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Abstract. This paper presents the relationship between differential al-
gebra and tropical differential algebraic geometry, mostly focusing on the
existence problem of formal power series solutions for systems of polyno-
mial ODE and PDE. Moreover, it improves an approximation theorem
involved in the proof of the fundamental theorem of tropical differential
algebraic geometry which permits to improve this latter by dropping the
base field uncountability hypothesis used in the original version.

1 Introduction

Differential algebra is an algebraic theory for systems of ordinary or partial
polynomial differential equations. It was founded by Ritt in the first half of
the former century [13, 14] and developed by Kolchin [10]. Tropical differential
algebraic geometry is a much more recent theory, founded by Grigoriev [8] aiming
at applying the concepts of tropical algebra (aka min-plus algebra) to the study
of formal power series solutions of systems of ODE. Tropical differential algebra
obtained an important impulse by the proof of the fundamental theorem of
tropical differential algebraic geometry [1] which was recently extended to the
partial case in [7]. The common topic of both theories is the existence problem
of formal power series solutions of polynomial differential equations on which an
important paper [6] by Denef and Lipshitz was published in 1984.

In both [1] and [7], the fundamental theorem applies to a polynomial differen-
tial system Σ with coefficients in formal power series rings F [[x]] (ordinary case)
or F [[x1, . . . , xm]] (partial case) where F is a characteristic zero differential field
of constants which is both algebraically closed and uncountable. In this paper,
we prove that the uncountability hypothesis can be dropped. Indeed, we prove



that the fundamental theorem holds provided that F is algebraically closed and
has countable5 transcendence degree over some field of definition F0 of Σ. This
improvement of the fundamental theorem is achieved by generalizing the proof
of a key proposition, which is an approximation theorem. This generalization
is achieved in our Theorem 1, which is the main result of our paper. The new
versions of the fundamental theorem, which follow, are stated in Theorem 2 and
Theorem 3.

For the sake of simplicity, the introductory part of our paper focuses on the
ordinary case. For completeness, the partial case is covered as well in the more
technical sections. The paper is structured as follows. We recall in Section 2
the basic ideas underlying formal power series solutions of ODE and point out
issues and known results, from the differential algebra literature. We state and
explain the fundamental theorem of tropical differential algebra in Section 3.
We provide our new approximation theorem in Section 5 (covering the partial
differential case) and show how it is obtained by adapting the corresponding
proposition given in [7]. The new version of the fundamental theorem, in the
ordinary case, is provided in Section 6. In the final Section 7, we give an overview
on the generalizations to the partial case, including the partial version of the
fundamental theorem.

2 Formal Power Series Solutions of ODE

Let us start with a single autonomous ODE (i.e. an ODE the coefficients of
which do not depend of the independent variable x) in a single differential inde-
terminate y (standing for the unknown function y(x)):

ẏ2 + 8 y3 − 1 = 0 .

Differentiate it many different times.

2 ẏ ÿ + 24 y2 ẏ ,
2 ẏ y(3) + 2 ÿ2 + 24 y2 ÿ + 48 y ẏ2 ,

...

Rename each derivative y(k) as vk. Solve the obtained polynomial system (ob-
serve there are infinitely many solutions). The result is a truncated arc v

(v0, v1, v2, v3, v4, v5, v6, v7, . . .) = (0, 1, 0, 0,−24, 0, 0, 2880, . . .) .

Substitute the arc in the generic formula

Ψ(v) =
∑ vi

i !
xi .

One obtains a formal power series solution centered at the origin. Since the ODE
is autonomous, the same arc, substituted in the following generic formula

Ψα(v) =
∑ vi

i !
(x− α)i (1)

5 In this paper, “countable” stands for “countably infinite”.



provides a formal power series solution centered at any expansion point x = α.
If the ODE is not autonomous, the arc depends on the expansion point. The

process is thus a variant. Consider some non-autonomous ODE

x ẏ2 + 8x y3 − 1 = 0 .

Differentiate the ODE many different times.

2x ẏ ÿ + ẏ2 + 24x y2 ẏ + 8 y3 ,
...

Then fix an expansion point α and evaluate the independent variable at x = α.
Solve the obtained polynomial system. The result is a truncated arc. Substitute
it in (1) (for the chosen value of α). One gets a formal power series solution
centered at x = α.

