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ABSTRACT

An automata network (AN) is a finite graph where each node holds a state from a finite alphabet
and is equipped with a local map defining the evolution of the state of the node depending on its
neighbors. The global dynamics of the network is then induced by an update scheme describing
which nodes are updated at each time step. We study how update schemes can compensate the
limitations coming from symmetric local interactions. Our approach is based on intrinsic simulations
and universality and we study both dynamical and computational complexity. By considering several
families of concrete symmetric AN under several different update schemes, we explore the edge of
universality in this two-dimensional landscape. On the way, we develop a proof technique based on
an operation of glueing of networks, which allows to produce complex orbits in large networks from
compatible pseudo-orbits in small networks.
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1 Introduction

Automata networks introduced in the 40s [24] are both a family of dynamical systems frequently used in the modeling
of biological networks [29, 22] and a computational model [10, 4, 11, 33, 32]. An automata network is a (finite)
graph where each node holds a state from a finite set Q and is equipped with a local transition map that determines
how the state of the node evolves depending on the states of neighboring nodes. Alternatively, they can be described
(in the deterministic case) through a global map F : QV → QV that defines the collective evolution of all nodes of
the network. However, this global map hides two fundamental aspects at the heart of automata network literature
[8, 9, 5, 2, 12, 1, 27]: the interaction graph (knowing on which nodes effectively depends the behavior of a given node)
and the update schedule (knowing in which order and with which degree of synchrony are local transition maps of
each node applied). The major influence of these two aspects on the dynamics of automata networks is clear, but the
detailed understanding remains largely open.

The initial motivation of this paper lies in the striking interplay established in some cases between the symmetry of
the local interactions and the synchrony of the update schedule: on one hand, a seminal result [13, 19] shows that
symmetric threshold networks under fully synchronous updates cannot have periodic orbits of period more than 2, and
that they have polynomially bounded transients; this implies the existence of a polynomial time algorithm to predict
the future of a node from any given initial configuration. On the other hand, majority networks under partially asyn-
chronous updates (precisely block-sequential update modes) were shown to have super-polynomial periodic orbits and
a PSPACE-complete prediction problem [17, 4]. A similar result was obtained recently for conjunctive networks under
a more general update mode called ’firing memory’ [16]. Is is well-known that threshold networks with synchronous
updates but without the symmetry constraint are as capable as automata networks in general (essentially because they
can embed any monotone Boolean circuit). Thus, the results above can be interpreted as the power of some asyn-
chronous updates to break symmetries in the local rules in such a way that dynamical and computational complexity
is recovered.

The purpose of this paper is to further study the capabilities of asynchronous update schemes to compensate for the
limitation coming from constrained symmetric local interactions. Our approach is based in considering a hierarchy of
symmetric local interactions and a hierarchy of update mode which allow us to precisely analyze how the dynamical
and computational complexity varies depending on both dimensions. We are particularly interested in cases where
the full richness of automata networks is achieved both dynamically and computationally, or more precisely, the cases
where any automata network can be closely simulated, a property that we call universality and that we formalize below.
The main question we ask (and partially answer) is where lies the edge of universality in this bi-dimensional landscape
(local symmetry vs. asynchronism).

Detailed framework We aim at making our approach general and modular, while giving concrete and relevant
examples that where considered in literature. Our framework can be decomposed as follows:

• the family of automata network we consider, called concrete symmetric automata network (CSAN), are de-
scribed by labeled undirected graphs whose labels (both on vertices and edges) describe the local interaction
maps; most of the results obtained as an application of our framework are on signed symmetric conjunctive
Boolean networks and three subfamilies defined by local sign constraints: all positive (conjunctive networks),
locally positive (one neighbor at least has a positive interaction), and no constraint on signs. This latter family
has been much studied already (see e.g. [2, 28]).

• we consider four types of update modes: parallel, block-sequential and general periodic ones (well-known
in the literature) and a much less studied one that we call local clocks, which was already considered in the
setting of asynchronous cellular automata [6] and which is close to the recently introduced block-parallel
mode [8]; we view all these update modes as particular local mechanisms of activation of nodes based on
hidden local finite memory acting like clocks; more precisely, we formalize everything inside deterministic
automata network under parallel update mode whose projection on a sub-component of states gives exactly
the desired asynchronous behavior;

• the key aspect in the above choices is that considering a CSAN family X under an update mode Y is actually
formalized as a new CSAN family Z, because the way update modes are coded is directly translated into
constraints in the local interaction maps; our study therefore amounts to analyze the complexity of particular
CSAN families;

• our complexity analysis focus on two aspects: dynamical complexity (transient, cycles, etc) and computa-
tional complexity (witnessed by various long term or short term prediction problems); we use the notion of



intrinsic simulation in order to hit two targets with one bullet: with a proof that A simulates a previously
analyzed B we show complexity lower bounds on A both in dynamical and in the computational sense; in
particular we have a clear formal notion of universality for a family of automata networks that implies max-
imal complexity in both aspects; the interest of our approach is its modularity, and the fact that it is not a
priori limited to a small set of benchmark problems or properties: universality results can be used as a black
box to then prove new corollaries on the complexity of other decision problems or other dynamical aspects;
we stress that knowing that property/aspect X is complex for some family F of automata networks do not
generally imply that property/aspect Y is also complex for family F, even in the case where Y is hard for
automata networks in general (we actually give concrete examples of this below).

Our contributions This paper makes two kinds of contributions: it partially answers the main question addressed
above, but it also establishes a new formalism and a general proof technique to obtain simulation and universality
results suitable for automata network families with symmetric interactions.

• our main contribution is a detailed study of the trade-off between all local constraints and update modes of
our framework described above (Section 6); what we obtain is a series of separation results and markers at
the “edge of universality” showing that the interplay between local interactions and update modes is rich; the
following table give a synthetic view of some of our results:

sign constraint
update mode

parallel block sequential local clocks periodic

all positive BPA BPA BPA SPA
locally positive BPA BPA SU SU

free BPA SU SU SU

where BPA means bounded period attractors (there is a bound on the period of all attractors), SPA means
super-polynomial attractors (attractors can be constructed whose period is super-polynomial is the number
of nodes of the network) and SU means strong universality; strong universality (Definition 19) implies the
existence of exponential attractors (Theorem 22) as well as maximal complexity for short term and long term
prediction problems (Corollary 1).

• our second contribution is a method and proof technique for building complex networks, which is key in ob-
taining the above results. Indeed, the classical approach to obtain complex networks (both computationally
and dynamically) is to design individual building blocs or gadgets that have a specific input/output behavior
(e.g. some Boolean operators) and connect them, from outputs to inputs, in such a way that the desired global
behavior is achieved by composition (e.g. a Boolean circuit); when the local interactions are symmetric or
constrained, it is generally impossible to proceed like this because connecting the output of some gadget to
the input of another one is making a two-way link that can induce feedback compromising the behavior of
the first gadget. Of course this problem can be dealt with in particular cases (it was done in [16, 17]), but
our approach is generic: we replace the connection between gadgets by a glueing operation of two networks
on a common part identified in both (Definition 24), and the fundamental objects that compose through this
glueing operation are pseudo-orbits (Lemma 25) and not directly input/output relations. At the end, we obtain
a proof method that allows to show strong universality (therefore both dynamical and computational com-
plexity) by just exhibiting a finite set of gadgets and pseudo-orbits verifying suitable compatibility conditions
(Definition 29).

• besides the two main contributions above, we also develop a complete formalization of (intrinsic) simulation
between families of automata networks and (intrinsic) universality. This kind of approach is well-known for
other models (see e.g. [7]), and informally or indirectly present in various contributions on automata networks
(see e.g. [11]). We however believe that our efforts of formalization clarify important aspects: the choice
of a concrete representation when considering decision problems with automata networks as input (see Sec-
tion 4.2), the existence of several natural definitions of universality (Definition 19) with different implication
on dynamical complexity (Theorem 22), the fact that two widely used prediction problems are actually in-
comparable (one can be hard while the other is easy in some family of automata networks, and reciprocally,
see Theorem 18), and the fact that some concrete families can exhibit dynamical complexity while failing to
be universal (theorems 35 and 37 and 39); to put it shortly, we show that a simulation/universality approach
is better than taking individual decision problems or dynamical features as benchmarks.

• finally, the local clocks update mode we consider was not studied theoretically before in automata networks
(as far as we know), and proves to be useful as an intermediate one lying between block sequential and
general periodic modes. More generally, we believe that our unified approach which consists in viewing



various update modes as local mechanisms of activation using some finite local information is natural and
deserves further developments. For instance, it captures the ’firing memory’ mode of [16] and more general
modes can be proposed on this principle.

Organization of the paper We start in Section 2 by giving basic definitions about automata networks and families,
including our hierarchy of concrete symmetric automata networks. We then introduce our hierarchy of update schemes
in Section 3, including its formalization as asynchronous extensions. In Section 4, we detail our notions of instrinsic
simulations between individual automata networks, then between families. From there, we introduce the notion of
intrinsic universality and we study their consequences both in terms of dynamics and computational complexity. In
Section 5, we formalize our toolbox based on glueing, G-networks and gadgets. We also study various families of
G-networks, including the canonical universal ones that will serve as a base to establish universality results later on.
In Section 6, we show our main results on local interaction rules versus update modes classification that leads to the
table presented above. Finally, we conclude by discussing some research perspectives in Section 7.

2 Automata networks and families

A graph is a pair G = (V,E) where V and E are finite sets satisfying E ⊆ V × V. We will call V the set of nodes
and the set E of edges. We call |V | the order of G and we usually identify this quantity by the letter n. Usually, as E
and V are finite sets we will implicitly assume that there exists an ordering of the vertices in V from 1 to n (or from
0 to n − 1). Sometimes we will denote the latter set as [n]. If G = (V,E) and V ′ ⊆ V,E′ ⊆ E we say that G′ is
a subgraph of G. We call a graph P = (V,E) of the form V = {v1, . . . , vn} E = {(v1v2), . . . , (vn−1, vn)} a path
graph, or simply a path. We often refer to a path by simply denoting its sequence of vertices {v1, . . . , vn}. We denote
the length of a path by its number of edges. Whenever P = (V = {v1, . . . , vn}, E = {(v1v2), . . . , (vn−1, vn)} is
a path we call the graph in which we add the edge {vn, v1} a cycle graph or simply a cycle and we call it C where
C = P + {vn, v1}. Analogously, a cycle is denoted usually by a sequence of nodes and its length is also given by the
amount of edges (or vertices) in the cycle. Depending of the length of C we call it a k-cycle when k is its length. A
non-empty graph is called connected if any pair of two vertices u, v are linked by some path. Given any non-empty
graph, a maximal connected subgraph is called a connected component.

We call directed graph a pairG = (V,E) together with two functions init : E → V and ter : E → V where each edge
e ∈ E is said to be directed from init(e) to ter(e) and we write e = (u, v) whenever init(e) = u and ter(e) = v. There
is also a natural extension of the definition of paths, cycles and connectivity for directed graphs in the obvious way.
We say a directed graph is strongly connected if there is a directed path between any two nodes. A strongly connected
component of a directed graph G = (V,E) is a maximal strongly connected subgraph.

Given a (non-directed) graph G = (V,E) and two vertices u, v we say that u and v are neighbors if (u, v) ∈ E.
Remark that abusing notations, an edge (u, v) is also denoted by uv. Let v ∈ V, we call NG(v) = {u ∈ V : uv ∈ E}
(or simply N(v) when the context is clear) the set of neighbors (or neighborhood) of v and δ(G)v = |NG(v)| to the
degree of v. Observe that if G′ = (V ′, E′) is a subgraph of G and v ∈ V ′, we can also denote by NG′(v) the set of
its neighbors in G′ and the degree of v in G′ as δ(G′)v = |NG′(v)|. In addition, we define the closed neighborhood
of v as the set N [v] = N(v) ∪ {v} and we use the following notation ∆(G) = max

v∈V
δv for the maximum degree of G.

Additionally, given v ∈ V , we will denote by Ev to its set of incident edges, i.e.,Ev = {e ∈ E : e = uv}.We will use
the letter n to denote the order ofG, i.e. n = |V |. Also, ifG is a graph whose sets of nodes and edges are not specified,
we use the notation V (G) and E(G) for the set of vertices and the set of edges of G respectively. In the case of a
directed graph G = (V,E) we define for a node v ∈ V the set of its in-neighbors by N−(v) = {u ∈ V : (u, v) ∈ E}
and its out-neighbors as N+(v) = {u ∈ V : (v, u) ∈ E}. We have also in this context the indegree of v given by
δ− = |N−(v)| and its outdegree given by δ+ = |N+(v)|

During the most part of of the text, and unless explicitly stated otherwise, every graph G will be assumed to be
connected and undirected. We start by stating the following basic definitions, notations and properties that we will
be using in the next sections. In general, Q and V will denote finite sets representing the alphabet and the set of
nodes respectively. We define Σ(Q) as the set of all possible permutations over alphabet Q. We call an abstract
automata network any function F : QV → QV . Note that F induces a dynamics in QV and thus we can see (QV , F )
as dynamical system. In this regard, we recall some classical definitions. We call a configuration to any element
x ∈ QV . If S ⊆ V we define the restriction of a configuration x to V as the function x|S ∈ QS such that (x|S)v = xv
for all v ∈ S. In particular, if S = {v}, we write xv.



Given an initial configuration x ∈ QV , we define the orbit of x as the sequence O(x) = (F t(x))t≥0. We define the

set of limit configurations or recurrent configurations of F as L(F ) =
⋂

t≥0 F
t(QV ). Observe that since Q is finite

and F is deterministic, each orbit is eventually periodic, i.e. for each x ∈ QV there exist some τ, p ∈ N such that
F τ+p(x) = F τ (x) for all x ∈ QV . Note that if x is a limit configuration then, its orbit is periodic. In addition, any
configuration x ∈ QV eventually reaches a limit configuration in finite time. We denote the set of orbits corresponding
to periodic configurations as Att(F ) = {O(x) : x ∈ L(F )} and we call it the set of attractors of F. We define the
global period or simply the period of x ∈ Att(F ) by p(x) = min{p ∈ N : x(p) = x(0)}. If p(x) = 1 we say that x
is a fixed point and otherwise, we say that x is a limit cycle.

Given a node v, its behavior x 7→ F (x)v might depend or not on another node u. This dependencies can be captured
by a graph structure which plays an important role in the theory of automata networks (see [9] for a review of known
results on this aspect). This motivates the following definitions.

Definition 1. Let F : QV → QV be an abstract automata network and G = (V,E) a directed graph. We say G
is a communication graph of F if for all v ∈ V there exist D ⊆ N−

v and some function fv : QD → Q such that
F (x)v = fv(x|D). The interaction graph of F is its minimal communication graph.

Note that by minimality, for any node v and any in-neighbor u of v in the interaction graph of some F , then the next
state at node v effectively depends on the actual state at node u. More precisely, there is some configuration c ∈ QV

and some q ∈ Q with q 6= cu such that F (c)v 6= F (c′)v where c′ is the configuration c where the state of node u is
changed to q. This notion of effective dependency is sometimes taken as a definition of edges of the interaction graph.

From now on, for an abstract automata network F and some communication graph G of F we use the notation A =
(G,F ). In addition, by abuse of notation. we also call A an abstract automata network. We define a set of automata
networks or a abstract family of automata networks on some alphabetQ as a set F ⊆ ⋃

n∈N

{F : QV → QV : V ⊆ [n]}.
Note that the latter definition provides a general framework of study as it allows us to analyze an automata network
as an abstract dynamical system. However, as we are going to be working also with a computational complexity
framework, it is necessary to be more precise in how we represent them. In this regard, one possible slant is to start
defining an automata network from a communication graph. One of the main definition used all along this paper is that
of concrete symmetric automata network. Roughly, they are non-directed labeled graph G (both on nodes and edges)
that represent an automata network. They are concrete because the labeled graph is a natural concrete representation
upon which we can formalize decision problems and develop a computational complexity analysis. They are symmetric
in two ways: first their communication graph is non-directed, meaning that an influence of node u on node v implies
an influence of node v on node u; second, the behavior of a given node is blind to the ordering of its neighbors in
the communication graph, and it can only differentiate its dependence on neighbors when the labels of corresponding
edges differ.

Definition 2. Given a non-directed graph G = (V,E), a vertex label map λ : V → (Q × 2Q → Q) and an edge
label map ρ : E → Σ(Q), we define the tuple A = (G, λ, ρ) and we call it a concrete symmetric automata network
(CSAN) associated to the graph G. A family of concrete symmetric automata networks (CSAN family) F is given by
an alphabet Q, a set of local labeling constraints C ⊆ Λ×R where Λ = {λ : Q× 2Q → Q} is the set of possible

vertex labels and R = 2Σ(Q) is the set of possible neighboring edge labels. We say a CSAN (G, λ, ρ) belongs to F if
for any vertex v of G with incident edges Ev it holds (λ(v), ρ(Ev)) ∈ C.

Note that the labeling constraints defining a CSAN family are local. In particular, the communication graph structure
is a priori free. This aspect will play an important role later when building arbitrarily complex objects by composition
of simple building blocks inside a CSAN family.

Let us now define the abstract automata network associated to a CSAN, by describing the semantics of labels defined
above. Intuitively, labels on edges are state modifiers, and labels on nodes give a map that describes how the node
changes depending on the set of sates appearing in the neighborhood, after application of state modifiers. We use the
following notation: given k ≥ 1, σ = (σ1, . . . , σk) ∈ Σ(Q)k and x ∈ Qk we note xσ = {σ1(x1), . . . , σk(xk)}. In

addition, given x ∈ Qn we define the restriction of x to some subset U ⊆ V as the partial configuration x|U ∈ Q|U|

such that (x|U )u = xu for all u ∈ U.
Definition 3. Given a CSAN (G, λ, ρ), its associated global map F : QV → QV is defined as follows. For all node
v ∈ V and for all x ∈ Qn:

F (x)v = λv(xv, (x|N(v))ρv ),

where N(i) = {u1, . . . , uδv} is the neighborhood of v and ρv = (ρ(v, u1), . . . , ρ(v, uδu)).



Note that if (G, λ, ρ) is a concrete automata network and F its global rule then, F is an abstract automata network
with interaction graph included in G.

Our core set of CSAN families. Now we present some examples of families of automata networks that we study in
this paper. They differ in the set of allowed labels and their degree of local symmetry.

Definition 4. Let Q = {0, 1}. The family of signed conjunctive automata networks (SCN) is the set of CSAN (G, λ, ρ)
where for each node v we have λv(q,X) = minX =

∧

X and, for each edge e, ρe is either the identity map or the
map x 7→ 1− x.

The family of locally positive conjunctive networks (LPCN) is the set of signed conjunctive automata networks
(G, λ, ρ) where we require, in addition, that for each node v there is at least on edge e incident to v such that ρe
is the identity.

Finally, the family of globally positive conjunctive networks (GPCN) is the set of signed conjunctive automata net-
works where, for all edge e, ρe is the identity.

Definition 5. Let Q be a totally ordered set. The family of min-max automata networks over Q is the set of CSAN
(G, λ, ρ) such that for each edge e, ρe is the identity map and, for each node v, λv(q,X) = maxX or λv(q,X) =
minX .

Remark 1. If Q = {0, 1}) then, F is the class of AND-OR networks, i.e., F (x)i =
∧

j∈N(i)

xj or F (x)i =
∨

j∈N(i)

xj

3 Update schemes

Through its global rule F , an automata network A defines a dynamics over QV by the subsequent iterations of F
. This is the most natural way to define a dynamics from an automata network and its usually said that in this case
the dynamics follows a parallel update scheme. The name comes from the fact that, at each time step, each node in
the network updates its state according to its local function at the same time. Nevertheless, starting from the network
structure of A, one can also induce a dynamical system over QV by considering other ways of updating in which not
all the nodes are updated at the same time. Observe that, generally speaking, this latter notion demands some sort of
temporal information in the nodes that determines which nodes have to be updated at a particular time step. We use
the following general definition of update scheme.

Definition 6. Consider an abstract automata network F : QV → QV . An update scheme is a sequence µ : N→ 2V .
Given an update scheme µ and a natural number k ∈ N we call an intermediate step of the dynamics given by µ to

the function Fµ(k) defined by Fµ(k)(x)i =

{

F (x)i If i ∈ µ(k),
xi otherwise.

We define an orbit given by µ starting from some

x ∈ QV as the sequenceOµ,F (x) = (x, Fµ(0)(x), Fµ(1)(Fµ(0)(x)), Fµ(2)(Fµ(1)(Fµ(0)(x))), . . .)

3.1 Periodic update schemes

One of the most studied types of update schemes are the periodic update schemes, i.e. modes where map µ is periodic.
This class contains well-studied particular cases, for instance: parallel update scheme, in which all the nodes of the
networks are updated at the same time (see Figure 1) and also the block sequential update schemes in which each node
is updated once every p steps (but not necessarily all at the same time). In addition, we explore a new class of update
schemes which contains all the rest that it is called local clocks. In this class, each node v is updated once every pv
steps but the frequency of update pv might depend on the node. This scheme can be seen intuitively as follows which
justify the name: each node possesses an internal clock that ticks periodically and triggers an update of the node.

Definition 7. We say that an update scheme µ is a periodic update scheme if there exists p ∈ N such that µ(n+ p) =
µ(n) for all n ∈ N. Moreover, we say that µ is

• a block sequential scheme if there are subsets (called blocks) B0, . . . , Bp−1 ⊆ V forming a partition of V
such that µ(n) = Bn mod p,

• a local clocks scheme if for each v ∈ V there is a local period τv ∈ N and a shift 0 ≤ δv < τv such that
v ∈ µ(n) ⇐⇒ δv = n mod τv.



t = 0 −→ (0, 1, 1, 0)

t = 1 −→ (1, 0, 0, 1)

t = 2 −→ (0, 1, 1, 0)

t = 3 −→ (1, 0, 0, 1)

t = 4 −→ (0, 1, 1, 0)

µ = {{1, 2, 3, 4}}
1 2

43

A B

µ = {{1, 2, 4}, {1, 2, 3}, {2, 3}, {1, 4}}

t = 4 −→ (0, 0, 0, 0)

t = 3 −→ (0, 0, 0, 1)

t = 2 −→ (0, 1, 1, 1)

t = 1 −→ (1, 0, 1, 1)

t = 0 −→ (0, 1, 1, 0)

Figure 1: Synchronous update scheme and general periodic update scheme for the same conjunctive automata net-
work. Local function is given by the minimum (AND function) over the set of states of neighbors for each node. A)
Synchronous or parallel update scheme. In this case µ has period 1 and all nodes are updates simultaneously. Observe
that dynamics exhibits an attractor of period 2 B) General periodic update scheme over a conjunctive network. In this
case µ has period 4 and dynamics reach a fixed point after 4 time steps. Observe that there is no restriction on how
many times a node is updated. For example, 1 is updated 3 times every 4 time steps but 4 is updated only 2 times every
4 time steps.

