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Abstract. This paper presents some relationship between differential
algebra and tropical differential algebraic geometry, mostly focusing on
the existence problem of formal power series solutions for systems of poly-
nomial ODE and PDE. Moreover, it improves an approximation theorem
involved in the proof of the Fundamental Theorem of tropical differential
algebraic geometry which permits to improve this latter by dropping the
base field uncountability hypothesis used in the original version.

1 Introduction

Differential algebra is an algebraic theory for systems of ordinary or partial
polynomial differential equations. It was founded by Ritt in the first half of
the former century [11, 12] and developed by Kolchin [10]. Tropical differential
algebraic geometry is a much more recent theory, founded by Grigoriev [8] aiming
at applying the concepts of tropical algebra (aka min-plus algebra) to the study
of formal power series solutions of systems of ODE. Tropical differential algebra
obtained an important impulse by the proof of the Fundamental Theorem of
tropical differential algebraic geometry [1] which was recently extended to the
partial case in [7]. The common topic of both theories is the existence problem
of formal power series solutions of polynomial differential equations on which an
important paper [6] by Denef and Lipshitz was published in 1984.

In both [1] and [7], the Fundamental Theorem applies to a polynomial dif-
ferential system Σ with coefficients in formal power series rings F [[x]] (ordinary
case) or F [[x1, . . . , xm]] (partial case) where F is a characteristic zero differ-
ential field of constants which is both algebraically closed and uncountable. In
this paper, we prove that the uncountability hypothesis can be dropped. Indeed,
we prove that the Fundamental Theorem holds provided that F is algebraically
closed and has countable4 transcendence degree over some field of definition F0

4 In this paper, “countable” stands for “countably infinite”.



of Σ. This improvement of the Fundamental Theorem is achieved by general-
izing the proof of a key proposition, which is an approximation theorem. This
generalization is achieved in our Theorem 1, which is the main result of our
paper. The new versions of the Fundamental Theorem, which follow, are stated
in Theorem 2 and Theorem 3.

For the sake of simplicity, the introductory part of our paper focuses on the
ordinary case. For completeness, the partial case is covered as well in the more
technical sections. It is structured as follows. We recall in Section 2 the basic
ideas underlying formal power series solutions of ODE and point out issues and
known results, from the differential algebra literature. We state and explain the
Fundamental Theorem of tropical differential algebra in Section 3. We provide
our new approximation theorem in Section 5 (covering the partial differential
case) and show how it is obtained by adapting the corresponding proposition
given in [7]. The new version of the Fundamental Theorem, in the ordinary case,
is provided in Section 6. In the final Section 7, we give an overview on the gen-
eralizations to the partial case, including the partial version of the Fundamental
Theorem.

2 Formal Power Series Solutions of ODE

Let us start with a single autonomous ODE (i.e. an ODE the coefficients of
which do not depend of the independent variable x) in a single differential inde-
terminate y (standing for the unknown function y(x)).

ẏ2 + 8 y3 − 1 = 0 .

Differentiate it many different times.

2 ẏ ÿ + 24 y2 ẏ ,
2 ẏ y(3) + 2 ÿ2 + 24 y2 ÿ + 48 y ẏ2 ,

...

Rename each derivative y(k) as vk. Solve the obtained polynomial system. The
result is a truncated arc v

(v0, v1, v2, v3, v4, v5, v6, v7, . . .) = (0, 1, 0, 0,−24, 0, 0, 2880, . . .) .

Plug the arc in the generic formula

Ψ(v) =
∑ vi

i !
xi .

One obtains a formal power series solution centered at the origin. Since the ODE
is autonomous, the same arc, plugged in the following generic formula

Ψα(v) =
∑ vi

i !
(x− α)i . (1)



provides a formal power series solution centered at any expansion point x = α.
If the ODE is not autonomous, the arc depends on the expansion point. The

process is thus a variant. Consider some non autonomous ODE

x ẏ2 + 8x y3 − 1 = 0 .

Differentiate the ODE many different times.

