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ABSTRACT
Mechanizing proofs of geometric theorems in 3D is significantly
more challenging than in 2D. As a first noteworthy case study, we
consider an iconic theorem of 3D geometry: Dandelin-Gallucci’s
theorem. We work in the very simple but powerful framework of
projective incidence geometry, where only incidence relationships
are considered. We study and compare two new and very different
approaches to prove this theorem. First, we propose a new proof
based on the well-known Wu’s method. Second, we use an original
method based on matroid theory to generate a proof script which is
then checked by the Coq proof assistant. For each method, we point
out which parts of the proof we manage to carry out automatically
and which parts are more difficult to automate and require human
interaction. We hope these first developments will lead to formally
proving more 3D theorems automatically and that it will be used
to formally verify some key properties of computational geometry
algorithms in 3D.
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1 INTRODUCTION
In this paper, we are interested in the mechanization of the Dandelin-
Gallucci’s theorem [15] which is specific of 3D incidence projective
geometry. This effort is part of a long term project aiming at formally
proving geometric algorithms. We investigate two main approaches:
the first one is based on algebraic methods and the second one relies
on a combinatorial proof search and produces a proof witness which
is then checked by Coq [2, 10]. This article deals with incidence
geometry and we focus on the proof of a non-trivial theorem which
is a kind of benchmark of our methods.
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It is well known in geometry and computer graphics that there is
a gap between 2D and 3D. This happens even if only very basic rela-
tionships between objects are considered. For instance, 2D projective
incidence geometry only considers points and lines such that two dis-
tinct points define a line, two distinct lines define a point, each line
is incident to at least three points, and the plane contains at least two
distinct lines. Describing 3D incidence projective geometry is a bit
more complex. Intuitively, we must handle new objects, e.g. planes,
and new properties such as the fact that two lines do not necessarily
intersect, that any plane meets any line, that two planes intersect
along a line, etc. A set of axioms describing projective geometry
is given in this paper. As we shift to 3D, the axiom system deals
with more objects and properties and thus gets bigger, reflecting the
gap between 2D and 3D. Another significant difference between
2D and 3D is the role Desargues property plays: it is not verified in
general in 2D, whereas this is a theorem in 3D. The consequences
are important: any projective incidence space whose dimension is
greater than 3 is related to a division ring, but this is not true for
the projective incidence plane. This qualitative gap between 2D and
3D extends to the mechanization of proofs in geometry: although
there are several methods to automatically prove some families of
2D geometric theorems, there is not that many methods available for
3D geometry.

In a three-dimensional projective space, Dandelin-Gallucci’s prop-
erty states that given two sets of three skew lines, if each line of the
first set intersects all lines of the second set, then any line which
intersects all three lines of the first set intersects any line which inter-
sects all three lines of the second set, as shown in Fig. 1. Dandelin-
Gallucci’s theorem establishes that Dandelin-Galluci’s property is
equivalent to Pappus’ property.

In the following, we study how to prove Dandelin-Gallucci’s
theorem as formally as possible. The configuration of Dandelin-
Gallucci is interesting because it only involves lines, which may
not be coplanar, making it a real 3D configuration. It is then a good
candidate for such investigations. In addition, Dandelin-Gallucci’s
theorem makes the connection between the well-known 2D Pappus
and 3D Dandelin-Gallucci’s properties.

The methods that we use for proving the theorem are based on
very different approaches: the first one relies on pure synthetic ge-
ometry, the second one is algebraic and relies on Wu’s method, the
third one is combinatorial and relies on matroid theory. The proof in
the framework of synthetic geometry is known for a long time and
we simply use it as a reference proof. The two other approaches (the
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algebraic and combinatorial one) are original and are good candi-
dates for automation. Indeed, most steps of the proofs can be carried
out automatically. However, some human interaction is still required,
either to encode geometry into algebra for the Wu method or to deal
with existential quantification in the combinatorial approach.

In addition, our combinatorial approach yields a formal proof
which is formally verified by Coq [2, 10]. Coq is a proof assistant
based on type theory, where proof-checking boils down to type-
checking. The user (or a program written by the user) will generate
a formal statement and a proof script in the formal language of Coq
and the system will automatically type-check (i.e. proof-check) it to
verify that it actually proves the statement at stake.

The paper is organized as follows. In Sect. 2, we introduce the
usual synthetic axiom system for projective geometry, state Dandelin-
Gallucci’s property and outline the synthetic proof that Pappus prop-
erty implies Dandelin-Gallucci’s property. In Sect. 3, we use the
well-known algebraic method of the late Prof. Wu to prove the the-
orem in a 3D framework. In Sect. 4, we introduce the concept of
matroids and ranks to deal with projective geometry as proposed
by Michelucci and Schreck in [17]. In Sect. 5, we describe an auto-
matic theorem prover based on this approach and apply it to proving
Dandelin-Gallucci’s theorem.

2 DANDELIN-GALLUCCI’S THEOREM
Let us first remind the reader what projective incidence geometry is
and then give the statement of this theorem.

Dandelin-Gallucci’s property lies in the framework of projective
incidence geometry where there are no metric and no coordinates.
Only points and lines are considered. The incidence relation, denoted
by ∈, is described through a very simple set of axioms of classical
first order logic (See Tab. 1).

(i) ∀ 𝑥 𝑦 : Point, ∃ 𝑑 : Line, 𝑥 ∈ 𝑑 ∧ 𝑦 ∈ 𝑑
(ii) ∀ 𝑥 𝑦 : Point,∀ 𝑑 𝑒 : Line,

𝑥 ∈ 𝑑 ∧ 𝑥 ∈ 𝑒 ∧ 𝑦 ∈ 𝑑 ∧ 𝑦 ∈ 𝑒 ⇒ 𝑥 = 𝑦 ∨ 𝑑 = 𝑒

(iii) ∀ 𝑥 𝑦 𝑧 𝑡 : Point, ∀𝑙𝑥𝑦 𝑙𝑧𝑡 𝑙𝑥𝑧 𝑙𝑦𝑡 : Line,
𝑥 ∈ 𝑙𝑥𝑦 ∧ 𝑦 ∈ 𝑙𝑥𝑦 ∧ 𝑧 ∈ 𝑙𝑧𝑡 ∧ 𝑡 ∈ 𝑙𝑧𝑡 ∧
𝑥 ∈ 𝑙𝑥𝑧 ∧ 𝑧 ∈ 𝑙𝑥𝑧 ∧ 𝑦 ∈ 𝑙𝑦𝑡 ∧ 𝑡 ∈ 𝑙𝑦𝑡 ∧
(∃𝑢 : Point, 𝑢 ∈ 𝑙𝑥𝑦 ∧ 𝑢 ∈ 𝑙𝑧𝑡 ) ⇒
(∃𝑣 : Point, 𝑣 ∈ 𝑙𝑥𝑧 ∧ 𝑣 ∈ 𝑙𝑦𝑡 )

