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The work focuses on the calculation of the effective properties of non-aging linear viscoelastic and hierarchical composite materials, reinforced by wavy fibers in two directions. In particular, we investigate the effects that two different temperatures of a polymeric matrix, and the waviness of transversely isotropic fibers made from a carbon nanotube-reinforced polymer, have on the macroscopic viscoelastic behavior of a hierarchical structure. For this purpose, we consider the elasticviscoelastic correspondence principle and the Laplace-Carson transform, and we apply the three-scale asymptotic homogenization method (AHM). The expressions for the associated local and homogenized problems, and the effective coefficients are derived at each level of organization. We solve the meso and microscale local problems in Laplace-Carson domain, by means of an analytically approach and finite element three-dimensional simulations, respectively. We obtain the effective creep and relaxation behavior of the composite. In addition, we use a numerical algorithm to invert the Laplace-Carson transform and derive the properties in the time domain. Finally, we present the results of our computations. They confirm that temperature and waviness can affect the macroscopic behavior of the hierarchical heterogeneous structure.

INTRODUCTION

By natural evolution, biological systems have combined a variety of constituents with specific properties to create composites with more than two length scales. These naturally occurring materials have inspired the research into synthetic composites for a variety of engineering applications. The goal of many of these hierarchical composites is to obtain better performance materials by intentionally manipulating the complexity and inner design and by ensuring a multi-length scale property control. (see [START_REF] Kim | Hybrid and Hierarchical Composite Materials[END_REF]). In particular, hierarchical composites with carbon nanotube additions can change the mobility of polymers or improve mechanical properties.

Recently, several studies have addressed the problem of carbon nanotubes (CNT) as reinforcing agents for a variety of polymeric structures (see [START_REF] Papageorgiou | Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites[END_REF]). For instance, in [START_REF] Jeong | 3D stochastic computational homogenization model for carbon fiber reinforced CNT/epoxy composites with spatially random properties[END_REF], the authors studied the effects of alignment orientation, agglomeration and waviness of CNT fillers on the effective stiffness. Another important application of the CNTs is to reinforce the carbon fiber (CF)-reinforced composites. In this regard, the authors in [START_REF] Hassanzadeh-Aghdam | Micromechanical analysis of carbon nanotube-coated fiber-reinforced hybrid composites[END_REF] predict the effective elastic properties of randomly dispersed CNT-coated CFreinforced hybrid composites. Moreover, in [START_REF] Srivastava | Mechanical characterization and postbuckling behavior of carbon nanotube-carbon fiber reinforced nanocomposite laminate[END_REF], buckling and postbuckling analysis of CF-reinforced composite laminated plate with and without CNT reinforcement are performed.

On the other hand, a variety of phenomena induced in the manufacturing process of conventional and hierarchical composite materials can affect the macroscopic behavior of the structure. Some examples of these are the wavy effects in the fibers and the high temperatures, mostly inevitable in the fabrication of polymer nanocomposites.

Multiscale asymptotic homogenization methods have proved to be advantageous in the description of the coarse scale mechanics of hierarchical composite materials (see [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Allaire | Multiscale convergence and reiterated homogenization[END_REF]). They encode the information available at the smaller scales into the so-called effective coefficients and use them to predict the macroscopic behavior at its larger scales. The homogenization procedure requires the solution of cell problems with input data corresponding to the homogenized material properties resulting in previous steps, however the analytical solution of such problems has been derived for only a few composite. A suitable alternative comes from the numerical approaches based on the finite element method (FEM). They offer a potential alternative to solve the local problems.

In the present work, we apply the three-scale asymptotic homogenization method to investigate the effects that two different temperatures of a polymeric matrix, and the waviness of fibers made from a carbon nanotube-reinforced polymer, have on the macroscopic viscoelastic response of a hierarchical heterogeneous structure with reinforcement in orthogonal directions.

FORMULATION OF THE LINEAR VISCOELASTIC PROBLEM

We consider a linear viscoelastic and hierarchical composite material 3  with periodic structure at the different levels of organization and well-separated length scales 1 , 2 and L (see Fig. 1). Here, we define the dimensionless, scaling parameters, as follows, 12
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In addition, , x y and z stand for the macroscopic, mesoscopic and the microscopic spatial variables, respectively and they are related through the expressions, 

wherein ()   with

, yz   represent the so-called stratified functions (see [START_REF] Cruz-González | A hierarchical asymptotic homogenization approach for viscoelastic composites[END_REF]).