2x ẏ ÿ + ẏ2 + 24x y2 ẏ + 8 y3 ,
...

Then fix an expansion point α and evaluate the independent variable at x = α.
Solve the obtained polynomial system. The result is a truncated arc. Plug it
in (1) (for the chosen value of α). One gets a formal power series solution centered
at x = α.

In the above processes, the only issue lies in the polynomial solving step.
Indeed, each differentiated equation introduces a new leading derivative. These
leading derivatives admit as leading coefficients the initial or the separant of the
ODE. If these two polynomials do not vanish at the expansion point and the
already secured coordinates of the truncated arc (the initial values, somehow, of
the initial value problem), then the formal power series solution exists, is unique
and straightforward to compute up to any term. However, if these polynomials
vanish, the formal power series solution may fail to exist or be unique.

A device borrowed from [6, page 236] illustrates the issue. It shows how to
build an ODE p with coefficients in Q[x] from a polynomial f(z) in Q[z]. The
ODE admits a formal power series solution centered at the origin if and only if
the polynomial f(z) has no positive integer solution. In the ordinary case, this
device permits to build interesting examples. The approach generalizes to the
partial case. It permits to relate the existence problem of formal power series
solutions centered at the origin for PDE systems to Hilbert’s Tenth Problem
and Matiiassevich undecidability result [6, Theorem 4.11]. For more details see
[3, Sect 1.6].

It is interesting also to observe that any non autonomous ODE can be viewed
as an autonomous one by performing a change of independent variable and
introducing an extra ODE. Indeed, call ξ the new independent variable. View
the former independent variable x as a new differential indeterminate (i.e. as
an unknown function x(ξ)) and introduce the extra ODE ẋ = 1. This reduction
method only applies to ODE with polynomial coefficients in x. However, if x = α
was a problematic expansion point before the reduction then x(0) = α becomes a
problematic initial value (hence arc coordinate) after reduction. For more details
see [3, Sect 1.4.2].

In his books [11, 12], Ritt implicitly considers autonomous systems (the “au-
tonomous” qualifier does not belong to differential algebra) and we may assume
he had in mind the above reduction trick. Though Taylor expansions of solu-
tions are discussed at different places (mostly in a chapter dedicated to PDE),
Ritt does not explicitly address the existence problem of formal power series



solutions. However, he pioneered differential elimination methods by means of
his theory of characteristic sets (which was much developed afterwards, leading
to the theories of regular chains and differential regular chains). This elimina-
tion theory solves in particular the following decision problem: given any finite
system Σ of ordinary or partial differential polynomial, does 1 ∈ [Σ] where [Σ]
denotes the differential ideal generated by Σ ? This problem is equivalent to the
following one, which is thus seen to be decidable: does there exist initial values
such that Σ has formal power series solutions5?

In the case of systems of non autonomous ODE, thanks to the reduction
method to the autonomous case, we can then conclude that the following problem
is decidable: given any system Σ, do expansion point and initial values exist such
that Σ has formal power series solutions?

3 The Fundamental Theorem of Tropical Differential
Algebraic Geometry

In the tropical differential case, the systems under consideration belong to some
differential polynomial ring F [[x]]{y1, . . . , yn} where F is a characteristic zero
field of constants. Differential polynomials have formal power series coefficients.
Thus the reduction trick to the autonomous case does not apply and formal
power series solutions are only sought at a fixed expansion point: the origin.
More precisely, formal power series solutions are sought in the coefficient ring
F [[x]] of the equations.

The existence problem of such formal power series solutions is much more
difficult. An important related paper is [6]. Indeed, [6, Theorem 3.1] claims that,
in the case of systems with coefficients in Q[x], the existence problem of formal
power series solutions (with coefficients in C, R or Qp) is decidable. It is however
important to note that, in the same setting, the existence problem of nonzero
formal power series solutions is undecidable. See [6, Proposition 3.3] which refers
to [14].

