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Abstract

This paper presents a novel method for simulating the behavior of solid objects with the Lattice Boltz-
mann Method (LBM). To introduce and validate our proposed framework, comparative studies are per-
formed for computing the static equilibrium of isotropic materials. Reminding that the LBM has strong
theoretical foundations in the Boltzmann equation; this latter is firstly adjusted to solid motions,
through its Boltzmann-Vlasov special case. Indeed, the prior equation usually characterizes collision-
less plasma and serves here, when combined with a suitable mean-field external force term, for setting a
reliable solid framework. Secondly, a library is built and plugged on the top of the well-known Parallel
Lattice Boltzmann Solver (PaLaBoS) library. Numerical implementations based on previous equation of
motion for solids are led in a non-intrusive manner so as to present results with an easy and flawless
reproducibility. A new designed Lattice Boltzmann Method for Solids (LBMS) is exhibited through
few key algorithms showing the overall operation plus the major improvements. Efficiency, robustness
and accuracy of the proposed approach are illustrated and contrasted with a commercial Finite Element
Analysis (FEA) software. Obtained results reveal a considerable potential concerning static and further
dynamic simulations involving solid constitutive laws within the LBM formalism.

Keywords: Lattice Boltzmann Method for Solids, Solid static equilibrium, Vlasov-Maxwell
equation, Mean-field external force term

1. Introduction

1.1. Background
The LBM1 has proven to be an efficient and reliable method for CFD2 since several decades now.

Historically, it follows the seminal work of Frisch1 on the use of LGCA3 for simulating the Navier-
Stokes equations. This work was a remarkable breakthrough, as it proposed to simulate fluids at
the particles level on an Eulerian grid using interaction rules. Unfortunately, this came at the cost of
computation time to overcome the numerical statistical noise due to Boolean formulation of particle
interactions. Decades before, Bhatnagar, Gross and Krook achieved a linearization of the collision
operator of the BE4 2 that allows to reduce the complexity of the equation by avoiding the implementation
of an integral collision model. Macnamara3 and Succi 4 proposed to use discretized versions of the
Boltzmann equation to overcome the limitations of LGCA, and gave birth to the so-called Lattice
Boltzmann Method. Following this idea, Karlin et al. proposed a LBGKE5 with an optimized local
equilibrium and proved the H-theorem for it5.

A high amount of work was since done in the LBM field, and recent years saw some remarkable
improvements for the simulation of fluids with high Reynolds numbers, with for example the lattice-
kinetic theory6. One can also mention the MRT6 LBM which also allows better stability of the method
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1Lattice Boltzmann Method
2Computational Fluid Dynamics
3Lattice Gas Cellular Automata
4Boltzmann Equation
5Lattice Boltzmann-BGK Equation
6Multiple Relaxation Time
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for high Reynolds numbers, using a multiple-relaxation time term. All these new insights are relevant
for simulating fluids with high Reynolds numbers, but also open up on the idea of modifying the collision
operator. Indeed, the collision operator is key in the method as it embeds the majority of the physics to
be simulated.

The simulation of multi-components flows is another important research interest in the LBM field.
This represents one of the major interests of the method: the LBM is conceptually relatively straight-
forward as it describes particle physics on a mesoscopic scale. However, the main challenge to overcome
is the interface definition which can be sorted roughly into four categories. The first category, called
color-gradient method7, has been developed for two-phases flows. It consists in adding a perturbation
to the linearized collision operator to make the pressure tensor locally anisotropic near a fluid-fluid in-
terface. This results in surface tension at interfaces while retaining the compatibility to the NSE7 in
non-interfaces regions. The second category is based on the introduction of an inter-particle potential8.
It allows the simulation of multi-phase and multi-component immiscible fluids with different masses at
constant temperature, with a high efficiency. The third category can simulate hydrodynamics of phase
separation and two-phases flow9. The principle is to use a non-ideal pressure tensor in the collision oper-
ator to ensure thermodynamic consistency. The goal of this approach is to improve physical consistency.
The fourth category takes into account molecular interactions10,11 for the simulation of incompressible
two-phase flows. A review of multi-phase LBM is proposed in12. It gives a comprehensive overview of
the methods and the associated algorithmic aspects.

The idea of combining specifically adapted collision operators and multi-phase approach leads to the
question of the possibility of simulating solid matter with the LBM. In fact, the multi-phase LBM is of
great interest, as it may simplify the notion of contact. As an example, the work of Chiappini et al.
applied multi-phase method to the simulation of ligament break-up13 gives an insight on its potential in
bio-mechanical soft tissue simulations.

1.2. The Need for a LBM for Solids
Some attempts in solid simulations using the LBM have been done, for example in14, with good

application results on fractures and fragmentation for a solid body. Despite some limitations, such as
the inability to fully recover the linear elastic equations, this work showed that the LBM is a good
candidate when it comes to simulate the decohesion of the material. Other works combined the lattice-
spring method and the LBM for FSI8 15. For example,16 is dedicated to the hemodynamic simulation in
deformable blood vessels. However, the combination of two different methods with different coordinate
systems complicates the simulation. Next to that, pure viscoelastic wave propagation simulations using
the LBM have been proposed17–19. All these works highlight the potential of the LBM for simulating
FSI in a lot of applications requiring the use of an Eulerian grid.

Indeed, simulating solids in an Eulerian framework, as in the LBM, is intricate and limited. The main
limitation is certainly the loss of the initial configuration, which is not necessary for fluid simulations,
but mandatory for solid simulations. Kamrin et al.20 proposed the so-called “reference map” to compute
finite-difference simulation of large solid-like deformations. They highlighted the fact that this reference
map can simplify the simulation of fluid/solid interactions, as both materials have a similar Eulerian
expression.

The benefits of being able to simulate solids are keys in solving FSI problems and simulation of
specific constitutive laws in the LBM framework. The advantage of Eulerian framework is principally
the absence of a deformable mesh. Moreover, the interest of the LBM for the simulation based on
medical imaging data21 and biological phenomena22 have been highlighted. It appears that the use of
the LBM framework allows the simulation of various problems based on what constitutes raw data in
many biomedical applications, i.e. medical images.

This paper proposes a LBM for the simulation of solids. It is mainly based on the use of the
Boltzmann-Vlasov equation, which is a special case of the Boltzmann equation. The aim is to
introduce the new proposed method in detail and to present some numerical implementations for its
validation.

The paper is organized as follows. Section 2 is dedicated to generalities about the LBM and BGK9

approximation. Section 3 proposes a LBM for solid simulations, based on a Boltzmann-Vlasov equa-
tion. Section 4 presents numerical implementations and key algorithms of the method, and the integration

7Navier-Stokes Equations
8Fluid Structure Interaction
9Bhatnagar, Gross and Krook
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in the PaLaBoS10 23 framework. Section 5 is dedicated to benchmarks and comparisons with FEA11

using COMSOL software24, in order to validate the method. Section 6 discusses the results and the work,
and section 7 concludes the paper.

2. Lattice Boltzmann Method

2.1. From BE to LBM

The BE established in 187225, describes the evolution of particles in the phase space and can be
written as:

∂f

∂t
+ ξ · ∇x (f) + g · ∇ξ (f) = Ω (f, f) , (1)

where g is the force field felt by particles, like gravity for mass particles, and the distribution f corresponds
to the statistical distribution of particles over the phase space, so ξ is the particles speed, and Ω is the
collision-interaction operator representing the interactions between particles.

The latter operator is given, in its general case, by an integral. The Boltzmann equation is an
integro-differential equation describing the evolution of an out-of-equilibrium thermodynamic system.

Then, macroscopic variables are found thanks to the distribution density as follows:

mass density: ρ =

∫
f(x, ξ, t) dξ, (2a)

overall speed: v =
1

ρ

∫
ξf(x, ξ, t) dξ, (2b)

kinetic energy: Ek =
1

2

∫
v2f(x, ξ, t) dξ, (2c)

viscous pressure tensor: Π =

∫
c⊗ cf(x, ξ, t) dξ, (2d)

where c is the microscopic velocity of the particles in the macroscopic average velocity frame, i.e.
c = (ξ − v).