In the above processes, the only issue lies in the polynomial solving step.
Indeed, each differentiated equation introduces a new leading derivative. These
leading derivatives admit as leading coefficients the initial or the separant of the
ODE. If these two polynomials do not vanish at the expansion point and the
already secured coordinates of the truncated arc (the initial values, somehow, of
the initial value problem), then the formal power series solution exists, is unique
and straightforward to compute up to any term. However, if these polynomials
vanish, the formal power series solution may fail to exist or be unique.

A device borrowed from [6, page 236] illustrates the issue. It shows how to
build an ODE p with coefficients in Q[x] from a polynomial f(z) in Q[z]. The
ODE admits a formal power series solution centered at the origin if and only if
the polynomial f(z) has no positive integer solution. In the ordinary case, this
device permits to build interesting examples. The approach generalizes to the
partial case. It permits to relate the existence problem of formal power series
solutions centered at the origin for PDE systems to Hilbert’s Tenth Problem
and Matiiassevich undecidability result [6, Theorem 4.11]. For more details see
[3, Sect 1.6].

It is interesting also to observe that any non-autonomous ODE can be viewed
as an autonomous one by performing a change of independent variable and
introducing an extra ODE. Indeed, call ξ the new independent variable. View
the former independent variable x as a new differential indeterminate (i.e. as
an unknown function x(ξ)) and introduce the extra ODE ẋ = 1. This reduction
method only applies to ODE with polynomial coefficients in x. However, if x = α
was a problematic expansion point before the reduction then x(0) = α becomes a
problematic initial value (hence arc coordinate) after reduction. For more details
see [3, Sect 1.4.2].

In his books [13, 14], Ritt implicitly considers autonomous systems (the “au-
tonomous” qualifier does not belong to differential algebra) and we may assume
he had in mind the above reduction trick. Though Taylor expansions of solu-
tions are discussed at different places (mostly in a chapter dedicated to PDE),
Ritt does not explicitly address the existence problem of formal power series



solutions. However, he pioneered differential elimination methods by means of
his theory of characteristic sets (which was much developed afterwards, leading
to the theories of regular chains and differential regular chains). This elimina-
tion theory solves in particular the following decision problem: given any finite
system Σ of ordinary or partial differential polynomial, does 1 ∈ [Σ] where [Σ]
denotes the differential ideal generated by Σ? This problem is equivalent to the
following one, which is thus seen to be decidable: does there exist initial values
for which Σ has formal power series solutions6?

In the case of systems of non-autonomous ODE, thanks to the reduction
method to the autonomous case, we can then conclude that the following problem
is decidable: given any system Σ, do expansion point and initial values exist for
which Σ has formal power series solutions?

3 The Fundamental Theorem of Tropical Differential
Algebraic Geometry

In the tropical differential case, the systems under consideration belong to some
differential polynomial ring F [[x]]{y1, . . . , yn} where F is a characteristic zero
field of constants. Differential polynomials have formal power series coefficients.
Thus the reduction trick to the autonomous case does not apply and formal
power series solutions are only sought at a fixed expansion point: the origin.
More precisely, formal power series solutions are sought in the coefficient ring
F [[x]] of the equations.

The existence problem of such formal power series solutions is much more
difficult. An important related paper is [6]. Indeed, [6, Theorem 3.1] claims that,
in the case of systems with coefficients in Q[x], the existence problem of formal
power series solutions (with coefficients in C, R or Qp) is decidable. It is however
important to note that, in the same setting, the existence problem of nonzero
formal power series solutions is undecidable. See [6, Proposition 3.3] which refers
to [16].

In this context, the fundamental theorem of tropical differential geometry
does not solve any problem left open in [6]. It only states the following equiva-
lence

supp(sol(Σ)) = sol(trop(Σ)) , (2)

where Σ is a differential ideal and the base field F is both algebraically closed
and uncountable (we relinquish this last condition in this paper).

6 Indeed, the characteristic sets or regular differential chains computed by differential
elimination methods can be viewed as differential systems sufficiently simplified to
generalize, for systems of differential equations, the basic methods sketched at the
top of the section for computing formal power series solutions.



Before entering sophisticated issues, let us clarify the notations used in (2).
The support7 supp(ϕ) of the formal power series (3) is the set {i ∈ N | ai 6= 0}.

ϕ =
∑

ai x
i (3)

Since Σ depends on n differential indeterminates y1, . . . , yn, its formal power
series solutions actually are tuples of n formal power series. One then extends
the above definition to tuples of formal power series: the support of a tuple

ϕ = (ϕ1, . . . , ϕn) (4)

is defined as the tuple supp(ϕ) = (supp(ϕ1), . . . , supp(ϕn)).
On the left hand side of (2), sol(Σ) denotes the set of formal power series

solutions of Σ with coefficients in F . Hence, the left hand side of (2) is a set of
tuples of the supports of all the formal power series solutions of Σ.