For a concrete example on how these update schemes work, see Figure 2 in which different dynamics for a simple
conjunctive network under block sequential and local clocks update schemes are shown.

1 2

43

t = 0 −→ (0, 1, 1, 0)

t = 1 −→ (1, 1, 0, 0)

t = 2 −→ (1, 0, 0, 0)

t = 3 −→ (0, 0, 0, 0)

µ = {{1, 3}, {2, 4}}

t = 0 −→ (0, 1, 1, 0)

t = 1 −→ (1, 0, 0, 1)

t = 2 −→ (1, 0, 0, 1)

t = 3 −→ (0, 0, 1, 0)

t = 4 −→ (0, 0, 1, 0)

µ = {{1, 2, 3, 4}, {}, {1, 3}, {}}

t = 5 −→ (0, 0, 0, 0)

A B

Figure 2: Block sequential and local clocks update schemes over a simple conjunctive network. Local functions are
given by the minimum (AND) over the states of the neighbors of each node. A) Block sequential update scheme. In
this case function µ is defined by two blocks: {1, 3} and {2, 4}. Dynamics reach a fixed point after 3 time steps. B)
Local clocks update scheme. In this case each node has an internal clock with different period. Nodes 1 and 3 are
updated every two steps (τ1 = τ3 = 2) and nodes 2 and 4 are updated every 4 time steps (i.e. τ2 = τ4 = 4). Shift
parameter is 0 for all nodes δ1 = δ2 = δ3 = δ4 = 0. Dynamics reach a fixed point after 3 time steps.

Block sequential and local clocks schemes are clearly periodic schemes. Moreover, any block sequential scheme
given by B0, . . . , Bp−1 ⊆ V is a local clocks scheme given by τv = p and δv = i ⇐⇒ v ∈ Bi for all v ∈ V . As
already said, block sequential schemes can thus be seen as local clocks schemes where all nodes share the same update
frequency. General periodic update schemes allows different time intervals between two consecutive updates of a node,
which local clocks schemes obviously can’t do (see Figure 1, B). We will see later the tremendous consequences that
such subtle differences in time intervals between updates at each node can have. For now let us just make the formal



observation that the inclusions between these families of update schedules are strict when focusing on the sets of maps
µ.

Remark 2. A so-called block-parallel scheme has also been considered more recently [8] which is defined by a set of
list of nodesLi = (vi,j)0≤j<pi

(for 1 ≤ i ≤ k) forming a partition (i.e. such that vi,j are all distinct and∪i,jvi,j = V )
to which is associated the map µ such that vi,j ∈ µ(n) ⇐⇒ j = n mod pi. It is a particular case of our definition
of local clocks scheme above with the additional constraints that the size of the set µ(n) of updated nodes is constant
with n (see Figure 3 for an example). We note that, conversely, any local clocks scheme on a given networked can
be simulated by a block-parallel scheme by artificially adding disconnected nodes that do nothing but satisfy the
constraint of µ(n) being of constant size.
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43

t = 0 −→ (0, 1, 1, 0)

t = 1 −→ (1, 0, 1, 1)

t = 2 −→ (0, 0, 1, 0)

t = 3 −→ (0, 0, 0, 0)

µ = {{1, 2, 4}, {1, 3, 4}}

Figure 3: Block parallel update scheme defined over a conjunctive network. Updating list is given by L =
{(1), (2, 3), (4)}. Observe that a constant amount of nodes (equal to the length of L, i.e., 3) is updated at each time
step. Dynamics reach a fixed point after 3 time-steps.

3.2 Projections and asynchronous extensions

Now we present a dynamical formalism that allow us to include all the update schemes presented above and possibly
other ones into one formalism. We remark that in all periodic schemes, a given node can take the decision to update
or not by simply keeping track of the current value of time modulo the period. The key observation is that, when we
add the knowledge of time modulo the period at each node as a new component of states, the whole system becomes
deterministic. In fact, we are recovering the original dynamics of some automata network with alphabet Q under a
periodic update scheme by projecting a specific deterministic automata network with alphabet Q′ ×Q onto Q.

Let F : QV → QV be an abstract automata network. We define its asynchronous version as an automata network
that in every time-step (non-deterministically) choose if a node i should be updated or if it will be stay in the same
state. More precisely a asynchronous version of F is a non-deterministic function F ∗ : QV → (P(Q))V such that
F ∗(x)i = {xi, F (x)i}. Note that, analogously to the deterministic case one can define an orbit starting from x of F ∗

as a sequence of states OF∗(x) = x0 = x, x1, x2, . . . , xt, . . . ,∈ Qn such that xsi ∈ F (xs−1)i for i ∈ V and s ≥ 1.

Note also that, given x ∈ QV and an orbit OF∗(x) we can see OF∗(x) as a particular realization of certain update
scheme µ. More precisely, there exist an update scheme µ (which is defined in the obvious way i.e. by updating the
corresponding nodes in every time step according to points in OF∗(x)) such that for every xs ∈ OF∗(x) we have
xs = (OF,µ(x))

s. In addition, we have that for each update scheme µ there exist an orbit of F ∗ which coincides with
its dynamics in every time step. Thus, we could work with F ∗ in order to globally study all possible update schemes.
However, we are interested in specific update schemes and we would like to continue working in a deterministic
framework in order to keep things simple (in particular the notion of simulation that we define later).

In order to achieve this task, we introduce the following notion of asynchronous extension which is a way to produce
the dynamics of different update schemes through projection.

Definition 8. Let Q be a finite alphabet and Q′ = Q×R where R is finite. Let F : QV → QV and F ′ : Q′V → Q′V

two abstract automata networks. We say that F is a projection system of F ′ if for x ∈ Q′V and F ′ is an asynchronous
extension of F

π(F ′(x)) ∈ F ∗(π(x))

where π is the node-wise extension of the projection π : Q′ → Q such that π(q, r) = q for all q′ = (q, r) ∈ Q′.



We show hereunder that the dynamics associated to any of the previously presented periodic update schemes can
be described as an asynchronous extension over a product alphabet. To simplify notations we sometimes identify
(A×B × · · · )V with AV ×BV × · · ·.
Definition 9 (block sequential extension). Let F : QV → QV be an abstract automata network. Let b ≤ n and
let Q′ = Q × {0, . . . , b − 1}. We define the block sequential extension of F with b blocs as the automata network
F ′ : (Q′)V → (Q′)V such that for all x = (xQ, xb) ∈ Q′V and all v ∈ V :

F ′(x)v =

{

(F (xQ)v, (xb)v − 1 mod b) if (xb)v = 0,

((xQ)v, (xb)v − 1 mod b) else.

Definition 10 (local clocks extension). Let F : QV → QV be an abstract automata network. Let c ∈ N and let
Q′ = Q× {0, . . . , c− 1} × {1, . . . , c}. We define the local clocks extension of F with clock length c as the automata
network F ′ : (Q′)V → (Q′)V such that for all x = (xQ, xc, xm) ∈ Q′V and all v ∈ V :

F ′(x)v =

{

(F (xQ)v, (ψ(xm)v [(xc)v]) + 1 mod (xm)v, (xm)v) if (xc)v = 0,

((xQ)v, (ψ(xm)v [(xc)v]) + 1 mod (xm)v, (xm)v) else.

ψm(r) : {0, . . . , c− 1} → {0, . . . , c− 1} is such that ψm(r) =

{

r if r ≤ m− 1,

m− 1 else.

Definition 11 (periodic extension). Let F : QV → QV be an abstract automata network. Let p ∈ N and let

Q′ = Q × {0, . . . , p− 1} × 2{0,...,p−1}. We define the periodic extension of F with period length p as the automata
network F ′ : (Q′)V → (Q′)V such that for all x = (xQ, xp, xs) ∈ Q′V and all v ∈ V :

F ′(x)v =

{

(F (xQ)v, (xp)v + 1 mod p, (xs)v) if (xp)v ∈ (xs)v,

((xQ)v, (xp)v + 1 mod p, (xs)v) else.

Remark 3. Observe that, given an abstract automata network F : QV → QV and an asynchronous extension
F ′ : (Q ×R)V 7→ (Q× R)V of the type previously defined i.e. a block sequential extension, a local clocks extension
or a periodic extension, both F ′ and Fµ (where µ is some of the latter update schemes) describe the same dynamics.
In fact, let us illustrate this fact by analyzing the case of the block sequential extension (the other cases are analogous).
Let b ≥ 1 and µb = (I0, . . . , Ib−1). Note that (I0, . . . , Ib−1) is an ordered partition of V . On one hand, we consider
an arbitrary initial condition x ∈ QV and the correspondent block sequential orbit Oµ,F (x). On the other hand,

we consider a block extenstion F
′

: (Q × {0, . . . , b − 1})V 7→ (Q × {0, . . . , b − 1})V and an initial condition
z ∈ (Q × {0, . . . , b − 1})V given by zv = (xv, yv) where yv = k if and only if v ∈ Ik for 1 ≤ k ≤ b. By the

definition of F
′

, we have that π(F ′(z)) = (Oµ,F (x))
1 since the only nodes v in which F is applied (in the first

coordinate) are the ones such that v ∈ I0. In addition, we have that for each v in V , π2(F
′

(x))v = yv − 1 mod b,
where π2 is the node-wise extension of the proyection π2 : Q × {0, . . . , b − 1} 7→ {0, . . . , b − 1}. Thus, we have
π(F ′(F ′(x))) = (Oµ,F (x))

2. Iteratively, we deduce π(F ′t(x)) = (Oµ,F (x))
t for each t ≥ 1.

Conversely, let us choose an arbitrary initial condition x = (xQ, xb) ∈ (Q×{0, . . . , b− 1})V . We define the ordered
partition I0 . . . , Ib−1 given by v ∈ Ik if and only if (xb)v = k for 0 ≤ k ≤ b − 1. Then, the second coordinate of the
initial condition xb induces a block sequential update scheme µxb

which is defined by the latter ordered partition.

The previous definitions are formalized for every abstract automata network. We now focus on CSAN families where
the extensions are also CSAN as show in the following lemma.

Lemma 12. Let F be a CSAN, then any block sequential extension (resp. local clocks extension, resp. periodic
extension) of F is a CSAN. Moreover, for any CSAN family F and any fixed b, the set of block sequential extensions
with b blocs of networks of F is again a CSAN family. The same holds for local clocks and periodic extensions.

Proof. In each case, the definition of the extension F ′ with alphabet Q′ = Q ×R is such that the action of F ′ on the
R component is purely local (the new value of the R component of a node evolves as a function of the old value of this
R component) and the value of the R component at a node determines alone if the Q component should be updated
according to F or left unchanged. Therefore clearly F ′ is a CSAN if F is.

In the context of a CSAN family F , the CSAN definition of F ′ involves only local constraints coming from F ∈ F
and the action on the R-component is the same at each node. So the second part of the lemma is clear.



Remark 4. This approach by asynchronous extensions can also capture non-periodic update schemes. For instance
[14] studies an update scheme for Boolean networks called firing memory which uses local delays at each node and,
in addition, makes the delay mechanism depend on the state of the current configuration at the node. Firing memory
schemes can be captured as an asynchronous extension in such a way that the above lemma for the CSAN case still
works.

To sum up, our formalism allows to treat variations in the update scheme as a change in the CSAN family considered.
Given a CSAN family F and integers b, c, p, we introduce the following notations:

• F BLOCK,b is the CSAN family of all block sequential extensions of networks from F with b blocks,

• F CLOCK,c is the CSAN family of all local clocks sequential extensions of networks from F with clock length
c,

• F PER,p is the CSAN family of all periodic extensions of networks from F with period p.

4 Simulation and universality

In this section we introduce a key tool used in this paper: simulations. The goal is to easily prove computational or
dynamical complexity of some family of automata networks by showing it can simulate some well-known reference
family where the complexity analysis is already established. It can be thought as a complexity or dynamical reduction.
Simulations of various kinds are often implicitly used in proofs of dynamical or computational hardness. We are going
instead to explicitly define a notion of simulation and establish hardness results as corollaries of simulation results later
in the paper. To be more precise, we will first define a notion of simulation between individual automata networks, and
then extend it to a notion of simulation between families. This latter notion, which is the one we are really interested
in requires more care if we want to use it as a notion of reduction for computational complexity. We introduce all the
useful concepts progressively in the next subsections.

4.1 Simulation between individual automata networks

At the core of our formalism is the following definition of simulation where an automata network F is simulated by
an automata network G with a constant time slowdown and using blocs of nodes in G to represent nodes in F . Our
definition is rather strict and requires in particular an injective encoding of configurations of F into configurations of
G. We are not aware of a published work with this exact same formal definition, but close variants certainly exist and
it is a direct adaptation to finite automata networks of a classical definition of simulation for cellular automata [7].

Definition 13. Let F : QVF

F → QVF

F andG : QVG

G → QVG

G be abstract automata networks. A block embedding ofQVF

F

into QVG

G is a collection of blocs Di ⊆ VG for each i ∈ VF which forms a partition of VG together with a collection of

patterns pi,q ∈ QDi

G for each i ∈ VF and each q ∈ QF such that pi,q = pi,q′ implies q = q′. This defines an injective

map φ : QVF

F → QVG

G by φ(x)Di
= pi,xi

for each i ∈ VF . We say that G simulates F via block embedding φ if there

is a time constant T such that the following holds on QVF

F :

φ ◦ F = GT ◦ φ.

See Figure 4 for a scheme of block simulation. In the following, when useful we represent a block embedding as the
list of blocs together with the list of patterns. The size of this representation is linear in the number of nodes (for fixed
alphabet).

Remark 5. It is convenient in many concrete cases to define a block embedding through blocsDi that are disjoint but
do not cover VG and add a context block C disjoint from the Di that completes the covering of VG. In this variant

a block embedding of QVF

F into QVG

G is given by patterns pi,q and a constant context pattern pC ∈ QC
G which define

an injective map φ : QVF

F → QVG

G by φ(x)Di
= pi,xi

for each i ∈ VF and φ(x)C = pC . This variant is actually just
a particular instance of Definition 13 because we can include C in an arbitrary block (Di ← Di ∪ C) and define the
block embedding as in Definition 13.

In our proofs of simulations in section 6, the variant blocs/context will be particularly relevant because the size of blocs
will be bounded while the context will grow with the size of the sonsidered automata. Said differently, the information
about an encoded state will be very localized.
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Figure 4: Scheme of one-to-one block simulation. In this case, network F is simulated by G. Each node in F is
assigned to a block in G and state coding is injective. Observe that blocks are connected (one edge in the original
graph may be represented by a path in the communication graph of G) according to connections between nodes in the
original network F . This connections are represented by blue lines

Another natural particular case of Definition 13 corresponding to localized information is when in each block Di,
there is a special node vi ∈ Di such that the map q 7→ pi,q(vi) is injective. It is only possible when QG is larger than
QF , but it will be the case in several examples of Boolean automata networks below. Interestingly, this local coding
phenomena is forced when some automate network G simulates some Boolean automata network G: indeed, in any
block Di of G at least one node vi must change between patterns pi,0 and pi,1, but the map x ∈ {0, 1} 7→ pi,x being
injective, it means that x 7→ pi,x(vi) is injective too.

Remark 6. The simulation relation of Definition 13 is a pre-order on automata networks.

The orbit graph GF associated to network F with nodes V and alphabet Q is the digraph with vertices QV and an
edge from x to F (x) for each x ∈ QV . We also denote Gt

F = GF t .

Lemma 14. If G simulates F via block embedding with time constant T then the orbit graph GF of F is a subgraph
of GT

G. In particular if F has an orbit with transient of length t and period of length p, then G has an orbit with
transient of length T t and period Tp.

Proof. The embedding of GF inside GT
G is realized by definition by the block embedding of the simulation. The

consequence on the length of periods and transients comes from the fact that the embedding φ verifies: x is in a
periodic orbit if and only if φ(x) is in a periodic orbit.

4.2 Representing Automata Networks

As we are interested in measuring computational complexity of decision problems related to the dynamics of automata
networks belonging to a particular family, we introduce hereunder a general notion for the representation of a family of
automata networks. We can always fix a canonical representation of automata networks as Boolean circuits. However,
as we show in the first part of this section, families can have different natural representation which are closely related to
their particular properties. Considering this fact, we introduce the notion of standard representation in order to denote
some representation from which we can efficiently obtain a circuit family computing original automata network family.
Finally, we resume previous discussion on different representations for some particular families, showing how difficult
it is to transform one particular representation into another one.

4.2.1 Standard representations

We fix for any alphabet Q an injective map mQ : Q→ {0, 1}kQ which we extend cell-wise for each n to

mQ : Qn → {0, 1}kQn. Given an abstract automata network F : Qn → Qn, a circuit encoding of F is a Boolean

circuit C : {0, 1}kQn → {0, 1}kQn such that mQ ◦ F = C ◦mQ on Qn. We also fix a canonical way to represent



circuits as words of {0, 1}∗ (for instance given by a number of vertices, the list of gate type positioned at each vertex
and the adjacency matrix of the graph of the circuit).

Let F be a set of abstract automata network over alphabet Q. A standard representation F∗ for F is a language
LF ⊆ {0, 1}∗ together with a DLOGSPACE algorithm such that:

• the algorithm transforms any w ∈ LF into the canonical representation of a circuit encoding C(w) that code
an abstract automata network Fw ∈ F ;

• for any F ∈ F there is w ∈ LF with F = Fw.

The default general representations we will use are circuit representations, i.e. representations where w ∈ LF is just a
canonical representation of a circuit. In this case the DLOGSPACE algorithm is trivial (the identity map). However,
we sometimes want to work with more concrete and natural representations for some families of networks: in such a
case, the above definition allows any kind of coding as soon as it is easy to deduce the canonical circuit representation
from it.

4.2.2 Example of standard representations of some particular families

Observe that communication graph is often an essential piece of information for describing an automata network,
however, this information is usually not enough. Thus, in this section three examples of canonical types of families are
discussed: bounded degree networks, CSAN and algebraic families. The first one is characterized by a communication
graph which has bounded degree, i.e. there exist a constant ∆ ∈ N (not depending in the size of the network) such that
maximum degree is at most ∆. The second one was widely presented in previous sections and its roughly the family
of all set-valued functions described by labelled communication graphs. Finally, an algebraic family is essentially a
family of linear maps in the case in which Q is seen as a finite field and Qn as a linear space. We show in latter cases
that there exists a natural representation that is based on its properties. Roughly, it is observed that bounded degree
condition provides a way to store information in an efficient way, set-valued functions in the case of CSAN does not
depend on graph structure and linear maps can be represented as matrices

The CSAN case A CSAN family is a collection of labeled graphs and thus is naturally represented as a graph G
together with some circuit family which represents local functions (i.e. λ and ρ). Each local function will depend only
in the local configuration composed by a node and its neighbors. In addition, for a fixed CSAN family, a collection of
set-valued functions and edge-labels is finite and provided independently of the structure of each graph as they depend
on the possible sets of elements in the alphabet Q (note that what makes different two networks in one family is the
position of labels but local functions are chosen from the a same fixed set). Thus, we can represent a CSAN family
F by a collection of labeled graphs G and a circuit family Λ. We call this representation a succinct representation for
CSAN F . As circuit family Λ depends only in the size of the alphabet and we are considering that alphabet is fixed, we
will usually omit Λ and just write G as a succinct representation for F and we will denote a CSAN (G, λ, ρ) ∈ F by
simply G (where of course G is a labeled graph in G). Note that as alphabet size is constant, a succinct representation
is, in particular, a standard representation for CSAN family as an abstract automata network family. Formally, the
language LG containing the encoding of each labeled graph in G together with the standard encoding of constant
circuit family Λ is a standard representation for CSAN family F .

The case of bounded degree communication graphs Let us fix some positive constant ∆. It is natural to consider
the family of automata networks whose interaction graph has a maximum degree bounded by ∆ (see Remark 11 be-
low). We associate to this family the following representation: an automata network F is given as pair (G, (τv)v∈V (g))
where G is a communication graph of F of maximum degree at most ∆ and (τv)v∈V (G) is the list for all nodes of

G of its local transition map Fv of the form Qd → Q for d ≤ ∆ and represented as a plain transition table of size
|Q|d log(|Q|).
Remark 7. Given any CSAN family, there is a DLOGSPACE algorithm that transforms a bounded degree represen-
tation of an automata network of the family into a CSAN representation: since all local maps are bounded objects, it
is just a matter of making a bounded computation for each node.

The algebraic case When endowing the alphabet Q with a finite field structure, the set of configurations Qn is a
vector space and one can consider automata networks that are actually linear maps. In this case the natural represen-
tation is a n× n matrix. It is clearly a standard representation in the above sense since circuit encodings can be easily



computed from the matrix. Moreover, as in the CSAN case, when a linear automata network is given as a bounded
degree representation, it is easy to recover a matrix in DLOGSPACE.

More generally, we can consider matrix representations without field structure on the alphabet. An interesting case
is that of Boolean matrices: Q = {0, 1} is endowed with the standard Boolean algebra structure with operations ∨,∧
and matrix multiplication is defined by:

(

AB)i,j =
∨

k

Ai,k ∧Bk,j .

They are a standard representation of disjunctive networks (and by switching the role of 0 and 1 conjunctive net-
works), i.e. networks F over alphabet {0, 1} whose local maps are of the form Fi(x) = ∨k∈N(i)xk (respectively

Fi(x) = ∧k∈N(i)xk) . When their dependency graph is symmetric, disjunctive networks (resp. conjunctive networks)
are a particular case of CSAN networks for which ρv maps are the identity and λv are just max (resp. min) maps.
For disjunctive networks (resp. conjunctive networks) the CSAN representation and the matrix representation are
DLOGSPACE equivalent.

4.2.3 Computing interaction graphs from representations

One of the key differences between all the representations presented so far is in the information they give about the
interaction graph of an automata network. For instance, it is straightforward to deduce the interaction graph of a
linear network from its matrix representation in DLOGSPACE. At the other extreme, one can see that it is NP-hard to
decide whether a given edge belongs to the interaction graph of an automata network given by a circuit representation:
indeed, one can build in DLOGSPACE from any SAT formula φ with n variables a circuit representation of an
automata network F : {0, 1}n+1 → {0, 1}n+1 with

F (x)1 =

{

xn+1 if φ(x1, . . . , xn) is true,

0 else.

This F is such that node 1 depends on node n+ 1 if and only if φ is satisfiable.

For automata networks with communication graphs of degree at most ∆, there is a polynomial time algorithm to
compute the interaction graph from a circuit representation: for each node v, try all the possible subsets S of nodes of
size at most ∆ and find the largest one such that the following map

x ∈ QS 7→ Fv(φ(x))

effectively depends on each node of S, where φ(x)w is xw is w ∈ S and some arbitrary fixed state q ∈ Q else. Note
also, that we can compute a bounded degree representation in polynomial time with the same idea.

