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Abstract: GRACE spherical harmonics are well-adapted for representation of hydrological signals
in river drainage basins of large size such as the Amazon or Mississippi basins. However, when
one needs to study smaller drainage basins, one comes up against the low spatial resolution of the
solutions in spherical harmonics. To overcome this limitation, we propose a new approach based on
Slepian functions which can reduce the energy loss by integrating information in the spatial, spectral
and time domains. Another advantage of these regionally-defined functions is the reduction of the
problem dimensions compared to the spherical harmonic parameters. This also induces a drastic
reduction of the computational time. These Slepian functions are used to invert the GRACE satellite
data to restore the water mass fluxes of different hydro-climatologic environments in Africa. We
apply them to two African drainage basins chosen for their size of medium scale and their geometric
specificities: the Congo river basin with a quasi-isotropic shape and the Nile river basin with an
anisotropic and more complex shape. Time series of Slepian coefficients have been estimated from
real along-track GRACE geopotential differences for about ten years, and these coefficients are in
agreement with both the spherical harmonic solutions provided by the official centers CSR, GFZ, JPL
and the GLDAS model used for validation. The Slepian function analysis highlights the water mass
variations at sub-basin scales in both basins.

Keywords: Slepian functions; GRACE; hydro-climatic changes; Africa

1. Introduction

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) launched by
NASA and DLR belongs to a new generation of Low-Earth Orbiter (LEO) satellites that
improves the resolution of the gravity field to 300–400 km [1,2]. The specificity of the
GRACE mission was to map weak changes of the gravity field associated with the moving
water mass of the superficial fluid envelopes of the Earth, i.e., atmosphere [3], oceans [4,5],
continental water storage [6,7].

Using Spherical Harmonics (SH) is somehow the ancestor of all GRACE signal repre-
sentation methods and still remains the reference [8]. SH have been initially used to retrieve
low degrees, which correspond to long wavelengths of the gravity field, by deriving precise
satellite trajectories. The band-limited SH suffer from spatial leakage due to spectrum
truncation. SH are a basis of orthogonal functions on the entire Earth sphere and are
not adapted to study restricted areas or localized structures, e.g., medium- to small-scale
watersheds that cause a loss of their orthogonality. Without this orthogonality condition,
any regional decomposition is not unique and cannot be ensured. Improved approaches
highlight better regional and time resolutions for GRACE, such as mascons [9], and con-
sider networks of surface tiles for describing hydrological patterns [6]. Besides, mascon
solutions require regularization by space and time smoothing [10]. A new representation
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derived from SH but using the Slepian function (SF) has the advantage to be orthogonal
over the globe but also at medium- to small-scale watersheds [11].

A representation in SF that maximizes the information density in spatial and spectral
domains is adopted in the present study. It consists of building a finite set of orthog-
onal functions in a given region, as earlier proposed by [12] to solve geodetic localiza-
tion problems. To limit the spatial leakage, the SF coefficients of the ten major African
basins (Figure 1) are estimated jointly. Former studies on applications of SF concerned the
characterization of deep deformation of important earthquakes by their signature in the
gravity field measured by GRACE. The authors of [12] tried to isolate the coseismic gravity
variation due to the 2004 Sumatra-Andaman earthquake, while [13] studied the Tohoku
earthquake of 2011. In hydrology, the total mass loss of Greenland by melting has been
quantified by [14] using GRACE data ranging from 2002 to 2011. The mass balance of the
Tibetan Plateau and its surrounding glaciers that have been losing ice mass due to global
warming was also quantified by [15]. The authors of [16] explored the possibility that coal
mining could cause groundwater depletion consumption in the Loess Plateau using SF
representation. A re-evaluation of the mass balance of the Iceland ice cap using SF has also
been made by [17].
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coded in [18], to transform the GRACE Stokes coefficients, i.e., the dimensionless spherical 
harmonic coefficients of the geopotential into a regional Slepian basis. The lowest frequen-
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Figure 1. Hydrological and climate maps of Africa: (a) geographical masks of the main drainage basins. In this study,
we analyzed two specific basins: Congo/Zaire (white color), and Nile (blue) but SF inversion have been made on the ten
major basins, i.e., Niger (red, ~2.26), Zambezi (dark green, ~1.33), Orange (orange, ~0.97), Okavango (purple, ~0.72), lake
Tchad-Chari (light blue, ~0.55), Jubba-Shebelle (grey, ~0.49), Limpopo (light green, ~0.41), and Senegal (yellow, ~0.3). Source:
http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/TRIPDATA.html (last accessed on 31 March 2020); (b) map of climatic
zones using the Köppen climate classification, the main watersheds are delimited by a dark red line and the associated
hydrographic network corresponds to a dark blue line for the main rivers and a white line is used for small tributaries or
gullies; (c) example of the January 2003 GLDAS simulation map, the variations of the EWH are expressed in mm.

