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The identification of parameters of spatially variant blurs given a clean image and its blurry noisy version is a challenging inverse problem of interest in many application fields, such as biological microscopy and astronomical imaging. In this paper, we consider a parametric model of the blur and introduce an 1D state-space model to describe the statistical dependence among the neighboring kernels. We apply a Bayesian approach to estimate the posterior distribution of the kernel parameters given the available data. Since this posterior is intractable for most realistic models, we propose to approximate it through a sequential Monte Carlo approach by processing all data in a sequential and efficient manner. Additionally, we propose a new sampling method to alleviate the particle degeneracy problem, which is present in approximate Bayesian filtering, particularly in challenging concentrated posterior distributions. The considered method allows us to process sequentially image patches at a reasonable computational and memory costs. Moreover, the probabilistic approach we adopt in this paper provides uncertainty quantification which is useful for image restoration. The practical experimental results illustrate the improved estimation performance of our novel approach, demonstrating also the benefits of exploiting the spatial structure the parametric blurs in the considered models.

I. INTRODUCTION

Images produced by optical instruments often suffer from blur caused by light diffraction or object motion. The presence of the blur provokes an infinitesimal point-source to be spread in the acquired image defining the so-called Point Spread Function (PSF). When the PSF is unknown, one can resort to a blind deconvolution strategy [START_REF] Levin | Understanding blind deconvolution algorithms[END_REF], [START_REF] Carasso | Direct blind deconvolution[END_REF], [START_REF] Kenig | Blind image deconvolution using machine learning for three-dimensional microscopy[END_REF], [START_REF] Reeves | Blur identification by the method of generalized cross-validation[END_REF] to jointly retrieve the image and blur. Another approach consists in first identifying the blur and then removing it from the degraded images using a non-blind restoration strategy [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF], [START_REF] Berisha | Iterative Methods for Image Restoration[END_REF]. This demands a good accuracy for the PSF estimation, which can be efficiently reached by a preliminary acquisition step of normalized and calibrated objects, such as fluorescent spherical microbeads in microscopy [START_REF] Kirshner | A psf-based approach to biplane calibration in 3d super-resolution microscopy[END_REF], [START_REF] Hortholary | Multiplex-multiphoton microscopy and computational strategy for biomedical imaging[END_REF] or resolution charts in digital camera calibration [START_REF] Mannan | Blur calibration for depth from defocus[END_REF], [START_REF] Bell | Method for out-of-focus camera calibration[END_REF]. The PSF identification problem is formulated as a least-squares one. On top of serving for image restoration purposes, the identified PSF can also be fitted into a parametric non-linear model in order to determine characteristics of the optical system [START_REF] Anthony | Image analysis with rapid and accurate two-dimensional Gaussian fitting[END_REF], [START_REF] Chouzenoux | Optimal multivariate gaussian fitting with applications to PSF modeling in two-photon microscopy imaging[END_REF], [START_REF] Kirshner | 3-D PSF fitting for fluorescence microscopy: implementation and localization application[END_REF], [START_REF] Xue | A novel SURE-based criterion for parametric PSF estimation[END_REF]. In most realistic scenarios, the stationary PSF model is not suitable due to extended depth of field [START_REF] Trouvé | Single image local blur identification[END_REF], [START_REF] Zhang | Spatially variant defocus blur map estimation and deblurring from a single image[END_REF], moving objects or cameras [START_REF] Zhe | Joint depth estimation and camera shake removal from single blurry image[END_REF], [START_REF] Zhang | Blind deblurring and denoising of images corrupted by unidirectional object motion blur and sensor noise[END_REF], anisotropic optical
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lens aberrations [START_REF] Jezierska | Spatially variant psf modeling in confocal macroscopy[END_REF], or atmospheric turbulence [START_REF] Li | Atmospheric turbulencedegraded image restoration using principal components analysis[END_REF], [START_REF] Schmitz | Euclid: Non-parametric point spread function field recovery through interpolation on a graph laplacian[END_REF], [START_REF] Chimitt | Simulating anisoplanatic turbulence by sampling intermodal and spatially correlated zernike coefficients[END_REF]. Such image degradation sources give rise to a so-called spatially variant blur [START_REF] Chakrabarti | Analyzing spatiallyvarying blur[END_REF], [START_REF] Hirsch | Efficient filter flow for space-variant multiframe blind deconvolution[END_REF]. The PSF identification then requires the recovery of a PSF map, describing the blur kernel at each location of the spatial plane [START_REF] Tezaur | A system for estimating optics blur psfs from test chart images[END_REF].

In this paper, we address the problem of estimating in a sequential manner the parameters of spatially variant PSFs from calibrated image acquisitions. We consider a flexible piecewise constant parametric model for the space-varying PSF map that allows us to describe smooth variations among PSFs acting on neighbor regions. We formulate a statespace model where each time step corresponds to a different patch location. We adopt a probabilistic approach, aiming at producing posterior distributions of the unknowns. The probabilistic approach allows for dealing with the uncertainty in a systematic manner and the inclusion of prior knowledge about the unknowns. As a consequence, we are able not only to provide uncertainty measures on the unknown parameters, but also to propagate this uncertainty to useful tasks where those estimated parameters are used (e.g., in deblurring). In our approach, the prior probability density function (pdf) of the parameters has a Markovian structure, which allows us to inherit existing inference approaches for the sequential inference. Note that more complicated local dependencies could be modeled, e.g., via Markov random fields, at the expense of losing the aforementioned simplicity in the inference task. Our flexible formulation includes the consideration of potential non-standard observation and transition models. More precisely, we can operate virtually with any non-linear and non-Gaussian model. Due to the intractability of the Bayesian recursions, we resort to particle filtering (PF) for an approximate inference solution. We start by considering existing PF methods, such as the well-known bootstrap PF (BPF) [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF]. While the BPF can obtain adequate results in some models, it presents some deficiencies, for instance in scenarios with low observation noise, where the peaky likelihood challenges the diversity among particles (see for instance [START_REF] Djurić | Particle filtering[END_REF] about the particle degeneracy problem). Due to these limitations, we propose a new PF method that we call Generalized Interacting Annealed PF (GIAnPF). The new PF tackles the particle degeneracy by considering a sequence of intermediate distributions, that are annealed versions of the filtering distribution. The considered sequential Bayesian framework provides us with three key advantages, namely (i) low computational cost and limited memory load due to a sequential processing; (ii) a flexible choice of the state-space models that enables us to consider non-linear relations and non-Gaussian noise; and (iii) a measure of statistical uncer-tainty on the estimated parameters of kernels. The sequential approach can be exploited to build online implementations in applications involving very large scale images available in batches. Dealing with the image in a sequential manner also alleviates the need of large memory capacity, since the information of previously processed patches does not need to be stored.

We demonstrate the good performance of the proposed approach as well as its robustness through several sets of numerical experiments for three representative parametric blur shapes. We also illustrate the validity of the resulting estimations, to solve image restoration problems. The rest of the paper is organized as follows. Section II introduces the problem of spatially variant blur identification. We review the literature around this topic and discuss the construction of parametric blur models. Section III presents the state-space models for parametric PSF estimation and propose our algorithm for Bayesian inference. Section IV shows abundant experimental validation, and Section V closes the paper with some final remarks.

II. PROBLEM STATEMENT

Let us assume the clean image is x ∈ R N and its corresponding blurred and noisy image y ∈ R N that is corrupted by spatially variant blur and noise with given level. Each pair of image x, y ∈ R N are decomposed into a partition of T patches (x t ) T t=1 ∈ R P , P T = N , and (y t ) T t=1 ∈ R P . We assume that each patch of the observed image is given by:

y t = X t h t + n t . (1) 
Hereabove, y t ∈ R P represents the blurry noisy patch, h t ∈ R L is the blur kernel to be estimated at patch t, and n t ∈ R P models an additive noise. Moreover, X t ∈ R P ×L is a suitable matrix related to the blur of a patch t of original image x. The model in Eq. ( 1) identifies with the PSF-interpolation model from [28, Eq. ( 22)], where the interpolation strategy depends on the choice made for X t (see also [START_REF] Hadj | Space variant blind image restoration[END_REF], [START_REF] Hirsch | Efficient filter flow for space-variant multiframe blind deconvolution[END_REF]). In all our practical experiments, for simplicity and complexity reasons, we will adopt the piecewise constant PSF model from [START_REF] Denis | Fast approximations of shift-variant blur[END_REF]Eq.20], that is the order 0 (i.e., nearest neighbor) PSF-interpolation model. Note that several other strategies are available for modeling the space-varying blur operator, for instance in [START_REF] Escande | Sparse wavelet representations of spatially varying blurring operators[END_REF], [START_REF] Denis | Fast approximations of shift-variant blur[END_REF], [START_REF] Sroubek | Decomposition of spacevariant blur in image deconvolution[END_REF], [START_REF] Hirsch | Efficient filter flow for space-variant multiframe blind deconvolution[END_REF], [START_REF] Nagy | Iterative methods for image deblurring: A matlab object-oriented approach[END_REF], with various modeling accuracy and computational costs. Our choice in Eq. ( 1) is particularly well suited for fast blur identification due to the separability over patches. This model was also considered in [START_REF] Bar | Restoration of images with piecewise space-variant blur[END_REF], [START_REF] Hadj | Space variant blind image restoration[END_REF], [START_REF] Mourya | Contributions to image restoration : from numerical optimization strategies to blind deconvolution and shift-variant deblurring[END_REF], [START_REF] Tezaur | A system for estimating optics blur psfs from test chart images[END_REF]. In many practical situations, a prior over the blur shape is available. It is thus convenient to introduce a parametric model for those blur kernels, with the advantage of reducing the number of unknowns to estimate in the blur identification task. Each kernel is then assumed to read:

h t = h(ρ t ), t = 1, . . . , T (2) 
where h is a known function, not depending on t, that describes the general shape of the kernels, specified by parameters (ρ t ) T t=1 ∈ R K , with K ≥ 1 typically much lower than L. In this paper, we focus on the problem of sequential parametric blur estimation, which amounts to retrieve, for every t = 1, . . . , T , an estimate for ρ t , given the knowledge of the past and present observations (X i , y i ) t i=1 and the function h(•). The main underlying assumption in our approach is the smooth variation of the kernel shape parameters when progressing sequentially along the patch indexes t = 1, . . . , T (see discussion in Sec. III-B about patch ordering). Therefore, our approach is particularly well suited for space-varying blurs arising from optical aberrations (e.g., phase aberration [START_REF] Schuler | Blind correction of optical aberrations[END_REF], atmospheric aberration [START_REF] Chimitt | Simulating anisoplanatic turbulence by sampling intermodal and spatially correlated zernike coefficients[END_REF]), and smooth motion (e.g., camera motion blur [START_REF] Šorel | Space-variant restoration of images degraded by camera motion blur[END_REF]). One can also refer to the smooth varying PSF maps used as illustrative examples in [START_REF] Escande | Sparse wavelet representations of spatially varying blurring operators[END_REF], [START_REF] Denis | Fast approximations of shift-variant blur[END_REF]. As described in Section III, the spatial dependence is encoded in the transition density among consecutive patches, which acts as a prior pdf. We note that, as it is often the case in Bayesian inference, vague enough priors are usually adequate particularly when enough informative observations are available. In contrast, this paper does not cover PSF maps with abrupt changes, such as those considered in [START_REF] Zhe | Joint depth estimation and camera shake removal from single blurry image[END_REF], [START_REF] Trouvé | Single image local blur identification[END_REF]. As we will show below, we exploit the similarity of kernels that are spatially close during the inference/estimation task. More precisely, unlike in other approaches, here the data of one patch is implicitly used to better estimate the parameter of other patches, which explains the good performance of the proposed modeling and methodology.

A. Related literature and contributions

The problem of space-varying blur identification has been widely studied in the literature of image processing. It is important to distinguish two types of approaches. First, there exists a bunch of methods, for performing image deblurring in the presence of an unknown space-varying blur degradation, thus corresponding to blind image restoration [START_REF] Zhang | Spatially variant defocus blur map estimation and deblurring from a single image[END_REF], [START_REF] Hadj | Space variant blind image restoration[END_REF], [START_REF] Chakrabarti | Analyzing spatiallyvarying blur[END_REF], [START_REF] Zhang | Blind deblurring and denoising of images corrupted by unidirectional object motion blur and sensor noise[END_REF] in the case of motion blur. We also refer the reader to the recent work [START_REF] Alam | Space-variant blur kernel estimation and image deblurring through kernel clustering[END_REF] for a review on this topic. Let us also mention [START_REF] Hirsch | Efficient filter flow for space-variant multiframe blind deconvolution[END_REF] for the case of multi-frame blind image restoration. Most of these methods are focused on the restoration task, and not on the quantitative estimation of the blur map itself. This is at the exception of [START_REF] Zhang | Spatially variant defocus blur map estimation and deblurring from a single image[END_REF], [START_REF] Chakrabarti | Analyzing spatiallyvarying blur[END_REF], [START_REF] Zhang | Blind deblurring and denoising of images corrupted by unidirectional object motion blur and sensor noise[END_REF], that jointly restore the image and a piecewise-constant map, obtained through a segmentation-based strategy, describing the non-stationary blur effects. Though image restoration is a problem of high interest, in certain applications such as microscopy or astronomical imaging, an accurate qualitative and quantitative knowledge of the blur effects is key for a better understanding and improving (e.g., through calibration) of the imaging device [START_REF] Jezierska | Spatially variant psf modeling in confocal macroscopy[END_REF], [START_REF] Schmitz | Euclid: Nonparametric point spread function field recovery through interpolation on a graph Laplacian[END_REF], [START_REF] Pankajakshan | Characterizing the 3-d field distortions in low numerical aperture fluorescence zooming microscope[END_REF], [START_REF] Lefort | Multi-parametric 3d-point-spread function estimation in deep multiphoton microscopy with an original computational strategy dedicated to the reconstruction of muscle images[END_REF]. For performing blur identification, it is necessary to make structural assumptions on the blur map to be estimated. For e.g., [START_REF] Trouvé | Single image local blur identification[END_REF] assumes a finite set of candidate defocus blurs, to be tested in each location of the image, or [START_REF] Rajagopalan | Mrf model-based identification of shift-variant point spread function for a class of imaging systems[END_REF] considers parametric blurs depending only on a single parameter. The blur estimation can also be facilitated by making use of a calibrated image (e.g., fluorescent bead in microscopy, distant star in astronomical imaging) in order to reduce the illposedness of the identification problem. When the PSF is stationary, and no parametric model of it is further assumed, its estimation from calibrated image acquisition can be easily solved by a penalized least-squared algorithm (see for instance [START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF] for an efficient method in the case of large size images). The problem raised in this case is similar to the one arising in high dynamic range image fusion, for which wavelet-based methods have shown their efficiency [START_REF] Tico | Image enhancement method via blur and noisy image fusion[END_REF], [START_REF] Tico | Motion-blur-free exposure fusion[END_REF]. If, additionally, a parametric model of the PSF is available, non-linear least squares method, such as Levenberg-Macquart [START_REF] Kirshner | 3-D PSF fitting for fluorescence microscopy: implementation and localization application[END_REF], or more recent proximity-based algorithms [START_REF] Chouzenoux | Optimal multivariate gaussian fitting with applications to PSF modeling in two-photon microscopy imaging[END_REF], can be employed for estimating directly the sought parameters. However, when PSF is non stationary, the accurate identification of its shift-variant evolution becomes much more challenging to resolve, even when the image is calibrated (i.e., known). This problem is typically addressed using optimization-based methods [START_REF] Tezaur | A system for estimating optics blur psfs from test chart images[END_REF], [START_REF] Mourya | Contributions to image restoration : from numerical optimization strategies to blind deconvolution and shift-variant deblurring[END_REF]. We also refer the reader to [START_REF] Schmitz | Euclid: Nonparametric point spread function field recovery through interpolation on a graph Laplacian[END_REF] and references therein, for a review of the problem and recent insights, in the particular context of astronomical imaging. In the aforementioned works, no parametric model of the PSF was assumed though it is highlighted in [START_REF] Schmitz | Euclid: Nonparametric point spread function field recovery through interpolation on a graph Laplacian[END_REF] as a promising research direction. Moreover, most available techniques address the problem in a batch manner, requiring the loading of the full image before the starting of the identification process, which can be at the price of a high memory cost in high resolution imaging or even incompatible with an on-the-fly image acquisition (e.g., satellite imaging). Furthermore, up to our knowledge, no Bayesian-based techniques have been proposed so far, so that available strategies provide only point-wise estimators for the PSF field. We conclude this state-of-the-art review by emphasizing that several works exploit the smooth variability of the PSFs within the field of view, with the aim to reduce the cost of the non-stationary blur operator [START_REF] Denis | Fast approximations of shift-variant blur[END_REF], [START_REF] Escande | Sparse wavelet representations of spatially varying blurring operators[END_REF] or to perform PSF field interpolation [START_REF] Ngolé Mboula | PSF field learning based on optimal transport distances[END_REF], [START_REF] Chen | Calibration of scintillation cameras and pinhole SPECT imaging systems[END_REF].

In this paper, we propose a Bayesian sampling method, for the identification of parametrized space-varying blurs in the context of calibrated images1 . Our contribution is threefold: (i) the particle filtering strategy employed for sampling leads to a sequential and fast estimation result; (ii) the proposed method is versatile and easily adapted to diverse parametric blur shapes; and (iii) the Bayesian framework allows us to provide a posterior estimation, including uncertainty quantification, for the PSF map parameters.