To reduce the complexity of the collision operator, the BGK2 linearization, also called simple relax-
ation time approximation, is useful. So the Boltzmann-BGK equation is expressed by:

∂f

∂t
+ ξ · ∇x (f) + g · ∇ξ (f) = −ω

(
f − f (0)

)
. (3)

Where f (0) is the equilibrium distribution described by the followingMaxwell-Boltzmann distribution:

f (0)(x, ξ, t) =
ρ(x, t)

(2πRθ(x, t))D/2
exp

(
− (ξ − v(x, t))2

2Rθ(x, t)

)
, (4)

with θ the absolute temperature and R the universal gas constant.
It can be shown that in the zero Knudsen number limit, the BE with the BGK or a general collision

kernel leads to the NSF12 26,27. Then, the NSF equations can be recovered using the Chapman-Enskog
expansion of the BE (for its simple development with a BGK kernel, see appendix Appendix A) and
are expressed as:

∂tρ+∇x · (ρv) = 0, (5a)
∂t (ρv) +∇x · (ρv ⊗ v + p− ν∇xv) = 0, (5b)

∂t (Ek + Eθ) +∇x · ((Ek + Eθ)v + p · v + κ∇xθ) = 0. (5c)

Here stand one conceptual advantage of the Boltzmann methods: solve several macroscopic coupled
PDE13 by solving one microscopic PDE in the phase space. To go solve numerical the BGK-Boltzmann

10Parallel Lattice Boltzmann Solver
11Finite Element Analysis
12Navier-Stokes-Fourier
13Partial Differential Equations
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PDE, it is necessary to discretize the velocity space. Therefore, after a discretization through the Gauss-
Hermite quadrature, the velocity space discretization of the BE reads:

∂f i
∂t

(x, t) + ξi · ∇x (f i) + gi = Ω (f i, f i) , (6)

where ξi are the discretized velocities; f i and gi are the projections of f and g on the Hermite basis.
The previous BE discretized over the velocity space can be rewritten as:

∂f i
∂t

(x, t) + ξi · ∇x (f i) =
D

Dt
f i(x, t) = Ωi (f i, f i)− gi, (7)

where D
Dt is the particle derivative. Using the trapezoidal rule and a change of variable (f i to f̂ i see

appendix Appendix B), the second-order discretization, called the LBGKE, reads:

f̂ i(x+ ξi∆t, t+ ∆t) = f̂ i(x, t)−∆tω̂
(
f̂ i(x, t)− f

(0)
i (x, t)

)
−∆t

(
1− ω̂

2

)
gi(x, t) +O

(
∆t3

)
. (8)

In the sake of simplicity, the change of variable notation is dropped in the following of the paper. The
time evolution can be simulated by a succession of collision step and streaming step described by the
famous following equations which form the core of the LBM and reads:

f i
c(x, t) = f i

s(x, t)−∆tω
(
f i
s(x, t)− f (0)

i (x, t)
)
−∆t

(
1− ω

2

)
gi(x, t), (9)

f i
s(x+ ξi∆t, t+ ∆t) = f i

c(x, t). (10)

2.2. Body force term
The change of variable used in the eq. (B.9) also has an impact on the macroscopic variable. With

the use of the eq. (B.6) in appendix Appendix B, one can compute:

q∑
i=0

f i = ρ, (11)

q∑
i=0

ξif i = ρ̂v = ρv − ∆t

2
gi, (12)

q∑
i=0

(ξi − v)⊗ (ξi − v)f i = Π̂ = p(0) −
(

1 +
∆tω

2

)
σ(1) − ∆t

2
(g ⊗ v + v ⊗ g) . (13)

In the last expression, σ(1) is given by eq. (A.10c). These previous sums justify the correctional terms in
the macroscopic speed and the “lattice viscosity” that have to be compensated when fitting the physical
cinematic viscosity with the collision frequency ω̂ = 2cs

2

cs2+2ν . In the previous formula, cs is the celerity of
sound and obtained by cs2 = 1

3Rθ.
And the equilibrium distribution in its usual form, at second order, is given by:

f
(0)
i (ρ,v) = wiρ

[
1 +

ξi · v
cs2

+
(ξi · v)2

2cs4
− (v)

2

2cs2

]
. (14)

Using Guo’s approach28, the projection of the forcing term on the Hermite basis at third order reads:

gi =
wiρ

cs2
ξi · g +

wiρ

2cs4

[
(v · ξi)ξi −

v

cs−2

]
· g

+
wiρ

6cs6

[
(v · ξi)2ξi + (σ : ξi ⊗ ξi)ξi −

ξi
2ξi

cs−2
+ P3

(
ξi
cs−4

− (v · ξi)v
cs−2

− σ · ξi
cs−2

)]
· g.

(15)

3. Lattice Boltzmann Method for Solids

3.1. Considerations about the Vlasov equation
In order to find a suitable framework for the use of the Boltzmann equation for solids, it is possible

to note that at rest (at thermodynamic equilibrium) a particle distribution having a low temperature
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could be described by a Dirac distribution (omitting all quantum effects). Then, the solid matter at rest
condition can be seen as a combination of motionless point mass, and without large energy perturbation,
the molecular interactions can be linearized. Starting from this state, a small vibration of one edge of
the network will propagate freely. This situation can be described by the Vlasov equation29, which is
nothing but the Boltzmann’s equation deprived of its collision term:

∂t (f)(x, ξ, t) + ξ · ∇x (f) + g · ∇ξ (f) = 0. (16)

Then, the evolution of the particles described by this equation is a propagation of the particles without
further modifications induced by the collisions.

Usually this equation is used to describe collision-less plasma. In such cases, it is coupled with the
Poisson equation to add the electrical interactions that drive the motion of this mixture of electrically
charged particles. The Vlasov–Poisson equations are an approximation of the Vlasov–Maxwell
equations and read:

∂t (f)(x, ξ, t) + ξ · ∇x (f) +
qPEP
m

· ∇ξ (f) = 0, (17)

where qP is the particle electric charge, m is the particle mass and EP is the self-consistent electric field
resulting from the Poisson equation. The external force qPEP

m is the mean-field approximation of the
interactions between the electrical charges.

The interesting idea behind this equation is that complex systems with few collisions and strong
interactions can be modeled by a Vlasov equation. Plus, these strong interactions are incorporated
through the mean-field external forces term.

3.2. Boltzmann-Vlasov equation for solids
Using the previous consideration (“low” temperature and few collisions), the Boltzmann-Vlasov

equation can be used with a Dirac distribution:

f(x, ξ, t) = ρδv (ξ) , (18)

where δv (ξ) is the Dirac distribution centered on v. Thus, using the eq. (16) and eq. (18) for an
isothermal system, one can obtain the following macroscopic equations:

∂t (ρ) +∇x · ρv = 0, (19a)
∂t (ρv) +∇x · (ρv ⊗ v) = ρg. (19b)

As in the Vlasov-Poisson equation, it is then necessary to add to this model the interaction forces. To
do so in a solid framework, we consider the Cauchy stress tensor. It is possible to convert the Cauchy
stress tensor into an equivalent of force per mass unit. By noting that the divergence of the stress tensor
acts as a mass force (this amounts to nothing less than using the Green-Ostrogradsky theorem), it
is possible to write g = 1

ρ∇x · (σ). Therefore, by considering the following mesoscopic model:

∂f

∂t
(x, ξ, t) + ξ · ∇x (f) + g · ∇ξ (f) = 0, (20a)

f(x, ξ, t) = ρδv (ξ) , (20b)

g =
1

ρ
∇x · (σ) , (20c)

the aimed macroscopic system of undefined equation of motion for solids is obtained:

∂t (ρ) +∇x · ρv = 0, (21a)
∂t (ρv) +∇x · (ρv ⊗ v) = ∇x · (σ) . (21b)

Thus, the Boltzmann-Vlasov equation leading to the previous system of equations seems suitable
for rigid matter simulations. To simulate solids with this method, two elements appears to be compulsory.
Firstly, it is necessary to discretize the Boltzmann-Vlasov equation by projecting on the Gauss-
Hermite basis (which is done without lost of generality in section 2). Secondly, the numerical evaluation
the divergence of the stress tensor is required.

Several remarks arise from these previous equations. This approach remains general for any consti-
tutive law. Since the particles distribution is closer to a Dirac distribution centered on v, the streamed
particles (i.e. f i for i 6= 0) are closer to zero if there is no collective speed. Which is closer to the con-
ventional representations of solid lattices: particles are not moving freely through the solid. Moreover, it
implies that the streaming step in the LBM algorithm could be removed and the results would remain.
Indeed, the motion would be driven through the divergence of the stress tensor and not through the
streaming step. This last ascertainment has been observed in preliminary tests.
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3.3. Simplifications related to static equilibrium of solids
As a first study, solid cases as simple as possible, are considered to validate our model. So, the

infinitesimal strain theory framework is used. Thus, it is possible to simply use linearized strains, i.e.
the linearized strain tensor ε. Moreover, to keep a low complexity, we consider isotropic linear elastic
constitutive relationship. In this framework, the Eulerian and Lagrangian descriptions can be considered
as equivalent, yielding to true Cauchy stresses σ.

The main idea of the proposed method is to incorporate the stress divergence tensor of a solid behavior
as an external force. To test this proposal and only this one (not the collision-less operator which is more
related to dynamics), we examine this proposition as a first study to compute only static state. Therefore,
a modification of the collision operator is required for static cases. Some of these requirements and
simplifications are further developed in section 5 in order to set this static framework with thoroughness.

4. Numerical implementations and algorithmic

In this section, the key algorithms are presented in order to understand the suggested method from a
technical point of view. Details are given in such manner to catch on relevant arithmetic specific to the
Lattice Boltzmann Method for Solids in a two-dimensional space.

4.1. General implementation approach
To carry out a program which is manageable, robust and easy to install, multiple considerations have

to be taken into account. First, a user-friendly implementation seems to be mandatory and permits to the
community to develop new functions or interfaces. Secondly, seeking for robustness is obvious and leads
to correct simulation results, but code efficiency is not directly required. Thirdly, working with a light
environment is greatly appreciated, i.e., with few dependencies allowing a fast installation on different
platforms. All of these requirements will enable reproducibility of following results.

These objectives are mainly reached using C++ language and the well-known PaLaBoS23 library.
Hence, we decided to build an additional library which is plugged on top of PaLaBoS, i.e., which uses
only PaLaBoS as dependence: the LBMS14 library. The LBMS library is, thus, an easily accessible
setup. This strategy leads to a non-intrusive coding task where solid classes and solid objects are called
beside PaLaBoS without modifying its functions or methods. The LBMS library algorithms and the
results presented here show its ability to solve solid static equilibrium with the LBM. Library source
code is available online30.