Statement of the problem

In the model, we assume the constitutive response of the phases to be linear viscoelastic, and we neglect inertia and external volume forces in  . Moreover, we further impose continuity conditions for displacements and tractions on both 1   and 2   , i.e. the matrix and the sub-phases are perfectly bonded. Then, the balance of linear momentum in  , reads

.
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In Eq. ( 3),  σ represents the second-order stress tensor,  u stands for the displacement field, 
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 . In addition, the operator   denotes the jump of   across the interface between the constituents. We also assume boundary conditions on   and initial conditions in {0}  . From now on, we consider the notation ( , ) ( , , , )
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, where   is assumed to be periodic in y and . z  -structural level. Microscale: Unit periodic cell for the fiber- reinforced composite. The fibers are non-overlapped and do not intersect the boundaries.

In addition, the scale-dependent constitutive law is stated as follows, 0 ( ( , )) ( , ) ( , ) : ,
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where  represents the fourth-order tensor of relaxation moduli, equipped with symmetry properties
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. Furthermore, ξ denotes the second-order strain tensor and it is determined by the formula
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Finally, we rely on the elastic-viscoelastic correspondence principle and we rewrite the problem of Eq. ( 3) in the Laplace-Carson domain (see [START_REF] Cruz-González | A hierarchical asymptotic homogenization approach for viscoelastic composites[END_REF][START_REF] Cruz-González | On the effective behavior of viscoelastic composites in three dimensions[END_REF]),
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Here, the variable s represents the Laplace-Carson space. Additionally, we derive the boundary conditions on [0, )    and the initial condition in {0}  .

BRIEF DESCRIPTION OF THE METHOD

In this section, we jointly apply the methodologies described in [START_REF] Cruz-González | A hierarchical asymptotic homogenization approach for viscoelastic composites[END_REF][START_REF] Cruz-González | On the effective behavior of viscoelastic composites in three dimensions[END_REF][START_REF] Cruz-González | Effective behavior of long and short fiber-reinforced viscoelastic composites[END_REF] to compute the effective properties of a hierarchical composite material similar to the one shown in Fig. 1. As starting point, we obtain the main theoretical results of the three scale asymptotic homogenization method. Then, we solve the local problems and compute the effective coefficients at the different structural levels.

Three-scale asymptotic homogenization approach

Since each field and material property ( , ) xs   is assumed to be regular in x and periodic in y and , z according to the chain rule, the following relation is obtained
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Using a similar idea, Eq. ( 5) becomes,

                ( ) ( ) 12 11 , , , , , , , , , , , 
yz kl kl kl kl x s x y z s x y z s x y z s              (8) 
where

            () ( ) ( ) 1 , , , , , , , , , ( , ). 2 
mm kl k l m l k xx x y z s x y z s y z s y z xx                       (9)
Moreover, the solution of the problem of Eq. ( 6) is proposed as follows [START_REF] Cruz-González | Effective behavior of long and short fiber-reinforced viscoelastic composites[END_REF] At this point, as a consequence of the application of the three-scale asymptotic homogenization method, the problems for the parameters 2  and 1  are analyzed in that order. The results are summarized as follows, 
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In addition, we derive the homogenized problems at 1  -structural level and at the macroscale,
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which are defined in [START_REF] Li | Analysis of the Linearly Viscoelastic Behavior of Nanotube-Reinforced Polymer Composites[END_REF] where the notation  with , yz   defines the cell average operator.

Effective coefficients at 1  -structural level. Computational approach

The 2  -local problems obtained via the three-scale asymptotic homogenization method are solved by means of finite element three-dimensional simulations. Specifically, we use the finite element software COMSOL Multiphysics® and LiveLink™ for Matlab® scripting. As starting point, we assume a z -constant expression for the relaxation moduli ( ijpq ) in each phase of the periodic cell Z , i.e. 
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We notice that, the stress jump conditions obtained in Eq. (15.3) led to the interface loads
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. They occur as a consequence of the discontinuities of the coefficients between the host medium (matrix) and the sub-phases, and represent the driving force to obtain nontrivial local problems solutions.

