
HAL Id: hal-03225820
https://hal.science/hal-03225820v2

Preprint submitted on 8 Sep 2023 (v2), last revised 21 Oct 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Intrinsic Universality in Automata Networks III: On
Symmetry versus Asynchrony
Martín Ríos Wilson, Guillaume Theyssier

To cite this version:
Martín Ríos Wilson, Guillaume Theyssier. Intrinsic Universality in Automata Networks III: On Sym-
metry versus Asynchrony. 2023. �hal-03225820v2�

https://hal.science/hal-03225820v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Intrinsic Universality in Automata Networks III: On Symmetry versus Asynchrony

Mart́ın Rı́os-Wilsona,b, Guillaume Theyssierb

aFacultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez.

bAix-Marseille Université, CNRS, I2M (UMR 7373), Marseille, France.

Abstract

An automata network is a finite assembly of interconnected entities endowed with a set of local maps defined over

a common finite alphabet. These relationships are represented through an interaction graph. Together with the

local functions, an assignment known as an update scheme directs the evolution of the network by updating specific

subsets of entities at discrete time steps. Despite the scrutiny of interaction graphs and update schemes, their

profound impact on automata network dynamics remains largely open. This work investigates the intricate interplay

between these aspects, with a focus on how update schemes can counterbalance constraints stemming from symmetric

local interactions. This paper is the third of a series about intrinsic universality, a notion that assesses both dynamical

and computational complexity, encompassing transient behaviors, attractors, and prediction or reachability problems.

We consider four update modes—parallel, block-sequential, local clocks, and general periodic— along with several

families of symmetric signed conjunctive boolean networks defined by local constraints on signs. Our main result is

to show a diagonal complexity leap in this two-dimensional landscape: the stronger the local constraints the higher

the level of asynchrony required to obtain intrinsic universality or increase in complexity. We also show how in some

cases asynchronism allows to simulate directed interactions from undirected ones with the same local rules.

Keywords: automata networks, asynchronous updates, intrinsic universality, prediction problem, reachability

problem

1. Introduction

Automata networks are (finite) graphs in which nodes possess states from a finite set denoted as Q. These

nodes are equipped with local transition maps, which dictate the evolution of their states during discrete time steps

based on the states of neighboring nodes. The concept of automata networks was first introduced during the 1940s

[1]. Since then, many applications have been studied in diverse fields, spanning from modeling biological networks5

[2, 3] to distributed computational models [4, 5, 6, 7, 8]. An automata network is completely described by the

action of its global map F : QV → QV , which defines how the entire set of nodes V within the network evolves

collectively. Initially, considering these models merely as discrete functions might seem sufficient for comprehending

their properties. However, limiting the study solely to this global map overlooks two crucial aspects, as explored

in automata network theory [9, 10, 11, 12, 13, 14, 15]: the interaction graph (depicting effective dependencies10

1This research was partially supported by French ANR project FANs ANR-18-CE40-0002 (G.T., M.R.W.), ECOS project C19E02
(G.T., M.R.W.) and ANID FONDECYT Postdoctorado 3220205 (M.R-W).

Preprint submitted to Theoretical Computer Science September 8, 2023

among nodes) and the update schedule (dictating the method by which local transition maps are applied during

evolution). Indeed, many applications involve constrained interaction graphs, and the update schedule deviates from

synchronicity (where all local maps are applied simultaneously at each time step). Imposing restrictions on the

network of interactions could constraint limit potential behaviors. Conversely, exploring different update schedules

that allow for asynchrony in local updates could extend the range of possible global behaviors beyond those captured15

by the full synchronous application of global map F .

The present paper is the third of a series that aims to study the concept of intrinsic universality in automata

networks. In the first paper, basic concepts and definitions are presented together with consequences of universality.

In the second paper paper, we develop a proof technique based on an operation of glueing to prove intrinsic universality

in a concrete family or simulation of another family. Finally, the present paper is an application of these concepts and20

tools to study and measure the impact of asynchronism in automata networks. It focuses on the interplay between

constraints in the interaction graph and extension of behaviors through asynchrony in the update schedule applied.

As we show in the next lines, this type of phenomenon emerges naturally in the study of a particular family of

(boolean) automata networks: the majority networks.

The effects of asynchronism in majority dynamics. To illustrate the main question behind our work, let us briefly25

consider Boolean majority dynamics: each node holds a state 0 or 1 and changes its state at each time step to take

the one which has the most occurrences among its neighbors (no change in case of tie). This majority dynamics can

be defined on any graph. A seminal result [16, 17] shows that majority dynamics on undirected graphs cannot have

periodic orbits of period more than 2, and that they have polynomially bounded transients; this implies the existence

of a polynomial time algorithm to predict the future of a node from any given initial configuration [18].30

Considering undirected graphs here can be seen as a property of symmetry of interactions: the influence of a

node on a neighbor is the same as the influence of the neighbor on it. It is easy to show that without this symmetry

condition, majority networks have no limitation, neither in dynamics complexity (it can have exponential transients

and periods), nor in computational complexity (predictions becomes as hard as for arbitrary automata networks).

On the other hand, symmetric majority networks under partially asynchronous updates (precisely block-sequential35

update modes) were shown to have super-polynomial periodic orbits and a PSPACE-complete prediction problem

[19, 5]. In a nutshell, the unconstrained family of majority networks is rich and complex, constraining it to symmetric

networks radically reduces its complexity, but adding asynchrony to the symmetry constraint allows to recover the

initial complexity.

Our results. In the two first papers of this series [20, 21] we developed a notion of universality, that implies both40

dynamical and computational complexity, together with a proof technique to show that some family is universal.

We also introduced the formalism of CAN (concrete automata network) which allows to define families of automata

networks by just giving a labeling of the network graph. This formalism captures many well-studied family ranging

from majority and threshold dynamics to linear networks and reaction-diffusion networks. A key point here is that a

CAN family can be considered either on undirected graphs (symmetric version) or on arbitrary graphs (asymmetric45

version).

The present paper builds upon these tools to tackle the main question introduced above in the two following

precise forms that revolve around the question of symmetry breaking by asynchrony:

• how a non-universal symmetric CAN family can become universal when asynchrony is added?

• how asynchrony allows a symmetric CAN family to simulate its asymmetric counterpart?50

Moreover, in both cases, we aim at understanding ’how much asynchrony’ is required to achieve the result, i.e. how

far from the fully synchronous update mode one has to go.

The results of this paper can be divided in two main sections: first we introduce the definition of asynchronous

extensions which is a formalism that allow us to model the asynchronous system via projections of synchronous AN

defined over a larger alphabet. Then, we use this formalism (together with the results of the previous papers of the55

series) to present a case study on a particular family of automata networks. Concretely speaking, our results can be

summarized in Table 1 (and the complete detailed version in Table 2). We present a case study based on the family

of signed conjunctive networks (which is a CAN family). In this family, a natural local constraint that one can study

(and parameterize) is the number of positive and negative links at each node.

More precisely, one can limit the number of negative edges that are incident to each node in the network. We60

distinguish three cases in this context: the all-positive case, the all-negative case and locally-positive case (at least

one positive edge must be incident to each node). On the other hand, we study four different update schemes. In

particular, we go from the synchronous update scheme to the general periodic case by adding different elements

of asynchronism. Thus, we have a two dimensional space for our analysis: the sign of the connections and the

asynchronism. For each fixed sub-family (given by the local constraints on the local connections between the nodes)65

we establish that there exists an update scheme in the hierarchy for which the family becomes universal or is able to

simulate its non-symmetric counterpart. In addition, we show ’lower bounds’ on the type of asynchronism required

which is illustrated by the ’diagonal’ appearing in Table 1, precisely: all-negative networks require block sequential

(first level of the hierarchy) to become universal and all-positive requires general periodic for desymmetrization, while

locally positive networks require the intermediate level of asynchrony from local clocks update schedules.70

Finally, we tackle the question on whether this desymmetrization phenomena that was observed for conjunctive

networks takes place on other families or if it is a particular case for this family. We show that there is generally no

link to expect between periodic update schedule on a symmetric CAN family and its non-symmetric version by two

opposite examples: a family such that no periodic extension can simulate its non-symmetric version and a family

such that its non-symmetric version is not capable of simulating any of its periodic extensions.75

Organization of the paper

In Section 2 we present the basic definitions and we will also recall some results from the previous part of the series.

In Section 3 we present the main formalism that we will use to work with asynchronism: asynchronous extensions. In

Section 4 we present a case study on symmetric signed conjunctive networks and main results. Finally, in Section 5

we explore the link between asynchronism and symmetry by showing some counterexamples to the desymmetrization80

phenomena.

Synchronous

v1 v2

Block sequential

v1 v2

Local clocks

v1 v2

Periodic

-

--

v simple universal universal universal

?

+?

v simple simple universal universal

+

++

v simple simple simple desymm

Table 1: Summary of the main results on complexity of the dynamics of the network families studied in the current chapter, depending on

different update schemes. The word simple stands for polynomial both in the sense of the complexity and the dynamics (i.e. prediction

problem can be solved in polynomial time in the size of the network and attractors/transient times are polynomial). The word desymm

stands for desymmetrization. For more details, see Table 2

2. Preliminaries

2.1. Concrete automata networks

A graph is a pair G = (V,E) where V and E are finite sets satisfying E ⊆ V × V. We will call V the set of nodes

and the set E of edges. We call |V | the order of G and we usually identify this quantity by the letter n. Usually, as85

E and V are finite sets we will implicitly assume that there exists an ordering of the vertices in V from 1 to n (or

from 0 to n− 1). Sometimes we will denote the latter set as [n]. If G = (V,E) and V ′ ⊆ V,E′ ⊆ E we say that G′ is

a subgraph of G.

Given a (non-directed) graph G = (V,E) and two vertices u, v we say that u and v are neighbors if (u, v) ∈ E.

Remark that abusing notations, an edge (u, v) is also denoted by uv. Let v ∈ V, we call NG(v) = {u ∈ V : uv ∈ E}90

(or simply N(v) when the context is clear) the set of neighbors (or neighborhood) of v and δ(G)v = |NG(v)| to the

degree of v. Observe that if G′ = (V ′, E′) is a subgraph of G and v ∈ V ′, we can also denote by NG′(v) the set of

its neighbors in G′ and the degree of v in G′ as δ(G′)v = |NG′(v)|. In addition, we define the closed neighborhood

of v as the set N [v] = N(v) ∪ {v} and we use the following notation ∆(G) = max
v∈V

δv for the maximum degree of G.

Additionally, given v ∈ V , we will denote by Ev to its set of incident edges, i.e., Ev = {e ∈ E : e = uv}. We will95

use the letter n to denote the order of G, i.e. n = |V |. Also, if G is a graph whose sets of nodes and edges are not

specified, we use the notation V (G) and E(G) for the set of vertices and the set of edges of G respectively. In the case

of a directed graph G = (V,E) we define for a node v ∈ V the set of its in-neighbors by N−(v) = {u ∈ V : (u, v) ∈ E}

and its out-neighbors as N+(v) = {u ∈ V : (v, u) ∈ E}. We have also in this context the indegree of v given by

δ− = |N−(v)| and its outdegree given by δ+ = |N+(v)|100

We call a configuration to any element x ∈ QV . If S ⊆ V we define the restriction of a configuration x to V as

the function x|S ∈ QS such that (x|S)v = xv for all v ∈ S. In particular, if S = {v}, we write xv.

Given an initial configuration x ∈ QV , we define the orbit of x as the sequence O(x) = (F t(x))t≥0. We define

the set of limit configurations or recurrent configurations of F as L(F) =
⋂

t≥0 F
t(QV). Observe that since Q is

finite and F is deterministic, each orbit is eventually periodic, i.e. for each x ∈ QV there exist some τ, p ∈ N105

such that F τ+p(x) = F τ (x) for all x ∈ QV . Note that if x is a limit configuration then, its orbit is periodic. In

addition, any configuration x ∈ QV eventually reaches a limit configuration in finite time. We denote the set of

orbits corresponding to periodic configurations as Att(F) = {O(x) : x ∈ L(F)} and we call it the set of attractors of

F. We define the global period or simply the period of x ∈ Att(F) by p(x) = min{p ∈ N : x(p) = x(0)}. If p(x) = 1

we say that x is a fixed point and otherwise, we say that x is a limit cycle.110

A multiset over Q is a map m : Q → N (recall that 0 ∈ N). In addition, a k-bounded multiset over Q is a map

m : Q → [k] = {0, . . . , k}, the set of such multisets is denoted [k]Q. For instance a multiset in [2]Q is actually a set.

Note that when Q is finite (which will always be the case below), any multiset is actually a bounded multiset. To

any (partial) configuration c ∈ QA, we associate the multiset m(c) which to any q ∈ Q associates its number of

occurrences in c, i.e.

m(c) = q 7→ #{a ∈ A : c(a) = q}.