Let us address now the right hand side of (2). The valuation of a formal power
series (3) is defined as ∞ if ϕ = 0 and as the smallest i ∈ N such that ai 6= 0
otherwise.

F [[x]] P(N)

N

supp

valuation
min

Let us now define the tropicalization of the differential monomial (the coeffi-
cient c ∈ F [[x]] and the term t is a power product of derivatives v1, . . . , vr of
the n differential indeterminates y1, . . . , yn)

m = c t = c vd11 · · · vdrr (5)

at a tuple of supports

S = (S1, . . . , Sn) . (6)

Consider any tuple of formal power series (4) whose support is S. Since m is a
monomial, the support of the formal power series m(ϕ) is uniquely defined by S:
it does not depend on the actual coefficients of ϕ. We are led to the following
definition8.

The tropicalization of a differential monomial m at S is defined as the valu-
ation of m(ϕ) where ϕ is any tuple of formal power series whose support is S.
The table below gives a few examples.

monomialm supportS trop(m) atS
x2 y {0, 1, 2} 2
x2 y {2} 4
ẏ3 {0, 3} 6
ÿ3 {0, 1} ∞

7 In [1, 8], the notation trop(ϕ) is used instead of supp(ϕ) but may be misleading in
some cases.

8 This is not the definition given in [1, sect. 4] but both definitions are equivalent.



Let us now consider a nonzero differential polynomial, expanded as a sum of
monomials of the form (5) with pairwise distinct terms:

p = m1 +m2 + · · ·+mq . (7)

The tropicalization of p at S is defined as

trop(p) =
q

min
i=1

trop(mi) . (8)

The tropicalization of the zero polynomial is defined as ∞.
As an example, let us consider the differential polynomial

p = ẏ2 − 4 y (9)

whose solutions are ϕ = 0 (support S = ∅) and ϕ = (x + c)2 where c is
an arbitrary constant (supports S = {0, 1, 2} and {2}). The first and second
derivatives of p are

ṗ = 2 ẏ ÿ − 4 ẏ , (10)

p̈ = 2 ẏ y(3) + 2 ÿ2 − 4 ÿ . (11)

In the next table, all the considered supports are supports of solutions of the
differential polynomials. In the last column, the list of the trop(mi) is provided,
rather than their minimum. The first row indicates that both monomials of p
vanish at ϕ = 0. The second row indicates that the two monomials do not vanish
but may possibly cancel each other at ϕ = a2 x

2, for some a2 6= 0 (indeed, they
vanish but only for a2 = 1). The third row indicates that, among the three
monomials of p̈, the first one vanishes at any ϕ = a2 x

2 while the two last ones
may cancel each other for some a2 6= 0.

polynomial supportS list trop(mi) atS
p ∅ [∞,∞]
p {2} [2, 2]
p̈ {2} [∞, 0, 0]

In the next table, the considered support S = {0, 1} is not the support of any
solution of p, since p has no solution of the form ϕ = a0 + a1 x with a0, a1 6= 0.
This fact is not observed on the first row, which considers p itself. It is however
observed on the second row, which considers the first derivative of p: one of the
two monomials vanishes while the second one evaluates to some nonzero formal
power series.

polynomial supportS list trop(mi) atS
p {0, 1} [0, 0]
ṗ {0, 1} [∞, 0]

The observed phenomena suggest the following definition, which permits to
understand the right hand side of (2).

Let p be a polynomial of the form (7). View trop(p) as a function of n
unknown supports. Then (S1, . . . , Sn) is said to be a solution of trop(p) if either



1. each trop(mi) =∞ or

2. there exists mi,mj (i 6= j) such that trop(mi) = trop(mj) =
q

min
k=1

(trop(mk)) .

Let us conclude this section by a few remarks. In the fundamental theo-
rem of tropical differential algebraic geometry, the inclusion supp(sol(Σ)) ⊂
sol(trop(Σ)) is easy. The difficult part is the converse inclusion. It requires Σ to
be a differential ideal because one may need to consider arbitrary high derivatives
of the elements of Σ in order to observe that a given support is not a solution.
See the example above or even simpler, consider p = ẏ − y and S = {0, . . . , n}
with n ∈ N: it is necessary to differentiate n times the differential polynomial p
in order to observe that it has no solution with support S. Moreover, the base
field F is required to be algebraically closed because of the polynomial system
solving step and the fact that solutions are sought in F [[x]].

