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Abstract 

It is now well-established that long-term memory (LTM) 
knowledge, such as semantic knowledge, supports the 
temporary maintenance of verbal information in working 
memory (WM). This is for instance characterized by the recall 
advantage observed for semantically related (e.g. leaf - tree - 
branch) over unrelated (e.g. mouse - wall - sky) lists of items 
in immediate serial recall tasks. However, the exact 
mechanisms underlying this semantic contribution remain 
unknown. In this study, we demonstrate through a convergent 
approach involving computational and behavioral methods that 
semantic knowledge can be efficiently used to save attentional 
WM resources, thereby enhancing the maintenance of 
subsequent to-be-remembered items. These results have 
critical theoretical implications, and support models 
considering that WM relies on temporary activation within the 
LTM system. 
 
 Keywords: Working Memory; Computational Modeling; 
TBRS* model; Semantic Knowledge 

Introduction 

The influence of semantic knowledge on working memory 

(WM) performance is now supported by an increasing 

amount of studies. It has been shown that verbal items related 

at the semantic level (e.g. “leaf - tree - branch”) are better 

recalled compared to verbal items sharing minimal 

characteristics at the semantic level (e.g. “mouse - wall - 

sky”), an effect also called semantic relatedness (Poirier & 

Saint-Aubin, 1995), suggesting a close interaction between 

long-term memory (LTM) knowledge and WM. Despite the 

extensive work done so far, the mechanisms responsible for 

these semantic influences remain poorly specified. In this 

study, we use a convergent approach involving 

computational modeling and behavioral experiments to test 

the hypothesis that semantic knowledge supports the 

temporary maintenance of verbal information, thereby saving 

WM resources that can be reallocated to maintain more 

information. 

According to activation-based models of WM (Cowan, 

1995), the maintenance of information over the short-term 

requires the temporary activation of LTM knowledge. As 

long as this information is kept sufficiently active, it can be 

accessed for subsequent recall. The influence of semantic 

knowledge on WM can be accounted for by considering that 

the locus of this activation in LTM lies within the linguistic 

system itself (Martin, Saffran, & Dell, 1996). As soon as a 

verbal item has to be maintained, it directly triggers the 

activation of associated phonological, lexical and semantic 

representations. The semantic relatedness effect can be 

explained by assuming that semantically related items, such 

as “leaf - tree - branch” reactivate each other, either via the 

semantic features they share (Dell, Schwartz, Martin, 

Saffran, & Gagnon, 1997), or via inter-item excitatory 

connections (Hofmann & Jacobs, 2014), which has the 

consequence to keep their activation level sufficiently high to 

be less susceptible to forgetting. 

Although activation-based models make a good 

description of the interactions occurring in the LTM system, 

the way items are actually maintained in these models is 

strikingly lacking. Attention-based models, on the other side, 

make an excellent description of the way items are processed 

throughout the time course of WM. This is the case for 

instance as regards the Time-Based Resource Sharing Model 

(TBRS, Barrouillet, Bernardin, & Camos, 2004), which 

considers that WM performance is constrained by the balance 

between constantly decaying WM representations, and the 

time available to restore them through attentional refreshing. 

A computational implementation of this cognitive model, 

TBRS* (Oberauer & Lewandowsky, 2011), has shown to 

account for many important benchmark phenomena observed 

in WM tasks, such as cognitive load, serial position curves, 

omissions and transposition errors. The benefit of TBRS* is 

its ability to handle the dynamical aspects of human memory, 

by making a description of the functional mechanisms 

occurring at every stage (encoding, maintenance and recall) 

of WM processing. However, up to now, the TBRS* model 

has never been adapted in order to account for LTM 

influences on WM performance, which strongly limits its 

ability to make new predictions. Note that contrary to the 

TBRS* architecture which assumes decay as the cause of 
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forgetting in WM, other models such as SOB-CS (Oberauer, 

Lewandowsky, Farrell, Jarrold, & Greaves, 2012) consider 

instead that WM capacity is limited due to interference. This 

latter possibility is not considered in the present study for 

simplicity's sake, but we nevertheless do not deny the role of 

interference in WM. 