(iv) ∀𝑑 : 𝐿𝑖𝑛𝑒, ∃𝑥 𝑦 𝑧 : 𝑃𝑜𝑖𝑛𝑡,
𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧ 𝑥 ∈ 𝑑 ∧ 𝑦 ∈ 𝑑 ∧ 𝑧 ∈ 𝑑

Table 1: Axiom system for projective incidence geometry

Some axioms can be added to reflect the dimension of the consid-
ered projective space. For instance, for 2D projective incidence, we
add the following axioms:
(𝑙𝑑2) ∃ 𝑑 𝑒 : Line, 𝑑 ≠ 𝑒

(𝑢𝑑2) ∀ 𝑑 𝑒 : Line, ∃ 𝑥 : Point, 𝑥 ∈ 𝑑 ∧ 𝑥 ∈ 𝑒
and for the 3D projective incidence spaces, we have:
(𝑙𝑑3) ∃ 𝑑 𝑒 : Line,∀ 𝑥 : Point, 𝑥 ∉ 𝑑 ∨ 𝑥 ∉ 𝑒

(𝑢𝑑3) ∀ 𝑥 : Point,∀ 𝑑 𝑒 : Line, ∃ 𝑓 : Line, ∃ 𝑦 𝑧 : Point
𝑥 ∈ 𝑓 ∧ 𝑦 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓 ∧ 𝑦 ∈ 𝑑 ∧ 𝑧 ∈ 𝑒

The last axiom (ud3) is characteristic of the 3D space and it
is called the transversal axiom. Then, in an incidence space with
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Figure 1: From Pappus to Dandelin-Gallucci (lines are noted
with lower case letters 𝑎, 𝑏, . . . ).

dimension at least 3, Dandelin-Gallucci’s property can be informally
stated as follows:

PROPERTY 1 (DANDELIN-GALLUCCI). Three skew lines 𝑎, 𝑏
and 𝑐 being given and three other skew lines 𝑒, 𝑓 and 𝑔 being also
given, such that every line in {𝑎, 𝑏, 𝑐} meets every line in {𝑒, 𝑓 , 𝑔}.
Then, all pairs of lines 𝑑 and ℎ such that 𝑑 meets lines 𝑒, 𝑓 and 𝑔

and ℎ meets every lines 𝑎, 𝑏 and 𝑐, are concurrent.

It is important to note that this property is not satisfied by every
projective incidence space. In fact it is related to Pappus’s property
which lives in a 2D plane and can be stated as follows:

PROPERTY 2 (PAPPUS). In a projective incidence plane, let
𝑎 and 𝑒 be two distinct lines and let 𝐴, 𝐵, 𝐶, 𝐴′, 𝐵′ and 𝐶 ′ be
six different points with 𝐴, 𝐵 and 𝐶 belonging to 𝑎 and 𝐴′, 𝐵′

and 𝐶 ′ belonging to 𝑒. These points define respectively the lines
𝑙𝐴𝐵′, 𝑙𝐴′𝐵, 𝑙𝐴𝐶′, 𝑙𝐴′𝐶 , 𝑙𝐵𝐶′, 𝑙𝐵′𝐶 . The three intersection points 𝑋 =

𝑙𝐴𝐵′ ∩ 𝑙𝐴′𝐵 and 𝑌 = 𝑙𝐴𝐶′ ∩ 𝑙𝐴′𝐶 and 𝑍 = 𝑙𝐵𝐶′ ∩ 𝑙𝐵′𝐶 are collinear.

Note that Pappus’ property is not a theorem of the general the-
ory of projective incidence geometry. Nevertheless, it is one of the
key properties of the so-called fundamental theorem of incidence
geometry, which states that a projective incidence geometry can be
built from a field (using coordinates) if and only if Pappus’s property
holds in this geometry.

Dandelin-Gallucci’s theorem then establishes a strong link be-
tween an iconic 2D property (Pappus) and a truly 3-dimensional one
(Dandelin-Gallucci’s):

THEOREM 3 (DANDELIN-GALLUCCI). In a projective incidence
space whose dimension is greater than or equal to 3, Dandelin-
Gallucci’s property and Pappus’ property are equivalent.

Due to the lack of space, we do not detail the proof of the theorem
here. This proof only uses basic knowledge on incidence geometry.
Fig. 1 illustrates the configuration and names some interesting lines.
This sketch highlights the role of Pappus points 𝑋 , 𝑌 and 𝑍 which
are not part of the initial configuration and are later used to construct
the point 𝑅 as the intersection of lines (𝑌𝑀) and (𝑍𝑁 ). We then
show that this new point 𝑅 is also the intersection of lines 𝑑 and ℎ.
The details of proof can be found in Horváth’s article [15].

As far as we know, this proof has not be mechanized into a formal
geometric framework yet. We propose below two new proofs of this
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theorem1.The first one follows an algebraic approach popularized by
the late Prof. Wu. Since this approach requires using coordinates and
polynomials, only the direction ”from Pappus to Dandelin-Gallucci”
can be achieved. Indeed, without assuming that Pappus’ property
holds, the fundamental theorem of incidence geometry prevents us
from using coordinates to represent this incidence projective struc-
ture. The second method is based on a combinatorial approach and
it uses matroids. It is able to handle the two ways of the equivalence
since no coordinates are considered.

3 WU’S METHOD IN 3D
The method proposed by Wu in the late seventies [23] is, until
now, among the most powerful methods in the domain of geometric
theorem proving.

Using Wu’s method in order to prove Dandelin-Gallucci’s the-
orem in an arbitrary setting is not possible. Indeed, Wu’s method
is based on a translation from geometry to algebra by describing
geometric figures using polynomials. This translation is possible
only if the incidence space comes from a field. Using the fundamen-
tal theorem of incidence geometry, this means that this approach is
practicable only if Pappus’s property holds in this space. Therefore,
in this section, we can only show how to prove that Pappus’s prop-
erty implies Dandelin-Gallucci’s property in a projective incidence
space.

