other words, there is a function w : R — R such that u(z,t) := w(%). The motivation for looking
for a solution of this form is the observation that if u(x,t) solves (79.12), then uy(z,t) = u(Az, At)
also solves (79.12) for all A > 0. After setting £ := 7 and inserting the ansatz u(z,t) = w(§) into
(79.12), one obtains —Lw' (&) + +f'(w(&))w'(€) = 0, so that u(z,t) = w(z/t) solves (79.12) iff w
satisfies the identity

£ = F(w(©)). (79.13)

Solving this nonlinear equation requires that we investigate the monotonicity properties of f”.

79.2.2 Convex or concave flux

If f’ is strictly monotone, then f’ : R — R is invertible and the solution to & = f/(w(§)) is
w(&) = (f)7(€). Let us now make sense of this argument.

Let us assume that u;, < ugr. Assume that f is of class C? and strictly convex in the interval
[ur,ugr]. Then both f' : [up,ur] — R and (f")~' : [f'(ur), f'(ur)] — R are monotonically
increasing. Since for every ¢ > 0 the viscous solution to (79.12) is monotone in x (see Holden and
Risebro [184, §2.1]), we connect uy, to ur with a monotone increasing profile by setting

ur, 1f % S f’(uL),
u(z,t) == (f’)_l(%) if f'(ur) < $ < f'(ur), (79.14)
UR if f'(ur) < %.

It can be proved that this is indeed the entropy solution to (79.12) (see [184, §2.2]). This solution
is called ezpansion wave. The above argument does not make sense if f is strictly concave, since

in this case f'(ur) > f'(ur). It can then be shown that the correct solution is a discontinuity
Sur)—f(ur)

moving with the velocity s := Fyrv— ie.,
iz < _
u(z, 1) == {“L fy<s o flun) = fus) (79.15)
UR 1f5<%, ur —Uur

This solution is called shock wave or simply shock. Graphical representations of the expansion
wave and the shock wave are shown in Figure 79.2.

UR ur,

(e
uy, UpR

‘ ‘ § §

F(ug) f(ug) flug)—f(ug)

UL—UR

Figure 79.2: Solution to the Riemann problem u(x,t) = w(€) when f is strictly convex. From left
to right: (i) expansion wave; (ii) shock.

Recalling that for the time being we have assumed that uy < ug, the expansion wave (79.14)
and the shock wave (79.15) can be recast into a single formalism by introducing the lower convex
envelope of f over [ur, ug):

J) :==sup{g(v) | g(2) < f(2),Vz € [ur,ur], g convex}. (79.16)
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To visualize the graph of f, think of a rubber band in R? fixed at (ur, f(ur)) and (ug, f(ur)) and
passing underneath the graph of f. This definition implies that f(v) = f(ur) =2 + f(ur) ;=4

if f is concave and f(v) = f(v) if f is convex. The two expressions (79.14) and (79.15) can be
recast into a single formalism as follows:

ur, lf% §j’(uL),
u(w,t) == (f)7HF) i f(ur) < F < f(ur), (79.17)
UR 1fj’(uR) < %

Note that if f is concave, f'(ur) = f'(ur) = s and the measure of the set ( f'(ur), f'(ur)] is zero,
i.e., one does not have to bother to define (f")~*(s).

One treats the situation vy > wg similarly by invoking the change of variable © — —z and
f — —f, but in this case the lower convex envelope of —f is the upper concave envelope of [ over
[ug,ur] defined by

f(v) :=1inf{g(v) | f(z) < g(2),Vz € [ur,ur], g concave}. (79.18)
To visualize the graph of f, think of a rubber band in R? fixed at (ur, f(ur)) and (ug, f(ur))
and passing above the graph of f. The solution is defined by setting u(x,t) := up if ¥ < F(ur),

u(a,t) = (F)7N2) if f(ur) < 2 < F'(ur), and u(a,t) == ug if f'(ugr) < 2.

Remark 79.14 (Rankine-Hugoniot). When the solution to (79.12) is a shock wave, the identity
_ fup)—f(ur)
g = fur)—f(un)

g s called Rankine—Hugoniot condition and s is called shock speed. O

79.2.3 General case

It turns out that the above argumentation can be generalized to any Lipschitz flux with finitely
many inflection points.

Theorem 79.15 (Riemann solution). Assume that the interval [up,ur] can be divided into
finitely many subintervals where f has a continuous and bounded second derivative, and where f
is either strictly convex or strictly concave. The entropy solution to (79.12) is given by

ur, Zf% Sufl(uL)v
ulat) = (F) () if fur) < £ < Plun), (79.19)

up if f'(ur) < %,
if up, < ug, and f must be replaced by [ in (79.19) if ur, > ug.

Proof. See Dafermos [96, Lem. 3.1] for the construction of the solution to the Riemann problem
assuming that the flux is piecewise linear. See Holden and Risebro [184, §2.2] for a detailed proof.
We refer to Osher [234, Thm. 1] for another interesting representation of the solution. O

79.2.4 Riemann cone and averages
Let A (ur,ugr) and Ag(ur,ur) be the two quantities defined by

-/ -/

f’(uL) if ur, < UR, f’(uR) if ur, < UR,
A , = A , =T
r(ur, ug) {f (ur) if up > ug, r(uL, ur) Fur) ifur > ug.
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We will refer to A (ur,ur) and Ag(ur,ur) as the left and right extreme wave speeds, respectively.
An important piece of information that we learn from Theorem 79.15 is that the solution to the
Riemann problem is nontrivial in the space-time cone
x

C(ur,uR) := {(a:,t) € RxRy | Ap(up,ur) < n < )\R(uL,uR)}. (79.20)
It is equal to uz on the left of C(ur,ur) and equal to ug on the right of C(ur,ur). The cone
C(ur,ur) is often termed Riemann fan in the literature. A schematic representation of the Rie-
mann fan is shown in Figure 79.3.

\\4

x = tAp(ug, ug)

’LL(ZL‘7 t) =ur U(Z’, t) = Upr

Figure 79.3: Riemann fan C(ur,ug).

Definition 79.16 (Maximum wave speed). We call maximum wave speed in the Riemann
problem the number max(|\r (ur, ur)|, |Ar(uL,ur)|). Any real number Amax(ur, ur) satisfying the
inequality

/\max(uL, UR) Z max(|/\L(uL, uR)|, |/\R(UL; UR)D (7921)

is called upper bound on the mazrimum wave speed.

The motivation for the above definition is that it is often easier to estimate an upper bound on
max(|Ar(ur,ur)|, [Ar(ur,ur)|) than computing this quantity. For instance, if f(v) := cos(v), one
can take Amax(ur,ur) := 1, but computing max(|Ar(ur, ur)|,|A\r(ur, ur)|) may not be simple.
Example 79.17 (Convex flux). Assume that f is convex. Then the quantity Amax(ur,ur)
defined by Amax(ur,ur) := ’%‘ if ur, > upg, and Apax(ur, ur) == max(|f'(ur)|, | f (ur)|)
otherwise, satisfies (79.21). O
Lemma 79.18 (Riemann average). Let u be the entropy solution to (79.12), (n,q) be an entropy

1
pair, and define the Riemann average as u(t,ur,ur) := [?, u(x,t)dz. Let Amax(ur,ur) be any
2

upper bound on the mazimum wave speed. Then for all t € [0, m],

Tt ur, un) = %(uL ur) — t(f(ur) — fluz)), (79.22a)
N((t, s um)) < 3 (n(us) +nfoum)) — ta(ur) — a(ur)). (79.22b)

Proof. Let us integrate the equation d;u + 9, f(u) = 0 over the domain (—%, 2)x(0,¢), where u is
the solution defined in Theorem 79.15. We obtain

ﬂ(t,uL,uR)—%(uL—i—uR)—i—/O f(’u(%,T))dT—/o flu(=%,7))dr =0.
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: 1 1 _ 1 1
Since t < 3w e B have u(—3,7) = ur because —5= < —5 < —Amax(ur,ur) < Ap(ur, ur)
1

for all 7 € (0,t], and we have u(3,7) = up because 3= > Ag(ur,upr) for all 7 € (0,¢]. This
proves (79.22a). The same argument applied to the inequality d:n(u) + d,q(u) < 0 gives

/i n(u(@,t) de < 5(n(ur) +n(ur)) — ta(ur) — q(ur)).

1
2
Jensen’s inequality 77(]1_%l u(z,t)dz) < f_%l n(u(x,t))dz gives (79.22b). O
2 2

Remark 79.19 (Invariant set/maximum principle). The maximum principle from Theo-
rem 79.11 implies that w is in the convex hull of (ur,ur). This in turn implies that this is also the
case of u(t,ur,ur). The identity (79.22a) says that for all ¢ € [0, m],

L(ur +ur) — t(f(ur) — f(ur)) € conv(ur,ur).

This property is essential, and it will be used repeatedly in Chapter 81. O

79.2.5 Multidimensional flux

In Chapter 81, where we introduce an approximation technique for (79.1) with a multidimensional
flux f € Lip(R; R?), we will consider the following one-dimensional Riemann problem: Find u such
that

uy if z <0,

. (79.23)
ugr if x>0,

Opu + 0y (f(u)m) =0, u(z,0) := {
where uz,ur € R and n is an arbitrary unit vector in R%. The theory developed above can be
directly applied to this case by setting f(u) := f(u)-n. In this case, we denote by Apax(m, ur, ug)
any upper bound on the maximum wave speed in the Riemann problem (79.23).

Lemma 79.20 (Entropy pair). Let (n,q) be an entropy pair for (79.1). Then (n,q-n) is an
entropy pair for the Riemann problem (79.23).

Proof. The identity q;(u) = fou n'(v)f/(v) dv, for all I € {1:d}, implies that

g(u)n = / " @)(F-n) (v) do,

which proves the result. O

Exercises

Exercise 79.1 (Kruzkov entropy pairs). For all k£ € R, consider the entropy n(v, k) := |v —k|.
Compute the entropy flux associated with this entropy, g(v), with the normalization g(k) := 0.

Exercise 79.2 (Entropy solution). Consider Burgers’ equation with D := R and wug(z) := 0.
(i) What should be the entropy solution to this problem? (ii) Let H be the Heaviside function.
Let a € R and consider u(z,t) := 2aH (x) — aH(z — %) — aH(x + % ). Draw the graph of u(-,t)
at some time ¢ > 0. (iii) Show that u is a weak solution for all @ € R. (iv) Verify that u is not the

entropy solution. (Hint: consider the entropy n(v) := |v|.)
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Exercise 79.3 (Entropy solution). Consider Burgers’ equation with D := R and ug(x) := H(z),
where H is the Heaviside function. (i) Verify that uy(x,t) := H(z — $t) and us(,t) := 0 if z < 0,
ug(w,t) == 7,if 0 <2 < t, up(x,t) := 1if 2 > ¢, are both weak solutions. (ii) Verify that u; does
not satisfy the entropy inequalities, whereas us does.

Exercise 79.4 (Average speed). Let f be a scalar Lipschitz flux. Consider the Riemann
problem dyu + 0, f(u) = 0, with initial data (ur,ugr), ur, # ur. Let Apax(ur,ur) be a maximum
wave speed in this problem. Let s := (f(ur) — f(ugr))/(ur — ur) be the average speed. Assume
that the interval [ur,ug] can be divided into finitely many intervals where f has a continuous
and bounded second derivative and f is either strictly convex or strictly concave. Prove that
[ Amax (ur, ur)| = |s|.

Exercise 79.5 (Maximum speed). Compute Apax(ur,ur) for the two cases (urp,ur) := (1,2)
and (ur,ug) = (2,1) with the following fluxes: (i) f(v) := 30?% (i) f(v) = 8(v — $)*; (iii)
fw):=—(v—1)(2v—3) if v < 2 and f(v) :=$(3 —2v) if 2 <.

Exercise 79.6 (Strong solutions). The goal is to justify Remark 79.13. (i) Show that if u is a
weak solution and u € C(Dx[0,T*)), then u is a strong solution in Dx[0,T*). (ii) Show that if
u is a strong solution, then w is also a weak solution. (iii) Let u be a strong solution to (79.1) and
let (1, q) an entropy pair with 7 of class C2. Show that (79.10) holds true.

Exercise 79.7 (Method of characteristics). Let D := R, f := fe,, and assume that f is
of class C? and wuyg is of class C'. Recall that there exists 7% > 0 and a unique s(z,t) solving
x = f'(up(s))t + s for all z and all ¢t € [0,77). (i) Show that u(x,t) := ug(s(x,t)) solves (79.1)
for all t € [0,T*). (ii) Let sp € R. Show that u(z,t) is constant along the straight segment
{z = f'(uo(s0))t + so |t € [0,T*]}. (iii) Show that the solution found in Step (i) is the entropy
solution.

Exercise 79.8 (Shock interacting with an expansion wave). Consider Burgers’ equation

with the initial condition ug(z) := —1 if x € (—1,0) and up(z) := 0 otherwise. (i) Derive the
weak entropy solution up to the time ¢ = 2. (ii) After the time ¢ = 2, the shock originating from
x = —1 starts interacting with the expansion wave originating from z = 0, leading to a shock

with a nonlinear trajectory. Derive the weak entropy solution for the times ¢t > 2. (Hint: use the
Rankine-Hugoniot condition.) (iii) Verify that “mass” conservation is satisfied, i.e., [ u(z,t)dz =
Jg wo(z) dz = —1 for all £ > 0.
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Chapter 80

Hyperbolic systems

The objective of this chapter is to introduce the concept of hyperbolic systems and to generalize
the notions introduced in Chapter 79 to this class of equations. The novelty here is that the notion
of maximum principle is no longer valid and is replaced by the concept of invariant sets. The
material from this chapter is inspired from Bouchut [40, Chap. 1], Bressan [51], Godlewski and
Raviart [138, pp. 1-104], Holden and Risebro [184, Chap. 5], LeFloch [213, Chap. VI|. The reader
is referred to these references to acquire a deeper understanding of hyperbolic systems.

80.1 Weak solutions and examples

In this section, we introduce the concept of hyperbolic systems and weak solutions, and we give
examples of hyperbolic systems.

80.1.1 First-order quasilinear hyperbolic systems

Let m € N\{0}. Let A be a subset of R™ henceforth called admissible set of states. We use
boldface notation for elements of A to emphasize the difference with scalar conservation equations.
We keep the usual boldface notation for vectors in R%. Let A; € Lip(A; R™*™) be some Lipschitz
matrix-valued fields, for all [ € {1:d}. Let D be a polyhedron in R?, let uo € A, and consider the
following Cauchy problem:

du+ Y Aw)du=0, u@®0) =u(x), (z,t)€DxRy, (80.1)
le{l:d}
with R, := [0, 00). The dependent variable w is considered as a column vector w := (1, ..., Un) .

Systems of PDEs like those in (80.1) are called first-order quasilinear systems. We avoid questions
regarding boundary conditions by assuming that either periodic boundary conditions are enforced,
or there is a compact subset S C D s.t. ugp\s is constant over each connected component of
D\S (there is only one connected component if d > 2), and there exists some 7' > 0 such that
u(x,t) = up(zx) for all ® € 9D and all ¢t € [0,T]. We refer the reader to Dubois and LeFloch [112]
for more general boundary conditions.

Definition 80.1 (Hyperbolicity). (i) We say that (80.1) is hyperbolic if the matriz A(v,n) :=
Zle{l:d} niA(v) is diagonalizable with real eigenvalues for all v € A and any unit vector n :=
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(n1,...,nq)" € R (ii) The system is said to be strictly hyperbolic if all the eigenvalues are
distinct.

To motivate the above definition, suppose that D := (0, 27r)pe]r is the periodic torus in RY.
Assume also that Aj(v) := A; for all | € {1:d} and all v € A and that there is some k :=
(k1,...,kq) € Z% and Uy 6 R™ such that ug(x) = Uge®® with i2 = —1. Let us denote
n = ﬁ and A(n) = ||k||22 > ieqi:ay kil If the system (80.1) is hyperbolic, Definition 80.1
implies that A(n) is diagonalizable in R. Let Ai(k),..., A\ (k) be the eigenvalues of A(n) and
Vi(k),..., V. (k) be the associated unit eigenvectors. Then Uy, can be expanded in the eigenbasis
as Uk = > icr1. ) @ (R)V;(K), so that uo(x) = > ;cq1. a;j(k)e®®V (k). This leads to the
following explicit representation of the solution to (80.1).

Lemma 80.2 (Plane wave solution). Under the above assumptions, the unique solution to
(80.1) is w(®,t) = 3 1. m) ;i (k)eikz=2 (BlIkl 2D\ (k).

Proof. Let (z,t) € D x Ry. We have

Oru(x,t) = Z A HngzaJ(k:)ei(’“'“”*%‘(’“”"“”ﬂt)vj(k:),
jG{l m}
S Adu@) =i Y kA Y ajk)d*e M ®IEEY, (k)
le{l:m} lG{l m} je{l:m}
D ARkl oy (R)el e M BIRIOV (k)
J€{1 m}

so that dyu + 7y, gy AiOw = 0 for all (x,t) € D x Ry. Note also that u(z,0) = uo. Finally,
the solution is unique since the system is linear. [l

The above method generalizes to arbitrary initial data by using Fourier series techniques. The
solution to the one-dimensional linear problem is investigated in Exercise 80.1.

Remark 80.3 (Change of variables). Let 6 : B C R™ — A C R™ be a C'-diffeomorphism and
consider the change of variable u = @(v). Then (80.1) can be rewritten

vV)dv+ Y A(0(v))(DO(v)dv) = 0.
le{l:d}

After setting B;(v) = (D8(v)) " 1A;(0(v))DO(v), we conclude (at least informally) that (80.1)
is equivalent to 0,v + (1.4 Bi(v)9v = 0. The matrices B(v,n) = 3y, 4y uBi(v) and
A(v,n) = Zle{l;d} niA;(v) being similar, this first-order quasilinear system is hyperbolic (or
strictly hyperbolic) iff (80.1) is hyperbolic (or strictly hyperbolic). This shows that the notion of
hyperbolicity is invariant under any smooth change of variables. O

80.1.2 Hyperbolic systems in conservative form

In the rest of this chapter, we are going to restrict our attention to first-order quasilinear systems
that can be written in conservative form as follows:

du+ V-f(u) =0, u(z,0) = uo(x), (x,t) € DxR4. (80.2)

The conserved variable u takes values in A C R™ and the flux f is assumed to be s.t. f €
Lip(A; R™*9). The set A is again called admissible set of states. For a generic element v € A, the
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flux is a matrix with entries f;;(v) for all i € {1:m} and all I € {1:d}. In (80.2), V-f(u) evaluated
at (x,t) is a column vector in R™ with entries (V-£(u)); = >21c (1. g3 Ou, Lu(u(, 1)), Vi € {1:m}.
For every unit vector m := (n;...,ngq)T € R? and every state v € A, we denote by f(v)n
the column vector in R™ with entries 3, (. 5 rufir(v), Vi € {1:m}. Denoting by Aj(v) € R™*™
the matrix with entries d,,f;(v), Vi, j € {1:m}, and assuming that the solution w is smooth, the
conservation equation in (80.2) can be rewritten in the quasilinear form (80.1). Consistently with
Definition 80.1, we say that (80.2) is hyperbolic iff the matrix A(v,n) € R™*™ with entries
(A(v,n)),, = > mdyfu(v),  Vije{l:m}, (80.3)
le{1:d}

is diagonalizable over R for all v € A and all unit vectors n € R%.

When (80.1) can be rewritten in the conservative form (80.2), we say that w is a conserved
variable. There is a clear notion of weak solutions for the PDE (80.2) in conservative form. Recall
that C3(DxR4;R™) is composed of R™-valued functions that are compactly supported in DxR,
and that these functions can be nonzero over a compact subset of Dx{t=0}.

Definition 80.4 (Weak solution). We say that u € L
(80.2) if for all ¢ € CJ(DxR;R™), we have

o (DxR1;R™) is a weak solution to

/OO/ (u-0rp + £(u):Vp) dadt + / ¢(x,0)up(x) de =0, (80.4)
o Jbp D

where £(u): Ve =37, 1.0 Dieqr.ay fi(w)0idi.

Giving a proper notion of weak solutions to (80.1) is far more delicate than for (80.2) since
integration by parts in space is not possible. We refer the reader to Dal Maso et al. [98], Berthon
et al. [31], where a suitable notion of weak solutions is proposed and the nonlinear stability of
these solutions is investigated. Very much like for scalar conservation equations, there may be a
nonuniqueness problem for the solution of (80.2) when f is nonlinear. One way to address this
issue is to consider additional constraints like entropy inequalities.

Definition 80.5 (Entropy). We say that (n,q) is an entropy pair for (80.2) if the function
n € CY(A;R) is convex and if the function q € C*(A;R?) is such that

'UJ qk Z avl av] fzk( )

ie{l:m}

for all j € {1:m}, all k € {1:d}, and all v € A. The function n is called entropy and the function
q entropy flux.