Definition 1. Given a directed graph G = (V,E), a vertex label map λ : V → (Q × N
Q → Q) and an edge label

map ρ : E → (Q → Q), we define the concrete automata network (CAN) A = (G, λ, ρ). A family of concrete

symmetric automata networks (CAN family) F is given by a family of graphs G, an alphabet Q and a set of local

labeling constraints C ⊆ Λ ×R where Λ = {φ : Q× N
Q → Q} is the set of possible vertex labels and R = 2{ψ:Q→Q} is

the set of possible sets of neighboring edge labels. We say a CAN (G, λ, ρ) belongs to F if G ∈ G and for any vertex115

v of G with incident edges Ev it holds (λ(v), ρ(Ev)) ∈ C.

Note that the labeling constraints defining a CAN family are local and in that sense, the communication graph

structure does not have to be a priori fixed. More precisely, there is no a priori constraints in the choice of the class

G.

However, in this work we focus in three cases exclusively:120

1. G is the class of undirected graphs.

2. G is the class of bounded degree graphs.

3. G is the class is the class of all connected graphs.

In the first case, i.e., in the case in which G is an undirected graph, a CAN is called Concrete Symmetric Automata

Network or CSAN.125

Many interesting examples in the literature can be described as CSAN families. We refer the reader to [20] for

more details.

If F is a CSAN family, we call the non-symmetric version of F the family of CAN defined by the extension of

F to directed graphs. More precisely, if F = (G, C) where G is a family of undirected graphs, its extension will be

a family F = (
−→
G , C) where

−→
G is a family of graphs containing all the posible orientations for the graphs in G. We130

note the non-symmetric version of F by
−→
F .

Figure 1: Example of two conjunctive networks. In the upper part a non-directed network and in the lower part a directed network. The

nodes in black are in state 0 and the nodes in white are in state 1.

Observe that a CAN induces a discrete dynamical system via the semantics of labels defined above. In fact, labels

on edges are state modifiers, and labels on nodes give a map that describes how the node changes depending on the

set of sates appearing in the neighborhood, after application of state modifiers.

Formally speaking, we use the following notation: given σ ∈ Σ(Q)V a collection of permutation and x ∈ QA a135

partial configuration with A ⊆ V , we denote

by xσ = a 7→ σa(xa) In addition, given x ∈ Qn we define the restriction of x to some subset U ⊆ V as the partial

configuration x|U ∈ Q|U| such that (x|U)u = xu for all u ∈ U.

We remark that the dynamics induced by a CSAN can be very different from the one induced by a CAN. In fact,

we show in Figure an example of a non-directed network and a directed network. Both networks are conjunctive140

networks, i.e., the local rule in each case is the same and it is an AND function. Observe that the initial condition is

the same (white circles are nodes in state 1 and black nodes are in state 0). However, the symmetric version reaches

a configuration in which any node is in state 0 (and thus, it cannot change) but the directed one exhibits a periodic

orbit.

Now we define the dynamics. We do so by defining a function F : QV → QV which is defined in folklore as a145

global function for the network.

Definition 2. Given a CAN (G, λ, ρ), its associated global map F : QV → QV is defined as follows. For all node

v ∈ V and for all x ∈ Qn:

F (x)v = λv(xv,m((x|N+(v))
ρ(Ev))).

The function F is also called an abstract automata network. For more detail see [20].

In particular, in this paper we focus the family of signed conjunctive automata networks.

2.2. Signed conjunctive automata networks

A particular case of a CAN family that we will be our actual case of study for this paper, are symmetric signed150

conjunctive networks. From now on, since we are only working with networks defined over non-directed graphs, we

−

+

+

+ +

+

+

+

Locally positive All positive

− +

−

Symmetric signed

− −

−

All negative

Figure 2: Symmetric signed conjunctive networks

are going to call them just signed conjunctive networks or simply conjunctive networks. We define for Q = {0, 1} the

maps Id : Q 7→ Q and Switch : Q 7→ Q. given by Id(q) = q and Switch(q) = 1 − q.

Definition 3. We define symmetric conjunctive networks as the CSAN family where all edges are labeled by the

identity map or the switch map, i.e, ρ(e) ∈ {Id,Switch} for all e ∈ E, and all nodes have the same conjunctive local

map given by

λ(v)(q)(X) =











0 if X(0) ≥ 1,

1 else.

for any v ∈ V, q ∈ Q and X ∈ N
Q.

An edge e ∈ E such that ρ(e) = Id is called a positive edge and a an edge e ∈ E such that ρ(e) = Switch is called155

a negative edge.

We classify symmetric conjunctive networks according to the type of labels assigned to the edges. If no constraint

is given then, we call the family signed conjunctive networks. If all the edges are negative, we call them all-negative

networks. More precisely, a conjunctive network (G, λ, ρ) is all-negative if ∀e ∈ E, ρ(e) = Swtich. If we have a local

constraint forcing the network to have at least one edge in each neighborhood labeled as the identity map, i.e., at160

least one edge is positive, we call them locally positive. Formally, a conjunctive network (G, λ, ρ) is locally positive,

if for each v ∈ V there exists one edge e ∈ Ev such that ρ(e) = Id. Finally, if for some conjunctive network (G, λ, ρ),

all its edges are labeled by the identity map, i.e. ∀e ∈ E, ρ(e) = Id, we call it all positive conjunctive network (see

Figure 2). We will refer, in the next lines, the families of the previously described networks as all-negative networks,

locally positive networks and all-positive networks.165

In particular, we will use the notation Fneg,Flocally-pos and Fpos to denote the all-negative, the locally positive

and the all-positive families respectively.

2.3. Intrinsic simulations and universality

In [20], we introduced a formalism of intrinsic simulation and universality between family of automata networks,

and a proof technique to obtain universality results. To put it concisely, this approach allows to derive many results170

on the computational and dynamical complexity of a family from a single proof on a finite list of finite automata

networks from the family. We will briefly recall the main ingredients here in the context of concrete automata

networks.

At the core of the approach is the notion of simulation between individual automata networks: orbits of the

simulated network are embedded into orbits of the simulator via a block encoding (one node is simulated by a group175

of node, and to one state corresponds a pattern on this group of nodes).

Definition 4. Let F : QVF

F → QVF

F and G : QVG

G → QVG

G be abstract automata networks. A block embedding of QVF

F

into QVG

G is a collection of blocks Di ⊆ VG for each i ∈ VF which forms a partition of VG together with a collection of

patterns pi,q ∈ QDi

G for each i ∈ VF and each q ∈ QF such that pi,q = pi,q′ implies q = q′. This defines an injective

map φ : QVF

F → QVG

G by φ(x)Di
= pi,xi

for each i ∈ VF . We say that G simulates F via block embedding φ if there is

a time constant T such that the following holds on QVF

F :

φ ◦ F = GT ◦ φ.

From there, simulation between families and universality are intuitively clear: a family F1 simulates a family

F2 if individual automata networks of F2 are uniformly simulated by those of F1, and a family is universal if it

can simulate all automata networks. For these notions to be effective with respect to the analysis of computational

complexity of decision problems, one has to be a bit careful with the details.180

Definition 5. A concrete family F1 simulates a concrete family F2 in time T (n) and space S(n) if for any automata

network (G2, λ2, ρ2) ∈ F2, an automata network (G1, λ1, ρ1) ∈ F1 that simulates it can be produced in DLOGSPACE

where G1 has size S(n) and the time constant of the simulation is T (n) where n is the size of G2. A concrete family is

universal if it can simulate any concrete family in polynomial space and time. A concrete family is strongly universal

if it can simulate any concrete bounded degree family in linear space and constant time.185

Remark 1. In [20] a definition of simulation between families is given in a more general context (not necessarily

concrete families), therefore the definition of (strong) universality is stated differently. However, concerning concrete

families, the definition given above is equivalent as the one of [20] because there is a concrete family (the “game of

life” family) which has been proven strongly universal in [21, Theorem 18]. More precisely, the “game of life” family

is universal and a bounded degree variant of it is strongly universal by [21, Lemma 13 and 14].190

2.4. Consequences of universality

Universality might be interesting to study per se, but we are mainly using it for two reasons: first it occurs

rather naturally in concrete families as we will show later, and second, it implies both dynamical and computational

complexity. To simplify, we will only consider 3 decisions problems here that correspond to prediction of node states

and reachability in orbits.195

Problem (Unary Prediction, U-PRED).

Parameters: a concrete family F over alphabet Q

Input:

1. a labeled graph representing an automata network F : Qn → Qn with F ∈ F ,

2. a node v200

3. an initial condition x ∈ QV ,

4. a state q ∈ Q,

5. a natural number t represented in unary.

Question: F t(x)v = q?

Note that since t is given in unary, the sequence of configurations x, . . . , F t(x) is computable in polynomial time,205

so is problem U-PRED. This is no longer the case if we give t in binary as in the following variant.

Problem (Binary Prediction, B-PRED).

Parameters: a concrete family F over alphabet Q

Input:

1. a labeled graph representing an automata network F : Qn → Qn with F ∈ F ,210

2. a node v

3. an initial condition x ∈ QV ,

4. a state q ∈ Q,

5. a natural number t represented in binary.

Question: F t(x)v = q?215

In problem B-PRED, t can be an exponentially large number, but, in order to compute F t(x) it is not necessary

to memorize the whole sequence of configurations x, . . . , F t(x). It is actually sufficient to memorize one configuration

to compute the next one, so that B-PRED is a polynomial space problem. Another polynomial space problem is the

classical reachability problem between configurations.

Problem (Reachability, REACH).220

Parameters: a concrete family F over alphabet Q

Input:

1. a labeled graph representing an automata network F : Qn → Qn with F ∈ F ,

2. an initial configuration x ∈ QV .

3. a target configuration y ∈ QV .225

Question: is there some t such that F t(x) = y?

We can now state the main consequences of (strong) universality, that will be used as necessary conditions for

universality in the remaining of the paper.

Theorem 6. If a concrete family F is universal, then problem U-PRED is PTIME-complete, and B-PRED and

REACH are PSPACE-complete. Moreover the family admits superpolynomial transients and limit cycles (i.e. length230

of the largest transient and limit cycle grows faster than any polynomial in the number of nodes). If F is strongly

universal, the family admits exponential transients and limit cycles.

Proof. The complexity part follows by [20, Corollary 1] and the dynamics part from [20, Theorem 15].

2.5. A sufficient condition for universality: coherent gadgets

The universality of a family involves infinitely many simulations between individual automata networks. In [21]235

we developed a proof technique that boils down to showing the existence of a finite set of networks of the families

having a finite set of compatible pseudo-orbits. A pseudo-orbit is a sequence of configurations where the state change

from one configuration to the next follows the automata network rule for a fixed subset of nodes, and is arbitrary

for the other nodes.

These building blocks (automata networks equipped with particular pseudo-orbits) are called coherent gadgets.240

The general idea is that the particular pseudo-orbits of these gadgets can be glued together to form pseudo-orbits of

larger and larger networks and eventually produce a set of genuine orbits in some network of the family that holds

a simulation of a target automata network. The core of the approach is that these gadgets do not simulate pieces of

networks or nodes directly, but they simulate finite maps with inputs and outputs (like Boolean gates). They do so

by using a common interface made of two things:245

• inputs and outputs in a gadget are copies of a fixed subnetwork C;

• pseudo-orbits associated to the gadgets have the same set of traces on each copy of C.

To make an analogy with electronic equipment in the real world, C specifies a physical connector and the common

traces on each copy of C specify a communication protocol. Like in the real world, the physical connections are

symmetric and it is the dynamics of the gadgets that induces a direction of communication from input to outputs.250

Of course, the pseudo-orbits also have to realize the finite map being simulated through the interface.

In [21], the approach is developed for an arbitrary abstract set of finite maps in the context of an arbitrary (not

necessarily concrete or symmetric) family of automata networks. Then, particular sets of finite maps are identified

such that a family having coherent gadgets for them is universal. In the present paper, we will focus on a single

set of finite maps that turns out to be sufficient for universality: monotone Boolean maps with two inputs and two255

outputs. We therefore directly define what having coherent monotone gadgets means.