In the CSAN case, the situation is ambivalent. On one hand, the interaction graph can be computed in polynomial time
from a CSAN representation because for any given node v the following holds: either λv is a constant map and then
v has no dependence, or λv(q,X) depends only on q and in this case node v depends on itself but no other node, or
λv(q,X) depends only on X and in this case node v depends exactly on its neighbors in the CSAN graph, or, finally,
λv(q,X) depends both on q and on X and in this case node v depends on itself and its neighbors in the CSAN graph.
On the other hand, a polynomial time algorithm to compute the interaction graph from a circuit representation would
give a polynomial algorithm solving Unambiguous-SAT (which is very unlikely following Valiant-Vazirani theorem
[30]). Indeed, any “dirac” map δ : {0, 1}n → {0, 1} with δ(x) = 1 if and only if x1 · · ·xn = b1 · · · bn can be seen as
the local map of a CSAN network because it can be written as λ({ρi(xi) : 1 ≤ i ≤ n}) where ρi(xi) = xi if bi = 1
and ¬xi else, and λ is the map

S ⊆ Q 7→
{

1 if S = {1}
0 else.

A constant map can also be seen as the local map of some CSAN network. Therefore, given a Boolean formula φ with
the promise that is at has at most one satisfying assignment, one can easily compute the circuit representation of some
CSAN network which has some edge in its interaction graph if and only if φ is satisfiable: indeed, the construction of
F above from a SAT formula always produce a CSAN given the promise on φ.

It follows from the discussion above that a polynomial time algorithm to compute a CSAN representation of a CSAN
represented by circuit would give a polynomial time algorithm to solve Unambiguous-SAT.

The following table synthesizes the computational hardness of representation conversions. It shall be read as follows:
given a family (F ,F∗) listed horizontally and a family (H,H∗) listed vertically, the corresponding entry in the table



indicates the complexity of the problem of transforming w ∈ LF with the promise that Fw ∈ F ∩H into w′ ∈ LH

such that Fw = Hw′ .

output
input

circuit CSAN ∆-bounded degree matrix

circuit trivial DLOGSPACE DLOGSPACE DLOGSPACE
CSAN USAT-hard trivial DLOGSPACE DLOGSPACE

∆-bounded degree PTIME PTIME trivial DLOGSPACE

USAT-hard means that any PTIME algorithm would imply a PTIME algorithm for Unambiguous-SAT.

4.3 Simulation between automata network families

From now on, a family of automata networks will be given as a pair (F ,F∗) where F is the set of abstract automata
networks andF∗ a standard representation. We can now present our notion of simulation between families: a familyA
can simulate another family B if we are able to effectively construct for anyB ∈ B some automata networkA ∈ A that
is able to simulateB in the sense of Definition 13. More precisely, we ask on one hand that the automata network which
performs the simulation do this task in reasonable time and reasonable space in the size of the simulated automata
network, and, on the other hand, that the construction of the simulator is efficient in the size of the representation of
the simulated one.

Definition 15. Let (F ,F∗) and (H,H∗) be two families with standard representations on alphabets QF and QH

respectively. Let T, S : N → N be two functions. We say that F∗ simulates H∗ in time T and space S if
there exists a DLOGSPACE Turing machine M such that for each w ∈ LH representing some automata network
Hw ∈ H : Qn

H → Qn
H , the machine produces a pair M(w) which consists in:

• w′ ∈ LF with Fw′ : QnF

F → QnF

F ,

• T (n) and a representation of a block embedding φ : QnF → Qn,

such that nF = S(n) and Fw′ simulates Hw in time T = T (n) under block embedding φ.

From now on, whenever F∗ simulatesH∗ in time T and space S we write H∗ 4T
S F∗.

Remark 8. Note that both T and S maps must be DLOGSPACE computable from this definition. Moreover, the
simulation relation between families is transitive because the class DLOGSPACE is closed under composition and
simulation between individual automata networks is also transitive. When composing simulations time and space
maps S and T get multiplied.

4.4 Decision problems and automata network dynamics

Studying the complexity of decision problems related to the dynamics of some discrete dynamical system is a very
well known and interesting approach for measuring the complexity of the dynamics. In this section we introduce three
variants of a classical decision problem that is closely related to the dynamical behavior of automata networks: the
prediction problem. This problem consists in predicting the state of one node of the network at a given time. We study
short term and long term versions of the problem depending on the way the time step is given in input. In addition, we
explore a variant in which we ask if some node has eventually changed without specifying any time step, but only a
constant observation time rate τ . In other words, we check the system for any changement on the state of a particular
node every multiple of τ time steps. The main point of this subsection is to show that these problems are coherent with
our simulation definition in the sense that if some family of automata networks (F2,F∗

2 ) simulates (F1,F∗
1 ) then, if

some of the latter problem is hard for F1 it will also be hard for F ′
2. We will precise this result in the following lines.

Let (F ,F∗) an automata network family and let L ∈ {0, 1}∗ × {0, 1}∗ be a parametrized language. We say that L is
parametrized by F if L has F∗ encoded as parameter. We note LF ∈ {0, 1}∗ as the language resulting on fixing F∗

as a constant.

In particular, we are interested in studying prediction problems. We start by defining two variants of this well-known
decision problem:



Problem (Unary Prediction (U-PRED)).

Parameters: alphabet Q, a standard representation F∗ of an automata network family F

Input:

1. a word wF ∈ F∗ representing an automata network F : Qn → Qn on alphabetQ, with F ∈ F .

2. a node v ∈ V (F ) = [n]

3. an initial condition x ∈ QV .

4. a natural number t represented in unary t ∈ 1.

Question: F t(x)v 6= xv?

Problem (Binary Prediction (B-PRED)).

Parameters: alphabet Q, a standard representation F∗ of an automata network family F

Input:

1. a word wF ∈ F∗ representing an automata network F : Qn → Qn on alphabetQ, with F ∈ F .

2. a node v ∈ V (F ) = [n]

3. an initial condition x ∈ QV .

4. a natural number t represented in binary t ∈ {0, 1}∗.

Question: F t(x)v 6= xv?

Note that two problems are essentially the same, the only difference is the representation of time t that we call the
observation time. We will also call node v the objective node. Roughly, as it happens with other decision problems,
such as integer factorization, the representation of observation time will have an impact on the computation complexity
of prediction problem. When the context is clear we will refer to both problems simply as PRED. In order to precise
the latter observation we present now some general complexity results concerning PRED.

Proposition 1. Let F be a concrete automata network family. The following statements hold:

1. U-PREDF ∈ P

2. B-PREDF ∈ PSPACE

Finally, we show that latter problem is coherent with our definition of simulation, in the sense that we can preserve the
complexity of PRED. Note that this give us a powerful tool in order to classify concrete automata rules according to
the complexity of latter decision problem.

Lemma 16. Let (F ,F∗) and (H,H∗) be two automata network families. Let T, S : N → N be two polynomial
functions such thatH∗ 4T

S F∗ then, PREDH∗ ≤T
L

PREDF∗
2 where PRED denotes either U-PREDor B-PRED

Proof. Let (wH , v, x, t) be an instance of PREDH∗ . By definition of simulation, there exists a DLOGSPACE al-
gorithm which takes wH and produces a word wF ∈ LF with F : QnF → QnF and a block representation
φ : QnF → Qn such that nF = S(n) and F simulates H in time T (n) under block embedding φ. Particularly,
there exists a partition of blocks Dv ⊆ V (F ) = [nF ] for each v ∈ V (H) = [n] and a collection of injective patterns,

i.e. patterns pi,q ∈ QDi

F such that pi,q = pi,q′ =⇒ q = q′. In addition, we have φ ◦ H = FT ◦ φ. Let us define
the configuration y ∈ QnF

F as yDi
= pi,xi

, i.e., φ(x)Di
= yDi

. Note that y is well-defined as the block map is
injective. In addition, let us choose an arbitrary vertex v′ ∈ Dv and let us consider now the instance of PREDF∗

given by (wF , v
′, y, t× T ). Note that for each v′ ∈ Dv the transformation (wH , v, x, t) → (wF , v

′, y, t× T ) can be
done in DLOGSPACE(|wH |) because we can read the representation of φ for each block pi,xi

and then output the
configuration y. We claim that there exists a DLOGSPACE(|wH |) algorithm that decides if (wH , v, x, t) ∈ LPREDH∗

2Here we denote ≤T
L as a DLOGSPACE Turing reduction. The capital letter “T” stands for Turing reduction and it is not related

to the simulation time function which is also denoted by T.



with oracle calls to PREDF∗ . More precisely, as a consequence of the injectivity of block embedding, we have that
(wH , v, x, t) ∈ LPREDH∗ if and only if (wF , v

′, y, t× T ) ∈ LPREDF∗ for some v′ ∈ Dv . In fact, latter algorithm just
runs oracle calls of PREDF∗ for (wF , v

′, y, t× T ) for each v′ ∈ Dv and decides if some of these instances is a YES
instance and thus, if some node in the simulation block have changed its state. As block-embedding is injective, this
necessary means that node v have changed its state in t time steps. Finally, all of this can be done in DLOGSPACE

as nF = S(n) = nO(1) and T = nO(1) and thus, a polynomial amount of calls to each oracle is needed.

Finally, we would like to study the case in which the observation time is not unique and ask whether the state of
some node eventually changes. However, in order to preserve complexity properties under simulation, we still need
to have some sort of restriction on observation times. This will allow us to avoid giving misleading answers when the
simulating network is performing one step of simulation: indeed, it could take several time steps for the simulating
network in order to represent one step of the dynamics of the simulated network, so some state change could happen
in the intermediate steps while the simulated dynamics involve no state change. In order to manage this sort of time
dilation phenomenon between simulating and simulated systems, we introduce the following decision problem.

Problem (Prediction change PRED-CHGF∗).

Parameters: alphabet Q, a standard representation F∗ of an automata network family F

Input:

1. a word wF ∈ F∗ representing an automata network F : Qn → Qn on alphabetQ, with F ∈ F ,

2. a node v ∈ V (G),

3. an initial condition x ∈ QV ,

4. a time gap k ∈ N in unary.

Question: ∃t ∈ N : F kt(x)v 6= xv

As we did with previous versions of prediction problem, we introduce a general complexity result and then, we show
computation complexity is consistent under simulation.

Proposition 2. Let (F ,F∗) be a automata network family. PRED-CHGF ∈ PSPACE.

The injectivity of block encodings in our definition of simulation is essential for the following lemma as it guar-
anties that a state change in the simulating network always represent a state change in the simulated network at the
corresponding time steps.

Lemma 17. Let (F ,F∗) and (H,H∗) be two automata network families and T, S : N→ N two polynomial functions
such thatH∗ 4T

S F∗ then, PRED-CHGH∗ ≤T
L

PRED-CHGF∗ .

Proof. Proof is analogous to short term prediction case. Let (wH , v, x, k) be an instance of PRED-CHGH∗ . Again, by
the definition of simulation, there exists a DLOGSPACE algorithm which takes wH and produces a word wF ∈ LF

with F : QnF → QnF and a block representation φ : QnF → Qn such that nF = S(n) and F simulates H in
time T (n) under block embedding φ. The latter statements means, particularly, that there exists a partition of blocks

Dv ⊆ V (F ) = [nF ] for each v ∈ V (H) = [n] and a collection of injective patterns, i.e. patterns pi,q ∈ QDi

F

such that pi,q = pi,q′ =⇒ q = q′ and also that φ ◦ H = FT (n) ◦ φ. Let us define the configuration y ∈ QnF

F
as yDi

= pi,xi
, i.e., φ(x)Di

= yDi
. Note, again, that y is well-defined as the block map is injective. Now we

proceed in using the same approach than before: for each v′ ∈ Dv we can produce an instance (wF , v
′, y, kT (n))

of PRED-CHGF∗ . There exists a DLOGSPACE machine which produces (wF , v
′, y, kT (n)) for each v′ ∈ Dv and

calls for an oracle solving PRED-CHGF∗(wF , v
′, y, kT (n)) and outputs 1 if there is at least one YES-instance for

some v′. By definition of simulation and injectivity of block embedding function we have that this algorithm outputs
1 if and only if (wH , v, x, k) ∈ PRED-CHGH∗ .

To end this subsection, let us show that problems PRED-CHG and B-PRED are actually orthogonal: depending of
the family of automata networks considered, one can be harder than the other and reciprocally.

Theorem 18. The exists a family with circuit representation (F ,F∗) such that B-PREDF is solvable in polynomial
time while PRED-CHGF is NP-hard. The exists a family with circuit representation (G,G∗) such that B-PREDG is
PSPACE-complete while PRED-CHGG is solvable in polynomial time.



Proof. Given a SAT formula φ with n variables, let us define the automata network Fφ on {0, 1}n+1 which interprets
any configuration as a pair (b, v) ∈ {0, 1} × {0, 1}n where b is the state of node 1 and v is both a number represented
in base 2 and a valuation for φ and does the following:

F (b, i) =

{

(1, i+ 1 mod 2n) if φ is true on valuation v,

(0, i+ 1 mod 2n) else.

A circuit representation of size polynomial in n can be computed in DLOGSPACE from φ and we define (F ,F∗) as
the family obtained by considering all Fφ for all SAT formulas φ. First, B-PREDF can be solved in polynomial time:
given Fφ, an initial configuration (b, v) and a time t, it is sufficient to compute v′ = v + t− 1 mod 2n and verify the
truth b′ of φ on valuation v′ and we have (b′, v′ + 1 mod 2n) = F t(b, v). To see that PRED-CHGF is NP-hard, it
suffices to note that, on input (0, 0 · · · 0), Fφ will test successively each possible valuation for φ and the state of node
1 will change to 1 at some time if and only if formula φ is satisfiable.

For the second part of the proposition, the key is the construction for any n of an automata network Hn on Qn that
completely trivializes problem PRED-CHG in the following sense: for any configuration c ∈ Qn and any k ≤ 2n

and any node v, there is some t such that cv 6= F kt(c)v . Taking any automata network F with n nodes, the product
automata network F ×Hn (working on the product of alphabets in such a way that each component evolves indepen-
dently) has the same property, namely that all instances of PRED-CHG with k ≤ 2n have a positive answer. From
this, taking any family with a PSPACE-hard PRED-CHG problem (they are known to exist, see Corollary 1 for de-
tails), and replacing each automata network F with n nodes by the product F ×Hn (the circuit representation of the
product is easily deduced from the representations of each component), we get a family (G,G∗) such that B-PREDG

is PSPACE-complete while PRED-CHGG is easy: on one hand, taking products does not simplify B-PRED prob-
lem; on the other hand, PRED-CHG becomes trivial (always true) on inputs where the observation interval k is less
than 2n, and if k ≥ 2n then the size of the whole orbit graph of the input network is polynomial in k (since k is
given in unary), so the entire orbit of the input configuration can be computed explicitly in polynomial time and the
PRED-CHG can be answered in polynomial time.

Let us complete the proof by giving an explicit construction of the automata networks Hn over Qn with the desired
property. Q = {0, 1} × {0, 1} × {0, 1} and Hn interprets any configuration as a triplet of Boolean configurations
(c, i, k) with the following meaning: k is a global counter that will take all possible values between 0 and 2n − 1 and
loop, i is a local counter that will run from 0 to 2k and c is the component where state changes will be realized at
precise time steps to ensure the desired property of Hn. The goal is to produce in any orbit and for any k and at any
node the sequence of states Ok1k on the c-component: such a behavior is sufficient to ensure the desired property on
Hn. This is obtained by defining Hn(c, i, k) = (c′, i′, k′) as follows:

• for any node v, c′v = 0 if i < k and c′v = 1 else,

• i′ = 0 if i ≥ 2k and i′ + 1 else,

• k′ = k + 1 mod 2n if i ≥ 2k and k′ = k else.

It is clear that such an Hn admits a polynomial circuit representation DLOGSPACE computable from n.

4.5 Universal automata network families

Building upon our definition of simulation, we can now define a precise notion of universality. In simple words,
an universal family is one that is able to simulate every other automata network under any circuit encoding. Our
definition of simulation ensures that the amount of resources needed in order to simulate is controlled so that we can
deduce precise complexity results.

Consider some alphabet Q and some polynomial map P : N → N. We denote by UQ,P the class of all possible
functions F : Qn → Qn for any n ∈ N that admits a circuit representation of size at most P (n). We also denote U∗

Q,P

the language of all possible circuit representations of size bounded by P of all functions from UQ,P . Finally for any
∆ ≥ 1, denote by BQ,∆ the set of automata networks on alphabet Q with a communication graph of degree bounded
by ∆ and by B∗

Q,∆ their associated bounded degree representations made of a pair (graph, local maps) as discussed
above.

Definition 19. A family of automata networks (F ,F∗) is :



• universal if for any alphabetQ and any polynomial map P it can simulate (UQ,P ,U∗
Q,P ) in time T and space

S where T and S are polynomial functions;

• strongly universal if for any alphabet Q and any degree ∆ ≥ 1 it can simulate (BQ,∆,B∗
Q,∆) in time T ans

space S where T and S are linear maps.

Remark 9. The link between the size of automata networks and the size of their representation is the key in the above
definitions: a universal family must simulate any individual automata network F (just take P large enough so that
F ∈ UQ,P ), however it is not required to simulate in polynomial space and time the family of all possible networks
without restriction. Actually no family admitting polynomial circuit representation could simulate the family of all
networks in polynomial time and space by the Shannon effect (most n-ary Boolean function have super-polynomial
circuit complexity). In particular the family BQ,∆ can’t.

At this point it is clear, by transitivity of simulations, that if some BQ,∆ happens to be universal then, any strongly
universal family is also universal. It turns out that B{0,1},3 is universal. We will however delay the proof until
section 5.4 below where we prove a more precise result which happens to be very useful to get universality result in
concrete families.

Finally, observe that the fact that S and T are polynomial or linear maps implies that they are computable in
DLOGSPACE which is coherent with the reductions presented in Lemma 16 and Lemma 17.

Now, we introduce an important corollary of universality regarding complexity. Roughly speaking, a universal family
exhibits all the complexity in terms of dynamical behaviour and computational complexity of prediction problems.
Concerning computational complexity, let us introduce the following definition.

Definition 20. We say that an automata network familyF is computationally complex if the following conditions hold:

1. U-PREDF is P-hard.

2. B-PREDF is PSPACE-hard.

3. PRED-CHGF is PSPACE-hard.

As a direct consequence of universality, we have the following result where there is no difference between strong or
standard universality.

Corollary 1. Let F a (strongly) universal automata network family then F computationally complex.

Proof. We observe that BQ,∆ is computationally complex for large enough Q and ∆, which concludes the proof by
definition of (strong) universality and Lemmas 16 and 17. First, any Turing machine working in bounded space can
be directly embedded into a cellular automaton on a periodic configuration which is a particular case of automata
network on a bounded degree communication graph (for the PRED-CHG variant we can always add a witness node
that changes only when the Turing machine accepts for instance). This direct embedding is such that one step of
the automata network correspond to one step of the Turing machine and one node of the network corresponds to
one cell of the Turing tape. However, the alphabet of the automata network depends on the tape alphabet and the
state set of the Turing machine. To obtain the desired result we need to fix the target alphabet, while allowing more
time and/or more space. Such simulations of any Turing machine by fixed alphabet cellular automata with linear
space/time distortion are known since a long time [23], but a modern formulation would be as follows: if there exists
an intrinsically universal cellular automaton [7] with states set Q and neighborhood size ∆ (whatever the dimension),
then BQ,∆ is computationally complex. The 2D cellular automaton of Banks [3] is intrinsically universal [25] and has
two states and 5 neighbors, which shows that BQ,∆ is computationally complex when ∆ ≥ 5 andQ is not a singleton.
The 1D instrinsically universal cellular automaton of Ollinger-Richard [26] has 4 states and 3 neighbors so BQ,∆ is
computationally complex when ∆ ≥ 3 and |Q| ≥ 4.

In addition, reader interested in simulation results which does not involve cellular automata but automata networks
having a more general graph structure, we provide following references in which authors have presented alternative
simulation schemes by using very well-known boolean network families as threshold networks:

1. The family Θ of threshold networks over the binary alphabet Q = {0, 1} satisfies that U-PREDΘ is P-hard
[15].



2. The family Θ of threshold networks over an alphabet Q = {0, 1} (equipped with block sequential update
scheme) satisfies that PRED-CHGΘ is PSPACE-hard [18]

We now turn to the dynamical consequences of universality. By definition simulations are particular embeddings of
orbit graphs into larger ones, but the parameters of the simulation can involve some distortion.

Definition 21. Fix a map ρ : N→ N, we say that the orbit graph GF of F with n nodes is ρ-succinct if F can be
represented by circuits of size at most ρ(n). We say that the orbit graph GH of H with m nodes embeds GF with
distortion δ : N→ N if m ≤ δ(n) and there is T ≤ δ(n) such that GF is a subgraph of GHT .

Remark 10. The embedding of orbit graphs with distortion obviously modify the relation between the number of
nodes of the automata netwroks and the length of paths or cycles in the orbit graph. In particular, with polynomial
distortion δ, if F has n nodes and a cyclic orbit of length 2n (hence exponential in the number of nodes) then in H
it gives a cyclic orbit of size O(δ(n)2n) for up to δ(n) nodes, which does not guarantee an exponential length in the

number of nodes in general, but just a super-polynomial one (n 7→ 2n
α

for some 0 < α < 1).

To fix ideas, we give examples of orbit graphs of bounded degree automata networks with large components corre-
sponding to periodic orbits or transient.

Proposition 3. There is an alphabet Q such that for any n ≥ 1 there is an automata network Fn ∈ BQ,2 whose orbit
graph GFn

has the following properties:

• it contains a cycle C of length at least 2n;

• there is a complete binary tree T with 2n leaves connected to some v1 ∈ C, i.e. for all v ∈ T there is a path
from v to v1;

• there is a node v2 ∈ C with a directed path of length 2n pointing towards v2;

• it possesses at least 2n fixed points.

Proof. First on a component of states {0, 1, 2} ⊆ Q the large cycleC is obtained by the following ’odometer’ behavior
of Fn: if xn ∈ {0, 1, 2} then Fn(x)n = xn + 1 mod 3, and if both xi, xi+1 ∈ {0, 1, 2} for 1 ≤ i < n then

Fn(x)i =







0 if xi = 2

xi + 1 else if xi+1 = 2,

xi else.

C is realized on {0, 1, 2}n as follows. For x ∈ {0, 1, 2}n denote by Si the sequence (F t(x)i)t≥0 for any 1 ≤ i ≤ n.
Clearly Sn is periodic of period 012. Sn−1 is ultimately periodic of period 200111 (of length 6) and by a straighforward

induction we get that S1 is ultimately periodic of period 203·2
n−2−113·2

n−2

which is of length 3 · 2n−1.

For the tree T , just add states {a, b} ⊆ Q with the following behavior: if x1 ∈ {a, b} then Fn(x)1 = 0 and if
xi ∈ {a, b} and xi−1 = 0 then Fn(x)i = 0 for 1 < i ≤ n. In any other case, we set F (x)i = xi for x ∈ {0, 1, 2, a, b}n
and 1 ≤ i ≤ n.