Whenever an entropy pair (7, q) is available for (80.2), one can select a physically relevant
solution by enforcing entropy inequalities (nothing is said here about the uniqueness of such a
solution). Specifically, one requests that the following holds true for all ¢ € C(DxR ;R ):

/ / w)0rd + q(u)-Vo) dedt —/ o(x, 0)n(ug) dz < 0. (80.5)

Note that (80.5) implies that 9;n(u)+V-g(u) < 0 in the sense of distributions in Dx (0, c0). Owing
to the definition of the entropy flux, one readily verifies using the chain rule that if the weak solution
is smooth, i.e., u € C'(D x Ry;R™), then the entropy inequalities (80.5) are actually equalities.
An argument similar to that in the proof of Theorem 18.8 shows that the entropy inequalities are
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equalities if u is piecewise smooth and continuous. The difficulty with the above entropy-based
approach for systems is that, given an entropy, it is not clear whether an associated entropy flux
exists, because the system of equations 9,,qx(v) = > ic(1.my 9o (V)0 Eix(v) for all j € {1:m}
and all k& € {1:d} is in general overdetermined. We will see in the next section though that there
are many physical examples of hyperbolic systems that admit nontrivial entropy pairs.

Another way to define a physically relevant solution to (80.2) is to consider the viscous regu-
larization. For instance, given € > 0, the viscous regularization of (80.2) is the unique solution to
the Cauchy problem

oue + Vi (ue) — eAue = 0, uc(x,0) = uo(x), (x,t) € DxRy. (80.6)

We say that uw € Ly (DxRy) is a vanishing viscosity solution to (80.2) over DxRy if |jue —
ul|L1(pxr,;rm) as € = 0. (Again, nothing is said here about the uniqueness of the solutions thus
defined since these are delicate questions in general.) See Exercise 80.3 for a connection between

the viscous regularization and entropy inequalities.

Remark 80.6 (Entropy inequality). Unlike for the scalar conservation equations, a general
well-posedness theory for (80.2) is not available. Two major early works in this direction are the
results by Lax [212, Thm. 9.1] and Glimm [136, Thm. 1.1] for one-dimensional hyperbolic systems,
where it is shown that under some reasonable assumptions on the flux (see Theorem 80.18 for the
details), and if the data satisfy some smallness conditions, then there exists a global weak solution
to (80.2) that satisfies every entropy inequality for every entropy pair of the system. An important
result by Bianchini and Bressan [32, Thm. 1] connects the vanishing-viscosity property with the
entropy inequalities for this class of one-dimensional problems. The situation in higher dimensions
is even worse. For instance, it is established in De Lellis and Székelyhidi [101], Chiodaroli et al.
[81] that in two dimensions, one can construct initial data for the isentropic Euler equations for
which there are infinitely many weak solutions that satisfy the entropy inequality associated with
the physical entropy. The reader is also referred to Serre [251, Chap. 6] for a detailed analysis of
the properties of (80.6). O

80.1.3 Examples

Example 80.7 (Scalar case). Assume that m = 1 and d is arbitrary, i.e., (80.2) is a scalar
conservation equation. Let n € R? be a unit vector so that f/(v)-n is a scalar for all v. This is a
1x1 matrix which is obviously diagonalizable with the unique real eigenvalue t'(v)-n. Assuming
that t € Lip(R;R), A := R is an admissible set. O
Example 80.8 (Linear wave equation). Counsider the linear system
dwu+ Vv =0,
S (x,t) € RIxR, (80.7)
8{0 +c V’u = O,

where ¢ # 0. Taking the time derivative of the first equation, the divergence of the second one and
subtracting the results, we obtain the linear wave equation dyu — c?Au = 0. Using the notation
u:= (u,v")7, we have m = d + 1 and

= (2y,) twn=(20). pewn = (2, 5.

One can verify (see Exercise 80.2) that the (d + 1) eigenpairs of the matrix D(f(u)-n) are
(¢, (L,en™)T), (=¢, (1, —en")T), and (0, (0,v)7) for alll € {1:d—1}, where the vectors {vi}ie1:q-1}
are such that {n,v;,...,v4_1} forms an orthonormal basis of R?. An admissible set is A :=
RxR?. 0
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Example 80.9 (p-system). The one-dimensional motion of an isentropic gas in Lagrangian
coordinates is modeled by the p-system:

B — Dyu = 0,
{ T oet (z,t) € RxR,. (80.8)

Opu + Oxp(v) =0,

Here, we have d = 1 and m = 2. The dependent variables are the velocity u and the specific
volume v. The map v — p(v) is the pressure and is assumed to be in C?(R;;R) and to satisfy
0 < p” and p’ < 0. A typical example is the v-law, p(v) := rv~7 with » > 0 and v > 1. Using the
notation u := (v,u)', n := +e,, we have

)= () e DEwm —eon (0 ).

The system is hyperbolic owing to the assumption p’(v) < 0. The two eigenpairs of the matrix
D(f(u)-n) are (Fv/—p'(v), (1, £4/=p'(v))7). The reader is invited to verify that n(u) := Ju? —
P(v), where P(v) is a primitive of p(v), i.e., P'(v) = p(v), is an entropy and the associated entropy
flux is g(u) := p(v)ue,. The system is strictly hyperbolic. An admissible set is A := (0,00)xR. O

Example 80.10 (Euler equations). Consider the Euler equations in R%:

.
p m
du+V-(f(w) =0, w:=m]|, f(u):=|mO% +pl]|, (80.9)
T
£ - (E +p)

where p is the density, m the momentum (column vector), and E the total energy. An admissible
set of states is A := {(p,m, E) | p >0, E—$m?/p > 0}. The pressure, p, is given by the equation
of state which we assume to derive from a specific entropy, o(7, e), defined by the thermodynamics
identity Tdo := de + pdr, where 7 := p~!, ¢ := p7'E — %vQ is the specific internal energy,
v := p~'m is the velocity of the fluid particles, and T is the temperature. Note that 7 > 0 and
e > 0 for every admissible state, i.e., o : (0,00)? — R. There are two key structural properties
coming from thermodynamics, namely that 7" > 0 and that the function o is strictly concave on
(0,00)2. The above thermodynamics identity means that .0 = T~ and 0,0 = pT~!. These
relations allow one to define T' and p as functions of (7, ¢e). In the continuum mechanics literature,
one uses p rather than 7, i.e., one considers the function s : (0,00)% — R s.t. s(p, e) := o(7,¢€), and
the above thermodynamics identity is written as T'ds = de — pp~2 dp, up to an abuse of notation
since T and p are now viewed as functions of (p,e). The equation of state defining the pressure
then takes the form

2895(/)7 6) (8010)

p(p,e) = —p Des(pe)’

For instance, one has s(p, e) := ln(eﬁp_l) for a polytropic ideal gas, so that p(p,e) = (v — 1)pe.
The function s is called specific entropy or physical specific entropy and —s mathematical specific
entropy. Note though that s is not an entropy in the sense of Definition 80.5 since s is a function
of two variables (density and specific internal energy) which are not the conserved variables. The
key observation is that, after a change of variables, letting ® : A — R be s.t. ®(u) := s(p,p 1 E —
1p7?m?), the function S : A — Rs.t. S(u) := —p®(u) is an entropy in the sense of Definition 80.5;
see Exercise 80.5.

Owing to thermodynamics, the change of variable (7,e¢) — (p,7!) is bijective (the deter-
minant of the Jacobian matrix is indeed equal to (8”08860 - (8780)2) /0eo, and this quantity
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is negative since o is strictly convex and (J.0)~! := T > 0). This shows that we can set
s(p,T) := o(r(p,T),e(p,T)) and, up to an abuse of notation, we can define the specific heat
at constant pressure c,(p,e) := Trs(p,T). Let f € C*(R;R) be such that

f'(s) >0, fl(s)e,t — f"(s) >0, Y(p,e) € (0,00)?, (80.11)

P

where f’(s) and f”(s) stand for f'(s(p,e)) and f”(s(p,e)). It is shown in Harten et al. [180]
that the function —pf(®(u)) : A — R is an entropy for (80.9) and the associated entropy flux is
—mf(®(u)). The reader is also referred to Guermond and Popov [155] for other details.

Let us abuse the notation by saying that p is now a function of p and s (this is legitimate owing
to the implicit function theorem since des # 0). Then it is shown in Exercise 80.5 that the concavity
of o and the condition (9.s)~" > 0 imply that 9,p(p, s) > 0. The quantity c(p, s) := 1/9,p(p, s) is
called sound speed. We refer the reader to Godunov [139], Friedrichs and Lax [132], Harten et al.
[180], Godlewski and Raviart [138, pp. 99-104] for further details on this question.

We now use Remark 80.3 to establish that (80.9) is hyperbolic. We make the change of variables
(p,m,E) = (p,v,s) and assume that all the quantities that we manipulate are smooth with respect
to space and time. Using the mass conservation equation, the momentum equation can be rewritten
dyv +v-Vv + SVp = 0. Multiplying this equation by v gives 9;(3v%) + v-V(3v°) + ;v-Vp = 0.
Subtracting this equation from 0;€ + v-VE + %V-(pv) = 0 where £ := E/p, we obtain Oie +
v-Ve + £V.v = 0. Moreover, multiplying the mass conservation equation by 0,s, multiplying the
balance of specific internal energy by d.s, adding the two results, and using the equation of state
pOes+ p?0,s = 0, we obtain the balance of specific entropy ;s +v-Vs = 0. In conclusion, we have
shown that (80.9) can be put into the form of the following first-order quasilinear system:

1
Oip+v-Vp+ pVu =0, Ov +v-Vou + ;sz 0, Ois +v-Vs =0,

which can be recast into the form (80.1) by setting

v pelT 0 vn  pn' 0
Aj(u) = %el vlly a;pel , Alu,n) = %n v-nly szn , (80.12)
0 o' vy 0 o' vn

where (€;)eq1:4 is the canonical basis of R?. The reader is invited to verify that (v-n F

9,0(p, 8), (p, F/0,p(p,8)nT,0)T) are eigenpairs of multiplicity 1. Let {Vi,...,V4_1} be such
that {n,V1,...,V4_1} forms an orthonormal basis of R?. Then (v-n, (—8sp(p, ),V ,d,p(p,s))T)
is an eigenpair for all [ € {1:d—1}, that is, the multiplicity of the eigenvalue v-n is (d — 1). O

80.2 Riemann problem

A theory for the well-posedness of (80.2) is not available for general fluxes and data, but there is
a clear notion of solution to the Riemann problem. The purpose of this section is to present some
elementary facts about this problem. Given a pair of states (ur,ur) € AXA and a unit vector
n € R%, we consider the following one-dimensional Riemann problem:

uy if z <0,

. (80.13)
ur if0< .

Ou + Oy (f(u)m) =0, u(z,0) := {

Further assumptions on the data will be made when appropriate.
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80.2.1 Expansion wave, contact discontinuity, and shock

The goal of this section is to build some elementary weak solutions to the Riemann problem (80.13).
These weak solutions will be patched together in the next section to construct a vanishing-viscosity
solution to (80.13).

Recall the matrix A(v,n) with entries defined in (80.3) for all v € A and every unit vector
n € R Let (\(v),r(v)) € R x R™ for all I € {1:m}, be the eigenpairs of A(v,n) with the
convention that A (v) < ... < A\ (v). (We omit the dependence on n to simplify the notation.)
We assume that the dependence of the eigenpairs with respect to v is at least of class C'. The
eigenpairs are often called characteristic families in the literature. The eigenvectors are normalized
in some way which will be specified later.

Definition 80.11 (Genuinely nonlinear, linearly degenerate eigenpairs). Let [ € {1:m}
andn € R? be a unit vector. We say that the l-th eigenpair is genuinely nonlinear if DX;(v)-7;(v) #
0 for allv € A, and that it is linearly degenerate if DAj(v)-r;(v) =0 for all v € A. Here, D\j(v)
1s viewed as a column vector in R™.

Example 80.12 (Scalar conservation). When m = 1, A(v) = f’(v) is the only eigenvalue. The
eigenpair (A(v), ;) is genuinely nonlinear iff f”(v) # 0 for all v € R, which is the case if f is either
strictly convex or strictly concave, and it is linearly degenerate iff f”(v) =0 for all v € R, i.e., iff
f() = av, a € R. Note that it is possible that the eigenpair is neither genuinely nonlinear nor
linearly degenerate. This situation is more difficult to handle. O

Example 80.13 (Euler equations). Recalling Example 80.10 and using the dependent variable
(p,v7,8)T, we obtain D\;-r; = —cil(gappp + 0pp), DA\orp = 0, VI € {2:d}, DAgy1-Tay1 =
¢ (50,pp + 0pp), where c(p, s) == /9,p(p, s) is the sound speed. Up to an abuse of notation, we
have £0,,p(p, s) + 0,p(p, s) = #6-,—-,—]?(7‘, s). Hence, assuming 0-,p(, s) > 0, which is the case for
many realistic fluids, the first and the last eigenvalues are genuinely nonlinear. For instance, for the
~v-law where s(p,e) := ln(eﬁp_l), we have p(p,e) = (y—1)pe and p(7, s) = (y—1)777eV"1s 50
that 0,,p(7,s) = (y+1)y(y—1)777"20~Ds > 0 for all (1,s) € (0,00)xR. Finally, the eigenpairs
for all I € {2:d} are linearly degenerate. O

Let us assume for the sake of simplicity that the eigenpairs are either genuinely nonlinear or
linearly degenerate. Let us normalize the eigenvectors in such a way that ||7;(v)||;2 = 1 if the I-th
eigenpair is linearly degenerate and DA;(v)-r;(v) = 1 if the I-th eigenpair is genuinely nonlinear.
Let us first look for a self-similar solution to (80.13) in the form w(z,t) = w(%) for some smooth
function w. Setting § := ¢ and using the chain rule, we see that u(z,t) = w(§) solves (80.13) if
and only if

A(w(§), n)w'(§) = Ew'(¢). (80.14)

This is possible only if either w is constant or (£, w’(§)) is an eigenpair of A(w(&),n). If (£, w’(§)) is
an eigenpair, there is [ € {1:m} such that \;(w(§)) = & and w'(§) is proportional to r;(w(E)), i.e.,
there is y(§) € Rs.t. w' (&) = v(&)r(w(§)). Let us assume that the I-th eigenpair is genuinely non-
linear. Then differentiating A\;(w(&)) = & with respect to &, we obtain v(£) DAj(w (€))7 (w(§)) = 1,
ie., 7(§) = 1 owing to the adopted normalization. Hence, w satisfies w’(§) = r;(w(§)) if the I-th
eigenpair is genuinely nonlinear. Let us now construct a particular weak solution to (80.13) which
we call expansion wave.

Lemma 80.14 (Expansion wave). Suppose that the l-th eigenpair is genuinely nonlinear. Let
uz € A and let £7 == N(ugz). Let §* > 0 be such that w € CY((&z — 6%, &z + 6%);R™) solves
the ordinary differential equation w'(§) = ri(w(§)) with w(€z) = uyz (this is legitimate since we
assumed that ri(v) and \(v) depend smoothly on v). (i) The identity \j(w(€)) = & holds for all
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§€({z—06"8z+07). (ii) Let {g € (§2 —07,€z) and set up :=w(Er). Let {r € (2,82 +67) and
set ug == w(&r). Then \(ur) < \(ur), and the function

ur, if § < N(ur),
U(x,t) = w({) if )\l(uL) < % < )\l(uR), (80.15)
ur  if N(ug) < 7,

is a self-similar weak solution to (80.13).

Proof. (i) Since w'(§) = r(w(€)), we have A(w(§),n)w'(§) = N(w(&))w'(§) for all £ € ({2 —

5%, &z + 6*). Owing to the normalization of r;, we infer that

d%(& — Nw(©)) = 1 — DA(w(E))-ri(w(€) = 0.

Hence, £ — \j(w(§)) is a constant function in &, and evaluating this function at £ = £z, we obtain
E=N(w(§) =&z — M(w(€z)) = &z — Mi(uz) = 0, so that

£ = M(w()), Ve (§z — 06,62+ 07).

(ii) Since &1, € (§z —0%,&2), we infer that &, = \j(w(£L)), and by definition of w,, this means that
& = N(ur). Similarly, we have £g = A\j(ug). This implies that A\j(ur) =& < €z < &r = Ni(uR).
Moreover, the above identities prove that the function w defined in (80.15) is continuous. Since
u is piecewise smooth, an argument similar to that invoked in the proof of Theorem 18.8 shows
that u is a weak solution iff it satisfies Oyu + A(u,n)0,u = 0 in the three (open) angular sectors
{£ < N(up)}, {N(ur) < 7 < Ni(ur)}, and {N(ugr) < 7} The claim trivially holds true in
the first and third sectors where w is constant, and in the second sector, the claim follows from

Alw(§),n)w' (&) = M(w(&))w'(§) = w'(§) since (80.14) is satisfied in the second sector. O

There are also solutions associated with the linearly degenerate eigenpairs. These solutions,
called contact discontinuities, are piecewise constants separated by a discontinuity moving at some
speed s.

Lemma 80.15 (Rankine—-Hugoniot). Let s € R. The function

o
w(o,t) = 44 Ti=s (80.16)
ur ifs <7,

is a weak solution to (80.13) if and only if the speed s is s.t. the following Rankine-Hugoniot
condition holds true:

f(ur)n —f(ur)n = s(ur — ug). (80.17)
Proof. Integrate (80.13) over (—1,1)x(0,¢) with ¢ < 1 and use (80.16). O

The Rankine-Hugoniot condition is a necessary and sufficient compatibility condition express-
ing that (80.16) is indeed a weak solution to (80.13).

Lemma 80.16 (Contact discontinuity). Assume that the I-th eigenpair is linearly degenerate.
Letuyz € A and set £z = N(uz). Let 6* > 0 be such that z € C((€z —6*, &2+ 8%); R™) solves the
ordinary differential equation z'(§) = r1(2(€)) with z(§z) = uz. (i) The identity A (2(€)) = Ni(uz)
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holds for all § € (7 — 0*,&z + 0%). (ii) Let &, € (§z — 0*,&z) and set uy = z(§y). Let
Er € (€2,82 + 0%) and set ur = z(¢r). Then the function defined by

_Jur Zf% < N(uz),
u(z,t) = {UR i () < =, (80.18)

is a self-similar weak solution to (80.13).

Proof. (i) We have d%)\l(z(g)) = DXN(2(£))-2'(§) = DNi(2(§))-r1(z(§)) = 0. Hence, N(z(§)) =
Ai(2(€2)) = Mi(uz) for all € € ({7 — 67, &z +67).
(ii) Recalling that we use the notation Df(z(§))n = A(z(£),n), the following argument shows
that the Rankine-Hugoniot condition holds true:

f f = o df d¢ = o Df "(€)d
(#twr) () m = [ () mag = [ Dr(a©)m )
&R ér
=, A(z(§),n)ri(2(§))dE = i Ai(z(§))mi(2(€)) d€
Er
—Nfuz) [ #(6)d¢ = Nluz)(ur - wr),
&L
We conclude the proof by invoking Lemma 80.15. [l

We finish the discussion with a third class of waves that are called shocks. We are not going
to go through the construction of these waves since they involve lengthy arguments invoking the
implicit function theorem which are tangential to the objectives of the book. The essential result
is the following.

Lemma 80.17 (Shock). Let uzy € A, assume that the eigenvalue \j(uz) has multiplicity 1,
and let £ = N(uz). (1) There exists 6* > 0 and functions s; € C°((&z — 6*,&z + 6*);R),
z| € OO((gz — 0%, &z +6");R™) s.t.

(£(z1(8)) — f(uz))n = s1(§)(z1(€) —uz), Ve (§z—0"Ez+6%). (80.19)

(ii) Let us fix &€ € (€7 — 6%, &7 + 0%) and set s := 51(€). If € < &z, set up := z/(€) and ug = uy,
whereas if £z < &, set up, = uy and ug = z/(§). Then the function defined by u(x,t) = wy, if
2 <sandu(z,t) :=upr if s < T is a self-similar weak solution to (80.13). (This solution is called
l-shock if the I-th eigenpair is genuinely nonlinear.)

Proof. See Holden and Risebro [184, Thm. 5.11] or Godlewski and Raviart [138, Thm. 1.4.1]. O

Let us now return to the Riemann problem (80.13). Given a pair of states (up,ur) € A%
the hard question consists of piecing together all the above elementary solutions so as to form one
weak solution to the Riemann problem (80.13) that is physically relevant, i.e., that is a vanishing-
viscosity solution. An answer to this question is available if the states (ur,ur) are close enough.