Last, the proof of the converse inclusion relies on an approximation theorem.
The two versions of this approximation theorem given in [1, Proposition 7.3] and
[7, Proposition 6.3] assume F to be uncountable. Our new version (Theorem 1)
relies on weaker hypotheses.

4 Fields of Definition and Countability

We are concerned with a differential ideal Σ [10, I, sect. 2] in a characteristic
zero partial differential polynomial ring F [[x1, . . . , xm]]{y1, . . . , yn} where F is
an algebraically closed field of constants, the m derivation operators δ1, . . . , δm
act as ∂/∂x1, . . . , ∂/∂xm and y1, . . . , yn are n differential indeterminates.

Thanks to the Ritt-Raudenbush Basis Theorem (see [4] for details), the
differential ideal Σ can be presented by finitely many differential polynomi-
als g1, . . . , gs ∈ F [[x1, . . . , xm]]{y1, . . . , yn} in the sense that the perfect [10, 0,
sect. 5] differential ideals {Σ} and {g1, . . . , gs} are equal.

A field of definition9 of Σ is any subfield F0 ⊂ F such that there exist
g1, . . . , gs ∈ Σ ∩F0[[x1, . . . , xm]]{y1, . . . , yn} with Σ ⊆ {g1, . . . , gs} (the perfect
differential ideal generated by g1, . . . , gs).

Proposition 1. Any differential ideal Σ has a countable algebraically closed
field of definition F0. Moreover, if F has countable transcendence degree over F0

then F also is countable.

Proof. Let S be the family of the coefficients of the formal power series coeffi-
cients of any basis of Σ which are transcendental over the field Q of the rational
numbers. The family S is countable. An algebraically closed field of definition F0

can be defined as the algebraic closure of Q(S).
Now, the field Q is countable. If L is a countable field and S is a countable

family of transcendental elements over L then L (S) is countable. Moreover,
if L is countable then its algebraic closure is countable [9, Theorem 65].

The last statement of the proposition follows using the same arguments.

In the sequel, F0 denotes an algebraically closed field of definition of Σ.

9 This definition is adapted from [10, I, sect. 5].



5 The Approximation Theorem

Denote by Θ the commutative semigroup of the derivative operators generated
by the derivation operators i.e. Θ = {δa11 · · · δamm | a1, . . . , am ∈ N}.

Define a one-to-one correspondence between the set of all pairs (i, θ) ∈
[1, n] × Θ and the set N of nonnegative integers. This correspondence permits
us to enumerate all derivatives θyi of the differential indeterminates. Fix a cor-
respondence which defines an orderly ranking (derivatives are enumerated by
increasing order) [10, chap. I, sect. 8]. The derivatives of the y are denoted
v0, v1, v2, . . .

As in Section 4, let Σ be a differential ideal included in the perfect differential
ideal {g1, . . . , gs} generated by g1, . . . , gs ∈ Σ with field of definition equal to F0.
Define another one-to-one correspondence between the set of all pairs (i, θ) ∈
[1, s]×Θ and N. This correspondence permits us to enumerate all derivatives θ gi.
Again, fix a correspondence which defines an orderly ranking on the derivatives
of the g (viewing them as s differential indeterminates). The derivatives of the g,
evaluated at x1 = · · · = xm = 0, are denoted f0, f1, f2, . . . The polynomials f
thus belong to F0{y1, . . . , yn}.

Let k be a positive integer. Denote

Σk = {fi | 0 ≤ i ≤ k} ,
Σ∞ = {fi | i ∈ N} .

Define κ(k) = κ as the smallest integer such that Σk ⊂ F0[v0, . . . , vκ]. The index
κ exists because the ranking is orderly. Define

Ak = {a ∈ Fκ+1
0 | f0(a) = · · · = fk(a) = 0} .

Let now S be any subset of N. Define Ak,S as the set of zeros of Ak which are
compatible with S:

Ak,S = {a ∈ Ak | ai 6= 0 if and only if i ∈ S ∩ [0, κ]} .

Indeed, thanks to the fixed one-to-one correspondence between the derivatives
of the differential indeterminates and the set N, any such set S encodes a tuple
of n supports of formal power series. Given any field extension E of F0, define

A∞(E ) = {a ∈ E N | fi(a) = 0 for each i ∈ N} ,
A∞,S(E ) = {a ∈ A∞(E ) | ai 6= 0 if and only if i ∈ S} .

