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Coexistence of chaotic and elliptic behaviors among analytic,

symplectic diffeomorphisms of any surface

Pierre Berger∗

May 13, 2021

Abstract

We show the coexistence of chaotic behaviors (positive metric entropy) and elliptic behaviors

(integrable elliptic islands) among analytic, symplectic diffeomorphisms in many isotopy classes

of any closed surface. In particular this solves a problem introduced by F. Przytycki (1982).

Theorem A (Main result). For every analytic, symplectic and closed surface (S,Ω), there is a

symplectic, analytic map f ∈ DiffωΩ(S) such that:

1. f has positive metric entropy,

2. f displays elliptic islands.

A symplectic form Ω on an oriented surface is a nowhere-vanishing volume form. This defines

a smooth measure Leb on S. A mapping f of (S,Ω) is symplectic if it leaves the volume form Ω

invariant. This is equivalent to say that it is orientation preserving and leaves Leb invariant. Then

for Leb a.e. point x ∈ S the limit Λ(x) := limn→∞
1
n log ‖Dxf

n‖ exists. The metric entropy of f is

the mean of Λ. Hence a dynamics has positive entropy if it is exponentially sensitive to the initial

conditions with positive probability. An elliptic island is a domain bounded by a smooth, invariant

curve on which the dynamics acts as an irrational rotation. There are many numerical experiments

mentioning the coexistence these two phenomena for sympletic, analytic mappings, however so far

no example was proved.

Remark 0.1. In the proof of Theorem A, we will show moreover that S without the support of Λ

is integrable: the dynamics is equal to the time one of a Hamiltonian flow.

1 Introduction

1.1 History of the problem

This problem enjoys a long history. The first examples of mappings with positive entropy on any

surface were discovered by Katok [?]. These examples are isotopic to the identity. Then Katok

∗Partially supported by the ERC project 818737 Emergence of wild differentiable dynamical systems.
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and Gerbert [?] obtained mappings with positive entropy on any surface in the isotopy class of any

pseudo-Anosov map. Both constructions were smooth but not analytic. In [?], Gerbert constructed

real analytic symplectic pseudo-Anosov maps on any surface, which display positive metric entropy

but not the coexistence with an elliptic island. In [?], Przytycki built an example of conservative

diffeomorphism of the torus with coexistence of an invariant region with positive entropy and an

elliptic island. His construction was infinitely smooth and not analytic. He addressed the problem

of whether his construction could be generalized in the analytic class [?, Rk1, P461]. The issue of

this problem was recalled as unclear by Liverani in [?, Rk 2.4 P3] where a bifurcation of Przytycki’s

example was studied. Note that Theorem A solves in particular Przytycki’s problem.

In [?], Gorodetski proved that typical examples of analytic symplectic surface maps are such that

Λ is positive on a set of maximal Hausdorff dimension (= 2) and this coexists with elliptic islands.

However this leaves open a strong version of the positive entropy conjecture which asserts that “a

typical sympletic dynamics has positive metric entropy” (Λ is positive on a set of positive Lebesgue

measure). A weaker version of the positive entropy conjecture proposed by Herman [?] asserts the

existence of symplectic mappings C∞-close to the identity on the disk with positive metric entropy;

it implies the density of surface maps with positive metric entropy among those with an elliptic

cycle. In [?], the Herman’s positive entropy conjecture was proved with Turaev. Our proof used

a quotient similar to the examples of Katok and Przytycki. During Katok’s memorial conference

2019, in a conversation with Gorodetski and Kleptsyn, I claimed that the construction of [?] should

be useful to prove the following analytic counterpart of Herman’s positive entropy conjecture [?]

and even the next analytic counterpart of our main result with Turaev.

Conjecture 1.1. There exists an analytic and symplectic perturbation of the identity of the disk

with positive metric entropy.

Conjecture 1.2. For every analytic and closed symplectic surface (S,Ω), for every analytic and

symplectic f ∈ DiffωΩ(S) which displays an elliptic periodic point, there are analytic and conservative

perturbations of f with positive metric entropy.

For the analogous strategy∗ of [?], a first step toward the proof of Conjectures 1.1 and 1.2 is to

prove the analytic counterpart of Przytycki’s example.