Definition 7. A CSAN family F over alphabet Q has coherent monotone gadgets if there are three networks in

the family, AND (the AND gadget) and OR (the OR gadget), and C (the common interface) such that the three

following groups of conditions hold:

• glueing interface conditions:260

– the nodes of C are partitioned in two sets Ci and Co ;

– there are four disjoint copies of C in AND: φiAND,k : VC → VAND for k = 1, 2 (called inputs) and

φoAND,k : VC → VAND for k = 1, 2 (called outputs) are labeled graph embeddings of C into AND with disjoint

images ;

– the Ci part of each input is only connected to the rest of the network through the input :265

NAND(φiAND,k(Ci)) ⊆ φiAND,k(VC) for k = 1, 2 ; and symmetrically for outputs, the Co part is only con-

nected through the output : NAND(φoAND,k(Co)) ⊆ φoAND,k(VC) ;

– the same holds for network OR, with respective inputs φiOR,k : VC → VOR and outputs φoOR,k : VC → VOR

for k = 1, 2 ;

• coding conditions:270

– there are two state configurations sk ∈ QVC for k = 0, 1 to code Boolean values on inputs and outputs ;

– there are two context configurations cA ∈ QV̂AND and cO ∈ QV̂OR where V̂AND is the set of nodes of AND

outside inputs and outputs (and similarly for V̂OR) ;

– a time constant T ≥ 1 ;

– four standard traces τa,b ∈ (QVC)0,...,T for each pair a, b ∈ {0, 1} (each representing a transition from275

Boolean value a to Boolean value b), and such that they respect state coding at the initial and final steps:

τa,b(0) = sa and τa,b(T) = sb ;

• correct computation conditions:

– for each pair of initial input Boolean values ai,1 and ai,2, each pair of final input Boolean values bi,1 and

bi,2, and each pair of initial output values ao,1 and ao,2, there is a (VAND \ V̂AND)-pseudo-orbit (xt)0≤t≤T280

of network AND such that:

∗ x0 correctly codes the initial input and output values using state and context configurations:

x0
V̂AND

= cA and x0
φi

AND,k
(VC)

= sai,k
and x0

φo
AND,k

(VC) = sao,k
for k = 1, 2 ;

∗ xT correctly codes the final input values and codes at the outputs the AND map applied to the initial

input values: xT
V̂AND

= cA and xT
φi

AND,k
(VC)

= sbi,k
and xT

φo
AND,k

(VC) = sai,1∧ai,2 for k = 1, 2 ;285

– the same holds for network OR computing the logical or of the initial inputs as final output values.

As said above, the priced paid in the technicality of the above definition has a nice counterpart: it gives a sufficient

condition for strong universality.

Theorem 8. [21, Corollary 8] If a CSAN family has coherent monotone gadgets then it is strongly universal.

Showing the existence of monotone gadgets will be the main tool in the case study of examples below. However, the290

theoretical framework developed in [21] allows to obtain weaker results using other types of gadgets. We will use one

type of gadgets suitable to show the simulation of the family of conjunctive networks on directed graphs, conjunctive

gadgets, that simulate the two finite maps corresponding to the copy (duplication) and logical conjunction.

t = 0 −→ (0, 1, 1, 0)

t = 1 −→ (1, 0, 0, 1)

t = 2 −→ (0, 1, 1, 0)

t = 3 −→ (1, 0, 0, 1)

t = 4 −→ (0, 1, 1, 0)

µ = {{1, 2, 3, 4}}
1 2

43

A B

µ = {{1, 2, 4}, {1, 2, 3}, {2, 3}, {1, 4}}

t = 4 −→ (0, 0, 0, 0)

t = 3 −→ (0, 0, 0, 1)

t = 2 −→ (0, 1, 1, 1)

t = 1 −→ (1, 0, 1, 1)

t = 0 −→ (0, 1, 1, 0)

Figure 3: Synchronous update scheme and general periodic update scheme for the same conjunctive automata network. Local function is

given by the minimum (AND function) over the set of states of neighbors for each node. A) Synchronous or parallel update scheme. In

this case µ has period 1 and all nodes are updates simultaneously. Observe that dynamics exhibits an attractor of period 2 B) General

periodic update scheme over a conjunctive network. In this case µ has period 4 and dynamics reach a fixed point after 4 time steps.

Observe that there is no restriction on how many times a node is updated. For example, 1 is updated 3 times every 4 time steps but 4

is updated only 2 times every 4 time steps.

Definition 9. A concrete family F has coherent conjunctive gadgets if it satisfies Definition 7 where AND

and OR are replaced by the two following finite map: AND : {0, 1}2 → {0, 1} and COPY : {0, 1} → {0, 1}2 with295

AND(x, y) = x · y and COPY(x) = (x, x).

Theorem 10. If a concrete family has coherent conjunctive gadgets, then it simulates the family of conjunctive

directed networks in linear time and polynomial space. In particular it admits superpolynomial cycles.

Proof. The simulation result follows from [21], Corollary 1 and Theorem 21. The simulation results implies the

existence of superpolynomial cycles since conjunctive networks admit themselves superpolynomial cycles (see the300

proof of [21, Theorem 20] for more details).

3. Update schemes via projections and asynchronous extensions

One of the most studied types of update schemes are the periodic update schemes, i.e. modes where map µ is

periodic. This class contains well-studied particular cases, for instance: parallel update scheme, in which all the

nodes of the networks are updated at the same time (see Figure 3) and also the block sequential update schemes in305

which each node is updated once every p steps (but not necessarily all at the same time). In addition, we explore

a new class of update schemes which contains all the rest that it is called local clocks. In this class, each node v is

updated once every pv steps but the frequency of update pv might depend on the node. This scheme can be seen

intuitively as follows which justify the name: each node possesses an internal clock that ticks periodically and triggers

an update of the node.310

Definition 11. We say that an update scheme µ is a periodic update scheme if there exists p ∈ N such that

µ(n+ p) = µ(n) for all n ∈ N. Moreover, we say that µ is

• a block sequential scheme if there are subsets (called blocks) B0, . . . , Bp−1 ⊆ V forming a partition 2 of V such

that µ(n) = Bn mod p,

• a local clocks scheme if for each v ∈ V there is a local period τv ∈ N and a shift 0 ≤ δv < τv such that315

v ∈ µ(n) ⇐⇒ δv = n mod τv.

For a concrete example on how these update schemes work, see Figure 4 in which different dynamics for a simple

conjunctive network under block sequential and local clocks update schemes are shown.

1 2

43

t = 0 −→ (0, 1, 1, 0)

t = 1 −→ (1, 1, 0, 0)

t = 2 −→ (1, 0, 0, 0)

t = 3 −→ (0, 0, 0, 0)

µ = ({1, 3}, {2, 4})

t = 0 −→ (0, 1, 1, 0)

t = 1 −→ (1, 0, 0, 1)

t = 2 −→ (1, 0, 0, 1)

t = 3 −→ (0, 0, 1, 0)

t = 4 −→ (0, 0, 1, 0)

µ = {{1, 2, 3, 4}, {}, {1, 3}, {}}

t = 5 −→ (0, 0, 0, 0)

A B

Figure 4: Block sequential and local clocks update schemes over a simple conjunctive network. Local functions are given by the minimum

(AND) over the states of the neighbors of each node. A) Block sequential update scheme. In this case function µ is defined by two blocks:

{1, 3} and {2, 4}. Dynamics reach a fixed point after 3 time steps. B) Local clocks update scheme. In this case each node has an internal

clock with different period. Nodes 1 and 3 are updated every two steps (τ1 = τ3 = 2) and nodes 2 and 4 are updated every 4 time steps

(i.e. τ2 = τ4 = 4). Shift parameter is 0 for all nodes δ1 = δ2 = δ3 = δ4 = 0. Dynamics reach a fixed point after 3 time steps.

Block sequential and local clocks schemes are clearly periodic schemes. Moreover, any block sequential scheme

given by B0, . . . , Bp−1 ⊆ V is a local clocks scheme given by τv = p and δv = i ⇐⇒ v ∈ Bi for all v ∈ V . As already320

said, block sequential schemes can thus be seen as local clocks schemes where all nodes share the same update

frequency. General periodic update schemes allows different time intervals between two consecutive updates of a

node, which local clocks schemes obviously can’t do (see Figure 3, and Figure 5). We will see later the tremendous

consequences that such subtle differences in time intervals between updates at each node can have. For now let

us just make the formal observation that the inclusions between these families of update schedules are strict when325

focusing on the sets of maps µ.

Remark 2. A so-called block-parallel scheme has also been considered more recently [9] which is defined by a set of

list of nodes Li = (vi,j)0≤j<pi
(for 1 ≤ i ≤ k) forming a partition (i.e. such that vi,j are all distinct and ∪i,jvi,j = V)

to which is associated the map µ such that vi,j ∈ µ(n) ⇐⇒ j = n mod pi. It is a particular case of our definition

of local clocks scheme above with the additional constraints that the size of the set µ(n) of updated nodes is constant330

(related to the size of the network n). We note that, conversely, any local clocks scheme on a given networked can be

simulated by a block-parallel scheme by artificially adding disconnected nodes that do nothing but satisfy the constraint

of µ(n) being of constant size.

2For technical reasons, we consider that some of these sets may be empty. This assumption does not have any significant effect in the

dynamics.

1 2

43

t = 0 −→ (0, 1, 1, 0)

t = 1 −→ (1, 0, 1, 1)

t = 2 −→ (0, 1, 1, 1)

t = 3 −→ (0, 0, 0, 1)

t = 4 −→ (0, 0, 0, 0)

µ = {{1, 2, 4}, {1, 2, 3}, {2, 3}, {1, 4}}

Figure 5: General periodic update scheme over a conjunctive network. In this case µ has period 4 and dynamics reach a fixed point after

4 time steps. Observe that there is no restriction on how many times a node is updated. For example, 1 is updated 3 times every 4 time

steps but 4 is updated only 2 times every 4 time steps.

v1 v2

v1 v2 v1 v2

v1 v2 v1 v2

Synchronous Block-sequential

Local clocks Periodic

µ = ({1, 2}) µ = ({1}, {2})

µ = ({1}, {2}, {}, {2}) µ = ({1, 2}, {2}, {}, {})

Network

Figure 6: Example of a simple dynamics for four update schemes: synchronous, block-sequential, local clocks and periodic. Black circles

represent the times in which each node is updated

We present in Figure 6 a summary of the previously introduced update schemes.

Now we present a dynamical formalism that allow us to include all the update schemes presented above and335

possibly other ones into one formalism. We remark that in all periodic schemes, a given node can take the decision to

update or not by simply keeping track of the current value of time modulo the period. The key observation is that,

when we add the knowledge of time modulo the period at each node as a new component of states, the whole system

becomes deterministic. In fact, we are recovering the original dynamics of some automata network with alphabet Q

under a periodic update scheme by projecting a specific deterministic automata network with alphabet Q′ ×Q onto340

Q.

Let F : QV → QV be an abstract automata network. We define its asynchronous version as the automata network

that in every time-step (non-deterministically) choose if a node i should be updated or if it will be stay in the same

state. More precisely the asynchronous version of F is the non-deterministic function F ∗ : QV → (P(Q))V such that

F ∗(x)i = {xi, F (x)i}. Note that, analogously to the deterministic case one can define an orbit starting from x of345

F ∗ as a sequence of states OF∗(x) = x0 = x, x1, x2, . . . , xt, . . . ,∈ Qn such that xsi ∈ F (xs−1)i for i ∈ V and s ≥ 1.

Note also that, given x ∈ QV and an orbit OF∗(x) we can see OF∗(x) as a particular realization of certain update

scheme µ. More precisely, there exist an update scheme µ (which is defined in the obvious way i.e. by updating the

corresponding nodes in every time step according to points in OF∗(x)) such that for every xs ∈ OF∗(x) we have

xs = (OF,µ(x))s. In addition, we have that for each update scheme µ there exist an orbit of F ∗ which coincides with350

its dynamics in every time step. Thus, we could work with F ∗ in order to globally study all possible update schemes.

However, we are interested in specific update schemes and we would like to continue working in a deterministic

framework in order to keep things simple (in particular the notion of simulation that we define later).

In order to achieve this task, we introduce the following notion of asynchronous extension which is a way to

produce the dynamics of different update schemes through projection.355

Definition 12. Let Q be a finite alphabet and Q′ = Q×R where R is finite. Let F : QV → QV and F ′ : Q′V → Q′V

two abstract automata networks. We say that F is a projection system of F ′ if for all x ∈ Q′V it holds

π(F ′(x)) ∈ F ∗(π(x))

where π is the node-wise extension of the projection π : Q′ → Q such that π(q, r) = q for all (q, r) ∈ Q′.

We show hereunder that the dynamics associated to any of the previously presented periodic update schemes can

be described as an asynchronous extension over a product alphabet. To simplify notations we sometimes identify

(A×B × · · ·)V with AV ×BV × · · ·.

Definition 13 (block sequential extension). Let F : QV → QV be an abstract automata network. Let b ≤ n and

let Q′ = Q × {0, . . . , b − 1}. We define the block sequential extension of F with b blocks as the automata network

F ′ : (Q′)V → (Q′)V such that for all x = (xQ, xb) ∈ Q′V and all v ∈ V :

F ′(x)v =











(F (xQ)v, (xb)v − 1 mod b) if (xb)v = 0,

((xQ)v, (xb)v − 1 mod b) else.

Definition 14 (local clocks extension). Let F : QV → QV be an abstract automata network. Let c ∈ N and let

Q′ = Q × {0, . . . , c − 1} × {1, . . . , c}. We define the local clocks extension of F with clock length c as the automata

network F ′ : (Q′)V → (Q′)V such that for all x = (xQ, xc, xm) ∈ Q′V and all v ∈ V :

F ′(x)v =











(F (xQ)v, (ψ(xm)v
[(xc)v]) + 1 mod (xm)v, (xm)v) if (xc)v = 0,

((xQ)v, (ψ(xm)v
[(xc)v]) + 1 mod (xm)v, (xm)v) else.

ψm(r) : {0, . . . , c− 1} → {0, . . . , c− 1} is such that ψm(r) =











r if r ≤ m− 1,

m− 1 else.