Effective coefficients at the macroscale. Laminated composites with generalized periodicity

Taking into account Voigt's notation, the effective coefficients of Eq. ( 13)-(right) are written, (
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NUMERICAL RESULTS AND DISCUSSION

In this section, we take inspiration from [START_REF] Tsalis | Effective properties of multiphase composites made of elastic materials with hierarchical structure[END_REF] and consider a hierarchical structure with two different levels of organization as shown in Fig. 1. In our particular case,  is a two-phases composite consisting of a viscoelastic laminated structure (matrix), in which each layer is reinforced by wavy fibers. It is worth to point out that layers (i) and (ii) in Fig. 1 possess orthogonal directions.

Regarding the fibers, the authors in [START_REF] Odegard | Constitutive modeling of nanotubereinforced polymer composites[END_REF] present a technique for developing constitutive models for carbon nanotube-reinforced polymer. They consider the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface to be an effective continuum fiber. Here, we assume the properties of those fibers as input values for the present model. Such properties are listed in Tab. 1. In addition, we deal with the waviness ( w ) of the fiber in the unit periodic cell (see Fig. 1 (c . Additionally, we consider the same value of w for both, layers (i) and (ii).

Table 1 -Elastic moduli of transversely isotropic fibers.

() (GPa)

f L E () (GPa) f T  () (GPa) f L  () (GPa) f T K () f LT  450.4
4.4 27.0 9.9 0.4242

On the other hand, a thermoplastic polyimide LaRc-SI with a 3% molecular weight offset is taken as the isotropic viscoelastic matrix (see [START_REF] Li | Analysis of the Linearly Viscoelastic Behavior of Nanotube-Reinforced Polymer Composites[END_REF]). The polymeric matrix creep response is well modeled by the power-law, 01 ( ) ,

n S t D D t  (18) 
where the properties are shown in Tab. 2 for two different temperatures. The procedure to compute the effective viscoelastic properties of the hierarchical composite is summarized as follows (see [START_REF] Cruz-González | A hierarchical asymptotic homogenization approach for viscoelastic composites[END_REF][START_REF] Cruz-González | On the effective behavior of viscoelastic composites in three dimensions[END_REF][START_REF] Cruz-González | Effective behavior of long and short fiber-reinforced viscoelastic composites[END_REF]):

(I) We solve the problems in Eq. ( 15). Then, we substitute the data of kl χ into Eq. ( 13)-(left) and we calculate the effective coefficients at the 1  -structural level. (II) At this point, it is possible to solve analytically the system of Eq. ( 17) and obtain the expressions for / jk y   .

(III) Finally, the effective properties are obtained at the macroscale by means of Eq. ( 16). In Fig. 2, we show the results for the effective Young ( (*) 1 E ) and shear modulus ( (*) 12  ), respectively. In the computations, we consider a fiber volume fraction of 10% . Furthermore, we deal with two different temperatures for the matrix, i.e.   0, 0.05, 0.1, 0.15 w  . The results confirm that these two manufacturing agents (temperature and waviness) have an influence on the macroscopic viscoelastic response of the hierarchical heterogeneous structure. As illustrated in Fig. 2, the Young (shear) modulus decreases (increases) evenly as the waviness rises, and in both cases, an increase in temperature leads to a decrease in the properties.
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  Figure 1 -(a) Macroscale: viscoelastic heterogeneous material. (b) 1  -structural level. Mesoscale: Unit

  for the waviness of the fibers, i.e.

  

Table 2 -

 2 Viscoelastic power-law parameters and Poisson's ratios of isotropic matrix at two temperatures.

	Temperature	( ) 0 m D	1 (GPa ) 	( ) 1 m D	1 (GPa hour ) 1 	n	()		() m
	213 °C	0.375		0.051606	0.4103	0.367
	223 °C	0.313		0.077678	0.4718	0.382
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CONCLUSIONS

In this work, we studied the overall viscoelastic response of fiber-reinforced hierarchical composites. We obtained an effective characterization of the heterogeneous system by means of the three-scale asymptotic homogenization method. We solved the local problems and computed the effective coefficients at each level of organization. Finally, we addressed the effects that two different temperatures of a polymeric matrix, and the waviness of reinforced fibers in orthogonal directions, have on the effective response of a hierarchical heterogeneous structure.

Further generalizations of the present work include the consideration of imperfect contact conditions between the interfaces of the constituents. In addition, the approach can be extended to the case of ageing viscoelastic composite materials.
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