4.2. Additional solid routines
In order to not modify the classic LBM loop, additional independent solid routines are inserted

in existing steps. This approach leads to append new local operations across the lattice alongside the
standard collide and stream stages, see eqs. (9) and (10). They are executed at each time iteration.
Algorithms are presented taking into account a lattice structure composed by several blocks, where each
independent structure can be calculated on a specific core processor as PaLaBoS does. For that purpose,
quantities are expressed in physical units.

In solid mechanics, discrete displacement values are the unknown variables of the system to solve.
We use time integration to retrieve this needed displacement from velocity, as detailed in algorithm 1.
Once displacement tensor field U is recovered, the strain tensor field E is obtained from displacement
by numerical differentiation. The stress tensor field Σ is, thus, deducted with a given solid constitutive
law, see algorithm 2. A body force is then added to each cell thanks to the stress divergence tensor field
∇x · (Σ) determined in algorithm 3. Previous tensor fields are defined over the whole lattice, i.e. using
lattice global coordinates Gx and Gy in a two-dimensional space.

14Lattice Boltzmann Method for Solids
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Algorithm 1: Displacement routine [Physical units]
Input: Macroscopic velocity field v and time increment ∆t
Result: Macroscopic displacement tensor field U
for b← 0 to BlockLattice.Count()-1 do

Gx
p ← BlockLattice[b].GetBlockLatticeGlobalPositionX() ; // Get current lattice position X

Gy
p ← BlockLattice[b].GetBlockLatticeGlobalPositionY() ; // Get current lattice position Y

for x← 0 to BlockLattice[b].GetNx()-1 do
for y ← 0 to BlockLattice[b].GetNy()-1 do

Gx ← x + Gx
p ; // Current cell global position X

Gy ← y + Gy
p ; // Current cell global position Y

U[Gx, Gy] += vcell ×∆t ; // Time integration

end
end

end

Algorithm 2: Strain and stress routine [Physical units]
Input: Macroscopic displacement tensor field U, space discretization ∆x and solid constitutive

law C
Result: Macroscopic strain and stress tensor fields: E and Σ
for b← 0 to BlockLattice.Count()-1 do

Gx
p ← BlockLattice[b].GetBlockLatticeGlobalPositionX() ; // Get current lattice position X

Gy
p ← BlockLattice[b].GetBlockLatticeGlobalPositionY() ; // Get current lattice position Y

for x← 0 to BlockLattice[b].GetNx()-1 do
for y ← 0 to BlockLattice[b].GetNy()-1 do

Gx ← x + Gx
p ; // Current cell global position X

Gy ← y + Gy
p ; // Current cell global position Y

P← BlockLattice[b].GetCellVicinityParameters(x, y) ; // Vicinity parameters
E[Gx, Gy] = ComputeStrainFromDisplacement(U, ∆x, P) ; // Strain computation
Σ[Gx, Gy] = ComputeStressFromStrain(E[Gx, Gy], C) ; // Stress computation with
solid constitutive law C

end
end

end

Algorithm 3: Body force routine [Physical units]
Input: Macroscopic stress tensor field Σ and space discretization ∆x
Result: Macroscopic stress divergence tensor field ∇x · (Σ)
for b← 0 to BlockLattice.Count()-1 do

Gx
p ← BlockLattice[b].GetBlockLatticeGlobalPositionX() ; // Get current lattice position X

Gy
p ← BlockLattice[b].GetBlockLatticeGlobalPositionY() ; // Get current lattice position Y

for x← 0 to BlockLattice[b].GetNx()-1 do
for y ← 0 to BlockLattice[b].GetNy()-1 do

Gx ← x + Gx
p ; // Current cell global position X

Gy ← y + Gy
p ; // Current cell global position Y

P← BlockLattice[b].GetCellVicinityParameters(x, y) ; // Vicinity parameters
∇x · (Σ) [Gx, Gy] = ComputeStressDivergenceFromStress(Σ, ∆x, P) ;
// ∇x · (Σ) [Gx, Gy ] computation
BlockLattice[b](x, y).ApplyLatticeBodyForce(∇x · (Σ) [Gx, Gy]) ; // Apply lattice body
force to the current cell

end
end

end
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These three routines allow to compute needed tensor fields over the lattice domain. They describe
solid variables for each lattice cell at time t. In a two-dimensional space, displacement tensor field has
the form referenced in eq. (C.1). In addition, considering mechanical applications with symmetric strain
and stress tensors, strain and stress tensor fields are defined in eq. (C.2) and eq. (C.3) respectively. Thus,
body force applied to the whole lattice with number of nodes Nx and Ny at each time iteration can be
expressed as:

∇x·(Σ) =



∇x · (Σ) [0, 0] = ∇x · (σ)0,0 =

[
∂σxx

∂X +
∂σxy

∂Y

∂σxy

∂X +
∂σyy

∂Y

]
0,0

. . . ∇x · (σ)0,Ny−1 =

[
∂σxx

∂X +
∂σxy

∂Y

∂σxy

∂X +
∂σyy

∂Y

]
0,Ny−1

...
. . .

...

∇x · (σ)Nx−1,0 =

[
∂σxx

∂X +
∂σxy

∂Y

∂σxy

∂X +
∂σyy

∂Y

]
Nx−1,0

. . . ∇x · (σ)Nx−1,Ny−1 =

[
∂σxx

∂X +
∂σxy

∂Y

∂σxy

∂X +
∂σyy

∂Y

]
Nx−1,Ny−1


,

(22)
where ∇x · (Σ) tensor field is space-time dependent and remains equivalent to a gravitational force in
terms of dimensional units. A lattice node (Gx, Gy) is subject to a force estimated partly thanks to a
solid constitutive law. This force is then processed depending on lattice units via the call of ApplyLat-
ticeBodyForce() that incorporates forces into lattice descriptor in order to modify distribution functions
when colliding step is executed.

Strain and stress divergence are calculated, in this paper, with high order finite difference schemes
which are constructed on the cell’s local vicinity. However, the presented methodology remains general
and is true for others numerical schemes able to capture derivatives accurately. Presented numerical
operations are local across lattice nodes and allow parallel computing thanks to independent arithmetic.
With GetCellVicinityParameters() function, information of boundaries and lattice block frontiers are
retrieved so as to adapt numerical derivative scheme topology to a specific cell.

4.3. Finite Difference Schemes
We seek for a robust numerical method to evaluate precisely first derivatives of displacement so that a

correct strain state is obtained, and the same is requested for stress divergence. Firstly, evaluations that
will not amplify non-desired oscillations like local scheme patterns are preferred. WENO15 31 schemes
were especially developed with this idea. Secondly, we aim to design schemes with small truncation
errors in order to minimize deviation during iterations so as to get an acceptable solid static equilibrium.
Furthermore, versatile schemes able to capture behavior along boundaries are clearly better suited.

Programming task has been done taking into account successive use of different finite difference models
as we move away from boundaries. Both forward and backward formulations are thus adopted, we refer
the readers to library sources30 for more details. For instance, around internal lattice nodes, a central
difference scheme with a O

(
∆x4

)
truncation error is built, see eq. (23). First derivative along first spatial

direction X of any function Q with discrete values over the lattice can be expressed as:

∂Q(Gx, Gy)

∂X
=
Q(Gx − 2, Gy)− 8Q(Gx − 1, Gy) + 8Q(Gx + 1, Gy)−Q(Gx + 2, Gy)

12∆x
+O

(
∆x4

)
, (23)

where (Gx, Gy) denotes a specific lattice node in lattice global coordinates. Since this previous scheme
uses a two-neighborhood environment, application near boundaries cannot be applied in this study.

4.4. Proposed solid equilibrium and colliding step
As we aim to study static equilibrium state, we suggest to keep to the BGK collision operator in

the Vlasov equation, in order to relax towards a solid equilibrium. Moreover, the reintroduction of the
BGK collision operator, enhances the numerical stability and avoid some unwanted mechanical waves or
issues near boundaries. This last point is further developed in the next section 4.5. However, our BGK
collision operator for solids differs by its equilibrium distribution from the usual one used in CFD.

Consequently, we strive to define an equilibrium that states the solid condition at the molecular scale
like the Maxwell-Boltzmann equilibrium distribution function (see eq. (4)) does for gases. Since the
static steady state of a solid implies no macroscopic speed, a Maxwellian equilibrium distribution func-
tion is imposed with a zero collective velocity. In other words, we tried to reach the static equilibrium

15Weighted Essentially Non-Oscillatory
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through the BGK operator considering an equilibrium distribution without macroscopic speed. A simple
distribution that not depends on temperature is targeted and ideally where matter does not move at the
microscopic scale level. But, for arithmetic reasons, mass is not concentrated on the cell’s first discretized
distribution function. Following numerical tests have proven functionality of proposed distribution func-
tions at solid equilibrium. Therefrom, for each cell composing the lattice, distribution at solid static
equilibrium for a classic D2q9 scheme can be defined by:

f
(0)
i

,sld(ρ,v) = f
(0)
i (ρ, 0) = ρwi =


ρ 4

9 if i = 0,

ρ 1
9 if i ∈ [1, ..., 4],

ρ 1
36 if i ∈ [5, ..., 8].