Using similar mechanisms as above on additional states c0, c1, c2 ∈ Q, Fn runs another odometer whose behavior is
isomorphic to the behavior of Fn on {0, 1, 2}n through i 7→ ci, but with the following exception: when x1 = c2 we set
Fn(x)1 = 0 and then state 0 propagates from node 1 to node n as in the construction of tree T . We thus get a transient
behavior of length more than 3 · 2n−1 which yields to configuration 0n, which itself (belongs or) yields to cycle C.

Finally, the fixed points are obtained by adding two more states to the alphabet on which the automata network just
acts like the identity map.

We can now state that any universal family must be dynamically rich in a precise sense.

Theorem 22. Let F be an automata networks family.

• If F is universal then, for any polynomial map ρ, there is a polynomial distortion δ such that, any ρ-succinct
orbit graph can be embedded into some F ∈ F with distortion δ. In particular F contains networks with



super-polynomial periods and transients, and a super-polynomial number of disjoint periodic orbits of period
at most polynomial.

• If F is strongly universal then it embeds the orbit graph of any bounded-degree automata network with linear
distortion. In particular it contains networks with exponential periods and transients, and an exponential
number of disjoint periodic orbits of period at most linear.

Proof. This is a direct consequence of Lemma 14, Definition 15 and Proposition 3 above.

Of course, we do not claim that computational complexity and dynamical richness as stated above are the only mean-
ingful consequences of universality. To conclude this subsection about universality, let us show that it allows to prove
finer results linking the global dynamics with the interaction graph.

In a directed graph, we say a node v belongs to a strongly connected component if there is a directed path from v to v.

Corollary 2. Any universal family F satisfies the following: there is a constant α with 0 < α ≤ 1 such that for any
m > 0 there is a network F ∈ F with n ≥ m nodes such that some node v belonging to a strongly connected
component of the interaction graph of F and a periodic configuration x such that the trace at v of the orbit of x is of
period at least 2n

α

.

Proof. Consider a Boolean network F with nodes V = {1, . . . ,m} that do the following on configuration x ∈
{0, 1}V : it interprets x1, . . . , xm as an number k written in base 2 where x1 is the most significant bit and produces
F (x) which represents number k + 1 mod 2m.

F is such that node 1 has a trace of exponential period and belongs to a strongly connected component of the interaction
graph of F (because it depends on itself). Note that F has a circuit representation which is polynomial in m, and
take F ′ ∈ F of size polynomial in m that simulates F in polynomial time (by universality of family F ). Taking the
notations of Definition 13, we have that each node v ∈ Di for each blockDi is such that the map q ∈ {0, 1} 7→ pi,q(v)
is either constant or bijective (because F has a Boolean alphabet, see Remark 5). In the last case, the value of the node
v ∈ Di completely codes the value of the corresponding node i in F . Take any v ∈ B1 that has this coding property.
Since node 1 depends on itself in F , there must be a path from v to some node v′ ∈ D1 that is also coding in the
interaction graph of F ′. Then we can also find a path from v′ to some coding node in D1. Iterating this reasoning we
must find a cycle, and in particular we have a coding node inD1 which belongs to some strongly connected component
of the interaction graph of F ′. Since this node is coding the values taken by node 1 of F and since the simulation is in
polynomial time and space, we deduce the super-polynomial lower bound on the period of its trace for a well-chosen
periodic configuration.

5 Gadgets and glueing

In the same way as Boolean circuits are defined from Boolean gates, many automata network families can be defined
by fixing a finite set of local maps G that we can freely connect together to form a global network, called a G-network.

Such families can be strongly universal as we will see, even for very simple choices of G, which is an obvious
motivation to consider them. In this section, we introduce a general framework to prove simulation results of a G-
network family by some arbitrary family that amounts to a finite set of conditions to check. From this we will derive
a framework to certify strong universality of an arbitrary family just by exhibiting a finite set of networks from the
family that verify a finite set of conditions. As already said above, our goal is to analyze automata networks with
symmetric communication graph (CSAN families). Our framework is targeted towards such families.

The idea behind is that of building large automata networks from small automata networks in order to mimic the way
a G-network is built from local maps in G. The difficulty, and the main contribution of this section, is to formalize
how small building blocks are glued together and what conditions on them guaranty that the large network correctly
simulates the corresponding G-networks.

We will now introduce all the concepts used in this framework progressively.
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φ(x)A = φA(xB , xC)

φ(x)B = φB(xA)

φ(x)C = φC(xA)

Figure 5: On the left a set of maps G over alphabet Q, in the middle an intuitive representation of input/output
connections to make a G-network, on the right the corresponding formal G-network φ : Q3 → Q3 together with the
global map associated to it. The bijections α and β from Definition 23 are represented in blue and red (respectively).

5.1 G-networks

Let Q be a fixed alphabet and G be any set of maps of type g : Qi(g) → Qo(g) for some i(g), o(g) ∈ N. We say g is
reducible if it can be written as a disjoint union of two gates, and irreducible otherwise. Said differently, if G is the
(bipartite) dependency graph of g describing on which inputs effectively depends each output, then g is irreducible if
G is weakly connected.

From G we can define a natural family of networks: a G-network is an automata network obtained by wiring outputs
to inputs of a number of gates from G. To simplify some later results, we add the technical condition that no output of
a gate can be wired to one of its inputs (no self-loop condition).

Definition 23. A G-network is an automata network F : QV → QV with set of nodes V associated to a collection of
gates g1, . . . , gn ∈ G with the following properties. Let

I = {(j, k) : 1 ≤ j ≤ n and 1 ≤ k ≤ i(gj)} and

O = {(j, k) : 1 ≤ j ≤ n and 1 ≤ k ≤ o(gj)}
be respectively the sets of inputs and outputs of the collection of gates (gj)1≤j≤n. We require |V | = |I| = |O|
and the existence of two bijective maps α : I → V and β : V → O with the condition that there is no (j, k) ∈ I
such that β(α(j, k)) = (j, k′) for some k′ (no self-loop condition). For v ∈ V with β(v) = (j, k), let

Iv = {α(j, 1), . . . , α(j, i(gj))} and denote by gv the map: x ∈ QIv 7→ gj(x̃)k where x̃ ∈ Qi(gj) is defined by
x̃k = xα(j,k). Then F is defined as follows:

F (x)v = gv(xIv ).

Remark 11. Once G is fixed, there is a bound on the degree of dependency graphs of all G-networks. Thus, it is
convenient to represent G-networks by the standard representation of bounded degree automata networks (as a pair
of a graph and a list of local update maps). Another representation choice following strictly Definition 23 consists in
giving a list of gates g1, . . . , gk ∈ G, fixing V = {1, . . . , n} and give the two bijective mapsα : I → V and β : V → O
describing the connections between gates (maps are given as a simple list of pairs source/image). One can check
that these two representations are DLOGSPACE equivalent when the gates of G are irreducible: we can construct
the interaction graph and the local maps from the list of gates and maps α and β in DLOGSPACE (the incoming
neighborhood of a node v, Iv , and its local map gv are easy to compute as detailed in Definition 23); reciprocally,
given the interaction graph G and the list of local maps (gv), one can recover in DLOGSPACE the list of gates and
their connections as follows:

• for v from 1 to n do:



– gather the (finite) incoming neighborhood N−(v) of v then the (finite) outgoing neighborhood
N+(N−(v)) and iterate this process until it converges (in finite time) to a set Iv of inputs and Ov

of outputs with v ∈ Ov;

– check that all v′ ∈ Iv ∪Ov are such that v′ ≥ v otherwise jump to next v in the loop (this guaranties
that each gate is generated only once);

– since the considered gates are irreducible, Iv and Ov actually correspond to input and output sets of a
gate g ∈ G that we can recover by finite checks from the local maps of nodes in Ov;

– output gate g and the pairs source/image to describe α and β for nodes in Iv and Ov respectively.

In the sequel we denote Γ(G) the family of all posible G-networks associated to their bounded degree representation.

5.2 Glueing of automata networks

In this section we define an operation that allows us to ’glue’ two different abstract automata networks on a common
part in order to create another one which, roughly, preserve some dynamical properties in the sense that it allows to
glue pseudo-orbits of each network to obtain a pseudo-orbit of the glued network. One might find useful to think about
the common part of the two networks as a dowel attaching two pieces of wood: each individual network is a piece of
wood with the dowel inserted in it, and the result of the glueing is the attachment of the two pieces with a single dowel
(see Figure 5.2).

Definition 24. Consider F1 : QV1 → QV1 and F2 : QV2 → QV2 two automata networks with V1 disjoint from V2, C
a set disjoint from V1 ∪ V2, ϕ1 : C → V1 and ϕ2 : C → V2 two injective maps with ϕ1(C) ∩ ϕ2(C) = ∅ and C1, C2

a partition of C in two sets. We define

V ′ = C ∪ (V1 \ ϕ1(C)) ∪ (V2 \ ϕ2(C))

and the map α : V ′ → V1 ∪ V2 by

α(v) =

{

v if v 6∈ C
ϕi(v) if v ∈ Ci, for i = 1, 2.

We then define the glueing of F1 and F2 over C as the automata network F ′ : QV ′ → QV ′

where

F ′
v =

{

(F1)α(v) ◦ ρ1 if α(v) ∈ V1,
(F2)α(v) ◦ ρ2 if α(v) ∈ V2,

where ρi : Q
V ′ → QVi is defined by

ρi(x)v =

{

xϕ−1

i
(v) if v ∈ ϕi(C),

xv else.

When necessary, we will use the notation F ′ = F1
φ1

C1
⊕φ2

C2
F2 to underline the dependency of the glueing operation on

its parameters.

Given an automata network F : QV → QV and a set X ⊆ V , we say that a sequence (xt)0≤t≤T of configurations

from QV is a X-pseudo-orbit if it respects F as in a normal orbit, except on X where it can be arbitrary, formally:
xt+1
v = F (xt)v for all v ∈ V \X and all 0 ≤ t < T . The motivation for Definition 24 comes from the following

lemma.

Lemma 25 (Pseudo-orbits glueing). Taking the notations of Definition 24, let X ⊆ V1 \ ϕ1(C) and Y ⊆ V2 \ ϕ2(C)
be two (possibly empty) sets. If (xt)0≤t≤T is a X ∪ ϕ1(C2)-pseudo-orbit for F1 and if (yt)0≤t≤T is a Y ∪ ϕ2(C1)-
pseudo-orbit for F2 and if they verify for all 0 ≤ t ≤ T

∀v ∈ C, xtϕ1(v)
= ytϕ2(v)

, (1)

then the sequence (zt)0≤t≤T of configurations of QV ′

is a X ∪ Y -pseudo-orbit of F ′, where

ztv =

{

xtα(v) if α(v) ∈ V1,
ytα(v) if α(v) ∈ V2.
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Figure 7: Symmetry breaking in interaction graph after a glueing operation. Arrows indicate influence of a node
(source) on another (target), edges without arrow indicates bi-directional influence. Here C consists in two nodes
only.

Proof. Take any v ∈ V ′ \ (X ∪ Y ). Suppose first that α(v) ∈ V1. By definition of F ′, we have
F ′(zt)v = (F1)α(v) ◦ ρ1(zt) but ρ1(z

t) = xt (using the Equation 1 in the hypothesis) so F ′(zt)v = F1(x
t)α(v). Since

(xt) is a X ∪ ϕ1(C2)-pseudo-orbit and since α(v) 6∈ X ∪ ϕ1(C2), we have

F1(x
t)α(v) = xt+1

α(v) = zt+1
v .

We conclude that zt+1
v = F ′(zt)v . By a similar reasoning, we obtain the same conclusion if α(v) ∈ V2. We deduce

that (zt) is a X ∪ Y -pseudo-orbit of F ′.

In the case of a CSAN family where the transition rules are determined by a labeled non-directed graph, the result
of a glueing operation has no reason to belong to the family because the symmetry of the interaction graph might be
broken (see Figure 7). The following lemma gives a sufficient condition in graph theoretical terms for glueing within
a concrete family of automata networks. Intuitively, it consists in asking that, in each graph, all the connections of one
half of the dowel to the rest of the graph goes through the other half of the dowel. Here the wooden dowel metaphor
is particularly relevant: when considering a single piece of wood with the dowel inserted inside, one half of the dowel
is ’inside’ (touches the piece of wood), the other half is ’outside’ (not touching the piece of wood); then, when the



two pieces are attached, each position in the wood assembly is locally either like in one piece of wood with the dowel
inserted or like in the other one with the dowel inserted.

Lemma 26 (Glueing for CSAN). Let (G1, λ1, ρ1) and (G2, λ2, ρ2) be two CSAN from the same CSAN familyF where
G1 and G2 are disjoint and F1 and F2 are the associated global maps. Taking again the notations of Definition 24, if
the following conditions hold

• the labeled graphs induced by ϕ1(C) and ϕ2(C) in G1 and G2 are the same (using the identification
ϕ1(v) = ϕ2(v))

• NG1
(ϕ1(C2)) ⊆ ϕ1(C)

• NG2
(ϕ2(C1)) ⊆ ϕ2(C)

then the glueing F ′ = F1
φ1

C1
⊕φ2

C2
F2 can be defined as the CSAN on graph G′ = (V ′, E′) where V ′ is as in Defini-

tion 24 and each node v ∈ V ′ has the same label and same labeled neighborhood as either a node of (G1, λ1, ρ1) or
a node of (G2, λ2, ρ2). In particular F ′ belongs to F .

Proof. Let us define βi : Vi → V ′ by

βi(v) =

{

φ−1
i (v) if v ∈ φi(C),
v else.

Fix i = 1 or 2. According to Definition 24, if v ∈ V ′ is such that α(v) ∈ Vi then F ′
v = (Fi)α(v) ◦ ρi. By definition of

CSAN, this means that for any x ∈ QV ′

we have F ′
v(x) = ψi,α(v)(x|β(NGi

(α(v)))) where ψi,α(v) is a map depending

only on the labeled neighborhood of α(v) in Gi as in Definition 2. So the dependencies of v in F ′ are in one-to-
one correspondence through β with the neighborhood of α(v) in Gi. They key observation is that the symmetry of
dependencies is preserved, formally for any v′ ∈ β(NGi

(α(v))):

• either α(v′) ∈ Vi in which case the dependency of v′ on v (in map ψi,α(v′)) is the same as the dependency of

v on v′ (in map ψi,α(v)), and both are determined by the undirected labeled edge {α(v), α(v′)} of Gi;

• or α(v′) 6∈ Vi and in this case necessarily v ∈ Ci and v′ ∈ C3−i (because
NGi

(Vi \ ϕi(C)) ∩ ϕi(C) ⊆ ϕi(Ci) from the hypothesis), so the dependency of v′ on v is the same
as the dependency of v on v′ because the labeled graphs induced by φ1(C) and φ2(C) in G1 and G2 are the
same.

Concretely, F ′ is a CSAN that can be defined on graphG′ = (V ′, E′
1 ∪ E′

2 ∪ E(C)) with

E′
i = E(Vi \ ϕi(C)) ∪ {(u, vi) : u ∈ V (Ci), vi ∈ (Vi \ ϕi(C)), (ϕi(u), vi) ∈ Ei},

and labels as follows:

• on E(C) as in both G1 and G2 (which agree through maps φ1 and φ2 on C),

• on E(Vi \ ϕi(C)) as in Gi,

• for each u ∈ V (Ci), vi ∈ (Vi \ϕi(C)) such that (ϕi(u), vi) ∈ Ei, edge (u, vi) has same label as (ϕi(u), vi).

Since any CSAN families (Definition 2) is entirely based on local constraints on labels (vertex label plus set of labels
of the incident edges), we deduce that F ′ is in F .
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between local λ maps of these three CSAN.

5.3 G-gadgets, gadget glueing and simulation of G-networks

We now give a precise meaning to the intuitively simple fact that, if a family of automata networks can coherently
simulate a set of small building blocks (gates from G), it should be able to simulate any automata network that can be
built out of them (G-networks).

The key idea here is that gates from G will be represented by networks of the family called G-gadgets, and the wiring
between gates to obtain a G-network will translate into glueing between G-gadgets. Following this idea there are two
main conditions for the family to simulate any G-network:

• the glueing of gadgets should be freely composable inside the family to allow the building of any G-network;

• the gadgets corresponding to gates from G should correctly and coherently simulate the functional relation
between inputs and outputs given by their corresponding gate.

For clarity, we separate these conditions in two definitions.

We start by developing a definition for gadget glueing. Recall first that Definition 24 relies on the identification of
a common dowel in the two networks to be glued. Here, as we want to mimic the wiring of gates which connects
inputs to outputs, several copies of a fixed network called glueing interface will be identified in each gadget, some of
them corresponding to input, and the other ones to outputs. In this context, the only glueing operations we will use are
those where some output copies of the interface in a gadget A are glued on input copies of the interface in a gadget B
and some input copies of the interface in A are glued on output copies of the interface in B. Then, the global dowel
used to formally apply Definition 24 is a disjoint union of the selected input/output copies of the interface. Figure 5.3
illustrates with the notations of the following Definition.

Definition 27 (Glueing interface and gadgets). Let C = Ci ∪ Co be a fixed set partitioned into two sets. A gadget with
glueing interface C = Ci ∪ Co is an automata network F : QVF → QVF together with two collections of injective
maps φiF,k : C → VF for k ∈ I(F ) and φoF,k : C → VF for k ∈ O(F ) whose images in VF are pairwise disjoint and

where I(F ) and O(F ) are disjoint sets which might be empty.

Given two disjoint gadgets (F, (φiF,k), (φ
o
F,k)) and (G, (φiG,k), (φ

o
G,k)) with same alphabet and interface

C = Ci ∪ Co, a gadget glueing is a glueing of the form H = F
φF

CF
⊕φG

CG
G defined as follows:

• a choice of a set A of inputs from F and outputs from G given by injective maps σF : A→ I(F ) and
σG : A→ O(G),



• a choice of a set B of outputs from F and inputs from G given by injective maps τF : B → O(F ) and
τG : B → I(G) (the set B is disjoint from A),

• CF is a disjoint union of |A| copies of Ci, and |B| copies of Co: CF = A× Ci ∪B × Co,

• CG is a disjoint union of |A| copies of Co, and |B| copies of Ci: CG = A× Co ∪B × Ci,

• φF : CF ∪CG → VF is such that φF (a, c) = φiF,σF (a)(c) for a ∈ A and c ∈ C, and φF (b, c) = φoF,τF (b)(c)

for b ∈ B and c ∈ C,

• φG : CF ∪ CG → VG is such that φG(a, c) = φoG,σG(a)(c) for a ∈ A and c ∈ C, and φG(b, c) = φiG,τG(b)(c)

for b ∈ B and c ∈ C.

The resulting network H is a gadget with same alphabet and same interface with
I(H) = I(F ) \ σF (A) ∪ I(G) \ τG(B) and O(H) = O(F ) \ τF (B) ∪O(F ) \ σG(A) and φiH,k is φiF,k when

k ∈ I(F ) and φiG,k when k ∈ I(G), and φoH,k is φoF,k when k ∈ O(F ) and φoG,k when k ∈ O(G).

Given a set of gadgets X with same alphabet and interface, its closure by gadget glueing is the closure of X by the
following operations:

• add a disjoint copy of some gadget from the current set,

• add the disjoint union of two gadgets from the current set,

• add a gadget glueing of two gadgets from the current set.

Remark 12. The representation of the result of a gadget glueing can be easily computed from the two gadgetsF andG
and the choices of inputs/outputs given by maps σF , σG, τF and τG: precisely, by definition of glueing (Definition 24)
the local map of each node of the result automata network is either a local map of F (when in VF \φF (CG) or in CF )
or a local map of G (when in VG \ φG(CF ) or in CG). Note also that the closure by gadget glueing of a finite set of
gadgets X is always a set of automata networks of bounded degree.

Lemma 26 gives sufficient conditions on a set of gadgets to have its closure by gadget glueing contained in a CSAN
family.

Lemma 28. Fix some alphabet Q and some glueing interface C = Ci ∪ Co and some CSAN family F . Let
(Gn, λn, ρn) for n ∈ S be a set of CSAN belonging to F with associated global maps Fn. Let φiFn,k for k ∈ I(Fn)

and φoFn,k
for k ∈ O(Fn) be maps as in Definition 27 so that (Fn, (φ

i
Fn,k), (φ

o
Fn,k)) is a gadget with interface

C = Ci ∪ Co. Denote by X the set of such gadgets. If the following conditions hold:

• the labeled graphs induced by φiFn,k
(C) and by φoFn,k(C) in Gn are all the same for all n and k with the

identification of vertices given by the φ∗∗,∗ maps,

• NGn
(φiFn,k(Co)) ⊆ φiFn,k

(C) for all n ∈ S and all k ∈ I(Fn),

• NGn
(φoFn,k(Ci)) ⊆ φoFn,k

(C) for all n ∈ S and all k ∈ O(Fn),

then the closure by gadget glueing of X is included in F .

Proof. Consider first the gadget glueing H of two gadgets Fn and Fn′ from X . Following Definition 27, the global
dowel CFn

∪CFn′
used in such a glueing is a disjoint union of copies of C, and its embedding φFn

in Gn (resp. φFn′

in Gn′ ) is a disjoint union of maps φ∗Fn,∗ (resp. φ∗Fn′ ,∗). Therefore the three conditions of Lemma 26 follow from the

three conditions of the hypothesis on gadgets fromX and we deduce thatH belongs to family F . Moreover, it is clear
that gadget H then also verifies the three conditions from the hypothesis, and adding a copy of any gadget to the set
also verifies the conditions. We deduce that the closure by gadget glueing of X is included in F .
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Figure 9: Gadget glueing as in Definition 27. On the left, two gadgets with interface C = Ci ∪ Co where Ci part
in each copy of the interface dowel is in red and Co part in blue. The gadget glueing is done with input σF (A) on
output σG(A) (here A is a singleton) and output τF (B) on input τG(B) (B is also a singleton). On the upper right, a
representation of the global glueing process where nodes in green are those in the copy of CF in F or in the copy CG

in G; dotted links show the bijection between the embeddings of C = CF ∪ CG into VF and VG via maps φF and φG.
On the lower right the resulting gadget with the same interface C = Ci ∪Co as the two initial gadgets.

The second key aspect to have a coherent set X of G-gadgets is of dynamical nature: there must exists a collection of
pseudo-orbits on each gadget satisfying suitable conditions to permit application of Lemma 25 for any gadget glueing
in the closure of X ; moreover, these pseudo-orbits must simulate via an appropriate coding the input/output relations
of each gate g ∈ G in the corresponding gadget. To obtain this, we rely on a standard set of traces on the glueing
interface that must be respected on any copy of it in any gadget.