Theorem 80.18 (Lax). Assume that (80.13) is strictly hyperbolic (i.e., all the eigenvalues are
real with multiplicity 1) and that for all | € {1:m}, the l-th eigenpair is either genuinely nonlinear
or linearly degenerate. Then there exists 6 > 0 such that for every pair (ur,ur) € A? satisfying
lur — urllzmy < 0, the Riemann problem (80.13) has a weak solution that consists of at most
(m + 1) constant states separated by expansion waves, shocks or contact discontinuities, and this
solution is a vanishing-viscosity solution.
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Proof. See Lax [212, Thm. 9.1]. The vanishing-viscosity property is established in Bianchini and
Bressan [32, Thm. 1]. O

Theorem 80.18 says that there are 2m numbers {)\li (n,ur,uR)}ie{1:m} such that (the depen-
dency on (n,ur,ur) is omitted for simplicity)

AT <A <A < <A (80.20)

and these numbers define up to (2m + 1) sectors in the (z,t) plane (some could be reduced to a
line), {£ € (=00, A7)}, {£ € (A7, A} forall 1 € {1:m}, {£ € (N2, A7)} for all | € {2:m},
and {Z € (A, 00)}, such that the Riemann solution is uy, in the first sector {¥ € (—oo, A[')} and
ug in the last sector {£ € (\},00)}, and the solution in the other sectors is either a constant
state or an expansion wave. If \;” = /\l+, then the corresponding [-th wave is a shock or a contact
discontinuity. For all [ € {1:m}, the solution associated with the pair (X;", \;") is called I-th wave.

Definition 80.19 (Riemann fan). Let (ur,ur) € A% and n € R? be a unit vector. Let
{AE}eq1imy satisfy (80.20). The sector {A\; < % < Af} is henceforth called Riemann fan;
see Figure 80.1.

— _\+ - + -4t + -yt )\~ +
AL=AT A A A3 Ny A3 AL=A A A
ur ur
T

Figure 80.1: Example of a Riemann fan with m := 5. The 1-wave and the 4-wave are shocks or
contact discontinuities, the 2-wave, the 3-wave, and the 5-wave are expansions. The states ur,, uj,
u3, uj3, uy, wr are constant.

Remark 80.20 (Literature). Theorem 80.18 has been first proved in Lax [212, Thm. 9.1]. A
comprehensive treatment of this problem has been done in Bressan [50, Thm. 5.3]. We also refer
the reader to Holden and Risebro [184, Thm. 5.17], Godlewski and Raviart [138, Thm. 6.1] for
detailed proofs of this result. The case of strictly hyperbolic systems that may have eigenpairs
that are neither genuinely nonlinear nor linearly degenerate is treated in, e.g., Liu [221, Thm. 1.2],
Dafermos [97, Thm. 9.5.1]. In the case of general hyperbolic systems, we refer to Bianchini and
Bressan [32, §14] for characterizations of the Riemann solution using viscosity regularization. We
also refer to Young [290, Thm. 2] for the theory of the Riemann problem for the p-system with
arbitrary data (i.e., with possible formation of vacuum) and to Toro [277, Chap. 4] for the theory
of the Riemann problem for the Euler equations and a review of associated numerical methods. O

80.2.2 Maximum speed and averages

The goal of this section is to collect key notions and results on the Riemann fan that will be needed
in the next chapters, where numerical approximation schemes will be constructed. First, we will
need to have at our disposal a real number A\yax(n, ur, ur) such that

/\max(n,uL,uR) > max(|/\; (nvuLvuR)|a |)\7—i_1(n7uLa uR)Dv (8021)
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where \] and )\ satisfy (80.20), i.e., these two real numbers depend on (n,ur,ur) and are used
to define the Riemann fan (see Definition 80.19).

Definition 80.21 (Maximum wave speed). Let (ur,ur) € A% and n € R? be a unit vector.
The number max(|A\] (n,ur, ug)|, N} (n,ur, ugr)|) is called maximum wave speed in the Riemann
problem. Any real number Amax(n, ur, ur) satisfying (80.21) is called upper bound on the mazi-
mum wave speed in the Riemann problem.

Denoting by wu(n,ur,ur) the vanishing-viscosity solution to the Riemann problem (80.13)
constructed in Theorem 80.18, the first key result that we are going to use repeatedly is that this
solution satisfies for all t > 0,

if < —tA
U('I’L, ur, UR)(JI, t) _ ur, 1 T~ maX(na ur, uR)a (8022)
ur if x> tAnax(n,ur, ug).
Moreover, a quantity that will be of interest to us is the Riemann average
%
a(t,n,ur, uR) ::/ u(n,ur, ug)(z,t)de, (80.23)
1
-3

where we take 0 < t Apax(n, ur, ug) < % To state the vector-valued counterpart of Lemma 79.18,
we observe that if (7, q) is an entropy pair for (80.2), then (1, g-n) is an entropy pair for (80.13)
since Oy, (q(v) 1) = 3 i1,y Ouin(V) 0y, (E(v)m); for all v € A, all j € {1:m}, and every unit
vector n € R%.

Lemma 80.22 (Riemann average). Recall that w(t,n,ur,ur) is defined in (80.23) for 0 <
t Amax(,ur, ur) < 5. Let (n,q) be an entropy pair for (80.2). Then we have

u(t,n,ur,ur) = = (ur +ug) — t(f(ur)n — f(ur)n), (80.24a)

n(@(t,n,uL,ur)) < %(n(uL) +n(ur)) —t(q(ur)n —q(ur)n). (80.24b)

Proof. To prove (80.24a), we integrate (80.13) over (—1, 3)x(0,¢) and use that u(n, ur, ug)(z,t) =
ur if @ < tApax(n,ur,ur) and u(n,ur, ug)(z,t) = ug if * > tAnax(n,ur,ur). To prove

(80.24b), we integrate (80.5) over the same set and use Jensen’s inequality. O

80.2.3 Invariant sets

The notion of maximum principle is not valid in general for hyperbolic systems, even in the linear
case. We refer the reader to Exercises 80.6 and 80.7 for counterexamples with the linear wave
equation. Following Chueh et al. [88], Hoff [183], Smoller [263], Frid [130], we extend the notion
of maximum principle to hyperbolic systems by introducing the notion of invariant set.

Definition 80.23 (Invariant set). A convex set B C A C R™ is said to be invariant for the hy-
perbolic system (80.2) if for every pair (ur,ur) € B* and every unit vector ne R?, the vanishing-
viscosity solution to the Riemann problem (80.13), u(n,ur,ur)(x,t), is in B for a.e. x € R and

a.e. t >0 with t Apax(n,up, upr) < %, where B is the closure of B.

Lemma 80.24 (Riemann average). Let B C A C R™ be an invariant set for (80.2). Let
(ur,ur) € B* and n € R be a unit vector. (i) If t Amax(n, ur,ur) < %, thenw(t,n,ur, ur) € B.
(i) If t Amax(n,up, ug) < 3 and (ug,ur) € int(B)?, then W(t,m,ur, ug) € int (B), where int(B)
is the interior of B.
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Proof. (i) The function d(v) := inf,cg||v — 2|l is convex since B is convex. Jensen’s inequality
1
gives d(u(t,n,ur,ur)) < [, d(u(n,ur,ur)(z,t))dz = 0 because B is an invariant set. This
2
proves (i).
(i) Let w(t) := 55— j‘;\"“’fttu(n,uL,uR)(:zz,t) dz. Then we have
a(t,n,ur,ur) = (1-— 2)\maxt)%(uL +uR) + 2 maxtw(t).
The same argument as above shows that w(t) € B. Since 3(ur + ug) € int(B), w(t, n,ur, ug)
cannot belong to dB. Hence, w(t,n,ur,ur) € int(B). O

Example 80.25 (Scalar case). Assume that m = 1 and d is arbitrary, i.e., (80.2) is a scalar
conservation equation. Any interval [a,b] C R is an admissible set of states and is an invariant set,
ie., if ug,ur € [a,b], then a < u(n,ur,ur)(x,t) < b for a.e. x and a.e. t > 0. This property is
called mazimum principle; see Theorem 79.11. O

Example 80.26 (p-system). Let wi(u) := u+ [[\/—p/(s) ds, wa(u) := u — [\/=p/(s) ds if
1 <7, and wy(u) :=u— /rn(v), wa(u) := v+ /rin(v) if 1 = v (recall that p(v) := rv~7 with
r > 0 and v > 1; see Example 80.9). Let a,b € R. It can be shown that any set of the form
B:={uc R xR |a < ws(u), wi(u) <b}is an invariant set for the system (80.8) for v > 1; see
Hoff [183, Ex. 3.5, p. 597] for a proof in the context of viscous regularization and Young [290] for
a direct proof. O

Example 80.27 (Euler). The set B := {(p,m,E) |p >0, E/p— +m?/p? > 0} is an invariant
set for the compressible Euler equations. It is shown in Exercise 80.5 that B is convex. Since the
specific entropy satisfies 0;s + ©-Vs > 0, there is a minimum principle on the specific entropy, so
that the set B, := {u = (p,m",E)T | p > 0, e(u) > 0, s(p,e(u)) > r} is an invariant set for all
r € R. Tt is also shown in Exercise 80.5 that B, is convex. Note finally that it may be important
in some situations to distinguish B and int (B). In particular, the vacuum state {p = 0} and the
zero energy state {e(u) = E/p — $m?/p* = 0} do not belong to int (B). O

Exercises

Exercise 80.1 (1D linear system). (i) Let ug € LS. (R). Show that u(z,t) := ug(x — At) is a
weak solution to the problem dyu 4+ Ad,u = 0, u(z,0) = ug(z), i.e., [;° [o u(Bpd + Ap¢) dadt +
Jpuo(x)p(2,0)dz = 0 for all ¢ € Cj(RxRy). (ii) Let ug € L{S (R;R™). Consider the one-
dimensional linear system d,u + Ad,u = 0, u(z,0) = uo(x), (z,t) € RxRy, where A € R™*™ is
diagonalizable in R. Give a weak solution to this problem. (iii) Solve the 1D linear wave equation,
i.e., consider A := (COQ (1))

Exercise 80.2 (Linear wave equation). Consider the matrix A(n) := (cgn "OT ), where n is a
unit (column) vector in R?. Let {wvy,...,v4_1} be such that {n,vy,...,v4_1} is an orthonormal
basis of R%. Show that (c, (1,en)7"), (—¢, (1,—cn)T), (0, (0,v1)),. .., (0,(0,v4_1)) are eigenpairs of
A(n).

Exercise 80.3 (Entropy inequality). Let u. be the smooth function satisfying d,u.+ V-t (u.)—
eAu, = 0 in DxRy, u.(-,0) = up in D, with ¢ > 0. Let (n,q) be an entropy pair with n €
C?*(R™;R). Prove that 9yn(uc) + V-q(uc) — eAn(u.) < 0.
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Exercise 80.4 (Convexity). Let o : TxE C R? - S C R be a function of class C? such that
Oeo(r,e) > 0 for all (r,e) € TxE. (i) Show that there exists a function € : TxS — & such
that o(7,e(r,s)) = s for all (1,5) € TxS and € is of class C%. (ii) Show that e(r,0(7,¢e)) = e
for all (r,e) € Tx&. (ili) Show that the following statements are equivalent: (a) The function
€: TxS — & is strictly convex; (b) The function —o : TxE — S is strictly convex. (Hint: recall
that a function ¢ : X C R™ — R of class C? is convex in the open set X iff D?¢(x)(h,h) > 0 for
all h e R™\{0} and all z € X.)

Exercise 80.5 (Euler). Recall from Example 80.10 the conserved variable u := (p,m", E)T, the
specific internal energy e(u) := E/p — 3m?/p*, and the function ®(u) := s(p,e(u)), where s is
the specific entropy. (i) Is the function w — e(u) convex? (ii) Set ¥U(u) := —p®(u). It is shown in
Harten et al. [180, §3] that p ! K(D?W)KT = —C, where D?V is the Hessian matrix of ¥ and

1 ’UT %'UQ +e 6pp8 + %aps OT 6/768
K: =10 ply m , C .= 0 —0.8ly O
O OT p 8pes OT aees

Verify that K is invertible and C' is negative definite. Show that the function w — ¥(u) is
strictly convex. (iii) Show that the set B := {u|p > 0, e(u) > 0} is convex and that the set
B, ={u]|p>0, e(u) >0, ®(u) > r} is convex for all r € R. (See also Exercise 83.3.) (iv) Let p
be the pressure. Show that d,p(p, s) > 0. (Hint: see Exercise 80.4 and recall that de = T'ds—pdr.)

Exercise 80.6 (Wave equation blowup). Consider the linear wave equation in dimension
three, dyu + Vv = 0, v + Vu = 0, with u(x,0) = uo(|lx|s), v(x,0) = 0. Assume that
up € C?*(Ry;R). (i) Show that w must solve dyu — V-Vu = 0. (ii) Let f : R — R be such

that f(s) := Suo(s) if s > 0 and f(s) = —f(—s) if s < 0. Let us write r := |||,z and
e, = m if  # 0. Show that u(x,t) = @ + @ and v(x,t) = v(r,t)e,, where the

function v(r,t) := — 45 fot (rf'(r+7) = f(r+7)+rf'(r—7)— f(r—7)) dr solves the linear wave
equation. (Hint: use spherical coordinates.) (iii) Compute u(0,¢) for ¢ > 0. (iv) Let a € (3,1).
Let ug(r) :=0if 0 < r < 1, ug(r) := (r — 1)(2 —r)? if r € [1,2], and ug(r) := 0 if 2 < r. Show
that u(-, 1) is unbounded but u(-,1) € H(R?).

Exercise 80.7 (1D linear wave equation). Consider the 1D linear wave equation d;u +
Ot (u) = 0, where u == (p,v)7, f(u) := (pov,p(p))T, plp) = g—ip, with the constants py > 0
and a > 0. The purpose of the exercise is to show that the maximum principle does not hold
true on p for the linear wave equation. (i) Show that the system is strictly hyperbolic. (ii) Are
the characteristic families genuinely nonlinear or linearly degenerate? (iii) Consider the Riemann
problem with ur, := (pz,vr)" and ur := (pr,vr)". Express the two eigenvectors in terms of u,
and up. (iv) Solve the Riemann problem. (Hint: the solution is composed of three constant states
separated by two contact discontinuities; apply the Rankine-Hugoniot condition two times.) (v)
Give a condition on vy, — vg and pr, — pr so that mingcg p(x,t) < min(pr, pr). Give a condition
on vy, — v and pr, — pr so that minger p(z,t) > max(pr, pr). Note: this exercise shows that in
general the maximum principle does not hold true on p for the linear wave equation.
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Chapter 81

First-order approximation

This chapter focuses on the approximation of nonlinear hyperbolic systems using finite elements.
We describe a somewhat loose adaptation to finite elements of a scheme introduced by Lax [211,
p. 163]. The method, introduced in Guermond and Nazarov [153], Guermond and Popov [157], can
be informally shown to be first-order accurate in time and space and to preserve every invariant
set of the hyperbolic system. The time discretization is based on the forward Euler method and
the space discretization employs finite elements. The theory applies regardless of whether H'-
conforming or discontinuous elements are used. Higher-order extensions are presented in Chap-
ter 82 and Chapter 83. We draw the attention of the reader to the fact that from now on the
notation regarding time-stepping is slightly different from that used in Chapters 67 to 78. The
current time step is now denoted by ¢, (instead of ¢,,_1) and the update is done at t,,41 (instead
of t,,). This choice is purely aesthetic. Since we are working with explicit methods, it is shorter to
refer to current quantities with the index n than with the index (n — 1).

81.1 Scalar conservation equations

Although the method that we propose is the same whether the problem is a scalar conservation
equation or a hyperbolic system, we start by considering scalar conservation equations for sim-
plicity. Thus, this section is devoted to the space and time approximation of the nonlinear scalar
conservation equation (79.1) posed in D x (0,T) with a domain D € R% and T > 0. To simplify
questions regarding boundary conditions, we assume that Dirichlet boundary conditions can be
enforced in the form u(x,t) = up(x) for all @ € 9D and all ¢ € [0, T]. This is the case for instance
as in §79.1.1 if there is a compact subset S C D such that ug p\s is constant over each connected
component of D\S (there is only one connected component if d > 2), and there exists some time
T > 0 such that u(x,t) = up(x) for all € 9D and all ¢t € [0, 7.

81.1.1 The finite element space

We want to approximate the solution to (79.1) by using finite elements in space and the forward
FEuler scheme in time. We first present the method with continuous finite elements for simplicity
(dG extensions are discussed in Remark 81.7). Let (7p,)nen be a shape-regular family of matching
meshes so that each mesh covers D exactly. The meshes may be nonaffine. Let (IA( , ﬁ, b5 ) be the
reference element and let T : K — K be the geometric mapping for all K € 7;,. We consider the
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scalar-valued finite element space (see Chapter 19)
PE(T;) = {v € C°(D;R) | yxoTx € P, VK € Tp,}. (81.1)

The reference shape functions are denoted by {6; }icar, with N := {1:ng,}. These functions form
a basis of P with the partition of unity property ;. - 0; () =1forall x € K. The global shape
functions in Pg(7y) are denoted by {¢;}ica,, where Aj, := {1:1} and I := dim(Pg(75)). Let
j-dof : T xN — Aj, be the connectivity array s.t. ©5_sor(k,i)|xk = 0; o Ty* for all (K,i) € TpxN.
This identity together with the partition of unity property implies that

> i) =1, VzeD. (81.2)
i€ Ap

We recall that Aj, can be partitioned as Aj, = A5 U.A?, where A is the collection of the interior
nodes s.t. ¢|pp vanishes identically. This decomposition will be invoked to handle the boundary
conditions.

For all i € Ay, we denote

Z(i) :=={j € An | pjpi # 0} (81.3)

We observe that j € Z(i) iff i € Z(j). Let M be the consistent mass matrix with entries m;;, and
let M be the diagonal lumped mass matrix with entries m;, where for all i € A, and all j € Z(i),

i 1=/Ds0i(fv)<pj(fv)d:v, m; 1=/D<pi(:13)d:v. (81.4)

The partition of unity property implies that m; = > JeT() Mij- One key assumption that we shall
invoke in the rest of the chapter is that

m; >0, Vi€ Ap. (81.5)

This property holds true for linear Lagrange elements on simplices, quadrangles and hexahedra,
and for Bernstein—Bezier finite elements of any polynomial degree; see, e.g., Lai and Schumaker
[210, Chap. 2], Ainsworth [5].

81.1.2 The scheme

Let uf := Diea, U%p; € PE(Ty) be a reasonable approximation of ug (we shall be more precise
in the following sections). Let ¢, > 0 be the current time, and assume we are given some time
step 7, > 0 for all n € N. The time step may depend on n, i.e., it may vary at each time ¢,,, but
for simplicity, we are going to write 7 instead of 7,,. We also write ¢,,+1 := ¢, + 7. The space
approximation of u at time ¢, for all n € N is written

=Y Urgi € PE(T). (81.6)

€Ay

Notice that our assumption on the boundary conditions means that U = U? for all i € AJ.

The forward Euler scheme in time consists of computing uh+1, n > 0, once uy is known. We
approximate f(u}) by EgeAh F(U?)p;. This ansatz is exact if f is linear. Hence, the trunca-
tion error, and hopefully the approximation error, is at least informally second-order accurate in
space. (Recall that the truncation error is the residual that is obtained by inserting the solu-
tion to (79.1) into the scheme.) If (K, P,Y) is a Lagrange finite element of degree k and f is
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smooth, the expected order of the truncation error in space is O(h**1) (on uniform meshes) since
in thls case Z (U")cpj is just the Lagrange interpolant of f(u}). In conclusion, we have

JEAR
Y% )i dz ~ dez(z) F(U%)-cij, where the vector ¢;; € R? is defined by
Cij I:/ <p1V<pJ dx, Vl,j c A,. (817)
D
_1
This vector is zero if j & Z(i). Note that ¢;; scales like mg 4, ¢y =0foralli € A7, and ¢;; = —cj;

if 7 or j is in Aj. Moreover, the partition of unity property implies that

Y ;=0 Vi€ A, (81.8)

JEL(i)
Given u}! € PE(Ts), we then compute u) ' 1= dicA, Urtty; from

n+1 n
m IS (g0 — oy ~up) <o (81.9)

JEZL(i)

for all i € A%, and U = U? for all i € A?Y. The real number di; depends on Uy and U7} as
follows: For all i,j € Ay, with i # j,

di = max(Amax (i, U7, U )| €ij 2, Amax (i, U, U [[€ill ), (81.10)

where n;; := ¢;j/||¢ijllez and Amax(n, ur, ur) is any upper bound on the maximum wave speed in
the Riemann problem with the data (ur,ug) and the flux f-n,; as explained in §79.2. We observe
that dj; = d7, and that the definition of dj; is irrelevant in (81.10). The coefficient d}}; is called
graph viscosity (and sometimes also artificial viscosity). We prefer to employ the term “graph
vicosity” since it emphasizes that d’; is computed using the vectors ¢;; which directly encode the
mesh geometry, whereas the term artlﬁmal viscosity” usually refers to a discrete counterpart of a
viscous regularization term; see Remark 81.6 for further comments on the terminology. The actual
justification for (81.10) will be given in §81.1.3 by establishing a maximum principle and in §81.2.2
by establishing an invariant domain property for hyperbolic systems.