Following Gorodetski this step was not on reach in a short time, and I bit with him the existence

of such an example in a short time †. Corollaries B and C solve this step:

Corollary B. There exists an analytic and symplectic diffeomorphism f of the closed disk display-

ing a stochastic island bounded by four heteroclinic bi-links which is robust relative link preservation.

Let us explain the meaning of the above statement. We recall that a stochastic island is a

domain I on which Λ is positive Leb-a.e. A bi-link C is a smooth circle equal to the union of two

heteroclinic links C = W u(P ) ∪ {Q} = W s(Q) ∪ {P} between saddle fixed points P and Q, see

∗For an introduction to the proof of [?], one could look at Arnaud’s Bourbaki Seminar [?].
†More precisely the bit was that someone would prove within five years the existence of an analytic symplecto-

morphism of the torus, isotopic to the identity, with positive metric entropy and displaying an elliptic island.
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Fig. 4 Page 10. Given a perturbation of the dynamics, the bi-link persists if the union of the stable

and unstable manifolds of the fixed points continue to form a smooth circle. The island is robust

relative link preservation if for every C2-perturbation such that each of the bi-links persist, the

domain bounded by the continuation of these bi-links is still a stochastic island.

We can wonder also what are the isotopy classes of analytic, symplectic surface mappings which

display coexistence phenomena. Our techniques enable (at least) to obtain the following:

Corollary C. For every analytic and closed symplectic surface (S,Ω), for any isotopy class C, if

• S is the 2-torus for the isotopy class C of the identity,

• or S is a surface of genus ≥ 0 and C is the isotopy class of a pseudo-Anosov map of S,

then there is a symplectic, analytic map f ∈ DiffωΩ(S) of isotopy class C, such that f has positive

metric entropy and displays elliptic islands.

A natural problem would be to realize any isotopy class of surface diffeomorphisms by an analytic

and symplectic dynamics displaying coexistence of positive metric entropy and elliptic islands.

It seems that the techniques of this work together with the Nielsen-Thurston’s classification of

symplectic dynamics on surface should lead to a solution of this problem. Another approach would

be to prove Conjecture 1.2 which would imply immediately a solution to the latter problem.

The proof of Theorem A is here completely self contained.

I am grateful to A. Gorodetski and V. Kleptsyn for their encouragements. I am thankful to R.

Krikorian and P. Le Calvez for nice conversations. I thank S. Biebler for his careful reading.

1.2 Idea and structure of the proof

All the proofs [?, ?, ?, ?, ?] used bump functions to localize the surgery of the dynamics in a

subset of the manifold. We recall that there is no analytic bump function. To deal with the

analytic case, Gebert [?] showed that the pseudo-Anosov examples of [?] persist in a finite co-

dimensional submanifold which must intersect the (infinite-dimensional) submanifold of analytic

maps. However the examples of [?, ?, ?], displaying the sought coexistence, persist actually along

an infinite codimensional submanifold: one have to keep intact heteroclinic links, and I do not see

how to do this if the unperturbed map displaying the coexistence is not already analytic... Instead

we propose another approach:

We construct an analytic and symplectic extension of the surface punctured by several points, so

that the extended surface remains diffeomorphic to the unpunctured surface, and the analytic

continuation of the dynamics on the extended surface displays elliptic islands.

We will start with an analytic, conservative dynamics with positive entropy and then we will

perform blow-up, quotient, blow-down and connected sums, so that the analytic continuation of

the dynamics is well defined after these operations and displays the sought coexistence properties.
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Figure 1: Analytic and conservative dynamics on a sphere displaying coexistence of a stochastic

region with elliptic islands.

For the proof of Theorem A, we will start in §2.1 with a linear Anosov map on the 2-torus, then

we blow-up four of its fixed point à la Przytycki to define an analytic symplectic diffeomorphism of

the 2-torus T∗ without four disks, then we quotient it à la Katok to define an analytic symplectic

diffeomorphism of the 2-sphere S∗ without four disks in §2.2. These steps were already performed

in [?] and are depicted in Fig. 2. Then we propose a new construction.