Definition 29 (Coherent G-gadgets). Let G be any set of finite maps over alphabet Q and let F be any set of abstract
automata networks over alphabet QF . We say F has coherent G-gadgets if there exists:

• a unique glueing interface C = Ci ∪ Co,

• a set X of gadgets (Fg, (φ
i
g,k)1≤k≤i(g), (φ

o
g,k)1≤k≤o(g)) for each g ∈ G where Fg : Q

Vg

F → Q
Vg

F ∈ F and

sets Vg and C are pairwise disjoint, and the closure of X by gadget glueing is contained in F ,

• a state configuration sq ∈ QC
F for each q ∈ Q such that q 7→ sq is an injective map,

• a context configuration cg ∈ QV̂g

F for each g ∈ G where V̂g = Vg \
(

∪kφig,k(C) ∪k φog,k(C)
)

,

• a time constant T ,

• a standard trace τq,q′ ∈ (QC
F )

{0,...,T} for each pair q, q′ ∈ Q such that τq,q′(0) = sq and τq,q′(T ) = sq′ ,

• for each g ∈ G and for any uples of states qi,1, . . . , qi,i(g) ∈ Q and qo,1, . . . , qo,o(g) ∈ Q and

q′i,1, . . . , q
′
i,i(g) ∈ Q and q′o,1, . . . , q

′
o,o(g) ∈ Q such that g(qi,1, . . . , qi,i(g)) = (q′o,1, . . . , q

′
o,o(g)), a Pg-

pseudo-orbit (xt)0≤t≤T of Fg with Pg =
⋃

1≤k≤i(g) φ
i
g,k(Co) ∪

⋃

1≤k≤o(g) φ
o
g,k(Ci) and with

– for each 1 ≤ k ≤ i(g), the trace t 7→ xt
φi
g,k

(C)
is exactly τqi,k ,q′i,k ,



– for each 1 ≤ k ≤ o(g), the trace t 7→ xtφo
g,k

(C) is exactly τqo,k,q′o,k ,

– x0
V̂g

= xT
V̂g

= cg .

We can now state the key lemma of our framework: having coherent G-gadgets is sufficient to simulate the whole
family of G-networks.

Lemma 30. Let G be a set of irreducible gates. If an abstract automata network family F has coherent G-gadgets
then it contains a subfamily of bounded degree networks with the canonical bounded degree representation (F0,F∗

0 )
that simulates Γ(G) in time T and space S where T is a constant map and S is bounded by a linear map.

Proof. We take the notations of Definition 29. To any G-network F with set of nodes V given as in Definition 23
by a list of gates g1, . . . , gk ∈ G and maps α and β (see Remark 11) we associate an automata network from F as
follows. First, let (Fgi )1≤i≤k be the gadgets corresponding to gates gi and suppose they are all disjoint (by taking
disjoint copies when necessary). Then, start from the gadget F1 = Fg1 and for any 1 ≤ i < k we define Fi+1 as
the gadget glueing of Fi and Fgi+1

on the input/outputs as prescribed by maps α and β. More precisely, the gadget
glueing select the set of inputs (j, k) with 1 ≤ j ≤ i and 1 ≤ k ≤ i(gj) such that β(α(j, k)) = (i+ 1, k′) for some
1 ≤ k′ ≤ o(gi+1) and glue them on their corresponding output (i + 1, k′) of gi+1 (precisely, through maps σFi

and
σFgi+1

of domain Ai+1 playing the role of maps σF and σG of Definition 27), and, symmetrically, selects the inputs

(i+ 1, k) with 1 ≤ k ≤ i(gi+1) such that β(α(i + 1, k)) = (j, k′) for some 1 ≤ j ≤ i and 1 ≤ k′ ≤ o(gj) and glue
their corresponding output (j, k′) (precisely, through maps τFgi+1

and τFi
of domain Bi+1 playing the role of maps

τG and τF from Definition 27). If both of these sets of inputs/outputs are empty, the gadget glueing is replaced by a
simple disjoint union.

The final gadget Fk has no input and no output, and a representation of it as a pair graph and local maps can be
constructed in DLOGSPACE, because the local map of each of its nodes is independent of the glueing sequence
above and completely determined by the gadget Fgj it belongs to and whether the node is inside some input or some
output dowel or not (see Reamrk 12).

It now remains to show that the automata network Fk simulates F . To fix notations, let Vk be the set of nodes of Fk.
For each v ∈ V , define Dv ⊆ Vk as the copy of the dowel that correspond to node v of F , i.e. that was produced in
the gadget glueing of Fi with Fgi+1

for i such that β(v) = (i+ 1, k′) for some 1 ≤ k′ ≤ o(gi+1) (or symmetrically
α(i + 1, k) = v for some 1 ≤ k ≤ i(gj)). More precisely, if a ∈ Ai+1 is such that σFgi+1

(a) = (i+ 1, k′) then

Dv = {a} × C (symmetrically if b ∈ Bi+1 is such that τFgi+1
(b) = (i+ 1, k) then Dv = {b} × C). Also denote by

ρv : Dv → C the map such that ρv(a, c) = c for all c ∈ C (symmetrically, ρv(b, c) = c). With these notations, we
have

Vk =
⋃

v∈V

Dv ∪
⋃

1≤i≤k

V̂gi

Let us define the block embedding φ : QV → QVk

F as follows

φ(x)(v′) =

{

sxv
(ρv(v

′)) if v′ ∈ Dv,

cgi(v
′) if v′ ∈ V̂gi .

for any x ∈ QV and any v′ ∈ Vk, where sq for q ∈ Q are the state configurations and cg for g ∈ G are the context
configurations granted by Definition 29. Note that φ is injective because the map q 7→ sq is injective. By inductive
applications of Lemma 25, the Pgi -pseudo-orbits of each Fgi from Definition 29 can be glued together to form valid

orbits of Fk that start from any configuration φ(x) with x ∈ QV and ends after T steps in a configuration φ(y) for
some y ∈ QV which verifies y = F (x). Said differently, we have the following equality on QV :

φ ◦ F = FT
k ◦ φ.

Note that T is a constant and that the size of Vk is at most linear in the size of V . The lemma follows.

Remark 13. Note that in Lemma 30 above, the block embedding that is constructed can be viewed as a collection of
blocs of bounded size that encode all the information plus a context (see Remark 5).

In the case of CSAN families and using Remark 7 we have a simpler formulation of the Lemma.

Corollary 3. If G in a set of irreducible gates and F a CSAN family which has coherent G-gadgets then F simulates
Γ(G) in time T and space S where T is a constant map and S is bounded by a linear map.



5.4 Gm-networks and Gm,2-networks as standard universal families

Let i, o ∈ {1, 2} be two numbers. We define the functions OR,AND : {0, 1}i → {0, 1}o where OR(x) = max(x)
and AND(x) = min(x). Note that in the case in which i = o = 1 we have AND(x) = OR(x) = Id(x) = x and also
in the case i = 1 and o = 2 we have that AND(x) = OR(x) = (x, x). We define the set Gm = {AND,OR}. Observe
that in this case o and i may take different values. In addition, we define the set Gm,2 in which we fix i = o = 2.

It is folklore knowledge that monotone Boolean networks (with AND/OR local maps) can simulate any other network.
Here we make this statement precise within our formalism: Gm-networks are strongly universal. Note that there is more
work than the classical circuit transformations involving monotone gates because we need to obtain a simulation of
any automata network via block embedding. In particular we need to build monotone circuitry that is synchronized and
reusable (i.e. that can be reinitialized to a standard state before starting a computation on a new input). Moreover, our
definitions requires a production of Gm-networks in DLOGSPACE. The main ingredient for establishing universality
of Gm-networks is an efficient circuit transformation due to Greenlaw, Hoover and Ruzzo in [20, Theorems 6.2.3 to
6.2.5]. Let us start by proving that this family is strongly universal, which is slightly simpler to prove.

Theorem 31. The family Γ(Gm) of all Gm-networks is strongly universal.

Proof. Let Q an arbitrary alphabet and F : Qn → Qn an arbitrary automata network on alphabet Q such that
the communication graph of F has maximum degree ∆. Let C : {0, 1}n → {0, 1}n be a constant depth circuit
representing F . Let us assume that C has only OR, AND and NOT gates. We can also assume that C is synchronous
because, as its depth does not depend on the size of the circuit, one can always add fanin one and fanout one OR
gates in order to modify layer structure. We are going to use a very similar transformation to the one proposed in [20,
Theorem 6.2.3] in order to efficiently construct an automata network in Γ(Gm). In fact, we are going to duplicate the
original circuit by considering the coding x ∈ {0, 1} → (x, 1 − x) ∈ {0, 1}2. Roughly, each gate will have a positive
part (which is essentially a copy) and a negative part which is produces the negation of the original output by using
De Morgan’s laws. More precisely, we are going to replace each gate in the network by the gadgets shown in Figure
10. The main idea is that one can represent the function x ∧ y by the coding: (x ∧ y, x ∨ y) and x ∨ y by the coding:
(x ∨ y, x ∧ y). In addition, each time there is a NOT gate, we replace it by a fan in 1 fan out 1 OR gadget and we
connect positive outputs to negative inputs in the next layer and negative outputs to positive inputs as it is shown in
Figure 11. We are going to call C∗ to the circuit constructed by latter transformations. Observe that C∗ is such that it
holds on {0, 1}i:

φ ◦ C = C∗ ◦ φ
where φ : {0, 1}n → {0, 1}2n is defined for any n by φ(x)2j = xj and φ(x)2j+1 = ¬xj .

Now consider the coding map mQ : Q→ {0, 1}k and let n = k|V |. Build from C∗ the Gm,2-network F ∗ :

{0, 1}V+ → {0, 1}V+

that correspond to it (gate by gate) and where the output j is wired to input j for all 1 ≤ j ≤ 2n.

Define a block embedding of QV into {0, 1}V+

as follows (see Remark 5):

• for each v ∈ V let Dv be the set of input nodes in F ∗ that code v (via mQ and then double railed logic),

• let C = V + \⋃vDv be the remaining context block,

• let pv,q ∈ {0, 1}Dv be the pattern coding node v in state q,

• let pC = 0C be the context pattern,

• let φ : QV → {0, 1}V+

be the associated block embedding map.

We claim that F ∗ simulates F via block embedding φ with time constant equal to the depth of C∗ plus 1. Indeed,
F ∗ can be seen as a directed cycle of N layers where layer Li+1 mod N only depends on layer i. The block embed-
ding is such that for any configuration x ∈ QV , φ(x) is 0 on each layer except the layer containing the inputs. On
configurations where a single layer Li is non-zero, F ∗ will produce a configuration where the only non-zero layer is
Li+1 mod N . From there, it follows by construction of F ∗ that φ ◦ F (x) = (F ∗)N ◦ φ(x) for all x ∈ QV .

The fact that construction is obtainable in DLOGSPACE follows from the same reasoning used to show in [20,

Theorem 6.2.3]. In fact, authors show that reduction is actually better as they show it is NC1.
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Figure 10: AND and OR gadgets for simulating AND/OR gates with fanin and fanout 2. For other values of fanin and
fanout gadgets are the same but considering different number of inputs/outputs

Theorem 32. The family Γ(Gm,2) simulates in constant time and linear space the family Γ(Gm), i.e. there exists a

constant function T : N→ N and a linear function S : N→ N such that Γ(Gm) 4T
S Γ(Gm,2)

Proof. Let F : QV → QV be an arbitrary Gm-network coded by its standard representation defined by a list of gates
g1, . . . , gn and two functionsα an β mapping inputs to nodes in F and nodes in F to outputs respectively. We are going
to construct in DLOGSPACE a Gm,2-networkG that simulates F in time T = O(1) and space S = O(|V |) whereH
is the communication graph of F . In order to do that, we are going to replace each gate gk by a small gadget. More
precisely, we are going to introduce the following coding function: x ∈ {0, 1} → (x, x, 0) ∈ {0, 1}3. We are going to
define gadgets for each gate. Let us take k ∈ {1, . . . , n} and call g∗k the corresponding gadget associated to gk. Let us

that suppose gk is an OR gate and that it has fanin 2 and fanout 1 then, we define g∗ : {0, 1}6 → {0, 1}6 as a function
that for each input of the form (x, x, y, y, 0, 0) produces the output g∗((x, x, y, y, 0, 0)) = (x∨y, x∨y, 0, 0, 0, 0). The
case fanin 1 and fanout 1 is given by g∗((x, x, 0, 0, 0, 0)) = (x, x, 0, 0, 0, 0), the case fanin 2 and fanout 2 is given by
g∗((x, x, y, y, 0, 0)) = (x∨ y, x∨ y, x∨ y, x∨ y, 0, 0) and finally case fanin 1 and fanout 2 is given by the same latter
function but on input (x,x,0,0,0,0). The AND case is completely analogous. We are going to implement the previous
functions as small (constant depth) synchronized circuits that we call block gadgets. More precisely, we are going to
identify functions g∗ with its correspondent block gadget. The detail on the construction of these circuits that define
latter functions are provided in Figures 12, 13 and 14.

Once we have defined the structure of block gadgets, we have to manage connections between them and also manage
the fixed 0 inputs that we have added in addition to the zeros that are produced by the blocks as outputs. In order to
do that, let us assume that gates gi and gj are connected. Note from the discussion on coding above that AND/OR
gadgets have between 2 and 4 inputs and outputs fixed to 0. In particular, as it is shown in Figures 12, 13 and 14, all
the block gadgets have the same amount of zeros in the input and in the output with the exception of the fanin 1 fanout
2 gates and the fanin 2 fanout 1 gates. However, as G-networks are closed systems (the amount of inputs must be the
same that the amount of outputs) we have that, for each fanin 1 fanout 2 gate, it must be a fanin 2 fanout 1 gate and
vice versa (otherwise there would be more input than outputs or more outputs than inputs). In other words, there is a
bijection between the set of fanin 1 fanout 2 gates and the set of fanin 2 fanout 1. Observe that fanin 2 fanout 1 gates
consume 2 zeros in input but produce 4 zeros in output while fanin 1 fanout 2 gates consume 4 in input and produce
2 zeros in output (see Figures 13 and 14). So, between g∗i and g∗j we have to distinct two cases: a) if both gates have
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Figure 11: NOT gadget wiring for circuit simulation using gates from Gm. In this case a NOT gate is connected to
an OR gate in the original circuit. Copies of the NOT gate in the circuit performing simulation are connected to the
copies of the OR gate switched: positive part is connected to negative part of the OR gate and viceversa.

the same number of inputs and outputs, connections are managed in the obvious way i.e., outputs corresponding to
the computation performed by original gate are assigned between g∗i and g∗j and each gate uses the same zeros they
produce to feed its inputs. b) if g∗i or g∗j have more inputs than outputs or vice versa, we have to manage the extra zeros
(needed or produced). Without lost of generality, we assume that g∗i is fanin 2 fanout 1. Then, by latter observation
it must exists another gate gk and thus, a gadget block g∗k with fanin 1 and fanout 2. We simply connect extra zeros
produced by g∗i to block g∗k and we do the same we did in previous case in order to manage connections.

Note that F ∗ is constructible in DLOGSPACE as it suffices to read the standard representation of F and produce the
associated block gadgets which have constant size. In addition we have that previous encoding g → g∗ induce a block

map φ : {0, 1}V → {0, 1}V+

where |V +| = O(|V |) and that φ ◦ F = F ∗T ◦ φ where T = 6 is the size of each
gadget block in F ∗. We conclude that F ∗ ∈ Γ(Gm,2) simulates F in space |V +| = O(|V |) and time T = 6 and thus,

Γ(Gm) 4T
S Γ(Gm,2) where T is constant and S is a linear function. .

Corollary 4. The family Γ(Gm,2) is strongly universal.

Proof. Result is direct from Theorem 31 (Γ(Gm) is strongly universal) and Theorem 32 (Γ(Gm) 4T
S Γ(Gm,2) where

T is constant and S is a linear function).

Now we show the universality of Γ(Gm). The proof is essentially a consequence of [20, Theorem 6.2.5]. Roughly,
latter result starts with alternated monotone circuit which has only fanin 2 and fanout 2 gates (previous results in the

same reference show that one can always reduce to this case starting from an arbitrary circuit) and gives an NC1

construction of a synchronous circuit preserving latter properties. We need additional care here because we want a
reusable circuit whose output is fed back to its input. Note also that the construction uses quadratic space in the number
of gates of the circuit given in input, so we cannot show strong universality this way but only universality.

Theorem 33. The family Γ(Gm) of all Gm-networks is universal

Proof. Let F : Qk → Qk be some arbitrary network with a circuit representation C : {0, 1}n → {0, 1}n such

that n = kO(1). By [20, Theorem 6.2.5] we can assume that there exists a circuit C′ : {0, 1}n′ → {0, 1}n′

where
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Figure 12: Block gadgets for simulating Fanin 2 Fanout 1 AND/OR gates using only gates in Gm,2. Squared zeros
represent the amount of zeros that can be used as inputs for the same block. Circled zeros correspond to extra zeros
that need to be assigned to a Fanin 1 Fanout 2 gate.

n′ = O(n2) such that C′ is synchronous alternated and monotone. In addition, every gate in C′ has fanin and fanout
2. We remark that latter reference do not only provides the standard encoding of C′ but also give us a DLOGSPACE

algorithm (it is actually NC1) which takes the standard representation of C : {0, 1}n → {0, 1}n and producesC′. We
are going to slightly modify latter algorithm in order to construct not only a circuit but a Gm-network. In fact, the only
critical point is to manage the identification between outputs and inputs. This is not direct from the result by Ruzzo et
al. as their algorithm involves duplication of inputs and also adding constant inputs. In order to manage this, it suffices
to simply modify their construction in order to mark original, copies and constant inputs. Then, as Gm includes COPY
gates and also AND/OR gates with fanout 1, one can always produce copies of certain input if we need more, or
erase extra copies by adding and small tree of O(log(n)) depth. Same goes for constant inputs. Formally, at the end
of the algorithm, the DLOGSPACE can read extra information regarding copies and constant inputs, and then can
construct O(log(n)) depth circuit that produces a coherent encoding for inputs and outputs. This latter construction

defines a Gm-network G : {0, 1}n′′ → {0, 1}n′′

and an encoding φ : Qn → {0, 1}n′′

where n′′ = O(n2) such that
φ ◦ F = GT ◦ φ where T = O(depth(C’) + log(n)). Thus, Gm is universal.

We can now state the following direct corollary.

Corollary 5. Let F be a strongly universal automata network family. Then, F is universal.
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Figure 13: Block gadgets for simulating Fanin 1 Fanout 2 and Fanin 1 Fanout 1 AND/OR gates using only gates
in Gm,2. Squared zeros represent the amount of zeros that can be used as inputs for the same block. Circled zeros
correspond to extra zeros that need to be received from a Fanin 2 Fanout 1 gate.

Proof. In order to show the result, it suffices to exhibit a G-network family (G-networks are bounded degree networks)
which is strongly universal and universal at the same time. By Theorem 33 we take G = Gm and thus, corollary
holds.

Corollary 6. Let G be either Gm or Gm,2. Any family F that has coherent G-gadgets contains a subfamily of bound
degree networks with bounded degree representation which is (strongly) universal. Any CSAN family with coherent
G-gadgets is (strongly) universal.

5.5 Closure and synchronous closure

Although monotone gates are sometimes easier to realize in concrete dynamical system which make the above results
useful, there is nothing special about them to achieve universality: any set of gates that are expressive enough for
Boolean functions yields the same universality result. Given a set of maps G over alphabet Q, we define its closure

G as the set of maps that are computed by circuits that can be built using only gates from G. More precisely, G is
the closure of G by composition, i.e. forming from maps g1 : QI1 → QO1 and g2 : Q

I2 → QO2 (with I1, I2, O1, O2

disjoint) a composition g by plugging a subset of outputs O ⊆ O2 of g1 into a subset of inputs I ⊆ I2 of g2, thus



∨ ∨ ∨

yx

x ∨ y x ∨ y

∨ ∨∨

yx

x ∨ y x ∨ y

0 0

0 0

00x ∨ yx ∨ y

∨

x ∨ y x ∨ y

yx

x ∨ y x ∨ y

∨

yxyx

x ∧ y

0 0

00x ∧ yx ∧ y

∧

x ∧ y x ∧ y

yx

x ∧ y x ∧ y

∧ ∧

x ∧ y x ∧ y

∧ ∨∧

x ∧ y 0 0

Figure 14: Block gadgets for simulating fanin 2 fanout 2 AND/OR gates using only gates in Gm,2. Squared zeros
represent the amount of zeros that can be used as inputs for the same block.



Figure 15: Non-synchronous composition (on the left) and synchronous composition (on the right).

obtaining g : QI1∪I2\I → QO1\O∪O2 with

g(x)o =

{

g1(xI1 )o if o ∈ O1 \O
g2(y)o if o ∈ O2

where yj = xj for j ∈ I2 \ I and yj = g1(xI1 )π(j) where π : I → O is the chosen bijection between I and O (the

wiring of outputs of g1 to inputs of g2). A composition is synchronous if either I = ∅ or I = I2. We then define

the synchronous closure G2 as the closure by synchronous composition. The synchronous composition correspond
to synchronous circuits with gates in G. A G-circuit is a sequence of compositions starting from elements of G. It is
synchronous if the compositions are synchronous. The depth of a G-circuit is the maximal length of a path from an
input to an output. In the case of a synchronous circuits, all such path are of equal length.

Remark 14. The above definitions are very close to the classical notion of clones [31]. However, we stress that,
in our case, projections maps Qk → Q are generally not available. This is important because in a given dynamical
systems, erasing information might be impossible (think about reversible systems) and hiding it into some non-coding
part might be complicated.

Proposition 4. Fix some alphabetQ and consider two finite sets of maps G and G′ over alphabetQ such that:

• either contains the identity map Q→ Q and is such that G contains G′,

• or there is an integer k such that G2k, the set of elements of G2 that can be realized by a circuit of depth k,
contains G′.

Then, any family F that has coherent G-gadgets has coherent G′-gadgets.

Proof. Suppose first that the first item holds. Since G contains G′ there must exist a circuit made of gates from G
that produces any given element g ∈ G′. One then wants to apply gadget glueing on gadgets from G to mimic the
composition and thus obtain a gadget corresponding to g. However this doesn’t work as simply because propagation
delay is a priori not respected at each gate in the circuit composition yielding g and there is a risk that information
arrives distinct delays at different outputs. However, since G contains the identity map, there is a corresponding gadget
in the family that actually implements a delay line. This additionnal gadget solves the problem: it is straightforward
to transform by padding with identity gates all circuit with gates in G into synchronous ones. Moreover, by padding
again, we can assume that the finite set of such circuits computing elements of Gm are all of same depth. It is
then straightforward to translate this set of circuits into coherent Gm-gadgets by iterating gadget glueing and using
Lemma 25.