B. Relevant parametric PSF models

The general model of Eq. ( 2) enables to encompass various blur shapes. Hereafter, we present three interesting classes of parametric blur models, that will be used thereby in the experiments of the paper. To simplify the notation, let us ignore the subscript for patch t in this subsection. Without loss of generality, we consider kernels with square support parametrized by a grid with length √ L (assumed to be an odd integer), centered and regularly spaced, denoted

G = {- √ L-1 2 , - √ L-1 2 + 1, . . . , 0, 1, . . . , √ L-1
2 }. The blur shape is determined by the values of a given function h(c 1 , c 2 ) for (c 1 , c 2 ) ∈ G 2 . Otherwise stated, (c 1 , c 2 ) are the (signed) distances, in pixels, from the origin (i.e., the center position of the squared kernel) in the horizontal and vertical axis, respectively.

The vector h(ρ) ∈ R L is then simply deduced by ordering the entries of matrix [h(c 1 , c

2 ; ρ)] (c1,c2)∈G 2 ∈ R √ L× √ L , following
the lexicographic order 2 . The normalization constants and the support size for each presented blur shape are presented in Appendix A. a) Generalized Gaussian blur: space-varying generalized Gaussian blur shapes have been employed for instance in [START_REF] Liu | Estimating generalized gaussian blur kernels for out-of-focus image deblurring[END_REF] in the context of out-of-focus image deblurring. Such blur is parametrized by ρ = (θ, s) with θ ∈ R and s = (s 1 , s 2 ) ∈ (0, +∞) 2 the orientation and width parameters, respectively. The parametric model then reads:

(∀(c 1 , c 2 ) ∈ G 2 ), h(c 1 , c 2 ; ρ) = λ exp - 1 2 ([c 1 c 2 ]Σ -1 (θ, s)[c 1 c 2 ] ⊤ ) p α p , (3) 
with p > 0 and α > 0 the power and the scale of generalized Gaussian model, respectively, and λ the normalization constant (see [START_REF] Escande | Sparse wavelet representations of spatially varying blurring operators[END_REF] in App. A). Moreover,

Σ(θ, s) = R θ s 2 1 0 0 s 2 2 R ⊤ θ (4)
with R θ ∈ R 2×2 the rotation matrix defined by the orientation angle θ,

R θ = cos θ -sin θ sin θ cos θ . (5) 
We can ensure that the kernel value in its support corner is less or equal than a h(0, 0; ρ), for some a ∈ (0, 1), as soon as s 1 ≤ s max , s 2 ≤ s max with s max given in [START_REF] Sroubek | Decomposition of spacevariant blur in image deconvolution[END_REF] in App. A. Note that when p = α = 1 in (3), we recover the common Gaussian blur model, used for instance in fluorescence microscopy in [START_REF] Zhang | Gaussian approximations of fluorescence microscope point-spread function models[END_REF]. An example is displayed in Fig. 1

(left).

b) Defocus blur: Defocus space-varying blurs have been considered for example in [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3D camera with an add-on[END_REF] in the context of depth estimation in digital camera images. Defocus blur kernel can be parametrized by ρ = (θ, s) with θ ∈ R and s ∈ (0, +∞) 2 . The parametric model is,

(∀(c 1 , c 2 ) ∈ G 2 ) h(c 1 , c 2 ; ρ) = λ if (c 1 , c 2 ) ∈ C(θ, s) 0 otherwise , (6) 
with the normalization constant λ defined in [START_REF] Nagy | Iterative methods for image deblurring: A matlab object-oriented approach[END_REF] in App. A. and the elliptical domain:

C(θ, s) = (c 1 , c 2 ) ∈ G 2 such that (c 1 cos θ + c 2 sin θ) 2 s 2 1 + (c 1 sin θ -c 2 cos θ) 2 s 2 2 ≤1 . ( 7 
)
The latter can easily be ensured to be included into the kernel support, under the condition that s 1 ≤ s max , s 2 ≤ s max with s max given in [START_REF] Bar | Restoration of images with piecewise space-variant blur[END_REF] in App. A. An example of such blur is displayed in Fig. 1(middle). 2 The lexicographic ordered vector associated to a matrix

a b c d is the column vector [a b c d] ⊤ .
c) Skew-normal blur: The skew-normal blur shape [START_REF] Azzalini | The multivariate skew-normal distribution[END_REF] was first considered in [START_REF] Hansen | Noise propagation in regularizing iterations for image deblurring[END_REF] to build synthetic image deblurring problems. Its ability for modeling shift-variant PSFs in real digital imaging sensors was then illustrated in [START_REF] Jonathan | Parameterized modeling of spatially varying optical blur[END_REF]. This blur model depends of five positive parameters ρ = (s 1 , s 2 , w, α 1 , α 2 ), as follows:

(∀(c 1 , c 2 ) ∈G 2 ), h(c 1 , c 2 ; ρ) = λexp - 1 2 γ 1 γ 2 ⊤ S -1 (w) γ 1 γ 2 × α1γ1+α2γ2 -∞ exp - z 2 2 dz, (8) 
where

γ 1 = c 1 s 1 , γ 2 = c 2 s 2 , S(w) = 1 w w 1 , (9) 
and the normalization constant λ given in [START_REF] Mourya | Contributions to image restoration : from numerical optimization strategies to blind deconvolution and shift-variant deblurring[END_REF], in App. A. As shown in [51, Eq. (2.4)], parameters (w, α 1 , α 2 ) must ensure that the matrix below is positive definite:

  1 w-δ1δ2 (1-δ 2 1 ) 1 2 (1-δ 2 2 ) 1 2
w-δ1δ2

(1-δ 2 1 ) 1 2 (1-δ 2 2 ) 1 2 1   . ( 10 
)
which amounts to satisfying the following technical conditions:

δ 1 δ 2 -(1 -δ 2 1 )(1 -δ 2 2 ) < w < δ 1 δ 2 + (1 -δ 2 1 )(1 -δ 2 2 )
,

α 1 = δ 1 -δ 2 w (1 -w 2 )(1 -w 2 -δ 2 1 -δ 2 2 + 2δ 1 δ 2 w) , (11) 
α 2 = δ 2 -δ 1 w (1 -w 2 )(1 -w 2 -δ 2 1 -δ 2 2 + 2δ 1 δ 2 w) ,
for some (δ 1 , δ 2 ) ∈ (-1, 1) 2 . Hereagain, the maximal proportion a ∈ (0, 1) reached on the corner of the kernel support can be imposed by setting s 1 and s 2 no greater than s max given in [START_REF] Schuler | Blind correction of optical aberrations[END_REF], in App. A. The skew-normal blur reduces to the Gaussian blur when α 1 = α 2 = 0. An example is displayed in Fig. 1(right). 

III. SPACE-VARYING BLURS MODELING AND INFERENCE

In this section, we first present our novel modeling approach for space-varying blur maps based on state-space models. We describe the standard bootstrap particle filter (BPF) for inference in such models. After pointing the limitations of the BPF in this context, we propose the Generalized Interacting Annealed PF (GIAnPF). Finally, we discuss the properties of GIAnPF and the connections with other methods of the literature.

A. State-space modeling for blur identification

We start by considering a generative state-space model (SSM), where the hidden state represents the hidden (hence unknown) parameters of the variant PSFs. This generative modeling allows for a systematic Bayesian estimation of the unknown parameters, which are considered hidden states in the SSM literature [START_REF] Sarkka | Bayesian filtering and smoothing[END_REF]. It allows to explicitly model the spatial smoothness of the PSF field. For example, the variation among neighbor patches can be a small rotation and change of width (see hereafter for a discussion regarding the order of the patches). Let us consider a state-space model given by

p(ρ 0 ), (12) p(ρ t |ρ t-1 ), (13) p(y t |ρ t , X t ), (14) 
for t = 1, ..., T , where p(ρ 0 ) is the prior distribution, p(ρ t |ρ t-1 ) is the transition model that generates the patch parameters t given the previous patch t -1, and p(y t |ρ t , X t ) is the observation model of patch t (that can be seen as the likelihood function when y t is observed). The goal is to approximate probabilistically and sequentially the unknown parameters ρ t for each patch t given subsets of data {X t , y t } T t=1 . In particular, one can obtain the so-called filtering posterior distribution p(ρ t |X 1:t , y 1:t ), i.e., the posterior on ρ t conditioning on all data up to t.