360

Definition 15 (periodic extension). Let F : QV → QV be an abstract automata network. Let p ∈ N and let

Q′ = Q × {0, . . . , p − 1} × 2{0,...,p−1}. We define the periodic extension of F with period length p as the automata

network F ′ : (Q′)V → (Q′)V such that for all x = (xQ, xp, xs) ∈ Q′V and all v ∈ V :

F ′(x)v =











(F (xQ)v, (xp)v + 1 mod p, (xs)v) if (xp)v ∈ (xs)v,

((xQ)v, (xp)v + 1 mod p, (xs)v) else.

Remark 3. Observe that, given an abstract automata network F : QV → QV and an asynchronous extension

F ′ : (Q×R)V 7→ (Q×R)V of the type previously defined i.e. a block sequential extension, a local clocks extension or

a periodic extension, both F ′ and Fµ (where µ is some of the latter update schemes) describe the same dynamics. In

fact, let us illustrate this fact by analyzing the case of the block sequential extension (the other cases are analogous).

Let b ≥ 1 and µb = (I0, . . . , Ib−1). Note that (I0, . . . , Ib−1) is an ordered partition of V . On one hand, we consider365

an arbitrary initial condition x ∈ QV and the correspondent block sequential orbit Oµ,F (x). On the other hand,

we consider a block extenstion F
′

: (Q × {0, . . . , b − 1})V 7→ (Q × {0, . . . , b − 1})V and an initial condition z ∈

(Q× {0, . . . , b− 1})V given by zv = (xv, yv) where yv = k if and only if v ∈ Ik for 1 ≤ k ≤ b. By the definition of F
′

,

we have that π(F ′(z)) = (Oµ,F (x))1 since the only nodes v in which F is applied (in the first coordinate) are the ones

such that v ∈ I0. In addition, we have that for each v in V , π2(F
′

(x))v = yv − 1 mod b, where π2 is the node-wise370

extension of the proyection π2 : Q × {0, . . . , b − 1} 7→ {0, . . . , b − 1}. Thus, we have π(F ′(F ′(x))) = (Oµ,F (x))2.

Iteratively, we deduce π(F ′t(x)) = (Oµ,F (x))t for each t ≥ 1.

Conversely, let us choose an arbitrary initial condition x = (xQ, xb) ∈ (Q×{0, . . . , b−1})V . We define the ordered

partition I0 . . . , Ib−1 given by v ∈ Ik if and only if (xb)v = k for 0 ≤ k ≤ b − 1. Then, the second coordinate of the

initial condition xb induces a block sequential update scheme µxb
which is defined by the latter ordered partition.375

The previous definitions are formalized for every abstract automata network. We now focus on CSAN families

where the extensions are also CSAN as show in the following lemma.

Lemma 16. Let F be a CSAN, then any block sequential extension (resp. local clocks extension, resp. periodic

extension) of F is a CSAN. Moreover, for any CSAN family F and any fixed b, the set of block sequential extensions

with b blocs of networks of F is again a CSAN family. The same holds for local clocks and periodic extensions.380

Proof. In each case, the definition of the extension F ′ with alphabet Q′ = Q × R is such that the action of F ′ on

the R component is purely local (the new value of the R component of a node evolves as a function of the old value

of this R component) and the value of the R component at a node determines alone if the Q component should be

updated according to F or left unchanged. Therefore clearly F ′ is a CSAN if F is.

In the context of a CSAN family F , the CSAN definition of F ′ involves only local constraints coming from F ∈ F385

and the action on the R-component is the same at each node. So the second part of the lemma is clear.

Remark 4. This approach by asynchronous extensions can also capture non-periodic update schemes. For instance

[22] studies an update scheme for Boolean networks called firing memory which uses local delays at each node and,

in addition, makes the delay mechanism depend on the state of the current configuration at the node. Firing memory

schemes can be captured as an asynchronous extension in such a way that the above lemma for the CSAN case still390

works.

To sum up, our formalism allows to treat variations in the update scheme as a change in the CSAN family

considered. Given a CSAN family F and integers b, c, p, we introduce the following notations:

• Fblock,b is the CSAN family of all block sequential extensions of networks from F with b blocks,

• Fclock,c is the CSAN family of all local clocks sequential extensions of networks from F with clock length c,395

• Fper,p is the CSAN family of all periodic extensions of networks from F with period p.

Synchronous

v1 v2

Block sequential

v1 v2

Local clocks

v1 v2

Periodic

-

--

v

Transient time: O(1)

Maximum period: O(1)

B-PRED ∈ O(1)

universal universal universal

?

+?

v

Transient time: nO(1)

Maximum period: O(1)

B-PRED ∈ P

Transient time: nO(1)

Maximum period: O(1)

B-PRED ∈ P

universal universal

+

++

v

Transient time: nO(1)

Maximum period: O(1)

PRED ∈ NC

Transient time: nO(1)

Maximum period: O(1)

PRED ∈ NC

Transient time: nO(1)

Maximum period: O(1)

PRED ∈ NC

desymm
Maximum period: non-polynomial

PRED ∈ NC

Table 2: Summary of the main results on complexity of the dynamics of the network families studied in the current chapter, depending

on different update schemes. BPA = Bounded period attractors. SPA = Superpolynomial attractors. SU = Strong universality. Black

fonts indicate the emergence of complex behavior such as long period attractors or universality.

We now introduce the idea of desymmetrization of a CSAN family induced by a particular update scheme.

Essentially, we say a that a set of periodic update schemes induces a desymmetrization if the family equipped with

this particular update scheme is capable of efficiently simulating its non-symmetric version. Of course, generally

speaking, a universal family will be capable of efficiently simulating any other family, in particular its non-symmetric400

version. However, the inverse is not necessarily true. In fact, we show in Section 4, that this will be the case of

all-positive conjunctive networks.

4. Effect of asynchronism: a case study of symmetric networks

In this section, we focus on studying concrete symmetric automata network (CSAN) families. We use previous

theoretical framework on complexity of automata networks families in order to classify different CSAN families405

according to their dynamical behavior under different update schemes. More precisely, we focus on the families

presented in the Section 2.2

In addition, we consider the latter presented three update schemes: block sequential, local clocks and general

periodic update scheme. We classify previous families according to their dynamical behavior and simulation capa-

bilities by using the framework presented in previous sections Before we enter into the detail, we present in Table 2410

a summary of the main results obtained.

Observe that in each row of Table 2, we show how the dynamical behavior of some CSAN families changes as we

change the update scheme. In particular, the most simple ones, such as conjunctive and locally positive networks

exhibit a relatively simple dynamical behavior (they have bounded period attractors). Contrarily, the last two

families have strong universality even for block sequential update schemes. In addition, we would like to remark that415

there is not only a hierarchy for update schemes (block sequential update schemes are a particular case of local clocks

and both are a particular cases of periodic update schemes) but that network families are also somehow related as

conjunctive networks are a sub-family of all the other ones. Additionally, one can also observe that there is some

sort of ”diagonal emergence” of strong universality in Table 2 consisting in the fact that it seems to exists a trade-off

between the complexity in the definition of some network families and the complexity of the corresponding update420

schemes. In other words, simple families seem to need more complex update schemes in order to be universal and as

we pass to more complex rules one can observe this property for simpler update schemes.

4.1. All negative networks

In this section we study conjunctive networks with negative edges without any local constraint in the number

of positive edges. Formally the symmetric signed conjunctive networks family is a CSAN family in {0, 1} in which425

λv : Q×2Q → Q is given by λ(q, S) = 0 if 0 ∈ S and λ(q, S) = 1 if 0 6∈ S and for any e ∈ E we have ρe ∈ {Id, Switch}.

where Switch(x) = 1 − x. We denote previous family as Fneg and for a different update schemes we consider

the notation Fblock,b
neg ,Fclock,c

neg and Fper,p
neg for block sequential, local clocks and periodic versions of this family

respectively.

We start by remarking that for the parallel update scheme, Fneg family is not universal as it is a type of threshold430

family and thus it have bounded period transient and attractors (see [17, 16]). Then, a natural question is whether

this remains true for other update schemes. In this sense, we are going to show that, when we consider the next

update scheme in our hierarchy, the block sequential update scheme then, Fneg family is strongly universal.

4.1.1. Parallel case

We have that symmetric conjunctive networks are a particular case of symmetric threshold networks and thus,435

the maximum period of the attractors is at most 2, i.e. there are only fixed points and attractors of period 2 [17, 16].

Although this result is quite strong for the general case (there is no constraint on the assignation of the signs) there

is one particular case that is interesting since it exhibits an extremely simple dynamical behavior. This is the case

in which all the signs of the edges are negative, i.e. all the edges are labeled by the function Switch(x). Observe

that, equivalently, by using De Morgan laws, we have that in that case the local rule of each node is a NOR of the440

states of its neighbors. We are interested in this particular case because, as we are going to see in the next sections,

this family of networks has a very limited behavior for parallel update schemes and at the same time, is strongly

universal for the block sequential case.

Lemma 17. Let us assume that for every (G, λ, ρ) ∈ Fneg (i.e, we have ρe = Switch for each e ∈ E). Then, the

maximum period of the attractors is constant. In addition, its maximum transient is also constant. In particular,445

this family of automata networks is not universal.

Proof. Let v ∈ V be a node and x be an arbitrary initial condition. It suffices to observe two time steps to completely

determine the dynamics of v. In fact, if v is in state 1 then, its neighbors will change to 0 the next time step. In

addition, if v remains in state 1 then all their neighbors are in state 0 and then, it cannot change. Thus, we can only

have fixed points and two-cycles. In addition, the dynamics converges in constant time (2 time steps).450

4.1.2. Block sequential case

In this section, we will show that Fblock,b
neg is strongly universal as a consequence of its capability to implement

coherent monotone gadgets. In addition, we conclude that, as a direct consequence of the latter property, that

previous family is both dynamically complex and computationally complex. This means that for this family, complex

behavior is exhibited under block sequential update schemes.455

As we will be using the same structures to show the main result, we start by showing a less powerful result. We

show that Fblock,b
neg is able to a wire module. A wire module is a network that transport information emulating a

wire. This is only a way to motivate the main result by showing how key structures work in a particular simple

context. As we will see when we present the main result, we use these structures in the actual proof of main theorem.

In fact, both modules are part of the monotone gadgets we construct. We remark that all involved networks, both460

the wire modules and the gadgets have only negative labels, i.e. each edge is labeled by the Switch function which

takes a bit x and produces 1 − x.

Wire modules. We define a wire module as an automata network constructed with two copies of the NOT module

presented in Figures 7 and 8. Observe that this gadget has 3 central nodes (marked inside a thick dotted rectangle

in Figures 7 and 8) together with 2 copies of a 4 nodes cycle graph. Generally speaking, the dynamics on this cycle465

graphs works as a clock which allows information to flow through the central part in only one direction (from left to

right). In addition, they allow the gadget to erase information once it has been transmitted. This latter property

allows the gadget to clean itself in order to receive new information. The wire module is composed by two copies

of the NOT module as is presented in Figure 9. Since this gadget is composed by two copies of the NOT module,

this gadget is defined by a path graph with 6 central nodes together with 2 × 2 × 3 = 12 cycle graphs (two copies470

for each node). We enumerate nodes in the central part from left to write by the following ordering: {0, 1, 2, 3, 4, 5}.

Additionally, since the functioning of each copy of the NOT module is based in an ordered partition of 3 blocks, we

take the union of corresponding blocks in each partition in order to define 3 larger blocks for the wire module. For

one of this larger blocks we use the notation {0, 1, 2}. Thus, observe that each wire takes T = 6 × 3 = 18 time steps

in order transport the information. This is because for each round of 3 time steps in which we update each block,475

we make the signal pass through exactly one node.

We are now in conditions to introduce the main result:

Lemma 18. The family Fblock,3
neg of all signed symmetric conjunctive networks under block sequential update schemes

of at most 3 blocks has coherent monotone gadgets.

Proof. We will show that the gadgets in the Figures 13 and 14 are coherent monotone gadgets. Note that both480

these gadgets are made of several wires made of NOT modules (we call the two in the left hand side of the figure

input wires and the other two at the right hand side output wires) and a computation gadget. Observe that, each

of these structures (wires and computation gadget) needs exactly 3 blocks. In addition, note that in Table 5 the

dynamics of the 4-cycles that are attached to each node is shown. We recall that the function of these clocks is to

allow information to flow in one direction only (all the interactions are symmetric so this is not straightforward) and485

0

0

0

0

0

0

0

0

1

0

0

1

1

1

0

0

0

1

1

0

0

0

0

0

t = 0

0 0 z

1

2

1 1 1

22

3

3 33

x

3

3

0

1

1

0

1

1

0

0

0

0

0

0

0

0

1

1

1

0

0

1

1

1

0

0

x 0 0

1

2

1 1 1

22

3

3 33

3

3

t = 1

0

Figure 7: One step of the dynamics of the NOT module implemented by a signed symmetric conjunctive network. Dotted circles and

triangles represent blocks. Numbers in gray represent the updating order of each block. Each time step t is taken after three time steps

(one for each block). Total simulation time is T = 9.