We remind the reader that Wu’s method consists in:
• translating a geometric figure into a set of algebraic con-

straints, more specifically polynomials ℎ1, ℎ2 . . . , ℎ𝑛 and then
choosing an order on the variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 such as 𝑥 𝑗 is
the leading variable of ℎ 𝑗 ,
• translating the property to be proved into a polynomial 𝑔,
• using the pseudo-division technique several times to prove

that 𝑔 is in the saturation of the ideal ⟨ℎ1, ℎ2, . . . , ℎ𝑛⟩ by the
ideal ⟨𝐼1, . . . , 𝐼𝑛⟩ where 𝐼 𝑗 is the leading coefficient of ℎ 𝑗 with
respect to 𝑥 𝑗 . This means that 𝑔 is in the ideal spanned by the
hypotheses but not in the ideal spanned by the leading coeffi-
cients of polynomials ℎ𝑖 . In other words, 𝑔 is a consequence
of the hypotheses under some conditions of non-degeneracy.

Comprehensive descriptions of Wu’s method are available in [8, 12,
23]. The two first steps are not easy to mechanize, and especially in
3D, as we will see below.

In the following, we use Maple standard tools available from
RegularChains library. This fast and reliable library provides
tools to decompose an algebraic system into irreducible triangular
components [7].

Translating geometry to algebra.
Usually, homogeneous coordinates are used in projective geometry:
a lifting to dimension 𝑛+1 is considered and the coordinates are taken
up to a multiplicative coefficient. For instance, in 3D one considers
coordinates (𝑥,𝑦, 𝑧, 𝑡) for (𝑥/𝑡, 𝑦/𝑡, 𝑧/𝑡); 𝑡 = 0 corresponds to a point
at the infinity from the affine point of view—and simply a point in
the plane of equation 𝑡 = 0 from the projective point of view.

In 3D projective space, and using homogeneous coordinates, the
fact that four points 𝑀 , 𝑁 , 𝑃 , and 𝑄 are coplanar can be expressed as

1See https://github.com/pascalschreck/Dandelin-Gallucci-for-Issac21 for the
implementations.

O(0,0,0,1)

Q(0,x1,u2,1)

V(x14,x15,x16,1)

C(u4,0,0,1)

A’(0,1,0,1)

B’(0,u3,0,1)

C’(0,u5,0,1)

M(0,0,1,1)

P(x2,0,x3,1)

U(x12,0,x13,1)

N(x4,x5,x6,1)

S(0,x7,x8,1)

T(x9,x10,x11,1)

B(u1,0,0,1)

A(1,0,0,1)

Figure 2: Coordinates for Dandelin-Gallucci’s property

det(𝑀, 𝑁, 𝑃,𝑄) = 0: this is one of the algebraic equations that can be
considered in the Wu’s method. It is a bit more technical to express
collinearity: three points 𝑀, 𝑁 and 𝑃 are collinear if and only if the
rank of the matrix < 𝑀, 𝑁, 𝑃 > is 2, meaning that all minors of order
3 have to be zero. But among the 4 minors, only 2 are needed. Fortu-
nately, we can take all these equations into account since, like for
Gröbner bases, computing characteristic sets eliminates redundant
equations. The complexity of algorithms computing characteristic
sets or regular chains are double-exponential. It remains a very ac-
tive research fields and some practical improvements were recently
proposed [1, 19].

To use these tools in Wu’s method, coordinates for the figure
corresponding to Dandelin-Gallucci’s property have to be chosen.
Classically, we operate these choices by using a construction of the
figure which is based on the transversal axiom.

As it is simpler to construct points than lines, our construction
proceeds as shown in Fig. 2: we first choose a reference by fixing
the four points 𝑂 (0, 0, 0, 1), 𝐴(1, 0, 0, 1) and 𝐴′(0, 1, 0, 1) in the affine
plane 𝑧 = 0, and 𝑀 (0, 0, 1, 1) out of this plane. Such a choice can
be done without loss of generality since the property is invariant
under the action of the similarity group. Then, points 𝐵 and 𝐵′ are
chosen on lines 𝑂𝐴 and 𝑂𝐴′ respectively, the parameters 𝑢1 and
𝑢3 indicate that the position on these lines are arbitrary (however,
we choose not to fix them at infinity). The next move consists in
fixing the point 𝑄 on line 𝐴′𝑀: the reader can see that there is an
unknown 𝑥1 meaning that 𝑄 has to be on line 𝐴′𝑀 , and a parameter
𝑢2 meaning that that point can be anywhere on that line. Points 𝑃
and 𝑁 are then computed from the previous points they have some
unknowns as coordinates, 𝑥2, 𝑥3, 𝑥4, 𝑥5 and 𝑥6, which are solutions
of equations translating the fact that the line 𝐵′𝑃𝑁 is the transversal
line from 𝐵′ meeting both lines 𝐴𝑀 and 𝐵𝑄 .

Note also that the second coordinate of point 𝑃 is 0 since 𝑃 is
in the affine plane 𝑦 = 0, as 𝐴 and 𝑀 are. In a similar way, points
𝐶 and 𝐶 ′ are chosen on respectively lines 𝑂𝐴 and 𝑂𝐴′, and points
𝑆,𝑇 ,𝑈 and 𝑉 are on transversal lines from respectively points 𝐶 and

https://github.com/pascalschreck/Dandelin-Gallucci-for-Issac21
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𝐶 ′. The conclusion of the theorem is that these points 𝐶 ′,𝑈 ,𝑉 ,𝑇 , 𝑆

and 𝐶 are coplanar.
This configuration with the simplifications described above leads

to consider sixteen unknowns and five parameters. Note that, for the
sake of simplicity, we impose here that all the points are in the affine
space: for instance, we chose (0, 0, 1, 1) as 𝑀 coordinates instead
of (0, 0, 1, 𝑢6). Geometrically, it means that we do not consider the
case where lines 𝐴𝑀 and 𝐴′𝑀 are parallel. Indeed, allowing points
at infinity would result in a much more complex system with five
additional parameters, and seven more unknowns.

Thanks to the construction provided in Fig.2, we have an almost
triangulated system and thus applying Wu’s method is straightfor-
ward.