B. Patch ordering for a sequential processing

The proposed approach requires setting the order in which the data will be sequentially processed. The parameters of consecutively processed patches must keep certain similarity in such a way the spatial information can be exploited. The underlying assumption in our approach is that the blurs affecting consecutive patches in the sequence have similar shape parameters. Otherwise stating, the parameters of the blurs should not change abruptly when going from patch t to patch t -1. Smooth PSF maps can then be identified, as soon as consecutive patches are spatially close. This is actually not the case if the patches are numbered naively following the lexicographic order, as illustrated in Figure 2(left). More suitable ordering must be adopted. If no additional structural assumption is available on the PSF map, we would suggest the zig-zag order, reminiscent from the one used in DCTbased image compression [START_REF] Rabbani | Digital Image Compression Techniques[END_REF] (Fig. 2(middle)). Circular blur maps, as those modeling phase aberrations ([28, Sec.3.4], [START_REF] Schuler | Blind correction of optical aberrations[END_REF], [START_REF] Jonathan | Parameterized modeling of spatially varying optical blur[END_REF], [START_REF] Mourya | Contributions to image restoration : from numerical optimization strategies to blind deconvolution and shift-variant deblurring[END_REF]Chap.4]), would be identified better by using a spiral ordering (Fig. 2(right)). Phase aberrations (and thus, the PSF width) tend to increase when getting further from the center. The spiral ordering is thus more suitable as it implicitly promotes changes of the PSF parameters depending mostly on the distance to the image center. The spiral ordering will be retained in most experiments of the paper.

The smooth variations between consecutive kernels can be easily encoded using a Gaussian distribution for p(ρ t |ρ t-1 ). In order to ensure that the sampled blurs do not have degenerate shapes, range constraints can furthermore be enforced on some parameters (e.g., strict positivity for the width parameter, bounded PSF support), simply by considering truncated Gaussian distributions (see more details in Section IV). Note that it would be also possible to learn an optimal pattern to scan/process the data. Intuitively, the modeling/inference results of our proposed method would benefit for finding an order where consecutive kernels would be as similar as possible. This could be done for instance by first running a fast (but inaccurate) optimization-based strategy to choose the ordering in which the SSM would be constructed.

C. Bayesian inference in SSMs through particle filtering

Linear-Gaussian state-space models are often used since they allow for closed-form filtering and smoothing distributions via the well-known Kalman Filter (KF) [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]. However, in this paper we focus on more complex models which broadens the flexibility and applicability of our approach. Unfortunately, in these models the targeted probability density functions (pdf) are intractable and approximations are required. Extensions of the Kalman filter exist, e.g., the extended Kalman filter (EKF) or the unscented Kalman filter (UKF) although they can greatly deviate from the true solution when the model is heavily non-linear non-Gaussian. In order to tackle these limitations, we consider an approach based on Monte Carlo approximations, and in particular on particle filtering (PF) [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF].

We start by considering the bootstrap particle filtering (BPF) in Table I, the first and arguably the most relevant PF [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF]. The BPF departs by simulating M samples (or particles) from the prior distribution. Then, for each patch t, it simulates M particles {ρ (m) t } M m=1 from the transition model by conditioning on the previous particles (Step 2a). Then, normalized importance weights are computed as the evaluation of the likelihood at each ρ (m) t in such a way all weights sum up to one (Step 2b). A resampling step is performed (Step 2d) in order to avoid particle degeneracy (see more details in [START_REF] Tiancheng | Resampling methods for particle filtering: Classification, implementation, and strategies[END_REF]). As a result, the BPF approximates the filtering posterior distribution p(ρ t |X 1:t , y 1:t ) for each patch t from the set of M weighted particles {ρ

(m) t , w (m) t } M m=1 .
Note that other existing PFs can be also used in this problem, e.g., the auxiliary PFs (APFs) [START_REF] Pitt | Auxiliary variable based particle filters[END_REF], [START_REF] Elvira | In search for improved auxiliary particle filters[END_REF], [START_REF] Elvira | Elucidating the auxiliary particle filter via multiple importance sampling [lecture notes[END_REF] or the Rao-Blackwellized PF [START_REF] Djurić | Particle filtering[END_REF], [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF], [START_REF] Sarkka | Bayesian filtering and smoothing[END_REF]. The research on PF has been very active in the last decade, and new PFs have been proposed in order to overcome existing challenges.

In the specific application we tackle here, we are facing the well-known particle degeneracy problem, appearing due to very informative observations (hence, peaky likelihood). In particular, typical suitable parametric PSF models are very sensitive w.r.t. some of their parameters and the variance of the observation noise can be relatively low. Particle degeneracy refers to the (undesirable) effect where few particles (or even only one) remain after the resampling step. This reduces the diversity of the particle approximation and endangers the estimation of the blur parameters in the following patches. In the next section, we present a new PF that addresses the shortcomings of off-the-shelf PFs in such challenging scenario.

D. Generalized Interacting Annealed PF

In this paper we propose the novel Generalized Interacting Annealed PF (GIAnPF) algorithm. It implements an annealing mechanism (see for instance [START_REF] Neal | Annealed importance sampling[END_REF]) that overcomes the aforementioned limitations. Instead of directly approximating the targeted distribution, a sequence of modified distributions is considered. In such way, the algorithm starts by considering a more convenient distribution (i.e., sufficiently spread) while the last distribution is the true posterior of interest (in our case, the filtering distribution).

The GIAnPF algorithm is described in Table II. It starts by simulating M particles from the prior distribution in Step 1. However, unlike in the BPF or the APF, GIAnPF considers a sequence of Q intermediate steps in the processing of the data at each patch t. In the prediction step, M particles of the previous annealing layer {ρ (m) t,Q+1 } M m=1 are generated from the transition model by conditioning on the particles at time t -1

(Step 2a). Considering a sequence 0 = β Q+1 < β Q < • • • < β 1 < β 0 = 1
and starting from q = Q with a relatively small β Q , we first compute the weights by evaluating the tempered likelihood at ρ (m) t,q+1 (Step 2b), then each particle is resampled from the whole set of M particles with probability equal to the associated normalized weights (Step 2c). Finally, the new set of particles is simulated according to a transition kernel (Step 2d). We perform one step of Metropolis-Hastings (M-H) algorithm to sample from the transition kernel T t,q+1 (•) with proposal N (•, κ 2 q+1 I), where κ 2 q+1 is the variance of the kernel [START_REF] Robert | Monte Carlo Statistical Methods[END_REF], as it is common in sequential Monte Carlo samplers [START_REF] Del Moral | Sequential monte carlo samplers[END_REF]. Note that in the last step, with q = 0, the exponent is β 0 = 1, and therefore the M-H targets the true posterior pdf of the kernel parameters, which ensures the invariance of the particle approximation. 

(m) t-1,0 ), m = 1, ..., M (17) 
For q = Q, Q -1, . . . , 0, b) Compute the normalized tempered weights as:

ξ (m) ∝ p(yt|ρ (m) t,q+1 , Xt) βq -β q+1 , m = 1, . . . , M (18) 
where 0 = β Q+1 < β Q < • • • < β 1 < β 0 = 1 c) resample ρ (m) t,q+1 = ρ (j)
t,q+1 , with probability ξ (j) ,

for each m = 1, ..., M d) sample as ρ (m) t,q ∼ T t,q+1 (ρ (m) t,q+1 ), m = 1, . . . , M (19) 
3) Output: At each t, we provide a set of M unweighted particles {ρ

(m)
t,0 } M m=1 , for the approximation of the filtering distribution.

Rationale and parameter selection. The rationale of GIAnPF is as follows. The first exponent, β Q , is chosen in such a way the targeted distribution is a sufficiently flattened version of the likelihood. Then, for each annealing layer q = Q, . . . , 1, a larger β q-1 than the previous one is adopted so that the likelihood used when evaluating the weights becomes increasingly closer to the original one. The final particles at this time step t, {ρ

t,0 } M m=1 , are then those used for the approximation of the filtering distribution.