Surprisingly, despite the evident complementarity of 

activation-based and attention-based models of WM, little 

attempt has been made in order to integrate them within a 

single formal architecture. The present study aims to integrate 

both approaches, by implementing some core principle 

assumed by activation-based models of WM within TBRS*, 

and test the ability of this new integration to account for data 

collected on human participants. 

First, this new architecture should be able to reproduce the 

classical recall advantage observed for semantically related 

over unrelated items. By assuming that semantically related 

items constantly reactivate each other, their activation level 

should be much higher compared to semantically unrelated 

items which do not benefit from this strong co-activation. 

Due to this constant reactivation, semantically related items 

should be less susceptible to the deleterious effect of decay, 

leading to overall higher recall performance. 

Second, and most importantly, semantic relatedness should 

save attentional WM resources that can potentially be 

reallocated to maintain more information. This attentional 

resource saving hypothesis stems from previous studies 

showing that when participants are invited to maintain in WM 

a set of letters, these letters are better recalled if preceded by 

a chunk (Thalmann, Souza, & Oberauer, 2018). For instance, 

in the target sequences “CLFVDHP” and “PDFLCHV”, 

recall performance for “LCHV” is higher compared to 

“VDHP”, because the former is preceded by an acronym (i.e. 

“PDF”) which needs less refreshing episodes to be 

maintained, thereby leaving more free time available to 

counteract the deleterious effect of decay at the whole-list 

level. Similarly, the new architecture we propose predicts that 

if the target sequence “leaf - tree - branch - mouse - wall - 

sky” is to be maintained, there should be a recall advantage 

for “mouse - wall - sky” compared to a situation in which 

these three words were not preceded by semantically related 

items. The reason is that the semantic triplet members “leaf - 

tree - branch” would benefit from strong excitatory 

connections and would consequently require less refreshing 

episodes. Hence, there will be more free time available to 

refresh the semantically unrelated items “mouse - wall - sky”, 

leading to better recall performance compared to the same 

items within lists composed of completely semantically 

unrelated items. This is what we mean by saving WM 

resources: semantically related items free up refreshing 

opportunities for the benefit of the remaining ones. 

This second effect can be tested experimentally, and 

computational modeling offers the opportunity to investigate 

the underlying mechanisms in a fine-grained manner. It is a 

new prediction derived directly from the integration of both 

activation-based and attention-based models, that neither 

architecture considered alone is able to predict. 

To sum up, we integrated within an attention-based WM 

model some principles derived from activation-based models 

to simulate the semantic relatedness effect. The output of this 

new model was compared to the recall performance of human 

participants performing the same experiment to test a new, 

still unobserved prediction derived from this model, i.e. to 

what extent semantic relatedness saves WM resources. 

A new model integrating activated long-term 

memory and attention 

The new architecture we present here is an adaptation of 

TBRS*, a functional computational WM model containing 

two layers: one coding for positional information and the 

other one coding for item information (see Figure 1a). In 

order to model LTM effects in TBRS*, the new architecture 

(see Figure 1b) includes a separate, LTM layer that is 

decoupled from the positional information in WM. 

Figure 1. Illustration of the general (a) old and (b) new 

TBRS* architecture. 
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The use of a distinct LTM layer is motivated by three main 

reasons. The first one is mechanistic: without the possibility 

to store item information independently of positional 

information, the model would not be able to predict the recall 

advantage for semantically related over semantically 

unrelated items, because the co-activation of two related 

items will lead to their encoding within the same position. 