We propose a new approach based on a set of orthogonal SF as a regional representa-
tion basis to invert directly original KBRR-based geopotential differences to recover the
hydrology of two African river basins that offer different watershed shapes and clima-
tologies (Figure 1b) with geographical details at an unprecedented sub-basin scale (i.e.,
~250 km). Usually, the SF are constructed from the SH basis by imposing a bandwidth
of L = 60 for GRACE data representation. They are commonly derived using the method
of [14], coded in [18], to transform the GRACE Stokes coefficients, i.e., the dimensionless
spherical harmonic coefficients of the geopotential into a regional Slepian basis. The lowest
frequencies represented by the coefficients of degrees 1 and 2 need to be corrected using
satellite ranging measurements [19,20] before being converted into a surface mass den-
sity by SH filtering [21]. While these previous works use SH of water mass to derive SF
coefficients, we propose here, for the first time, to adjust SF coefficients of water mass
directly from along-track GRACE geopotential differences measured and reduced at satel-
lite altitude. The article is structured as follows. After exposing the principles of the SF

http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/TRIPDATA.html
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decomposition for describing regional surface water mass changes in the first part, an
inversion of real GRACE geopotential differences to estimate SF coefficients related to the
two largest African drainage basins, i.e., the Nile and Congo basins, over successive 10-day
periods ranging from 2003 to 2011, is made in the second part of the article. Due the low
quality of the GRACE accelerometer and thus the velocity vector measurements and the
end-of-life battery lows creating very frequent interruptions in observation after 2011, the
inversion of GRACE KBRR data has been converted into along-track potential differences
and inverted for estimating the 10-day SF coefficients during the stable period of 2003–2011.
The Slepian-based estimates are also confronted to other GRACE solutions and GLDAS
model outputs for validation. In the third part, a discussion on the spectrum truncation of
SF and the influence of the a priori bandwidth is made. At the end, the conclusion section
recaps the main findings of the present study and then possible perspectives of our work
are proposed.

2. Materials and Methods
2.1. Selected Drainage Basin

(a) The tropical Congo river basin

The Congo River basin is notable for its large, almost circular, drainage shape of
~4 million km2 (see Table 1 and Figure 1). It is the second largest river in the world by
discharge [22,23] of ~40,000 m3/s, referred to as the “Cuvette Centrale” that slows the
downstream flow [22,24], and the branching patterns formed by its tributaries indicate
different hydro-climatic climatic provinces: the region of the lakes Victoria and Tanganyika
(Figure 1a) which corresponds to the border between the equatorial/monsoon climate
and the tropical climate (Figure 1b) in the East, the tropical forests which correspond to
the transition between the tropical climate to the humid subtropical one in the South, the
central depression which corresponds mainly to the equatorial/monsoon climate, and the
mainly tropical climate with the semi-arid Sahelian influences in the North.

Table 1. Some characteristics of the drainage basins of the Congo and Nile rivers.

Catchment Congo Nile

Kopt 78 77
K 34 29

Area (106 km2) 4.01 3.24
Shape Ratio (SR)

SR = long/short axis 1.12 2.31

Discharge (m3/s) 41,200 2830
Rainfall (103 mm)

Max 1.6–1.7 0.15–0.25
Min 0.05–03 0.01–0.05
T ◦C
Max 30–37 26–29
Min 9–11 12–14

The flow regime at the Kinshasa, near the estuary, represents 98% of the basin and
shows two peaks of high streamflow each year denoting the bimodal flow regime of April–
May (~50 m3/s for the period 1998–2010; [25]) and the tropical influence in November–
December (120 m3/s for the same period). The average annual temperature has increased
by ~0.5 ◦C during the last two decades, with an average minimum of 11.7 ◦C in January
and a maximum in March of 37.4 ◦C (see Table 1). The annual height of the rainfall has a
decrease of -6.4 mm during this period [25]. Besides, seasonal variations in the wetland
water storage using information of inundations have already been studied by satellite
gravimetry [26], by comparison between SH, mascon and Slepian solutions [11], and by
comparison between radar altimeter data and GRACE solutions [27].

(b) The semi-arid basin of the Nile



Remote Sens. 2021, 13, 1824 4 of 16

The Nile river basin is notable for its length (~6650 km). In terms of catchment area
(~3 million km2), it is slightly smaller than that of Congo (~4 million km2), with an average
discharge of ~2800 m3/s, and its drainage network extends northward. The Nile basin has
a strong climatic diversity and it crosses seven different climatic zones: the desert near its
mouth in the North, then it crosses the semi-arid zone and arrives in its central part in a
tropical climate which leaves place to an area under marine influence more to the East, and
to an equatorial climate in the South (Figure 1): the flow regime presents a multi-modality
which increases towards the north as the tributaries converge towards the Nile [11].