(24)

Where f (0)
i

,sld represents a discrete value i of f (0),sld for a cell node (Gx, Gy). Presented distribution
is applied both for initial conditions and equilibrium during time iterations. Hence, proposed equilibrium
does not vary with time and space, and solid behavior has no influence on it. Thus, mass conservation is
assured at solid equilibrium thanks to summation of Gauss-Hermite weights wi.

Colliding step (see eq. (9)) is then modified to include above suggested solid equilibrium and related
force calculated from stress divergence. For instance, considering an internal node, not on boundaries,
discretized collision operator is expressed by:

Ω
(
f i(Gx, Gy, t), f

(0)
i

,sld
)

= −ω(f i(Gx, Gy, t)− f
(0)
i

,sld) + si(Gx, Gy, t), ∀i ∈ [0, ..., 8]. (25)

Observing that f i(Gx, Gy, t) depends on space and time whereas f (0)
i

,sld is only dependent on lattice
scheme properties. Moreover, si(Gx, Gy, t) represents the lattice source term related to a body force
for a node (Gx, Gy) at time t applied on distribution, see algorithm 3. si(Gx, Gy, t) is also scheme
dependent since its computation is based, for instance, on Gauss-Hermite weights wi. Different force
implementations exist for LBM. All the following illustrated results are made using the Guo approach28,
see eqs. (9) and (15).

Related new objects and class methods are incorporated next to existing PaLaBoS dynamics and
called when a solid study is requested. As we mentioned before, non-intrusive coding work allows to
add new solid objects without modifying initial PaLaBoS sources enabling interoperation of different
libraries.

4.5. Proposed modifications for solid boundary conditions
To deal with solids into a LBM framework, it is easier to work on existing boundary conditions.

Indeed, solid behavior near domain frontiers must be identified. Our numerical approach can be explained
as following. First, numerical runs have pointed out non-desired stress concentration issues in corners
or along borders, yielding to important gradients skewing external forces values. Secondly, we aim to
distinct boundary behavior with internal one.

Even though, this boundary behavior has not been clearly determined, we aim to suggest a patch
treatment for solid matter. For all boundary nodes, we decide to relax them independently toward an
equilibrium through algorithm 4, just before the colliding step. Hence, an additional relaxation parameter
ωc is introduced. In other words, along domain borders, a double colliding step is, thus, applied in a
cascade manner including one with external force. In practice, we opt for 0.80 < ωc ≤ 1 to relax with
efficiency.

Concerning non-zero velocity boundary conditions, ωc is specially chosen to be equal to 1. Indeed,
in a solid, no particles are streamed at constrained boundary interfaces. Stress divergence must act as
body force in internal nodes and shall govern alone inner behavior. This can be physically interpreted as
if non-zero velocity boundary conditions were immediately converted into solid forces during iterations.

Although, all of these conditions are not perfect and subject to improvement, it leads to correct
results, see section 5. For more details concerning the implementation, see the available source code30.

4.6. LBMS: Loop to Solve Solid Static Equilibrium
Lattice Boltzmann loop is slightly reorganized including above presented additional routines and

modifications to perform solid simulations. Main steps are fulfilled by executing in sequence the dis-
placement routine, strain and stress routine, body force routine and finally the special solid boundary
task.

To demonstrate the capacity of the present LBM to solve solid static equilibrium, we decide to assign
specific boundary conditions. The function SetBoundaryConditions() sets a zero-velocity condition along
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Algorithm 4: Boundary conditions routine

Input: Boundary relaxation parameter ωc and solid equilibrium f (0),sld

Result: Modification of distribution functions f i(Gx, Gy, t) on boundaries
for b← 0 to BoundaryCell.Count()-1 do

BoundaryCell[b].RelaxBoundaryCell(ωc, f (0),sld) ; // Relax current boundary cell
end

related frontiers. In solids, it is similar to fixed boundary conditions if zero velocity does not evolve
throughout the simulation time. On the other hand, SetBoundaryVelocity() applies a classic velocity
condition, which is reduced to zero when variable MaxIterationBoundaryCondition is reached. Expected
solid static equilibrium is achieved after several supplementary loops. Previous setup exhibits good results
for solids, therefore, this is carried out in section 5.

Solid relaxation parameter ω is defined to be very small, to simulate a non-collision condition. Prac-
tically, parametric numerical runs revealed that influence of the relaxation parameter can be neglected
if ω ∈]0, ..., 1] far from domain borders. Indeed, ω = 0.01 and ω = 1 give almost the same results. This
can be explained by the fact there exists a balance between stress divergence and relaxing term.

Algorithm 5: LBMS loop
Input: Static equilibrium problem (isotropic materials)
Result: Solved static equilibrium state and related macroscopic variables
Initialization (see library sources30) ; // Other necessary initializations
Lattice.SetPeriodicity(false) ; // Periodicity = false

Lattice.InitializeAtSolidEquilibrium(f (0),sld) ; // Solid equilibrium at t = 0

Lattice.SetBoundaryConditions() ; // Set fixed boundary conditions
Lattice.SetBoundaryVelocity() ; // Set velocity boundary condition
Lattice.Execute(algorithm 1) ; // Compute displacement field
Lattice.Execute(algorithm 2) ; // Compute strain field and stress field
for i← 0 to (i×∆t) < MaxStudyTime do

Lattice.Execute(algorithm 3) ; // Apply lattice body force
Lattice.Execute(algorithm 4) ; // Relax boundaries
Lattice.Collide() ; // Standard PaLaBoS colliding step
Lattice.Stream() ; // Standard PaLaBoS streaming step
if i = MaxIterationBoundaryCondition then

Lattice.UnsetBoundaryVelocity() ; // Set velocity boundary condition to zero
end
Lattice.Execute(algorithm 1) ; // Compute displacement field
Lattice.Execute(algorithm 2) ; // Compute strain field and stress field

end

We refer the readers, in particular, to the C++ main file Article.cpp included in LBMS library which
contains all the needed exhaustive details for algorithm 5. Since presented algorithms are based on library
sources, thus, useful additional comprehension can be retrieved from this repository.

5. Validations and Benchmarks

To validate previous physical interpretations, LBMS developments and C++ algorithms, results are
compared with a FEA software. Reference model has to be accurate and faithful under mechanical frame-
work assumptions. These validations are performed in a two-dimensional space for simplicity and clarity.
Throughout this section, all numerical values are given in SI16 base units if units are not mentioned.

5.1. Mechanical Framework
A strict mechanical framework must be defined so as to identify with fidelity commonalities between

the two different approaches in terms of results. To do that, a necessary mechanical background is fixed

16International System of Units
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in this section. This background sets the mechanical assumptions and study properties for both methods
enabling relevant comparison.

5.1.1. Mechanical Prerequisites
We resume some aspects partially developed in section 3.3 concerning isotropic linear elastic materials,

Eulerian and Lagrangian frameworks. Details are given to highlight with preciseness used type of matter
and useful assumptions to validate the LBMS.

First, we point out that stress-strain relation of such isotropic materials is straightforward and well
known. This solid behavior is determined with respect to the classic Hooke’s law given in eq. (26) for a
lattice node (Gx, Gy). Thus, stress can be determined from the strain with only two scalar values, and
these two tensors are symmetric:

Σ[Gx, Gy] = C : E[Gx, Gy] = λTr (E[Gx, Gy]) I + 2µE[Gx, Gy]. (26)

Where C is the corresponding fourth-order isotropic stiffness tensor. Moreover, λ and µ are the Lamé
coefficients. As mentioned above, E and Σ are the strain and stress tensor fields defined over the whole
lattice.

Secondly, we want to superimpose deformed configuration and initial one. To do this, involved dis-
placement field must be small in terms of norm. Material solid structure is then considered motionless
during its transformation. Furthermore, to be able to consider linearized strains, deformation must
represent less than 1% of a solid characteristic dimension.

Thirdly, into our process, distinction between the two different descriptions, i.e., Eulerian description
(a.k.a. spatial coordinates) and Lagrangian description (a.k.a. material coordinates) does not apply.
Lagrange approach is widely preferred for solids where materials are moving with the coordinate system
including elements. Basically, it can be explained by the fact that no matter pass from one element to
another. On the other hand, in CFD, the mesh or lattice is fixed. Because the lattice structure is
supposed stationary throughout time, this no-distinction assumption can be made freely. In substance,
considered trajectories of solid particles can be insignificant, thus allowing to merge these two descriptions.
Furthermore, all stresses are assumed to be true, i.e., no differences arise from the deformation gradient
which is reduced to the identity matrix32.

5.1.2. Mechanical Study
The comparison study setup is quite simple. All borders are affected with fixed boundary conditions

except one that displacement is imposed, see fig. 1 for more details. This enforced displacement is
formulated as following:

u = 0X− 0.002Y. (27)

Where we remember that numerical values are expressed in SI base units. X and Y represent first
and second vectors of the space basis respectively. The Lamé coefficients are classically retrieved from
material properties, mostly thanks to Young’s modulus E and Poisson’s ratio ν. Then, we define three
cut lines in order to post-process results with parametric curves so as to compare fields with thoroughness,
i.e., thanks to C1, C2 and C3.