In this context, the Fundamental Theorem of tropical differential geometry
does not solve any of the left open problems. It only states the following equiv-
alence

trop(sol(Σ)) = sol(trop(Σ)) , (2)

where Σ is a differential ideal and the base field F is both algebraically closed
and uncountable (we relinquish this last condition in this paper).

Before entering sophisticated issues, we need to clarify the notations used
in (2). The support of a formal power series

ϕ =
∑

ai x
i (3)

5 Indeed, the characteristic sets or regular differential chains computed by differential
elimination methods can be viewed as differential systems sufficiently simplified to
generalize, for systems of differential equations, the basic methods sketched at the
top of the section for computing formal power series solution.



is the set {i ∈ N | ai 6= 0}. The tropicalization trop(ϕ) of ϕ is defined as its
support.

Since Σ depends on n differential indeterminates y1, . . . , yn, its formal power
series solutions actually are tuples of n formal power series. One then extends
the above definition to tuples of formal power series: the tropicalization of a
tuple

ϕ = (ϕ1, . . . , ϕn) (4)

is defined as the tuple trop(ϕ) = (trop(ϕ1), . . . , trop(ϕn)).

On the left hand side of (2), sol(Σ) denotes the set of formal power series
solutions of Σ with coefficients in F . Hence, the left hand side of (2) is the set
of the tropicalizations of all the formal power series solutions of Σ. It is a set of
tuples of supports.

Let us address now the right hand side of (2). The valuation of a formal power
series (3) is defined as ∞ if ϕ = 0 and as the smallest i ∈ N such that ai 6= 0
otherwise.

F [[x]] P(N)

N

supp

valuation
min

Let us now define the tropicalization of a differential monomial

m = c vd11 · · · vdrr (5)

at a tuple of supports

S = (S1, . . . , Sn) . (6)

The coefficient c ∈ F [[x]] and each v stands for some derivative of some of
the n differential indeterminates y1, . . . , yn. Consider any tuple of formal power
series (4) whose tropicalization is S. Since m is a monomial, the support of the
formal power series m(ϕ) is uniquely defined by S: it does not depend on the
actual coefficients of ϕ. We are led to the following definition6:

The tropicalization of a differential monomial m at S is defined as the valu-
ation of m(ϕ) where ϕ is any tuple of formal power series whose tropicalization
is S. Here are a few examples

monomialm supportS trop(m) atS
x2 y {0, 1, 2} 2
x2 y {2} 4
ẏ3 {0, 3} 6
ÿ3 {0, 1} ∞

6 This is not the definition given in [1, sect. 4] but both definitions are equivalent.



Let us now consider a differential polynomial, expanded as a sum of mono-
mials of the form (5) (if m and m′ are two different monomials in the sum (7),

we require vd11 · · · vdrr to be different from v′
d′1
1 · · · v′

d′
r′
r′ ):

p = m1 +m2 + · · ·+mt . (7)

The tropicalization of p at S is defined as

trop(p) =
t

min
i=1

trop(mi) . (8)

As as example, let us consider the differential polynomial

p = ẏ2 − 4 y (9)

whose solutions are ϕ = 0 (support S = ∅) and ϕ = (x + c)2 where c is
an arbitrary constant (supports S = {0, 1, 2} and {2}). The first and second
derivatives of p are

ṗ = 2 ẏ ÿ − 4 ẏ , (10)

p̈ = 2 ẏ y(3) + 2 ÿ2 − 4 ÿ . (11)

In the next table, all the considered supports are supports of solutions of the
differential polynomials. In the last column, the list of the trop(mi) is provided,
rather than their minimum. The first row indicates that both monomials of p
vanish at ϕ = 0. The second row indicates that the two monomials do not vanish
but may possibly cancel each other at ϕ = a2 x

2, for some a2 6= 0 (indeed, they
vanish but only for a2 = 1). The third row indicates that, among the three
monomials of p̈, the first one vanishes at any ϕ = a2 x

2 while the two last ones
may cancel each other for some a2 6= 0.