2.2. Global Land Assimilation System (GLDAS)

The interest of the Global Land Data Assimilation System (GLDAS) is that it integrates
satellite-and ground-based observational data products, using advanced land surface mod-
eling and data assimilation techniques with the framework of water use and availability
estimations [28] (see description on the site https://ldas.gsfc.nasa.gov/gldas accessed
on 31 March 2020). The model allows the input of a huge quantity of observation-based
data, executes globally at high resolutions (~27 km to 1 km), and produces EWH grids in
near-real time. A vegetation-based tiling approach is used to simulate the sub-grid scale
variability. Soil and elevation parameters are based on high-resolution global datasets.
Observation-based precipitation and downward radiation products and the best available
analyses from atmospheric data assimilation systems are employed to force the models.
Data assimilation techniques for incorporating satellite-based hydrological products, in-
cluding snow cover and water equivalent, soil moisture, surface temperature, and leaf area
index, are now being implemented as part of a follow-on project funded by the NASA
Energy and Water Cycle Study (NEWS) Initiative. The African climate (Figure 1b) derived
from the well-known Köppen climate classification [29] and the modeling of EWH using
GLDAS (Figure 1c) are well correlated even if the GLDAS simulation is more dependent
on surface and atmosphere exchanges.

2.3. KBRR GRACE Data

The on-board K-Band Range Rate (KBRR) of 24–32 GHz is the key science instrument
of the Gravity Recovery and Climate Experiment (GRACE) mission. It measures the dual
one-way range change of the baseline between the co-planar low-altitude satellites. These
measures have a precision of ~1 µm/s on velocity difference; or expressed in distance,
10 µm after integration versus time [30]. The average distance between the GRACE vehicles
is ~220 km. In fact, KBRR is the most precise measure of gravity variation sensed by the
GRACE satellite tandem and gives access to surface water mass transfers of the Earth.
These measurements are reduced from the non-conservative forces detected by the 3-axis
accelerometers (i.e., atmospheric drag and solar pressure), as well as from the contributions
of atmosphere, oceanic masses, solid Earth/oceanic tides, polar tides and static field
using a priori models. The obtained KBRR residuals are associated to the non-modeled
gravitational effects that represent mainly the continental water storage. These potential
difference residuals are converted into along-track potential differences between the twin
GRACE satellites following the energy integral method, as earlier proposed by [31–33].

2.4. Construction of an Orthogonal Slepian Function Basis

The SF f are the eigenfunctions of an area-bandwidth limiting operator. They are
given as the solutions of the eigenvalue equation:

fk = λk fk (1)

where the elements of the symmetric correlation matrix D are given by:

Dij = ∑L
n=0

2n + 1
4π

Pn
(
cosϕij

)
(2)

https://ldas.gsfc.nasa.gov/gldas
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where Pn is the Legendre polynomial of degree n and ϕij is the angular distance between
two points numbers i and j inside the geographical mask of the considered drainage
basin. Equation (1) represents the main task for determining the SF for regions of arbitrary
shapes [34]. For each eigenvalue, each SF is a separate solution of an eigenvalue equation
that maximizes the concentration of information (or equivalently energy) inside a given
region, so that the eigenvalue number k is a measure of density of the corresponding SF.
Extracting information over the full bandwidth of the solution without filtering, the SF
basis provides spatial sensitivity that is superior to the sensitivity of many other modeling
methods [11].

Considering only the first eigenvalues of the highest energy, e.g., >0.5, drastically
improves the signal-to-noise ratio [35] with very small impact, or leakage effect, outside
the region of interest.

A set of SF for each river basin requires starting parameters: (1) the description of the
studied region, i.e., the points in the geographical mask, (2) the bandwidth L taken as the
spatial resolution of the data, i.e., usually 60 for the GRACE solutions based on SH, and
the number of the SF needed for a true description of the hydrological variations. This
latter parameter is usually taken as the Shannon number K, i.e., K = ∑ λk