First we regard the continuation of this dynamics on an analytic extension Ŝ∗ of S∗ in §2.3. Each

component of Ŝ∗ \ S∗ is a collar. This collar is diffeomorphic to an annulus and equal to a halve

neighborhood of two heteroclinic links. In §2.4 we glue two pieces of this annulus to obtain a collar

which is a disk without two holes bounded by circle rotations, see Fig. 3. In §2.5 we blow-down

them to obtain a collar which is a disk containing two elliptic islands (the dynamics is actually

integrable on the whole disk). Such are called cap’s dynamics on the disk. This forms a cap to

recap any hole of the sphere S∗ with four holes.

This allows in §3 to prove the main theorem and the corollaries of its proof. In §3.1, we start by

proving Theorem A when the surface is a sphere; the construction is depicted by Fig. 1. Following

the number of recaped holes, coexistence phenomena are obtained on a disk (which contains the

stochastic island of Corollary B), a cylinder or a pair of pants. The boundary of these can be glued

together to form any closed symplectic surface, and so obtain Theorem A. A careful study enables

to obtain an analytic, sympletic diffeomorphism of the torus isotopic to the identity, as wondered

by Gorodetski and part of Corollary C.
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In §3.2, we prove the remaining part of Corollary C regarding surface mappings isotopic to

a pseudo-Anosov map. We will start with the example of analytic pseudo-Anosov map of [?],

which can represent any isoptopy class of orientiation preserving pseudo-Anosov maps (see also

[?]). Then the punctured surface will be extended following basically the same steps as in §2.3.

The only difference is that the normal form [?] at the saddle points is more general and that we will

be working on a lifting of the previous construction. Caps will be replaced by a certain generalized

cap given by Proposition 3.2 and Lemma 3.4. The proof of the lemma follows the same lines as

§2.4-2.5. The Proposition enables to recap the surface with holes given by blowing up any periodic

saddle orbit. The Lemma enables to bound any cycle of heteroclinic links by a disk on which the

dynamics is analytic and integrable.

2 Caps for spheres with four holes

2.1 A non-uniformly hyperbolic map on the torus without four disks

This step is depicted in Fig. 2[left-center].

Figure 2: Surgery on an Anosov map

We start with the Anosov map A(x, y) = (13 · x + 8 · y, 8 · x + 5 · y) which acts on the torus

T2 := R2/Z2 endowed with the symplectic form Ω = dx ∧ dy. Let R ∈ O2(R) and λ > 0 be

such that A = R× diag (exp(λ), exp(−λ))×R−1. The set P := {0, (1/2, 0), (0, 1/2), (1/2, 1/2)} is

formed by four fixed points of the Anosov map A. We perform a symplectic and analytic blow-up

at each P ∈P. Let ε > 0 be small. The
√

2
π ε-neighborhood P + D(

√
2
π ε) of P ∈ R2/Z2 is blown

up to an annulus via the map:

πP : (θ, r) ∈ R/2Z× [0, ε] 7→ P +R× (
√

2r
π cos(πθ),

√
2r
π sin(πθ)) ∈ P + D(

√
2ε
π ) .

These blow-ups are symplectic and analytic; they define a new surface T∗ as :

T∗ :=
(
T2 \P

)
t (P × R/2Z× [0, ε])/ ∼
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with ∼ the equivalence relation spanned by:(
z1 ∈ T2 \P ∼ (P, z2) ∈P × R/2Z× [0, ε]

)
⇐⇒ z1 = πP (z2) .

The surface T∗ is analytic and symplectic; it is a torus without four disks. Also A can be lifted

to T∗ as the map A∗ whose restriction to T2 \P is A and whose restriction to a neighborhood of

P × R/2Z× {0} is the time 1 map of the Hamiltonian:

(2.1) H : (θ, r) 7→ λ
π · r · sin(2πθ).

Indeed nearby each fixed point in P, in the coordinate induced by R, the map A is the time one

of the flow of the Hamiltonian H1(x, y) = λ · x · y = λ ·
√

2r
π cos(πθ) ·

√
2r
π sin(πθ) = H(θ, r).