Due to this item-position co-occurrence effect, the model 

would predict a strong deleterious impact on the ability to 

recall serial order information. The second reason is 

theoretical: according to the embedded processes model 

(Cowan, 1995) which also frames the present study, the 

presentation of an item triggers its activation in the LTM 

knowledge base, and this activation is supposed to be 

independent from WM processes. The third and last reason 

stems from empirical evidence showing a dissociation 

between the ability to recall item and serial order information 

(Henson, Hartley, Burgess, Hitch, & Flude, 2003; Majerus, 

2019). 

The nodes that compose the LTM layer can be semantically 

related or not. For simplicity, semantic knowledge is not 

explicitly represented, but the mechanisms underlying the 

core principles behind the semantic relatedness effect are 

kept: items related at the semantic level are supposed to 

mutually activate each other within the LTM system. This 

mutual activation principle is modeled by including lateral 

excitatory connections between the nodes sharing a semantic 

relationship within the LTM layer. Once an item 𝐴𝑖 receives 

a given amount of activation, all the semantically related 

items 𝐴𝑗 also receive a proportion of this activation: 

𝐴𝑗,𝑡  = 𝑚𝑖𝑛(1, (𝐴𝑗,𝑡−1  +  𝐴𝑖,𝑡−1𝜆)) 

Where 𝜆 is the weight that connects 𝐴𝑖 and 𝐴𝑗, and 𝑡 refers to 

the timestamp of the ongoing iteration. The 𝑚𝑖𝑛 function 

insures that the activation level will not exceed 1. This 

mechanism mimics the spreading activation phenomenon 

observed in semantic priming tasks (e.g. the presentation of 

“boat” preactivates “captain”). In addition, during the time 

the items decay, the spreading of activation continues to 

occur. In other words, they still receive an amount of 

activation after decay, such that: 

∆𝐴𝑖 =  (1 −  𝐴𝑖) . 𝑡𝑎𝑛ℎ(𝜆 ∑ 𝐴𝑗,𝑡−1)  

Where the second factor is the normalization by the 

hyperbolic tangent of the total activation received by node 𝐴𝑖 

from all related nodes 𝐴𝑗. This way of representing semantic 

relationships by means of lateral excitatory connections in an 

all-or-none fashion was sufficient to describe the WM 

mechanisms involved. This could be extended to take into 

account various degrees of semantic relationships instead of 

only one. 

The position of each to-be-remembered item is represented 

in a distributed fashion using positional markers. Adjacent 

positions are assumed to share some degree of overlap. Serial 

order information is kept in memory by associating the 

positional markers to a set of nodes acting as pointers towards 

items. The role of the pointers is to index the LTM 

representations to which they point to. Modeled this way, 

memory for serial order information will not be affected by 

the spreading of activation that occurs within the LTM layer. 

As previously mentioned, dissociating the activation in LTM 

from serial order processes is an important theoretical choice, 

because empirical evidence show that LTM knowledge 

minimally impacts the ability to maintain serial order 

information (Majerus, 2019). This new architecture contrasts 

with the old TBRS* architecture which considered that the 

only information that is stored is the item-to-position 

association, but the core WM functioning remains almost 

unchanged. 

Encoding. Encoding is performed by activating the current 

item in the LTM layer. The other semantically related items 

receive a portion of this activation via their connections. At 

the same time, the pointers-to-positions associations are also 

created following a simple Hebbian learning rule. 

Maintenance. Following the encoding phase, the model 

enters in a dynamic balance state constrained by two opposed 

phenomena: decay and refreshing. The WM representations 

are constantly decaying, unless they can be refreshed using 

the focus of attention, a central bottleneck limited to one item. 

To keep the model simple, we assumed that decay only 

affects item information. When attention is available, items 

are constantly refreshed by a rapid switching of the focus of 

attention from one item to another. During refreshing, WM 

representations are reinforced using the same principles as 

those used during the encoding stage. Note that spreading of 

activation in LTM also occurs during refreshing. 