λmax
for the defined

bandwidth L and catchment [36]. For each river basin, the elements of the matrix D of
Equation (2) are produced from the M points inside the basin limited by its geographical
boundaries. For example, the 0.5◦-sampled boundary gives M = 656 for the Congo basin.
Then, Equation (1) is solved for the M eigenfunctions fk and eigenvalues λk by considering
this particular L. In practice, we check the orthogonality and it is not completely numerically
realized for very large Slepian orders, e.g., k > 100. We show in Figure 2 the spectra for
the Congo and Nile watersheds. The Shannon’s truncation K is strong enough since a
significant part (~20% for the Nile; ~12% for the Congo) of the total energy is not taken
into account in the signal reconstruction. To rectify this, in the Section 2.5, an optimized
threshold method is proposed that conserves much of the energy of the SF spectrum, and
consequently gives more details (~130% and ~165% for Congo and Nile, respectively).
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Figure 2. Normalized eigenvalue spectra computed from the geographical masks of the Congo and
Nile river drainage basins. Shannon numbers K are also indicated (blue line for Nile, grey one for
Congo). For the Nile basin around 20% of the normalized energy is not taken into account if the K
truncation is used by comparing to the Kopt. The overall increase in the number of coefficients, which
constitutes the basis of SF, corresponds to ~165% (K = 29 versus Kopt = 77) for the Nile, and the loss of
information is ~12% lower for the Congo and is again marked by a strong increase in the number of
SF coefficients of about ~130% (K = 34 versus Kopt = 78).
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2.5. Optimization of Slepian Function Parameterization
2.5.1. Coefficient of Truncation

The choice of the maximum mode for constructing the solution from the GRACE-
derived SF coefficients is examined here. The classical Shannon number K [36] is usually
used as the maximum number of terms in the SF development. K depends on the geograph-
ical mask of the basin as well as the bandwidth L considered in the SVD decomposition.
Alternatively, by keeping 99.9% of the SVD spectrum energy to determine Kopt for GRACE
potential data inversion, it is possible to accumulate the information of more high-mode
coefficients of short wavelengths to complete the surface signal reconstruction by more
details as Kopt > K (Figure 2), even if the very finer scales (from hundred to few tens of
km) of hydrological variability are not reachable due to the upward continuation of very
short-scale structure to the satellite altitude.

2.5.2. Bandwidth Analysis

According to Equation (2), the matrix D is determined by considering a certain band-
width L, which corresponds to the maximum degree of the Legendre polynomial develop-
ment. Since this parameter is usually taken to be 60 in all the previous GRACE-based stud-
ies on SF representation [14,17], it is considered as the most suitable value for representing
GRACE data, and therefore this numerical value has been considered in our computation.
Besides, possibilities of using optimized values for L are also explored in our study for
generating an optimal SF basis that is well-adapted for regions of anisotropic/isotropic
shape and/or of large, e.g., L = 30 and small, e.g., L = 120, dimensions.

2.5.3. Polar Reduction

The operator D in Equation (2) also depends on the cosines of the angular distances
between the sampled points describing the geographical mask of each basin, the surface
distances being greater at the Equator and decreasing with the latitude. To compensate
for this distortion and obtain more homogeneity in the spatial sampling of the elementary
surfaces versus the centers of each drainage basin, a “Polar reduction” is proposed by
operating two successive angular rotations to displace the mask centers and consequently
all their surrounding points to: (1) the longitude zero for a Greenwich meridian centering,
and (2) the latitude of 90 degrees, i.e., to the North pole, Congo and Nile being in the
Northern Hemisphere, before applying the eigenvalue decomposition of the matrix D. The
inverse rotations are made on the SVD decomposition-based SF to set them back to the
starting location of the center of the basin taken as a position reference. Consequently, the
SF favors the description of the centering region of the basins instead of the highest latitude
parts. To reduce the geometric distortions and to obtain homogeneous sampling, we have
chosen to implement this pole reduction automatically in our processing chain, thus all the
results presented in Section 3 will integrate this reduction.

2.6. SF Reduction of the Gravity Inverse Problem

The damped Moore–Penrose solution of the problem for estimating the Slepian coeffi-
cient vector C of dimension Ktotal, i.e., the total number of Slepian coefficients of the ten
African river basins, is:

C =
(

B∗T B∗
)−1

B∗TY (3)

where Y is the N-element vector containing the GRACE-observed potential differences due
to a surface distribution of sources for a given period of observation (see Section 2.4), and
B* is the numerically stabilized version of the complete SF operator given by:

B = Γ F (4)

The elements of the Newtonian potential matrix Γ of dimensions N × M are provided
by [34], M (that is at least equal or lower than Ktotal) is the number of surface elements in
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the basin and F is the block-diagonal matrix gathering the SF fk. B* is built by keeping,
e.g., 99.9% of the energy of the eigenvalue spectrum of the N × Ktotal -sized matrix B for
attenuating the ill-conditioning.