Remark 81.1 (Mass lumping). It is important that the mass matrix be lumped in (81.9). Tt
is indeed shown in Guermond et al. [168] that for every nonzero Lipschitz flux, there exists some
initial data {U}}ica, such that {Uj}ic4, violates the maximum principle for every choice of df;
and for all 7 > 0 when the consistent mass matrix is used. O

Remark 81.2 (Alternative formulation). Notice that the summation in (81.9) can be reduced
to j € Z(i)\{i} and that f(U%)-ci; can be replaced by (f(U7) — f(U}))-ci; owing to (81.8). O

Remark 81.3 ((81.10)). The two terms on the right-hand side of (81.10) are equal if ¢ or j is in
A$; see Exercise 81.2. The definition (81.10) is useful to handle general boundary conditions. O

Remark 81.4 (Conservation). Notice that Y-, , m;U}' = [}, uj dz and
D X dpUi-Uun =3 3 iUy - Z > djup=0
i€AL FEL(7) i€AR jEL(i) JEAEZ())

because dfy = d7 and j € ZI(i) iff i € Z(j). This implies that [pupt'dz = [ upde —
T [p V(X ea, F(UDg;) dz, for all n > 0. Since U} = UY for all j € A9, and assuming
that f(U})n; = 0 with n; = m;1 Jopmpjds for all j € AJ, the divergence formula yields
Jpupttda = [, uf) dz. One says that the scheme (81.9) is (globally) conservative. O
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Example 81.5 (1D, linear transport). Let D := (—1,1) and f(v) := f(v)e,, where e, is the
unit vector orienting R. Let 7;, be the mesh composed of the cells {[2;, Ziy1]}ie(1:7-1} with the
convention z1 := —1, zy := 1, so that Ay, = {1:1}, A = {2:-1}, and A? = {1,I}. Let P{(Ty)
be the space composed of the continuous piecewise linear functions on 7. Assuming that i € Aj,

hi—1+h;
2

we have ¢;; =0, ¢; ;-1 = —%ez, Ciit1 = %ex, and m; = with h; := x;41 — z;. The scheme

(81.9) becomes for all i € A7,
Uit —up  fUR) - f(UR)
my; =
T 2
together with U7t = U7} and U?H = U7. Let us take f(u) = Bue,. Then Amax(ur,ur) = |6

for all ur,ugr € R and d; ;-1 = %|ﬁ| = dji+1.- The scheme thus reduces to the classical upwind
approximation:

+du (Ui = U7 + di,z‘+1(U?+1 - U,

it (BB, U+ 58 - AU, U (s
, (Ut —UP) = B(Ur, — UP) if B > 0. Note finally that we also have
- N a ur) = WTl/ Vup-Ve; do 4+ |B| / Vup-V; dz.
JEL(1) Ti—1 Ti
Thus, —> ez di; (U} — Uf) can be viewed as the discrete counterpart of —V-(eVuc) with
€llan,zii] = %|ﬂ|hl fOI‘ all [ € {1:[—1}. (I

Remark 81.6 (Graph viscosity vs. viscous regularization). The name “artificial viscosity”
given to the term — ZjeZ(i) di (U7 — UP) has its origin in the following observations. Let Ojue +
V-(f(ue)) — eAu = 0 be the viscous regularization of (79.1) with ¢ > 0. Denoting by ul, the
finite element approximation of u. at t,,, the discrete counterpart of —eAul is € f p VuhVe;dz =
dez(z fD Vo;-Vy;dz. Adopting the notation v;; := efD V-V, dx and observing that
the part1t1on of unity implies dez(z) vi; = 0, we have € fD Vul, Vo, do = Z]EI(z) ¥ij (U} = U},
Referring to the material of §33.2 on the discrete maximum principle for elliptic equations, we
recall that it is essential that ~v;; =€ [ p Vi Vpidz <0 to satisfy the discrete maximum principle
for the continuous Pi-approximation of elliptic equations. The same phenomenon happens here:
we will see in §81.1.3 that it is essential that v;; < 0 for all j # 4. Therefore, we make the
change of notation dj; := —v;;, so that dj; > 0 for all j # i, and we have efD Vul, Vo;dr =
- ZjeI (i) dij (U} — UY), which is exactly the expression used in (81.9). The analogy stops here
because the deﬁn1t1on dis = —€ fD Ve;-Vy;dz has two major flaws. The first one is that the
condition djf; = —e S p Vyj-Vpidr > 0 requires unacceptable constraints on the mesh like the
acute angle condition (see Lemma 33.9 and Definition 33.11). The second one is that we know
that e should go to zero but we do not a priori know how e should go to zero in terms of the meshsize.
Taking inspiration from Example 81.5, one could come up with some reasonable heuristics, but a
better strategy consists of abandoning the definition djj; := —e fD V-V, dz in favor of (81.10),
since we will see in §81.1.3 that the definition (81.10) does not require any angle condition on the
mesh or any ad hoc heuristics on € for the maximum principle to be satisfied. O

Remark 81.7 (Extensions to dG). Notice that the only places where the finite element structure
intervenes in (81.9) are the definition of the lumped mass mass coefficients m; and the definition
of the coeflicients ¢;;. All that is said above can be extended to discontinuous finite elements
provided the coefficients m; and ¢;; are defined accordingly, and (IA( , ]3, b5 ) is a Lagrange element
or is close to being a Lagrange element (e.g., Bernstein—Bezier finite element), as further discussed
in Guermond et al. [171, §4.3]. O
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81.1.3 Maximum principle

In this section, we establish an important stability property of the scheme (81.9) with di; de-

fined in (81.10). For every unit vector n € R% and every pair (ur,ur) € RxR, we denote by

Amax (T, ur, ur) any upper bound on the maximum wave speed in the one-dimensional Riemann

problem with the data (ur, ur) and the flux f-n as explained in §79.2. We denote u(t, n, ur,,ur) :=
1

[ u(n,up, ug)(z,t) dz the Riemann average, where u(n, ur, ur)(z,t) is the solution to the one-
2

dimensional Riemann problem (see Lemma 79.18).
Theorem 81.8 (Local maximum principle for components). Let n € N. Assume that the

entries of the lumped mass matrix are positive, i.e., that (81.5) holds true. Assume that T is small
enough so that the following CFL condition is satisfied:

dn
min <1 + 27— ) >0, (81.12)
i€AZ m;
where df} = Z]GI(z)\{ i (notice that d; < 0). The following local mazimum principle is
satzsﬁed For alli € Ap,
Urtt e (Ut UM, U = min U7, UMY = max U (81.13)
JEZL() JEL(i)

Proof. The assertion (81.13) is obviously satisfied for all i € A?, so let us focus on i € A5. Using
that }°,c7(;) f(Uf')-ci; = 0 owing to (81.8), we rewrite (81.9) as follows:

2rdr, 2rdr
Ul = (1 - v = )U" s gy, (81.14)
—

mZ . . (2
JET()\{i} JET()\{4}

with UZ = (U 4+U7) —(F(U)—F(U)): 2CdZL . The first key observation is that (81.14) is a convex
combination if 7 is small enough so that (81.J12) holds true. Hence, we only need to ascertain that
min(U7, U%) < Un < max (U7, U?). The second key observation is that setting n;; := cl-j/Hcinp
and introducing the fake time ¢;; = |[[c;jl|s2/2d};, we realize that U?j = a(ti;, nij, U7, UY), a

established in Lemma 79.18 provided that ¢;j Amax(1ij, ur, ur) < % (Let us emphasize that the
time ¢;; is related to the Riemann problem (79.23) with the data (U7, U?), and that this time has

nothing to do with the current time ¢,.) Using (81.10), we have

Cijlle2 1
tij/\max(ni‘ju U Un) H U,U )\max(nija U?u U?) S S
2d% 2
Hence, the above condition on ¢;; is satisfied, and this implies that min(U}*, U%) < UZ— < max (U}, U7)
since we have ascertained that UZ- U(tij, mij, Up, UT) and the Riemann average satisfies the max-
imum principle. [l

The result of Theorem 81.8 holds true for the coordinate vector U"*!, but we do not know
yet whether this property holds true for the scalar field u”Jr1 In order to infer some information

on the approximate solution uZJr , we introduce an addltlonal assumption on the reference shape

functions. More specifically, we assume that the basis {é\z}le A 1s nonnegative, i.e., @(cﬁ) > 0 for
all # € K and all i € . This property holds true for linear Lagrange elements on simplices,
quadrangles, hexahedra, and prisms, and for Bernstein—Bezier finite elements of any polynomial
degree; see, e.g., Lai and Schumaker [210, Chap. 2], Ainsworth [5].
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Corollary 81.9 (Max1mum principle for discrete functions). Let N € N\{0}. Assume that
91(:5) >0 for all € K and all i € N and that the CFL condition (81.12) is satisfied for all
n < N. Let U2, :=minjea, U0 and U2 . := max;ec 4, UJ. Then we have

uh( ) [U?mn? UO

max]

Vax € D, Vn € {0:N}. (81.15)
Proof. For all x € D, we have up(z) = > ;c 4, Ul'wi(z), so that uj(x) is in the convex hull of
{U?}ic 4, owing to the partition of unity property (81.2) and the nonnegativity assumption on the
reference shape functions (i.e., p;(x) > 0 for all i € A,). By arguing by induction and by invoking
Theorem 81.8, one deduces that the convex hull of {U?};c 4, is in the convex set [UY, UY ]. The

min’ max

assertion (81.15) follows readily. O

Remark 81.10 (Construction of u))). Let upiy := essinfzep ug(z) and tmax := esssup,ep uo(x).
Let PE(Ty) be built using P; Lagrange elements. Then defining u{ to be the Lagrange interpolant
of ug, we have [U%. U 1 C [tmin, Umax)- Similarly, if PS(7,) is built using Bernstein-Bezier
finite elements of degree two or higher, then defining u9 to be the Bernstein-Bezier interpolant

of ug, we also have [U%, ;U% 1 C [tmin, Umax]; see [210, Eq. (2.72)]. In both cases, the discrete
maximum principle (81.15) from Corollary 81.9 is satisfied. O

Remark 81.11 (Literature). A quantity similar to the Riemann average UZ- is introduced in
Lax’s seminal paper PH p. 163]. The argument invoking the convex combination (81.14) and the
Riemann averages U,; can be traced back to the proof of Corollary 1 in Hoff [182]. This argument
is also invoked in Harten et al. [179], Tadmor [268, p. 375], Perthame and Shu [237, Thm. 3]. The
CFL condition (81.12) is named after Courant, Friedrichs, and Lewy [§11.2][91] (see also [92, §II.2,
p. 228] for the English translation). O

81.1.4 Entropy inequalities

We now show that the proposed scheme satisfies discrete entropy inequalities.

Theorem 81.12 (Entropy). Let n € N. Assume that the CFL condition (81.12) is satisfied. Let
(n,q) be an entropy pair for (79.1). Then the following discrete entropy inequality holds true for
allie Ay :

Pzt o) + [ v-( 3 q<u7>¢j>widx— S (n(UD) —n(U)) < 0. (81.16)

.
JEL(Y) JEL(Y)

Proof. Recalling that (81.14) is a convex combination owing to the CFL condition and using the
convexity of 7, we infer that

o (1o 3 T+ ¥

JET\(i} " JET()\{4}

27'd?j —n
] W(Uz‘j)-

(2

S1nce f is Lipschitz, the assumptions of Lemma 79.18 hold true. Since we have shown that

U, = a(ti;, mj, UT, U ) with the fake time ¢;; = ||ci|¢2/2d};, the inequality (79.22b) implies that

J (K

—_

n(U;;) < 5 ((U7) + (V7)) = tij(a(U) nij — q(U) miy).
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Rearranging the terms leads to

Ut —aUp) < > 2dg(n(U7) - n(up)
JET()\{1}
< X (AU = nu) = llele @(U) g — q(Uy)ny)).
JET()\{i}

The conclusion follows from the definitions of n;; and ¢;; and by observing that the summation
can be extended to all j € Z(i). O

Remark 81.13 (Global bounds). Under appropriate boundary conditions implying that there
is no entropy flux at the boundary 0D, the discrete entropy inequalities (81.16) for all ¢ € A7 lead
to the global entropy inequality >, . min(UPHh) < > ica, min(U7) for every convex function
7. O

81.2 Hyperbolic systems

In this section, we describe the time and space approximation of the hyperbolic system (80.2). To
simplify the argumentation, we assume as in §81.1 that Dirichlet boundary conditions using the
initial condition are enforced at the boundary. From now on, for every unit vector n in R% and
every pair (ur,ur) in R™XR™, A\pax(n,ur, ur) denotes either the maximum wave speed in the
Riemann problem (80.13) or any upper bound thereof (see (80.21)). Examples of how to compute
such an upper bound will be presented in §81.2.3.

81.2.1 The finite element space

The setting for the approximation in space is the same as in §81.1.1. Recall that m € N\{0} is the
number of components in the hyperbolic system (80.2). Given a shape-regular family of matching
meshes (75 )nen so that each mesh covers D exactly, we introduce the finite element space

PE(Th) = (P5(Tw)™ (81.17)

and we still denote by {¢;}ic4, the scalar-valued basis functions of P (7;,). Denoting by (ex)rec1:m}
the canonical basis of R, we use {@;ex}ica, kef{1:m} as a basis for P¢(Ty). Notice that all the
components in R™ are associated with the same scalar-valued basis function. One says that the
dependent variables are collocated.

81.2.2 The scheme

Let up) == 3.4, Ulp; € PE(Ty), with U} € R™ for all i € Ay, be a reasonable approximation
of ug. Let n € N, 7 be the time step, ¢, be the current time, and let us set ¢, 11 := ¢, + 7 (as
above the time step 7 may depend on n). Let uj 1= 37, 4 Ul'w; € PZ(Ty), with U € R™ for
all i € Ay, be the approximation at the discrete time ¢,. Note that the coordinate vector of u}
is in (R™)! = R™!. We compute thr by means of the forward Euler scheme as follows: For all
ie Ay,
UnJrl Un
"+ ) ( )-cij — di; (U] — U?)) =0, (81.18)

JEZL(i)



302 Chapter 81. First-order approximation

with the following graph viscosity coeflicients:
d;; = max()\max(nij, U?, U?)Hcij”p, )\max(nﬁ, U;L, U?)ch'l‘”p), (8119)

for all j € Z(i)\{i}, recalling that n;; := ¢i;/||cijl 2, and for all i € A?, we enforce Ut = UY.
We now generalize Theorem 81.8 and Corollary 81.9 to hyperbolic systems. Recall that A C R™
denotes an admissible set for the hyperbolic system and B C A an invariant set (see §80.2.3).

Theorem 81.14 (Invariant set for components). Let n € N. Assume that the entries of the
lumped mass matrixz are positive, i.e., (81.5) holds true. (i) Under the CFL condition (81.12), i.e.,

minze 40 (1 + 27'%) >0, we have
[{U7}ica, € B] = [{U[""}ica, € B]. (81.20)
(ii) Under the tighter CFL condition min;e 42 (1 + 27%) > 0, we have
[{U}iea, Cint(B)] = [{U;" }ica, C int(B)]. (81.21)

Proof. We proceed as in the proof of Theorem 81.8. The only difference is that now UZ-H is

either in B or int(B) owing to Lemma 80.24. The CFL condition implies that U7t is a convex
combination of objects that are all either in 5 or int(8). This proves the claim since B is a convex
set. O

Corollary 81.15 (Invariant set for discrete functions). Let N € N\{0}. Assume that the
reference shape functions satisfy 6A‘l >0 for all i € N. (i) Assume the CFL condition (81.12)
for all n < N and that {U}}ica, C B. Then {U!'}ica, C B and u} takes values in B for all
n € {0:N}. (ii) Assume the tighter CFL condition min;e a9 (1 + 2751—%) >0 for alln < N and that
{U%}ica, € int(B). Then {U'}ica, C int(B) and

uy (x) € int(B), Ve € D, Vn € {0:N}. (81.22)
Proof. Similar to that of Corollary 81.9. O

Remark 81.16 (B vs. int(B)). The distinction between B and int(B) in the above statements
may look a little bit pedantic, but there are applications where it is easier to work with int(5)
than with B. For instance, for the compressible Euler equations, the invariant set B defined in
Example 80.27 allows the vacuum state {p = 0} and the state {e = 0} in B, whereas int(B) does
not. Although theoretically admissible, these two states may pose serious numerical difficulties.
For instance, defining the velocity u = m/p is problematic when p | 0. The same type of difficulty
arises when estimating the specific entropy of a polytropic ideal gas, s(p,e) = 1n(eﬁp*1), for
p L 0and/or e | 0. In conclusion, if the initial state {U} |i € A,} does not contain the states
{p =0} and {e = 0}, the scheme (81.18) together with the graph viscosity coefficients (81.19) and
the above CFL condition never produces the states {p = 0} and {e = 0}. O

81.2.3 Upper bounds on )\,

To make the algorithm (81.18)-(81.19) fully computable, it is important to have guaranteed up-
per bounds on Apax(n,ur,ur). By going through examples, we show in this section that it
is not necessary to solve the Riemann problem exactly to derive a guaranteed upper bound on
)\max(n; ur, uR)-
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Example 81.17 (p-system). Let uy := (vp,ur),ur := (vg,ur) € Ry xR be some Riemann
data for the p-system; see Example 80.9. According to Theorem 80.18, the solution to the Riemann
problem consists of three constant states wy,, u* := (v*,u*), and ur connected by two waves. The
first wave connects wy with u*, and the second wave connects u* with wgr. It can be shown
(see, e.g., Godlewski and Raviart [138, Thm. 7.1, p. 92], Young [290], Guermond and Popov [157,
Lem. 2.5]) that

_ —p/(min(vg, vg if urp, —ugr > a,
max((p |, |xg) = | V22 min(ve, o)) | (81.29
—p/'(v*) otherwise,

where a := \/(vz — vr)(p(vr) — p(vr)) and v* is the unique solution of ¢(v) := fr(v) + fr(v) +
ur, —ugr =0and fz, Z € {L, R}, defined by

—/(p(v) = p(vz)(vz —v) if v <vg,

fz(v) = /” S ds o> 0y (81.24)

If limy 00 #(v) < 0, vacuum forms, and the equation ¢(v) = 0 has no solution. In this case, we
conventionally set v* := oo and /—p/(v*) := 0. Solving ¢(v*) = 0 can be done numerically, but

an alternative to the numerical evaluation of v* consists of estimating v* from below as follows.
Let wi® := max(w;(ur),w;(ugr)) and wi™ := min(ws(ur), wa(ug)), where the two functions
wy and wy are defined in Example 80.26. Then let uw* := (v*,u*) be the unique state such that

Wi = w; (*) and WP = wy(uw*). Assuming v > 1, an easy computation gives

S ()T 4 i
"o () o2

But the invariant set property guarantees that v* < v(ug,ur)(x,t) for all z € R and all ¢ > 0, so
that * < v*. In conclusion, replacing v* by v* in (81.23) gives the following upper bound on the
maximum wave speed:

— o -
Amax(1, up, ug) == Vop (min(vr, vg)) if ur = ur > a, (81.26)
—p/(v*) otherwise.
This construction is illustrated in Figure 81.1. O

Example 81.18 (Euler equations). We refer to Guermond and Popov [156, Lem. 4.3] for an
upper bound on Apax(n,ur, ur) in the case of the Euler equations with the co-volume equation
of state (1 — bp)p = (v — 1)pe, with b > 0. O

Example 81.19 (Shallow-water equations). We refer to Guermond et al. [170, Lem. 4.1] for
an upper bound on Apax(n,ur, ur) for the shallow-water equations. O

Remark 81.20 (Average matrix). Let A C R™ and let £ : A — R™*? be a Lipschitz flux
with components (fx1)re(1:m}.1e{1:a}- Let (f-m) for all & € {1:d} be the components of f-n for

every unit vector n € R%. Consider the average matrix A € R™*™ s.t. App = fol Ou,, (tn)p(ugr +
O(ur, — ug))df (this matrix depends on the triple (n,ur,ug) but for simplicity, we just write
A). By definition of hyperbolicity (see Definition 80.1), the matrix with entries 0,,, (f-n); is
diagonalizable, but it may not be the case of A. Anyway, if the two sates wy,up are close enough
so that A is diagonalizable, and if the Riemann problem with left and right states (ur,ur) has
a solution consisting of a single discontinuity (shock or contact for the Euler equations), then
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W1 max = wl(u) = ’LU](UR)

W2 min = wl('u) = WQ(UL)

Figure 81.1: Phase space for the p-system with two states wy and ug. Left: definition of u* such
min

that w"® = wy(u*) and W™ = wy(w*). Right: invariant set for the solution to the Riemann
problem.

the wave speed of the discontinuity is one of the eigenvalues of A; see, e.g., Bressan [50, §5.2].
In this case, the spectral radius of A is a guaranteed upper bound of the maximum wave speed.
This observation is at the origin of the popularity of the average matrix (sometimes called Roe’s
matrix). But, the above argument relies on two if’s and in general there is no guarantee that the
spectral radius of A is an upper bound of the maximum wave speed in the Riemann problem, as
demonstrated in Exercise 81.4. Although it is a common practice in the engineering literature, it
is not recommended to use the spectral radius of A as an ansatz for Apax(n, ur, ug). O

Exercises

Exercise 81.1 (1D approximation). Consider the one-dimensional problem du + V- f(u) =0
with D := (—=1,1) and f(v) := f(v)e,. Let I € N, I > 3, and consider the mesh 7, composed of
the cells [x;, x;41] for all ¢ € {1:1—1}, such that —1 =: 27 < --- < zy := 1, with h; 1= z;41 — 5.
Let P¢(Tp) be the finite element space composed of continuous piecewise linear functions on 7j.
(i) Compute ¢;;—1 and n; ;1 for all i € {2:1T}, ¢;; and m; for all i € {2:1—1}, and ¢; 11
and n; ;41 for all ¢ € {1:1—1}. (ii) Assuming that f is convex, compute Amax(72; -1, U?, UP ),
Amax(Mi—1,i, UP_ 1, UP), Amax (M1, UP, U ), and Amax(mig1,, Uy, UT).  (iii) Compute dii 4
and d;, ;. (iv) Justify (81.11).