Let us go back to our theorem. All the constraints corresponding
to Fig. 2 are related with incidence and are translated through the mi-
nors of a matrix. For instance, the fact that 𝐵′, 𝑃 and 𝑁 are collinear
is expressed as the fact that all minors of order 3 of the matrix are
equal to zero:

©­­«
0 𝑥2 𝑥4
𝑢3 0 𝑥5
0 𝑥3 𝑥6
1 1 1

ª®®¬
The minors implying respectively lines 1, 2, 3 and lines 1, 3, 4 are
multiples of each other: they cannot be both used as equations for the
figure. The minors implying respectively lines 2, 3, 4 and lines 1, 3, 4
lead to the equations: 𝑢3𝑥3 − 𝑢3𝑥6 − 𝑥3𝑥5 = 0 and 𝑥2𝑥6 − 𝑥3𝑥4 = 0.
The whole equation system is:

−𝑢2 + 1 − 𝑥1 = 0
𝑥2𝑥6 − 𝑥3𝑥4 = 0
𝑢3𝑥3 −𝑢3𝑥6 − 𝑥3𝑥5 = 0
−𝑥3 + 1 − 𝑥2 = 0
−𝑢1 (𝑢2𝑥5 − 𝑥1𝑥6) = 0
𝑢1𝑢2 −𝑢1𝑥6 −𝑢2𝑥4 = 0
−𝑢4 (𝑥10𝑥8 − 𝑥11𝑥7) = 0
−𝑢4𝑥11 +𝑢4𝑥8 − 𝑥8𝑥9 = 0
−𝑥8 + 1 − 𝑥7 = 0
−𝑢3 (𝑥11𝑥2 − 𝑥3𝑥9) = 0
−𝑢3𝑥11 +𝑢3𝑥3 − 𝑥10𝑥3 = 0
−𝑢5 (𝑥12𝑥16 − 𝑥13𝑥14) = 0
𝑢5𝑥13 −𝑢5𝑥16 − 𝑥13𝑥15 = 0
−𝑥13 + 1 − 𝑥12 = 0
−𝑢1 (𝑢2𝑥15 − 𝑥1𝑥16) = 0
𝑢1𝑢2 −𝑢1𝑥16 −𝑢2𝑥14 = 0

and the conclusion is translated in the following equation:

𝑔 : 𝑢4𝑢5𝑥13 − 𝑢4𝑢5𝑥8 − 𝑢4𝑥13𝑥7 + 𝑢5𝑥12𝑥8 = 0

In a standard PC computer2 the function Triangularization
of the Maple RegularChains library gives 397 irreducible trian-
gular systems in about 4 minutes with the non-redundant system.
Among them, only the number #334 is not degenerated. Note that,
against intuition, if we consider a system with redundant equations,
it takes about 2 minutes to produce only 75 irreducible triangular sys-
tems. In both cases, only one irreducible system is not degenerated.
The corresponding Maple files can be found in our git repository:

2Using an Intel(R) Core(TM) i7-4790 CPU @3.60GHz with 16GB of memory.

https://github.com/pascalschreck/Dandelin-Gallucci-for-Issac21.

𝑥1 +𝑢2 − 1 = 0
𝑥2 + 𝑥3 − 1 = 0
(𝑥10 −𝑢3)𝑥3 + 𝑥11𝑢3 = 0
𝑢2𝑥4 −𝑢1𝑢2 + 𝑥6𝑢1 = 0
𝑢2𝑥5 + (𝑢2 − 1)𝑥6 = 0
(𝑥10𝑢2 + (𝑢2 − 1)𝑥11 −𝑢2𝑢3)𝑥6 + 𝑥11𝑢2𝑢3 = 0
𝑥7 + 𝑥8 − 1 = 0
(𝑥10 + 𝑥11)𝑥8 − 𝑥11 = 0
𝑥9 + 𝑥10𝑢4 + 𝑥11𝑢4 −𝑢4 = 0
(𝑢4𝑢3 − 1)𝑥10 +𝑢3 (𝑢4 − 1)𝑥11 + (−𝑢4 + 1)𝑢3 = 0
( (𝑢4𝑢3 +𝑢2 − 1)𝑢1 −𝑢2𝑢3𝑢4)𝑥11 −𝑢1𝑢2𝑢3𝑢4

+𝑢2𝑢3𝑢4 = 0
𝑥12 + 𝑥13 − 1 = 0
(𝑥15 −𝑢5)𝑥13 + 𝑥16𝑢5 = 0
𝑢2𝑥14 −𝑢1𝑢2 + 𝑥16𝑢1 = 0
𝑢2𝑥15 + 𝑥16 (𝑢2 − 1) = 0
(𝑢5𝑢1 − 1 + (−𝑢5 + 1)𝑢2)𝑥16 −𝑢1𝑢2𝑢5 +𝑢2𝑢5 = 0

This system comes with the additional conditions that the leading
coefficients of the equations are not equal to zero and thus correspond
to non-degenerated conditions:

𝑥10 −𝑢3 ≠ 0
𝑥10 + 𝑥11 ≠ 0
−𝑢2𝑢3 +𝑢2𝑥10 +𝑢2𝑥11 − 𝑥11 ≠ 0
𝑥15 −𝑢5 ≠ 0
𝑢1𝑢5 −𝑢2𝑢5 +𝑢2 − 1 ≠ 0
𝑢1𝑢3𝑢4 −𝑢2𝑢3𝑢4 +𝑢1𝑢2 −𝑢1 ≠ 0
𝑢2 ≠ 0
𝑢4𝑢3 − 1 ≠ 0

To find this system, we used a very simple ad hoc filter which
eliminates each triangular system containing at least an equation
reduced to one variable (parameter or unknown).

Now, performing successive pseudo-divisions of 𝑔 by the equa-
tions of that system, we get the null polynomial meaning that point
𝐸, 𝐹,𝑈 and 𝑆 are coplanar.

Results and discussion.
We share here some thoughts on this section by pointing out some
features of 3D projective geometry. Some of them are also men-
tioned in [21]. In the process described above, some parts are fully
automatic, for instance, computing the irreducible components and
performing the successive pseudo-divisions, but the mechanization
is not obvious. Several issues occur when it comes to translating
statements from geometry to algebra:

• it is well known that the geometry handled by Wu’s method
is not ordered and implicitly considers complex coordinates.
For instance, the method is unable to prove Maclane theorem
83 [9, 14].
• choosing the coordinates is usually guided by a geometric

construction: this is well described in 2D, for instance in
Chou’s book [8], but it is more intricate in 3D even in the
simple case of incidence geometry,
• similarly, when considering projective geometry within alge-

bra and homogeneous coordinates, one may face an explosion
of possible cases,

Thus, the decomposition into irreducible components yields hun-
dreds of algebraic systems and all of them have to be examined.

https://github.com/pascalschreck/Dandelin-Gallucci-for-Issac21
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Also, it may seem difficult to trust computer algebra systems. We
studied this issue in the context of 2D some years ago [13], but to
be exhaustive, we also had to prove the correctness of the link from
synthetic geometry to algebra (this is partially done in the Boutry et
al. paper [3] in the context of 2D). To generate a Coq proof of the
whole process presented in this section, we still need to adapt the
above-mentionned approaches to 3D.