The elements of A∞(F ) give exactly the formal power series solutions of Σ. The
elements of A∞,S(F ) give the formal power series solutions whose supports are
encoded by S.

Theorem 1. Assume F has countable transcendence degree over F0 and is
algebraically closed. Let S be any subset of N. If Ak,S 6= ∅ for each k ∈ N then
A∞,S(F ) 6= ∅.



There are many proofs which have the following sketch in common:

1. one first proves that Σ∞ admits a solution compatible with S in some (big)
field extension E of F0. This solution is an arc a = (ai) with coordinates
ai ∈ E for i ∈ N. With other words, A∞,S(E ) 6= ∅ ;

2. the arc a can be mapped to another arc φ(a) with coordinates in F which is
also a solution of Σ∞ compatible with S. Thus A∞,S(F ) 6= ∅ and Theorem 1
is proved.

There are actually many different ways to prove Step 1 above. The next
sections provide three different variants.

5.1 Proof of Step 1 by Ultraproducts

The idea of this proof is mostly due do Marc Paul Noordman. It is inspired
by techniques used in [6]. A minimal introduction of ultraproducts for casual
readers is provided in Section A.

Proof. Let R be the ring obtained by inversion of all derivatives with indices
in S and quotient by the ideal equal to the sum of the ideal generated by Σ∞
and the ideal generated by the derivatives with indices not in S, i.e.

R = F0[vi, v
−1
j | i ∈ N, j ∈ S]/(fi, vj | i ∈ N, j /∈ S) . (12)

By Lemma 1 (below), this ring is not the null ring. By Krull’s Theorem, it
contains a maximal ideal m. A suitable field extension E of F0 is given by R/m.
The coordinates of the arc (ai) are the images of the derivatives vi by the natural
F0-algebra homomorphism R → R/m.

Lemma 1. The ring R defined in (12) is not the null ring.

Proof. We prove the lemma by showing that Σ∞ admits a solution in some
field F ∗0 (which turns out to be an ultrafield - see Section A) and constructing
a map F0{y1, . . . , yn} → F ∗0 which factors as F0{y1, . . . , yn} → R → F ∗0 .

To each k ∈ N associate an element ak ∈ Ak,S . We have

ak = (ak0 , a
k
1 , . . . , a

k
κ) ∈ Fκ

0 .

Fix any non principal ultrafilter D on N and consider the ultrafield F ∗0 =
(
∏
i∈N F0)/D . For each i ∈ N define ui ∈ F ∗0 by

u0 = (a00, a
1
0, a

2
0, . . . , a

k
0 , . . .) ,

u1 = (a01, a
1
1, a

2
1, . . . , a

k
1 , . . .) ,

...

ui = (a0i , a
1
i , a

2
i , . . . , a

k
i , . . .) ,

...



On each column k of the above “array”, the elements aki such that i > κ are
not defined. Set them to zero. Observe that on each row, there are only finitely
many such elements.

We have thus defined a map vi 7→ ui.
Let now i ∈ N be the index of some polynomial fi = f . Evaluate f to an

element of F ∗0 by substituting uj to vj for each j ∈ N. Ultrafield operations
are performed componentwise and the zeros of the f appear on the columns in
the above array. Thus, f evaluates to zero over the kth coordinate of F ∗0 for
all sufficiently large values of k. This set of values of k is cofinite and hence, f
evaluates to zero in F ∗0 .

Let now i ∈ N be the index of some derivative vi. By definition of Ak,S ,
if i /∈ S then all the coordinates of ui are zero so that ui is zero in F ∗0 ; if i ∈ S
then the coordinates aki of ui are nonzero for all sufficiently large values of k
and ui is nonzero in F ∗0 .

The mapping vi 7→ ui thus defines a zero of Σ∞ which is compatible with S
and with coordinates in F ∗0 .

5.2 Proof of Step 1 by a Model Theoretic Argument

The idea of this proof is due to Omar León Sánchez.

Proof. Define

Ω(v) = {fi = 0 | i ∈ N} ∪ {vi = 0 | i /∈ S} ∪ {vi 6= 0 | i ∈ S} .

For any subcollection Ω0(v) of Ω(v), there is a large enough k ∈ N such that
if a ∈ Ak,S then a is a solution of Ω0(v). Hence the assumption that Ak,S 6= ∅,
for all k ∈ N, yields that Ω(v) is finitely satisfiable.