This annealing procedure is especially helpful when the likelihood varies a lot among the particles, so that only few particles would have been chosen if the exact likelihood was used to do the sampling. In Step 2b), we compute the tempered weights to deal with the particle degeneracy problem. In Step 2c), the particle ρ (m) t,q+1 is resampled from the set of simulated particles, {ρ (j) t,q+1 } M j=1 , with associated probabilities {ξ (j) } M j=1 . In Step 2d), we apply one step of the M-H to the re-sampled particles, to ensure that the particle approximation converges to the true targeted distribution (i.e., without the tempering exponent). Note that GIAnPF can be seen as a generalized version of the BPF, since it contains this algorithm as particular case when we set Q = 0 and the M-H iteration (Step 2d) is avoided, i.e., with κ q+1 = 0. Connections to the literature. The GIAnPF connects with several algorithms in the literature. As stated above, it can be seen as a generalization of the BPF [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF]. It also holds clear links with annealing schemes such as [START_REF] Neal | Annealed importance sampling[END_REF], [START_REF] Deutscher | Articulated body motion capture by annealed particle filtering[END_REF], [START_REF] Filippone | Bayesian inference for Gaussian process classifiers with annealing and exact-approximate MCMC[END_REF], [START_REF] Ulker | Annealed smc samplers for nonparametric bayesian mixture models[END_REF]. In the context of PF, [START_REF] Liu | Estimating generalized gaussian blur kernels for out-of-focus image deblurring[END_REF] conducts interacting MCMC sampling procedure with the particles obtained from the BPF as the starting point. In [START_REF] Madapura | 3d articulated human body tracking using kld-annealed rao-blackwellised particle filter[END_REF], the authors incorporate the annealing strategy within a Rao-Blackwellised Particle Filter and update the sample size using Kullback-Leibler Divergence transformation. The algorithm proposed in [START_REF] Gall | Generalised annealed particle filter -mathematical framework, algorithms and applications[END_REF] also bears some similarities with GIAnPF in its use of an annealing scheme in a PF. However, unlike in [START_REF] Gall | Generalised annealed particle filter -mathematical framework, algorithms and applications[END_REF], our proposed method keeps closer ties to the standard BPF by modifying the sampling/weighting and adding an M-H update, which allows the particle approximation to converge to the filtering distribution with M (for any value of Q), and hence constructing consistent estimators of the sought intractable integrals.

IV. EXPERIMENTAL RESULTS

A. Construction of an experimental database

We first describe the experimental database. It is composed of a set of several pairs of clean/degraded images associated to various choices for the patch decomposition, shift variant blur maps, and noise levels.

1) Images: We consider three images of size N = 512 × 512 (displayed in Fig. 4), namely, Chart, Cells, and Hubble. These are representative images of calibrated objects (e.g., resolution charts, fluorescent beads and distant stars) typically used to estimate spatially variant blur parameters. In all our experiments, patches of size 64 × 64 are used and the blurry noisy version y is generated following Eqs. ( 1)-(2), using i.i.d. zero-mean Gaussian noise with standard deviation σ n > 0, so that p(y t |ρ t ) = N (X t h(ρ t ), σ 2 n I). 2) Shift-variant blur maps: Five realistic space-varying blur maps, associated to the three blur shapes presented in Sec. II-B, are constructed. To this aim, we take inspiration from the examples provided in [30, Fig. 8], [6, Fig. 7], [6, Fig. 7] and [START_REF] Jonathan | Parameterized modeling of spatially varying optical blur[END_REF]Fig.4]. In most of our models, we will consider the existence of an optical center for the device, and that the blur width/orientation depends on the relative position of the patch with respect to this center. Instead of considering deterministic maps, as in the aforementioned works, we include some randomized settings in the expressions so as to simulate more realistic scenarios of an optical device whose effect on the image may slightly vary with respect to external conditions (temperature, laser power, planarity of the disposal). For a pre-specified abscissa-ordinate system in the 2D image plan, we denote, for a given patch t, o t = (o 1,t , o 2,t ) the coordinates of the patch center, ô = (ô 1 , ô2 ) the coordinates of the chosen optical center of the device, and ℓ t = o tô the Euclidian distance between both. The associated parameters, gathered in vector ρ t , are defined as follows, for the five considered models. Figure 3 displays examples of three realizations of each of those, illustrating the variability among patches, and also among different realizations for the same model. a) Map 1: We assume Gaussian blurs, with size L = 15 2 , with width and orientation parameters s t and θ t at each patch t. We opt for the spiral patch ordering and we set, for every t,

θ t = arctan o 1,t -ô1 o 2,t -ô2 + ǫ t , (20) 
where

ǫ t ∼ N ( π 2 , σ 2 ǫ ), s 1,t = δ 1,t ℓ t , s 2,t = δ 2,t ℓ t . (21) 
where

δ 1,t ∼ U ([δ 1,min , δ 1,max ]), δ 2,t ∼ U ([δ 2,min , δ 2,max ])
with (σ ǫ , δ 1,min , δ 1,max , δ 2,min , δ 2,max ) positive scalars. b) Map 2: We consider Gaussian blurs with size L = 15 2 with width and orientation parameters s t and θ t at each patch t. We use the spiral patch ordering and, for every t, we set

θ t = arctan o 1,t -ô1 o 2,t -ô2 + ǫ t , (22) 
where

ǫ t ∼ N ( π 2 , σ 2 ǫ ), s 1,t = 1 8 (δ 1,t |o 1,t -ô1 | + 1) s 2,t = 1 8 (δ 2,t |o 2,t -ô2 | + 1) (23) 
with

δ 1,t ∼ U ([δ 1,min , δ 1,max ]), δ 2,t ∼ U ([δ 2,min , δ 2,max ]
) and (σ ǫ , δ 1,min , δ 1,max , δ 2,min , δ 2,max ) some positive scalars. c) Map 3: We consider Gaussian blurs with size L = 15 2 with width and orientation parameters s t and θ t at each patch t. The patches are ordered in lexicographic order and, for every t, we set

θ t ∼ U ([0, π 8 ]), (24) 
and

s 1,t = 1 8 (δ 1,t -o 1,t ), s 2,t = 1 15 (δ 2,t -o 2,t ), (25) 
where

δ 1,t ∼ U ([δ 1,min , δ 1,max ]), δ 2,t ∼ U ([δ 2,min , δ 2,max ]),
and (δ 1,min , δ 1,max , δ 2,min , δ 2,max ) are some positive scalars.

d) Map 4:

We assume blurs with defocus shape, with size L = 25 2 parametrized by width and orientation parameters s t and θ t at each patch t. We order the patches in lexicographic order and, for every t, we set

θ t ∼ U ([0, π 8 ]), (26) 
and

s 1,t = 1 3 (δ 1,t -o 1,t ), s 2,t = 1 6 (δ 2,t -o 2,t ), (27) 
with δ 1,t ∼ U ([δ 1,min , δ 1,max ]), δ 2,t ∼ U ([δ 2,min , δ 2,max ]), and (δ 1,min , δ 1,max , δ 2,min , δ 2,max ) some positive scalars. e) Map 5: specify here a generative model for the particular case of the skew-normal blur, with size L = 15 2 , with the aim to mimic the shift-variant blur map that was considered in the experiments of [START_REF] Jonathan | Parameterized modeling of spatially varying optical blur[END_REF]. We order the patches in spiral order and we set

ω t = sign o 1,t -ô1 o 2,t -ô2 1 -2 |o 1,t -ô1 | -|o 2,t -ô2 | . ( 28 
)
We then create a shift-variant map with skew normal shapes of parameters We provide in Table VI in Appendix B the parameter values retained for these five realistic maps. 3) Quantitative comparison methodology: We will run several experiments of blur map estimation, using BPF and GIAnPF methods, both on toy examples and on our realistic dataset. The transition models considered in those schemes for describing the spatial blur evolution are those given in Tab. VII in Appendix B. More precisely, Model A will be employed to retrieve Gaussian blur maps (e.g., those resulting from Maps 1, 2 and 3), Model B to retrieve defocus blur maps (e.g., in case of Map 4) and Model C to estimate skew normal blur maps (e.g., Map 5). The upper bounds s max defined in App. A are used, to preserve consistency of the estimated shapes with the considered blur support width L. An analysis of robustness to the setting for L will be presented in Sec. IV-D4. In order to quantify the gain of exploiting the spatial structure of the problem, we will compare the filtering pdf approximated by BPF and GIAnPF algorithms, and the posterior distribution that only considers the data corresponding to each patch independently. In the latter case, we use importance sampling (IS) [START_REF] Elvira | Generalized multiple importance sampling[END_REF] to approximate the intractable posterior. Note that both PF and IS have a comparable computational complexity per sample/particle, while PF allows to exploit the information of previously processed data (i.e., patches), due to an implicit sequential IS structure. We also perform comparisons with two optimization-based methods considering non-parametric models for the kernels. In the so-called NP formulation, the kernels (h t ) T t=1 are estimated by minimizing a least-squares function under simplex and smoothness constraints, in a fully parallel manner for each patch t. We also compared with a more sophisticated non-parametric formulation where we included, in addition to the NP cost function, the total-variation based spatial regularization among kernels of neighboring patches from [START_REF] Mourya | Contributions to image restoration : from numerical optimization strategies to blind deconvolution and shift-variant deblurring[END_REF]Chap.4], yielding NP + method. Note that both resulting constrained convex minimization problems are solved with the FISTA algorithm [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. In all experiments, the relative mean squared error (RMSE h ) averaged over patches is used to evaluate the numerical performance of the blur estimation, i.e., RMSE h = 1

               s 1,t = 1 3 (|o 2,t -ô2 | + 1 2 )(ℓ t + 1 5 ) + δ 1,t , s 2,t = 1 3 (|o 1,t -ô1 | + 1 2 )(ℓ t + 1 5 ) + δ 2,t , w t = 7 5 ω t ℓ t + δ 3,t , α 1,t = δ 4,t (1 -ℓ t ), α 2,t = δ 5,t (1 -ℓ t ), (29) 
T T t=1 ||ht-ht||2 ||ht||2
with h t and h t the original kernels and the estimators respectively at patch t. For methods providing a posterior estimation (i.e., BPF, GIAnPF and IS), we calculate h t = h(ρ t ) with ρ t the mean estimator of the unknown parameters, while for NP and NP + , h t is directly the solution to the optimization problem, in patch t. We also include the standard deviation as well as the 95% credible interval of the estimators of BPF, GIAnPF and IS methods, to evaluate the statistical accuracy of the results. All the presented results are averaged over 100 random runs, and all the hyperparameters are tuned so as to minimize the RMSE (averaged over 5 random trials). The best results will be marked in bold cases in the tables. The numerical experiments are conducted in a Matlab environment on a computer with an Xeon(R) W-2135 processor (3.7 GHz clock frequency) and 12 GB of RAM.