3

3

3 33

3

2 2

111

2

1

0x0

0

0

1

1

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

1

0

0

1

t = 2

0

3

3

x′

3 33

3

2 2

111

2

1

x00

0

0

0

0

0

1

1

0

1

1

0

0

1

0

0

1

0

0

0

0

0

0

0

0

t = 3

Figure 8: Two last steps of the dynamics described by the NOT module implemented by a symmetric signed conjunctive network. Dotted

circles and triangles represent blocks. Numbers in gray represent the updating order of each block. Each time step t is taken after three

time steps (one for each block). Total simulation time is T = 9.

NOT NOT

Figure 9: Wire module implemented on a signed symmetric conjuntive network. 2 copies of NOT module are combined in order to form

a wire. Simulation time is T = 6.

to erase information once it has been copied or processed by the nodes in the gadget. We use the following notation

in order to represent nodes in these structures: cs,i,j,p where s is the number of the NOT module (a 3-node-path

together with two 4-cycles for each node, see Figure 10) to which the cycle is attached, so s ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}

where the order is taken from left to right (for example in Figure 13 the copy associated to (v1, v2, v3) comes first

then, (v′
1, v

′
2, v

′
3), then (v4, v5, v6) and so on). Additionally, i is in the position of the cycle in the NOT block, so490

i ∈ {1, 2, 3}, j is the position of the node relative to the 4-cycle graph considered in counter clockwise order (see

Figure 10), so j ∈ {1, 2, 3, 4} and p is the position of the cycle in the central structure of the gadget. Observe that,

since there are two copies for each node, we denote them by upper and lower so p ∈ {u, l}. Since input wires and

output wires are needed to be updated at the same time and are independent (we have two copies for each one) we

combine their blocks in the obvious way (we take the union of pairs of blocks that have the same update order).495

More precisely, we combine 3 × 9 blocks of each particular part (there are 8 copies of NOT and one computation

gadget having 3 blocks each one) in order to define again only 3 blocks. Precise definition, using notation shown in

Figures 13 and 14, is the following:

• B0 =
12
⋃

i=1

{vi} ∪ {v′
i} ∪

⋃

s,i

{cs,i,1,l, cs,i,2,l};

• B1 =
⋃

s

{cs,1,3,u, cs,1,4,u, cs,2,1,u, cs,2,2,u, cs,3,1,u, cs,3,2,u}; and500

• B2 =
⋃

s,i

{cs,i,3,l, cs,i,4,l}.

Now we are going to use information in Tables 3, 4 and 5 in order to show that these gadgets satisfy the conditions

of Definition 7. Observe that, on the one hand, for the OR gadget (see Figure 13), input wires compute the result in

3 × 3 (it needs to carry the signal through the three nodes in the wire and each of this intermediate steps takes three

steps, one for each block) time steps and computation gadget takes 3 × 3 as well. On the other hand, for the AND505

gadget (see Figure 14) input wires compute desired in 3 × 6 time steps. We define the associated network as FAND :

({0, 1} × {0, 1, 2})15×2×4 → ({0, 1} × {0, 1, 2})15×2×4 and FOR : ({0, 1} × {0, 1, 2})15×2×4 → ({0, 1} × {0, 1, 2})15×2×4.

In fact we have that:

1. There is a unique glueing interface given by C = Ci ∪Co where:

• Ci = {i} ∪ {a(i, 1), a(i, 2), a(i, 3), a(i, 4)} ∪ {a′(i, 1), a′(i, 2), a′(i, 3), a′(i, 4)}; and510

• Co = {o′, o} ∪ {a(o′, 1), a(o′, 2), a(o′, 3), a(o′, 4)} ∪ {a(o, 1), a(o, 2), a(o, 3), a(o, 4)} ∪

{a′(o′, 1), a′(o′, 2), a′(o′, 3), a′(o′, 4)} ∪ {a′(o, 1), a′(o, 2), a′(o, 3), a′(o, 4)}

We define labelling functions φiAND,k, φ
o
AND,k, φiOR,k, φ

o
OR,k (for the sake of simplicity we show the definition

for the AND gadget since the one for the OR gadget is completely analogous) for k = 1, 2 as:

• φiAND,1(i) = v1, φiAND,1(o′) = v2 and φiAND,1(o) = v3;515

• φiAND,1(a(i, r)) = c1,1,r,u, φiAND,1(a′(i, r)) = c1,1,r,l for r = 1, 2, 3, 4, where 1 corresponds to the NOT

module which starts with v1 in Figure 14.

• φiAND,1(a(o′, r)) = c1,2,r,u, φiAND,1(a′(o′, r)) = c1,2,r,l for r = 1, 2, 3, 4, where 1 corresponds to the NOT

module which starts with v1 in Figure 14;

• φiAND,1(a(o, r)) = c1,3,r,u, φiAND,1(a′(o, r)) = c1,3,r,l for r = 1, 2, 3, 4, where 1 corresponds to the NOT520

module which starts with v′
1 in Figure 14;

• φiAND,2(i) = v′
1, φiAND,2(o′) = v′

2 and φiAND,2(o) = v′
3;

• φiAND,2(a(i, r)) = c1′,1,r,u, φiAND,1(a′(i, r)) = c1′,1,r,l for r = 1, 2, 3, 4, where 2 correspond to the NOT

module which starts with v′
1 in Figure 14;

• φiAND,2(a(o′, r)) = c1′,2,r,u, φiAND,1(a′(o′, r)) = c1′,2,r,l for r = 1, 2, 3, 4, where 2 corresponds to the NOT525

module which starts with v′
1 in Figure 14;

• φiAND,2(a(o, r)) = c1′,3,r,u, φiAND,1(a′(o, r)) = c1′,3,r,l for r = 1, 2, 3, 4, where 2 corresponds to the NOT

module which starts with v′
1 in Figure 14.

• φoAND,1(i) = v10, φoAND,1(o′) = v11 and φoAND,1(o) = v12;

• φoAND,1(a(i, r)) = c5,1,r,u, φoAND,1(a′(i, r)) = c5,1,r,l for r = 1, 2, 3, 4, where 8 corresponds to the NOT530

module which starts with v10 in Figure 14.

• φoAND,1(a(o′, r)) = c5,2,r,u, φoAND,1(a′(o′, r)) = c5,2,r,l for r = 1, 2, 3, 4, where 8 corresponds to the NOT

module which starts with v10 in Figure 14;

• φoAND,1(a(o, r)) = c5,3,r,u, φoAND,1(a′(o, r)) = c5,3,r,l for r = 1, 2, 3, 4, where 8 corresponds to the NOT

module which starts with v10 in Figure 14;535

• φoAND,2(i) = v′
10, φoAND,2(o′) = v′

11 and φoAND,2(o) = v′
12;

• φiAND,2(a(i, r)) = c5′,1,r,u, φiAND,2(a′(i, r)) = c5′,1,r,l for r = 1, 2, 3, 4, where 9 correspond to the NOT

module which starts with v′
10 in Figure 14;

• φoAND,2(a(o′, r)) = c5′,2,r,u, φoAND,2(a′(o′, r)) = c5′,2,r,l for r = 1, 2, 3, 4, where 9 corresponds to the NOT

module which starts with v10 in Figure 14;540

• φoAND,2(a(o, r)) = c5′,3,r,u, φoAND,2(a′(o, r)) = c5′,3,r,l for r = 1, 2, 3, 4, where 9 corresponds to the NOT

module which starts with v′
10 in Figure 14.

2. State configurations are defined for each q ∈ {0, 1} as sq(i) = (q, 1) and sq(o
′) = sq(o) = (0, 1) and the state

configuration of the nodes in the clocks i.e. the ones labeled by a are constant and shown in Table 5. The

block number for each of these nodes can is the same as the original NOT module 7.545

3. Context configurations are described in Tables 3, 4 and 5 as the ones related to the cycles of length 4 connected

to central path of the gadgets and nodes in the path which are not part of the glueing interface.

4. Standard trace is defined in Tables 3 and 4 (which contain the information related to the dynamics of nodes

v1, v
′
1, v2, v

′
2, v3, v

′
3, v10, v

′
10, v11, v

′
11, v12, v

′
12) and in Table 5 (which contains the dynamics of the nodes in the

4-cycles).550

cs,i,1,p

cs,i,2,p

cs,i,3,p

cs,i,4,p

Figure 10: Scheme of labelling for 4-cycles in AND/OR gadgets. Notation is given by the following guidelines: s represent the associated

group of three nodes, second two coordinates indicate its position relative to the original gadget (there are 3 clocks) and its position in

the 4-cycle graph (considering counter clock-wise order), and u, l stands for upper or lower according to its position in the gadget.

5. Simulation constant is T = 3 × 12 as it is shown in Tables 3,4 and

6. Pseudo-orbit is given by the dynamics shown in in Tables 3, 4, and 5 where x, y, x′, y′, z are variables.

Node/Time v1 v2 v3 v4 v5 v6 v′
1 v′

2 v′
3 v′

4 v′
5 v′

6 w1 w2 w3 v7 v8 v9 v10 v11 v12 v′
7 v′

8 v′
9 v′

10 v′
11 v′

12

0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 z 0 0

3 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 0 z 0 0 1 0 0 z 0

6 0 0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 z

9 1 0 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

12 0 0 0 0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 1 0 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1

18 0 0 0 0 0 0 0 0 0 0 0 0 x ∧ y 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 1 0 0 1 0 0 1 0 0 1 0 0 x ∧ y 0 0 1 0 0 1 0 0 1 0 0 1 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x ∧ y 0 0 0 0 0 0 0 0 0 0 0 0

27 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x ∧ y 0 0 1 0 0 x ∧ y 0 0 1 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x ∧ y 0 0 0 0 0 x ∧ y 0 0 0 0

33 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x ∧ y 0 0 1 0 0 x ∧ y 0 0 1

36 x’ 0 0 0 0 0 y’ 0 0 0 0 0 0 0 0 0 0 0 x ∧ y 0 0 0 0 0 x ∧ y 0 0

Table 3: Dynamics for central gadgets in AND gadget implemented over a symmetric signed conjunctive network. Notation is the same

of the one shown in Figure 14

By Theorem 8 we have the following corollary:

Corollary 1. The family Fblock,2
neg of all signed symmetric conjunctive networks under block sequential update schemes555

with at most 3 blocks is strongly universal.

0

0

0

0

0

0

0

0

1

0

0

1

1

1

0

0

0

1

1

0

0

0

0

0

t = 0

0 0 z

1

2

1 1 1

22

3

3 33

x

y

3

3

0

1

1

0

1

1

0

0

0

0

0

0

0

0

1

1

1

0

0

1

1

1

0

0

x ∨ y 0 0

1

2

1 1 1

22

3

3 33

0

0

3

3

t = 1

Figure 11: One step of the dynamics of the computation gadget inside NOR gadget implemented by a signed symmetric conjunctive

network. Dotted circles and triangles represent blocks. Numbers in gray represent the updating order of each block. Each time step t is

taken after three time steps (one for each block). Total simulation time is T = 9.

3

3

0

0

3 33

3

2 2

111

2

1

0x ∨ y0

0

0

1

1

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

1

0

0

1

t = 2

3

3

y′

x′

3 33

3

2 2

111

2

1

x ∨ y00

0

0

0

0

0

1

1

0

1

1

0

0

1

0

0

1

0

0

0

0

0

0

0

0

t = 3

Figure 12: Last two steps of the dynamics of the computation gadget inside NOR gadget implemented by an AND-not network. Dotted

circles and triangles represent blocks. Numbers in gray represent the updating order of each block. Each time step t is taken after three

time steps (one for each block). Total simulation time is T = 12.

v′
1 v′

2 v′
3

w1 w2 w3

v′
7 v′

8 v′
9v′

4 v′
5 v′

6

NOT

NOT NOT

NOT

Computation gadget

OR

v1 v2 v3

v7 v8 v9v4 v5 v6

NOT NOT

v10 v11 v12

NOT

v′
10 v′

11 v′
12

NOT

Figure 13: OR gadget structure. In order to produce a OR gadget, wire module and NOT module are combined with computation part

showed in Figures 11 and 12.

v′
9v′

8v′
7

v9v8v7

w3w2w1

v′
3v′

2v′
1 v′

6v′
5v′

4

v3v2v1 v6v5v4

NOTNOTNOT

NOT

Computation gadget

NOTNOT

AND

v′
12v′

11v′
10

NOT

v12v11v10

NOT

Figure 14: AND gadget structure. In order to implement an AND gadget, wire module and NOT module are combined with computation

part showed in Figures 11 and 12.