Exercise 81.2 (Symmetry). Let i € A7. (i) Show that ¢;; = —¢;; for all j € Z(4). (ii) Show
that Amax(n5, U, U ) l[eijllez = Amax(nji, U5, U ) [lejil o2

Exercise 81.3 (Average matrix). Let A C R™ and f € Lip(A4;R™*9¢) with components
(fr1)vegr:my,ieq1:ay- Let up, ur € R™ and consider the matrix Ay := fol Oy, (En)(up +0(ur —
upr))dl. (i) Show that (f(ur)—f(ugr))n = A(ur—ug). (ii) Assume from now on that m := 1 and
set A := A, i.e., we are working with scalar equations. Compute A if ur # ug, lim,, ., A and
limy,, .y, A assuming that f is C*. (iii) Under which conditions do we have |A| = Apax (1, ur, uR)
if £ is either convex or concave? (Hint: see §79.2.) (iv) Take d}; := |A[ in (81.9) with n := n;j,
ur, := U}, and ug := U}’. Prove that Theorem 81.8 still holds true if 7 is small enough.

Exercise 81.4 (Entropy glitch). Consider the one-dimensional problem d,u 4+ V-(f(u)e,) =0
with D := (—1,1) and data ug(z) := —1 if x < 0 and ug(z) := 1 otherwise. Let I € N\{0}
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be an even number, and consider the mesh 7, composed of the cells [x;,x;41], i € {1:1-1},
such that —1 =: 21 < -+ < zy := 1 and T1 <0< Ty Let h; := xi41 — ;. Let PE(Th)
be the finite element space composed of continuous piecewise linear functions on 7. (i) Take
i = llcijllez|(f(UR) —f(U;I))/(U:‘ — U?)| if U # U and df} = llcijllez| f/(UR)| otherwise. Prove
that Theorem 81.8 still holds true if 7 is small enough. (ii) Consider Burgers’ flux f(u) := fu’e,.
Take uf (x) = Y ;c 4, Udpi(x) with U) := —1if i < 47 and U} := 1if i > 37+ 1. Using the
above definition of df;, show that the scheme (81.9) gives uj = uj for any n > 0. Comment on
this result.
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Chapter 82

Higher-order approximation

The objective of this chapter is to describe techniques that preserve the invariant domain prop-
erty of the algorithm introduced in Chapter 81 and increase its accuracy in time and space. The
argumentation for the time approximation is done for general hyperbolic systems, but the argu-
mentation for the space approximation is done for scalar conservation equations only. The general
situation is treated in Chapter 83.

82.1 Higher order in time

Keeping the invariant domain property while increasing the time accuracy can be done by using
time discretization methods called contractive or strong stability preserving (SSP) in the literature.
We are mostly going to use the SSP terminology in this chapter. This section is meant to give a
brief overview of SSP methods combined with explicit Runge-Kutta (ERK) methods, i.e., SSPRK
methods. We refer the reader to Kraaijevanger [205], Ferracina and Spijker [126], Higueras [181],
Gottlieb et al. [141] for more detailed reviews.

82.1.1 Key ideas

The key to achieve higher-order accuracy in time is to make convex combinations of forward Euler
steps that all have the invariant domain property. More precisely, each time step of a contractive
or SSP method is decomposed into substeps that are all forward Euler steps, and the final update
is constructed as a convex combination of the intermediate solutions.

Let us motivate the use of SSP methods in the context of the approximation of hyperbolic
systems by the algorithm described in (81.18). We introduce the nonlinear operator L : R™*! —
R™*! gt for all i € Ay, := {1:1}, the component L(U); € R™ is defined by

L(U); := mi > (f(Uj)'Cij —dij(U; — Ui))- (82.1)
' JET()

Recall that the dependence of the graph viscosity d;; on U;, U; is nonlinear (see (81.19)). Then
one step of the algorithm (81.18) consists of setting

Ut = U™ +7L(U"). (82.2)
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Let B C A be an invariant set. Theorem 81.14 (see also Theorem 81.8 for scalar equations) states
that under the CFL condition n
27 max 1! <1, (82.3)
i€AY My

where djj := =3 .7\ (i1 &y and dj; is evaluated from U}, U7 as in (81.19), we have
[{U}ica, Cint(B)] = [{U]""}ica, C int(B)]. (82.4)

That is, int(B) is invariant under the action of the solution operator I + 7L. The same prop-
5| < 1. We want to construct higher-order time-stepping

erty holds true for B if 27 max;e Ag T
techniques that preserve this property.
To allow for a bit more generality, we consider a finite-dimensional vector space E, a subset
A C E, a time horizon T' > 0, and a (time-dependent, nonlinear) operator L : [0,T]xA — E. We
are interested in approximating the time-evolution problem d;u — L(t,u) = 0. We assume that
this problem makes sense (for instance, L continuous in ¢ and Lipschitz in u). We further assume
that there exists a convex subset B C A and 7. > 0 such that for all ¢ € [0,7] and all s € [0, 7],

we have

[ve B] = [v+sL(t,v) € B]. (82.5)

The time-stepping methods we have in mind to solve the problem d;u = L(t,u) are s-stage
ERK schemes where every substep is a convex combination of forward Euler steps. Although the
theory of SSPRK methods can be done using the Butcher representation introduced in §69.2.4 for
TRK methods and in §78.1 for ERK methods (see, e.g., [205]), for implementation and pedagogical
purposes we are going to use a representation introduced in Shu and Osher [259, p. 445]. In
this representation (often called (a-f) representation in the SSP literature), every s-stage SSPRK
method is defined by two sets of real coefficients a, and 3, where i € {1:s} and k € {0:i—1} (that
is, 1 < k41 < i < s). One also uses the Butcher coefficients {c; };c (1.5}, but to be coherent with the
notation used in the SSP literature we shift the indices and define v, = ¢x41 for all k € {0:5—1}.
The method proceeds as follows for all n € A,: Given u™ € A, we first set w(®) := v”, and then
we compute {w®},c(1.5) by setting

w® = Z apw® + BikTL(t, + ”ykT,w(k)), Vi e {1:s}. (82.6)
ke{0:i—1}

The update at ¢, is given by w1l = w®), The coefficients a;; must satisfy Zke{o:ifl} ;=1
for all i € {1:s}. This is a simple consistency property ensuring that ™ = w® = =w® =yt
whenever L = 0. More importantly, for the method to be SSP, the coefficients a;; and 5;; must
be such that

a;, >0, Bik >0, and [k =0] = [Bi =0], (82.7)

forall 1 < k+1<i<s. Owing to the implication in (82.7), the computation of w® can be
rewritten as follows:

w® = Z Qi (w(k) +a BisTL(tn + T, w(k))), (82.8)

ke;
where K; := {k € {0:i—1} | iy # 0}. Since D2y, Qik = Y peqo.i—13 @ik = 1 and o, > 0 by
assumption, (82.8) shows that all the intermediate states w(?) are convex combinations of quantities

resulting from forward Euler steps. We henceforth set

<= inf inf a8 82.9
Cos 1= Anf  inf cin By (82.9)



Part XVI. NONLINEAR HYPERBOLIC PDES 309

Notice that it may happen that §;; = 0 and a;; # 0. In this case, one sets conventionally
aikﬁfkl = oo. The following theorem is the main result of this section.

Theorem 82.1 (Shu—Osher). Let the SSPRK method be defined in (82.6) with coefficients sat-
isfying (82.7). Let B C E be a conver set and assume that there is 7. such that (82.5) holds true.
Let cos be defined in (82.9). Then the following holds true for all T < cosTy:

[u" € B] = [u"*' € B]. (82.10)

Proof. This result has been established in a slightly different form in Shu and Osher [259, Prop. 2.1]
without invoking convexity explicitly. Assume that v € B. Let us prove by induction that w® e
B for all i € {0:s}. The assertion holds true for i = 0 since w(®) := ™. Consider now i € {1:s} and
assume that w®*) € B for all k € {0:i—1}. Setting (W) 1= w®) + a1 BT L(t, + v, w™®) for all
k € K;, (82.8) implies that w Zke’c ;2 %) The assumpmon (82.5) and T < cosT, together
with the definition (82.9) of cog, are sufficient to ascertain that z(**) € B for all k € K;. Since
Zke,@ Qi = Zke{on,l} a;x = 1 and a;r > 0 by assumption, the convexity of the set B implies
that w® € B. Hence, w® € B for all i € {0:s}. The statement for ¢ = s is the assertion. [l

Example 82.2 (Application). If it can be asserted that there exists 7., uniform w.r.t. n, s.t.
(82.3) holds true for all 7 < 7, then Theorem 82.1 can be applied for all n > 0. For example, the
reader is invited to verify that uniformity w.r.t. n can be proved for nonlinear scalar equations, the
p-system, and the shallow-water equations. It is an open (very hard) question for the compressible
Euler equations that is directly related to determining whether the velocity v := p~'m stays
bounded in time. If the independence of 7, w.r.t. n is unknown, one can still apply SSPRK methods,
but in this case the conclusion of Theorem 82.1 holds true provided that the time step is small
enough for all the forward Euler updates in (82.6) to remain in int(B). For instance, denoting by

{d]lk)’ }i.ireA, the graph viscosities associated with the forward Euler step w® -‘rO[i_klﬂikTL(W(k))
g

in (82.6), one must make sure that 2a;," Bix7 max;e A9 <lforalll1<k+1<i<s. g

Remark 82.3 (Nonnegativity of ;;). The assumption $;; > 0 can be lifted by using a trick
first suggested in Shu [258, Rem. 3.2]. If 8;x < 0, one additionally assumes that one can construct a
consistent perturbation of L, say L : [0,T]xA — E, such that s € B implies that v + sz(t, v) € B
for all ¢ € [0, T] and all s € [— 7'*,0]. Then the computation of w® in (82.6) becomes w(® =
Z{B >0} airw® + BipTL(t, + yer, w®)) + Z L <0} QikW (k) 4 ﬂlkTL(t + 7, w*). The reader
is invited to verify that Theorem 82.1 still holds true with this modification and c,s redefined as
Cos := infic (1.5} infrex, Qir|Bir|™ 1. We refer the reader to Gottlieb et al. [140], Ruuth and Spiteri

[245] for further details. For instance, with the operator L defined in (82.1), the operator L is s.t.

~ 1
LU);=— Y (f(Uj)'Cz'j +di;(U; — Ui))v
' ET(i)
i.e., one changes the sign of the graph viscosity contribution. O

Remark 82.4 (Computational efficiency). Let us consider two SSPRK methods consisting
of s; and sy stages and with coefficients cos,1 and cos 2, respectively. Assume that both methods
have the same order of accuracy. Considering that the amount of work to compute u™*! from
u™ is proportional to the number of stages, one could be led to conclude that the method with
the smallest number of stages is the most efficient. This is always the case if cos,1 = cos,2, but
the situation is different if cos1 # Cos,2. Let T be the final time one wants to reach, and let
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N1 = [T/cos, 17| and No := [T'/cos2Ts ]|, i.e., N1, Ny are the total numbers of time steps that
are necessary to reach 7' for each method. Note that N1/Na & cos.2/Cos,1. Since the amount of
work required by method I € {1, 2} is proportional to s;N;, the ratio of work for method 1 to that
for method 2 is s1N1/($2N2) & $1Cos,2/(S2C0s,1). This leads us to define the efficiency coefficient
Cet := 2=, and we conclude that the larger this coefficient, the more efficient the method. We refer

S
the reader to Gottlieb et al. [141] for a literature review of these questions. O

82.1.2 Examples

SSPRK methods composed of s stages and accurate to order p are often denoted by SSPRK(s, p).
We now go through some examples of such methods.

Example 82.5 (SSPRK(2,2)). Heun’s method, which is a second-order accurate, two-stage
ERK method, is SSP. With obvious notation, it has the following (a-f) tableau (we also include
the values of the coefficients {7y }xef0:s—1}) and it can be implemented as follows:

| 1a | 1ﬁ | 2)/ | w(l) = un+TL(tn7un)7
1119 L1 w? = su” + %(w(l) +7L(tn + 7, w(l)))’
2 2 2

leading to cos = 1. The midpoint rule (see (82.15) below), which is another second-order accurate
two-stage ERK method, is not SSP. O

Example 82.6 (SSPRK(3,3), SSPRK(4,3)). The following third-order accurate three-stage
ERK method is SSP:

| = | ﬂ | i | w(l) =" + TL(tna Un)v
1 1 0
3 1 0 1 1 ’U}(z) = %’u,n + %(w(l) + TL(tn 4 7_7,w(1)))7
1 L 1 3) . 1, n 2 2 1 2
1o 200 2|1 w® = L 4+ 2(w® 4 7Lt + 37, 0®)),

leading to cos = 1. The following third-order accurate four-stage ERK method is also SSP:

| @ | B [ 7] w = u" 4+ 7L(tn, u™),
1
(1) . (5) L (1) w® = w® + LrL(t, + 17, w®),
201 Joo L |1 w® = Fu 4+ g (w® 4 3Lt + 7 w®)),
o o o 11 ) . w® 4 Lt + 1 ®
000 1/0 00 1|1 w' = w4+ STL(t, + 5T, W),

leading to cos = 2. The efficiency coefficients of SSPRK(3,3) and SSPRK(4,3) are % and 1,

respectively (see Remark 82.4). This suggests that SSPRK (4, 3) is actually more computationally
efficient than SSPRK(3, 3). O

Example 82.7 (SSPRK(5,4)). The following (a-f) tableau describes a fourth-order accurate,
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five-stage SSPRK method (see Ruuth [244, Tab. 3]):

a
1
0.444370493651235  0.555629506348765
0.620101851488403 0 0.379898148511597
0.178079954393132 0 0 0.821920045606868
0 0 0.517231671970585  0.096059710526147  0.386708617503269
B
0.391752226571890
0 0.368410593050371
0 0 0.251891774271694
0 0 0 0.544974750228521
0 0 0 0.063692468666290  0.226007483236906
2
0 0.391752226571889  0.586079689311541  0.474542363121399 0.935010630967651

Here, we have cos &~ 1.508. Let us also mention that, as shown in Kraaijevanger [205, Thm. 9.6],
there is no SSPRK(4,4) method with 8;z >0 forall 1 <k+4+1<i<s. O

Remark 82.8 (Optimality). Following Theorem 82.1, an optimal SSPRK method is one that
maximizes the coefficient cos defined in (82.9). Given a pair (s,p), a natural question is to find
an optimal SSPRK(s,p) method. An answer to this question has been given by Kraaijevanger
[205], Ferracina and Spijker [126], Higueras [181], Ruuth [244] using fundamental tools on RK
methods developed in [205]. Referring to Remark 82.9 for more details, we just comment here on
the optimality of the above SSPRK methods. The entire family of optimal SSPRK(s,2) methods is
described in [205, Thm. 9.3]. The optimality of the SSPRK(3,3) method is shown in [205, Thm. 9.4],
that of the SSPRK(4,3) method in [205, Thm. 9.5], and that of the SSPRK(5,4) method in [205,
p. 522] (rediscovered in Spiteri and Ruuth [265]). O

82.1.3 Butcher tableau versus (a-/3) representation

Recall from §78.1 that explicit Runge-Kutta (ERK) methods are usually identified by their Butcher
tableau composed of a (strictly lower-triangular) matrix A = (a;); jeq1:5) € R**® and a vector
b= (bi)icf1:sy € R®, where s is the number of stages. The conventional representation of ERK
methods is as follows:

C1 0

C2 a1 0

c3 | azr azzx 0O
(82.11)

Cs as1 As2 e Qg s—1 0

by by -+ bs—1 bs

In all the methods considered in this chapter, we take ¢; := 0. For all n € N, given u" € A,
the update u™*! € A is obtained by first setting u™' := u™, then by computing the sequence

{’U,n’i}ie{l: s} s.t.

ut = u" 4T Z aij L(tn + c;7,u™7), Vi € {2:s}, (82.12)
je{l:i-1}

and finally by setting u"t! := u™ + Zie{lzs} 7bi L(ty + c;T,u™"?).
The connection between the representation (82.12) given by the Butcher tableau and the rep-
resentation (82.6) given by the (a-5) tableau has been investigated thoroughly in Ferracina and
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Spijker [126, Thm. 2.2], Higueras [181, Prop. 2.1&2.8]. Tt is shown therein that given an (a-3) rep-
resentation, there is a unique associated Butcher representation (see Exercise 82.1). For instance,
the Butcher tableaux of the SSPRK(2,2), SSPRK(3,3), and SSPRK(4,3) methods introduced above

are

010
0 0 0 0 1 1 0
111 0 212
1|1 0 111 1L 10 (82.13)
11 214 4 111 1 1 g
2 2 1 1 2 2 6 6 6
6 6 3 11 1 1
6 6 6 2

Recall that vy, := cy1 for all k € {0:s—1}. The Butcher tableau of the SSPRK(5,4) method is as
follows:

b1 = 0.14681187608478644956 | az1 = c2

ba = 0.24848290944497614757 | a3z = 0.21766909626116921036
bs = 0.10425883033198029567 | a3z = 0.36841059305037202075
by = 0.27443890090134945681 | a41 = 0.08269208665781075441
bs = 0.22600748323690765039 | a4z = 0.13995850219189573938
co = 0.39175222657188905833 | a4z = 0.25189177427169263984
cz = 0.58607968931154123111 | as; = 0.06796628363711496324
cq = 0.47454236312139913362 | ase = 0.11503469850463199467
cs = 0.93501063096765159845 | asz = 0.20703489859738471851
as4 = 0.54497475022851992204

(82.14)

Conversely, given a Butcher representation, one can construct infinitely many (a-3) representa-
tions. If all of them fail to deliver coefficients a; and S satisfying (82.7), the RK method is not
SSP. For instance, the midpoint rule, which is a second-order two-stage ERK method defined by
the Butcher tableau

0lo u™l =y
130 u™? =" + 27L(tn, u™t), (82.15)
0 1 W= TL(t, + %7’, u""z),

is not SSP. Indeed, one must have w(!) = ™2, which gives a19 = 1 and 19 = % One must also
have w® = "t = 4" + TL(t, + %T, u"’2), which implies that agg + 91 = 1, Broaer + P20 = 0,
B21 = 1, and the second equality requires that either Sy < 0 or sy < 0.

Remark 82.9 (Absolute monotonicity of RK methods). Following [205, Def. 2.4], an s-
stage RK method with coefficients (A, b) is said to be absolutely monotone at a given point £ <
0 if I — ¢A is nonsingular, 14+ ¢bT(I — E€A)"te > 0, AL — €A™ > 0, bT(I — €A~ > 0,
and (I — &A)te > 0, where e := (1,...,1)T € R®, and the vector inequalities are understood
componentwise. Furthermore, the method is said to be absolutely monotone on a given set S C R
if it is absolutely monotone at each £ € S. The radius of absolute monotonicity R(A,b) is defined
by
R(A,b) :=sup{r | r >0 and (A,b) is absolutely monotone on [—r,0]}.

We set R(A,b) := 0 if there is no r > 0 such that (A, b) is absolutely monotone on [—r,0]. Under
appropriate assumptions on the operator L, it is shown in [205, Thm. 5.4], Ferracina and Spijker
[126, Thm. 3.4], Higueras [181, Prop. 2.7] that the RK method is SSP if R(A,b) > 0 and in this
case, the largest possible coefficient cos is R(A, b). O
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82.2 Higher order in space for scalar equations

We revisit in this section the method introduced in §81.1 and make it higher-order accurate in
space (it is at least informally second-order accurate). The techniques presented in this section
only apply to scalar conservation equations. The general case is addressed in Chapter 83. The
material presented here is adapted from Guermond and Popov [158].

82.2.1 Heuristic motivation and preliminary result

The idea we have in mind is to reduce the graph viscosity in regions where the solution is far from a
local extremum and keep it first-order in regions where the maximum principle is in danger of being
violated. To formalize this idea, we change the notation and denote by d;" the graph viscosity
defined in (81.10). We have added the superscript “” to mean “low-order”. We introduce for all
n > 0 a collection of weights ¢! € [0,1] for all i € A}, and we define the high-order graph viscosity
as follows:

= dy" max(y, ), Vi€ Z(i)\{i}, (82.16)

with the usual convention that d := — Zj eT()\{i} d;;. The high-order approximate solution U?‘H

for all i € Ay, is still defined in (81.9), that is,

urtt —yr
ML (f(u;.l).cij _d;;(u;_u;l)) o, (82.17)

JEL(i)

but the graph viscosity is now defined in (82.16). Note that the mass matrix is still lumped. The
question that we investigate in this section is how to choose the weights ' so that Uf“ satisfies
the same local maximum principle as in Theorem 81.8, that is,

Ve [V VA R VAP _mIil(a_)U?, UM = m%(x)uy. (82.18)
JeL(e - JeL(e -

We define the local CFL number based on the low-order viscosity dfjn s.t.