B. Validation of the proposed method

We first discuss the settings and properties of the proposed method in an illustrative toy synthetic example. Our tests are conducted on the image Chart decomposed into T = 64 patches, and corrupted by skew-normal blurs whose parameters (ρ t ) T t=1 are generated following the transition model C, with (σ s , σ w , σ α ) = (10 -1 , 2 • 10 -1 , 10 -1 ) and, except otherwise stated, a noise standard deviation σ n = 0.05. The blur parameter estimations are then conducted with BPF and GIAnPF, assuming transition Model C with known hyperparameters.

a) Setting particle and layer numbers: The BPF method, as well as the proposed GIAnPF method, requires the setting of the number of particles. For GIAnPF, the number of layers Q plays also a role. This is necessary to reach a compromise between a precise target reconstruction and a reasonable computational time, for setting those parameters. We display in Fig. 5 the averaged RMSE on 100 runs with respect to the computational time, for different settings of parameters of BPF and GIAnPF. The associated values for the parameters (β q ) 0≤q≤Q are chosen on a logarithmic grid between 1 and 10 -2 , and β Q+1 = 0. For a given number of particles M , the GIAnPF algorithm always generates a better approximation of the unknown blurs than BPF, although at the expense of a slightly increased. Note that, for the same time budget, GIAnPF outperforms BPF. In all the upcoming experiments, we will set M = 3000 for BPF, IS, and Q = 2 and M = 500 for GIAnPF, so that they have comparable time requirement.

b) Alleviating the particle degeneracy: One of the advantages of the novel GIAnPF method is the promotion of the diversity among the particles. In Fig. 6, we display the normalized effective sample size (NESS), computed as NESS =

1 M M m=1 w (m) t
, where w (m) t are the normalized weights (i.e., 0 ≤ NESS ≤ 1). We average the ESS over 100 runs and all the patches, divided by the corresponding number of particles M for various level of noise σ n . The results are also averaged over 10 independent generations of the data. It can be seen that GIAnPF algorithm has higher NESS, thus preserves much more diversity in the particles for all analyzed noise levels. Similarly, Fig. 7 displays, for the same experiment, the RMSE of the blur estimate using the mean of the approximate posterior of each filter. We can see that a larger diversity (larger NESS) translates into a smaller error. 

C. Comparative performance on the experimental database

In this section, we compare the performance of GIAnPF and other approaches in different scenarios arising from our experimental database.

a) Quantitative performance: levels, namely σ n = 0.01 and σ n = 0.05. Illustrative examples of results are also provided in Figure 8. In all the Bayesian methods, we display the blur maps resulting from kernel parameters equal to the minimum MSE (MMSE) estimator, i.e., the mean of the posterior distribution given the available data. The methods IS and NP, which do not exploit the spatial smoothness among neighboring kernels, reach the worst performance. A visual inspection of Figure 8 confirms this result. Among the spatially regularized methods, i.e., NP+, BPF and GIAnPF, the former is still far from reaching the quality of estimation of two latter methods though it improves over NP. Such behavior is expected as BPF and GIAnPF incorporate explicit knowledge about the parametric shape of the blur, leading to less diversity and thus less error in the restored blur maps. This can be seen in Figure 8. An analysis of the sensitivity of the methods over an error in the assumed parametric shape will be discussed in Section IV-D1. In all cases presented in Table IV, the proposed method GIAnPF performs similarly or better than the standard BPF. The benefits from the annealing procedure are particularly noticeable in the case of σ n = 0.01. This improved performance can be explained by the annealed approach of GIAnPF, which is particularly effective when the posterior pdf of the parameters has the probability mass concentrated in small regions of the space, as it happens with low values of σ n (due to a peaky likelihood). b) Complexity comparison: We perform a scalability analysis of the different methods, by applying those to the estimation of Map 5 blur map, from resized versions of the large scale aerial image from [START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF]. The same hyperparameter settings as in Table IV were used. In Table III, we report the averaged computational time over 10 random trials. For IS and NP, that are fully separable methods onto patches, we also report the time per patch, that could be reached using parallel implementation on T cores. Both of these methods benefit from fast complexity cost assuming parallel processing of the patches. It is worthy to notice that the cost per patch of NP still increases for the largest images, probably due to memory saturation issues, while IS has a constant time requirement per patch. However, despite their rapidity, let us recall that the qualitative results for both these methods were rather poor on our experiments. The complexity burden dramatically increases for the regularized optimizationbased method NP + . In the latter, the data is processed in a batch way. Parallelization over patches for this method is not straightforward, up to our knowledge, due to the non-separable structure of the underlying optimization problem. In contrast, the complexity of the proposed method stays very reasonable even for the largest image example, though involving the probabilistic estimation of T × K = 5120 parameters. As in the previous experiment, BPF and GIAnPF again show a similar computational cost. c) Stability to the noise level: We display in Fig. 9 a comparison of the RMSE h reached by the methods, when estimating kernels from observations degraded by increasing noise level σ n . One can observe that NP and NP+ performance rapidly deteriorates when the noise increases. In contrast, IS, BPF and GIAnPF perform in a relatively stable way. Moreover, the proposed GIAnPF method again outperforms the other competitors. As expected, its superiority over the standard BPF is less visible as σ n becomes higher, since GIAnPF is particularly dedicated to problems with peaky likelihoods, which arise when the noise level is low.

D. Robustness analysis

In practical contexts, it is frequent that the assumed parametric PSF model is erroneous (e.g., over-simplified with wrong support size) and/or that the calibrated image is only partially known (e.g., in digital camera imaging, a noisy nonblurry version can be acquired using short exposure settings).

Furthermore, the noise level in the blurred image is usually estimated and not known with perfect accuracy. It is thus of main importance to quantify the robustness of our method to such model mismatch. To this aim, we conducted four experiments, aiming at reproducing different realistic scenarios of imperfect knowledge of the acquisition model. Except if specified otherwise, in all the examples of this section, we used the image Cells. The degraded image is obtained by applying the space-varying Gaussian blur Map 1, and then adding a noise with level equals to σ n = 0.05.

1) Choice of the parametric blur model:

We first evaluated the influence of a mismatch between the assumed blur shape, and its actual one. We ran the different methods assuming instead a generalized Gaussian blur shape with different powers p, where p = 1 corresponds to the ground truth. The retrieved average RMSE h of BPF, GIAnPF, IS when taking different values for p are displayed in Fig. 10. We also displayed the results of NP and NP + approaches, that remain unchanged since no parametric model for the kernels is considered in those methods. As expected, the best performance are obtained for the correct p = 1 setting. More interestingly, we can observe that, even if a wrong parametric model is adopted, i.e., using p = 1, our proposed method GIAnPF still performs better than its competitors, and in particular the non parametric method NP + , for a wide range of values for p.

2) Noisy calibrated image: In the previous experiments, we assumed that the original image x is known in a perfect manner. However, in reality, it is commonly not the case. Here, we consider the situation when only a noisy version of x is provided in the estimation process, denoted x = x + w where w is an additive Gaussian noise follows N (0, σ 2

x I). Eleven different levels for the noise on x are considered, namely σ x = {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10}. Note that this range of values covers from low noise level values (where traditionally the particle-based filters struggle to operate due to the mass being concentrated in small regions; see for instance [START_REF] Del Moral | Sequential monte carlo samplers[END_REF]) to relatively large noise values (which makes the inference less accurate). We display in Fig. 11 the averaged RMSE over 10 noisy realizations for each σ x , for the different approaches. The improvement of our proposed method GIAnPF with respect to BPF is more significant at low noise level, since particle degeneracy mostly arises in such context. Moreover, Fig. 11 shows that GIAnPF still outperforms its competitors when the noise level on x increases.