4 MATROID THEORY APPLIED TO 3D
INCIDENCE GEOMETRY

An alternative approach to formalize incidence geometry—and there-
fore to tackle the proof of Dandelin-Gallucci’s theorem—is based
on matroid theory [18]. The theory was introduced by Whitney in
1935 to abstractly capture the essence of dependence of the columns
of matrices, but it is very general and can be found in different
computer science domains such as algorithmic and graph theory
[11, 22].

Matroids offer several equivalent concepts to describe and to
generalize the main set properties of linear dependence in vector
space. In our work, we found it convenient to use the notion of
rank [17]. When combined with a finite set of points, it captures
incidence, collinearity and coplanarity properties between these
points. Furthermore, using ranks allows to deal only with points,
thus reducing the number of objects at stake as well as the number
of relations (point-line, point-plane, line-plane incidence, etc.). It
makes proof automation easier because we do not handle directly
lines, planes or higher dimension sub-spaces. Indeed, all the concepts
encountered in incidence geometry can be expressed using only sets
of points and their ranks.

Formally, an integer function rk on a finite set 𝐸 is the rank
function of a matroid if and only if conditions of Table 2 are satisfied.
Here again, we consider a classical logic framework.

(A1) non-negative and subcardinal:
∀ 𝑋, 0 ≤ rk(𝑋 ) ≤

��𝑋 ��
(A2) non-decreasing:
∀ 𝑋 𝑌, 𝑋 ⊆ 𝑌 ⇒ rk(𝑋 ) ≤ rk(𝑌 )

(A3) submodular:
∀ 𝑋 𝑌, rk(𝑋 ∪ 𝑌 ) + rk(𝑋 ∩ 𝑌 ) ≤ rk(𝑋 ) + rk(𝑌 )

Table 2: Rank function properties, 𝑋 and 𝑌 are subsets of 𝐸

We define such a rank function on finite sets of points in the
framework of projective geometry. Let 𝑀 be a matroid on a finite set
𝐸 with the rank function rk as above. The closure cl(𝐹 ) of a subset
𝐹 is defined by cl(𝐹 ) = {𝑥 ∈ 𝐸 | rk(𝐹 ) = rk(𝐹 ∪ {𝑥})}. A set whose
closure equals itself is said to be closed. It is also defined as a flat.

A set is a flat if it is maximal for its rank, meaning that the addition
of any other element to the set would increase the rank. In other
words, the rank of a flat 𝐹 is the cardinal of a smallest set generating
𝐹 . Actually, the classic rank function corresponding to incidence
geometry is defined by identifying the flats with linear sub-spaces.
Some examples of sets of points and their ranks are presented in
Table 3.

Using this definition, it can be shown that every projective space
has a matroid structure, but the converse is not true. To capture

rk({𝐴, 𝐵}) = 1 𝐴 = 𝐵

rk({𝐴, 𝐵}) = 2 𝐴 ≠ 𝐵

rk({𝐴, 𝐵,𝐶}) = 2 points 𝐴, 𝐵,𝐶 are collinear
with at least two of them distinct

rk({𝐴, 𝐵,𝐶}) ≤ 2 points 𝐴, 𝐵,𝐶 are collinear
rk({𝐴, 𝐵,𝐶}) = 3 points 𝐴, 𝐵,𝐶 are not collinear
rk({𝐴, 𝐵,𝐶, 𝐷}) = 3 points 𝐴, 𝐵,𝐶, 𝐷 are coplanar,

not all collinear
rk({𝐴, 𝐵,𝐶, 𝐷}) = 4 points 𝐴, 𝐵,𝐶, 𝐷 are not coplanar

Table 3: Ranks of some sets of points and their geometric inter-
pretations

the geometric aspects of our framework, we need to introduce new
axioms in addition to the matroid ones. Table 4 presents such axioms
which allow to fully define a rank-based axiom system for projective
incidence geometry.

Using the Coq proof assistant, we formally showed in [6] that
this set of axioms together with the matroid axioms (A1) to (A3) is
equivalent to the usual synthetic axiom system presented in Sect. 2.
Axioms (A1) to (A3) enforce the matroid properties. Axioms (A4)
Rk-Singleton and (A5) Rk-Couple allow to scale the range of the
rank function. Axioms (A6) Rk-Pasch, (A7) Rk-Three-Points, (A8)
Rk-Lower-Dimension and (A9) Rk-Upper-Dimension are straight-
forward translations of the usual synthetic axioms of projective
geometry. Thanks to this equivalence result, we only consider the
axiom system based on ranks from now on.

(A4) Rk-Singleton:
∀𝑃 : Point, rk({𝑃}) = 1
(A5) Rk-Couple:
∀𝑃 𝑄 : Point, 𝑃 ≠ 𝑄 ⇒ rk({𝑃,𝑄}) = 2
(A6) Rk-Pasch:
∀𝐴 𝐵 𝐶 𝐷 : Point, rk({𝐴, 𝐵,𝐶, 𝐷}) ≤ 3 ⇒
∃ 𝐽 : Point, rk({𝐴, 𝐵, 𝐽 }) = rk({𝐶, 𝐷, 𝐽 }) = 2
(A7) Rk-Three-Points:
∀𝐴 𝐵 : Point, ∃ 𝐶 : Point,
rk({𝐴, 𝐵,𝐶}) = rk({𝐵,𝐶}) = rk({𝐴,𝐶}) = 2
(A8) Rk-Lower-Dimension:
∃𝐴 𝐵 𝐶 𝐷 : Point, rk({𝐴, 𝐵,𝐶, 𝐷}) ≥ 4
(A9) Rk-Upper-Dimension:
∀𝐴 𝐵 𝐶 𝐷 : Point, rk({𝐴, 𝐵,𝐶, 𝐷}) ≤ 4

Table 4: Rank axiom system for projective space geometry

We successfully applied the approach based on ranks to prove a
2D version of Desargues property in a 3D setting [16]. The proof
was performed interactively: all subsets of points involved in the
proof as well as their ranks has to be determined by the user.

In the next section, we show how to do that automatically.

