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Abstract. The work focuses on the calculation of the effective properties of non-aging linear viscoelastic 

and hierarchical composite materials, reinforced by wavy fibers in two directions. In particular, we 

investigate the effects that two different temperatures of a polymeric matrix, and the waviness of 

transversely isotropic fibers made from a carbon nanotube-reinforced polymer, have on the 

macroscopic viscoelastic behavior of a hierarchical structure. For this purpose, we consider the elastic-

viscoelastic correspondence principle and the Laplace-Carson transform, and we apply the three-scale 

asymptotic homogenization method (AHM). The expressions for the associated local and homogenized 

problems, and the effective coefficients are derived at each level of organization. We solve the meso and 

microscale local problems in Laplace-Carson domain, by means of an analytically approach and finite 

element three- dimensional simulations, respectively. We obtain the effective creep and relaxation 

behavior of the composite. In addition, we use a numerical algorithm to invert the Laplace-Carson 

transform and derive the properties in the time domain. Finally, we present the results of our 

computations. They confirm that temperature and waviness can affect the macroscopic behavior of the 

hierarchical heterogeneous structure.  

 

 

1. INTRODUCTION 

By natural evolution, biological systems have combined a variety of constituents with specific 

properties to create composites with more than two length scales. These naturally occurring materials 

have inspired the research into synthetic composites for a variety of engineering applications. The goal 

of many of these hierarchical composites is to obtain better performance materials by intentionally 

manipulating the complexity and inner design and by ensuring a multi-length scale property control. 

(see [1]). In particular, hierarchical composites with carbon nanotube additions can change the mobility 

of polymers or improve mechanical properties.  

Recently, several studies have addressed the problem of carbon nanotubes (CNT) as reinforcing 

agents for a variety of polymeric structures (see [2]). For instance, in [3], the authors studied the effects 

of alignment orientation, agglomeration and waviness of CNT fillers on the effective stiffness. Another 

important application of the CNTs is to reinforce the carbon fiber (CF)-reinforced composites. In this 

regard, the authors in [4] predict the effective elastic properties of randomly dispersed CNT-coated CF-

reinforced hybrid composites. Moreover, in [5], buckling and postbuckling analysis of CF-reinforced 

composite laminated plate with and without CNT reinforcement are performed. 

On the other hand, a variety of phenomena induced in the manufacturing process of conventional 

and hierarchical composite materials can affect the macroscopic behavior of the structure. Some 
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examples of these are the wavy effects in the fibers and the high temperatures, mostly inevitable in the 

fabrication of polymer nanocomposites.  

Multiscale asymptotic homogenization methods have proved to be advantageous in the 

description of the coarse scale mechanics of hierarchical composite materials (see [6,7]). They encode 

the information available at the smaller scales into the so-called effective coefficients and use them to 

predict the macroscopic behavior at its larger scales. The homogenization procedure requires the 

solution of cell problems with input data corresponding to the homogenized material properties resulting 

in previous steps, however the analytical solution of such problems has been derived for only a few 

composite. A suitable alternative comes from the numerical approaches based on the finite element 

method (FEM). They offer a potential alternative to solve the local problems. 

In the present work, we apply the three-scale asymptotic homogenization method to investigate 

the effects that two different temperatures of a polymeric matrix, and the waviness of fibers made from 

a carbon nanotube-reinforced polymer, have on the macroscopic viscoelastic response of a hierarchical 

heterogeneous structure with reinforcement in orthogonal directions.  

 

2. FORMULATION OF THE LINEAR VISCOELASTIC PROBLEM  

We consider a linear viscoelastic and hierarchical composite material 
3 with periodic 

structure at the different levels of organization and well-separated length scales 
1
, 

2
 and L  (see Fig. 

1). Here, we define the dimensionless, scaling parameters, as follows, 

 

1 2
1 2 1: 1 and : .