3) Setting of noise level: In the previous analysis, the exact observation noise variance σ n was assumed to be known and applied explicitly in our blur identification method. In more realistic situations, such noise level would have to be learned, leading to an estimate σn . We ran the different blur identification methods for the five different values σn = {0.01, 0.025, 0.05, 0.07, 0.1} (recall that the true observation noise level here is σ n = 0.05). Note that the optimizationbased methods are not sensitive to such change, so that the results for NP and NP + are unchanged. We display in Fig. 12 the average RMSE, for the different values for σn . We can notice that GIAnPF gives the best performance even when the noise level is poorly estimated. As expected, it reaches minimal mean and variance values when the ground truth noise 

4) Setting of kernel size:

In blur estimation, especially when the blur is non-stationary, a challenge lies in the setting a priori, of the kernel support width L. In this experiment we propose to assess the different approaches in the case where an erroneous L is assumed. In particular, we estimate the blur from the image Cells, when it is degraded by Map 1, and a noise level σ n = 0.05. We run the different methods/models, by setting the size for the kernel width as L ∈ {5, 7, 9, 11, 13, 15, 19, 23, 27}, while the groundtruth is L = 15. All the true/estimated kernels have been extended to the largest tested size L = 27 by zero-padding, to allow valid computation of estimation errors. We display in Fig. 13 the obtained RMSE values. One can notice that all methods have stable estimation error, as long as the assumed L is greater or equal to L, which is indeed expected. In contrast, when L < L, the results deteriorate for all methods. We observe that the GIAnPF method outperforms its competitors in almost all tested values for L. 

E. Image restoration

We conclude this experimental section by illustrating the ability of the obtained kernel estimates to lead to satisfying and interpretable image restoration results. We assume that we have access to a pair (x, y) of clean/degraded version of a given calibrated image. We focus on the estimation of blurs resulting from our synthetic blurred maps, and then the use of those results for the restoration of several non-calibrated images. Through this example, we also illustrate and discuss the advantage of providing probabilistic blur estimates.

We consider the image Chart, and its degraded version corrupted by the space-varying Map 4 with T = 64 and noise with standard deviation σ n = 0.1. We ran GIAnPF method and NP + approaches, identified as the two best blur identification procedures in the previous section. As shown in Fig. 14(left), we then perform the restoration of a set of four natural images 3 , from their degraded version in Fig. 14(right), following the same blur model, and noise level σ x = 0, 0.01, 0.05 and 0.1. The restoration is performed in a non-blind manner, by making use of the fast majorize-minimize memorygradient (3MG) algorithm from [START_REF] Chouzenoux | A majorizeminimize subspace approach for l2-l0 image regularization[END_REF], that was recently adapted to the problem of image retrieval under shift-varying blur [START_REF] Cadoni | A block parallel majorize-minimize memory gradient algorithm[END_REF], [START_REF] Chalvidal | Block distributed 3mg algorithm and its application to 3d image restoration[END_REF]. Note that the variational formulation adopted in 3MG is very similar to the one in [START_REF] Denis | Fast approximations of shift-variant blur[END_REF]. The regularization parameters of 3MG are finetuned so as to maximize SNR x = 20log 10 ||x|| ||x-x|| , with x the original image, and x the restored one. We present the results in Table V, in terms of SNR x between x and the restored images obtained with the blur estimates of either GIAnPF or NP + . In the case of GIAnPF, we ran the restoration with 100 samples from the estimated posterior distribution of the blur maps, for a single run of GIAnPF, which allows us to compute the mean and the 95% confidence intervals for both image quality metrics. In Fig. 15(left), we show the mean of the pixel-wise squared error between the true kernel and these 100 samples obtained from the posterior distribution. This metric, called Bayesian MSE, allows to assess the uncertainty of GIAnPF on each kernel estimate. One can identify patches with larger estimation errors, corresponding to flat zones in the Chart images, thus making the blur estimation less accurate. In contrast, the patches localized in zones with significant content (sharp edges, in particular) benefit from very good estimation quality for the associated blur (pixelwise error lower than 10 -6 ). Standard deviation is shown in Fig. 15(right), illustrating that the estimated distribution is more spread for difficult patches, while it is rather peaky for the patches that are better estimated. One can see from Table V that GIAnPF outperforms NP + in almost all examples, with up to 0.4 improvement in SNR score. Examples of visual results obtained from a given GIAnPF sample, are also displayed in Fig. 14(right).

We then illustrate the usefulness of the probabilistic estimation with associated uncertainty quantification that GI-AnPF provides, for the image restoration task. Specifically, we focus on the restoration of Boat image degraded by Map 4 and no noise (i.e., σ x = 0). We display in Fig. 16(left) the uncertainty quantification, defined as the standard deviation per pixel of the 100 restored images, obtained using the 100 samples from the estimated posterior of the blur maps, in a single run of GIAnPF. This uncertainty map can be compared with Fig. 16(right). The latter displays the mean square error map, obtained by averaging the results of 100 restorations performed with the MMSE estimator of the kernel parameters (mean of the approximated posterior), obtained by 100 different independent runs of GIAnPF. It is noticeable that our probabilistic approach with the inference performed by GIAnPF is able to quantify large uncertainty (see Fig. 16(left)) in areas where the squared errors are also large (see Fig. 16(right)). Let us point out that the uncertainty map from Fig. 16(left), is obtained without the need of processing the data multiple times, and does not require the knowledge of the original boat image. V. CONCLUSION This paper addresses the estimation of the PSF parameters for spatially-varying blurs from calibrated image acquisitions. We propose an original statistical modeling of the problem, accounting for the spatial dependency among neighboring kernels, and we apply a sequential Bayesian inference technique in this context. In order to alleviate the particle degeneracy problem brought by the BPF in some cases, we also propose a new sampling method called the GIAnPF. Our results in different scenarios illustrate the good performance of the approach, including a useful uncertainty quantification. The novel approach opens many possibilities beyond this work. For instance, different noise distributions could be immediately 

where Γ(•) is the Gamma function. The support size is: 

s max = √ L 2α 
The support size is:

s max = max G = √ L -1 2 . ( 33 
)
c) Skew-normal blur: The normalization constant is

λ = 2 (2π) 3 2 |S(w)| 1 2 . ( 34 
)
The support size is:

s max = √ L 2 -ln(a) . (35) 

APPENDIX B NUMERICAL SETTINGS

We describe here the detailed numerical settings adopted in the experimental parts for the proposed models and methods. Table VI shows the settings for the realistic blur maps considered in Section IV-A2. Table VII lists the transition models assumed when running BPF and GIAnPF, where N [smin,smax] (s t-1 , σ 2 s ) denotes a truncated normal distribution, i.e., the pdf is proportional to a normal pdf with mean s t-1 and variance σ 2 s in the support [s min , s max ], and 0 otherwise. 

Fig. 1 .

 1 Fig. 1. (left) Gaussian blur with θ = 0, s = [0.2; 0.1] √ L, α = 1, p = 1 and L = 15 2 ; (middle) defocus blur with θ = 0, s = [0.2; 0.1] √ L and L = 25 2 ; (right) skew-normal blur with s 1 = 0.15 √ L, s 2 = 0.15 √ L, w = 0, α 1 = 1.5, α 2 = 1.5 and L = 15 2 .

Fig. 2 .

 2 Fig. 2. Patch ordering (in the case of 4 × 4 structure): (left) lexicographic ; (middle) zig-zag ; (right) spiral.

1 )

 1 Initialization. Draw M i.i.d. samples, {ρ (m) 0 } M m=1 from the prior p(ρ 0 ). 2) Filtering step. For t = 1, ..., T : a) Simulate ρ (m) t ∼ p(ρt|ρ (m) t-1 ), m = 1, ..., M (15) b) Compute the normalized weights by w (m) t ∝ p(yt|ρ (m) t , Xt), m = 1, ..., M. (16) c) Resample M times from {ρ (m) t } M m=1 with associated probabilities {w (m) t } M m=1 , i.e., for m = 1, ..., M , let ρ (m) t = ρ (j) t with probability w (j) t , j = 1, ..., M 3) Output: The filtering step provides M weighted particles {ρ (m) t , w (m) t} M m=1 at each t, for the approximation of the filtering distribution.

Fig. 3 .

 3 Fig.3. Three realizations (from left to right) of the space-varying blur Maps 1 to 5 (from top to bottom). Each column displays one realization from the generative model. One can notice that, for each given row (i.e., blur map), the three images displayed share the same global aspect (e.g., circular map in rows 1, 2 or 5) with some slight variability, for instance in the blur kernel widths and orientations.

with δ 1

 1 ,t ∼ U ([0, δ 1,max ]), δ 2,t ∼ U ([0, δ 2,max ]), δ 3,t ∼ U ([0, δ 3,max ]), δ 4,t ∼ U ([δ 4,min , δ 4,max ]), δ 5,t ∼ U ([δ 5,min , δ 5,max ]), where (δ 1,max , δ 2,max , δ 3,max , δ 4,min , δ 4,max , δ 5,min , δ 5,max ) are positive scalars.