5 AN AUTOMATED PROVER BASED ON
MATROID THEORY

Using the formal description of projective geometry using ranks
presented in the previous section and the idea that the rank of a set of
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(RS1) if𝑋 ⊆ 𝑌 and 𝑟𝑘𝑀𝑖𝑛(𝑋 ) > 𝑟𝑘𝑀𝑖𝑛(𝑌 ) then 𝑟𝑘𝑀𝑖𝑛(𝑌 )
← 𝑟𝑘𝑀𝑖𝑛(𝑋 )

(RS2) if𝑌 ⊆ 𝑋 and 𝑟𝑘𝑀𝑖𝑛(𝑌 ) > 𝑟𝑘𝑀𝑖𝑛(𝑋 ) then 𝑟𝑘𝑀𝑖𝑛(𝑋 )
← 𝑟𝑘𝑀𝑖𝑛(𝑌 )

(RS3) if 𝑋 ⊆ 𝑌 and 𝑟𝑘𝑀𝑎𝑥 (𝑌 ) < 𝑟𝑘𝑀𝑎𝑥 (𝑋 ) then
𝑟𝑘𝑀𝑎𝑥 (𝑋 ) ← 𝑟𝑘𝑀𝑎𝑥 (𝑌 )

(RS4) if 𝑌 ⊆ 𝑋 and 𝑟𝑘𝑀𝑎𝑥 (𝑋 ) < 𝑟𝑘𝑀𝑎𝑥 (𝑌 ) then
𝑟𝑘𝑀𝑎𝑥 (𝑌 ) ← 𝑟𝑘𝑀𝑎𝑥 (𝑋 )

(RS5) if 𝑟𝑘𝑀𝑎𝑥 (𝑋 ) + 𝑟𝑘𝑀𝑎𝑥 (𝑌 ) − 𝑟𝑘𝑀𝑖𝑛(𝑋 ∩ 𝑌 ) <

𝑟𝑘𝑀𝑎𝑥 (𝑋 ∪ 𝑌 )
then 𝑟𝑘𝑀𝑎𝑥 (𝑋 ∪ 𝑌 ) ← (𝑟𝑘𝑀𝑎𝑥 (𝑋 ) + 𝑟𝑘𝑀𝑎𝑥 (𝑌 ) −
𝑟𝑘𝑀𝑖𝑛(𝑋 ∩ 𝑌 ))

(RS6) if 𝑟𝑘𝑀𝑎𝑥 (𝑋 ) + 𝑟𝑘𝑀𝑎𝑥 (𝑌 ) − 𝑟𝑘𝑀𝑖𝑛(𝑋 ∪ 𝑌 ) <

𝑟𝑘𝑀𝑎𝑥 (𝑋 ∩ 𝑌 )
then 𝑟𝑘𝑀𝑎𝑥 (𝑋 ∩ 𝑌 ) ← (𝑟𝑘𝑀𝑎𝑥 (𝑋 ) + 𝑟𝑘𝑀𝑎𝑥 (𝑌 ) −
𝑟𝑘𝑀𝑖𝑛(𝑋 ∪ 𝑌 ))

(RS7) if 𝑟𝑘𝑀𝑖𝑛(𝑋 ∩ 𝑌 ) + 𝑟𝑘𝑀𝑖𝑛(𝑋 ∪ 𝑌 ) − 𝑟𝑘𝑀𝑎𝑥 (𝑌 ) >
𝑟𝑘𝑀𝑖𝑛(𝑋 )
then 𝑟𝑘𝑀𝑖𝑛(𝑋 ) ← (𝑟𝑘𝑀𝑖𝑛(𝑋 ∩𝑌 ) +𝑟𝑘𝑀𝑖𝑛(𝑋 ∪𝑌 )−
𝑟𝑘𝑀𝑎𝑥 (𝑌 ))

(RS8) if 𝑟𝑘𝑀𝑖𝑛(𝑋 ∩ 𝑌 ) + 𝑟𝑘𝑀𝑖𝑛(𝑋 ∪ 𝑌 ) − 𝑟𝑘𝑀𝑎𝑥 (𝑋 ) >
𝑟𝑘𝑀𝑖𝑛(𝑌 )
then 𝑟𝑘𝑀𝑖𝑛(𝑌 ) ← (𝑟𝑘𝑀𝑖𝑛(𝑋 ∩𝑌 ) +𝑟𝑘𝑀𝑖𝑛(𝑋 ∪𝑌 ) −
𝑟𝑘𝑀𝑎𝑥 (𝑋 ))

Table 5: Rules used until saturation.

points is always bounded by a minimum and a maximum value, we
build an automated prover based on rank interval computations. For
each subset of the powerset of the geometric configuration at stake,
we define the minimum rank and the maximum rank (in the worst
case, when no information is known, the rank of each non-empty
subset is between 1 and 4).

We translate the matroid axioms of Table 2 into the set of rewrite
rules given in Table 5. Axiom (A1) is implemented as the initializa-
tion condition for each non-empty set of points (their rank is between
1 and the number of points of the set). Axioms (A2) and (A3) are
implemented by the rules presented in Table 5. Each axiom leads
to four rules, two for the minimum rank and two for the maximum
rank. These rules can be locally used in an interval arithmetic way to
incrementally reduce the difference between the maximum and the
minimum ranks for each subset. To do this, a saturation algorithm is
launched on a valuated graph implementing the inclusion lattice of
the point powerset, labeled by the minimum and maximum rank.

This simple algorithm is efficient for small configurations—this
method aims at helping mathematicians to carry out small pieces of
proof automatically— but the complexity is exponential by essence.

The prover is implemented in C++, as an independent tool. It takes
as input a geometric configuration (a set of points and the ranks of
some of its subsets), performs the entire saturation each time it is
called, and returns a Coq proof script which can then be processed
and verified by Coq. More technical details of the implementation
and the complexity of the algorithm are provided in David Braun’s
PhD thesis [5, Chap. III.1]. The current version of the prover can be
found at https://github.com/pascalschreck/MatroidIncidenceProver.

The first step of the algorithm consists of building the initial
graph by considering the set of points. The incidence constraints
—which are translated into ranks according to the definition given in
Table 3— are used to assign partial data to the minimum rank and
the maximum rank for each subset of points. For instance, in Table 6
the statement of Dandelin-Gallucci’s theorem is translated in terms
of equality between ranks of some subsets; these values are used to
fill the valuated graph implementing the inclusion lattice.

In a second step, we run the saturation algorithm. The algorithm
proceeds as follows: several traversals of the graph are performed
taking every pair of subsets into consideration and applying the rules
of Table 5 in order to tighten the interval between the minimum and
maximum possible values for the rank. Any time a new deduction is
made, the system updates the lattice accordingly. The bounds 𝑟𝑘𝑀𝑖𝑛

and 𝑟𝑘𝑀𝑎𝑥 of some of the subsets involved in the deduction are
updated to ensure the statements of Table 5 still hold.