 The rate of refreshing has been set to 80 ms per item as in 

the original TBRS* model. There are controversies as regards 

whether the focus of attention refreshes the items in a 

cumulative way or using a different schedule (Vergauwe et 

al., 2016). In this study, we assumed that the human cognitive 

system is efficient, and that participants try to optimize their 

available resources as much as possible. Hence, refreshing 

operates in priority over the item that is the most likely to be 

forgotten, a mechanism called Least Activated First 

(Lemaire, Pageot, Plancher, & Portrat, 2018).  

Retrieval & recall. Before being refreshed and/or recalled, 

an item must be first retrieved. In the model, retrieval is 

performed by feeding the network via the positional markers 

for a given position, and then selecting the item the most 

associated to that position. This selection is constrained by 

the product of two sets of information: the evidence 𝑤𝑖  

accumulated within the pointers after feeding the positional 

markers, and the strength of activation 𝑎𝑖 in LTM. For each 

atomic 80 ms refreshing step, the least activated item in LTM 

is selected and refreshed. 

Recall is performed by retrieving the items via the 

positional markers one by one. After each recall episode, the 

WM representations continue to decay. In addition, a 

response suppression mechanism is implemented to avoid 

constant repetition of the same item (Lewandowsky, 1999). 

The response suppression mechanism consists in pushing the 

weights that connect the positional markers to the pointers 

towards negative values. 
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In the model, errors are caused by three main sources: (a) 

the overlap between positional markers, (b) a noise 

parameter, and (c) a retrieval threshold. Transposition errors 

(e.g., recalling “ACB” instead of “ABC”) are caused by (a) 

and (b), and item errors such as extra-list intrusions (i.e., an 

item not presented in the list) and omissions (i.e., complete 

forgetting) are mainly caused by (b) and (c). An example of 

time course of a 6-item list is displayed in Figure 2.  

Experiment 

In this study, we tested the attentional resource saving 

hypothesis on a memory task involving three different 

semantic conditions, in which 6 words had to be maintained 

and immediately recalled: 

– A first condition in which the first half of the to-be-

remembered list was composed of items from the same 

semantic category (C1; Semantic Chunk in first half, 

e.g., leaf - tree - branch - mouse - wall - sky). 

– A second condition where only the second half of the to-

be-remembered list was composed of items from the 

same semantic category (C2; Semantic Chunk in second 

half, e.g. cloud - wolf - mud - hand - arm - leg). 

– A third condition in which all the items were drawn from 

a different semantic category (NC; Non-Chunked). 

Overall, we predicted a recall advantage for semantically 

related over unrelated items, as classically observed. 

Critically, following the attentional resource saving 

hypothesis, there should be a recall advantage over positions 

4, 5 and 6 in the C1 condition, and this compared to the same 

positions in the NC condition. The C2 condition was added 

in order to explore whether the position of the chunk is of 

critical importance. Previous studies have indeed shown that 

chunking saves WM resources, but only when the chunk is 

located at the beginning of the list (Thalmann et al., 2018). 

Human participants 

Material. We chose 120 words (one to three syllables 

long), drawn from forty different semantic categories, with 

three words per category. All the stimuli were recorded by a 

French native male speaker in a neutral voice.  

The semantic categories were used in order to create the 

three different semantic conditions (Ntrial = 20 in each 

condition C1, C2 and NC). The semantically unrelated lists 

were created by directly combining the words from the 

semantic categories, such that each word within a list could 

not share an obvious semantic relationship with another word 

in the list. 

Procedure. Each of the six items were auditorily presented 

at a pace of 2 seconds per item. After the last item had been 

presented, the participants were invited to recall out loud the 

sequence in the order in which the items had been presented, 

and to substitute any item they could not remember with the 

word “blank”. For both the simulations and the data collected 

on human participants, we used a strict serial recall criterion, 

whereby an item was considered correct only if recalled at the 

correct position. All the participants received the three 

semantic conditions in a fully within-subject design. 