By the compactness theorem in first-order logic (see for instance [12, Chapter
3]) applied in the context of fields, the fact that Ω(v) is finitely satisfiable implies
that there is a field extension E of F0 and an arc a = (ai) with coordinates in E
solving Ω(v).

Remark 1. We note that Theorem 1 should not be too surprising to a model-
theorist; as it can be seen as an application of general results on strongly minimal
theories (for instance, the fact that in a strongly minimal theory there is a
unique non-algebraic complete 1-type over any set of parameters). Here the
theory in mind is algebraically closed fields and the slightly more general result
is as follows: Let x = (xi)i∈I be a tuple of variables and L/K a field extension
of transcendence degree at least |I| with L algebraically closed. Suppose T (x) is
a collection of polynomial equations and in-equations over K. If T (x) is finitely
satisfiable, then there is a solution of T (x) in L.

5.3 Proof of Step 1 by Lang’s Infinite Nullstellensatz

The idea of this proof was suggested by an anonymous reviewer.



Proof. Enlarge the set of derivatives (vi) with another infinite set of deriva-
tives (wi) where i ∈ N. Define

Ω∞ = Σ∞ ∪ {vi | i /∈ S} ∪ {vi wi − 1 | i ∈ S} .

Any solution of Ω∞ provides a solution of Σ∞ which is compatible with S. The
set of variables v, w is indexed by N. Let E be any uncountable field. Note that
the ideal generated by Ω∞ in the polynomial ring E [v, w] is proper; otherwise,
1 could be written as a linear combination (over E [v, w]) of finitely many of
the elements of Ω∞, but this implies Ak,S = ∅ for some large enough k ∈ N
(contradicting our hypothesis). Then, by [11, Theorem, conditions (ii) and S2],
the system Ω∞ has a solution in E . Thus A∞,S(E ) 6= ∅.

5.4 Proof of Step 2

In Step 1, we have proved that there exists a field extension E of F0 such that
A∞,S(E ) 6= ∅. Let us prove that A∞,S(F ) 6= ∅.

Proof. Consider some a ∈ A∞,S(E ). Let J ⊂ N be such that (aj)j∈J is a tran-
scendence basis of F0(a) over F0. Denote F1 the algebraic closure of F0(aj)j∈J .
Then the full arc a has coordinates in F1. Since F has countable transcendence
degree over F0 we have trdeg(F/F0) ≥ trdeg(F1/F0) = |J |. Moreover, since F
is algebraically closed, there exists a F0-algebra homomorphism φ : F1 → F
such that φ(a) is a solution of Σ∞ compatible with S. Thus A∞,S(F ) 6= ∅.

6 The New Version of the Fundamental Theorem

For completeness, we provide the part of the proof of the fundamental theorem
which makes use of our Theorem 1. The proof is the same as that of [1, Theorem
8]. We start with an easy Lemma [1, Remark 4.1].

Lemma 2. Let S = (S1, . . . , Sn) be a tuple of n supports and m = c vd11 · · · vdrr
be a monomial. Then trop(m) = 0 at S if and only if the valuation of c is zero

and each factor vd = (y
(k)
j )d of m is such that k ∈ Sj.

Before stating the fundamental theorem, let us stress that the fields F0

and F mentioned in Theorem 2 can be assumed to be countable, by Proposi-
tion 1.

Theorem 2 (Fundamental Theorem for ODE).
Let Σ be a differential ideal of F [[x]]{y1, . . . , yn} where F is an algebraically

closed field of constants and F0 be an algebraically closed field of definition of Σ.
If F has countable transcendence degree over F0 then

supp(sol(Σ)) = sol(trop(Σ)) . (13)



Proof. Let us first address a few particular cases.
Case 1: there exists some nonzero c ∈ Σ∩F [[x]]. Differentiating c sufficiently

many times, we see that 1 ∈ Σ. Then, on the one hand, supp(sol(Σ)) = ∅. On
the other hand, sol(trop(1)) = ∅. Thus the theorem holds in Case 1.

Case 2: Σ = (0). Then, on the one hand supp(sol(Σ)) contains all supports.
On the other hand, sol(trop(0)) contains all supports too. Thus the theorem
holds in Case 2.

Let us now address the general case. The inclusion ⊂ is easy. We prove the
converse one. We assume that S is not the support of any solution of Σ and we
show that S is not a solution of trop(Σ).