L L
     (1) 

 

In addition, ,x  y  and z stand for the macroscopic, mesoscopic and the microscopic spatial 

variables, respectively and they are related through the expressions, 

 
( ) ( )

1 2

( ) ( )
and ,

y zx x
y z

 

 
   (2) 

 

wherein ( )  with ,y z   represent the so-called stratified functions (see [8]).  

 

2.1. Statement of the problem 

In the model, we assume the constitutive response of the phases to be linear viscoelastic, and 

we neglect inertia and external volume forces in  . Moreover, we further impose continuity conditions 

for displacements and tractions on both 1  and 2 , i.e. the matrix and the sub-phases are perfectly 

bonded. Then, the balance of linear momentum in  , reads 

 
1 2

( )

( , )                        in  ( ) ,

( , ) , ( , ) ( , ).

x t

x t x t y z

 

   

      

   

0

0 0

σ

u σ n
           (3) 

 

In Eq. (3), 
σ  represents the second-order stress tensor, 

u  stands for the displacement field, 
( )

n  with ,y z   represent the respectively outward unit vectors to the surfaces 1  and 2 . In 

addition, the operator   denotes the jump of   across the interface between the constituents. We 

also assume boundary conditions on   and initial conditions in {0} . From now on, we 

consider the notation ( , ) ( , , , )x t x y z t  , where   is assumed to be periodic in y  and .z  
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Figure 1 – (a) Macroscale: viscoelastic heterogeneous material. (b) 
1 -structural level. Mesoscale: Unit 

periodic cell for the laminated composite. (c) 
2 -structural level. Microscale: Unit periodic cell for the fiber-

reinforced composite. The fibers are non-overlapped and do not intersect the boundaries. 

 

In addition, the scale-dependent constitutive law is stated as follows, 

 

0

( ( , ))
( , ) ( , ) : ,

t
x

x t x t d


  
 




 


ξ u

σ            (4) 

 

where  represents the fourth-order tensor of relaxation moduli, equipped with symmetry properties 

ijkl jikl ijlk klij

      . Furthermore, ξ  denotes the second-order strain tensor and it is determined 

by the formula 

 

   
1

( , ) ( , ) ( ( , )) .
2

  Tx t x t x t     ξ u u u  (5) 

 

Finally, we rely on the elastic-viscoelastic correspondence principle and we rewrite the problem 

of Eq. (3) in the Laplace-Carson domain (see [8, 9]),  

 

    

      

1 2

( )

, : ,        in  ( \ ( )) [0, ),

( , ) ,    , : , , ,

x s x s

x s x s x s y z

  

    

        
 

   

0

0 0

ξ u

u ξ u n
 (6) 

 

Here, the variable s  represents the Laplace-Carson space. Additionally, we derive the boundary 

conditions on [0, )   and the initial condition in {0} . 

 

3. BRIEF DESCRIPTION OF THE METHOD 

In this section, we jointly apply the methodologies described in [8, 9, 10] to compute the 

effective properties of a hierarchical composite material similar to the one shown in Fig. 1. As starting 

point, we obtain the main theoretical results of the three scale asymptotic homogenization method. Then, 

we solve the local problems and compute the effective coefficients at the different structural levels.    

 

3.1. Three-scale asymptotic homogenization approach  
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Since each field and material property ( , )x s  is assumed to be regular in x and periodic in y  

and ,z  according to the chain rule, the following relation is obtained 

 

               

1 2

, , , , , , , , , ,1 1
.

y z

i i l i m i

j j j l j m

x s x y z s x x y z s x x y z s

x x x y x z

     

 

     
  

     
 (7) 

 

Using a similar idea, Eq. (5) becomes, 

 

           ( ) ( )

1 2

1 1
, , , , , , , , , , ,y z

kl kl kl klx s x y z s x y z s x y z s       
 

    (8) 

 

where 

 

  
 

 
 

 ( ) ( ) ( )1
, , , , , , , , ,    ( , ).