Statistical analysis. We performed a Bayesian analysis, in 

which evidence for H1 and H0 can be simultaneously tested, 

by directly comparing the alternative hypothesis against the 

null hypothesis, and vice versa. Evidence in favor of H1 is 

indicated by BF10, and evidence in favor of H0 is indicated by 

1/BF10 = BF01. A BF of 1 provides no evidence, 1 < BF < 3 

provides anecdotal evidence, 3 < BF < 10 provides moderate 

evidence, 10 < BF < 30 provides strong evidence, 30 < BF < 

100 provides very strong evidence and 100 < BF provides 

extreme/decisive evidence. These labels serves only an 

indicative purpose, as the BF relies on continuous values of 

evidence rather than on arbitrary thresholds.  

Results. Data were collected from thirty participants, aged 

between 18 and 33 (M = 20, SD = 3) with no history of 

neurological disorder or learning difficulties. 

We first assessed recall performance as a function of the 

semantic condition (C1, C2, NC) and serial position (1 

through 6). Using a Bayesian Repeated-Measures ANOVA, 

we found decisive evidence supporting the two main effects 

of semantic condition (BF10 > 100) and serial position (BF10 

> 100). As can be seen in Figure 3a, there was a gradual 

recall performance increase as a function of semantic 

condition: C1 (M = .775) > C2 (M = .708) > NC (M = .645). 

Importantly, the interaction between the semantic 

condition and serial position was also associated with 

decisive evidence (BF10 > 100). As can be clearly seen in 

Figure 3a, the impact of the different semantic conditions 

was not equivalent across all positions. This interaction was 

further explored using Bayesian paired-samples T-Tests. 

When the semantic chunk was presented in positions 1, 2 

and 3, there was a clear recall advantage over these positions 

compared to the non-chunked condition (i.e. C1 vs. NC; BF10 

> 100, d = 1.199). Similarly, when the semantic chunk was 

presented in positions 4, 5 and 6, there was also a recall 

advantage over these positions compared to the unrelated 

condition (i.e. C2 vs. NC; BF10 > 100, d = 1.678). These 

results indicate that the classical semantic relatedness effect 

was replicated; there was better recall performance for 

semantically related items compared to semantically 

unrelated items. 

Figure 2. Time course of the item activation over one 

trial. 
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Critically, the attentional resource saving hypothesis 

predicts a recall advantage over positions 4, 5 and 6 when the 

semantic chunk is presented at the beginning of the list. This 

is indeed what we observed (C1 vs. NC; BF10 > 100, d = 

1.429), indicating that the semantic chunk did indeed save 

WM resources. 

Whether there could be a beneficial effect over positions 1, 

2 and 3 when the semantic chunk is presented in the second 

half of the list is quite difficult to predict following the 

attentional resource saving hypothesis. The results indicate 

an absence of recall advantage, which was supported by 

moderate evidence (C2 vs. NC; BF10 = .307; BF01 = 3.259, d 

= -.183), showing that semantic chunks saved WM resources, 

but mainly when presented at the beginning of a to-be-

remembered list. 

Hence, the predictions derived from the attentional 

resource saving hypothesis were met: the semantic chunk had 

a beneficial effect on recall performance for subsequent, non-

chunked items. However, the exact mechanisms responsible 

for the pattern of results we observed have yet to be specified 

in a formal manner. In the next section, we therefore used 

computational simulations in order to assess whether the 

mechanisms we supposed to be responsible for the attentional 

resource saving hypothesis are making the correct 

predictions.  

Simulations 

Simulation details. The model and the human participants 

performed exactly the same experiment, with 6 items 

presented at a pace of 2,000 ms per item. We assumed an 

encoding time of 500 ms, with an inter-item interval of 1,500 

ms. All three experimental conditions (C1, C2 and NC) were 

tested on the model, the semantic relatedness being 

implemented via excitatory connections as described above. 