27| dy;"
A= % Vi€ A3, (82.19)
where d{;" = = ez ) dfjn If all the weights ¢ are equal to one, Theorem 81.8 implies

that (82.18) holds under the CFL condition max;e 40 77" < 1.

We now establish a result that will be useful to design weights }* that are as small as possible
but are large enough so that (82.18) is still satisfied (possibly under a tighter CFL condition than
max;e 42 7' < 1.) We define the gap parameter 0} € [0, 1] s.t.

ur — e 1
g = W it UM L0, 0 = 5 otherwise. (82.20)

This definition implies that U7 = 72UN"" 4 (1 — §7)U™"™. We also define

27 Z _

+_"n, . L,n N

i o E . ; dij ’ i m; . .
JEI(it) JEI(i™)

2
no T d-m, (82.21)

]

with the subsets Z(i") = {j € Z(i) | U} < U}}, Z(i~) = {j € Z(i) | U} < U}}, and ~ET s
conventionally set to zero if Z(i%) is empty.
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Lemma 82.10 (Gap estimates). Letn > 0 and i € Aj. Assume that ! <1 and U?/I""—U?”" =+
0. Define the real numbers

= (1= 07)(1 = 20) = 01— ) 30", (s2.222)
o7 = (07 (1 =1 — (L= 0) (1 = ¥))33,"") (82.:22b)
Let UM be given by (82.17). Then we have
urtt e U 4 (UM —umyam oM — oM — gt (82.23)
Proof. See Exercise 82.4 and [158, Lem. 4.1]. O

Lemma 82.10 gives an estimate on the gaps between U?‘H and the two extreme values U;"",
Ui\/[" We are going to use this lemma in §82.2.2 and §82.2.3 to devise ways to take the weights
Y as small as possible while ensuring that 6" > 0 and 6" > 0, possibly under a tighter CFL
condition than max;e 42 7;* < 1. The statement (82.23) will then imply that the local maximum

principle (82.18) is satisfied.

82.2.2 Smoothness-based graph viscosity

The technique considered in this section is based on a measure of the local smoothness of the
solution. Assuming that UM™™ # UM we introduce the real numbers

> Z(i)\{i ﬂij(un_ U?)
ap = LZIEOME T T g g, (82.24)
> jezngiy BialUy — U7
for all ¢ € Ay, and all n > 0, where the real numbers j3;; are assumed to be nonnegative and not all
equal to zero (these numbers should not be confused with the parameters in the SSPRK method).
The idea is to define the weights 1! in (82.16) as

¥i =1(af), e Lip(0,1[0,1]), (1) =1. (82.25)

Whenever U? is a local extremum, the definition (82.24) implies that o} = 1, so that ¢! =
(1) = 1, i.e., the graph viscosity is taken equal to the low-order graph viscosity. This can
be a desirable feature since the method degenerates to first order at extrema to avoid violating
the local maximum principle. In smooth regions away from local extrema, u} is close to being
linear over the support of ¢;, and one would like to take o as small as possible. One idea is
to design the coefficients 3;; so that o) = 0 when wu} is linear. Then, when u} is close to being
linear, one expects that the numerator of (82.24) behaves like h?||D?u(&, t,,)|| g2 (raxa) at some point
€, whereas the denominator behaves like h||Vu(¢, t5)|/¢2(re) at some point ¢. In these conditions,
af = h||D*u(&, tn)l|e2raxay/ [ Vu(C, tn) 2 (rey, ie., o is of order h/lp (€p is a characteristic length
scale of D, e.g., {p := diam(D)). This makes the method (informally) second-order consistent in
smooth regions away from local extrema.

If we take ¢ := 1, the graph viscosity is equal to the low-order graph viscosity, and we know
from Theorem 81.8 that the local maximum principle (82.18) is satisfied under the CFL condition
max;e e v, < 1. In the following result, we quantify how tighter the CFL condition must be
to preserve the local maximum principle (82.18) while allowing the weights ¢ to take values in
[0,1]. Let us denote by ;" := minjcz(;) Bi; and pM = max;cz(;) fBij, and suppose that there exists
B% € (0,00) such that for all h € H,

M
0< Bij, Vi€ A, Vje€I(i), max g—m < Bt (82.26)
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Let us set ¢y := 3% max;e 4, card(Z(i)) (notice that this number is uniformly bounded w.r.t. h € H).

Theorem 82.11 (Maximum principle with tighter CFL). Let ¢» € Lip([0,1];[0,1]) be s.t.
¥(1) =1 and let ky be the Lipschitz constant of 1. Set b := (al) for all i € A, and all n > 0,
with of defined in (82.24) and the coefficients B;; satisfying the assumptions (82.26). Then the
scheme (82.17) with d}}; defined in (82.16) satisfies the local maximum principle (82.18) under the

tighter CFL condition max;e as 75" < H’i—wu

Proof. Notice first that if UM™ = UM™" then UM = U? € [UM™"™ UM"] irrespective of the value

of d%, which proves the local maximum principle. Let us assume now that UliVI’" # Ut If

K
o € {0,1}, then U? € {U™" UM™}. In this case, (82.24) implies that o” = 1 and

07 = i

7 U'L ,71_U;n,71
¥ = 1(af) = 1. Using (82.16), we infer that dZ; = d;;" max(1,¥(a?)) = d;;" for all j € Z(i). This
means that U} coincides with the low-order solution, and since the tighter CFL condition implies

the usual CFL condition (81.12), i.e., max;e4e 7, < 1, we infer from Theorem 81.8 that Uf“ €
(U™ UM, Finally, let us assume that 67 € (0,1). Letting s& 1= > jezq+) BijlUf — U] > 0 and
since —|s;” — s; | < s —s; and Z(it) C Z(i), we have

TP ks PP
—at=1-—
' sits; sty
n n M,n n
722jeI(i+)ﬂij(Uj_Ui) Ejez(i+)5ij(uj -up)
ez BilUF —UR[ = " gmult™ —ur| + g u” — un|
uMn _yn M
<9o—t =t B eard(Z(iT)) < 2¢ 1-607).

M
The last inequality is a consequence of ¢z > 5,,, card(Z(i)) for all i € Ay with 8" 1= min;ez(; Bij

and M := max;ez(;) Bi;. Likewise, using that —|s;” —s; | < s;7 — s and Z(i~) C Z(i), we infer
that

1—of <2¢40;
Let ky be the Lipschitz constant of ¢. Then 1 — ¢(a}) = (1) — ¥(af) < ky(1 —af) <
2kycs min(67,1 — 67). Recall the real numbers 67" and 6" defined in (82.22). Since 67 € (0,1)
and ;" <+, we infer that

SN = (1= 02 (1 —~P) — 02 (1 — p(af) by, "
> (1—0)(1—70") — kyeg07 (1 — 07 )7
> (1=6)(1 = (1+ kypey67)70) > 0,

provided 7}* < Hk;wu Similarly, provided again that ] < we have

1
THkyey?
S =07 (1 =) — (1= 6)(1 — () 3y, "

> 07 (1 — ") — kyeg0 (1 — 07 )"
>0 (1 — (1 + kyey(1 —07))y;") = 0.
The conclusion follows from Lemma 82.10. O

Remark 82.12 (Choosing ¢ and warnings). It is essential that (1) = 1 to ensure the
maximum principle, and it is important that ¥ («) be as close to zero as possible when « € [0, 1)
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to increase the accuracy. A good candidate is 9(a) := (%{:Z‘“’O))p with ap € [0,1) and p > 1.
Numerical tests with p := 2 and «g := 0 are reported in [158, §6], and numerical tests with p := 4
are reported in [169, §5]. We also refer the reader to [170, §7] for numerical tests on the shallow-
water equations. The reader should be aware though that being maximum principle preserving does
not guarantee that the method converges to the entropy solution; see [158] for counterexamples.
Numerical experiments show that convergence to the entropy solution is achieved if the flux f(v)-n
is either strictly convex or concave for all unit vectors n, but this may not be the case where f(v)-n
has inflection points. This problem is exacerbated as p grows and ag gets close to 1 (note that
the Lipschitz constant of ¢ grows unboundedly in this case). We refer the reader to [158, §6.2] for

more details. O

Remark 82.13 (Literature). The idea of reducing the artificial viscosity by measuring the
local smoothness of the solution was originally developed in the finite volume literature (see, e.g.,
Jameson et al. [195, Eq. (12)], Jameson [194]). Theorem 82.11 is established in Guermond and
Popov [158]. The quantity (af*)?, p > 2, is used in Burman [58] to construct a nonlinear viscosity
that yields the maximum principle and convergence to the entropy solution for Burgers’ equation
in one dimension. In Barrenechea et al. [25, Eq. (2.4)-(2.5)], this idea is combined with a graph
diffusion operator inspired from Burman and Ern [61] to solve linear scalar advection-diffusion
equations. [l

Remark 82.14 (Convergence barrier). The property that a!* = 1 when U” is a local extremum
limits the convergence order of the method in the L°°-norm. Numerical experiments reported in
[158, Tab. 6.1] show that the method is second-order accurate in space in the L'-norm, but it is
only first-order accurate in the L°°-norm. This phenomenon is similar to what is observed in the
finite volume literature for total variation diminishing schemes (TVD). As stated in Harten and
Osher [178, p. 280], “the perpetual damping of local extrema determines the cumulative global
error of the ‘high-order TVD schemes’ to be O(h) in the L>®-norm, O(h2) in the L2-norm, and
O(h?) in the L'-norm.” O

We now discuss ways to construct the coefficients 3;; to make the scheme (82.17) with d7;
defined in (82.16) linearity preserving in the following sense.

Definition 82.15 (Linearity preserving method). Methods such that d}; =0 for all j € Z(i)
when . is linear on the support of ¢; are said to be linearity preserving.

Recalling the discussion below (82.24), the motivation for such a property is to make the
scheme (informally) second-order accurate in smooth regions away from local extrema. Let us
start with continuous, piecewise linear Lagrange elements on a one-dimensional nonuniform grid
with vertices {z;}icq1.7y. Consider two consecutive cells [x; 1, x;], [z;, 7;41] with local meshsizes
hi—1 = a; — xi—1, h; == 241 — x;. Up to the boundary vertices, the support of ¢; is [2;-1, ;1]

n : . X n Ti—Ti—1 n Ti=Ti+l | |n
If uy is linear over [x; 1, x;41], then U}, e T Vil g =7 — Ui’ should be equal to zero.

3 3 : n ny [zi—zi—1] n nylzi—iqt] :
This quantity can be rewritten as (U, — U?) =5 + (UL, — U}') 5 —57. Hence, in one
dimension, it is natural to take

_ lmi =y el
Bij = e h je{i—1,i4+1}. (82.27)

Then of' = 0 if u} is linear over [x;_1, z;+1], and the method is linearity preserving if one chooses
the function ¢ so that ¢(0) = 0.

The above argument generalizes to higher dimension by making use of generalized barycentric
coordinates. Let {;}ica, be a basis composed of continuous, piecewise linear Lagrange shape
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functions associated with the Lagrange nodes {z;}ica,. Let P, be the polytope with vertices
{z}jezan gy for all i € A} (in dimension three, the boundary of P; is assumed to be formed by a
triangulation of the faces formed by the vertices {z;};ez(i)\ (i} if the cells are not tetrahedra). Note
that supp(y;) = P;. We say that {w;;(®)};ezi)\ (i} is a set of generalized barycentric coordinates
in P; if

1= Z wij (), x = Z wij(x)zj, va € RY, (82.28a)
JET(\{i} JET(\{i}
wij(x) >0, Vj € Z(3)\{i}, Vo € P, (82.28b)

The first identity in (82.28) implies that uj(zi) = > ;c7 )\ (i) wis(2i)uj, (2i). Moreover, if uj is
linear over P, the second identity implies that uj (2:) = >_;c7(i)\ 1) wij (2i)uj (2). Recalling that
for Lagrange finite elements uj,(z;) = U’, this shows that the quantity } ;.7\ (3 wij(2:) (U7 —U7)
is zero when wuj, is linear in F;. This argument shows that in this case it is natural to take

Bij == wij(z:),  VjeI(i)\{i}, (82.29)
and this makes the method linearity preserving if ¢(0) = 0.

Figure 82.1: Polygon P; associated with a vertex z; and notation for the definition of the mean-
value coordinates.

There are many ways to construct generalized barycentric coordinates. We refer the reader to
Floater [127] for a review of generalized barycentric coordinates on polygons and polyhedra. If
P; is convex, one can use the Wachspress coordinates in dimension two [283] and the technique
described in Warren et al. [284] in dimension three. When P; in not convex, an alternative consists
of using the mean-value coordinates proposed in Floater et al. [128]. Suppose that the dimension
is two. Let j # 1, z;,, 2z, be the vertices on each side of z;, and «;, be the unoriented angle sz—\izj,

l € {1,2} (see Figure 82.1). After setting p;; := tan(ajﬁf)_jmnia” /2)
J vile
at z; are defined by

, the mean-value coordinates

wij(z) = L9 e T()\{i}. (82.30)

LkeT(\ (i} Pik
If P, is star-shaped with respect to z;, the angles ayj,, [ € {1,2}, are less than 7, which proves that
wi;(z;) > 0. Note that in our case, P; is always star-shaped with respect to z;, whether K is the

unit simplex or the unit square. A similar construction is available in dimension three; see [127,
§8.3].

82.2.3 Greedy graph viscosity

The greedy graph viscosity is another technique to reduce the graph viscosity. It is entirely based
on the result of Lemma 82.10, irrespective of any smoothness considerations.
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Theorem 82.16 (Greedy graph viscosity). Let 07, v, ", and ;""" be defined in (82.20)-(82.21)

3

for alli € A, and all n > 0. Define the weights ¥} as

. 1 1-6 1 e
' = max (1 —2(1 —~") min <7__7n G o 9?)>,0> , (82.31)

2

with the convention 7 := 1 if 0} € {0,1}. Then the scheme (82.17) with df; defined in (82.16)
satisfies the local maximum principle (82.18) under the usual CFL condition max;e s v, < L.

Proof. Note first that if UM"™ = U™" then UMt = U? e [UM™", UM irrespective of the value
of dj;, which proves the local maximum principle. If 67" € {0,1}, then ¢! = 1 so that dis =
L.n ny _ L.n . . . . s : n+l _ 1n m,n M,n
dii" max(1,9}) = d;2" for all j € Z(i)\{i}, which again implies that U™ = U} € [U"", U;7"].
Finally, let us assume that 7 € (0,1). Recall the real numbers 6,"", 6™" defined in (82.22).
The definition of ¢ in (82.31) implies that ¥ > 1 — 21;75 1;31'", which in turn gives ;" =
(1= AP)(1 — 7) + 02(%7 — 1)147" > 0. Similarly, we have 7 > 1 — 2;;75 2, which gives
S = (1 —Am)07 + (¢ — 1)(1 — 02)14"" > 0. Lemma 82.10 shows that U™ € [UP™", UM

3 3

(see (82.23)). This proves the claim. O

Remark 82.17 (Small CFL number). When the local CFL number 47 is small and U? is not
a local extremum, 97" is close to 0. This shows that the method is greedier as the CFL number
decreases, whence the name. O

Remark 82.18 (Min-Max). The greedy graph viscosity based on (82.31) explicitly involves the
bounds U;™" and Ui-vl’" which are needed to compute 67 (see (82.20)), whereas the smoothness-
based graph viscosity with ¢! := ¢ (af") and o defined in (82.24) does not. O

K2

Exercises

Exercise 82.1 ((a—f) vs. Butcher representation). (i) Consider the ERK scheme de-
fined by the Butcher tableau (82.11), i.e., the matrix A € R**® and the vector b € R*. Con-
;‘r 8 of order (s + 1), with 0 := (0,...,0)T € R*. Set u() :=
u” + TZje{l:z‘—l} a;jk; for all i € {1:s}, where a;; are the entries of the matrix A. Consider
the vectors U := (u®,...,u®) ™)1 and F(U) := (L(t, + c17,uM), ... L(t, 4 com,u'®),0)7.
Show that U = u"E + 7AF(U) with E := (1,...,1)T € R**!. (i) Consider the scheme defined
by the (a-f) representation (82.6) with v := cgx41 for all & € {0:s—1}. Let a and b be the
(s +1)x(s + 1) strictly lower triangular matrices with entries a;+1 g1 := ik, bit1 k41 = Bix for
all 1 <k+1<i<s. Show that (I —a)E = E; with E; := (1,0,...,0)T € R**L. (iii) Consider
the vectors W = (w(® ..., wNT, F(W) := (L(t, + c17,w ), ..., L(t, + csm,w®~Y),0)T. Show
that W = w"E + 7(I — a) " 'bF(W). (iv) Compute the matrices a, b, and (I — a)~'b for the
SSPRK(2,2) scheme. Note: this exercise shows that given the (a-f) representation (82.6), there is
only one associated Butcher tableau. But given a Butcher tableau, there may be more than one
(a-B) representation since the factorization A = (I — a)~'b may be nonunique.

sider the matrix A =

Exercise 82.2 (Quadratic approximation). (i) Give the expression of the reference shape
functions for the Lagrange element (K, P 1,{01,02,03}) where K :=[0,1], 51(p) := p(0), 02(p) :=
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p(3), 33(p) := p(1). (ii) Compute the reference mass matrix My with entries [z 6;( b; A)@‘\ () dz.
(iii) Compute the lumped reference mass matrix M . What should be the sum of the entries of
Mp? (iv) Let D := (0,1). Let No > 1, I := 2N, —|—1,andlet0— 1 < ...<uzy:= 1. Consider the
mesh Tr, composed of the cells K, := [zam—1,Zam+1], Ym € {1:No}. Let by, i= Tomt1 — Tom—1-
Let P§(Tn) be the H'-conforming space based on 7T, using quadratic polynomials. Give the
expression of the global shape functions of P5(7y,) associated with the Lagrange nodes {x;}ic 4,
with Ay := {1:7T}. (v) Give the coefficients of the consistent mass matrix. (vi) Give the coefficients
of the lumped mass matrix. What should be the sum of the entries of M“? (vii) Is it possible to use
the above Lagrange basis together with the theory described in §81.1.2 to approximate hyperbolic
systems? (viii) Is it possible to apply Corollary 81.9 and Corollary 81.157

Exercise 82.3 (Quadratic Bernstein approximation). Consider the following reference shape
functions on K := [0, 1]:

0.(2) = (1-%2)%, 0(2):=2%8(1-17), 053):=2>

(i) Show that {51,52,53} is a basis of Py ;. Show that these functions satisfy the partition of
unity property and that p(z) = p(0)0:(Z) + p(3)602(Z) + p(1 )93( z) for all p € Py ;. (ii)-(viii) Redo
Questions (ii)-(viii) of Exercise 82.2 with the above reference shape functions.

Exercise 82.4 (Gap estimates). The objective is to prove Lemma 82.10. (i) Let UMn*! be
the update given by (81.9) with the low-order graph viscosity d{“J Consider the auxiliary states

U?j = $(U7 + UP) — (F(U}) — £(U}))- 55 defined in the proof of Theorem 81.8 for all j € Z(i),

2d55"
xn . 2‘rdL’n
and set U;"" 1= 'n" Do ieT(N{i} U . Show that
UPtt = (L= U7 + 970"+ — > (df —dg™)(U) = Up).

I ONG!

(i) Using that U;;" < < uMn iy < d;", and UM —U™" =£ 0, show that
n+1 M,n m,n M,n n n n T L.,n n
UP < U (U = U (= 01— ) = 0 3T (" ).
JEL(i™)

(iii) Using that dj; > dL qp™ and ¥ > 0, prove the upper bound in (82.23). (iv) Prove the lower

bound in (82.23).
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Chapter 83

Higher-order approximation and
limiting

This chapter is the continuation of Chapter 82. The objective is to describe techniques for the
solution of the hyperbolic system (80.2) that are at least (informally) second-order accurate in space
and invariant domain preserving. As seen in Chapter 82, one can make the method more accurate in
space by decreasing the first-order graph viscosity. Another technique, which is very efficient when
working with nonsmooth data or with solutions with shocks or contact discontinuities, consists of
using the consistent mass matrix instead of the lumped mass matrix in the approximation of the
time derivative. These two techniques increase the accuracy in space but deliver an update that
can step out of the invariant domain. We then show that this defect can be corrected by applying
a conservative convex limiting technique. Let us emphasize that the heuristics we have in mind is
that limiting should be understood as a light post-processing applied to a method that is already
entropy consistent and almost invariant domain preserving. The present material is adapted from
Guermond and Popov [158], Guermond et al. [169, 171].

83.1 Higher-order techniques

We present in this section some techniques giving higher-order accuracy in space. The two main
ideas are reducing the graph viscosity and introducing the consistent mass matrix. In particular,
using the consistent mass matrix helps taming the dispersion errors.