polynomial supportS list trop(mi) atS
p ∅ [∞,∞]
p {2} [2, 2]
p̈ {2} [∞, 0, 0]

In the next table, the considered support S = {0, 1} is not the support of any
solution of p, since p has no solution of the form ϕ = a0 + a1 x with a0, a1 6= 0.
This fact is not observed on the first row, which considers p itself. It is however
observed on the second row, which considers the first derivative of p: one of the
two monomials vanishes while the second one evaluates to some non zero formal
power series.

polynomial supportS list trop(mi) atS
p {0, 1} [0, 0]
ṗ {0, 1} [∞, 0]

The observed phenomena suggest the following definition, which permits to
understand the right hand side of (2).

Let p be a polynomial of the form (7). View trop(p) as a function of n
unknown supports. Then (S1, . . . , Sn) is said to be a solution of trop(p) if either



1. each trop(mi) =∞ or

2. there exists mi,mj (i 6= j) such that trop(mi) = trop(mj) =
t

min
k=1

(trop(mk)) .

Let us conclude this section by a few remarks. In the Fundamental The-
orem of tropical differential algebraic geometry, the inclusion trop(sol(Σ)) ⊂
sol(trop(Σ)) is easy. The difficult part is the converse inclusion. It requires Σ to
be a differential ideal because one may need to consider arbitrary high deriva-
tives of the elements of Σ in order to observe that a given support is not a
solution (see the example above). It requires the base field F to be algebraically
closed because of the polynomial system solving step and the fact that solutions
are sought in F [[x]].

Last, its proof relies on an approximation theorem. The two versions of this
approximation theorem given in [1, Proposition 7.3] and [7, Proposition 6.3]
assume F to be uncountable. Our new version (Theorem 1) relies on weaker
hypotheses.

4 Fields of Definition and Countability

We are concerned with a differential ideal Σ [10, I, sect. 2] in a characteristic
zero partial differential polynomial ring F [[x1, . . . , xm]]{y1, . . . , yn} where F is
an algebraically closed field of constants, the m derivation operators δ1, . . . , δm
act as ∂/∂x1, . . . , ∂/∂xm and y1, . . . , yn are n differential indeterminates.

Thanks to the Ritt-Raudenbush Basis Theorem (see [4] for details), the
differential ideal Σ can be presented by finitely many differential polynomi-
als g1, . . . , gs ∈ F [[x1, . . . , xm]]{y1, . . . , yn}.

The next definition is adapted from [10, I, sect. 5].

Definition 1. A field of definition of Σ is any subfield F0 ⊂ F such that
g1, . . . , gs ∈ F0[[x1, . . . , xm]]{y1, . . . , yn}.

Proposition 1. Any differential ideal Σ has a countable algebraically closed
field of definition F0. Moreover, if F has countable transcendence degree over F0

then F also is countable.

Proof. Let S be the family of the coefficients of the formal power series coeffi-
cients of any basis of Σ which are transcendental over the field Q of the rational
numbers. The family S is countable. An algebraically closed field of definition F0

can be defined as the algebraic closure of Q(S).

Now, the field Q is countable. If L is a countable field and S is a countable
family of transcendental elements over L then L (S) is countable. Moreover,
if L is countable then its algebraic closure is countable [9, Theorem 65].

The last statement of the proposition follows using the same arguments.

In the sequel, F0 denotes an algebraically closed field of definition of Σ.



5 The Approximation Theorem

Denote Θ the commutative semigroup of the derivative operators generated by
the derivation operators i.e. Θ = {δa11 · · · δamm | a1, . . . , am ∈ N}.

Define a one-to-one correspondence between the set of all pairs (i, θ) ∈
[1, n] × Θ and the set N of nonnegative integers. This correspondence permits
us to enumerate all derivatives θyi of the differential indeterminates. Fix a cor-
respondence which defines an orderly ranking (derivatives are enumerated by
increasing order) [10, chap. I, sect. 8]. The derivatives of the y are denoted
v0, v1, v2, . . .