3. Results

The first two parts of the results obtained correspond to a sensitivity analysis of the
key parameters, i.e., K versus Kopt and L, which govern the basis of SF. This analysis was
applied to two African basins, Congo and Nile, respectively, according to their surface
area which are quite close to ~4 and ~3 million km2 (see Table 1). Another key point is
the shape of these two basins, the first one, the Congo basin, has an isotropic shape ratio
(circular shape with SR~1, Table 1) while the second, the Nile basin, presents a strongly
latitudinal anisotropic shape (diamond shape with SR ~2.3, Table 1), which will also allow
us to examine the impact of the shape and size on the parameterization of both K/Kopt
and L.

3.1. Analysis of the Slepian Coefficient Truncation

We have selected the year 2005 to evaluate the impact of the truncation of a circular SF
base. This year is considered as “representative” of the whole time series in terms of rainfall
and hydrology. The GLDAS model was used herein as reference and its variations are
expressed in mm of Equivalent Water Height (EWH). It shows a clear latitudinal zonation
of the Congo basin in two climatic zones: the desert climate in the northern part with a dry
period visible in January and in April where the water deficit can reach-75 mm (Figure 3a).
This dry period is followed by a wet period visible from June until October with a water
supply of up to 100 mm in the western part where the Atlantic Ocean current brings a large
part of this humidity.

To better understand the difference between K and Kopt, we have computed a circular
SF basis using K = 34 and Kopt = 78 for the Congo basin. Figure 3a shows the results of this
analysis. We compare both SF mode maps and the related GRACE-estimated time series,
as well as the GLDAS maps for the same periods. The KBRR inversion using SF for both
cases of the Congo and Nile basins, yield results that are very comparable with those of
the GLDAS model for frequency (temporal variations) and latitudinal zonation (spatial
variations). In terms of intensity, a relatively constant and clear bias is observed like many
authors have observed before (in South America [37], Africa [38], Poland [39], and at global
scale [40]) and it corresponds, in our case, to a factor ~2. So, in order to be able to compare
the estimated SF maps, we have chosen to divide the outputs of the GLDAS simulation by
2, at least to ease the graphical representation using the same color scale (Figure 3).

The patterns of the K (column 1, Figure 3a) and the Kopt (column 2, Figure 3a) in-
versions are geographically very close. Some oscillations are clearly visible when we
used Shannon criteria, e.g., April 2005, whereas the Kopt inversion gives a better spatial
continuity closer to those provided by the GLDAS model. The difference between both
inversions underlines that the smoothness observed with the Kopt threshold is provided
by the high-order SF coefficients which are absent from the inversion using the Shannon
number threshold (third column of Figure 3). In addition, the influence of these high-order
coefficients of SF is all the more visible the greater the latitudinal difference relative to the
reference model becomes.

The results for the Nile river basin also present a clear latitudinal zonation: the
northern part has a desert climate followed by a thin semi-arid band which then gives
way to the south to the dominant equatorial climate to end near Lake Victoria with an
equatorial-monsoon climate (Figure 1b). The GRACE and GLDAS results are shown in
Figure 3b. The threshold value used for the SF reconstruction are K = 29 and Kopt = 77.
Despite the fact that the Nile basin has a surface that is slightly smaller than that of the
Congo basin (Table 1), its diamond shape poses a real challenge to retrieve latitudinal
variations because, if its central part has a sufficiently large scale (diameter ~1400 km), its
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estuary and the supply areas of the basin have smaller sizes (~200–300 km and ~500–600
km, respectively).
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The GLDAS simulation model highlights the latitudinal zonation of the climate. The
desert climate can be observed for latitudes ranging from ~32 to 20◦ with a mean EWH
value close to 0 mm. The thin semiarid band corresponds to latitudes ranging from 20◦ to
15◦ with a weak deficit of water of −25 to 50 mm during the dry season (May), and a tiny
excess of ~20–25 mm during the wet season (September). The large tropical area ranges
between 15◦ until 0◦ and presents a huge loss of water during the dry season of −25 mm to
150 mm, which transforms during the rainy season into an EWH excess of about 150 mm
to 75 mm; and the microclimate around the Lake Victoria, that is impacted by a monsoon
climate, presents intensities (excess or deficit) generally lower than the ones in the tropical
climate zone.