83.1.1 Diminishing the graph viscosity
The high-order graph viscosity is denoted by dgf'”, and the low-order graph viscosity defined in

(81.19) is denoted by dZI-fj’n, where n > 0 is the time index. Thus, we consider the following low-order
and high-order updates (see (81.18)):

mi (U Uy Y T(f(u;)-cij — (Ul - u;l)) =0, (83.1a)
JEL(i)

m (U )+ 3T r(EU)) e — d(UT - Up)) =0, (83.1b)
JEL(7)
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Owing to Theorem 81.14, the low-order scheme (83.1a) is invariant domain preserving under the
CFL condition

L,
max )" < 1 poo 2T >odgn (83.2)
ieAg% > 1 Yi = m; i T ij :

JET(\{s}

The first possibility to define the high-order update is to set the graph viscosity to zero, i.e.,
dg" =0 for all i,j € Ap. The time-stepping scheme then becomes

G,n+1 . T
uprthi= 0y - > £(U]) iy (83.3)
" JET(i)
The superscript means that, up to the lumping of the mass matrix, U?’"H is nothing but the plain

Galerkin approximation at the next time level. This choice may be suitable for linear problems,
but it is often disastrous for nonlinear conservation equations, since, although limiting eventually
makes the method invariant domain preserving, the resulting approximation may converge to an
entropy-violating weak solution. In other words, once the Galerkin approximation goes in the
wrong direction, limiting cannot put it back on the right track. A counterexample is constructed
in Exercise 83.2; see also Remark 83.13. The reader should bear in mind that being invariant
domain preserving and being entropy satisfying are not equivalent notions.

Smoothness-based graph viscosity. A better idea is to construct a high-order graph viscosity
by proceeding as in §82.2.2. One difference between scalar equations and hyperbolic systems is
that one needs now to choose the scalar quantity on which the smoothness indicator is based. One
possibility is to choose a scalar-valued function g : A — R which could be an entropy or some scalar
quantity associated with the problem in question. For the shallow-water equations, one could take
the water height. For the Euler equations, one could take g(u) := p or g(u) := p (the density or
the pressure) or g could be one of the generalized entropies g(u) := pf(®(u)) (see Example 80.10).
It is in general a good idea to choose an entropy since numerical experiments indicate that making
the graph viscosity depend on the smoothness of an entropy may help the algorithm converge to
an entropy satisfying solution. (See [169] for numerical experiments with the compressible Euler
equations.) Once g is chosen, we set G := g(U}") for all i € A, and

L |1 2Zgezangg Pi(GF = GF) (83.4)
Q= p R .
ZjeZ(i)\{i} |Bij(Gj - Gi )|

where the coefficients 3;; are meant to make the method linearity preserving. Since here it may not
be relevant to be maximum principle preserving on g(uy), one can take 3;; == — [ p Vei-Vpjd
(i.e., it is not required that 3;; > 0). One can also use one of the linearity preserving techniques
described in §82.2.2. Let ¢ € Lip([0,1];]0,1]) be s.t. ¢»(1) = 1 and #(0) = 0. The high-order
smoothness-based graph viscosity is defined by setting

Hmn . jLn n n Hn H,n
di" = dp" max(P(al), v(ef)),  dpti=— Y di" (83.5)
JET(@\{i}
As discussed in Remark 82.14, this method produces an update us"nﬂ =Y e A, U?"nﬂw that is
(informally) second-order accurate in space in the L*-norm. The reader is referred to Remark 82.12
for some warnings concerning the choice of the function .
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Entropy-based graph viscosity. We now introduce a graph viscosity that is (informally) high-
order for every polynomial degree, contrary to the one based on a smoothness indicator. It is also
entropy consistent and close to being invariant domain preserving. We do not want to rely on
the yet to be explained limiting process to enforce entropy consistency. We refer the reader to
Lemma 3.2, Lemma 4.6, and §6.1 in [158] and §5.1 in [157] for counterexamples of methods that
are invariant domain preserving but entropy violating (see also Exercise 81.4 and Exercise 83.2).
Following an idea from Guermond et al. [166, 167], a high-order graph viscosity that is entropy
consistent can be constructed by estimating a nondimensional entropy residual.

Given the current approximation U, we first compute the Galerkin prediction Ul-G’"+1 defined
n (83.3). Let (n(v), F(v)) be an entropy pair for the hyperbolic system (80.2). We estimate the
entropy residual for the degree of freedom ¢ by computing

mi G,n+1 n n n
T(Ui SR VSR (VDR Z F(U7)-ci;.
JEL(9)
But, using the definition of U?’"H, this is equivalent to computing
> (F(U7) =7 (UY)TEUT)) ey
JEZ(H)

This argument leads us to set

Ni= ) (F(UT) = (f (UP)TE(U])) e,

ieT(i

JETD (83.6)
b | X Fpels X ] ¥ e

JEL(1) ke{l:m} JEL(1)

where (fy, )re{1:m) are the R%valued rows of the flux f. We then construct a normalized entropy
viscosity ratio:
N
R} = IN?] .
T D;In,
Notice that R} € [0,1]. Moreover, N/* = 0 in the hypothetical case where n : R™ — R is linear.
Finally, the high-order graph entropy viscosity is defined by setting

(83.7)

;" i=d"max(|RPLRY)),  dpTi=— > dig (83.8)
i#JEL (1)
Remark 83.1 (Decay rate on R!"). Let us convince ourselves that R} is at least one order

smaller (in terms of the meshsize) than d;" Let us denote by Fy/ . and f/ . the maximum over

B} := conv(U7});cz(;) of the matrix norm (induced by the Euclidean norm in R™) of the Hessian
matrices D2F and D?f, respectively. Recalling that DF(U) = n/(U)TDf(U), we have

|N{*| = \ > (F(U}) = F(U}) =5/ (UD)T(£(U]) — £(U}))) -
jeI(i)

(Féiax+|\77(Un)He2 Frtax) nax leille D U7 — U7
JEI(i)

| /\

Similarly for the denominator, letting

F’ = 117161%)5‘ ||DF(’U)H@2(Rde), fl/nax ‘= max ||D]f( )HéQ(Rdem),

max veB?
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we have
IDP] < (s + 10/ (U2 frnax) max fleizllez D 11UF = U7 e
JEL(i) =
JEI(d)
Hence, R} scales at most like O(h/¢p), where h is the meshsize and ¢p a characteristic length of
D, e.g., {p = diam(D). O

Remark 83.2 (Euler equations, relative entropy). Letting § be an arbitrary constant, the
change of entropy pf(s) — p(f(s)—p) for the Euler equations does not change the value of N7*. To
account for this invariance, it is better to use the relative entropy n*(U) = p™(f(2(U))— f(2(U")))
instead of p" f(®(U), since this makes the definition of R} invariant under the transformation

pf(s) = plaf(s) — p) for all o, 5 € R. O

83.1.2 Dispersion correction: consistent mass matrix

Recall that the two time-stepping schemes in (83.1) assume that the mass matrix is lumped.
As emphasized in Remark 81.1, lumping is essential for these algorithms to be invariant domain
preserving under a CFL condition. Although lumping the mass matrix does not affect the overall
accuracy of the low-order method for smooth solutions, it nevertheless induces dispersion errors
that have adverse effects when solving equations with nonsmooth initial data or with discontinuous
solutions. It also impacts the accuracy of the higher-order methods. Some of these problems can
be solved by using the consistent mass matrix. In particular, the dispersion phenomenon is well
illustrated in dimension one on a uniform grid.

Proposition 83.3 (Dispersion error). Consider a uniform mesh of size h over the interval
D = (0,1). Let {x;}ica, be the mesh vertices. Let (mij)ica, jez() be the coefficients of the
consistent mass matriz for continuous Py finite elements. Let 8 € R. Let u € CS(DxRy) solve
Oy + B0y,u = 0. The following holds true for all i € Aj:

(Tip1,t) —ulzi—1,1)

Byu(zi,t) + B2 = BR2C, (x4, 1) + O(hY),

2h
ij i1, t) —u(Ti—1,t ~
S 2 (e, 1) ) —u@ionl) a0 4 000),
= Mmy 2h
JEZ(i)
with Cy(x;,t) := $0paou(z;,t) and Culxit) = —ﬁ@mmmu(:vi,t).
Proof. See Exercise 83.1. O

The above result shows that the leading term of the consistency error at the interior grid points
is O(h*) when using the consistent mass matrix, whereas it is O(h?) when using the lumped mass
matrix. In other words, the P; approximation is superconvergent at the grid points when using
the consistent mass matrix. The reader is referred to Christon et al. [85], Guermond and Pasquetti
[154], Ainsworth [6], Thompson [274] for more details on this topic. The beneficial effects of the
consistent mass matrix are particularly visible when solving problems with nonsmooth solutions.

In the rest of this chapter, we are going to assume that the provisional higher-order update

U™ s computed using the consistent mass matrix, i.e., we replace (83.1b) by
> B v+ Y (f(uj)-cij — U — v )) —o, (83.9)
JEZL(4) JEL()

for some high-order graph viscosity dg" (its specific value is irrelevant in what follows). Let
us emphasize that the price to pay to partially eliminate the dispersion errors is the loss of the
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invariant domain property. This question is addressed in §83.2 using limiting techniques to post-
process UL,

Remark 83.4 (Approximate inverse of the mass matrix). It is possible to avoid inverting
the consistent mass matrix by proceeding for instance as in Abgrall [1], Guermond and Pasquetti

[154]. Let M be the consistent mass matrix, M the lumped mass matrix, and B := (W—M)ﬂfl.

It is shown in [154, Prop. 3.2] that one can approximate M~ = M (Z-B)~! by M (Z+B) for
P, finite elements, since in this case the spectral radius of B is smaller than one; see Exercise 28.9.
Denoting by G" the vector with entries 3,7, (£(U7})-ci; — dg"(U? —U}")), the provisional higher-

order update can be obtained as U1 = U — M (Z+4B)G", which only requires the inversion
of the lumped mass matrix. [l

83.2 Limiting

We show in this section how the provisional update yintt

map U™ — U™ invariant domain preserving.

can be post-processed to make the

83.2.1 Key principles

The main idea for limiting consists of working with a low-order update U™ which is invariant

domain preserving under the CFL condition (83.2), and a provisional higher-order update U™
which may step out of the invariant domain. The low-order update UL is obtained from (83.1a),
and the higher-order update U™ is obtained from (83.9). (The present techniques can also be
adapted if U™ is obtained from (83.1b) using the lumped mass matrix.) An invariant domain
preserving update U™ is then obtained by combining U*" ! and U™ "1, Let us proceed naively
for the time being, and let us assume that the invariant domain property consists of satisfying some
constraint ¥(U;) > 0 for all i € Aj,. Here, a key property of the function ¥ is quasiconcavity.

Definition 83.5 (Quasiconcavity). Given a conver set B C R™, we say that a continuous

function ¥ : B — R is quasiconcave if every upper level set of ¥ is convex, i.e., the set L (¥) :=
{U € B|Y(U)> A} is convex for all A € R.

Note that concavity implies quasiconcavity, but the converse is not true. For instance, the
Gaussian function ¥(z) := e~ with B := R is quasiconcave but not concave. A simple result
highlighting the difference between quasiconcavity and concavity is that a function ¥ : B — R is
quasiconcave iff for every finite set {U;}ic; C B and all numbers {0;}ic; C [0,1] with >, 0; =1,
one has W(} ., 0;U;) > min;e; W(U;) (see Exercise 83.3(i)). Notice that min;er W(U;) is smaller
than ), ; 0;¥(U;) which is the lower bound that is attained if ¥ is concave.

Example 83.6 (Euler equations). It is shown in Exercise 83.3(ii) that in the context of the
Euler equations, the specific internal energy e(w) and the specific entropy ®(u) are quasiconcave
functions. O

Let i € A5 and assume that U"" is in the invariant domain Lo(¥), i.e., ¥(U") > 0. The
set JMTL = {0 € [0,1] | U((1 — U™ 4 U1 > 0} is nonempty (since 0 € J'1), so that it
makes sense to define K?H = max, jn+1 £. Setting

U (1 b e @210



326 Chapter 83. Higher-order approximation and limiting

then leads to W(U!™) > 0 for all i € A, ie., UIT! also lies in the invariant domain Lo(®).
If the high-order graph viscosity is reasonably defined, one can reasonably expect that the above
algorithm returns ff“ ~ 1 most of the times, which would mean that U™ is very close to yintt
i.e., it is reasonable to expect that U™ is high-order accurate.

We stop at this point to realize that the above program has one important flaw: it is not (glob-
ally) conservative. More precisely, using that ), A UL et = ic A m;U}" under appropriate

boundary conditions (see Remark 81.4), we have

Z mlUnJrl Z mZUn+ Z ms €n+1(UH ,n+1 UZL,n-i-l)7

i€ Ay i€A, €A

)

but we cannot conclude that ZieAh miU?Jr1 = ZiE.Ah m;U} since there is no reason for the

quantity >, 4, m MU Ul o be zero. The rest of this section consists of addressing

this issue. We are going to adapt the limiting technique described above to make it (globally)
conservative. The two key words we are going to invoke from now on will be quasiconcavity and
conservation.

83.2.2 Conservative algebraic formulation

In this section, we formulate a relation between UY"*! and U™ that properly accounts for
(global) conservation. Since the (global) conservativity of the low-order and the high-order schemes
S L,nt1 H,nt1

implies that 3, , m;U; = Y iea, MU and 3o, om;U; = > iea, MU}, we have

> mU =y mup (83.11)

€A i€AR

Subtracting (83.1a) from (83.9), we obtain

mi (U — Uty = N AU - U7 7 (d " — d™) (U] — U7,
JEL(3)

with A := m;0;; — m;;. The above identity can be rewritten in a more concise way as follows:

mi(U -t = N AT (83.12)
JEZ(i)
with
AL = Ay (U —u? — (U - UD)) + r(d " - dT) (U - U, (83.13)

where we used that Zjel'(i) Aj; = 0. The key observation at this point is that the matrix
A}, is skew-symmetric. Then the (global) conservation property (83.11) can be proved (again)
from (83.12) by simply summing (83.12) over i € Aj;, and using the skew-symmetry of A}

From now on, irrespective of the exact way the provisional high-order update is computed,
we assume that UJ"" ™' and U™ satisfy (83.12) with the requirement that the coefficients

H,n+1

AZ— € R™ are skew-symmetric. Since it is not guaranteed that U, is in the invariant domain

for all i € A}, we are going to post-process Ul-H 1 But instead of setting U?H = U{-“’"H +
ettt —ub ) as we naively did in §83.2.1, we now set

mUPT = m Ul - N AT (83.14)
JEL(i)
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where the limiting coefficients £}; are going to be chosen in the interval [0,1] with the symmetry
constraint £ = {7, for all j € Z(i) and all ¢ € Aj,. Thus, the limiting coefficients are no longer
attached to nodes but to pairs of nodes.

Lemma 83.7 (Conservation). Assume that (] = (3, for all j € Z(i) and all i € Ay. Then
n+ L.n
ica, MiU; = = Diea, MYy o

Proof. Let Z, = {(i,j) € Ap x Ap | i € Z(j),j € Z(i)}. The symmetry of £}, and the skew-
symmetry of A, imply that

3 mi(ug”1 — U}"“) - Y oA

i€Ap i€ Ay, jEL(4)
1 mn n n n 1 mn n mn n
= > 5 (G5AT + GAT) = > S (LA — G5A;) =0 O
(i,7)€EZn (i,7)€Zn

Remark 83.8 (Anti-diffusion). Assume that the provisional high-order update U™ is com-
puted with the lumped matrix instead of the consistent mass matrix and dg" =0, i.e., we use (83.3)
and set U = UGt Then A, = —Td;-’n(U? — U?), and inserting the definition of U™
into (83.14) gives

mi(U = U + S r(E(UD) ey — (- )d (U~ U7 ) =0

JEL(3)

Hence, in this case, limiting is equivalent to replacing d;" by (1 —ffj)dzn In other words, limiting
has an anti-diffusive effect, i.e., it reduces the graph viscosity. [l
Remark 83.9 (Approximate inverse of the mass matrix). Recalling Remark 83.4, one can
avoid the inverse of the consistent mass matrix. Recalling that B := (M — M)ﬂil, we observe
that 3 czq) Bij =1— Z]EI(z) =0forallie Ah Subtracting the low-order equation (81.18)

from the high-order equation UH w1 =U"-7M (I + B)G" obtained in Remark 83.4, we obtain

m; (U -ty = 1 Z —(8ij + Bij)G} + £(U})-c;j — dis" (U} — U})
JEL(3)
=7 Y =BG} + (d;" — dii")(U} — U}).

JEL(1)

Setting A := —TBZ-J-(G?—G?)—l-T(dE-’n —d?j’")(U?— U}'), which is legitimate since } . 7(;) Bij = 0
the above identity takes the same form as (83.12). O

83.2.3 Boris—Book-Zalesak’s limiting for scalar equations

In this section, we introduce a limiting technique developed by Boris and Book [39] and Zalesak
[291] for scalar equations and called Fluxz Corrected Transport (FCT). We refer the reader to
Kuzmin et al. [209] for a review of this topic.

We drop the time index n whenever the context is unambiguous. Let us assume that the low-
order update satisfies some minimum and maximum principle, say, there are two vectors U™ € R/
and Umax ¢ R! s.t.

UF € [ulmin Umax] . Vi€ Ay, (83.15)
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For instance, U?li“ = minjez(;) UP and U™ 1= max;cz(;) U are possible definitions of U;“i“ and
umax,

There are (infinitely) many ways to define the limiting coefficients ¢;;. The method described
in [291] consists of first computing the following coefficients P;", P,", Qf, Q;, R, and R; for all
1€ Ap:

Pt = Z max{0,A;;}, P = Z min{0, A;; }, (83.16)
JEL(i) JEL(i)
QF = m;(UP™ — U}), Q; :=m; (U™ — U}, (83.17)
- QF + - Q7 -
Rf = min{l, 5=} BT A0, R = min{l, =} B #0, (83.18)
1 Pt =0, 1 P =0.
Then the limiting coefficients /;; are defined as follows:

in{R, R;} ifA;; >0,
lij := mfn{ v b A, - (83.19)

min{ R; ,R;} otherwise.

Lemma 83.10 (Limiting coefficients). The definitions (83.16)~(83.19) imply P, < 0 < P;",
Q;gOng,OSR;,OngforallieAh, and

fij S [O, 1], fij = fji, Vj e I(’L), Vi € Ap,. (8320)

Proof. The properties on Pf, Q;t, R;t follow immediately from the definitions (83.16)—(83.18) and
the assumption (83.15). The definitions of R, and R; imply that 0 < ¢;; < 1. Let us now prove
that éij = éﬂ Assume that Aij Z 0. Then Aji = _Aij S 0. The definitions of gij and éji 1mply
in turn that ¢;; = min{Rj,Rj_} and /j; = min{Rj_,Rj}, ie., £;j = {;j;. The proof for the case
A;; <0 is identical. O

Theorem 83.11 (Maximum principle). Let U™ Umax ¢ RT pe s.t. (83.15) holds true. Then
the update given by (83.14) with ¢;; defined in (83.19) satisfies

urtt g [umin ymex)) Vi € Asj. (83.21)

Proof. Assume that P;” # 0. By (83.14) and the definition of ¢;;, we have

mi(U?"'l - U%) = Z fiinj < Z fiinj = Z mln{Rf,RJ_}AU
) )

JET(i JET(i jez(i)
+ Q/f
< D RMAGS D TRAG
JEL() JEL(E)
Qi
= pr > max{0,Ay} = QF = my (U™ - Up),
L jET()

which proves that Ut < Uma* when P # 0. If P;" = 0, then m; (U} — UF) <0 < m,(URax —
UL), which proves again that U;”l < Umax_ The lower bound, UMt < U;’H, is proved similarly. [

Remark 83.12 (Uma*, Umin), The maximum principle is satisfied independently of the value of
Umax and U™ provided that (83.15) holds true. O
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Remark 83.13 (FCT counterexample). One must be careful when using limiting. For instance,
without changing the low-order update, one could consider the method for which the provisional
high-order update is the Galerkin solution, i.e., dg" = 0. Then applying FCT to the pair low-
order/Galerkin produces a method that is high-order accurate in space and maximum principle
preserving. This recipe is indeed a good method for solving linear equations, but it may fail to
converge to the entropy solution when solving nonlinear equations. See Exercise 83.2 and [158,
Lem. 4.6] for a counterexample. O

83.2.4 Convex limiting for hyperbolic systems

We return in this section to hyperbolic systems. It is no longer possible to apply the FCT method-
ology because the maximum principle is no longer meaningful, even if the system is linear. To be
fully convinced, consider the one-dimensional linear wave equation 0; p+pgd,v = 0, Osv+ g—jaw p=0,
with constants pg > 0 and a > 0. In this case, one may wonder whether p, the scalar component
of u = (p,v)7, satisfies some sort of maximum principle. It is shown in Exercise 80.7 that it is
not the case: one can always find initial data, (po,v0)T, s.t. either ming, 43 p(x,t) < ming po(z)
or maxg, 4y p(z,t) > max, po(v). The situation is even worse in dimension three as shown in
Exercise 80.6.