Define another one-to-one correspondence between the set of all pairs (i, θ) ∈
[1, s] × Θ and N. This correspondence permits us to enumerate all derivatives
θ gi of the differential polynomials. Again, fix a correspondence which defines
an orderly ranking on the derivatives of the g (viewing them as s differential
indeterminates). The derivatives of the g, evaluated at x1 = · · · = xm = 0, are
denoted f0, f1, f2, . . . The polynomials f thus belong to F0{y1, . . . , yn}.

Let k be a positive integer. Denote

Σk = {fi | 0 ≤ i ≤ k} ,
Σ∞ = {fi | i ∈ N} .

Define κ(k) = κ as the smallest integer such that Σk ⊂ F0[v0, . . . , vκ]. The index
κ exists because the ranking is orderly. Define

Ak = {a ∈ Fκ+1
0 | f0(a) = · · · = fk(a) = 0} .

Let now S be any subset of N. Define Ak,S as the set of zeros of Ak which are
compatible with S:

Ak,S = {a ∈ Ak | ai 6= 0 if and only if i ∈ S ∩ [0, κ]} .

Indeed, thanks to the fixed one-to-one correspondence between the derivatives
of the differential indeterminates and the set N, any such set S encodes a tuple
of n supports of formal power series. Define (observe that the coordinates of the
elements of A∞ belong to F )

A∞ = {a ∈ FN | fi(a) = 0 for each i ∈ N} ,
A∞,S = {a ∈ A∞ | ai 6= 0 if and only if i ∈ S} .

Theorem 1. Assume F has countable transcendence degree over F0. Let S be
any subset of N. If Ak,S 6= ∅ for each k ∈ N then A∞,S 6= ∅.

Proof. Let R be the ring obtained by inversion of all derivatives with indices
in S and quotient by the ideal equal to the sum of the ideal generated by Σ∞
and the ideal generated by the derivatives with indices not in S, i.e.

R = F0[vi, v
−1
j | i ∈ N, j ∈ S]/(fi, vj | i ∈ N, j /∈ S) . (12)



By Lemma 1, this ring is not the null ring. By Krull’s Theorem, it contains a
maximal ideal m. The field R/m has at most countable transcendence degree
over its subfield F0. Thus, it is isomorphic to a subfield F1 of F . In order to see
this, consider F0(v̄0, v̄1, . . .), where v̄i ∈ R/m are the images of the vi. Pick any
transcendence basis B = {v̄k | k ∈ I ⊂ N} of this field extension. B is at most
countable. Map them to the elements of a corresponding transcendence basis
of F1 over F0 (the hypothesis on the countable transcendence degree of F1

over F0 is used here in order to have one-to-one correspondence between the
two bases). Then map the v̄i /∈ B — which are algebraic over F0(B) — to
corresponding algebraic elements of F1, using the fact that F1 is algebraically
closed.

Hence, we have a ring homorphism F0{y1, . . . , yn} → R → R/m → F1 ⊂
F . The images of the vi by the above map provide a solution of Σ∞ in F .

Though its presentation is different, our proof of Theorem 1 is very close
to [7, Proposition 6.3]. One recovers the proof of [7] (mostly due to Marc Paul
Noordman and much inspired by methods borrowed from [6]) by changing the
last paragraph as follows:

Proof. Recall that in this proof F is supposed to be uncountable. [. . . ] By
Lemma 1, this ring is not the null ring. It thus contains a maximal ideal m.
The ring R/m is a field. As a F -algebra, it is countably generated (since R is).
Therefore, it is of countable dimension as a F -vector space (it is generated, as a
F -vector space, by the products of some set of its generators, as a F -algebra).
If t ∈ R/m were transcendental over F then, by the theory of partial fraction
decomposition, the elements 1/(t−α) for α ∈ F would form an F -linearly inde-
pendent subset of R/m. This subset would be of uncountable dimension since F
is assumed to be uncountable: a contradiction. Thus R/m is algebraic over F .
Since F is algebraically closed, R/m is isomorphic to F .