Fig. 4 .

 4 Fig. 4. Test images Chart, Cells and Hubble.

Fig. 5 .

 5 Fig.5. RMSE h with respect to computational time for BPF and GIAnPF, using different settings of (M, Q).

Fig. 7 .

 7 Fig. 7. RMSE in the blur estimation for BPF (blue) and GIAnPF (red) for various noise level σn of the blurry noisy image.

Fig. 8 .

 8 Fig. 8. Original kernels and identification results using Cells image with T = 64 patches and σn = 0.01. From top to bottom : original kernels, restored kernels with NP, NP + , IS, BPF, GIAnPF.

Fig. 9 .Fig. 10 .

 910 Fig. 9. Mean/variance of the RMSE h reached by the different methods. Hubble image blurred by space-varying kernels generated following Map 5 and three different values for σn.

Fig. 13 .

 13 Fig. 13. Mean/variance of the RMSE for various kernel support width L (ground truth size: L = 15).

Fig. 14 .

 14 Fig. 14. (left) Original images ; (middle) blurry noisy versions with σn = 0.01 ; (right) example of restored image using the mean blur estimate from one run of GIAnPF.

Fig. 15 .

 15 Fig. 15. Results of 100 samples from the posterior obtained with single run of GIAnPF when applied to image Chart degraded by Map 4 and σn = 0.1: (left) log 10 of the pixel-wise mean squared error over the 100 samples. (right) log 10 of the pixel-wise standard deviation over the 100 samples.

Fig. 16 .

 16 Fig.[START_REF] Zhang | Spatially variant defocus blur map estimation and deblurring from a single image[END_REF]. Uncertainty quantification vs error in the estimation of the kernels by GIAnPF on the image boat ; (left) log 10 of the pixel-wise standard deviation of the restored image, when using 100 samples from the posterior of the blur parameters, approximated by a single run of GIAnPF. (right) log 10 of the mean pixel-wise quadratic error between the true and the restored image when using the posterior mean estimator of the parameters approximated by GIAnPF, averaged over 100 independent runs.

  (-2 ln(a)) 1/p -1/2 . (31) b) Defocus blur: The normalization constant is λ = πs 1 s 2 L.

  01, δ 1,min = 0.595, δ 1,max = 0.605, δ 2,min = 0.295, δ 2,max = 0.305 Map 2 σǫ = 0.01, δ 1,min = 2.95, δ 1,max = 3.05, δ 2,min = 2.95, δ 2,max = 3.05 Map 3 δ 1,min = 2.45, δ 1,max = 2.55, δ 2,min = 1.95, δ 2,max = 2.05 Map 4 δ 1,min = 1.45, δ 1,max = 1.55, δ 2,min = 1.45, δ 2,max = 1.55 Map 5 δ 1,max = 0.01, δ 2,max = 0.01, δ 3,max = 0.1, δ 4,min = 1.5, δ 4,max = 2, δ 5,min = 2, δ 5,max = 2.5

TABLE I BPF

 I ALGORITHM FOR SPACE-VARYING BLUR IDENTIFICATION.

  Initialization. Draw M i.i.d. samples, {ρ

		TABLE II
	GENERALIZED INTERACTING ANNEALED PF FOR SPACE-VARYING BLUR
		IDENTIFICATION.
	1) (m) 0,0 } M m=1 from the prior p(ρ 0 ). Set Q ∈ N. 2) Bayesian recursion. For t = 1, ..., T :
	a) Propagate the particles as
	ρ	(m) t,Q+1 ∼ p(ρ t,Q+1 |ρ

  Table IV displays the RMSE h obtained when estimating kernels of Maps 1 to 5, from observations of Cells image, degraded by two noise Normalized effective sample size (NESS) for BPF (blue) and GIAnPF (red) for various noise level σn of the blurry noisy image.

		0.07								
			BPF						
		0.06	GIAnPF						
		0.05								
	NESS	0.03 0.04								
		0.02								
		0.01								
		0								
		0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
						n			
	0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 Fig. 6. 0.01 RMSE h	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09 BPF GIAnPF	0.1
						n				

  IN THE CASE OF MAP 5 (I.E., L = 225 AND K = 5) APPLIED TO VARIOUS IMAGES OF SIZE N , DECOMPOSED INTO T PATCHES. TIME PER PATCH IS ALSO REPORTED FOR IS AND NP, AS THEY PROCESS PATCHES INDEPENDENTLY.

	Image size	N = 256 2	N = 512 2	N = 1024 2	N = 2048 2
	Patches	T = 16	T = 64	T = 256	T = 1024
	NP	36.16 (2.26)	135.5 (2.11)	4987 (19.48)	82273 (80.34)
	NP +	35.80	127.3	4473	71913
	IS	5.21 (0.32)	21.85 (0.34)	91.29 (0.36)	374.7 (0.37)
	BPF	5.09	20.15	85.53	345.4
	GIAnPF	4.67	19.03	78.81	329.9
			TABLE III		
	AVERAGED COMPUTATIONAL TIME IN SECONDS, FOR THE DIFFERENT
	METHODS,				

TABLE IV RMSE

 IV h FOR NP, NP + , IS, BPF, GIANPF. CE L L S IMAGE

	BLURRED BY SPACE-VARYING KERNELS GENERATED FOLLOWING
	MAPS 1-5.

  Fig. 11. Mean/variance of the RMSE h reached by the different methods, for various noise level σx deteriorating the input calibrated image.level is used in the estimation process.
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	Fig. 12. Mean/variance of the RMSE h reached by the different methods,
	when using an erroneous noise level estimate σn (the ground truth is σn =
	0.05).				

.5247[20.3207-20.7045]

  

	Image	σx	NP +	GIAnPF
	Boat	0 200.01 20.1051 18.8952 18.0044 [17.8957-18.1138]
		0.05	17.9529	17.9610[17.9485-17.9714]
		0.1	17.2432	17.2755 [17.2674-17.2848]
	Goldhill	0	20.7009	20.9611[20.6529-21.1522]
		0.01	19.1551	20.2494 [20.1838-20.3108]
		0.05	18.9202	18.9990[18.9728-19.0205]
		0.1	18.2412	18.3510 [18.3356-18.3630]
	Plane	0	23.2597	23.6970 [23.5257-23.8888]
		0.01	22.1416	21.8859 [21.7679-21.9899]
		0.05	20.4632	20.5290[20.5132-20.5487]
		0.1	19.6010	19.6535 [19.6445-19.6654]
	Cameraman	0	20.4253	20.4839 [19.7894-20.9030]
		0.01	19.3293	19.8935 [19.7158-20.0245]
		0.05	18.3764	18.6403 [18.5687-18.6794]
		0.1	17.4996	17.7183 [17.6861-17.7376]

TABLE V SNRx

 V VALUES OF RESTORED IMAGES USING ESTIMATED BLUR DERIVED FROM NP + AND GIANPF APPLIED ON THE CALIBRATED IMAGE CH A R T .

TABLE VI NUMERICAL

 VI SETTINGS FOR THE GENERATION OF THE EXPERIMENTAL SHIFT-VARIANT BLUR MAPS.(θt-1, σ 2 θ ) s1,t ∼ N [s min ,smax] (st-1, σ 2 s ) s2,t ∼ N [s min ,smax] (st-1, σ 2 s ) smin = 10 -2 , smax set as in (31). ∼ N [s min ,smax] (st-1, σ 2 s ) s2,t ∼ N [s min ,smax] (st-1, σ 2 s ) smin = 4 • 10 -2 , smax as in (33). ∼ N [s min ,smax] (st-1, σ 2 s ) s2,t ∼ N [s min ,smax] (st-1, σ 2 s ) w ∼ N [w min ,wmax] (st-1, σ 2 w ) α1,t ∼ N [α min ,αmax] (st-1, σ 2 α ) α2,t ∼ N [α min ,αmax] (st-1, σ 2 α )smin = 5 • 10 -2 , smax as in[START_REF] Schuler | Blind correction of optical aberrations[END_REF], {wmin, wmax} = {-0.9, 0.9}, {αmin, αmax} = {0.5, 2}, so that[START_REF] Anthony | Image analysis with rapid and accurate two-dimensional Gaussian fitting[END_REF] holds.

	Parameters settings
	Model A θt ∼ N Model B           θt ∼ N (θt-1, σ 2 θ ) s1,t Model C              s1,t

TABLE VII CONSIDERED

 VII TRANSITIONS MODELS AS IN EQ. (13).

A limited version of this work was presented by the authors in the conference paper[START_REF] Huang | Particle filtering for online space-varying blur identification[END_REF].

http://sipi.usc.edu/database/