Node/Time v1 v2 v3 v′
1 v′

2 v′
3 w1 w2 w3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v′

4 v′
5 v′

6 v′
7 v′

8 v′
9 v′

10 v′
11 v′

12

0 x 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 z 0 0

3 0 x 0 0 y 0 0 1 0 0 1 0 0 1 0 0 z 0 0 1 0 0 1 0 0 z 0

6 0 0 x 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 z

9 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

12 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0

18 0 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0

21 0 1 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0

24 0 0 0 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0

27 1 0 0 1 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0

33 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 x ∨ y 0 0 1

36 x’ 0 0 y’ 0 0 0 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 x ∨ y 0 0

Table 4: Dynamics for central gadgets in OR gadget implemented over a symmetric signed conjunctive network. Notation is the same of

the one shown in Figure 13

Node/Time cs,1,1,u cs,1,2,u cs,1,3,u cs,1,4,u cs,2,1,u cs,2,2,u cs,2,3,u cs,2,4,u cs,3,1,u cs,3,2,u cs,3,3,u cs,3,4,u

0 0 0 1 1 0 0 1 1 1 1 0 0

3 1 1 0 0 0 0 0 0 0 0 1 1

6 0 0 0 0 1 1 0 0 0 0 0 0

9 0 0 1 1 0 0 1 1 1 1 0 0

Node/Time cs,1,1,l cs,1,2,l cs,1,3,l cs,1,4,l cs,2,1,l cs,2,2,l cs,2,3,l cs,2,4,l cs,3,1,l cs,3,2,l cs,3,3,b cs,3,4,b

0 1 1 0 0 0 0 0 0 0 0 1 1

3 0 0 1 1 1 1 0 0 0 0 0 0

6 0 0 0 0 0 0 1 1 1 1 0 0

9 1 1 0 0 0 0 0 0 0 0 1 1

Table 5: Dynamics for context in AND/OR gadgets implemented on symmetric signed conjunctive networks. Notation is given by the

following guidelines: s represent the associated group of three nodes, second two coordinates indicate its position relative to the original

gadget (there are 3 clocks) and its position in the 4-cycle graph (considering counter clock-wise order), and u, l stands for upper or lower

according to its position in the gadget.

4.2. Locally positive symmetric conjunctive networks

In this section, we study a generalization of conjunctive networks that we call locally positive symmetric conjunc-

tive networks. Using latter notation for CSAN families we denote this family by Flocally-pos. In this particular case,

we allow edges to have negative signs (which will switch the state of the corresponding neighbor) but with a local560

constraint: no neighborhood in which all the connections (remember that all edges are undirected) are negative is

allowed. More precisely, a locally positive symmetric conjunctive network is a CSAN (G, λ, ρ) in for any v ∈ V (G)

we have λv(q, S) =
∧

q∈S

q and there exists w ∈ N(v) : ρ(vw) = Id.

We will show for this family that the threshold of universality when changing update modes is between block

sequential update schemes and local clocks update schemes. More precisely, we show, on one hand, that the family565

remains dynamically constrained under block sequential schedule, and, on the other hand, we show that a local clocks

version of this family is strongly universal because it admits coherent monotone gadgets. A similar construction will

be used also for the general case in which we allow any kind of sign label over the edges of the network as we will

show in next sections.

Theorem 19. Fix any b ≥ 1 and consider Fblock,b
locally-pos the family of all locally positive symmetric conjunctive networks570

under block sequential schedule with at most b blocks. Any orbit of any F ∈ Fblock,b
locally-pos reaches a cycle of length 1 or

2b in linear time (linear in the number of nodes). In particular, B-PRED and REACH problems for Fblock,b
locally-pos can be

solved in polynomial time and the family is not universal.

Proof. Fix such an F and denote by E+ the set of its edges with positive sign. Recall that F is a block sequential

extension using alphabet Q = {0, 1} × {0, . . . , b− 1}. To simplify notation, for any configuration x, we denote by575

α(x) its projection on the state component {0, 1} and by β(x) its projection on the block component {0, . . . , b− 1}.

We say a configuration x is clean if for any edge (v1, v2) ∈ E+ it holds: if node v1 updates strictly before node v2

starting from x (i.e. β(x)v1 < β(x)v2) then α(x)v1 ≥ α(x)v2 . First, one can remark that for any configuration x, the

configuration F b(x) is clean. Indeed, the condition is trivial for edges of E+ where both nodes update synchronously,

and each time a node v1 from an edge (v1, v2) ∈ E+ updates strictly before the other then its state becomes no larger580

than α(x)v2 . Therefore, after a first update of v1, the edge (v1, v2) maintains the property for the remaining of the

orbit that the next node to be updated has the maximum value among the pair.

Let us now consider an “energy” map giving to each edge (v1, v2) ∈ E+ the energy E(x, v1, v2) = α(x)v1 + α(x)v2 .

Claim 1: if x is clean, then for any edge (v1, v2) ∈ E+ it holds E(F (x), v1, v2) ≤ E(x, v1, v2). If v1 and v2 update

synchronously in one step, then α(F (x))vi
≤ α(x)vj

for i 6= j ∈ {1, 2} so α(F (x))v1 + α(F (x))v2 ≤ α(x)v1 + α(x)v2 .

If v1 updates in one step and v2 don’t then

α(F (x))v1 ≤ α(x)v2 ≤ α(x)v1 ,

the last inequality being because x is supposed clean. Thus E(F (x), v1, v2) ≤ E(x, v1, v2) because α(F (x))v2 = α(x)v2

in this case. The case where v2 updates and v1 doesn’t is symmetric. If none of v1 and v2 update, their states don’t585

change so the energy remains constant.

Claim 2: if x is clean and E(F 2b(x), v1, v2) = E(x, v1, v2) for each (v1, v2) ∈ E+ then F 2b(x) = x. By Claim 1,

considering any edge (v1, v2) ∈ E+, the sum of their states is constant during 2b steps. If α(x)v1 = α(x)v2 then

necessarily F 2b(x)vi
= xvi

for i = 1, 2 because energy 0 (resp. 2) can only be realized by the pair of states (0, 0)

(resp. (1, 1)). If α(x)v1 6= α(x)v2 then necessarily v1 and v2 must swap their state synchronously to maintain the590

sum constant. This means that after 2b steps, they have done exactly two synchronous updates and they are back

to the same state, thus we again have F 2b(x)vi
= xvi

. Since E+ covers all vertices (property of the locally positive

family Flocally-pos), the property F 2b(x)v = xv holds for all vertices. We conclude that F 2b(x) = x.

Claim 3: if x is clean and (v, v1) ∈ E+ and (v, v2) ∈ E+ then E(F 2b(x), v, v2) ≤ E(x, v, v1)..

• if E(x, v, v1) = 2 the conclusion of the claim is obvious by definition;595

• if E(x, v, v1) = 1 then

– either α(x)v = 0 and therefore α(F b(x))v2 = 0 since x is clean, so that E(F b(x), v, v2) ≤ 1 and therefore

E(F 2b(x), v, v2) ≤ 1 by Claim 1;

– or α(x)v1 = 0 and therefore α(F 2b(x))v2 = 0 because this time α(F b(x))v = 0 (because x is clean), so that

E(F 2b(x), v, v2) ≤ 1;600

• if E(x, v, v1) = 0 then α(x)v = α(x)v1 = 0 hence they will remain in state 0 forever, which implies that

α(F 2b(x))v2 = α(F 2b(x))v = 0 so that E(F 2b(x), v, v2) = 0.

To conclude from the above claims, let N+(v) be the positive neighborhood of v, i.e. the set

N+(v) = {v′ : (v, v′) ∈ E+}, and consider the following quantity on each vertex for a clean configuration x:

Φ(x, v) = min
v′∈N+(v)

{E(x, v, v′)}.

Note that from Claim 1, Φ(F (x), v) ≤ Φ(x, v) for any clean x. From Claim 3, for a clean x and

(v1, v2) ∈ E+, it holds that E(F 2b(x), v1, v2) ≤ Φ(x, v1). Hence, if Φ(F 4b(x), v) = Φ(x, v) for all vertices v, then

E(F 4b(x), v1, v2) = E(F 2b(x), v1, v2) for all (v1, v2) ∈ E+ because

Φ(F 4b(x), v1) ≤ E(F 4b(x), v1, v2) ≤ E(F 2b(x), v1, v2) ≤ Φ(x, v1).

In particular, from Claim 2, it implies F 4b(x) = F 2b(x). Consider now the map E : QV → N giving to any configu-

ration the “energy”

E(x) =
∑

v∈V

Φ(x, v)

which can only decrease along an orbit starting from a clean configuration, and whose maximum value is at most 2

times the number of nodes. We deduce from the above that if x is clean and such that E(F 4b(x) = E(x), then F 2b(x)

belongs to a periodic orbit of period at mos 2b (and in fact either 1 or 2b since each node updates once every b steps).605

On the other hand, the sequence et = E(F bt+1(x)) is decreasing for any configuration x because F k(x) is clean for

any k. The theorem follows (the consequence on B-PRED and REACH are straightforward and the non-universality

follows from Theorem 6).

Now, we want to show that coherent AND/OR gadgets can be implemented in Fclock,c
locally-pos, i.e. we want to show610

that this family has coherent monotone gadgets. However, in order to accomplish this task we need a construction

that we will be using for the next subsection. Particularly, we need to implement the gadgets that are shown in

Figures 13 and 14. Then, we will adapt latter gadgets in order to make it work for locally positive symmetric

conjunctive networks. Thus, as a consequence, we will have that Fclock,c
locally-pos is strongly universal.

Theorem 20. There exist c > 0 such that the family Fclock,c
locally-pos of all locally positive symmetric conjunctive networks615

under local clocks update scheme with clock parameter c has coherent monotone gadgets.

Proof. We start by observing that the gadgets in Figures 13 and 14 can be implemented in Fclock,c
locally-pos for some c.

This can be easily done by adding a positive node to each node in the gadget. The main idea here is that each

of these artificial positive nodes will play no role in calculations and will stay in state 1 most of the time. In fact,

it suffices that these positive neighbors reach state 1 before critical steps of computation are performed inside the620

gadget.

In order to illustrate this idea, let us consider two different cases and analyze why computation gadget still works

in this case:

1. Nodes in 4-cycles: observe that these nodes have a fixed trajectory that is independent on the input that

computation part is handling. Thus, it suffices to note that each node in the context effectively changes its625

state (they are in an attractor of period 3 × 3 as it is shown in Figure 5). As a consequence of this latter

observation, we can set the local period of each positive neighbor so it is updated when its neighbor in the

clock is in state 1. More precisely, we fix the corresponding local period value to 9 and correctly initialize them

so each positive neighbor is updated exactly when their correspondent node is in state 1.

2. Central nodes: Observe that, in this case, we have that in the pseudo-orbit given in Table 3 and Table 4630

each node eventually reaches the state 1 independently from the value of x, y, z, x′ and y′. Thus, as same as

the nodes that are in the 4-cycles, it suffices to set up the local clock of each positive neighbor in order to be

updated while its neighbor in the gadget is in state 1. More precisely, it suffices to set up clocks following values

in Table 3 and Table 4 and set clocks to be updated every 18 time-steps. Note that this work since nodes in

the central part are in the first block so positive neighbors are updated at the same time as its neighbors but635

only when nodes in the gadget are in state 1.

Thus, gadgets in Figures 13 and 14 can be implemented as same as we did for general symmetric signed conjunctive

networks and desired result holds.

Finally, as a direct consequence of latter theorem we have the following corollary:640

Corollary 2. There exist c > 0 such that the family Fclock,c
locally-pos of all locally positive symmetric conjunctive networks

under local clocks update scheme with clock parameter c is strongly universal.

4.3. All-positive networks

As same as we did in the previous sections, we use the notation: Fper,p
pos ,Fclock,c

pos ,Fblock,b
pos . First, we observe that

positive conjunctive networks being a particular case of symmetric threshold networks it follows from the classical645

results of [17, 16], that they always converge to some fixed point or cycle of length two under the parallel update

scheme. Therefore they are not dynamically complex with parallel update schedule. It turns out that with a periodic

update schedule of period 3 they can break this limitation and produce super-polynomial cycles.

Particularly, we show that positive conjunctive networks with a periodic update schedule of period 3 can break

the previous limitation on attractor period and produce superpolynomial cycles. Observe that all the graphs over we650

are defining networks in this family (and also in the other concrete examples we will be exploring in next sections)

are non-directed (symmetric). If we observe carefully the effect of periodic update schemes, we note that we are

actually changing the interaction graph of the network by considering different orders for updating nodes and thus,

breaking the symmetry in the different connections that nodes have in the network. Moreover, we corroborate this

remark by showing that actually, we can simulate arbitrary conjunctive networks (defined over directed graphs) by655

using a periodic update scheme. We accomplish this by applying our formalism on simulation and gadget glueing.

In fact, we show that the family of symmetric conjunctive networks admits coherent conjunctive gadgets and thus it

is capable of simulating the family of directed (non-symmetric) networks. Particularly, this implies that this family

admits attractors of superpolynomial period.

Proposition 1. Let p ≥ 1 and denote by Fper,p
pos be the family of positive conjunctive networks under periodic update660

schedules of period p. Then, Fper,p
pos is not universal and therefore it does not admit coherent monotone gadgets.