This process continues until a contradiction appears, usually the
value of a minimal rank becomes grater than the value of the cor-
responding maximal rank, or the search is successful, that is, the
rank of the set corresponding to the conclusion becomes equal to
its minimum rank and to its maximal rank. Apart from those two
cases, the failure of the algorithm occurs when no more rules can be
applied.

Throughout this process, the prover records the application of
each rule. The third step of our algorithm consists in rebuilding
the trace of the deductions leading to the computation of a new
rank for a given set of points. The trace is then extracted as a certifi-
cate and fed to the Coq proof assistant which verifies and validates it.

Example. As an example of our approach, let us prove a very
simple theorem. Having four different points 𝐴, 𝐵,𝐶 and 𝐷 in the
plane, prove that if 𝐴, 𝐵 and 𝐶 are collinear, and 𝐴, 𝐵 and 𝐷 are
collinear, then points 𝐵,𝐶 and 𝐷 are collinear too. In terms of ranks,
we have as hypotheses:

• the rank of each pair of points is 2,
• the maximum rank is 3 (we consider a plane configuration),
• rk({𝐴, 𝐵,𝐶}) = 2,
• rk({𝐴, 𝐵, 𝐷}) = 2,
• 1 ≤ rk({𝐴, 𝐵,𝐶, 𝐷}) ≤ 3,
• 1 ≤ rk({𝐵,𝐶, 𝐷}) ≤ 3

and we want to prove that rk({𝐵,𝐶, 𝐷}) = 2. We derive the succes-
sive deductions:

(1) 2 ≤ rk({𝐴, 𝐵,𝐶, 𝐷}) ≤ 3 by rule RS1
(2) 2 ≤ rk({𝐴, 𝐵,𝐶, 𝐷}) ≤ 2 by rule RS5,

that is rk({𝐴, 𝐵,𝐶, 𝐷}) = 2
(3) 2 ≤ rk({𝐵,𝐶, 𝐷}) ≤ 3 by rule RS1
(4) 2 ≤ rk({𝐵,𝐶, 𝐷}) ≤ 2 by rule RS3

using rk({𝐴, 𝐵,𝐶, 𝐷}) = 2
Therefore rk({𝐵,𝐶, 𝐷}) = 2 and the algorithm succeeds.

Several issues should be noted. First, the algorithm always ends,
but its average-case complexity in time and in space is at least
exponential. Clever data structures, decomposition of the matroid
structure and coloration heuristics can be used to successfully reach
configurations with about twenty points. But still, it is an algorithm
with exponential complexity. Second, and more challenging, the
axioms with existential quantification are not taken into account in

https://github.com/pascalschreck/MatroidIncidenceProver
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the rewrite rules. Actually all the points needed for the proof have to
be present in the statement before its translation into a graph, and no
construction of auxiliary points can be made by this algorithm. As it
is, it cannot be used for clever proofs which need to consider new
points. The algorithm simply performs a combinatorial search.

We use this prover to prove the equivalence of Dandelin-Gallucci’s
and Pappus’ properties. Table 6 presents the lemma for the Pappus
to Dandelin-Gallucci implication and Table 7 presents the reciprocal
statement Dandelin-Gallucci to Pappus.3 Both statements and proofs
can be found in the git repository already mentioned. Note that only
the basic axioms of incidence geometry are used by our prover, and,
for instance, the Pappus configuration which define points 𝑋 , 𝑌
and 𝑍 is not discovered by our method. On the contrary, the user
has to be smart enough to discover the appropriate configuration.
The collinearity property from which the existence of point 𝑅 is
deduced can be proved (see the git repository mentioned above), but
the addition of that point to the statement is performed interactively
by applying manually an existence axiom. All these steps are then
formally checked by Coq.

We have the same observation for the statement describing the
direction from “Dandelin-Gallucci” to “Pappus”. The point 𝑅 and its
associated properties are provided outside the prover and included
by hand, as the reader can see in Table 7.

Termination, correctness and validation. Our automatic prover
terminates by construction. But on the one hand, as mentioned above,
it can fail, even if the property to be proved is valid. This is the case,
for instance if some auxiliary points needed in the proof are not
provided by the user. Our prover is therefore not complete. On the
other hand, when it succeeds, there is no formal guarantee that it
performed a correct deduction. That is why it generates a trace which
is then proof-checked using the Coq proof assistant. Correct proofs
are only those accepted during the proof-checking process carried
out in Coq.

Results and discussion. The Coq proof script generated by the
prover for the implication Pappus’ property to Dandelin-Gallucci’s
property is about 25,000 lines long with about 330 auxiliary lemmas.
Finding a solution and generating the associated Coq script takes
about 20 minutes of computations and Coq takes less than 2 minutes
to check the proof.4 Proving the other way, Dandelin-Gallucci to
Pappus, produces a 60,000 lines long Coq proof, with about 700
lemmas, in 32 minutes and it is checked by Coq in about 4 minutes.

This is the biggest example that the prover managed to handle so
far. However, we envision the prover as a tool to help mathemati-
cians proving tedious but immediate lemmas within Coq, rather than
proving big theorems in one go. Compared to Wu’s method, a big
weakness of the prover is that the user has to provide auxiliary points
explicitly. Indeed, this task is very smart and is not well-suited for
automation. The main advantage of our approach is that it is highly
combinatorial and neither complex computations are required nor
coordinates are considered.