Lemma 1. The ring R defined in (12) is not the null ring.

Proof. We prove the lemma by showing that Σ∞ admits a solution in some
field F ∗0 (which turns out to be an ultrafield - see Section 5.1) and constructing
a map F0{y1, . . . , yn} → F ∗0 which factors as F0{y1, . . . , yn} → R → F ∗0 .

To each k ∈ N associate an element ak ∈ Ak,S . We have

ak = (ak0 , a
k
1 , . . . , a

k
κ) ∈ Fκ

0 .

Fix any non principal ultrafilter D on N and consider the ultrafield F ∗0 =
(
∏
i∈N F0)/D . For each i ∈ N define ui ∈ F ∗0 by

u0 = (a00, a
1
0, a

2
0, . . . , a

k
0 , . . .) ,

u1 = (a01, a
1
1, a

2
1, . . . , a

k
1 , . . .) ,

...

ui = (a0i , a
1
i , a

2
i , . . . , a

k
i , . . .) ,

...



On each column k of the above “array”, the elements aki such that i > κ are
not defined. Set them to zero. Observe that on each row, there are only finitely
many such elements.

We have thus defined a map vi 7→ ui.
Let now i ∈ N be the index of some polynomial fi = f . Evaluate f to an

element of F ∗0 by substituting uj to vj for each j ∈ N. Ultrafield operations
are performed componentwise and the zeros of the f appear on the columns in
the above array. Thus, f evaluates to zero over the kth coordinate of F ∗0 for
all sufficiently large values of k. This set of values of k is cofinite and hence, f
evaluates to zero in F ∗0 .

Let now i ∈ N be the index of some derivative vi. By definition of Ak,S ,
if i /∈ S then all the coordinates of ui are zero so that ui is zero in F ∗0 ; if i ∈ S
then the coordinates aki of ui are nonzero for all sufficiently large values of k
and ui is nonzero in F ∗0 .

The mapping vi 7→ ui thus defines a zero of Σ∞ which is compatible with S
and with coordinates in F ∗0 .

5.1 Basic Notions on Ultraproducts

This section is much inspired by [13, chap. 2] with the notations of [2]. It is
provided for the convenience of casual readers.

The set N is used as an index set on which we fix a (so called) non-principal
ultrafilter D . It is by definition a collection of infinite subets of N closed under
finite intersection, with the property that for any subset E ⊂ N either E or its
complement N \ E belongs to D . In particular, the empty set does not belong
to D and, if E ∈ D and F is an arbitrary set containing E then also F ∈ D .
Otherwise, N \ F ∈ D and therefore, ∅ = E ∩ (N \ F ) ∈ D : a contradiction.
Since every set in D must be infinite, it follows that every set whose complement
is finite (such a set is called cofinite) belongs to D .

Let Ri (i ∈ N) be a collection of rings. We form the ultraproduct R∗ =
(
∏
i∈N Ri)/D (or the ultrapower RN/D if all rings Ri are the same ring R)

as follows. On the Cartesian product
∏
i∈N Ri we define the equivalence rela-

tion: a ≡ b if and only if the set of indices i such that ai = bi belongs to the
ultrafilter D .

We are going to use the following facts.
Consider an element a ∈ R∗ which has no nonzero coordinates. The set of

indices such that ai = 0 is empty. Since the empty set does not belong to the
ultrafilter, a 6= 0 in R∗.

Consider an element a ∈ R∗ which has only finitely many nonzero coordi-
nates. The set of indices such that ai = 0 is cofinite. Thus it belongs to D .
Thus a = 0 in R∗.

An ultraproduct of rings is a ring: addition and multiplication are performed
componentwise. Let us prove that an ultraproduct of fields is a field (called an
ultrafield). Consider some a 6= 0 in R∗. Then the set E = {i ∈ N | ai = 0} does
not belong to D . Thus its complement F = N \ E belongs to D . Define ā as
follows: for each i ∈ N, if ai = 0 take āi = 0 else take āi = a−1i . Let u = a ā.