Figure 1: Mechanical study for LBMS approach validation. Black frontiers are fixed boundary conditions. A displacement
is imposed across the vector u described with black basis depicted on the left. Solid material properties are defined through
Young’s modulus E and Poisson’s ratio ν. Blue oriented curves C1, C2 and C3 are used for post-processing. All dimensions
are given in meters.
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5.1.3. LBMS: setup
Taking into account previous targeted mechanical study, a lattice characterized by a D2q9 scheme

is sampled with a resolution of 200 nodes per meter, yielding a suitable discretization. A forced lattice
descriptor is adopted in order to manage discrete force values. In all the following cases, a density of
ρ = 1000 is affected to any cells regardless of the matter nature.

To simulate an imposed displacement condition, a velocity boundary condition is applied during a
certain amount of time and then reduced to zero. Previous process allows to reach solid equilibrium
which is established after a couple of supplementary iterations following the change in value of imposed
macroscopic speed. Velocity field is then stable and no longer evolves, producing next presented results.
These results can be all retrieved and re-simulated freely from the C++ main file Article.cpp included in
sources of the LBMS library.

5.1.4. COMSOL: setup
A benchmark, i.e., a mechanical study which is accurate under assumptions presented above, has

to be carefully established. For that purpose, we choose COMSOL24 as FEA preprocessor and solver
for its simplicity of use. However, some simulation options remain important to set even for resolving a
standard static problem.

As mentioned above, linearized strains are assumed and by the way forced by default. Because dis-
placement is considered non-existent, all stresses are supposed true. Hence, computed Cauchy stress can
be directly compared with the tensor field Σ from proposed LBMS approach. A plane stress assumption
is made so as to simulate a very thin plate. Although, stress-strain relation of this hypothesis is slightly
different than the Hooke’s law presented previously, we keep this in mind to investigate results.

A standard extra fine triangular mesh is generated with fully integrated elements using cubic shape
functions. This setup enables to compute with accuracy the solution at boundary interfaces or areas
subject to stress concentration. More formally, we want a reliable solution that can be examined in
detail, e.g. near discontinuities produced by the imposed displacement.

Concerning nearly incompressible materials32–34 later presented in this paper, we use a hybrid element
approach, i.e., a mixed formulation that avoids volumetric locking for fully integrated elements. Other
methods exist to solve this issue, see e.g.35. Indeed, due to the constant pressure inside triangles, this
numerical phenomenon can arise and may distort the solution. In any cases, the mesh discretization and
nature of shape functions further secure the simulation reliability avoiding other locking difficulties. Used
triangular elements are rich enough to represent a correct result. Another solution would be to mesh with
reduced integration elements where volumetric locking problem does not exist, but a hourglass control
becomes necessary.

5.2. Results Comparison with a Commercial Software
Reference FEA studies and associated LBMS simulations are compared with 2D plots and curves.

Parametric numerical analysis is led so as to show performance details among a wide range of isotropic
materials, i.e., ν ∈ [−0.99, ..., 0.49] and E ∈ [2× 103, ..., 2× 1011]. They show the undeniable capability
of the LBM to solve solid mechanics.

5.2.1. Case E=200GPa, ν=0.15
Firstly, we decide to illustrate a specific case, i.e., with material properties E=200GPa, ν=0.15.

This example shows typical results of our presented framework. Figure 2 contrasts reference study with
proposed LBMS one. Strong similarities and likenesses are observed between the two different approaches.
Displacement extremum values remain consistent across the lattice and are directly correlated with the
related FEA study. More locally, field values are practically identical and same solid behavior is exhibited.
However, we notice unwanted small oscillations of displacement field arising from used finite difference
scheme. As we said above, WENO schemes may certainly improve the solution quality. In addition,
these perturbations can be drastically reduced by setting a smoother loading profile. Figure 3 shows us
deformed shape and displacement field magnitude of the lattice computed with our LBMS approach.

Figures 4 and D.8 depict Von-Mises stress distribution along cutting curves C1 and C2 respectively
(see fig. 1 for more details concerning C1 and C2). Comparing stress values between different codes is
often very sensitive. Because we solve for displacement in a FEA approach, stresses values are strongly
dependent on computed displacement field accuracy. Plotted curves show a similar global behavior and
same order of magnitude (not more than 15% of difference in fig. D.8), although fig. 4 has a striking
match with reference study. These first results lead to say that the proposed method has an interesting
potential.
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Figure 2: 2D results comparison of displacement field for case E=200GPa, ν=0.15 per field component. Displacement field
obtained with our LBMS method (top). Displacement field of reference FEA study computed with COMSOL (bottom).

Figure 3: Deformed solid for case E=200GPa, ν=0.15 amplified 5 times with its distorted underlying lattice. Color mapping
shows magnitude of displacement field. Overall view of the deformed solid (left). Detailed view along loading (right).
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Figure 4: Von-Mises stress along cutting curve C2 for case E=200GPa, ν=0.15.

13



5.2.2. Poisson’s Ratio Sensitivity
To evaluate the reliability of the proposed method, parametric studies are led with various values

of ν with a fixed E=200GPa. For that purpose several curves are analyzed to illustrate the capability
of our LBMS method to simulate a wide range of Poisson’s ratios. Figures 5, D.9, D.11 and D.16
exhibit results with negative ν whereas figs. D.10, D.12, D.15 and D.17 present positive ones. For
ν ∈ [−0.50, ..., 0.35] results are satisfying and replicate expected displacement field with a good accuracy
and credibility. Concerning highly auxetic materials and nearly incompressible solids, results are mixed.
Among all ratios, the general trend still remains analogous. Detailed views along cutting curve C2 are
provided in figs. D.13 and D.14 for first displacement direction and in figs. D.18 and D.19 for the second
one.

Shown results are acceptable in terms of matching with reference study. Differences between curves
are more pronounced when poisson’s ratio is moving away from zero. Further explanations are brought
in detail in section 6.
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Figure 5: Second displacement components along cutting curve C1 for negative Poisson’s ratios.

5.2.3. Young’s Modulus Sensitivity
Like previous part, we perform a parametric study involving Young’s modulus. Poisson’s ratio is set

to zero, leading to λ = 0. Thus, isotropic law is modified and therefore Poisson effect does not exist for
this particular case. Figures D.20 and D.21 illustrate first displacement coordinate along cutting curves
C1 and C2 respectively. In the same way, figs. D.22 and D.23 depict the second displacement coordinate.

At boundary, displacement is imposed, thus yielding to identical curves no matter is the material
stiffness. Indeed, E acts as a stress factor into studied isotropic law (see eq. (26)), i.e. only stresses
are subject to change. Young’s modulus can be viewed as a convergence coefficient during iterations.
Investigations are made to demonstrate insensitivity and stability of LBMS with various modulus. To
go further, we remark that first component of displacement partly arise from intense shear stress at the
frontiers of the velocity condition. A non-constant shear stress along second basis direction produce a
non-zero stress divergence, i.e. contributing to its first component and hence yield a displacement even
if ν = 0.

5.2.4. Triangular Loading: Case E=200GPa, ν=0.15
To exhibit robustness of the LBMS method and its ability to compute solid static equilibrium, a last

example is illustrated with a different boundary condition. We resume previous case in section 5.2.1,
but a right-angled triangular imposed displacement is applied (with the maximum displacement localized
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at the right of the considered problem) instead straight one (see fig. 1). Figure 6 presents 2D results
compared with reference study. In general, the displacement field is consistent and replicates expected
solid behavior with fidelity. In details, minor errors are detected in field values leading to same conclusions
as above. Additional curves are given in figs. D.24 and D.25 for Von-Mises stress and in figs. 7 and D.26
to D.28 for displacement components along cutting curves C2 and C3. Plots are in total concordance
with related FEA study despite slight deviations when displacement is important.

Figure 6: 2D results comparison of displacement field for case E=200GPa, ν=0.15 per field component and with a triangular
loading profile. Displacement field obtained with our LBMS method (top). Displacement field of reference FEA study
computed with COMSOL (bottom).
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Figure 7: First displacement component along cutting curve C2 for case E=200GPa, ν=0.15 with triangular loading.
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6. Discussions and Outlooks

6.1. Obtained Results Discussion
In addition to the global curves matching which gives a qualitative validation, a quantitative analysis

is provided. Thus, table 1 shows the RMSE17 and NRMSE18 between the computed results with the
LBMS and FEA, presented through figs. 4, 5 and 7. The results show a great precision of the LBMS
compared to FEA method, and this for a large number of study cases. This precision illustrates the
fidelity of the LBMS. The numerical errors obtained are far lower than the amplitude of computed fields,
which yields only few percents of error. These errors values tend to validate quantitatively the presented
approach.

The numerical tests highlight the stability and accuracy of the suggested methods in a very broad
range of mechanical parameters. This large range lets us think that the current method could be applied
to numerous constitutive laws, and not only to the isotropic linear elasticity. This wide range tends
to support the theoretical development brought in this paper, especially the incorporation of the stress
divergence as a mean-field force.

Loading Curve Field E (GPa) ν RMSE NRMSE
Rectangular C2 (fig. 4 ) Von-Mises stress 200 0.15 7.37.10+7 3.77%
Rectangular C1 (fig. 5 ) Displacement Y 200 −0.99 1.52.10−5 5.01%
Rectangular C1 (fig. 5 ) Displacement Y 200 −0.5 4.41.10−6 1.66%
Rectangular C1 (fig. 5 ) Displacement Y 200 0.0 1.23.10−5 5.50%
Triangular C2 (fig. 7 ) Displacement X 200 0.15 1.52.10−5 2.01%

Table 1: RMSE and NRMSE of the displacement and Von-Mises stress obtained for different study cases.