3Lemmas are named automatically using L, followed by the name of the points involved
in the conclusion of the statement.
4Using an Intel(R) Core(TM) i7-4790 CPU @3.60GHz with 16GB of memory

Lemma LCCpSpTUV :
forall Oo A B C Ap Bp Cp X Y Z M N Sp T U V R,
rk(Oo :: A :: nil) = 2 -> rk(Oo :: B :: nil) = 2

-> rk(A :: B :: nil) = 2 -> rk(Oo :: C :: nil) = 2
-> rk(A :: C :: nil) = 2 -> rk(B :: C :: nil) = 2
-> rk(Oo :: A :: B :: C :: nil) = 2 (* line a*)
-> rk(Oo :: Ap :: nil) = 2 -
-> rk(Oo :: A :: Ap :: nil) = 3 (* a != e*)
-> rk(Oo :: Bp :: nil) = 2
-> rk(Ap :: Bp :: nil) = 2
-> rk(Oo :: Cp :: nil) = 2
-> rk(Ap :: Cp :: nil) = 2
-> rk(Bp :: Cp :: nil) = 2 ->
rk(Oo :: Ap :: Bp :: Cp :: nil) = 2 (* line e*)

(* Pappus point X *)
-> rk(B :: Ap :: X :: nil) = 2
-> rk(A :: Bp :: X :: nil) = 2

(* Pappus point Y *)
-> rk(C :: Ap :: Y :: nil) = 2
-> rk(A :: Cp :: Y :: nil) = 2
-> rk(C :: Bp :: Z :: nil) = 2 (* Pappus point Z *)
-> rk(B :: Cp :: Z :: nil) = 2
-> rk(X :: Y :: Z :: nil) = 2 (* Pappus prop. *)
-> rk(Ap :: M :: Sp :: nil) = 2 -> (* line b *)
rk(Oo :: A :: B :: C :: Ap :: M :: Sp :: nil) = 4
-> rk(Bp :: N :: T :: nil) = 2 -> (* line c *)
rk(Oo :: A :: B :: C :: Bp :: N :: T :: nil) = 4
-> rk(C :: Sp :: T :: nil) = 2 -> (* line d *)
rk(Oo :: C :: Ap :: Bp :: Cp :: Sp :: T :: nil) = 4
-> rk(Ap :: Bp :: M :: N :: Sp :: T :: nil) = 4
-> rk(A :: M :: U :: nil) = 2 -> (* line f *)
rk(Oo :: A :: Ap :: Bp :: Cp :: M :: U :: nil) = 4
-> rk(A :: C :: M :: Sp :: T :: U :: nil) = 4
-> rk(B :: N :: V :: nil) = 2 -> (* line g *)
rk(Oo :: B :: Ap :: Bp :: Cp :: N :: V :: nil) = 4
-> rk(B :: C :: N :: Sp :: T :: V :: nil) = 4 ->
-> rk(Cp :: U :: V :: nil) = 2 (* line h *)
-> rk(Oo :: A :: B :: C :: Cp :: U :: V :: nil) = 4
-> rk(A :: B :: M :: N :: U :: V :: nil) = 4
-> rk(Ap :: Cp :: M :: Sp :: U :: V :: nil) = 4
-> rk(Bp :: Cp :: N :: T :: U :: V :: nil) = 4
-> rk(Y :: M :: R :: nil) = 2 (* point R *)
-> rk(Z :: N :: R :: nil) = 2
-> (*coplanarity*)
rk(C :: Cp :: Sp :: T :: U :: V :: nil) = 3.
Proof.

Table 6: Pappus property implies Dandelin-Gallucci’s property
(Coq statement using ranks).

6 CONCLUSION
The main contribution of this paper is to present two new and very
different methods to prove Dandelin-Gallucci’s theorem, compare
them and examine, for each approach, how far it can be mechanized.
We first summarized the synthetic proof, following Horváth’s de-
scription [15]. We then show how to automate the proof as much as
possible using two different approaches: an algebraic one based on
Wu’s method and a combinatorial one based on a matroid represen-
tation of incidence projective geometry.
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Lemma LXYZ : forall Oo A B C Ap Bp Cp P X
Y Z Q A1 B1 Ap1 Bp1 R ,
rk(A :: B :: nil) = 2 ->
rk(A :: C :: nil) = 2 -> rk(B :: C :: nil) = 2 ->
rk(Oo :: A :: B :: C :: nil) = 2 ->
rk(Oo :: A :: Ap :: nil) = 3 ->
rk(Oo :: B :: Bp :: nil) = 3 ->
rk(Ap :: Bp :: nil) = 2 ->
rk(Oo :: C :: Cp :: nil) = 3 ->
rk(Ap :: Cp :: nil) = 2 ->
rk(Bp :: Cp :: nil) = 2 ->
rk(Oo :: Ap :: Bp :: Cp :: nil) = 2 ->
rk(Oo :: A :: B :: C ::

Ap :: Bp :: Cp :: P :: nil) = 4 ->
rk(B :: Ap :: X :: nil) = 2 ->
rk(A :: Bp :: X :: nil) = 2 ->
rk(C :: Ap :: Y :: nil) = 2 ->
rk(A :: Cp :: Y :: nil) = 2 ->
rk(C :: Bp :: Z :: nil) = 2 ->
rk(B :: Cp :: Z :: nil) = 2 ->
rk(P :: Q :: nil) = 2 ->
rk(X :: Q :: nil) = 2 ->
rk(P :: X :: Q :: nil) = 2 ->
rk(A :: P :: A1 :: nil) = 2 ->
rk(A :: Cp :: P :: A1 :: nil) = 3 ->
rk(B :: Q :: B1 :: nil) = 2 ->
rk(Cp :: A1 :: B1 :: nil) = 2 ->
rk(Ap :: P :: Ap1 :: nil) = 2 ->
rk(C :: Ap :: P :: Ap1 :: nil) = 3 ->
rk(Bp :: Q :: Bp1 :: nil) = 2 ->
rk(C :: Ap1 :: Bp1 :: nil) = 2 ->
rk(Cp :: A1 :: B1 :: R :: nil) = 2 ->
rk(C :: Ap1 :: Bp1 :: R :: nil) = 2
->
rk(X :: Y :: Z :: nil) = 2. (* Pappus col. *)
Proof.

Table 7: Dandelin-Gallucci property implies Pappus property
(Coq statement using ranks).

Few authors discussed automated theorem proving in 3D geome-
try, see for instance [4, 20, 21]. Their approaches are mainly based
on algebra and, thus they have to translate geometric statements into
algebraic systems and to choose appropriate coordinates rather than
using an axiomatic approach. Thus they faced the problems that we
described in section 3, but their approach to deal with them is not de-
scribed. Moreover, only simple theorem are proved, for instance the
3D version of Desargues’s theorem which does not involve auxiliary
points and is easily proved by our combinatorial prover.

There are several directions to continue the work in both ap-
proaches. For instance, as far as we know, the mechanization of
proofs of other challenging 3D geometric theorems using a purely
synthetic geometric has not yet been tackled. Regarding the algebraic
approach, a lot of work must be done in order to fully automate the
proofs, for instance about the translation from geometry to algebra
and the management of special cases. Finally, our combinatorial ap-
proach is powerful in the sense that it produces fully verified proofs.
However it suffers from an exponential complexity and we keep

working on improving the proof of concept presented in this paper
to make it easily usable in practice.
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