If the second item holds the situation is actually simpler because the synchronous closure contains only synchronous
circuits of gates from Gm,2 so we can directly translate the circuits producing the maps of Gm,2 into gadgets via gadget
glueing by Lemma 25 as in the previous case. Moreover, the hypothesis is that all elements of G′ are realized by circuit
of same depth so we get gadgets that share the same time constant.



5.6 Super-polynomial periods without universality

A universal family must exhibit super-polynomial periods, however universality is far from necessary to have this
dynamical feature. In this subsection we define the family of wire networks to illustrate this.

In order to do that, we need the following classical result about the growth of Chebyshev function and prime number
theorem.

Lemma 34. [21] Let m ≥ 2 and P(m) = {p ≤ m | p prime}. If we define π(m) = |P(m)| and θ(m) =
∑

p∈P(m)

log(p) then we have π(m) ∼ m
log(m) and θ(m) ∼ m.

By using the Lemma 34 we can construct automata networks with non-polynomial cycles simply by making disjoint
union of rotations (i.e. network whose interaction graph is a cycle that just rotate the configuration at each step).
Indeed, it is sufficient to consider rotations on cycle whose length are successive prime numbers. It turns out that these
automata networks are exactly Gw-networks where Gw is a single ’wire gate’: Gw = {idB} where idB is the identity
map over {0, 1}.

Formally, according to Definition 23, for any Gw-network F : QV → QV there exist a partition V = C1∪C2 . . .∪Ck

whereCi = {ui1 . . . , uili}with li ≥ 2 for each i = 1, . . . , k andF (x)ui
s+1 mod li

= xui
s

for any x ∈ QV and 0 ≤ s ≤ li.
Theorem 35. Any family F that has coherent Gw-gadgets has superpolynomial cycles, more precisely: there is some
α > 0 such that for infinitely many n ∈ N, there exists a network Fn ∈ F with O(n) nodes and a periodic orbit of
size Ω(exp(nα)).

Proof. Taking the notations of Lemma 34, define for any n the Gw-network Gn made of disjoint union of circuits
of each prime length less than n. Gn has size at most nπ(n) and if we consider a configuration x which is in
state 1 at exactly one node in each of the π(n) disjoint circuit, it is clear that the orbit of x is periodic of period
exp θ(n). Therefore, from Lemma 34, for any n, Gn is a circuit of size m ≤ nπ(n) with a periodic orbit of size
θ(n) ∈ Ω(exp(

√
m logm)). By hypothesis there are linear maps T and S such that for any n, there is Fn that

simulates Gn (by Lemma 30), therefore Fn also has a super-polynomial cycle by Lemma 14.

5.7 Conjunctive networks and Gconj-networks

Let G = (V,E) be any directed graph. The conjunctive network associated to G is the automata network
FG : {0, 1}V → {0, 1}V given by F (x)i = ∧j∈N−(i)xj where N−(i) denotes the incoming neighborhood of i. Con-
junctive networks are thus completely determined by the interaction graph and a circuit representation can be deduced
from this graph in DLOGSPACE. We define the family Fconj as the set of conjunctive networks together with the
standard representation F∗

conj which are just directed graphs encoded as finite words in a canonical way.

Remark 15. We can of course do the same with disjunctive networks. Any conjunctive network FG on graph G is
conjugated to the disjunctive network F ′

G on the same graph by the negation map ρ : {0, 1}V → {0, 1}V defined by
ρ(x)i = 1− xi, formally ρ ◦ FG = F ′

G ◦ ρ. In particular, this means that the families of conjunctive and disjunctive
networks simulate each other. In the sequel we will only state results for conjunctive networks while they hold for
disjunctive networks as well.

Let us now consider the set Gconj = {AND,COPY}. Gconj-networks are nothing else than conjunctive networks with
the following degree constraints: each node has either in-degree 1 and out-degree 2, or in-degree 2 and out-degree 1.
The following theorem shows that, up to simulation, these constraints are harmless.

Theorem 36. The family of Gconj-networks simulates the family (Fconj,F∗
conj) of conjunctive networks in linear time

and polynomial space.

Proof. Let F be an arbitrary conjunctive network on graph G = (V,E) with n nodes. Its maximal in/out degree is
at most n. For each node of indegree i ≤ n we can make a tree-like Gconj-gadget with i inputs and 1 output that
computes the conjunction of its i inputs in exactly n steps: more precisely, we can build a sub-network of size O(n)
with i identified ’input’ nodes of fanin 1 and one identified output node of fanout 1 such that for any t ∈ N the state of
the output node at time t+ n is the conjunction of the states of the input nodes at time t (the only sensible aspect is to
maintain synchronization in the gadget, see Figure 16).
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Figure 16: Fanin gadget of degree 3. For any configuration x, F 3(x)vo = xv1 ∧ xv2 ∧ xv3 .

We do the same for copying the output of a gate i times and dealing with arbitrary fanout. Then we replace each node
of F by a meta node made of the two gadgets to deal with fanin/fanout and connect everything together according to
graph G (note that fanin/fanout is granted to be 1 in the gadgets so connections respect the degree constraints). We
obtain in DLOGSPACE a Gconj-network of size polynomial in n that simulates F in linear time.

Remark 16. The family of conjunctive networks can produce super-polynomial periods but is not universal. There
are several ways to show this. It is for instance impossible to produce super-polynomial transients within the family
[28, Theorem 3.20] so Corollary 1 conclude. One could also use Corollary 2 since a node in a strongly connected
component of a conjunctive network must have a trace period of at most the size of the component (actually much
more in known about periods in conjunctive networks through the concept of loop number or cyclicity, see [28]).

5.8 Super-polynomial transients and periods without universality

Let us consider in this section alphabet Q = {0, 1, 2}. We are going to define a set Gt such that Gt-networks exhibit
super-polynomial transients but are not universal. To help intuition, Gt-networks can be though as standard conjunctive
networks on {0, 1} that can in some circumstances produce state 2 which is a spreading state (a node switches to state
2 if one of its incoming neighbors is in state 2). The extra state 2 will serve to mark super-polynomial transients, but
it cannot escape a strongly connected component once it appears in and, as we will see, Gt-networks are therefore too
limited in their ability to produce large periodic behavior inside strongly connected components.

Gt is made of the following maps:

AND{0,1} : (x, y) 7→
{

2 if 2 ∈ {x, y}
x ∧ y else.

AND2 : (x, y) 7→
{

2 if 2 ∈ {x, y} or x = y = 1

0 else.

Λ : (x, y) 7→
{

2 if 2 ∈ {x, y}
x else.

Id : x 7→ x.

Υ : x 7→ (x, x).

Gt-networks can produce non-polynomial periods by disjoint union of rotations of prime lengths as in Theorem 35, but
they can also wait for a global synchronization of all rotations and freeze the result of the test for this synchronization
condition inside a small feedback loop attached to a “controlled AND map”.
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Figure 17: Freezing the result of a test in a Gt-network. The module T (x) is made of the nodes marked Υ, AND2,
Λ and Id. Observe that each node represents some output of its corresponding label (for more details on G-networks
see Definition 23). Each gate has one output with the exception of the gate Υ which is represented by two nodes. The
module T (x) reads the value of node x belonging to an arbitrary Gt-network (represented in light gray inside dotted
lines). The output Λ is fed back to its control input via the Id node (self-loops are forbidden in Gt-networks). Note
that x as well as the rest of the network is not influenced by the behavior of the gates of the module T (x).

More precisely, as shown in Figure 17 we can use in the context of any Gt-network a small module T (x) of made of
five nodes with the following property: if the Λ node of the module is in state 0 in some initial configuration, then it
stays in state 0 as long as nodes x is not in state 1, and when x = 1 at some time step t then from step t+ 2 on the Λ
node is in state 2 at least one step every two steps. This module is the key to control transient behavior.

Besides, the map AND{0,1} behaves like standard Boolean AND map when its inputs are in {0, 1}. More generally,

by combining such maps in a tree-like fashion, one can build modules A(x1, . . . , xk) for any number k of inputs with
a special output node which has the following property for some time delay ∆ ∈ O(log(k)): the output node at time
t+∆ is in state 1 if and only if all nodes xi (with 1 ≤ i ≤ k) are in state 1 at time t.

Combining these two ingredients, we can build upon the construction of Theorem 35 to obtain non-polynomial tran-
sients in any family having coherent Gt-gadgets.

Theorem 37. Any family F that has coherent Gt-gadgets has superpolynomial transients, more precisely: there is
some α > 0 such that for any n ∈ N, there exists a network Fn ∈ F with O(n) nodes and a configuration x such that
F t
n(x) is not in an attractor of Fn with t ∈ Ω(exp(nα)).

Proof. Like in Theorem 35, the key of the proof is to show that there is a Gt-network with transient length as in the
theorem statement, then the property immediately holds for networks of the family F by Lemma 30 and Lemma 14.

For any n > 0 we construct a Gt-network Gn made of two parts:

• the ’bottom’ part ofGn uses a polynomial set of nodesBn and consists in a disjoint union of circuits for each
prime length less than n as in Theorem 35, but where for each prime p, the circuit of length p has a node vp
which implements a copy gate COPY, thus not only sending its value to the next node in the circuit, but also
outputting it to the second part of Gn;

• the ’top’ part ofGn is made of a moduleA(x1, . . . , xk) connected to all nodes vp as inputs and whose output
is connected to a test module T (x) as in Figure 17.

Note that the size of Gn is polynomial in n. With this construction we have the following property as soon as the
modules A(x1, . . . , xk) and T (x) are initialized to state 0 everywhere: as long as nodes vp are not simultaneously in
state 1 then the output of the test module T (x) stays in state 0; moreover, if at some time t nodes vp are simultaneously
in state t, then after time t + O(log(t)) the output node of module T (x) is in state 1 one step every two steps. This
means that t + O(log(t)) is a lower bound on the transient of the considered orbit. To conclude the theorem it is
sufficient to consider the initial configuration where all nodes are in state 0 except the successor of node vp in each
circuit of prime length p, which are in state 1. In this case it is clear that the first time t at which all nodes vp are in
state 1 is the product of prime numbers less than n. As in theorem 35, we conclude thanks to Lemma 34.

As said above, Gt-networks are limited in their ability to produce large periods. More precisely, as shown by the
following lemma, their behavior is close enough to conjunctive networks so that it can be analyzed as the superposition



of the propagation/creation of state 2 above the behavior of a classical Boolean conjunctive network. To any Gt-
network F we associate the Boolean conjunctive network F ∗ with alphabet {0, 1} as follows: nodes with local map
AND{0,1} or AND2 are simply transformed into nodes with Boolean conjunctive local maps on the same neighbors,

nodes with local maps Υ or Id are left unchanged (only their alphabet changes), and nodes with map Λ(x, y) are
transformed into a node with only x as incoming neighborhood.

Lemma 38. Let F be a Gt-network with node set V and F ∗ its associated Boolean conjunctive network. Consider
any x ∈ {0, 1, 2}V and any x∗ ∈ {0, 1}V such that the following holds:

∀v ∈ V : xv ∈ {0, 1} ⇒ x∗v = xv,

then the same holds after one step of each network:

∀v ∈ V : F (x)v ∈ {0, 1} ⇒ F ∗(x∗)v = F (x)v .

Proof. It is sufficient to check that if F (x)v 6= 2, it means that all its incoming neighbors are in {0, 1} so x and x∗ are
equal on these incoming neighbors, and that it only depend on neighbor a in the case of a local map Λ(a, b). In any
case, we deduce F ∗(x∗)v = F (x)v by definition of F ∗.

Gt-networks are close to Boolean conjunctive networks as shown by the previous lemma. The following result shows
that this translates into strong limitations in their ability to produce large periods and prevents them to be universal.

Theorem 39. The family of Gt-networks is not universal.

Proof. Consider a Boolean conjunctive automata network F , a configuration x with periodic orbit under F and some
node v such that there is a walk of length L from v to v. We claim that xv = FL(x)v so the trace at node v
in x is periodic of period less than L. Indeed, in a conjunctive network state 0 is spreading so clearly if xv = 0
then FL(x)v = 0 and, more generally, F kL(x)v = 0 for any k ≥ 1. On the contrary, if xv = 1 then we can’t have

FL(x)v = 0 because then FPk(x)v = 0 with P the period of x which would imply xv = 0.

With the same reasoning, if we consider any Gt-network F , any configuration x with periodic orbit and some node v
such that there is a walk of length L from v to v, then it holds:

xv = 2⇔ FL(x)v = 2.

We deduce thanks to Lemma 38 that for any configuration x with periodic orbit of some Gt-network F with n nodes,
and for any node v belonging to some strongly connected component, the period of the trace at v starting from x is
less than n2: it is a periodic pattern of presence of state 2 of length less than n superposed on a periodic trace on {0, 1}
of length less than n. We conclude that the family of Gt-networks cannot be universal thanks to Theorem 2.

5.9 Simulations and update mode extensions

In the the next sections, we establish various strong universality results concerning families which are block sequen-
tial, local clocks or periodic extensions, i.e. of the form F BLOCK,b or F CLOCK,c or F PER,p for some CSAN family F .
Automata networks from such families have a composite alphabet Q×Q′ where the extension componentQ′ is used
to code the update mode. If such an automata network F simulates some automata networkG, it could potentially use
distinct values on both components of states in the block embedding in order to represent different initial configura-
tions for G. Since the Q′ component determines the update mode, this means that F could potentially “be in distinct
update modes” in the same simulation of G, depending on the initial configuration of G to simulate. It would then be
illegitimate to say that some automata network under some update mode is simulatingG. On the contrary, if the block
embedding is such that the Q′ component is constant whatever the configuration of G to be represented, then all the
orbits of F used to simulate G correspond to the exact same update mode. In this case, we say that the simulation is
update mode coherent, and it is legitimate to speak about an automata network under a specific update mode being
simulating another one.

First, we would like to make it clear that all results of Section 6 are obtained by update mode coherent simulations:
it can be checked that all the pseudo orbits of all the gadgets used are indeed update mode coherent (the extension
component of state is always the same, whatever the configuration being encoded).

Second, we would like point out that in fact if some family F BLOCK,b or F CLOCK,c or F PER,p is (strongly) universal
then it is also (strongly) universal using only update mode coherent simulations. The reason for this is as follows:



Family/Update scheme Block sequential Local clocks General periodic

Conjunctive networks BPA BPA SPA
Locally positive BPA SU SU

Signed conjunctive networks SU SU SU
Min-max networks SU SU SU

Table 1: Summary of the main results on complexity of the dynamics of the network families studied in the current
chapter, depending on different update schemes. BPA = Bounded period attractors. SPA = Superpolynomial attractors.
SU = Strong universality. Black fonts indicate the emergence of complex behavior such as long period attractors or
universality.

inside the extension component Q′ coding the update mode at some node v, there are (at most) two components, one
being constant (for local clocks or periodic extensions) and one having a deterministic cyclic behavior of the type
i 7→ i+ 1 mod p where p is the period of the update mode at the considered node v. Since the block embedding of
any simulation must be injective, if node v is part of some block to encode states q and q′ of some simulated automata
network G, and if G allows both transitions from q to q′ and from q to q, then:

• the constant part of the extension componentQ′ must be the same in the coding of q and q′ (to make possible
the transition from q to q′);

• the time constant of the simulation must be a multiple of the period of the update mode at v (to allow transition
from q to q), and therefore the cyclic part of the extension component must hold the same value in the coding
of q and q′ (to allow transition from q to q′).

We deduce that if G can transition from any state q to any state q′ at each node, then simulation of G is forced to be
update mode coherent. Finally, observe that any automata network in the family of Gm-networks has the property of
allowing a transition from any q to any q′ at any node, therefore a (strongly) universal family F BLOCK,b or F CLOCK,c or
F PER,p must simulate the family of Gm-networks using update mode coherent simulations only. By using the fact that
Gm-networks are strongly universal, we deduce that the considered family can actually simulate any network using
update mode coherent simulations.

6 Effect of asynchronism: a case study of symmetric networks

In this section, we focus on studying concrete symmetric automata network (CSAN) families. We use previous theo-
retical framework on complexity of automata networks families in order to classify different CSAN families according
to their dynamical behavior under different update schemes. More precisely, we focus on two different families of
CSAN: signed conjunctive networks and min-max networks. We distinguish three main subfamilies inside signed
conjunctive networks (for detailed definitions see Definition 4 and Definition 5 ) :

• symmetric conjunctive networks, which are regular conjunctive networks (in which all edge labels are the
identity function);

• locally positive signed conjunctive networks, in which we allow negative edges (labeled by the switch func-
tion: Switch(x) = 1−x) but with a local constraint forcing the existence of at least one positive edge in each
neighborhood (one edge labeled by the identity function); and

• general signed conjunctive networks, in which there could be negative edges without any constraint (possibly
all edges can be negative).

In addition, we consider the latter presented three update schemes: block sequential, local clocks and general periodic
update scheme. We classify previous families according to their dynamical behavior and simulation capabilities by
using the framework presented in previous sections Before we enter into the detail, we present in Table 1 a summary of
the main results obtained. Observe that in each row of Table 1, we show how the dynamical behavior of some CSAN
families changes as we change the update scheme. In particular, the most simple ones, such as conjunctive and locally
positive networks exhibit a relatively simple dynamical behavior (they have bounded period attractors). Contrarily,
the last two families have strong universality even for block sequential update schemes. In addition, we would like to
remark that there is not only a hierarchy for update schemes (block sequential update schemes are a particular case of
local clocks and both are a particular cases of periodic update schemes) but that network families are also somehow



related as conjunctive networks are a sub-family of all the other ones. Additionally, one can also observe that there
is some sort of ”diagonal emergence” of strong universality in Table 1 consisting in the fact that it seems to exists a
trade-off between the complexity in the definition of some network families and the complexity of the corresponding
update schemes. In other words, simple families seem to need more complex update schemes in order to be universal
and as we pass to more complex rules one can observe this property for simpler update schemes.

6.1 Symmetric Conjunctive networks

As said previously, symmetric conjunctive network form a particular CSAN family on alphabet {0, 1} where all edges
are labeled by the identity map and all nodes have the same ’conjunctive’ local map

λ(q,X) =

{

0 if 0 ∈ X,
1 else.

First, symmetric conjunctive networks being a particular case of symmetric threshold networks it follows from the
classical results of [19, 13], that they always converge to some fixed point or cycle of length two. Therefore they are
not dynamically complex with parallel update schedule. It turns out that with a periodic update schedule of period 3
they can break this limitation and produce super-polynomial cycles.

Particularly, we show that symmetric conjunctive networks with a periodic update schedule of period 3 can break latter
limitation on attractor period and produce superpolynomial cycles. Observe that all the graphs over we are defining
networks in this family (and also in the other concrete examples we will be exploring in next sections) are non-directed
(symmetric). If we observe carefully the effect of periodic update schemes, we note that we are actually changing the
interaction graph of the network by considering different orders for updating nodes and thus, breaking the symmetry
in the different connections that nodes have in the network. Moreover, we corroborate this remark by showing that
actually, we can simulate arbitrary conjunctive networks by using a periodic update scheme. We accomplish this by
applying our formalism on simulation and gadget glueing. In fact, we show that the family of symmetric conjunctive
networks admits coherent Gconj-gadgets and thus it is capable of simulating the family (Fconj,F∗

conj). Particularly, this

implies that this family admits attractors of superpolynomial period.

Proposition 5. Let p ≥ 1 and denote by F PER,p
sym-conj be the family of symmetric conjunctive networks under periodic

update schedules of period p. Then, F PER,p
sym-conj is not universal and therefore it does not admit coherent Gm-gadgets.

Proof. We actually show that the longest transient of any F ∈ F with n nodes is O(n2), then the conclusions follow
by Corollary 2 and Theorem 33. Recall that the alphabet is {0, 1} × {0, · · · , p} × 20,··· ,p and, by definition, on any
given configuration x the component {0, · · · , p} × 20,··· ,p is periodic of period p independently of the behavior on the
first {0, 1} component. Moreover, the behavior on the {0, 1} component is that of a fixed (non-symmetric) conjunctive
network F ′ in the following sense:

F t+p(x) = F ′(F t(x)), ∀t ≥ 0.

By [28, Theorem 3.20], the transient of any orbit of F ′ is O(n2). We deduce that the transient of the orbit of x under
F is also O(n2).

Theorem 40. Let F PER,3
sym-conj be the family of symmetric conjunctive networks under periodic update schedule of period

3. F PER,3
sym-conj has coherent Gconj-gadgets and therefore simulates the family of conjunctive networks (Fconj,F∗

conj) and

for instance can produce superpolynomial cycles.

Proof. The conclusion about simulations of conjunctive networks and superpolynomial cycles follows from previous
results as soon as we prove that the family has coherent Gconj-gadgets: Theorem 36 for simulation of conjunctive
networks and Proposition 4 to show that the family has coherent Gw-gadgets (because the identity map is obtained by
composition of COPY and AND) and then Theorem 35 for super-polynomial cycles.

We now describe the coherent Gconj-gadgets within family F PER,3
sym-conj using notations from Definition 29. Let FCOPY ∈

F PER,3
sym-conj be defined on the following graph with nodes VCOPY = {v1, v2, v3, v4, v5, v′4, v′5}:



v′4 v′5

v1 v2 v3

v4 v5

Let also FAND ∈ F be defined on the following graph with nodes VAND = {v1, v2, v′1, v′2, v3, v4, v5}:

v′1 v′2

v1 v2

v3 v4 v5

Recall that both FCOPY and FAND have alphabet Q = {0, 1} × {0, 1, 2} × 2{0,1,2}. Now let C = Ci ∪ Co be the
glueing interface with Ci = {i} and Co = {o}. FCOPY is seen as a gadget with one input and two outputs for the gate
COPY ∈ Gconj as follows:

• φiCOPY,1(i) = v2 and φiCOPY,1(o) = v1;

• φoCOPY,1(i) = v5 and φoCOPY,1(o) = v4.

• φoCOPY,2(i) = v′5 and φoCOPY,2(o) = v′4.

FAND is seen as a gadget with two inputs and one output for the gate AND ∈ Gconj as follows:

• φiAND,1(i) = v2 and φiAND,1(o) = v1;

• φiAND,2(i) = v′2 and φiAND,2(o) = v′1.

• φoAND,1(i) = v5 and φoAND,1(o) = v4.