2

m m
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x y z s x y z s x y z s y z

x x






 

    


  
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 (9) 

 

Moreover, the solution of the problem of Eq. (6) is proposed as follows 

 

           

     
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1
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,
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i i
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i
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
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 





  



 



u u u u

u u

                                       (10)  

 

At this point, as a consequence of the application of the three-scale asymptotic homogenization 

method, the problems for the parameters 
2  and 

1  are analyzed in that order. The results are 

summarized as follows,  

 

   
     

              

(1) (0)

0 0(0) 1 ( )

1

0 0 0(1)

, , , , , , ( , , ),

( , , ) ( , , ) ( , , ) .

, ,    , , , , , .

m klm kl

y

kl kl kl

m klm kl

u x y z s x y z s U x y s

U x y s x y s x y s

x s u x y s x y s x s



  

 





 

 

u u

u u u

       (11) 

 

In addition, we derive the homogenized problems at 
1 -structural level and at the macroscale,  

 

    
( )

0 01 (*)

1 0  and 0,
y

n
ijkl kl ijkl kl

j j n j

U
x x y x


        
       


  u        (12) 

 

which are defined in 1

1 [0, )
h    and [0, )h   , respectively. For the latter, we also obtain 

boundary conditions on [0, )h    and the initial condition in {0}h  . The expressions for the 

effective coefficients shown in Eq. (12) are given as follows,  

 

   ( ) (*) ( )  and  ,z y

ijkl ijkl ijpq pq kl ijkl ijkl ijpq pq klz y
    χ χ        (13) 

 

where the notation 


 with ,y z   defines the cell average operator. 
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3.2. Effective coefficients at 
1 -structural level. Computational approach  

The 
2 -local problems obtained via the three-scale asymptotic homogenization method are 

solved by means of finite element three-dimensional simulations. Specifically, we use the finite element 

software COMSOL Multiphysics® and LiveLink™ for Matlab® scripting. As starting point, we assume 

a z - constant expression for the relaxation moduli ( ijpq ) in each phase of the periodic cell Z , i.e. 

 
(1)

1

(2)

2

( ) : ,
( , )

( ) : ,

ijpq

ijpq

ijpq

s Z
z s

z

zs Z

 
 



                                                                                           (14) 

 

Thus, 
2 -local problems become, 

 

     

( ) ( ) ( )

(1) (2)

(1) ( ) (1) ( ) (2) ( ) (2) ( ) ( )

( ) ( ( , )) 0     in  [0, )  ,

( , ) ( , )     on   [0, ),

( ) ( ( , )) ( ) ( ( , ))   

(

o

1,2)z

ijpq pq kl

j

klm klm Z

z z z z z

ijpq pq kl j ijpq pq kl j ikl

s z s Z
z

z s z s

s z s n s z s n f s

 



 



 


     

   







χ

χ χ n   [0, ).

Initial condition in  {0},

( , ) 0.

Z

klm

Z

z s

  





          (15)                                    

 

We notice that, the stress jump conditions obtained in Eq. (15.3) led to the interface loads 

   ( ) (2) (1) ( ): ( ) ( )z z

ikl ijkl ijkl jf s s s n  . They occur as a consequence of the discontinuities of the coefficients 

between the host medium (matrix) and the sub-phases, and represent the driving force to obtain 

nontrivial local problems solutions. 

 

3.3. Effective coefficients at the macroscale. Laminated composites with generalized periodicity 

Taking into account Voigt's notation, the effective coefficients of Eq. (13)-(right) are written,  

 
( ) ( ) ( ) ( )
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1 6 5 6

1 2 3 1

( ) ( ) ( ) ( ) ( )
2 3

2 4 5 4 3

2 3 1 2 3

.

( ) (
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y y y y
j

ij ij i i i i

y y y y y
j j

i i i i i

y
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   

     
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    

    

     
    

      

                         (16) 

 

Similarly, 
1 -cell problems obtained via AHM, are stated as follows, 

 

 0,
jk

ij ikB A
y y

 
  
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                       (17) 

 

where 
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3 5 4 3

1 2 3

 

,    ,

    . and
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     
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4. NUMERICAL RESULTS AND DISCUSSION  

In this section, we take inspiration from [11] and consider a hierarchical structure with two 

different levels of organization as shown in Fig. 1. In our particular case,   is a two-phases composite 

consisting of a viscoelastic laminated structure (matrix), in which each layer is reinforced by wavy 

fibers. It is worth to point out that layers (i) and (ii) in Fig. 1 possess orthogonal directions. 