For this, we are going to build a differential polynomial h ∈ Σ, expanding to
a sum of monomials

h = m1 +m2 + · · ·+mr , (14)

such that trop(m1) = 0 and trop(mi) > 0 for 2 ≤ i ≤ r.
By the Ritt-Raudenbush Basis Theorem (see [4] for details), there exists a

finite set g1, . . . , gs of differential polynomials of Σ such that the solution set
of Σ is the solution set of the differential ideal [g1, . . . , gs] generated by the g.

From now on, we use the notations introduced in Section 5. Since [g1, . . . , gs]
has no solution with support S we have A∞,S(F ) = ∅ whence, by Theorem 1,
there exists some index k such that Ak,S = ∅. Recall that Ak,S is a subset
of the algebraic variety of some polynomial system obtained by prolonging, and
evaluating at x = 0, the system of the g up to some order and that the prolonged
system belongs to some polynomial ring F0[v1, . . . , vκ].

Claim: there exists a differential polynomial

ĥ = m̂d
1 + m̂2 + · · ·+ m̂r̂ (15)

in the ideal (f0, . . . , fk) of the Noetherian polynomial ring F0[v1, . . . , vκ] such
that trop(m̂1) = 0 and trop(m̂i) > 0 for 2 ≤ i ≤ r̂.

The ideal (f0, . . . , fk) has no solution compatible with S. This means that
(the right hand side of the first line holds only for a non-empty support S but
the one of the second line holds in general):

[f0 = · · · = fk = 0 and vj = 0 for all vj s.t. j /∈ S]⇒ v` = 0 for some ` ∈ S

⇒
∏

`∈S, `≤κ

v`︸ ︷︷ ︸
m̂1

= 0 .

By Lemma 2 we have trop(m̂1) = 0 at S. By Hilbert’s Nullstellensatz, we have

m̂1 ∈
√

(f0, . . . , fk, (vj)j /∈S)

Thus there exists a positive integer d and monomials m̂2, . . . , m̂r̂ defining the
polynomial ĥ as in (15). We have ĥ ∈ (f0, . . . , fk) and for each 2 ≤ i ≤ r̂,



there exists some j /∈ S for which deg(m̂i, vj) > 0. By Lemma 2, we thus have
trop(m̂i) > 0 at S for each 2 ≤ i ≤ r̂. The claim is thus proved.

Now, since ĥ ∈ (f0, . . . , fk) we see that ĥ can also be obtained by evaluating
at x = 0 some polynomial h ∈ Σ. Consider any monomial m of h, of the form (5).
If the evaluation at x = 0 maps m to zero then the valuation of the coefficient c
of m is positive. In such a case, trop(m) > 0 by Lemma 2. If it maps m to some
nonzero monomial m̂ then the valuation of c is nonzero, both m and m̂ share the
same term and trop(m) = trop(m̂). Thus the polynomial h has the form (14)
and the theorem is proved.

7 The Partial Differential Case

In this section we give an overview on the generalization to the case of partial
differential equations.

We seek for solutions of systems Σ ⊂ F [[x1, . . . , xm]]{y1, . . . , ym} in the ring
of multivariate formal power series F [[x1, . . . , xm]].

In this case, the algorithmic problems are even worse than in the ordinary
case. According to [6, Theorem 4.11], there even cannot be an algorithm for
deciding solvability of linear systems, a subclass of algebraic differential equa-
tions as we consider. Instead of actually computing the solutions of Σ, we again
present an equivalent description of the solutions in the form of (2).

As in the ordinary case (m = 1), the support of a formal power series

ϕ =
∑

aI x
I =

∑
a(i1,...,im) x

i1
1 · · ·ximm

is the set {I ∈ Nm | aI 6= 0}. Hence, the left hand side of (2) is defined also
for m > 1.

For the tropicalization of Σ, the generalization cannot be done straightfor-
ward, since there is no well-defined minimum of elements in Nm. In [7] is used
instead a very specific partial order induced by vertex sets, which we briefly
describe here.

LetX ⊂ Nm. The Newton polytopeN (X) ⊆ Rm≥0 ofX is defined as the convex
hull of X + Nm = {x + n | x ∈ X,n ∈ Nm}. Moreover, x ∈ X is called a vertex
if x /∈ N (X \ {x}), and vert is the set of vertices of X. It follows that vert(X)
is the minimal set in Nm (with respect to the relation “⊂”) generating N (X).
Let us denote all vertex sets as Tm = {vert | X ⊂ Nm}. Then, the composition
of taking the support and then its vertex set of the formal power series defines
a non-degenerate valuation such that some ideas of [1] can be recovered.