Note in particular that the conditions of Lemma 28 are satisfied so the closure by gadget glueing of this gadget stays
in our family F . Indeed FCOPY has the same induced label graphs on all images of C under φ maps, and the neigh-
borhood of φiCOPY,1(Co) = v1 is v2 which belongs to φiCOPY,1(C), and similarly for other φ maps. Corresponding
properties hold also for FAND. We now define the following elements required by Definition 29:

• the two state configurations sq for q ∈ {0, 1} are defined by sq(i) = (q, 0, {0, 2}) and sq(o) = (1, 0, {0, 1});

• the context configuration is defined by c(v3) = (1, 0, {1, 2});

• the time constant is T = 3

• the standard trace τq,q′ over the glueing interface from q ∈ {0, 1} to q′ ∈ {0, 1} is given by:

time i o

0 (q, 0, {0, 2}) (1, 0, {0, 1})
1 (1, 1, {0, 2}) (q, 1, {0, 1})
2 (1, 2, {0, 2}) (1, 2, {0, 1})
3 (q′, 0, {0, 2}) (1, 0, {0, 1})

• for any qi, q
T
i , qo, qo′ ∈ {0, 1} we have the following {v1, v5, v′5}-pseudo orbit for FCOPY:

time v1 v2 v3 v4 v5 v′
4 v′

5

0 (qi, 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qo, 0, {0, 2}) (1, 0, {0, 1}) (q′o, 0, {0, 2}) (1, 0, {0, 1})
1 (1, 1, {0, 2}) (qi, 1, {0, 1}) (1, 1, {1, 2}) (1, 1, {0, 2}) (qo, 1, {0, 1}) (1, 1, {0, 2}) (q′o, 1, {0, 1})
2 (1, 2, {0, 2}) (1, 2, {0, 1}) (qi, 2, {1, 2}) (1, 2, {0, 2}) (1, 2, {0, 1}) (1, 2, {0, 2}) (1, 2, {0, 1})
3 (q′i, 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qi, 0, {0, 2}) (1, 0, {0, 1}) (qi, 0, {0, 2}) (1, 0, {0, 1})



• for any qi, q
T
i , qi′ , q

T
i′ , qo ∈ {0, 1} we have the following {v1, v′1, v5}-pseudo orbit for FAND:

time v1 v2 v′
1 v′

2 v3 v4 v5
0 (qi, 0, {0, 2}) (1, 0, {0, 1}) (qi′ , 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qo, 0, {0, 2}) (1, 0, {0, 1})
1 (1, 1, {0, 2}) (qi, 1, {0, 1}) (1, 1, {0, 2}) (qi′ , 1, {0, 1}) (1, 1, {1, 2}) (1, 1, {0, 2}) (qo, 1, {0, 1})
2 (1, 2, {0, 2}) (1, 2, {0, 1}) (1, 2, {0, 2}) (1, 2, {0, 1}) (qi ∧ q

i′
, 2, {1, 2}) (1, 2, {0, 2}) (1, 2, {0, 1})

3 (qTi , 0, {0, 2}) (1, 0, {0, 1}) (qT
i′
, 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qi ∧ qi′ , 0, {0, 2}) (1, 0, {0, 1})

Interestingly, local clock update schedules on conjunctive networks are not able to produce superpolynomial cycles.
To avoid to much conflicts in indices in notations, we denote by xQ, xc and xm the three components of a configuration
x in some local clocks extension network.

Lemma 41. Let us fix any c > 0 and consider the family F CLOCK,c
sym−conj of all symmetric conjunctive networks under

local clocks update scheme with clock period c. Fix n > 0 and let F : Qn
c → Qn

c ∈ F CLOCK,c
sym−conj. For any configuration

(xQ, xc, xm) ∈ Qn
c we have that the period of the attractor reached from (xQ, xc, xm) is at most 2 lcm{xmv : v ∈

{1, . . . , n}}. Moreover, for each attractor x ∈ Att(F ), the set of nodes whose Q component is not constant in x
induces a bipartite subgraph.

Proof. Let (xQ, xc, xm) ∈ Qn
c be a configuration and (xQ, xc, xm) ∈ Att(F ) be an attractor that is reachable from

(xQ, xc, xm) and that is not a fixed point, i.e. p(x) ≥ 2. In order to simplify the notation, we are going to denote

xQ by x. Let i ∈ {0, . . . , n − 1} be a coordinate such that xi changes its state, i.e there exists some t ∈ N such
that x(0)i 6= x(t)i. Without loss of generality we assume that x(0)i = 1 and xc(0)i = 0 and x(1)i = 0. Consider
t1 as the first time step such that the coordinate i changes its state from 0 to 1, which means that, t1 is the first time
step such that x(t1) = 0 and x(t1 + 1) = 1. Observe that t1 = sxmi for some s ≥ 1. Note that, for all j ∈ N(i),
x(t1)j = 1. Moreover, we have that for all j ∈ N(i): and that x(s)j = 1 for all s ∈ [1, t1] (see Figure 6.1). This is
because, since the interaction graph is symmetric, j cannot be in state 0 during interval [1, t1] otherwise both i and j
would stay in state 0 forever, thus contradicting the hypothesis on i. We deduce that xmj ≥ t1 = sxmi (otherwise j

would update its state and become 0 on interval [1, t1]). Now consider t0 to be the first time step in which the node
i changes its state from 1 to 0, i.e. x(t0) = 1 and x(t0 + 1) = 0. Observe that, t1 < t0 = t1 + s∗xmi for some
s∗ ≥ 1. In addition, there must exist some neighbor k ∈ N(i) satisfying that x(t0)k = 0, otherwise i cannot change
to 0 (it requires at least one neighbor in 0 in order to change its state from 1 to 0). Observe that node k satisfies
xmk ≤ xmi because it needs to update to 0 before node i. More precisely, by the definition of t0 we have that i is fixed
in state between t1 and t0 (see Figure 6.1). Additionally, we have that xk(t1) = 1, xk(t0) = 0 and also we have that
x(t0 − xmi )k = 1 (otherwise it contradicts the minimality of t0). Finally, since i is remains in state 0 on the interval
[t0, t0 + xmi ] then, k cannot be updated in the same interval. Thus, xmk ≤ xmi . Moreover, the latter observations imply
that i and k are synchronized, i.e. (xc(0))k = (xc(0))i, x

m
k = xmi , t1 = xmi and t0 = t1 + xmi . Note that also, we

have that for all t, x(t)i = 1 − x(t)k. We have shown that the period of any node v is at most 2xmv , so we deduce
p(x) ≤ 2 lcm{xmv : v ∈ {1, . . . , n}}.

At this point, we know that imust have at least one neighbor that is not constant in x and that it is synchronized. Let us
assume that there is a non constant neighbor ℓ of i that satisfies xmℓ > xmi . On the other hand, we have that ℓ is in state
1 on the interval [0, t1] (see Figure 6.1) because otherwise i cannot switch to state 1 at the time step t1. Observe that,
by hypothesis, ℓ cannot change its state on intervals of the form [rxmi , (r + 1)xmi ) for r ∈ N even since i is in state 0
on those intervals (otherwise i cannot switch back to 1 because it would have a neighbor in 0). However, for r even, i
is in state 1 on intervals of the form [rxmi , (r+1)xmi ). Suppose that ℓ changes its value for the first time on an interval
of the form [r∗xmi , (r

∗ + 1)xmi ) for some r∗ ∈ N odd, i.e. x(s)ℓ = 0 for some s ∈ [r∗xmi , (r
∗ + 1)xmi ). Observe

now that x((r∗ + 2)xmi ) = 1 since i must return to state 1 but ℓ cannot change its state in [(r∗ + 1)xmi , (r
∗ + 2)xmi )

because i is in state 0. Then, we must have xmℓ ≤ xmi , which contradicts the hypothesis. We conclude that every non
constant neighbor of i is synchronized. Repeating the same argument now for any non constant neighbor of i we have
that all the nodes in the connected component containing i have local delay xmi . Iterating this same technique now for
each i in the network, we deduce that x is such that p(x) ≤ 2 lcm{xmv : v ∈ {1, . . . , n}} since locally, each connected
component containing some node i is synchronized and thus, each non-constant node is switching its state every 2xmi
time steps. In addition, for each node i every non-constant neighbor is in the state 0 whenever i is in the state 1. Thus,
the set of nodes which are not constant for (xQ, xc, xm) i.e. S(xQ, xc, xm), induces a two colorable subgraph. The
result holds.
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Figure 18: Scheme of the dynamics of nodes i, k and ℓ defined in the proof of Lemma 41. The checkmarks indicate
where it is feasible for ℓ to be updated and the crosses mark the intervals on which ℓ can change its state.

As seen above, there is a qualitative jump between local clocks and periodic update schedules for conjunctive networks
in the size of dynamical cycles. However, for transient and prediction problems, even general periodic update schedules
fail to produce maximal complexity (under standard complexity classes separations assumptions).

Theorem 42. Let p ∈ N and consider the family F PER,p
sym-conj of symmetric conjunctive networks under periodic update

schedules of period p. F PER,p
sym-conj is neither dynamically nor computationally complex: more precisely, the transients of

any network in F PER,p
sym-conj with n nodes are of length at most O(n2), the problem PREDUF PER,p

sym-conj
can be solved by a NC

2

algorithm and PREDBF PER,p
sym-conj

can be solved in polynomial time.

Proof. Let F ∈ F PER,p
sym-conj with n nodes and consider any initial configuration x. By definition, the orbit of x under F p

is constant on the second and third component of sates, and the action of F p on the first component when starting from
x is a particular non-symmetric conjunctive network Fx that can be seen as an arbitrary Boolean matrix Mx. First,
by [28, Theorem 3.20], the transient of the orbit of x under Fx is of length at most 2n2 − 3n+ 2. We deduce that the
transient of x under F is in O(n2).

Second, it is easy to compute Mx from F and x in NC1. Moreover, matrix multiplication can be done in NC1

and by fast exponentiation circuits we can compute M t
x with polynomial circuits of depth O(log(t) log(n)). With a

constant computational overhead, we can therefore efficiently compute F t(x)v and the complexity upper bounds on
PREDUF PER,p

sym-conj
and PREDBF PER,p

sym-conj
follow.

Remark 17. We remark that even when symmetric conjunctive networks under periodic update schemes are not
dynamically nor computationally complex, it has been shown that, with a different type of update schemes, it is possible
to construct coherent Gm,2-gadgets and thus, show strong universality for this latter family. Particularly, we allude to
the case of firing memory update schemes, which can also be studied in the context of our asynchronous extensions
framework, as same as periodic update schemes. Just as we have mentioned before, this type of update scheme
introduces internal clocks in each node, which will actually depend on the dynamics of the network (contrarily to
the case of local clocks, where clocks are fixed and independent from the dynamics of the network). This key aspect
gives the network strong dynamical and computational capabilities which can be used to simulate monotone boolean
networks. Interested reader is referred to in order [16] to see details.

6.2 Locally positive symmetric signed conjunctive networks

In this section, we study a generalization of conjunctive networks that we call locally positive symmetric conjunctive
networks. Using latter notation for CSAN families we denote this family byFlocally-pos. In this particular case, we allow
edges to have negative signs (which will switch the state of the corresponding neighbor) but with a local constraint:
no neighborhood in which all the connections (remember that all edges are undirected) are negative is allowed. More
precisely, a locally positive symmetric conjunctive network is a CSAN (G, λ, ρ) in for any v ∈ V (G) we have
λv(q, S) =

∧

q∈S

q and there exists w ∈ N(v) : ρ(vw) = Id.

We will show for this family that the threshold of universality when changing update modes is between block sequential
update schemes and local clocks update schemes. More precisely, we show, on one hand, that the family remains



dynamically constrained under block sequential schedule, and, on the other hand, we show that a local clocks version
of this family is strongly universal as a consequence of its capability of simulating coherent Gm,2-gadgets. A similar
construction will be used also for the general case in which we allow any kind of sign label over the edges of the
network as we will show in next sections.

Theorem 43. Fix any b ≥ 1 and consider F BLOCK,b
locally-pos the family of all locally positive symmetric signed conjunctive

networks under blocksequential schedule with at most b blocks. Any periodic orbit of any F ∈ F BLOCK,b
locally-pos has length 1

or 2b.

Proof. Take some configuration x in a periodic orbit. If no node changes its state in the orbit then x is actually a fixed-
point. Otherwise take some node i that changes its state and consider a maximal time interval I = [t1; t2] with t1 > 0
during which i is in state 0: ∀t ∈ I , F t(x)i = 0 but F t1−1(x)i = F t2+1(x)i = 1. Let j be any positive neighborhood
(i.e. such that ρ(i, j) is the identity). First, we must have ∀t ∈ I , F t(x)j = 1 because supposingF t(x)i = F t(x)j = 0

implies F t′(x)i = F t′(x)j = 0 for all t′ ≥ t which would contradict the hypothesis that i changes its state in the orbit.
Thus t2 − t1 + 1 = b because it is by definition a multiple of b and if it were strictly larger than b then node j would
be updated in the interval [t1; t2 − 1] and therefore would turn into state 0 in the interval I which is impossible. The
same argument actually shows that i and j must be updated synchronously. Therefore it is updated at time t2 and we
must have F t2+1(x)j = 0. This implies that F t2+b+1(x)i = 0 and shows that the maximal time interval starting from
t2 + 1 during which i is in state 1 is of length exactly b. We can then iterate this reasoning starting at time t2 + b+ 1
and we deduce that the orbit of x at node i alternates b steps in state 0 and b steps in state 1 forever. The same holds
for any node that changes it state and finally we have shown that the orbit of x is of period 1 or 2b.

Now, we want to show that coherent AND/OR gadgets can be implemented in F CLOCK,clocally-pos, i.e. we want to
show that this family has coherent Gm,2 gadgets where Gm,2 = {AND2,OR2} where OR2 : {0, 1}2 → {0, 1}2 is such

that OR2(x, y) = (x ∨ y, x ∨ y) and function AND2 : {0, 1}2 → {0, 1}2 is such that AND2(x, y) = (x ∧ y, x ∧ y).
However, in order to accomplish this task we need a construction that we will be using for the next subsection.
Particularly, we need to implement the gadgets that are shown in Figures 25 and 26. Then, we will adapt latter gadgets
in order to make it work for locally positive symmetric conjunctive networks. Thus, as a consequence, we will have
that F CLOCK,c

locally-pos is strongly universal.

As results on general signed symmetric conjunctive networks are required first in order to show the proof of the main
theorem of this section, we will just state the main result and then, we will show the proof of next theorem in the
next section, in order to simplify things. By doing this we will respect the order given by hierarchy between different
families and preserve coherence of results at the same time.

Theorem 44. There exist c > 0 such that the family F CLOCK,c
locally-pos of all locally positive symmetric conjunctive networks

under local clocks update scheme with clock parameter c has coherent Gm,2-gadgets.

Finally, as a direct consequence of latter theorem we have the following corollary:

Corollary 7. There exist c > 0 such that the family FCLOCK,c
locally-pos of all locally positive symmetric conjunctive networks

under local clocks update scheme with clock parameter c is strongly universal. In particular,F CLOCK,c
locally-pos is both dynam-

ically and computationally complex.

Proof. Proof is a direct consequence of Theorem 22, Corollary 1 and Corollary 6.

6.3 Symmetric signed conjunctive networks

In this section we study conjunctive networks with negative edges without any local constraint in the number of
positive edges. Formally the symmetric signed conjunctive networks family is a CSAN family in {0, 1} in which
λv : Q × 2Q → Q is given by λ(q, S) = 0 if 0 ∈ S and λ(q, S) = 1 if 0 6∈ S and for any e ∈ E we have
ρe ∈ {Id, Switch}. where Switch(x) = 1 − x. We denote previous family as Fsign-sym-conj and for a different update

schemes we consider the notation F BLOCK,b
sign-sym-conj,F

CLOCK,c
sign-sym-conj and F PER,p

sign-sym-conj for block sequential, local clocks and

periodic versions of this family respectively.

We start by remarking that for the parallel update scheme,Fsign-sym-conj family is not universal as it is a type of threshold
family and thus it have bounded period transient and attractors (see [19, 13]). Then, a natural question is whether this
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Figure 19: One step of the dynamics of the NOT part of NOR gadget implemented by a signed symmetric conjunctive
network. Dotted circles and triangles represent blocks. Numbers in gray represent the updating order of each block.
Each time step t is taken after three time steps (one for each block). Total simulation time is T = 9.

remains true for other update schemes. In this sense, we are going to show that, when we consider the next update
scheme in our hierarchy, the block sequential update scheme then, Fsign-sym-conj family is strongly universal.

6.3.1 Block sequential case

In this section, we will show that F BLOCK,b
sign-sym-conj is strongly universal as a consequence of its capability to implement

coherent Gm,2-gadgets. In addition, we conclude that, as a direct consequence of the latter property, that previous
family is both dynamically complex and computationally complex. This means that for this family, complex behavior
is exhibited under block sequential update schemes.
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Figure 20: Two last steps of the dynamics described by the NOT part of NOR gadget implemented by a symmetric
signed conjunctive network. Dotted circles and triangles represent blocks. Numbers in gray represent the updating
order of each block. Each time step t is taken after three time steps (one for each block). Total simulation time is
T = 9.



NOT NOT

Figure 21: Wire gadget implemented on a signed symmetric conjuntive network. 2 copies of NOT gadget are combined
in order to form a wire. Simulation time is T = 6.

As we will be using the same structures to show the main result, we start by showing a less powerful result. We show

that F BLOCK,b
sign-sym-conj is able to simulate Gw-networks. This is only a way to motivate the main result by showing how key

structures work in a particular simple context. As we will see when we present the main result, we do not use exactly
this result in the actual proof of main theorem but we apply the same type of ideas as related structures are part of the
gadgets we construct. We remark that all involved gadgets have only negative labels, i.e. each edge is labeled by the
Switch function which takes a bit x and produces 1− x.
Lemma 45. The family F BLOCK,3

sign-sym-conj of all signed symmetric conjunctive networks under block sequential update

schemes of at most 3 blocks has coherent Gw-gadgets.

Proof. We define a gadget simulating Id by considering two copies of the NOT gadget presented in Figures 19 and
20. Observe that this gadget has 3 central nodes (marked inside a thick dotted rectangle in Figures 19 and 20) together
with 2 copies of a 4 nodes cycle graph. Generally speaking, the dynamics on this cycle graphs works as a clock which
allows information to flow through the central part in only one direction (from left to right). In addition, they allow
the gadget to erase information once it has been transmitted. This latter property allows the gadget to clean itself in
order to receive new information. The wire gadget is composed by two copies of the NOT gadget as is presented in
Figure 21. Since this gadget is composed by two copies of the NOT gadget, this gadget is defined by a path graph
with 6 central nodes together with 2 × 2 × 3 = 12 cycle graphs (two copies for each node). We enumerate nodes in
the central part from left to write by the following ordering: {0, 1, 2, 3, 4, 5}. Additionally, since the functioning of
each copy of the NOT gadget is based in an ordered partition of 3 blocks, we take the union of corresponding blocks
in each partition in order to define 3 larger blocks for the wire gadget. For one of this larger blocks we use the notation
{0, 1, 2}. Thus, observe that each wire takes T = 6 × 3 = 18 time steps in order transport the information. This is
because for each round of 3 time steps in which we update each block, we make the signal pass through exactly one
node. We define the glueing interface as Ci = {i} and Co = {o}. We map input and output in the following way:
φi(i) = 1, φi(o) = 0, φo(i) = {5} φo(o) = {4}. Note that in each case the neighborhood of output and input part is
completely contained in Ci and Co respectively and also the image of C by functions φ is always the same (two nodes
path graph). Thus, the glueing interface satisfies conditions of Lemma 28. Now we enumerate the remaining elements
required by Definition 29:

• State configurations sq(i) = (q, 0) and sq(o) = (q, 1) for any q ∈ {0, 1}.

• Context configurations are given in Figure 19 as well as the iteration order which defines the blocks.

• Standard trace and pseudo orbit for nodes {0, 1, 4, 5} are defined in Figure 19 and Figure 20.

We are now in conditions to introduce the main result:

Lemma 46. The family F BLOCK,3
sign-sym-conj of all signed symmetric conjunctive networks under block sequential update

schemes of at most 3 blocks has coherent Gm,2-gadgets.

Proof. We will show that the gadgets in the Figures 25 and 26 are coherent Gm,2-gadgets. Note that both these gadgets
are made of several wires made of NOT gadgets (we call the two in the left hand side of the figure input wires and
the other two at the right hand side output wires) and a computation gadget. Observe that, each of these structures
(wires and computation gadget) needs exactly 3 blocks. In addition, note that in Table 4 the dynamics of the 4-cycles
that are attached to each node is shown. We recall that the function of these clocks is to allow information to flow in
one direction only (all the interactions are symmetric so this is not straightforward) and to erase information once it
has been copied or processed by the nodes in the gadget. We use the following notation in order to represent nodes in
these structures: cs,i,j,p where s is the number of the NOT gadget (a 3-node-path together with two 4-cycles for each



node, see Figure 22) to which the cycle is attached, so s ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}where the order is taken from left to
right (for example in Figure 25 the copy associated to (v1, v2, v3) comes first then, (v′1, v

′
2, v

′
3), then (v4, v5, v6) and

so on). Additionally, i is in the position of the cycle in the NOT block, so i ∈ {1, 2, 3}, j is the position of the node
relative to the 4-cycle graph considered in counter clockwise order (see Figure 22), so j ∈ {1, 2, 3, 4} and p is the
position of the cycle in the central structure of the gadget. Observe that, since there are two copies for each node, we
denote them by upper and lower so p ∈ {u, l}. Since input wires and output wires are needed to be updated at the
same time and are independent (we have two copies for each one) we combine their blocks in the obvious way (we
take the union of pairs of blocks that have the same update order). More precisely, we combine 3 × 9 blocks of each
particular part (there are 8 copies of NOT and one computation gadget having 3 blocks each one) in order to define
again only 3 blocks. Precise definition, using notation shown in Figures 25 and 26, is the following:

• B0 =
12
⋃

i=1

{vi} ∪ {v′i} ∪
⋃

s,i

{cs,i,1,l, cs,i,2,l};

• B1 =
⋃

s

{cs,1,3,u, cs,1,4,u, cs,2,1,u, cs,2,2,u, cs,3,1,u, cs,3,2,u}; and

• B2 =
⋃

s,i

{cs,i,3,l, cs,i,4,l}.

Now we are going to use information in Tables 2, 3 and 4 in order to show that these gadgets satisfy the conditions of
Definition 29. Observe that, on the one hand, for the OR gadget (see Figure 25), input wires compute the result in 3×3
(it needs to carry the signal through the three nodes in the wire and each of this intermediate steps takes three steps,
one for each block) time steps and computation gadget takes 3 × 3 as well. On the other hand, for the AND gadget
(see Figure 26) input wires compute desired in 3× 6 time steps. We define the associated network as FAND : ({0, 1}×
{0, 1, 2})15×2×4 → ({0, 1} × {0, 1, 2})15×2×4 and FOR : ({0, 1} × {0, 1, 2})15×2×4 → ({0, 1} × {0, 1, 2})15×2×4.
In fact we have that:

1. There is a unique glueing interface given by C = Ci ∪ Co where:

• Ci = {i} ∪ {a(i, 1), a(i, 2), a(i, 3), a(i, 4)} ∪ {a′(i, 1), a′(i, 2), a′(i, 3), a′(i, 4)}; and

• Co = {o′, o} ∪ {a(o′, 1), a(o′, 2), a(o′, 3), a(o′, 4)} ∪ {a(o, 1), a(o, 2), a(o, 3), a(o, 4)} ∪
{a′(o′, 1), a′(o′, 2), a′(o′, 3), a′(o′, 4)} ∪ {a′(o, 1), a′(o, 2), a′(o, 3), a′(o, 4)}

We define labelling functions φiAND,k, φoAND,k, φiOR,k, φoOR,k (for the sake of simplicity we show the definition

for the AND gadget since the one for the OR gadget is completely analogous) for k = 1, 2 as:

• φiAND,1(i) = v1, φiAND,1(o
′) = v2 and φiAND,1(o) = v3;

• φiAND,1(a(i, r)) = c1,1,r,u, φiAND,1(a
′(i, r)) = c1,1,r,l for r = 1, 2, 3, 4,where 1 corresponds to the NOT

gadget which starts with v1 in Figure 26.