For the GRACE SF reconstructions, the climate areas are well restored but with a more
homogeneous pattern. Thus, the transition between desert, semi-arid and tropical climate
(with an excess during the wet season of 125 mm to 75 mm for both K/Kopt simulations and
a loss of −150 mm (for K simulation) and −100 mm (for Kopt) to 50 mm (for K) to 75 mm
(for Kopt)) is analyzed gradually without limit, and is as clear as the GLDAS reconstruction
permits. The transition to tropical climate and monsoon climate is clearer (100 mm in
September and 50 mm in April). The difficulty in the North to find gradients to point
out the climate variations are linked to the small extension of this zone which cannot be
totally transcribed at the altitude of the GRACE satellite due to upward continuation. As
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for the Congo basin, the Kopt solution is smoother than the K solution, and the pattern of
the difference between both models underlines the gap of high-order SF coefficients of the
K solution, one can see the orthogonal pattern due to these missing high-order coefficients
on the difference map. This pattern is clearer for this diamond-shaped basin than that
of the Congo basin, and it demonstrates the advantage of increasing the number of SF
coefficients when the basin shape becomes complex. This also points out the artifacts of
the K inversion where the gap of high SF coefficients generates a loss of ± 25 mm during
the dry period and inversely during the wet period. This difference can reach ±100 mm
in the border zone of the basin, a little bit more than in the Congo basin, where the same
effects are observed. It is important to mention that these are not edge effects because the
GRACE data inversion is done for estimating the SF coefficients of the ten largest basins of
African continent, and it is not restricted to the Congo and Nile basins.

3.2. Analysis of the Bandwidth

Conventionally, [14] and many other authors who rely on the inversion of harmonic
coefficients use a bandwidth L = 60 which allows them to find the maps and time series of
solutions from the well-known official centers (JPL, GFZ, CSR, GRGS/CNES, etc.) with
great reliability. Here, the philosophy is quite different, since we inverse the KBRR directly,
so we must identify if it contains bandwidths more suitable for our approach. However,
due to the extensive literature on using this L = 60 bandwidth [11,17,18], we choose to
use the L = 60 results as a starting reference and compare them with the other selected
bandwidths, i.e., L = 30 and L = 90.

Each SF mode is a combination of a limited band of spatial wavelengths. A spherical
Fourier analysis is used to determine this range and the dominant wavelengths of the SF
mode, or at least its so-called spatial “scale” that is identified by the largest amplitude (or
energy) peak of its spectrum.

Figure 4a shows results for the Congo basin. For the L = 30 bandwidth, a linear trend
appears with a concentration of the normalized energy for spatial scales ranging from less
than 500 km to more than 2500 km for coefficient numbers varying from 40 to 5, respectively.
For the upper coefficients, no significant energy is registered. For the L = 60 bandwidth,
the energy is concentrated on a noticeably clear linear trend which concentrated the main
part of the energy. For this bandwidth, we have a coefficient number which corresponds to
a unique spatial scale. In this area, the values of the normalized spectrum of amplitude
range from 0.6 to 0.9 with a very low variability, unlike the L = 30 bandwidth. In the case of
L = 90, all the energy is concentrated for the high coefficient numbers (47 to 75), but for this
bandwidth the variability is twice than that observed for L = 60. For coefficient numbers
lower than 47, the SF obtained with L = 90 have a clear loss of energy with values ranging
from 0.2 to punctually 0.8. As it has been already demonstrated by previous studies, the
option L = 60 gives the best results for the Congo basin, because this bandwidth offers the
advantage of concentrating the energy on a single spatial scale for each SF coefficient. In
addition, the linear correlation is the best of all the experiments, with several SF coefficient
numbers greater than 30 and corresponding to normalized spectrum amplitudes close to
0.75–0.9.

For the Nile (Figure 4b) and for all the bandwidths, there is a much greater variability
of spatial scales than those found in the case of the Congo basin. However, a more
restricted range of SF orders has to be identified. In other words, for L = 30, the number
of significant SF coefficients simply varies between 2 and 26, whereas for the bandwidth
L = 60, the number of relevant coefficients varies between 4 and 47. The spectral energies
are concentrated between 15 and 40. To explore larger SF orders (ranging from 43 to 76),
a larger bandwidth L = 90 must be considered, and in that case, high frequency signals
corresponding to scales ranging from 190 to ~250 km are preserved.

The bandwidth L and the size of the basin drive the characteristics of the SF, large
bandwidths, i.e., L = 90, produce SF of shorter wavelengths so that more Slepian modes
are necessary to reconstruct the complete regional signals, increasing the Shannon number
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K, but these wavelengths are better adapted for describing smaller watersheds than the
Congo and Nile ones. The parameter K increases with the size of the basin, e.g., from K~6
for the Orange basin (~1 million of km2) to K = 32 for the Amazon basin (~6 million of
km2), for L = 60. The range of SF scales rises with the parameter L and the basin size. In
the case of the Amazon basin or even greater surfaces, under the criterion of keeping the
most compact basis of SF (the lesser K), the better solution is to consider L = 30. For small
watersheds whose sizes are less than one million km2, ranges of wavelengths greater than
800 km (L = 30) do not ensure localization of patterns inside these basins.
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spectrum is more linear with a strong amplitude for a scale ranging from 500 km to ~300 km and for a coefficient number
ranging from 30 to 75; for L = 90, the spectrum shows for each coefficient a large range of scales, the linear part with more
concentrated scales starts at ~300 km for a coefficient number around 47 to 200 km and for a coefficient number of 75; (b) for
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for L = 90, the spectrum shows for each SF coefficient, as for the Congo watershed, a broad range of spatial scales, the linear
part starts at ~300 km for coefficients around 44 to 200 km and for an SF coefficient number of 75.