Concerning introduced boundary conditions for solids, a certain work remains in order to enhance
adaptation for solids. Currently, it has been pointed out that fixed conditions are far to be perfect and
suitable to accurate computation near concerned areas: impreciseness on fields can arise due to this
modeling issue.

Light differences with reference plots may have several explanations. First and foremost, LBMS
method detains an iterative process so as to arrive to solid static equilibrium, thus, finite difference
scheme accuracy could play an important role concerning quality of calculated results. Moreover, we
point out some post-processing issues which may be at origin of errors. Indeed, along cutting curves,
FEA displacement field is mainly interpolated while LBMS field hardly is. All of these considerations
can cause additional deviations with reference study and may explain some of illustrated differences.

Other slight errors may be generated by the non-differentiation between Eulerian and Lagrangian
frameworks. Several iterations are needed until equilibrium state (i.e. when stress divergence tends
towards a null vector), yielding to completely different pipelines between FEA and LBMS. Furthermore,
as mentioned above in section 5.1.4, used plane stress assumption for two-dimensional reference studies
might trigger some of shown deviations in curve plots, especially for non-zero Poisson’s ratios. Indeed,
thin plates are usually modeled with a plane stress hypothesis, but this approach is softly inconsistent
with the one used to produce illustrated LBMS runs, i.e. a plane strain assignment. For all of these
reasons, extra investigations seem to be mandatory to fit calculated reference fields with a better accuracy.

All these achievements seem promising about the use of Boltzmann-Vlasov approach, presented
here, for solid dynamics. It also worth noting that the mass of the system is always conserved. Indeed,
the intrinsic advantages of the LBM are preserved by the LBMS (macroscopic equations recovered from
the statistical moments, locality, simplicity etc.). By contrast with previous attempts to cope with solid
behavior with the LBM, our approach does not require statistical distribution of forces14,36 nor springs15.
Both bring more complexity, heavier computations, are further away from the Boltzmann theory and
are less prone to FSI coupling.

6.2. Global outlook and proposed improvements
C++ programmed classes and methods integrated in LBMS library can be drastically enhanced,

i.e. mostly for efficiency purposes. Although library is robust, computation time might be substantially
reduced if other guidelines are adopted. For presented cases, tens or hundreds of seconds are necessary

17Root Mean Square Error
18Normalized Root Mean Square Error
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to reach illustrated static equilibriums assuming sequential runs on a Intel(R) Xeon(R) CPU E5-1650
v3 @ 3.50GHz. At contrary, couple of seconds are enough to COMSOL even if mesh is modeled very
fine, because a standard static resolution is requested. Effectively, involved computation times are hardly
comparable since methods are strongly different. In fact, LBMS is naturally dynamic due to its roots
coming from the LBM and thus require an evaluation of solid state at each time iteration. Thanks to the
pointed reproducibility of depicted numerical results, complements to existing objects can be made freely
in order to improve calculation efficiency. However, here stand one of the great strengths of the LBM:
parallel computing can be seen as one of the main advantages of LBM. The LBM is intrinsically efficient
and adapted to massive parallel computing, and especially on GPU19 because of its architecture. In fact,
a GPU detains hundreds or thousands of cores capable of doing very fast executions despite management
of few instructions and small caches.

Finite difference schemes are playing an important role, in fact they define external forces to be applied
at each iteration for each cell. Upgrading abilities to treat mechanical singularities and enhancing accuracy
under high field variation are a future work. For example, corners demand a special therapy since cell
vicinity is restricted. A possible other way is to use robust mean-field forces as already implemented into
the Shan-Chen approach8. Moreover, as mentioned above, WENO schemes could help us.

Another advantage of the LBM compared to FEA, is this ease of going from lower to higher dimen-
sions. The transition from the 2D modeling to the 3D and 4D modeling is implied in the method. Then,
LBMS extension to 3D should be straightforward and large-scale studies can be led from now on. Such
computations permit to better compare complex geometries with current methods usually dedicated to
solve mechanical problems. Door is thus wide open in terms of further intensive analysis or significant
studies. In addition, parallelized strategy by blocks remains unchanged for solids. But, depending on
used finite difference schemes, some complementary properties are needed for block envelopes.

Besides, the broad range of Young’s modulus and Poisson’s ratios simulated, the presented method
has to be compared with non-linear constitutive laws, to confirm its potentiality and generality. Based
on the strength of the presented results, a very straightforward extension is to investigate quasi-static
dynamic problems. Of course, this eventuality could only be viable if the computation time of the LBMS
can be deeper characterized.

Only the static equilibrium has been compared to existing methods, in this first study. Since this
static equilibrium has been reached for different relaxation time, in particular for ω = 0.01; solid dynamics
with the Boltzmann-Vlasov equation seems a natural following. The numerical stability for relaxation
parameter ω < 0.25 is already unconventional LBM and supports the theoretical developments brought
here.

As we mentioned before, the goal of the solid behavior with the LBM, might also be investigated
through the research of an appropriate equilibrium distribution function. To go further with that idea,
if ω = 1, we also observe that (see eq. (25)):

Ω
(
f i(Gx, Gy, t), f

(0)
i

,sld, si(Gx, Gy, t)
)

= −ωf i(Gx, Gy, t) + ω(f
(0)
i

,sld + si(Gx, Gy, t)), ∀i ∈ [0, ..., 8].

(28)
This latter formulation yields a new form of solid equilibrium where solid body forces are integrated
into equilibrium function; thus stress divergence term may be integrated into the BGK operator if the
relaxation parameter is equal to 1. This previous equilibrium distribution deserves further dedicated
investigations, beyond the paper.

Of course, many applications are plausible from the next development of the LBMS, especially about
the interface and boundary conditions. By solving the solid interface, the motion and deformation of
solids under the action of forces and contact problems between two solids could be achieved. Then, solid-
liquid interface leads to FSI for studying the behavior of a solid product immersed in a liquid. Recent
publication37 illustrates the fact that a unified theory is needed for solving complex FSI phenomena
taking in consideration both fluids and solids characteristics with LBM.

7. Conclusions

We have introduced in this paper a new method to solve solid static equilibriums from standard
LBM. Actually, our strategy depicts promising results concerning static state of isotropic materials.
Shown plots and figures illustrate well efficiency of the presented method. Such task is achieved thanks

19Graphics Processing Unit
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to detailed developments and robust framework. In fact, they are secured with a theory groundwork and
then implemented using classical programming tools.

A first key contribution is introduced thanks to theoretical developments around the Boltzmann-
Vlasov equation. Furthermore, the stress tensor divergence is introduced as a mean-field force term.
These two considerations allow to build a theoretical framework to deal with solids with the LBM. This
framework is unprecedented and far from the previous works on the subject.

Then, we gave new programmed objects wrapped into an user-friendly research library. Although
this implementation is not optimal, developed classes and methods are robust enough and trustworthy
concerning conclusions given on plots and figures. On the other hand, adopted general implementation
approach detains several advantages. Non-invasive coding work permits to reproduce results with a be-
wildering ease. Likewise, light program environment enables easy-way additions for future improvements.
Moreover, the standard LBM main loop is still not modified, i.e. only additional routines to treat solids
are added. Basically, this means the colliding-streaming strategy is kept without compromise, just the
dynamic related to solids is adjusted. Previous ability authorize, among others, to model fluids with
solids in the same framework.

Shown results are validated through comparative plots including a large range of parametric studies.
They clearly state credibility of proposed approach. Besides, for a significant number of plotted data,
matching with reference analysis is impressive. In all cases, exhibited mapped fields are globally consistent
and replicate a real solid matter’s comportment. The great precision of the results, not only highlights
the capacity of the method to capture isotropic elasticity; but also let us imagine a complete confirmation
of the general theory developed. Moreover, the reliable and stable results obtained at very high relaxation
time (ω ≤ 0.01) shows the strength of the theory and the perspectives for solid dynamics.

Despite promising illustrated results contrasted with reference studies, a lot of work still needs to be
done to exploit presented potential of the LBMS. Several aspects still require further afterthought so as
to simulate proper solid behaviors. Indeed, modeling solids with LBM is still a challenge among scientific
communities even though advances are presented in this paper. This work also tries to answer increasing
expectations in numerical simulation fields.

Beyond all these obtained results, LBMS seems to by very hopeful to simulate solids into an Eulerian
framework. This work aims to bring new tools to push the limits of computational mechanics even fur-
ther. Biomechanics is facing difficult problems such as large deformations, non-linear behaviors, complex
geometries and FSI. Standard approaches detain several drawbacks in order to solve previous involved
physics. LBM methods are, thus, naturally better suited to tackle these mentioned difficulties.

Solid-solid contact problems is another perspective of the LBMS. It seems that the formulation of
contacts is less difficult on the geometrical aspect in an Eulerian framework but will be more complex
regarding formulation of the interaction equations between different objects.