Proof. We actually show that the longest transient of any F ∈ F with n nodes is O(n2), then the conclusions follow

by Theorems 6 and 8. Recall that the alphabet is {0, 1} × {0, · · · , p} × 2{0,··· ,p} and, by definition, on any given

configuration x the component {0, · · · , p} × 20,··· ,p is periodic of period p independently of the behavior on the first

{0, 1} component. Moreover, the behavior on the {0, 1} component is that of a fixed (non-symmetric) conjunctive

network F ′ in the following sense:

F t+p(x) = F ′(F t(x)), ∀t ≥ 0.

By [23, Theorem 3.20], the transient of any orbit of F ′ is O(n2). We deduce that the transient of the orbit of x under

F is also O(n2).

Theorem 21. Let Fper,3
pos be the family of positive conjunctive networks under periodic update schedule of period 3.

Fper,3
pos has coherent conjunctive gadgets and therefore simulates the family of directed conjunctive networks and for665

instance can produce superpolynomial cycles.

Proof. The conclusion about simulations of directed conjunctive networks and superpolynomial cycles follows from

10. We now describe the coherent conjunctive gadgets within family Fper,3
pos using notations from Definition 9. Let

FCOPY ∈ Fper,3
pos be defined on the following graph with nodes VCOPY = {v1, v2, v3, v4, v5, v

′
4, v

′
5}:

v′
4 v′

5

v1 v2 v3

v4 v5

670

Let also FAND ∈ F be defined on the following graph with nodes VAND = {v1, v2, v
′
1, v

′
2, v3, v4, v5}:

v′
1 v′

2

v1 v2

v3 v4 v5

Recall that both FCOPY and FAND have alphabet Q = {0, 1} × {0, 1, 2} × 2{0,1,2}. Now let C = Ci ∪ Co be the

glueing interface with Ci = {i} and Co = {o}. FCOPY is seen as a gadget with one input and two outputs for the

gate COPY ∈ Gconj as follows:675

• φiCOPY,1(i) = v2 and φiCOPY,1(o) = v1;

• φoCOPY,1(i) = v5 and φoCOPY,1(o) = v4.

• φoCOPY,2(i) = v′
5 and φoCOPY,2(o) = v′

4.

FAND is seen as a gadget with two inputs and one output for the gate AND ∈ Gconj as follows:

• φiAND,1(i) = v2 and φiAND,1(o) = v1;680

• φiAND,2(i) = v′
2 and φiAND,2(o) = v′

1.

• φoAND,1(i) = v5 and φoAND,1(o) = v4.

We now define the following elements required by Definition 9:

• the two state configurations sq for q ∈ {0, 1} are defined by sq(i) = (q, 0, {0, 2}) and sq(o) = (1, 0, {0, 1});

• the context configuration is defined by c(v3) = (1, 0, {1, 2});685

• the time constant is T = 3

• the standard trace τq,q′ over the glueing interface from q ∈ {0, 1} to q′ ∈ {0, 1} is given by:

time i o

0 (q, 0, {0, 2}) (1, 0, {0, 1})

1 (1, 1, {0, 2}) (q, 1, {0, 1})

2 (1, 2, {0, 2}) (1, 2, {0, 1})

3 (q′, 0, {0, 2}) (1, 0, {0, 1})

• for any qi, q
T
i , qo, qo′ ∈ {0, 1} we have the following {v1, v5, v

′
5}-pseudo orbit for FCOPY:

time v1 v2 v3 v4 v5 v′
4

v′
5

0 (qi, 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qo, 0, {0, 2}) (1, 0, {0, 1}) (q′
o, 0, {0, 2}) (1, 0, {0, 1})

1 (1, 1, {0, 2}) (qi, 1, {0, 1}) (1, 1, {1, 2}) (1, 1, {0, 2}) (qo, 1, {0, 1}) (1, 1, {0, 2}) (q′
o, 1, {0, 1})

2 (1, 2, {0, 2}) (1, 2, {0, 1}) (qi, 2, {1, 2}) (1, 2, {0, 2}) (1, 2, {0, 1}) (1, 2, {0, 2}) (1, 2, {0, 1})

3 (q′
i

, 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qi, 0, {0, 2}) (1, 0, {0, 1}) (qi, 0, {0, 2}) (1, 0, {0, 1})

• for any qi, q
T
i , qi′ , q

T
i′ , qo ∈ {0, 1} we have the following {v1, v

′
1, v5}-pseudo orbit for FAND:

time v1 v2 v′
1

v′
2

v3 v4 v5

0 (qi, 0, {0, 2}) (1, 0, {0, 1}) (q
i′ , 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qo, 0, {0, 2}) (1, 0, {0, 1})

1 (1, 1, {0, 2}) (qi, 1, {0, 1}) (1, 1, {0, 2}) (q
i′ , 1, {0, 1}) (1, 1, {1, 2}) (1, 1, {0, 2}) (qo , 1, {0, 1})

2 (1, 2, {0, 2}) (1, 2, {0, 1}) (1, 2, {0, 2}) (1, 2, {0, 1}) (qi ∧ q
i′ , 2, {1, 2}) (1, 2, {0, 2}) (1, 2, {0, 1})

3 (qT
i

, 0, {0, 2}) (1, 0, {0, 1}) (qT

i′ , 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qi ∧ q
i′ , 0, {0, 2}) (1, 0, {0, 1})

Interestingly, local clock update schedules on conjunctive networks are not able to produce superpolynomial

cycles. To avoid to much conflicts in indices in notations, we denote by xQ, xc and xm the three components of a690

configuration x in some local clocks extension network.

Lemma 22. Let us fix any c > 0 and consider the family Fclock,c
pos of all positive conjunctive networks under local

clocks update scheme with clock period c. Fix n > 0 and let F : Qnc → Qnc ∈ Fclock,c
pos . For any configuration

(xQ, xc, xm) ∈ Qnc we have that the period of the attractor reached from (xQ, xc, xm) is at most 2 lcm{xmv : v ∈

{1, . . . , n}}. Moreover, for each attractor x ∈ Att(F), the set of nodes whose Q component is not constant in x695

induces a bipartite subgraph.

Proof. Let (xQ, xc, xm) ∈ Qnc be a configuration and (xQ, xc, xm) ∈ Att(F) be an attractor that is reachable from

(xQ, xc, xm) and that is not a fixed point, i.e. p(x) ≥ 2. In order to simplify the notation, we are going to denote

xQ by x. Let i ∈ {0, . . . , n− 1} be a coordinate such that xi changes its state, i.e there exists some t ∈ N such that

x(0)i 6= x(t)i. Without loss of generality we assume that x(0)i = 1 and xc(0)i = 0 and x(1)i = 0. Consider t1 as700

the first time step such that the coordinate i changes its state from 0 to 1, which means that, t1 is the first time

step such that x(t1) = 0 and x(t1 + 1) = 1. Observe that t1 = sxmi for some s ≥ 1. Note that, for all j ∈ N(i),

x(t1)j = 1. Moreover, we have that for all j ∈ N(i): and that x(s)j = 1 for all s ∈ [1, t1] (see Figure 15). This is

because, since the interaction graph is symmetric, j cannot be in state 0 during interval [1, t1] otherwise both i and

j would stay in state 0 forever, thus contradicting the hypothesis on i. We deduce that xmj ≥ t1 = sxmi (otherwise705

j would update its state and become 0 on interval [1, t1]). Now consider t0 to be the first time step in which the

node i changes its state from 1 to 0, i.e. x(t0) = 1 and x(t0 + 1) = 0. Observe that, t1 < t0 = t1 + s∗xmi for some

s∗ ≥ 1. In addition, there must exist some neighbor k ∈ N(i) satisfying that x(t0)k = 0, otherwise i cannot change

to 0 (it requires at least one neighbor in 0 in order to change its state from 1 to 0). Observe that node k satisfies

xmk ≤ xmi because it needs to update to 0 before node i. More precisely, by the definition of t0 we have that i is fixed710

in state between t1 and t0 (see Figure 15). Additionally, we have that xk(t1) = 1, xk(t0) = 0 and also we have that

x(t0 − xmi)k = 1 (otherwise it contradicts the minimality of t0). Finally, since i is remains in state 0 on the interval

[t0, t0 + xmi] then, k cannot be updated in the same interval. Thus, xmk ≤ xmi . Moreover, the latter observations

imply that i and k are synchronized, i.e. (xc(0))k = (xc(0))i, x
m
k = xmi , t1 = xmi and t0 = t1 + xmi . Note that also,

we have that for all t, x(t)i = 1 − x(t)k. We have shown that the period of any node v is at most 2xmv , so we deduce715

p(x) ≤ 2 lcm{xmv : v ∈ {1, . . . , n}}.

At this point, we know that i must have at least one neighbor that is not constant in x and that it is synchronized.

Let us assume that there is a non constant neighbor ℓ of i that satisfies xmℓ > xmi . On the other hand, we have that

×XX ×

0

1

t0 + 3xmit0 + 2xmit0 + xmi

111 1

0

10

1

01

0

10 1

01 0 1

0

10

11

0

ℓ

k

i

t0t1

Figure 15: Scheme of the dynamics of nodes i, k and ℓ defined in the proof of Lemma 22. The checkmarks indicate where it is feasible

for ℓ to be updated and the crosses mark the intervals on which ℓ can change its state.

ℓ is in state 1 on the interval [0, t1] (see Figure 15) because otherwise i cannot switch to state 1 at the time step t1.

Observe that, by hypothesis, ℓ cannot change its state on intervals of the form [rxmi , (r+1)xmi) for r ∈ N even since i720

is in state 0 on those intervals (otherwise i cannot switch back to 1 because it would have a neighbor in 0). However,

for r even, i is in state 1 on intervals of the form [rxmi , (r+1)xmi). Suppose that ℓ changes its value for the first time on

an interval of the form [r∗xmi , (r
∗ +1)xmi) for some r∗ ∈ N odd, i.e. x(s)ℓ = 0 for some s ∈ [r∗xmi , (r

∗ +1)xmi). Observe

now that x((r∗ + 2)xmi) = 1 since i must return to state 1 but ℓ cannot change its state in [(r∗ + 1)xmi , (r
∗ + 2)xmi)

because i is in state 0. Then, we must have xmℓ ≤ xmi , which contradicts the hypothesis. We conclude that every725

non constant neighbor of i is synchronized. Repeating the same argument now for any non constant neighbor of i we

have that all the nodes in the connected component containing i have local delay xmi . Iterating this same technique

now for each i in the network, we deduce that x is such that p(x) ≤ 2 lcm{xmv : v ∈ {1, . . . , n}} since locally, each

connected component containing some node i is synchronized and thus, each non-constant node is switching its state

every 2xmi time steps. In addition, for each node i every non-constant neighbor is in the state 0 whenever i is in the730

state 1. Thus, the set of nodes which are not constant for (xQ, xc, xm) i.e. S(xQ, xc, xm), induces a two colorable

subgraph. The result holds.

As seen above, there is a qualitative jump between local clocks and periodic update schedules for conjunctive

networks in the size of dynamical cycles. However, for transient and prediction problems, even general periodic

update schedules fail to produce maximal complexity (under standard complexity classes separations assumptions).735

Theorem 23. Let p ∈ N and consider the family Fper,p
pos of positive conjunctive networks under periodic update

schedules of period p. Fper,p
pos is neither dynamically nor computationally complex: more precisely, the transients of

any network in Fper,p
pos with n nodes are of length at most O(n2), the problem PREDuFper,p

pos
can be solved by a NC

2

algorithm and PREDbFper,p
pos

can be solved in polynomial time.

Proof. Let F ∈ Fper,p
pos with n nodes and consider any initial configuration x. By definition, the orbit of x under F p740

is constant on the second and third component of sates, and the action of F p on the first component when starting

from x is a particular non-symmetric conjunctive network Fx that can be seen as an arbitrary Boolean matrix Mx.

First, by [23, Theorem 3.20], the transient of the orbit of x under Fx is of length at most 2n2 − 3n+ 2. We deduce

that the transient of x under F is in O(n2).

Second, it is easy to compute Mx from F and x in NC1. Moreover, matrix multiplication can be done in NC1
745

and by fast exponentiation circuits we can compute M t
x with polynomial circuits of depth O(log(t) log(n)). With a

constant computational overhead, we can therefore efficiently compute F t(x)v and the complexity upper bounds on

PREDuFper,p
pos

and PREDbFper,p
pos

follow.

Remark 5. We remark that even when symmetric conjunctive networks under periodic update schemes are not

dynamically nor computationally complex, it has been shown that, with a different type of update schemes, it is750

possible to construct coherent monotone gadgets and thus, show strong universality for this latter family. Particularly,

we allude to the case of firing memory update schemes, which can also be studied in the context of our asynchronous

extensions framework, as same as periodic update schemes. Just as we have mentioned before, this type of update

scheme introduces internal clocks in each node, which will actually depend on the dynamics of the network (contrarily

to the case of local clocks, where clocks are fixed and independent from the dynamics of the network). This key aspect755

gives the network strong dynamical and computational capabilities which can be used to simulate monotone boolean

networks. Interested reader is referred to in order [24] to see details.