Parameter estimation. Parameters of the model were 

estimated using a grid search method that explored 13,376 

different parameter combinations. The list of parameters used 

and associated range of values are displayed in the upper part 

of Table 1. Each set of parameters was estimated using 1,000 

simulations in the neutral condition (i.e. NC) only. The fit of 

the model was then assessed via direct comparison with the 

empirical data using the Root Mean Squared Error (RMSE), 

and the configuration of parameters that minimized the error 

was selected. 

After the best set of parameters had been selected, we then 

performed a new search over the strength of semantic 

connections 𝜆 in order to find a value that minimized the error 

against the behavioral data in terms of mean difference 

between conditions C1 and NC over positions 1, 2 and 3. 

Results. The best set of parameters that minimized the 

error over the NC condition were associated with a RMSE 

value of .075 (see Table 1 for the associated parameters). The 

results of this model are displayed in Figure 3b. 

The model was able to capture the classical recall 

advantage for semantically related over unrelated words (i.e. 

C1 > NC in positions 1 through 3, and C2 > NC in positions 

4 through 6). Most importantly, the model also produced a 

recall advantage over positions 4 through 6 in C1 compared 

to NC, indicating that the semantic chunk at the beginning of 

the list did indeed save WM resources. This recall advantage 

was naturally found without directly fitting the model based 

on this pattern of result. Interestingly, no obvious similar 

Figure 3. Recall performance across serial positions as a function of the semantic relatedness conditions 

(C1, C2, NC) for (a) human participants and (b) the computational model. Error bars indicate 95% 

confidence intervals, after correction for between-subject variability. 
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recall advantage over positions 1 through 3 was observed in 

C2 compared to NC, suggesting that the within-list position 

of the chunk does matter in order to save WM resources. 

The attentional resource saving hypothesis predicted that 

the recall advantage on positions 4, 5, 6 when items 1, 2, 3 

are semantically related is due to more refreshing 

opportunities in C1 compared to NC. Indeed, because the 

items of a semantic chunk are overall associated with greater 

activation values and decay more slowly than unrelated 

items, they need less refreshing episodes, thus leaving more 

attentional resources available. To test this prediction in the 

most direct manner, we computed the average number of 

refreshing episodes for each item. Results over 10,000 

simulations indicate that items 1, 2 and 3 were refreshed 

15,861 times less in the C1 condition compared to the NC 

condition (out of about 1,111,000 refreshing episodes), 

indicating a smaller number of refreshing episodes over the 

semantic chunk. This smaller number of refreshing episodes 

over the semantic chunk actually shifted toward items 4, 5 

and 6: these items were refreshed 16,190 times more in the 

C1 condition compared to the NC condition. Critically, the 

same pattern was observed in C2, but was smaller compared 

to C1: the shift of refreshing episodes was only about 10,000. 

Hence, the introduction of a semantic chunk did indeed 

change the pattern of refreshing episodes. 

To sum up the results of this study, there was a recall 

advantage for items that directly followed a semantic chunk, 

and this compared to a condition where no semantic chunk 

was present. In contrast, no such advantage for items 

preceding a chunk was observed. This pattern of results was 

found both in the behavioral and computational simulations. 

In the next section, we discuss the theoretical implications of 

these results. 

 

Discussion 

In this study, we investigated the fundamental processes 

underlying the semantic relatedness effect, by testing the 

hypothesis that semantic knowledge can be used to save WM 

resources. We observed that when a semantic chunk 

composed of semantically related items was presented at the 

beginning of a to-be-remembered list, WM resources were 

saved, as indicated by a recall advantage over the remaining 

items of the list. Moreover, the computational modeling 

approach allowed us to formally establish the plausibility that 

this gain was characterized by more refreshing episodes over 

the end of the list when the beginning of the list was 

semantically related. 