The set of indices such that ui = 1 is F , which belongs to D . Thus a admits an
inverse and R∗ is a field.

6 The New Version of the Fundamental Theorem

For completeness, we provide the part of the proof of the Fundamental Theorem
which makes use of our Theorem 1. The proof is the same as that of [1, Theorem
8]. We start with an easy Lemma [1, Remark 4.1].

Lemma 2. Let S = (S1, . . . , Sn) be a tuple of n supports and m = c vd11 · · · vdrr
be a monomial. Then trop(m) = 0 at S if and only if the valuation of c is zero

and each factor vd = (y
(k)
j )d of m is such that k ∈ Sj.

Before stating the Fundamental Theorem, let us stress that the fields F0

and F mentioned in Theorem 2 can be assumed to be countable, by Proposi-
tion 1.

Theorem 2 (Fundamental Theorem for ODE).
Let Σ be a differential ideal of F [[x]]{y1, . . . , yn} where F is an algebraically

closed field of constants and F0 be an algebraically closed field of definition of Σ.
If F has countable transcendence degree over F0 then

trop(sol(Σ)) = sol(trop(Σ)) . (13)

Proof. The inclusion ⊂ is easy. We prove the converse one. We assume that S
is not the support of any solution of Σ and we show that S is not a solution of
trop(Σ).

For this, we are going to build a differential polynomial h ∈ Σ, expanding to
a sum of monomials

h = m1 +m2 + · · ·+mr , (14)

such that trop(m1) = 0 and trop(mi) > 0 for 2 ≤ i ≤ r.
By the Ritt-Raudenbush Basis Theorem (see [4] for details), there exists a

finite set g1, . . . , gs of differential polynomials of Σ such that the solution set
of Σ is the solution set of the differential ideal [g1, . . . , gs] generated by the g.

From now on, we use the notations introduced in Section 5. Since [g1, . . . , gs]
has no solution with support S we have A∞,S = ∅ whence, by Theorem 1,
there exists some index k such that Ak,S = ∅. Recall that Ak,S is a subset
of the algebraic variety of some polynomial system obtained by prolonging (and
evaluating at x = 0) the system of the g up to some order and that the prolonged
system belongs to some polynomial ring F0[v1, . . . , vκ].

We are going to seek the differential polynomial h in the ideal (f0, . . . , fk) of
the Noetherian polynomial ring F0[v1, . . . , vκ]. Observe that this polynomial h
does not belong to Σ, which is an ideal of F0[[x]]{y1, . . . , yn} because the poly-
nomials f are obtained after evaluation at x = 0 of derivatives of the g. This is
actually not a problem since all the monomials cancelled by this evaluation have



a coefficient c with positive valuation (Lemma 2). See also [1, Remark 5.1]. More
precisely, the existence of a polynomial h in (f0, . . . , fk) implies the existence of
another polynomial (14) in Σ.

The ideal (f0, . . . , fk) has no solution compatible with S. This means that

[f0 = · · · = fk = 0 and vj = 0 for all vj s.t. j /∈ S]⇒ v` = 0 for some ` ∈ S

⇒
∏

`∈S, `≤κ

v`︸ ︷︷ ︸
m1

= 0 .

By Lemma 2 we have trop(m1) = 0 at S. By Hilbert’s Nullstellensatz, we have

m1 ∈
√

(f0, . . . , fk, (vj)j /∈S)

Thus there exists a positive integer d and monomials m2, . . . ,mr such that h =
md

1 +m2 + · · ·+mr belongs to the ideal (f0, . . . , fk) and for each 2 ≤ i ≤ r, there
exists some j /∈ S for which deg(mi, vj) > 0. By Lemma 2, we have trop(mi) > 0
at S for each 2 ≤ i ≤ r.

7 The Partial Differential Case

In this section we give an overview on the generalization to the case of partial
differential equations.

We seek for solutions of systems Σ ⊂ F [[x1, . . . , xm]]{y1, . . . , ym} in the ring
of multivariate formal power series F [[x1, . . . , xm]].