A large spectrum of perspectives is thus opened by the presented method. As discussed above,
quasi-static studies are the next step for investigating computational solid dynamics. In contrast, a real
dynamic case may still request supplementary efforts. Moreover, complex solid constitutive laws, such as
non-linear ones have to be tested and contrasted with adapted reference results. In addition, extension
to 3D should be natural and in consequence, could produce relevant results. As suggested in this paper,
ideas related to solid distribution functions were given, but it undeniably needs further work so as to get
deeper comprehension on solid equilibrium. For all of these reasons, we aim to share presented advances
for the benefit of the community.
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Appendix A. From Chapman-Enskog Expansion to Navier-Stokes-Fourier Equations

To go from Euler conservation equations to NSF equations with the BE, it is convenient to use the
Chapman-Enskog expansion26 (but it is not the only possible path38). By introducing, an asymptotic
development in order of small perturbations for the distribution density, it becomes:

f = f (0) + ε1f (1) + ... =

∞∑
r=0

εrf (r), (A.1)

18



with f (1) the first order of the out-of-equilibrium distribution. ε is a small parameter compared to 1 and
it is related to the size of the disturbances and the Knudsen number. A similar development must be
introduced for derivation operations, hence:

∂t = ε1∂
(1)
t + ε2∂

(2)
t + ... =

∞∑
k=1

εk∂
(k)
t ∂x = ε1∂(1)

x + ... =

∞∑
k=1

εk∂(k)
x . (A.2)

To reduce the complexity of the following development, the linearize BGK operator is used, however,
the results remain true for the general collision operator. Indeed, the classical global solution to the
incompressible Navier-Stokes-Fourier equation with small initial data in the whole space is con-
structed through a zero Knudsen number limit with general collision kernels27. Using the linearized
BGK operator, the Boltzmann-BGK equation (see eq. (3)), becomes:

∞∑
k=1,
r=0

εk+r∂
(k)
t f (r) +

∞∑
k=1,
r=0

εk+rξ · ∇(k)
x f (r) +

∞∑
k=1,
r=0

εk+rg · ∇(k)
ξ f (r) = −ω

( ∞∑
r=1

εrf (r)

)
, (A.3)

which enables a resolution in the order of ε.
At first order, the out-of-equilibrium distribution can be expressed through the following equation:

∂
(1)
t f (0) + ξ · ∇(1)

x f (0) + g · ∇(1)
ξ f (0) = −ωf (1). (A.4)

Since the equilibrium distribution function dependency in time and space is only through the variables
ρ(x, t), v(x, t) and θ(x, t); the use of the chain rule is needed. Thus, by forgetting the derivatives
superscript for the sake of simplicity:

∂tf
(0) = ∂ρf

(0)∂tρ+ ∂vf
(0)∂tv + ∂θf

(0)∂tθ, (A.5a)

∂xf
(0) = ∂ρf

(0)∂xρ+ ∂vf
(0)∂xv + ∂θf

(0)∂xθ. (A.5b)

The temporal derivatives can be obtained thanks to the Euler equations, after some algebra, it leads
to:

∂tρ = −∇x · (ρv), (A.6a)

∂tv = −1

ρ
∇x · (p) + g, (A.6b)

∂tθ = −v · (∇xθ)−
2

D
θ(∇xv). (A.6c)

The derivatives of the equilibrium distribution function are easily obtained and give:

∂ρf
(0) =

f (0)

ρ
, (A.7a)

∂vf
(0) =

f (0)(ξ − v)

θ
, (A.7b)

∂ξf
(0) =

−f (0)(ξ − v)

θ
, (A.7c)

∂θf
(0) = f (0)

(
(ξ − v)2

2θ2
− D

2θ

)
. (A.7d)

Once the previous systems eq. (A.6) and eq. (A.7) are injected and eq. (A.5) are injected in the
expression of f (1) given by eq. (A.4), it becomes:

− ωf (1)

=

[
f (0)

ρ

] [
−∇x · (ρv) + (ξ · ∇x)ρ

]
+

[
f (0)(ξ − v)

θ

]
·
[
−1

ρ
∇x(p) + g + (ξ · ∇x)v

]
+

[
f (0)

(
(ξ − v)2

2θ2
− D

2θ

)][
−v · (∇xθ)−

2

D
θ(∇xv) + (ξ · ∇x)θ

]
− g · f

(0)(ξ − v)

θ

=

[
f (0)

] [(
c⊗ c− c

2

D
I

)
∇xv
θ

+

(
c2

2θ
− D + 2

2

)
c · ∇xθ

θ

]
,

(A.8)
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where c = (ξ − v) is the microscopic variation of particles velocities around the mean value.
Therefore, it is possible to determine the moments of the none-equilibrium distribution function f (1),

by reminding that consecutive centered moments of the equilibrium distribution function are:∫
R
f (0) dξ =ρ, (A.9a)∫

R
ξf (0) dξ =ρv, (A.9b)∫

R
c⊗ cf (0) dξ =ρRθI, (A.9c)∫

R
c⊗ c⊗ cf (0) dξ =0, (A.9d)∫

R
c⊗ c⊗ c⊗ c f (0) dξ =ρR2θ2P3(I ⊗ I), (A.9e)∫

R
c⊗ c⊗ c⊗ c⊗ c f (0) dξ =0, (A.9f)∫

R
c⊗ c⊗ c⊗ c⊗ c⊗ c f (0) dξ =ρR3θ3P15(I ⊗ I ⊗ I), (A.9g)

where Pn (·) is an operator yielding the sum of the n cyclic permutations. Thus, these moments of f (1)

are given by: ∫
R
f (1) dξ =0, (A.10a)∫

R
ξf (1) dξ =0, (A.10b)∫

R
c⊗ cf (1) dξ =− ρθ

ω

[
1

2

(
∇xv +∇xvT

)
− 2

D
(∇x · v)I

]
, (A.10c)∫

R
c2f (1) dξ =0, (A.10d)∫

R
c2cf (1) dξ =− ρθ

2ω

[
(D + 2)∇xθ

]
, (A.10e)

where I is the identity matrix. The three null moments are consistent with the invariant of the collision
operator.

One can finally obtain the NSF equations by using the BE at first order:

∂tρ+∇x · (ρv) = 0, (A.11a)
∂t (ρv) +∇x · (ρv ⊗ v + p− ν∇xv) = 0, (A.11b)

∂t (Ek + Eθ) +∇x · ((Ek + Eθ)v + p · v + κ∇xθ) = 0, (A.11c)

where ν is the viscosity of the fluid that can be expressed by ν = ρθ
2ω and κ = ρθ(D+2)

2ω .

Appendix B. LBM at Second Order Precision

Before or after the velocity space discretization, one can start the discretization in space and time.
These two dimensions (space and time) have to be discretized together because of the convective nature
of the BE. Even if, the usual discretizations are accomplished on a regular grid, some works developed a
LBM on an unstructured mesh39,40.

A first idea to do this discretization could be a first-order finite difference. So, one could rewrite the
BE discretized over the velocity space eq. (6) as:

∂f i
∂t

(x, t) + ξi · ∇x (f i) =
D

Dt
f i(x, t) = Ωi (f i, f i)− gi, (B.1)

where D
Dt is the particle derivative. A second-order discretization can be easily obtained41. Indeed, using

a well-chosen surrogate, one can use the LBE20 at second order. To do so, a direct integration of the

20Lattice Boltzmann Equation
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eq. (B.1) with the method of characteristics yields:

f i(x+ ξi∆t, t+ ∆t)− f i(x, t) =

∫ ∆t

0

Ω̂i(t+ s) ds, (B.2)

where Ω̂i(t) = Ω (f i, f i)− gi. Then, using a trapezoidal rule on the right-hand side, one obtains:

f i(x+ ξi∆t, t+ ∆t)− f i(x, t) =
∆t

2

(
Ω̂i(t+ ∆t) + Ω̂i(t)

)
+O

(
∆t3

)
. (B.3)

This approximation is now at the second order but implicit. Nevertheless, thanks to the appropriate
change of variable:

f̂ i(x, t) = f i −
∆t

2
Ω̂i(t), (B.4)

one can find the following explicit expression:

f̂ i(x+ ξi∆t, t+ ∆t)− f̂ i(x, t) = ∆tΩ̂i(t) +O
(
∆t3

)
. (B.5)

Thus, one can recognize the LBE for the new variable f̂ i. To dive deeper, the BGK operator needs to
be exploited. For the BGK operator the previous equation can be written:

f̂ i(x, t) = f i +
∆tω

2

(
f i(x, t)− f

(0)
i (x, t)

)
− ∆t

2
gi(x, t), (B.6)

f̂ i(x+ ξi∆t, t+ ∆t)− f̂ i(x, t) = −∆tω

(
f i(x, t)− f̂

(0)
i (x, t)

)
, (B.7)

where f̂ (0)
i (x, t) = f

(0)
i (x, t)− gi

ω . Therefore, to work only with the new variable, the change of variable
can be inverted, which yield:

f i(x, t) =
2
ω f̂ i(x, t) + ∆tf̂

(0)
i (x, t)

2
ω + ∆t

. (B.8)

In the end, injecting eq. (B.8) into eq. (B.5) one can obtain the LBGKE:

f̂ i(x+ ξi∆t, t+ ∆t) = f̂ i(x, t)−∆tω̂

(
f̂ i(x, t)− f̂

(0)
i (x, t)

)
+O

(
∆t3

)
,

= f̂ i(x, t)−∆tω̂
(
f̂ i(x, t)− f

(0)
i (x, t)

)
−∆t

(
1− ω̂

2

)
gi(x, t) +O

(
∆t3

)
,

(B.9)

where 1
ω̂ = 1

ω + ∆t
2 . So, the simulation will be performed over f̂ i rather than f i. This change of

variable is necessary to obtain a second order accuracy. For sake of simplicity, in this paper the following
substitutions are performed: f̂ i → f i and ω̂ → ω, which means that the reader should read f̂ i rather
than f i and ω̂ rather than ω.