The computational architecture we used is a hybrid 

connectionist model integrating both the maintenance 

processes operating during WM processing (Barrouillet et al., 

2004), and the activation in the LTM system (Cowan, 1995; 

Martin et al., 1996). More specifically, as in TBRS* 

(Oberauer & Lewandowsky, 2011), the constantly decaying 

WM representations need to be maintained via attentional 

refreshing, and the semantically related items in LTM 

mutually reactivate each other (Dell et al., 1997; McClelland 

& Rumelhart, 1981). 

The overall recall benefit for semantically related over 

semantically unrelated items suggests that the mechanisms 

we implemented to model semantic effects are plausible. At 

the same time, it appears that when the semantic chunk was 

presented at the end of the list, the model produced a semantic 

relatedness effect that was quite unrealistic compared to what 

is actually observed in the empirical data. This latter aspect 

shows that there is still room for improvement to capture 

semantic effects in a more general manner. 

The innovative outcome of this model is its ability to 

predict the recall advantage for the subsequent, semantically 

unrelated items when a semantic chunk was present in the list. 

Because semantically related items benefit from strong co-

activations, they need less refreshing episodes, leaving more 

free time available to refresh the other, non-related items of 

the list. In fact, this behavior was well captured by the 

refreshing schedule produced by the model, with more 

refreshing episodes observed for items that directly followed 

a semantic chunk. This behavior is partially explained by the 

Least Activated First principle: items that are the most likely 

to be forgotten have a priority status during the refreshing 

process (Lemaire et al., 2018). Hence, since the system is 

constantly trying to optimize the resource allocation, there is 

no reason to refresh “leaf - tree - branch” because, thanks to 

their semantic relatedness, their activation level is higher 

compared to the other, semantically unrelated items. 

Interestingly, the model predicted an absence of recall 

advantage for items in positions 1 through 3 when the 

semantic chunk appeared in positions 4 through 6, and this 

absence of recall advantage was similarly observed among 

human participants. This is due to the fact that the opportunity 

to save attentional resources happens much later when the 

semantic chunk is presented in the second half of the list, 

which does not provide enough boost to increase recall of the 

first items of the list. In contrast, when the semantic chunk is 

Table 1. Range of values explored within the grid search. Note that the lambda has been estimated separately. 

Parameter Meaning Minval Maxval Steps Best 

p Overlap between positions 0 .9 .05 .55 

𝜎  Noise added at retrieval 0 .1 .01 0 

𝜃  Retrieval threshold 0.05 .4 .05 .25 

D  Decay rate .1 .8 .1 .4 

𝜆  Lateral connections value in LTM .01 .05 .001 .017 
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presented in the first part of the list, semantically related 

items are already fully co-activated, and does not require 

much refreshing episodes throughout the rest of the trial. 

An obvious alternative explanation to account for the 

empirical results observed could be that participants only 

maintained the supra-ordinate semantic category from which 

the related items belong (Martin, Minkina, Kohen, & 

Kalinyak-Fliszar, 2018). For instance, after the presentation 

of “leaf - tree - branch”, the participants might simply 

maintain the conceptual unit “forest”, and use it as a cue at 

the moment of retrieval. Since we did not compare both 

accounts in a formal computational implementation, it is 

difficult to rule out this possibility. However, such a 

mechanism has already been successfully implemented to 

simulate experiments in which participants had to maintain 

chunks composed of letters. A semantic chunking mechanism 

is therefore likely to lead to the same overall conclusions 

(Portrat, Guida, Phénix, & Lemaire, 2016). 

To sum up, this study demonstrates the potentiality of a 

new architecture integrating the supports of attentional and 

LTM in WM functioning. By considering that semantically 

related items reactivate each other within the LTM system, 

we have shown that attentional WM resource can be saved 

thanks to this constant reactivation. Importantly, this study 

demonstrates the whole complexity of the interactions 

occurring between LTM and attention when maintenance 

over the short-term is required. 
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