Regarding the fibers, the authors in [12] present a technique for developing constitutive models 

for carbon nanotube-reinforced polymer. They consider the nanotube, the local polymer near the 

nanotube, and the nanotube/polymer interface to be an effective continuum fiber. Here, we assume the 

properties of those fibers as input values for the present model. Such properties are listed in Tab. 1. In 

addition, we deal with the waviness ( w ) of the fiber in the unit periodic cell (see Fig.1 (c)) by means of 

the function    sin 2 /f t H t L  with  1/ 4,  3 / 4t  . We notice that the waviness is defined as 

follows : /w H L . Additionally, we consider the same value of w  for both, layers (i) and (ii).   

 
Table 1 – Elastic moduli of transversely isotropic fibers. 

 
( ) (GPa)f

LE  
( ) (GPa)f

T  
( ) (GPa)f

L  
( ) (GPa)f

TK   
( )f

LT  

450.4 4.4 27.0 9.9 0.4242 

 

On the other hand, a thermoplastic polyimide LaRc-SI with a 3% molecular weight offset is 

taken as the isotropic viscoelastic matrix (see [13]). The polymeric matrix creep response is well 

modeled by the power-law, 

 

0 1( ) ,nS t D D t                                                                                                             (18) 

 

where the properties are shown in Tab. 2 for two different temperatures. 

 
Table 2 – Viscoelastic power-law parameters and Poisson’s ratios of isotropic matrix at two temperatures. 

 

Temperature ( ) 1

0 (GPa )mD 
 

( ) 1 1

1 (GPa hour )mD  
     

( )mn      
( )m  

213 °C 0.375 0.051606 0.4103 0.367 

223 °C 0.313 0.077678 0.4718 0.382 

 

The procedure to compute the effective viscoelastic properties of the hierarchical composite is 

summarized as follows (see [8, 9, 10]):  

(I) We solve the problems in Eq. (15). Then, we substitute the data of 
klχ  into Eq. (13)-(left)  

and we calculate the effective coefficients at the 
1 -structural level. 

(II) At this point, it is possible to solve analytically the system of Eq. (17) and obtain the 

expressions for /jk y  . 

(III) Finally, the effective properties are obtained at the macroscale by means of Eq. (16). 

In Fig. 2, we show the results for the effective Young ( (*)

1E ) and shear modulus ( (*)

12 ), 

respectively. In the computations, we consider a fiber volume fraction of 10% . Furthermore, we deal 

with two different temperatures for the matrix, i.e.  213 º ,  223 ºT C C  and several values for the 

waviness of the fibers, i.e.  0,  0.05,  0.1,  0.15w  .    

The results confirm that these two manufacturing agents (temperature and waviness) have an 

influence on the macroscopic viscoelastic response of the hierarchical heterogeneous structure. As 

illustrated in Fig. 2, the Young (shear) modulus decreases (increases) evenly as the waviness rises, and 

in both cases, an increase in temperature leads to a decrease in the properties. 
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Figure 2 – Computations of the effective (a) Young and (b) shear modulus for the hierarchical composite. 

 

5. CONCLUSIONS 

In this work, we studied the overall viscoelastic response of fiber-reinforced hierarchical 

composites. We obtained an effective characterization of the heterogeneous system by means of the 

three-scale asymptotic homogenization method. We solved the local problems and computed the 

effective coefficients at each level of organization. Finally, we addressed the effects that two different 

temperatures of a polymeric matrix, and the waviness of reinforced fibers in orthogonal directions, have 

on the effective response of a hierarchical heterogeneous structure. 

Further generalizations of the present work include the consideration of imperfect contact 

conditions between the interfaces of the constituents. In addition, the approach can be extended to the 

case of ageing viscoelastic composite materials.  
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