We have seen in §80.2.3 that the notion of maximum principle must be replaced by the notion
of invariant set. But, this notion is not rich enough for our purpose since it is global. For the
Euler equations for instance, one family of natural invariant sets is B, := {u = (p,m, E)" | p >
0, e(u) > 0, s(p,e(uw)) > r}, r € R. But asserting that conditions like p > 0, e(u) > 0,
s(p,e(u)) > r be satisfied for the update U™ is far poorer than enforcing a bound like (83.21)
where the values of the lower and upper bounds are local. To be really efficient and to eliminate
(or reduce) local “oscillations”, limiting should be local. We now present a technique introduced
in Guermond et al. [169, 171] and called convez limiting that does exactly that.

Let us recall that the intermediate states U,;, for all j € Z(i)\{i} and all i € A3, defined by

ij>

e

U - %(ug +U7) — (E(UT) — £(UD))

Cij
n
242

(83.22)

)

are essential to establish the invariant domain property of the scheme (83.1a) under the CFL
condition (83.2). In particular, setting Uy := U, we have U™ ¢ CONVjez(s) (UZ—), which
immediately implies the following result.

Lemma 83.14 (Lower bound). Let ¥ : A — R™ be an arbitrary quasiconcave function. Then
under the CFL condition (83.2), we have \IJ(UZI-J"nJrl) > minjez(;) \IJ(UZ) for alli e Aj.

We now have the right localizing tool in hand. Given a quasiconcave function ¥, we are going
to construct some limiting technique so that the post-processed update U?H satisfies \II(U?H) >
minjez(i) \IJ(UZ) for all ¢ S AZ
Remark 83.15 (Oscillations). One should be careful about the meaning of the generic word
“oscillations” when working with hyperbolic systems, since this concept is essentially scalar. It
usually refers to the graph of some scalar-valued function that unexpectedly goes above or below
some reference value and then comes back within the expected bounds. This notion is somewhat
irrelevant for hyperbolic systems. For instance, there exist hyperbolic systems such that the in-
variant domain preserving technique (83.1a) produces an approximate solution with one Cartesian
component that “oscillates”, but the said approximation actually stays in every invariant set of
the PDEs (see, e.g., [157, §5.3]). O
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We now drop the time index n and assume that the higher-order provisional update UY and
the low-order update UY are related by

’I”I’LZUfI :mlUlL—i- Z Aij,
JEL(d)

where A;; = —Aj; (see (83.12) in §83.2.2). We now depart from the FCT algorithm by introducing
parameters 0;; € (0,1) for all j € Z(i) and all ¢ € Aj,. Two typical examples are as follows: (1)
0;; = 24, j € Z(i); (2) 0;; = 0 and 0;; = (card(Z(i)) —1)~* for all j € Z(i)\{i}. (The numerical
illustrations reported in [169] have been done with the second choice.) Note that both examples

satisfy the important property

> bij=1, Vi€ A (83.23)
JEL()
Then we have )
U= > 0,(Uf +P;;) with Pj;:= mAU, (83.24)

JEL(i)
i.e., Uil is a convex combination of {U} + P;; }iez(s)- Our main result is the following.

Theorem 83.16 (Convex limiting). Let U9 : A — R™ be a quasiconcave function and assume
that WO(U}) > 0. For alli € Ay and all §j € Z(3), let 5 € 10,1] be defined by

i)l if WO(Uy + Py;) >0,
I\ max{¢ € [0,1] | ¥O(U¥ + ¢P;;) > 0} otherwise.
(i) We have WO(U} + (P;;) > 0 for all £ € [0, ¢5]. (ii) Setting £;; := min(¢} ), we have ¥O(UF +

777

liiPij) >0 and l;; = L;; for all j € Z(i) and all i € Ay. (iil) The following inequality holds true:

\1/0< > 6i(U7 +eijpij)> > 0.
JEL()

Proof. Consider the upper level set Lo(¥?) := {V € A | ¥°(V) > 0} which is a convex set since
U0 is quasiconcave.
(i) First, if WO(U} + Py;) > 0, we have WO(U}' + ¢P;;) > 0 for all £ € [0, 1], because U} € Lo(¥?),
Ul + Py € Lo(0°), and Lo(¥°) is a convex set. Second, if ¥O(ULX 4 P;;) < 0, we observe that t
is uniquely defined, and for all ¢ [0,@;-], we have WO(U} + (P,;) > 0 by the same argument as
above.
(it) Since £;; = min(¢?, ) < ¢4, the above construction implies that WO(U}'+£;;P;;) > 0. Moreover,
the symmetry of ¢;; results from its definition.
(iii) All the limited states U} 4 £;;P;; are in Lo(®°) for all j € Z(i). Since the set Lo(¥°) is convex,
the convex combination ZjeZ(i) 0:;(UF +£;;Py;) is in Lo(T0), ie., \IIO(ZjeI(i) 0:; (U} + £y Pij)) >
0. O

The idea behind Theorem 83.16 is illustrated in Figure 83.1. This theorem is used as follows.
Given some quasiconcave function ¥ : A — R, we define U9(V) := ¥(V) — min;c7(;) ¥(Uj;) for all
i € AS. Owing to Lemma 83.14, we have W9(U}') > 0 (under the CFL condition (83.2)), which is
the key assumption in Theorem 83.16. Then we compute the symmetric limiting matrix /;; as in
the theorem, and we set

miU?Jrl = TI”LZ'UZL + Z Cii ;. (83.25)
JEL(i)
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Figure 83.1: Convex limiting: illustration of Theorem 83.16.

This construction implies that W(U?*!) > min;ez(;) ¥(U;;), which is the expected invariant do-
main property.

Remark 83.17 (Multiple limiting). In general, we have to consider families of quasiconcave
functions {{¥!};cphier, ¥l @ BY — R, where B ¢ R™ is the convex admissible set for the

function W!. The list £ describes the nature of the functions. It is readily verified that the
function ¥ := minje, Ul : Nice B! — R is quasiconcave and that its upper level sets are such

that Ly (\) = ;e Lyt (A). The list £ is sometimes ordered in the sense that B cBLifl > 1.
Let us illustrate this concept with the compressible Euler equations. Usually, one starts with

B! := R™ to enforce a local minimum principle on the density (which implies positivity of the
density). One can also take B2 := R™ to enforce a local maximum principle on the density by using
¥ (U) := —p. Then one can consider B? := {U € B! | p > 0} to enforce a local minimum principle

on the (specific) internal energy (which implies positivity of the (specific) internal energy). One
can finally set B* := {U € B? | ¢(U) > 0} to enforce a local minimum principle on the specific
entropy. O

Example 83.18 (Linear V). It can happen that ¥ is linear. For the Euler equations for instance,
the density p and its opposite —p are linear functionals of the conserved variable u := (p,m, E)T.
One can then apply Theorem 83.16 by setting either W(u) = p — p™ or WU(u) = pa* — p

min § = maxez(;) pij- Limiting w.r.t. these two functionals gives

with p™" := minjez ;) p;; and pj

pmin < p?“ < pi"®*. The computation of 6; is trivial in this case. Provided the CFL number is
small enough, Ttem (ii) in Theorem 81.14 implies that pii® := minjez(;) pi; > 0, Le., p?“ > 0 for
all i € A7. O

Example 83.19 (Quadratic V). If ¥ is quadratic, computing the parameter é; defined in The-
orem 83.16 amounts to solving a quadratic equation. After setting a := %P;';»DQ\IJPZ-J-, b =
(DW(UY)TP,;, and ¢ := ¥(U"), we have W(U" + tP;;) = lat® + bt + c. Let to be the small-
est positive root of the equation at? 4+ bt + ¢ = 0 with the convention that tq := 1 if the equation
has no positive root. Then we set E;'- = min(to, 1). g

Remark 83.20 (Reduction to a quadratic functional). Assume that one wants to limit
the quasiconcave functional ¥ : B — R. Assume that there exists ¢ : B — R and ¢¢ € (0,1]
st ¢(U" 4+ ¢P;;) > 0 for all £ € [0,£?]. Assume also that [0,£9] > £+ (¢®)(U" + (Py;) is
quadratic, ¥(U") > 0 and ¥(U" 4 ¢?P;;) < 0. Then for all £ € [0,£?] we have U(U™ + (P;;) > 0
iff (p¥)(U" + ¢P;;) > 0 and W(U" + ¢P;;) = 0 iff (¢¥)(U" + (P;;) = 0. Hence, instead of
doing a nonlinear line search on the quasiconcave functional [0, £?] 3 ¢ — ¥ (U™ + (P;;), one can
compute the limiter 6; € [0,£%] defined in Theorem 83.16 by simply solving the quadratic equation
(p)(U" +¢P;;) = 0, and this can be done as explained in Example 83.19. Whether the functional
¢V is quasiconcave or not is irrelevant here. O

Example 83.21 (Euler equations). Let us illustrate the technique from Remark 83.20 with

the Euler equations. Consider the internal energy £(u) := E — % p~'m?2. This function is concave



332 Chapter 83. Higher-order approximation and limiting

because its second order Fréchet derivative at w is s.t. D?E(u)((a, b, c), (a,b,c)) = —%(%a —b)?
for all (a,b,c) € RxRYxR. Hence, the specific internal energy e(u) := %E(u) is quasiconcave; see

Exercise 83.3. Let us set /"™ := minjez(; e(UZ—), U(u) := e(u) — e and ¢(u) := p?. Notice
that (¢V)(u) := pE—im?— p%e™™ is quadratic (but this functional is neither convex nor concave).
Assume that limiting on the density is done first with the limiting parameter ﬂf **. Then computing
é; can be done easily by solving a quadratic equation as explained above, i.e., 63» = min(tp, 1, E? 1)

After limiting, we have pf T E — L(m[H1)2 = (pit1)2e(UPH) > (pI't!)2ein. Assuming that

the CFL number is small enough so that Item (ii) in Theorem 81.14 implies pi"* := min;ez(;) pi; >
0 and €™ := minjez(; e(UZ—) > 0, we obtain e(U™") > e > 0 (because pI'™ > pPin > 0).
The above technique can also be used to limit with respect to the kinetic energy k(u) := %p’lmQ.
The negative of the kinetic energy is quasiconcave since pk = —%m2 is concave; see Exercise 83.3.
Then setting k™** := max;ez(; EZ—, limiting the quasiconcave functional ¥(u) := —k + k™** by
using the quadratic functional p¥(u) := —im? + pk™** gives k(U < kmax, O

In the general case, the computation of the limiting parameters Z;- can be done as follows. We

observe that the equation W(U¥ + tP;;) = 0 has at most two roots (possibly equal) because the
upper level set Lo(¥Y) = {U € A| ¥%(U) > 0} is convex and every line that intersects Lo(¥°)
crosses the boundary of Lo(¥?) at two points (at most), say t_ < t,, (t_ = t, when the line is
tangent to the boundary of Lo(¥°)). Notice that ¢ < 0 since ¥O(U}) > 0. (i) If WO(U} +P;;) > 0,
then t, > 1 and the entire segment {U¥ + tP;; | t € [0,t9 = 1]} is in Lo(¥°) by convexity. Thus,
we set to := 1. (ii) If ¥O(U} + Py;) < 0 and WO(U}) > 0, then t, € (0,1), and setting to := ¢, the
entire segment {UX +1P;; | ¢ € [0, 0]} is in Lo(¥°). Note that in this case ¢ is the unique positive
root to the equation WO(U}+tP;;) = 0. (iii) Assume finally that WO(U}F+P;;) < 0 and ¥°(U}) = 0.
There are two possibilities: (iii.a) If Di(UX)-P;; < 0 then by convexity ¥O(U} + tP;;) < 0 for
all t > 0. Hence, t; = 0 is the largest nonnegative root of the equation WO(U} + tP;;) = 0 and
therefore to =t = 0. (iii.b) In the other case, D1 (U})-P;; > 0, we have that 0 < ¢, < 1 and we
set 1o :=t4. In all the cases, the limiting coefficient is obtained by setting £} := fo.

Example 83.22 (Newton-secant algorithm). Let us illustrate the general situation on the
Euler equations by using limiting to enforce the minimum principle on the specific entropy. Notice

that ® is quasiconcave since p® is concave; see Exercise 83.3. Let ®Min := min;ez(;y ®(U7) and

set U(U) := p®(U) — p®™Min. Since p® is concave, the function h(t) := \I/(U?’"Jrl +1tP;;) is concave
and solving the equation h(t) = 0 can be done very efficiently. If h(1) > 0, we set ¢y := 1, and
if (1) < 0, we can combine the secant and Newton’s method to find the unique root ¢y € [0, 1]
such that h(tp) = 0. The main interest of the Newton-secant technique is that for every threshold
€, the algorithm is guaranteed to return an answer ¢. such that h(t.) > 0 (whereas Newton’s
algorithm with ¢ := 1 as initial guess always returns h(t.) < 0 independently of the threshold).

Other implementation details are reported in Guermond et al. [171, §7.5.4]. O

The limiting process described above can be iterated multiple times by observing from (83.25)

that

1 1

H,n+1 L,n+1 n n

U = Uty e ;AT + o > (- tij)AY. (83.26)
JET(4) JET(4)

Then, by setting u® = UZ-L"nJr1 and AEJQ) = A};, one can iteratively repeat the limiting by

proceeding as described in Algorithm 83.1. It is common to take kpax 1= 2 since further iterations

generally do not improve the accuracy of the approximation.
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Algorithm 83.1 Iterative limiting

. . L.n+1 n
Require: U , Aij, Kmax
1

U™t

Ensure:
Set U@ := UL and A .= A"
for k =0 to kmax — 1 do
Compute limiter ¢(F)
k k k) p (K
Update ukt) — y® 4 mi Zjel(i) él(j)Az(-j)
k+1 k k
Update A\ = (1 — ¢F))AlY)
end for
Ut = ylhme)

Remark 83.23 (Bound relaxation). The limiting method described in this chapter suffers
from the same convergence deficiencies as the viscosity reduction techniques described in §82.2
for scalar conservation equations (see Remark 82.14). It delivers second-order accuracy in space
in the L'-norm but the accuracy reduces to first order in the L>-norm (for smooth solutions).
This order barrier can be overcome by slightly relaxing the lower bound defined in Lemma 83.14,
ie., wmin = min;ez(j) \IJ(UZ) This can be done efficiently while preserving the global invariant
domain properties by proceeding as in Guermond et al. [169, §4.7.1], [171, §7.6]. O

Exercises

Exercise 83.1 (Dispersion error). Let u(z,t) be a smooth function satisfying d;u + S0,u =
0,z € D :=(0,1), t > 0, where 8 € R. Let I € N\{0} and consider the uniform mesh 7},
composed of the cells [z;, x;11], Vi € {1:1—1}, with size h := I—il = xit1 — x;. Let PP(Th) be
the finite element space composed of continuous piecewise linear functions on 73, and let {¢; }ic.a,
Ap = {1:1}, be the associated global Lagrange shape functions. (i) Compute the coefficients
of the consistent mass matrix, M, and the coefficients of the lumped mass matrix, M. (i)
Keep the time continuous and write the Galerkin approximation using the lumped mass matrix
of the Cauchy problem (with the boundary condition equal to the initial condition as above) for
a test function ¢;, Vi € A9 = {2:1-1}. (iii) Let ZF(u) be the Lagrange approximation of u.
Using Taylor expansions, estimate (informally) the leading term in the consistency error RY(t) :=
mﬂ@tu(a@i, t)+ [ (B0} (u)pi da, Vi € Aj;,. (iv) Keep the time continuous and write the
Galerkin approximation using the consistent mass matrix of the Cauchy problem for a test function
@i, Vi € A5. (v) Using Taylor expansions, estimate (informally) the leading term in the consistency
error R;(t) := m [p (Ou(ZF(w)) + BOL (T (u)) s da, Vi € Ay, (Hint: u(x; £ h,t) = u(a;) +

hoyu(z,t) + %hQ(’“)mu(:vi, t)+ %h38wmu(xi, t)+ ih‘lammu(:vi, t)+ 1—%0h5('“)mmmu(:vi, t) +O(nb).)

Exercise 83.2 (FCT counterexample). Consider 1D Burgers’ equation, f(u) = f(u)ey,
f(u) == tu? D :=(—1,1), with initial data ug(z) := —1 if 2 < 0 and ug(z) := 1 otherwise. Let
I > 3 be an odd number, and consider the (nonuniform) mesh 7;, composed of the cells [z;, 2;41],
where the nodes z;, Vi € Ap, := {1:1}, are such that —1 =121 < - - <zy:=land zp <0< x4
with I’ := I—ng Let PE(Ty) be the finite element space composed of continuous piecewise linear
functions on 7, and let {y;}ic4, be the associated global Lagrange shape functions. (i) Compute
Cii—1, Cii, Ciit1, and m; for all 7 € A?z = {2]—1} (11) Let u% = ZiEAh U?(pl(x) with U? =—1
ifi <I'and U} := 1if i > I’. Compute the Galerkin solution at t := 7 using the lumped mass
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matrix, say ul,j’l. (iii) What is the maximum wave speed in the Riemann problem with the data
(—=1,1)? (iv) Compute the low-order solution at ¢ := 7, say ukl (v) Using the notation of the
FCT limiting, compute a;; for all i € A5 and all j € Z(i) := {i — 1,4,i + 1}. (vi) Show that
li; =1for alli € A} and all j € Z(3). (vil) Does the approximate solution converge to the entropy
solution?

Exercise 83.3 (Quasiconcavity). (i) Let B C R™ be a convex set. Show that a function
U : B — R is quasiconcave iff for every finite set {U;}icr C B and all numbers {6;},e; C [0, 1]
with D ,c;0; = 1, one has (3, ; 0;U;) > min;je; W(U;). (ii) Let A C R™ be a convex set. Let
¢ : A — R be a quasiconcave function. Let z € R™, and let L : A — R be defined by L(u) := z-u
for all w € A. Let ¢ : A — R be a continuous function. Let B := {u € A| L(u) > 0} and
assume that B # (). Assume that ¢ : B — R defined by 9(u) := L(u)p(u) is concave. Prove
that ¢|p : B — R is quasiconcave. (A first example for the Euler equations is B 1= A = {u €
R™ | p > 0} with L(u) := p, ¢(u) := e(u) := p 'E — 1p~?m?, where e(u) is the specific internal
energy. Another example is B := A= {u € R" | p > 0,e(u) > 0}, ¢(u) := ®(u), where ®(u) is
the specific entropy.)

Exercise 83.4 (Harten’s lemma). (i) Consider the following scheme for scalar conservation
equations Ut = Ur—C, (Ur—UP_, )+ D (Ur, —U?) for all i € Z. Assume that 0 < C*, 0 < D,
Cr'+DP < 1foralli € Z. Let |V|pv := Y,y [Vit1—V;| be the total variation of V € R”. Prove that
the above algorithm is total variation diminishing (TVD), i.e., [U" T}y < |U™|py. (ii) Consider
the method described in (81.9)-(81.10) in dimension one. Assume that Z(i) = {i — 1,4,i + 1} and
that the mesh is infinite in both directions. Show that the method can be put into the above form
and satisfies the above assumptions if 47 sup;cy lfn—%‘ < 1. (Hint: see Exercise 79.4.)

Exercise 83.5 (Lax—Wendroff). Let u be a smooth solution to the scalar transport equation
Oy + adyu = 0 with a € Ry. (i) Using finite Taylor expansions, show that w(x,t,11) = u(x,t,) —

Ta0yu(z,ty) + “2272 Opgu(w,t,) + O(73). (ii) Consider now the time-stepping algorithm consisting
of setting u® := ug and for all n > 0, u"*(z) := u"(z) — Tad,u™(x) + “2272 Opzu™(x). What is
the (informal) order of accuracy of this method with respect to 77 (iii) Let 7j, be a uniform mesh
in D := (0,1) with grid points ; := (i — 1)h, Vi € A, := {1:1}, h := 5. Let {¢i}ica, be
the piecewise linear Lagrange shape functions associated with the grid points {x;}ica,. Let a;
be an interior node, i.e., i € Aj := {2:1—1}. Write the equation corresponding to the Galerkin
approximation using the lumped mass matrix of the equation u"*!(z) = u"(z) — Tad,u"(z) +
L;Q o0 (2) with homogeneous Neumann boundary conditions using the test function ¢;, where
both u™*! and u" are approximated in P{(7y) := span{;}ica,. (iv) What is the (informal)
L,n+1

order of accuracy of this method with respect to 7 and h? (v) Let u, =D e, U%’n—’_lﬁpi be

the first-order approximation of u using (81.9)-(81.10). Show that m,UT*! = m; U™ 4 G\ -
DU, —U7) + (A = 1)(Uf, — UP), where v := §7. Note: the scheme is now ready for FCT
limiting. Actually, there exists in the literature a plethora of limiting techniques (like FCT) that,

after applying the limiter, make the scheme TVD in the sense of Exercise 83.4; see Sweby [267].
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