In this case, the algorithmic problems are even worse than in the ordinary
case. According to [6, Theorem 4.11], there even cannot be an algorithm for
deciding solvability of linear systems, a subclass of algebraic differential equa-
tions as we consider. Instead of actually computing the solutions of Σ, we again
present an equivalent description of the solutions in the form of (2).

As in the ordinary case (m = 1), the support of a formal power series

ϕ =
∑

aI x
I =

∑
a(i1,...,im) x

i1
1 · · ·ximm

is the set {I ∈ Nm | aI 6= 0} and the tropicalization of ϕ is defined as its support.
Hence, the left hand side of (2) is defined also for m > 1.

For the tropicalization of Σ, the generalization can not be done straightfor-
ward, since there is no well-defined minimum of elements in Nm. In [7] is used
instead a very specific partial order.

LetX ⊂ Nm. The Newton polytopeN (X) ⊆ Rm≥0 ofX is defined as the convex
hull of X + Nm = {x + n | x ∈ X,n ∈ Nm}. Moreover, x ∈ X is called a vertex
if x /∈ N (X \ {x}), and vert is the set of vertices of X. It follows that vert(X)
is the minimal set in Nm (with respect to the relation “⊂”) generating N (X).
Let us denote all vertex sets as Tm = {vert | X ⊂ Nm}. Then, the composition



of taking the support and then its vertex set of the formal power series defines
a non-degenerate valuation such that some ideas of [1] can be recovered.

F [[x1, . . . , xm]] P(Nm)

Tm

supp

non−deg.valuation
vert

The tropicalization of a differential monomial m = cvd11 · · · vdrr at a tuple of
supports S = (S1, . . . , Sn) ⊂ (Nm)n is defined as the non-degenerate valuation
of m(ϕ) from above with supp(ϕ) = S. Let us illustrate this.

monomialm supportS trop(m) atS
x1x2 y {(1, 0), (0, 1)} {(2, 0), (0, 2)}
( ∂ y∂x1

)2 {(2, 0), (0, 2)} {(2, 0)}
( ∂2 y
∂x1 ∂x2

)2 {(2, 0), (0, 2)} ∅

The tropicalization of a differential polynomial p of the form (5) at S is
defined as

trop(p) = vert(

t⋃
i=1

trop(mi)) . (15)

Let us consider the polynomial

p = ∂ y
∂x1
· ∂ y∂x2

+ (−x21 + x22) ∂2 y
∂x1∂x2

. (16)

polynomial supportS list trop(mi) atS
p {(2, 0), (0, 2)} [{(1, 1)},∅]
p {(2, 0), (1, 1), (0, 2)} [{(2, 0), (1, 1), (0, 2)}, {(2, 0), (0, 2)}]

Considering trop(p) as a function of n unknown supports, (S1, . . . , Sn) is said
to be a solution of trop(p) if for every vertex J ∈ trop(p) there exists mi,mj

(i 6= j) such that J ∈ trop(mi) ∩ trop(mj) . In the example above, we see that
there cannot be a solution of p with support equals {(2, 0), (0, 2)}, but ϕ =
x21 + 2x1x2 − x22 is indeed a solution.

For more illustrations of the tropicalization of (partial) differential polyno-
mials, see [5].

As in the ordinary case, the inclusion trop(sol(Σ)) ⊂ sol(trop(Σ)) in the Fun-
damental Theorem is relatively easy [7, Proposition 5.7]. The converse inclusion
can be shown exactly as in [7, Section 6], except that we replace Proposition 6.3
by the Approximation Theorem 1.

For consistency let us recall the main result here.

Theorem 3 (Fundamental Theorem for PDE). Let Σ be a differential ideal
of F [[x1, . . . , xm]]{y1, . . . , yn} where F is an algebraically closed field of con-
stants and F0 be an algebraically closed field of definition of Σ. If F has count-
able transcendence degree over F0 then

trop(sol(Σ)) = sol(trop(Σ)) . (17)



Acknowledgements
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