F [[x1, . . . , xm]] P(Nm)

Tm

supp

non−deg.valuation
vert

The tropicalization of a differential monomial m = cvd11 · · · vdrr at a tuple of
supports S = (S1, . . . , Sn) ⊂ (Nm)n is defined as the non-degenerate valuation



of m(ϕ) from above with supp(ϕ) = S. Let us illustrate this.

monomialm supportS trop(m) atS
x1x2 y {(1, 0), (0, 1)} {(2, 0), (0, 2)}
( ∂ y∂x1

)2 {(2, 0), (0, 2)} {(2, 0)}
( ∂2 y
∂x1 ∂x2

)2 {(2, 0), (0, 2)} ∅

The tropicalization of a differential polynomial p of the form (5) at S is
defined as

trop(p) = vert(

q⋃
i=1

trop(mi)) . (16)

Let us consider the polynomial

p = ∂ y
∂x1
· ∂ y∂x2

+ (−x21 + x22) ∂2 y
∂x1∂x2

. (17)

polynomial supportS list trop(mi) atS
p {(2, 0), (0, 2)} [{(1, 1)},∅]
p {(2, 0), (1, 1), (0, 2)} [{(2, 0), (1, 1), (0, 2)}, {(2, 0), (0, 2)}]

Considering trop(p) as a function of n unknown supports, (S1, . . . , Sn) is said
to be a solution of trop(p) if for every vertex J ∈ trop(p) there exists mi,mj

(i 6= j) such that J ∈ trop(mi) ∩ trop(mj) . In the example above, we see that
there cannot be a solution of p with support equals {(2, 0), (0, 2)}, but ϕ =
x21 + 2x1x2 − x22 is indeed a solution.

For more illustrations of the tropicalization of (partial) differential polyno-
mials, see [5].

As in the ordinary case, the inclusion supp(sol(Σ)) ⊂ sol(trop(Σ)) in the
fundamental theorem is relatively easy [7, Proposition 5.7]. The converse inclu-
sion can be shown exactly as in [7, Section 6], except that we replace Proposition
6.3 by the Approximation Theorem 1.

For consistency let us recall the main result here.

Theorem 3 (Fundamental Theorem for PDE). Let Σ be a differential ideal
of F [[x1, . . . , xm]]{y1, . . . , yn} where F is an algebraically closed field of con-
stants and F0 be an algebraically closed field of definition of Σ. If F has count-
able transcendence degree over F0 then

supp(sol(Σ)) = sol(trop(Σ)) . (18)

A Basic Notions on Ultraproducts

This appendix is much inspired by [15, chap. 2] with the notations of [2]. It is
only provided for the convenience of casual readers.



The set N is used as an index set on which we fix a (so called) non-principal
ultrafilter D . It is by definition a collection of infinite subsets of N closed under
finite intersection, with the property that for any subset E ⊂ N either E or its
complement N \ E belongs to D . In particular, the empty set does not belong
to D and, if E ∈ D and F is an arbitrary set containing E then also F ∈ D .
Otherwise, N \ F ∈ D and therefore, ∅ = E ∩ (N \ F ) ∈ D : a contradiction.
Since every set in D must be infinite, it follows that every set whose complement
is finite (such a set is called cofinite) belongs to D .

Let Ri (i ∈ N) be a collection of rings. We form the ultraproduct R∗ =
(
∏
i∈N Ri)/D (or the ultrapower RN/D if all rings Ri are the same ring R)

as follows. On the Cartesian product
∏
i∈N Ri we define the equivalence rela-

tion: a ≡ b if and only if the set of indices i such that ai = bi belongs to the
ultrafilter D .

We are going to use the following facts.
Consider an element a ∈ R∗ which has no nonzero coordinates. The set of

indices such that ai = 0 is empty. Since the empty set does not belong to the
ultrafilter, a 6= 0 in R∗.

Consider an element a ∈ R∗ which has only finitely many nonzero coordi-
nates. The set of indices such that ai = 0 is cofinite. Thus it belongs to D .
Thus a = 0 in R∗.

An ultraproduct of rings is a ring: addition and multiplication are performed
componentwise. Let us prove that an ultraproduct of fields is a field (called an
ultrafield). Consider some a 6= 0 in R∗. Then the set E = {i ∈ N | ai = 0} does
not belong to D . Thus its complement F = N \ E belongs to D . Define ā as
follows: for each i ∈ N, if ai = 0 take āi = 0 else take āi = a−1i . Let u = a ā.
The set of indices such that ui = 1 is F , which belongs to D . Thus a admits an
inverse and R∗ is a field.
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