Appendix C. Tensors details

Used tensors in algorithms are detailed here for symmetric strain and stress tensors related to 2D
applications. They are defined across the whole lattice and thus contain information for all cells. Dis-
placement tensor field has the following form:

U =


U[0, 0] = u0,0 =

[
ux
uy

]
0,0

. . . u0,Ny−1 =

[
ux
uy

]
0,Ny−1

...
. . .

...

uNx−1,0 =

[
ux
uy

]
Nx−1,0

. . . uNx−1,Ny−1 =

[
ux
uy

]
Nx−1,Ny−1

 . (C.1)
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Then, the strain tensor field is calculated thanks to displacement one:

E =



E[0, 0] = ε0,0 =

εxxεyy
εxy


0,0

. . . ε0,Ny−1 =

εxxεyy
εxy


0,Ny−1

...
. . .

...

εNx−1,0 =

εxxεyy
εxy


Nx−1,0

. . . εNx−1,Ny−1 =

εxxεyy
εxy


Nx−1,Ny−1


. (C.2)

The stress tensor field is obtained through a constitutive law and reads:

Σ =



Σ[0, 0] = σ0,0 =

σxxσyy
σxy


0,0

. . . σ0,Ny−1 =

σxxσyy
σxy


0,Ny−1

...
. . .

...

σNx−1,0 =

σxxσyy
σxy


Nx−1,0

. . . σNx−1,Ny−1 =

σxxσyy
σxy


Nx−1,Ny−1


. (C.3)

Appendix D. Curve plots
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Figure D.8: Von-Mises stress along cutting curve C1 for case E=200GPa, ν=0.15.
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Figure D.9: First displacement components along cutting curve C1 for negative Poisson’s ratios.
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Figure D.10: First displacement components along cutting curve C1 for positive Poisson’s ratios.
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Figure D.11: First displacement components along cutting curve C2 for negative Poisson’s ratios.
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Figure D.12: First displacement components along cutting curve C2 for positive Poisson’s ratios.

24



0.2 0.25 0.3

-0.00025

-0.0002

-0.00015

-0.0001

-5e-05

0

Length cutting curve 2

D
is

pl
ac

em
en

t X

Displacement X along cutting curve 2 for different Poisson’s ratios

Ratio -0.99
Ratio -0.50
Ratio 0
Ratio -0.99 LBMS
Ratio -0.50 LBMS
Ratio 0 LBMS

Figure D.13: Detailed view of first displacement components along cutting curve C2 for negative Poisson’s ratios.
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Figure D.14: Detailed view of first displacement components along cutting curve C2 for positive Poisson’s ratios.
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Figure D.15: Second displacement component along cutting curve C1 for positive Poisson’s ratios.
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Figure D.16: Second displacement components along cutting curve C2 for negative Poisson’s ratios.
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Figure D.17: Second displacement components along cutting curve C2 for positive Poisson’s ratios.
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Figure D.18: Detailed view of second displacement components along cutting curve C2 for negative Poisson’s ratios.
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Figure D.19: Detailed view of second displacement components along cutting curve C2 for positive Poisson’s ratios.
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Figure D.20: First displacement components along cutting curve C1 for different Young’s modulus.
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Figure D.21: First displacement components along cutting curve C2 for different Young’s modulus.
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Figure D.22: Second displacement components along cutting curve C1 for different Young’s modulus.
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Figure D.23: Second displacement components along cutting curve C2 for different Young’s modulus.
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Figure D.24: Von-Mises stress along cutting curve C2 for case E=200GPa, ν=0.15 with triangular loading.
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Figure D.25: Von-Mises stress along cutting curve C3 for case E=200GPa, ν=0.15 with triangular loading.
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Figure D.26: First displacement components along cutting curve C3 for case E=200GPa, ν=0.15 with triangular loading.

31



0 0.2 0.4 0.6 0.8 1
-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

Length cutting curve 2

D
is

pl
ac

em
en

t Y

Displacement Y along cutting curve 2

COMSOL
LBMS

Figure D.27: Second displacement components along cutting curve C2 for case E=200GPa, ν=0.15 with triangular loading.
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Figure D.28: Second displacement components along cutting curve C3 for case E=200GPa, ν=0.15 with triangular loading.
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GPU Graphics Processing Unit 17

LBE Lattice Boltzmann Equation 20, 21
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LBM Lattice Boltzmann Method 1, 2, 4–6, 9, 12, 16–18, 20

LBMS Lattice Boltzmann Method for Solids 6, 10–18

LGCA Lattice Gas Cellular Automata 1
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NRMSE Normalized Root Mean Square Error 16

NSE Navier-Stokes Equations 2

NSF Navier-Stokes-Fourier 3, 18, 20

PaLaBoS Parallel Lattice Boltzmann Solver 3, 6, 9, 10

PDE Partial Differential Equations 3, 4

RMSE Root Mean Square Error 16

SI International System of Units 10, 11
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Q any function with discrete values over the whole lattice 8

C fourth-order stiffness tensor 7, 11

cs celerity of the sound 4

Ω(., .) collision operator 3, 4, 9, 17, 20, 21

κ thermal conductivity 3, 20

ρ mass density 3–5, 9, 12, 19, 20

D physical space dimension 3, 9, 12, 19, 20

δx Dirac distribution centred on x 5

u macroscopic displacement field 11, 21

U displacement tensor field over the whole lattice 6, 7, 21

c microscopic velocity in the v frame 3, 19, 20

E Young’s modulus 11–16, 22, 30–32

EP electrical field 5

Ek kinematic energy 3, 20

Eθ thermal energy 3, 20

f density distribution function over velocity space 3–5, 18–20

f (0) equilibrium distribution given by the Maxwell-Boltzmann distribution 3, 9, 10

f
(0)
i discretized equilibrium distribution given by the Maxwell-Boltzmann distribution 4, 9, 17, 21

f i discretized density distribution 4, 5, 9, 10, 17, 20, 21

f̂ i discretized velocity density distribution function for the numerical scheme 4, 21

g mass force field 3–5, 19

gi forcing term projected over the velocity space 4, 20, 21

ω relaxation frequency 3, 4, 9, 10, 17–21

ωc boundary relaxation parameter 9, 10

Gx global position x of a cell in the lattice 6–11, 17

Gy global position y of a cell in the lattice 6–11, 17

I identity square matrix D ×D 11, 19, 20

∆x increment of space 7, 8

∆t increment of time 4, 7, 10, 21

λ Lamé’s first parameter 11, 14

m mass of a particle 5

µ shear modulus 11
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Nx number of lattice nodes in the first direction 8, 21, 22

Ny number of lattice nodes in the second direction 8, 21, 22

ν Poisson’s ratio 11–16, 22, 30–32

Pn math P 4, 20

ε perturbation order 18, 19

x coordinate Eulerian vector field 3–8, 19–21

p pressure scalar 3, 4, 19, 20

Π viscous stress tensor 3, 4

qP electrical charge of a particle 5

q number of discretized speed used in the lattice 4, 9, 12

R ideal gas constant 3, 4, 20

si source forcing term projected over the velocity space 9, 17

v macroscopic speed field 3–5, 7, 9, 19, 20

ε linearised strain tensor 6, 22

E strain tensor field over the whole lattice 6, 7, 11, 22

σ Cauchy stress tensor 4–6, 8, 22

Σ stress tensor field over the whole lattice 6–8, 11, 12, 22

θ thermodynamical absolute temperature 3, 4, 19, 20

t time 3–5, 8–10, 17, 19–21

ν kinematic viscosity 3, 4, 20

wi discrete weight of the Gauss quadrature 4, 9

X first direction of basis 7, 8, 11, 16

x first coordinate of a cell in a block lattice 7

ξ microscopic velocity of particles 3, 5, 19, 20

ξi discretized particles velocity 4, 20, 21

Y second direction of basis 7, 8, 11, 16

y second coordinate of a cell in a block lattice 7

36


	Introduction
	Background
	The Need for a LBM for Solids

	Lattice Boltzmann Method
	From be to LBM
	Body force term

	Lattice Boltzmann Method for Solids
	Considerations about the Vlasov equation
	Boltzmann-Vlasov equation for solids
	Simplifications related to static equilibrium of solids

	Numerical implementations and algorithmic
	General implementation approach
	Additional solid routines
	Finite Difference Schemes
	Proposed solid equilibrium and colliding step
	Proposed modifications for solid boundary conditions
	LBMS: Loop to Solve Solid Static Equilibrium

	Validations and Benchmarks
	Mechanical Framework
	Mechanical Prerequisites
	Mechanical Study
	LBMS: setup
	COMSOL: setup

	Results Comparison with a Commercial Software
	Case E=200GPa, Nu=0.15
	Poisson's Ratio Sensitivity
	Young's Modulus Sensitivity
	Triangular Loading: Case E=200GPa, Nu=0.15


	Discussions and Outlooks
	Obtained Results Discussion
	Global outlook and proposed improvements

	Conclusions
	From Chapman-Enskog Expansion to Navier-Stokes-Fourier Equations
	LBM at Second Order Precision
	Tensors details
	Curve plots
	Abbreviations
	Nomenclature