3.3. Analysis of the Resulting Time Series

Figure 5 displays the spatial components of several SF modes for the Congo basin of
quite isotropic/circular shape, as well as their associated time series estimated from the
GRACE geopotential differences every 10 days from 2003 to 2011. At the end of 2007 until
2011, these 10-day time series are much more interrupted due to the increase of noise in
the along-track geopotential measured by GRACE (outliers: light grey vertical bands in
Figure 5). GRACE data after 2011 are much more interrupted.

The first modes that are well-centered on this tropical basin exhibit a strong seasonal
cycle and obvious inter-annual variations, e.g., much wetness due to precipitation in this
basin starting at the end of 2006. The amplitudes of the last SF coefficients that are related to
high-frequency spatial maps are lesser in time, i.e., close to 0 mm of EWH. These high-order
SF modes are less localized in space, but bring details, especially at the edge of the Congo
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basin due to the fact that the SF coefficients are computed for the ten major African basins
(no edge effects for the Congo and Nile watersheds).
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The total EWH signal over the Congo basin (Figure 6) is reconstructed by summing
all the SF from k = 1 to 78 and spatially-averaged over the basin. It is characterized by
an important seasonal cycle of +/−50 mm that remains comparable in amplitude to the
ones obtained using the SH solutions. Some 10-day SF solutions could not have been
well-estimated due to the poor quality of the along-track real GRACE geopotential data.
This is represented by outliers in the time series of each SF coefficient. For the first years
of the time series (2003 until end of 2006), the k = 3 component points out a remarkable
tendency to dry out the basin with a slope of 97 mm per year. The decreasing water storage
occurring up to 2003–2006 can be explained by specific hydro-climatic conditions over the
East African Rift, due to a severe drought reported for Equatorial East Africa [41], followed
by the positive strong Indian Ocean dipole (IOD) in late 2006. This sudden rise of rainfall
forced by the IOD was observed by other authors [42,43] using multi-technique satellite
approach, mainly radar altimetry. Then, beginning at the end of 2006 to 2011, a sudden
increase in the water content, i.e., + 94 mm, appears and remains at this almost constant
level. In fact, a weak increase is observed with a trend of 3 mm per year until 2011.

The other SF components present an almost constant level that oscillates around
0 mm annually. This point is very interesting because, for a quasi-circular basin, the
first k coefficients carry long-term trends and seasonal variations, meanwhile the high-
order SF coefficients testify to local and short-term variations. The seasonal amplitudes
of basin-average time series described by GLDAS are at least twice than those of the SF
reconstruction, and sometimes slightly out-of-phase by 1–2 months.
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Figure 6. Reconstructed Slepian time series for the Congo (up) and Nile (down) watersheds which
are compared to the profiles given by GLDAS (light blue grey), and the SH solutions of the main
centers, i.e., CSR (blue), JPL (green), GFZ (red), CSR mascons (brown). Some data gaps due to noisy
orbit or of bad quality are shown using vertical lines (light grey). Root Mean Square (RMS) values of
the absolute differences with the SF time series are also indicated by the processing center.

The Nile basin, with its irregular diamond-shape, has its first SF modes centered over
the largest latitudinal part of the middle of the basin (Figure 5). These coefficients concern
the Ethiopian highlands in the East, where the precipitations are relatively important.
Consequently, these very first SF modes show strong seasonal variations that reach +/−1
m of EWH. A general long-term trend is also visible for the complete time series, it shows a
clear increase of the water content for the period 2003–2011. The first SF mode has a slight
positive trend of ~7 mm per year (Figure 5) near the Ethiopian Highlands (red-white area
of the SF map), as the long-term average annual rainfall is high in this region during the
period 1981–2016, with a maximum rainfall record of nearly 2000 mm in the western part
of Ethiopia [44]. As for Congo river basin, the coefficients of the highest orders show more
local variations, more heterogeneous in space and time with a constant average around 0
mm. The time series of the last maximum mode of k = 77 is nearly flat. The amplitudes of
the GLDAS time series for the Nile river basin are remarkably smaller than the SF one, by a
factor 2.

As presented in Figure 6, the Root Mean Square (RMS) differences with CSR mascon
solutions are less than 2 cm of EWH (~17.5 mm for the tropical humid basin of the Congo
and ~19.7 mm for the arid basin of the Nile, that are comparable to the values found by [11],
and these differences are mainly due to measurement errors that vary from basin to basin
and with size and shape). These RMS differences can be explained by the fact that Slepian
functions ensure the concentration of information inside each basin, whereas the 1◦-by −1◦

mascons still suffer from spatial leakage at the basin boundaries [11].