• φiAND,1(a(o
′, r)) = c1,2,r,u, φiAND,1(a

′(o′, r)) = c1,2,r,l for r = 1, 2, 3, 4, where 1 corresponds to the
NOT gadget which starts with v1 in Figure 26;

• φiAND,1(a(o, r)) = c1,3,r,u, φiAND,1(a
′(o, r)) = c1,3,r,l for r = 1, 2, 3, 4, where 1 corresponds to the

NOT gadget which starts with v′1 in Figure 26;

• φiAND,2(i) = v′1, φiAND,2(o
′) = v′2 and φiAND,2(o) = v′3;

• φiAND,2(a(i, r)) = c1′,1,r,u, φiAND,1(a
′(i, r)) = c1′,1,r,l for r = 1, 2, 3, 4,where 2 correspond to the NOT

gadget which starts with v′1 in Figure 26;

• φiAND,2(a(o
′, r)) = c1′,2,r,u, φiAND,1(a

′(o′, r)) = c1′,2,r,l for r = 1, 2, 3, 4, where 2 corresponds to the

NOT gadget which starts with v′1 in Figure 26;

• φiAND,2(a(o, r)) = c1′,3,r,u, φiAND,1(a
′(o, r)) = c1′,3,r,l for r = 1, 2, 3, 4, where 2 corresponds to the

NOT gadget which starts with v′1 in Figure 26.

• φoAND,1(i) = v10, φoAND,1(o
′) = v11 and φoAND,1(o) = v12;

• φoAND,1(a(i, r)) = c5,1,r,u, φoAND,1(a
′(i, r)) = c5,1,r,l for r = 1, 2, 3, 4,where 8 corresponds to the NOT

gadget which starts with v10 in Figure 26.



cs,i,1,p

cs,i,2,p

cs,i,3,p

cs,i,4,p

Figure 22: Scheme of labelling for 4-cycles in AND/OR gadgets. Notation is given by the following guidelines:
s represent the associated group of three nodes, second two coordinates indicate its position relative to the original
gadget (there are 3 clocks) and its position in the 4-cycle graph (considering counter clock-wise order), and u, l stands
for upper or lower according to its position in the gadget.

• φoAND,1(a(o
′, r)) = c5,2,r,u, φoAND,1(a

′(o′, r)) = c5,2,r,l for r = 1, 2, 3, 4, where 8 corresponds to the
NOT gadget which starts with v10 in Figure 26;

• φoAND,1(a(o, r)) = c5,3,r,u, φoAND,1(a
′(o, r)) = c5,3,r,l for r = 1, 2, 3, 4, where 8 corresponds to the

NOT gadget which starts with v10 in Figure 26;

• φoAND,2(i) = v′10, φoAND,2(o
′) = v′11 and φoAND,2(o) = v′12;

• φiAND,2(a(i, r)) = c5′,1,r,u, φiAND,2(a
′(i, r)) = c5′,1,r,l for r = 1, 2, 3, 4,where 9 correspond to the NOT

gadget which starts with v′10 in Figure 26;

• φoAND,2(a(o
′, r)) = c5′,2,r,u, φoAND,2(a

′(o′, r)) = c5′,2,r,l for r = 1, 2, 3, 4, where 9 corresponds to the
NOT gadget which starts with v10 in Figure 26;

• φoAND,2(a(o, r)) = c5′,3,r,u, φoAND,2(a
′(o, r)) = c5′,3,r,l for r = 1, 2, 3, 4, where 9 corresponds to the

NOT gadget which starts with v′10 in Figure 26.

2. State configurations are defined for each q ∈ {0, 1} as sq(i) = (q, 1) and sq(o
′) = sq(o) = (0, 1) and the

state configuration of the nodes in the clocks i.e. the ones labeled by a are constant and shown in Table 4.
The block number for each of these nodes can is the same as the original NOT gadget 19.

3. Context configurations are described in Tables 2, 3 and 4 as the ones related to the cycles of length 4 connected
to central path of the gadgets and nodes in the path which are not part of the glueing interface.

4. Standard trace is defined in Tables 2 and 3 (which contain the information related to the dynamics of nodes
v1, v

′
1, v2, v

′
2, v3, v

′
3, v10, v

′
10, v11, v

′
11, v12, v

′
12) and in Table 4 (which contains the dynamics of the nodes in

the 4-cycles).

5. Simulation constant is T = 3× 12 as it is shown in Tables 2,3 and

6. Pseudo-orbit is given by the dynamics shown in in Tables 2, 3, and 4 where x, y, x′, y′, z are variables.

Corollary 8. The family F BLOCK,2
sign-sym-conj of all signed symmetric conjunctive networks under block sequential update

schemes with at most 3 blocks is strongly universal. In particular, it is complex both dynamically and computationally
complex.

Proof. Strong universality holds from the fact that family is capable of simulating Gm,2 in linear space and constant
time (See Corollary 6). Family is dynamically and computationally complex as a direct consequence of strong univer-
sality (see Theorem 22 and Corollary 1).
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Figure 23: One step of the dynamics of the computation gadget inside NOR gadget implemented by a signed symmetric
conjunctive network. Dotted circles and triangles represent blocks. Numbers in gray represent the updating order of
each block. Each time step t is taken after three time steps (one for each block). Total simulation time is T = 9.

We are now in conditions to resume the proof of Theorem 44, we give again the statement of the theorem and we
provide the complete proof.

There exist c > 0 such that the family F CLOCK,clocally-pos of all locally positive symmetric conjunc-
tive networks under local clocks update scheme with clock parameter c has coherent Gm,2-gadgets.

Proof. We start by observing that the gadgets in Figures 25 and 26 can be implemented in F CLOCK,c
locally-pos for some c. This

can be easily done by adding a positive node to each node in the gadget. The main idea here is that each of these
artificial positive nodes will play no role in calculations and will stay in state 1 most of the time. In fact, it suffices that
these positive neighbors reach state 1 before critical steps of computation are performed inside the gadget.

In order to illustrate this idea, let us consider two different cases and analyze why computation gadget still works in
this case:

1. Nodes in 4-cycles: observe that these nodes have a fixed trajectory that is independent on the input that
computation part is handling. Thus, it suffices to note that each node in the context effectively changes its
state (they are in an attractor of period 3 × 3 as it is shown in Figure 4). As a consequence of this latter
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Figure 24: Last two steps of the dynamics of the computation gadget inside NOR gadget implemented by an AND-not
network. Dotted circles and triangles represent blocks. Numbers in gray represent the updating order of each block.
Each time step t is taken after three time steps (one for each block). Total simulation time is T = 12.

observation, we can set the local period of each positive neighbor so it is updated when its neighbor in the
clock is in state 1. More precisely, we fix the corresponding local period value to 9 and correctly initialize
them so each positive neighbor is updated exactly when their correspondent node is in state 1.

2. Central nodes: Observe that, in this case, we have that in the pseudo-orbit given in Table 2 and Table 3 each
node eventually reaches the state 1 independently from the value of x, y, z, x′ and y′. Thus, as same as the
nodes that are in the 4-cycles, it suffices to set up the local clock of each positive neighbor in order to be
updated while its neighbor in the gadget is in state 1. More precisely, it suffices to set up clocks following
values in Table 2 and Table 3 and set clocks to be updated every 18 time-steps. Note that this work since nodes
in the central part are in the first block so positive neighbors are updated at the same time as its neighbors but
only when nodes in the gadget are in state 1.

Thus, gadgets in Figures 25 and 26 can be implemented as same as we did for general symmetric signed conjunctive
networks and desired result holds.
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Figure 25: OR gadget structure. In order to produce a OR gadget, wire gadget and NOT gadget are combined with
computation part showed in Figures 23 and 24.
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Figure 26: AND gadget structure. In order to implement an AND gadget, wire gadget and NOT gadget are combined
with computation part showed in Figures 23 and 24.



Node/Time v1 v2 v3 v4 v5 v6 v′1 v′2 v′3 v′4 v′5 v′6 w1 w2 w3 v7 v8 v9 v10 v11 v12 v′7 v′8 v′9 v′10 v′11 v′12
0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 z 0 0
3 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 0 z 0 0 1 0 0 z 0

6 0 0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 z
9 1 0 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
12 0 0 0 0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 1 0 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1
18 0 0 0 0 0 0 0 0 0 0 0 0 x ∧ y 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 1 0 0 1 0 0 1 0 0 1 0 0 x ∧ y 0 0 1 0 0 1 0 0 1 0 0 1 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x ∧ y 0 0 0 0 0 0 0 0 0 0 0 0
27 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x ∧ y 0 0 1 0 0 x ∧ y 0 0 1 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x ∧ y 0 0 0 0 0 x ∧ y 0 0 0 0

33 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x ∧ y 0 0 1 0 0 x ∧ y 0 0 1
36 x’ 0 0 0 0 0 y’ 0 0 0 0 0 0 0 0 0 0 0 x ∧ y 0 0 0 0 0 x ∧ y 0 0

Table 2: Dynamics for central gadgets in AND gadget implemented over a symmetric signed conjunctive network.
Notation is the same of the one shown in Figure 26

Node/Time v1 v2 v3 v′1 v′2 v′3 w1 w2 w3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v′4 v′5 v′6 v′7 v′8 v′9 v′10 v′11 v′12
0 x 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 z 0 0
3 0 x 0 0 y 0 0 1 0 0 1 0 0 1 0 0 z 0 0 1 0 0 1 0 0 z 0
6 0 0 x 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 z

9 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
12 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0
18 0 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0

21 0 1 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0
24 0 0 0 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0
27 1 0 0 1 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0
33 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x ∨ y 0 0 1 0 0 1 0 0 x ∨ y 0 0 1

36 x’ 0 0 y’ 0 0 0 0 0 0 0 0 0 0 0 x ∨ y 0 0 0 0 0 0 0 0 x ∨ y 0 0

Table 3: Dynamics for central gadgets in OR gadget implemented over a symmetric signed conjunctive network.
Notation is the same of the one shown in Figure 25

6.4 Symmetric min-max networks

In this section, we study min-max networks. This is also a particular CSAN family in which local functions take the
maximum or minimum value of some set of states. More precisely, a min-max network with ordered alphabet Q is
a CSAN (G, λ, ρ) characterized by local functions λv(q, S) = minS or λv(S) = maxS for every v ∈ V (G) and
trivial edge labels ρe ∈ {Id} for each e ∈ E(G). Note that in the particular case in which Q = {0, 1} we have
λv(S) =

∨

x∈S

x or λv(q, S) =
∧

x∈S

s for every v ∈ V (G). We call these particular CSAN family given by alphabet

Q = {0, 1} the family of AND-OR networks and we write FAND-OR, F BLOCK,b
AND-OR , F CLOCK,c

AND-OR and F PER,p
AND-OR to denote

different update schemes as we did before. Analogously, we use the notation FMIN-MAX, F BLOCK,b
MIN-MAX, F CLOCK,c

MIN-MAX and

F PER,p
MIN-MAX.

In the Boolean case, max and min functions are threshold functions because min(x1, . . . , xk) = 1⇔∑

xi = k and
max(x1, . . . , xk) = 0⇔∑

xi = 0. Therefore their periodic orbits are of length at most 2 by the results in [19]. In the
non-Boolean case, they are not threshold functions. However, as shown by the following lemma the general alphabet
case can be understood through multiple factorings onto the Boolean case.

Lemma 47. Let n ≥ 2 and letA = (G, λ, ρ) be a min-max automata network with alphabetQ such that |V (G)| = n.
Let F be a global rule for A. There exists an AND-OR automata network A∗ = (G, λ, ρ) and a global rule F ∗ :
{0, 1}n → {0, 1}n such that for every α ∈ Q the function πα : Qn → {0, 1}n is such that πα ◦ F = F ∗ ◦ πα where

πα(x)i =

{

1 if xi ≥ α
0 otherwise.

Proof. Let us take F ∗ as global function given by the same min/max labels than F but considering the fact that in the
alphabet {0, 1} we have min(x, y) = x ∧ y and max(x, y) = x ∨ y. Fix α ∈ Q and let x ∈ Qn. Additionally, let

us fix i ∈ V . Suppose that F (x)i = max(xi1 , . . . , xik) then F ∗(πα(x))i =
k
∨

s=1
πα(x)is where N(i) = {i1, . . . ik}.

Note that

πα(F (x))i =

{

1 if max(xi1 , . . . , xik) ≥ α,
0 otherwise.



Node/Time cs,1,1,u cs,1,2,u cs,1,3,u cs,1,4,u cs,2,1,u cs,2,2,u cs,2,3,u cs,2,4,u cs,3,1,u cs,3,2,u cs,3,3,u cs,3,4,u
0 0 0 1 1 0 0 1 1 1 1 0 0
3 1 1 0 0 0 0 0 0 0 0 1 1
6 0 0 0 0 1 1 0 0 0 0 0 0

9 0 0 1 1 0 0 1 1 1 1 0 0
Node/Time cs,1,1,l cs,1,2,l cs,1,3,l cs,1,4,l cs,2,1,l cs,2,2,l cs,2,3,l cs,2,4,l cs,3,1,l cs,3,2,l cs,3,3,b cs,3,4,b
0 1 1 0 0 0 0 0 0 0 0 1 1
3 0 0 1 1 1 1 0 0 0 0 0 0
6 0 0 0 0 0 0 1 1 1 1 0 0

9 1 1 0 0 0 0 0 0 0 0 1 1

Table 4: Dynamics for context in AND/OR gadgets implemented on symmetric signed conjunctive networks. Notation
is given by the following guidelines: s represent the associated group of three nodes, second two coordinates indicate
its position relative to the original gadget (there are 3 clocks) and its position in the 4-cycle graph (considering counter
clock-wise order), and u, l stands for upper or lower according to its position in the gadget.

Then, it is clear that we have πα(F (x))i = 1 if and only if πα(x)is = 1 for some s ∈ {1, . . . , k} and thus if and only

if
k
∨

s=1
πα(x)is = 1 which is equivalent to F ∗ ◦π(x)i = 1. The case in which F (x)i = min(xi1 , . . . , xik) is analogous

since we have that F ∗(πα(x))i =
k
∧

s=1
πα(x)is .

We deduce that periodic orbits in MIN-MAX networks are of length at most 2 and therefore the family cannot be
universal.

Corollary 9. LetF be any MIN-MAX network over alphabetQ and x any limit configuration (i.e. such thatF t(x) = x
for some t). Then, F 2(x) = x. Therefore the family of MIN-MAX networks cannot be universal (considered under the
parallel update scheme).

Proof. We show that F 2(x)i = xi for any node i. Let q be the maximum state appearing in the sequence (F t(x)i)t∈N.
Using Lemma 47 with projection πq and the fact that periodic orbits of AND-OR networks have period at most 2
we deduce that if F t(x)i = q then F t+2(x)i = q for some t. Suppose without loss of generality that xi = q. If
F (x)i = q we are done because then (F t(x)i)t∈N is constant equal to q. Otherwise let q′ be the minimum state

appearing in the sequence (F t(x)i)t∈N. Necessarily q′ < q, and using again Lemma 47 with projection πq′ we deduce

that if F t(x)i = q′ then F t+2(x)i = q′. With our assumption that xi = q it must be the case that F 2k+1(x)i = q′ for
some k ≥ 0. From the previous facts and periodicity of the orbit of x we deduce that F t(x)i is q when t is even and
q′ when t is odd. The claim about non-universality follows from Theorem 22.

6.5 Block sequential update schemes

We have shown that MIN-MAX networks are very limited under the parallel update mode. We now consider them
under block sequential update schedules. We actually show that AND-OR networks under such update modes can
simulate AND-NOT networks and therefore inherit the universality property. Since MIN-MAX networks on any
alphabet Q with |Q| > 1 simulates Boolean AND-OR networks (by just restricting their alphabet to size 2), we only
focus on AND-OR networks.

6.5.1 Strong universality

As we did forF BLOCK,b
sign-sym-conj we will show that F BLOCK,b

AND-OR is also strongly universal as a direct consequence of the fact that

we can simulate F BLOCK,b
sign-sym-conj in linear space and constant time. We accomplish this by using again the coding trick of

“double railed logic”. In fact, given the interaction graph of a signed symmetric conjunctive network having n nodes,
we simply double each node and thus, our simulator has 2n nodes. Simulation is made in real time so T = 1. We
precise these ideas in the following lemma:

Lemma 48. Let F PER,p
AND-OR be the family of AND-OR networks updated according to some arbitrary periodic update

scheme of period p. Let T be the constant function equal to 1 and S : N → N be defined as S(n) = 2n. Then, we

have that F PER,p
sign-sym-conj 4

S
T F PER,p

AND-OR.



Proof. Let us a fix a periodic update scheme of period p ∈ N. Let us take the graph representation of some arbitrary
network (G, λ, ρ) in F PER,p

sign-sym-conj. We construct a network in F PER,p
AND-OR capable to simulate the latter network in the

following way: first, we represent each state q ∈ {0, 1} by (q, q) where q = 1 − q; then, for each v ∈ V (G) we
consider two nodes v′, v. By doing this, we store the original state of v in v′ and v store its complement. More
precisely, we replace each node in the network by the gadget in Figure 27. As it is shown in the same figure, we define
λ′(v′) ≡ AND and λ′(v) ≡ OR. Let us define the set V ′ = {(v′, v) : v ∈ V }. We define a set of edges in V ′ denoted
E′ as follows: for each edge (u, v) in E(G) we add the following edges depending on ρ((u, v)):

• if ρ((u, v)) = Id, we add the edges (u′, v′) and (u, v).

• if ρ((u, v)) = Switch, we add the edges (u′, v) and (u, v′).

Note that this immediately defines a local rule for the simulator network that we call f ′
w for each w ∈ V ′. We

show that this local rule effectively simulates (G, λ, ρ). More precisely, let us call fu the local rule of (G, λ, ρ) for
each u ∈ V (G). In addition, let us call N(u)+ to the neighborhood of u in G such that any v ∈ N(u)+ satisfies
ρ((u, v)) = Id and also let us define N(u)− such that v ∈ N(u)− if and only if ρ((u, v)) = Switch. Finally, for each
x ∈ {0, 1}n let us call x′ ∈ {0, 1}2n the configuration defined by x′u′ = xu and x′u = xu, for each u ∈ V (G). Fix
u ∈ V, we have for (u′, u) the following result:

• f ′
u′(x′|N(u′)) = (

∧

v′∈NG′(u′):v∈N(u)+

x′v′ )∧(
∧

v∈NG′ (u′):v∈N(u)−

x′v) = (
∧

v∈N(u)+

xv)∧(
∧

v∈N(u)−

xv) = fu(x)

• f ′
u(x

′|N(u)) = (
∨

v∈NG′(u):v∈N(u)+

x′v) ∨ (
∨

v′∈NG′(u):v∈N(u)−

x′v) = (
∨

v∈N(u)+

xv) ∨ (
∨

v∈N(u)−

xv) =

(
∧

v∈N(u)+

xv) ∧ (
∧

v∈N(u)−

xv) = fu(x)

And thus, we have that x′u′ → fu(x) and x′u → fu(x).

Finally, in order to be coherent with the given periodic update scheme, it suffices to define an update scheme with
period p such that the nodes (u′, u) are updated at each time step at which u ∈ V (G) is. We conclude that the network

(G′, λ′, ρ′) ∈ F PER,p
AND-OR (where ρ(u, v) = Id for each (u, v) ∈ E), simulates (G, λ, ρ) in constant time T = 1 and

linear space S(n) = 2n.

Theorem 49. There exists some b > 0 such that the family FBLOCK,b
AND-OR of all AND-OR networks under block sequential

update scheme of block parameter b is strongly universal. In particular, F BLOCK,b
AND-OR is dynamically and computationally

complex.

Proof. The result is a direct consequence of Lemma 48 and strong universality of F BLOCK,b
sign-sym-conj given by Corollary

8.

7 Perspectives

The main results of this paper extend previous results [16, 18, 15] on the strong interplay between local interactions
and update modes, but are still limited to finite hierarchies of local interactions and update modes. A natural research
direction is to try to further extend this analysis to other families of networks and update modes. For instance, we have
no example of a CSAN family which is (strongly) universal under periodic update schemes, but not universal under
local clocks update schemes.

Besides, our results were obtained as an application of various concepts and tools, and we believe that several research
directions around them are worth being considered. We detail some of them below.
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Figure 27: Gadget used for simulation of an AND-NOT network with arbitrary periodic update scheme implemented
over an AND-OR network with periodic update scheme.

Glueing We think it would be interesting to understand the properties of the glueing process itself and see what
information on the result of the glueing process can be deduced from the knowledge of each network to be glued. We
are particularly interested in dynamical properties. In addition, it would be very interesting to explore if latter process
can be seen in the opposite way, i.e., given an automata network, determine if it is possible to decompose the network
into glued blocks satisfying some particular properties as gadgets do.

Simulations and universality Two notions of universality are introduced in this paper. We see how to build families
which are universal but not strongly universal by adding a somewhat artificial mechanism that slows down polynomi-
ally any useful computation made by networks in the family. However, we don’t have any natural example so far. In the
same spirit, we can ask how a strongly universal family can fail to have coherent Gm-gadgets (recall that Corollary 6
only gives a sufficient condition to be strongly universal). We don’t think that strongly universality implies coherent
Gm-gadgets in all generality, but it might be true under some additional hypothesis, and possibly in natural families
like G-networks.

Families, G-networks and gadgets Proposition 4 together with theorems 35 and 39 provide an interesting starting
point to explore the link between different gate sets and the richness of their synchronous closure and the associated
family of G-networks. It is natural to further study the hierarchy between sets of gates and we believe that a promising
direction would be to study reversible gate sets such as Toffoli or Fredkin gates.

Update schedules As we have pointed out in the update schemes section (see Remark 2), it would be interesting to
study other types of update schemes which are not captured by general periodic update schemes such as firing memory
schemes [16, 14], or other modes where the decision to apply an update at a node depends on its state (for instance
we can interpret reaction-difussion systems [11] as threshold networks with an update mode with memory). We can
consider even more general ones inspired by the most permissive semantics studied in [5]. In some cases, Definition 8
of asynchronous extension should be adapted in order to capture latter update schemes.
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