5. Counter examples to the desymmetrization phenomena

The examples studies above all follow a striking phenomenon: a base concrete family over symmetric graphs

is able to simulate its non-symmetric (directed) version when one allows sufficiently rich asynchronous updates760

(periodic updates are enough in all cases). One can wonder how general is the phenomenon of desymmetrization

by asynchronism. In this section, we give two examples of CSAN families that have opposite behaviors when one

compares their periodic update extension and their non-symmetric version with parallel update. Let us first start by

an example where the non-symmetric version is strictly more powerful than the periodic update extension.

Proposition 2. There exists a CSAN family F such that none of its periodic update extension Fp can simulate its765

non-symmetric version F , whatever p ∈ N.

Proof. Let Q = {0, 1} × {0, 1} ∪ {e} and denote by π1 and π2 the projections on the first and second components

respectively for states in {0, 1} × {0, 1}. We construct a family which essentially applies a majority rule on one

component of composite states, does synchronization checks using the second component, and use e as an error state

that spreads over the network. More precisely, consider the local map λ : Q× N
Q → Q that does the following at770

each node v:

• if e appears in the neighborhood, then the image by λ at v is e;

• otherwise, let M1 be the multiset of states of the π1 components of states of neighbors and the the node itself

and denote by m1 the state with a majority of occurrences in M1 (π1 of the state of v in case of tie); then

– if all neighbors of node v (including v) have the same π2 component b, then the image by λ at v is775

(m1, 1 − b);

– otherwise, the image by λ at v is e.

The CSAN family F we consider is that defined by this local rule λ at each node. Consider any automata network

of the periodic update extension of F of period p, and consider any limit cycle of some of its orbits. We show that

this limit cycle has length at most 2. There are two cases:780

• if the update scheme is not a synchronous update scheme (all nodes update exactly at the same time steps),

then there must be some time step at which a node v is updated but some of its neighbors v′ isn’t. So either

v updates to e at this time step, or v updates to a composite state with a π2 component different from the π2

component of v′. In the second case the next node to update among v and v′ will update to e. Finally, since

e appears at some node in the orbit, its means that the limit cycle is the fixed point configuration everywhere785

equal to e.

• if the update scheme is the parallel update scheme, then: either e appears in the considered orbit and the limit

cycle is a fixed point; or e never appears, which means that the π2 component of nodes is oscillating between 0

and 1 and the behavior in the π1 component is that of the classical majority rule with parallel update mode,

hence also of period 2.790

We conclude that the family Fp has only limit cycles of length ≤ 2, whatever p. If we consider now the non-

symmetric version F , it is straightforward to build limit cycle of length n (size of the network) using synchronized π2

components. So Fp cannot simulate F (actually, it is not hard to show that F is strongly universal since it admits

coherent monotone gadgets).

Let us now give an example of CSAN family where the opposite situation occurs: periodic extensions are stronger795

than the non-symmetric version.

Proposition 3. There exists a CSAN family F such that its periodic update extension Fp for some p cannot be

simulated by its non-symmetric version F .

Proof. Consider any CSAN family F0 over alphabetQ than can produce orbits with limit cycles of non-constant length

over symmetric networks that are bipartite: one can for instance choose F0 to be the family of positive conjunctive net-800

works under periodic update schedule of period 3 (see Theorem 21). Define a new alphabet Q′ = Q ∪Q× {0, 1} ∪ {e}

where we distinguish three types of states: the error state e, composite states from Q × {0, 1}, and pure states from

Q. For a non-error state, its Q-content is either itself (when it is pure) or the projection on its Q component (when

it is composite). Let’s define the family F by the following local behavior on any graph:

• e states spread over the network, i.e. any node with an incoming neighbor in state e updates to state e;805

• if a node has a pure (resp. composite) state, then all its incoming neighbors must have a composite (resp.

pure) state otherwise it updates to e in one step; moreover, any pure state with some incoming neighbor in a

state from Q × {0} will also update to e (so when a node in a pure state is updated, all its incoming neighbors

must be in a state from Q× {1} to prevent it from updating to e);

• outside the above cases, the type of a state doesn’t change and810

– if it is a pure state, its Q-content changes according to the local rules over Q of the chosen CSAN family

F0;

– if it is a composite state, its {0, 1} component is inverted (by b 7→ 1 − b), and its Q-content is updated

according to the local rules over Q as above, but only when the {0, 1} component is 1, otherwise the

Q-content is left unchanged.815

Now take any connected automata network from the non-symmetric version F of the family we just defined. We

claim that any orbit reaches a fixed-point. First it is well-knwon that if the network graph is acyclic, then all orbits

converge to a fixed-point. So let’s consider the case where the network graph possesses a directed cycle C. Consider

some configuration x, and let us show that e must appear in the network at some step which implies that the orbit

will reach a fixed-point. If the type of states does not alternate between pure and composite along cycle C, then e is820

generated in one step. If the type of states correctly alternates in C between pure and composite, then there must

be a first step t where some node of C is in a composite state with value 0 on its {0, 1} component. Since C is a

cycle, this node is the incoming neighbor of some other node in a pure state. This last node will update to e in this

situation. This concludes the claim that any orbit reaches a fixed point in any network of F .

Let us now consider any bipartite symmetric network and some orbit of an automata network of family F0825

reaching a long limit cycle. We can simulate this orbit starting from the Q-configuration x by applying a periodic

update scheme of period 2 to some automata network of family F on the same network as follows: by bi-partition of

the network we can distribute the type of states (pure/composite) in such a way that no node has a neighbor with

the same type as itself; then we update composite nodes at each step and pure nodes once every two steps (and start

to update them at first step) ; we choose as initial configuration a configuration where the Q-contents correspond to830

x and all composite node start with 1 in their {0, 1} component. This shows that the periodic update extension of

period 2 of F cannot be simulated by its non-symmetric version F .

6. Perspectives

The main results of this paper extend previous results [24, 25, 18] on the strong interplay between symmetry of

local interactions and update modes. We showed how universality can be recovered from the symmetry constraint835

by allowing various degrees of asynchronism. An immediate question following our work is to find a natural example

of a CSAN family which is (strongly) universal under periodic update schemes, but not universal under local clocks

update schemes.

Besides universality, it would be interesting to better understand in general when a symmetric family can simulate

its non-symmetric version under non-parallel update modes (as it was shown in Theorem 21). Here again, we are840

interested in the level of asynchronism required for this simulation to hold.

Another natural research direction is to try to further extend this analysis to other update modes. As we have

pointed out in the update schemes section (see Remark 2), it would be interesting to study other types of update

schemes which are not captured by general periodic update schemes such as firing memory schemes [24, 22], or

other modes where the decision to apply an update at a node depends on its state (for instance we can interpret845

reaction-difussion systems [6] as threshold networks with an update mode with memory). We can consider even more

general ones inspired by the most permissive semantics studied in [11]. In some cases, Definition 12 of asynchronous

extension should be adapted in order to capture latter update schemes.

References

[1] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of850

Mathematical Biophysics 5 (4) (1943) 115–133. doi:10.1007/bf02478259.

[2] R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical Biology 42 (3) (1973)

563–585. doi:10.1016/0022-5193(73)90247-6.

[3] S. Kauffman, Homeostasis and differentiation in random genetic control networks, Nature 224 (5215) (1969)

177–178. doi:10.1038/224177a0.855

[4] M. Gadouleau, S. Riis, Memoryless computation: new results, constructions, and extensions, Theoretical Com-

puter Science 562 (2015) 129–145.

[5] E. G. Ch., P. Montealegre, Computational complexity of threshold automata networks under different updating

schemes, Theor. Comput. Sci. 559 (2014) 3–19. doi:10.1016/j.tcs.2014.09.010.

[6] E. Goles, M. Matamala, Reaction-diffusion automata: Three states implies universality, Theory of Computing860

Systems 30 (3) (1997) 223–229.

[7] A. Wu, A. Rosenfeld, Cellular graph automata. ii. graph and subgraph isomorphism, graph structure recognition,

Information and Control 42 (1979) 330–353. doi:10.1016/S0019-9958(79)90296-1.

[8] A. Wu, A. Rosenfeld, Cellular graph automata. i. basic concepts, graph property measurement, closure proper-

ties, Information and Control 42 (3) (1979) 305 – 329. doi:10.1016/S0019-9958(79)90288-2.865

[9] J. Demongeot, S. Sené, About block-parallel boolean networks: a position paper, Nat. Comput. 19 (1) (2020)

5–13. doi:10.1007/s11047-019-09779-x.

[10] M. Gadouleau, On the influence of the interaction graph on a finite dynamical system, Natural Computing

19 (1) (2019) 15–28. doi:10.1007/s11047-019-09732-y.

[11] T. Chatain, S. Haar, L. Paulevé, et al., Most permissive semantics of boolean networks, arXiv preprint870

arXiv:1808.10240 (2018).

[12] J. Aracena, A. Richard, L. Salinas, Fixed points in conjunctive networks and maximal independent sets in graph

contractions, J. Comput. System Sci. 88 (2017) 145–163.

[13] E. Goles, M. Noual, Disjunctive networks and update schedules, Adv. Appl. Math. 48 (2012) 646–662.

[14] J. Aracena, E. Goles, A. Moreira, L. Salinas, On the robustness of update schedules in boolean networks,875

Biosystems 97 (1) (2009) 1–8. doi:10.1016/j.biosystems.2009.03.006.

https://doi.org/10.1007/bf02478259
https://doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1038/224177a0
https://doi.org/10.1016/j.tcs.2014.09.010
https://doi.org/10.1016/S0019-9958(79)90296-1
https://doi.org/10.1016/S0019-9958(79)90288-2
https://doi.org/10.1007/s11047-019-09779-x
https://doi.org/10.1007/s11047-019-09732-y
https://doi.org/10.1016/j.biosystems.2009.03.006

[15] F. Robert, Blocs-h-matrices et convergence des methodes iteratives classiques par blocs, Linear Algebra and its

Applications 2 (2) (1969) 223–265. doi:10.1016/0024-3795(69)90029-9.

[16] E. Goles, J. Olivos, Periodic behaviour of generalized threshold functions, Discrete Mathematics 30 (2) (1980)

187 – 189. doi:http://dx.doi.org/10.1016/0012-365X(80)90121-1.880

[17] E. Goles-Chacc, F. Fogelman-Soulie, D. Pellegrin, Decreasing energy functions as a tool for studying threshold

networks, Discrete Applied Mathematics 12 (3) (1985) 261–277.

[18] E. Goles, P. Montealegre, Computational complexity of threshold automata networks under different updating

schemes, Theoretical Computer Science 559 (2014) 3–19.

[19] E. Goles, P. Montealegre, V. Salo, I. Törmä, Pspace-completeness of majority automata networks, Theor.885

Comput. Sci. 609 (2016) 118–128. doi:10.1016/j.tcs.2015.09.014.

[20] M. Rı́os-Wilson, G. Theyssier, Intrinsic Universality in Automata Networks I: Families and Simulations, preprint

available on HAL and arXiv (2023).

[21] M. Rı́os-Wilson, G. Theyssier, Intrinsic Universality in Automata Networks II: Glueing and Gadgets, preprint

available on HAL and arXiv (2023).890

[22] E. Goles, F. Lobos, G. A. Ruz, S. Sené, Attractor landscapes in Boolean networks with firing memory, Natural

Computing 19 (2019) 295–319.

[23] B. D. Schutter, B. D. Moor, On the sequence of consecutive powers of a matrix in a boolean algebra, SIAM

Journal on Matrix Analysis and Applications 21 (1) (1999) 328–354. doi:10.1137/s0895479897326079.

URL https://doi.org/10.1137%2Fs0895479897326079895

[24] E. Goles, P. Montealegre, M. Rı́os-Wilson, On the effects of firing memory in the dynamics of conjunctive networks,

Discrete & Continuous Dynamical Systems - A 40 (10) (2020) 5765–5793. doi:10.3934/dcds.2020245.

URL https://doi.org/10.3934/dcds.2020245

[25] E. Goles, P. Montealegre, V. Salo, I. Törmä, Pspace-completeness of majority automata networks, Theoretical

Computer Science 609 (2016) 118–128.900

https://doi.org/10.1016/0024-3795(69)90029-9
https://doi.org/http://dx.doi.org/10.1016/0012-365X(80)90121-1
https://doi.org/10.1016/j.tcs.2015.09.014
https://doi.org/10.1137%2Fs0895479897326079
https://doi.org/10.1137/s0895479897326079
https://doi.org/10.1137%2Fs0895479897326079
https://doi.org/10.3934/dcds.2020245
https://doi.org/10.3934/dcds.2020245
https://doi.org/10.3934/dcds.2020245

	Introduction
	Preliminaries
	Concrete automata networks
	Signed conjunctive automata networks
	Intrinsic simulations and universality
	Consequences of universality
	A sufficient condition for universality: coherent gadgets

	Update schemes via projections and asynchronous extensions
	Effect of asynchronism: a case study of symmetric networks
	All negative networks
	Parallel case
	Block sequential case

	Locally positive symmetric conjunctive networks
	All-positive networks

	Counter examples to the desymmetrization phenomena
	Perspectives