4. Discussion

The most famous and oldest data processing centers of GRACE data are without any
doubts the Jet Propulsion Laboratory of NASA [21], the German GeoForschungsZentrum
(GFZ, Potsdam, Germany) [45], the Center of Space Research (CSR, Austin, TX, USA) [46].
Our results are compared to the SH solutions computed and made available by these
reference centers once these solutions are projected onto the regional orthogonal basis of
SF.

The SF inversion results for Congo and Nile hydrographic basins presented in Section 3
correspond to the direct outputs of the inversion, and they are comparable to the aver-
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ages computed using the SH solutions of GFZ, JPL, CSR and the GLDAS simulation
(Figures 5 and 6). Differences between the SF and SH time series are typically less than
10 mm of EWH most of the time and for all the solutions, but for an individual SF coefficient
this difference can be greater in space and time.

If we now look into the details for the Congo river basin, Figure 5 shows that the
energy is distributed more over the whole spectrum of the harmonic solutions while for
the Slepian solutions the energy is concentrated on the first coefficients and the variations
of EWH are almost zero for the upper coefficient (K = 4 and 77). Due to the fact that the
inversion concentrates the energy on the first order SF coefficients, it is possible to reduce
drastically the computational time, especially for an isotropic basin.

The profile of reconstructed signal averaged over the Nile basin shows important
differences of amplitude and phase with the ones of the GRACE-based SH, reaching more
than 50 mm of EWH, especially during the last years. These important differences can be
explained by: (1) the smaller size of the Nile basin that is limited by narrow parts (versus
the intrinsic spatial resolution of GRACE) of the drainage area, especially near its delta in
the North, and (2) the fact that SH coefficients are fitted globally and include low-degree
components, whereas the SF are adjusted regionally, thus cannot contain these low spatial
wavelength components. Once again, the GLDAS time series is remarkably lower than the
SF and SH ones, by a factor 2.

Irregular-shaped basins, such as the Nile river basin, generate a broad SF coefficient
spectrum for any bandwidth L, indicating that many more Slepian coefficients are required
for a complete regional and temporal reconstruction of hydrological signals.

As a perspective of this first study, a combination of SF coefficients generated with
different bandwidths could be considered to represent more optimally a basin of complex
shape (see Figure 7), providing that the condition of their orthogonality remains checked
for all SF of the combined bandwidths. Another perspective of this new approach is the
global inversion of the Earth system. This kind of inversion will permit to first reduce the
computation time but also reduce the leakage effects and better reconstruct high frequencies
in terms of space and also time once we have done this inversion following the temporal
dimension.
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5. Conclusions

In this study, an innovative approach of a regional pole-centered Slepian function
representation is proposed to estimate surface water mass variations in the largest African
river basins, i.e., Congo and Nile, directly from geopotential differences along GRACE
satellite tracks, instead of projecting SH onto an SF basis as it is usually done. Using
such a regional orthogonal basis strategy offers the advantages of decreasing the number
of parameters (or Slepian coefficients), thus the dimension of the inverse problem, and
consequently the computation time. The Slepian coefficients of ten African basins have
been estimated every 10 days in the same process to limit spatial leakage. The seasonal
cycle amplitudes of these GRACE-recovered signals reaching hundreds of mm of EWH are
comparable to the SH ones provided by the CSR, GFZ and JPL, pointing out the influence
of latitudinal climatic bands, in particular for the tropical Congo basin. Discrepancies
with the GLDAS simulation can be explained by an incomplete description of deep-water
reservoirs or lacks of surface information on human activities in GLDAS modeling. The
choice of the SF truncation K versus Kopt and the a priori bandwidth L for deriving an SF
basis is examined. As K is usually taken as the Shannon number in most of the previous
studies but a large amount of SF spectrum energy remains lost, so that a higher optimal
value Kopt, e.g., 99.9% of this spectrum is kept to recover more high-frequencies and ensure
a more complete reconstruction of the hydrological signals. It should be noted that the
construction of the base of SF and the inversion of the GRACE data are done more quickly
than if one uses the SH for better spatially and temporally localized results for the SF.
The spatial scales of each Slepian mode have also been characterized by a radial Fourier
spectrum analysis, revealing its dependency on L in the decomposition. Besides, a fixed
bandwidth of L = 60 keeps on being considered when dealing with GRACE data, increasing
(decreasing) this parameter permits to have access to ranges of shorter (larger) spatial SF
wavelengths versus the main influence of the size and shape anisotropy of the basin.
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