2.2 A non-uniformly hyperbolic map on the sphere without four disks

Note that A is equivariant by the involution −id on T2. The action of the involution on T2 \P is

free and −id fixes each point in P. The involution −id lifts to T∗ as the involution J defined by:

J |T2 \P = −id|T2 \P and J |P × R/2Z× [0, ε] : (P, θ, r) 7→ (P, θ + 1, r) .

Let S∗ be the space T∗ quotiented by the involution J . This step is depicted in Fig. 2[center-right].

Note that S∗ is an analytic sphere without four disks. A neighborhood of the boundary of these four

holes is canonically parametrized by P × R/2Z× [0, ε]/J = P × R/Z× [0, ε]. Also the associated

projection π∗ : T∗ → S∗ is a 2-covering. Since the symplectic form Ω is equivariant by −id, we

can endow S∗ with the push forward of Ω by π∗ that we still denote by Ω. We notice that the

dynamics A∗ descends to an analytic and symplectic dynamics f∗ on S∗. In other words, there is

f∗ ∈ DiffωΩ(S∗) such that:

f∗ ◦ π∗ = π∗ ◦A∗ .

As A|T2 \P is a 2-covering of f∗|S∗ \ ∂S∗, the map f∗ has positive metric entropy.

Now we shall embed the surface S∗ via a symplectic and analytic map into a sphere so that

the dynamics can be extended to one which is analytic, symplectic and displays non-degenerates

elliptic points. As depicted in Fig. 3, this will be done first by implementing an explicit formula for

the collar lemma, so that the each hole can be identified to the interior of a disk endowed with a

dynamics at the neighborhood of the boundary. On the boundary it lies two saddle points; we will

perform a surgery to glue a segment of the unstable branch of one to a segment of a stable branch

of the other, so that the dynamics is extended to the disk without two disks, and finally we will

blow-down each of these latter two disks to create two non-degenerated elliptic points.

2.3 Explicit collar lemma: the holes are surrounded by heteroclinic links

Let us now precise the dynamics of f∗ at the boundary of S∗. By Eq. (2.1), nearby each component,

the dynamics f∗ is equal to the time 1 of the flow of the following Hamiltonian:

(2.2) H : (θ, r) ∈ R/Z× [0, ε) 7→ λ
π · r · sin(2πθ).
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Observe that Ω = dθ∧dr and H extend canonically to a neighborhood V of R/Z×{0} in R/Z×R.

Let W ⊂ V be a neighborhood of R/Z × {0} in V such that the time t = 1 of the Hamiltonian

flow φtH : W → V of H is well defined. For ± ∈ {−,+}, let V ± := V ∩ R/Z × R± and W± :=

W ∩ R/Z × R±. On the boundary ∂W− = ∂W+ = R/Z × {0}, the map φ1
H displays two saddle

fixed points Q = (0, 0) and Q′ := (1/2, 0), so that W s(Q) \ {Q} = W u(Q′) \ {Q′} = ∂W \ {Q,Q′}.
In particular ∂W± is a bi-link.

Note that
⊔

P W+ and
⊔

P V + are neighborhoods of ∂S∗ in S∗. So we can extend the surface

S∗ by gluing canonically P × V of V at P × V + ⊂ S∗. This defines an open surface Ŝ∗ which

contains S∗ and such that Ŝ∗ \ int S∗ is equal to
⊔

P V −. On a neighborhood of S∗ in Ŝ∗, the map

f∗ extends analytically to a map denoted by f̂∗ and whose restriction to P ×W− is φ1
H .

2.4 From holes surrounded by heteroclinic links to holes surrounded by rota-

tions

The idea is to shape W− as in Fig. 3 [left] to perform the surgery depicted in Fig. 3 [left-center].

Figure 3: Making an integrable cap by gluing the green rectangles together and then blowing down.

Recall that H extends to V ⊃W . For η > 0 small, we can shrink W to have W− of the form:

W− := {(θ, r) ∈ R/Z× [−η, 0] : |H(θ, r)| ≤ η3} .

By Eq. (2.2), the boundary of W− is formed by three curves; the union of two of them is:

Σ := {θ ∈ R/Z : |H(θ,−η)| ≤ η2} × {−η}

Let Σout be the component of Σ which intersects W u
η (Q) = {0}× [−η, 0]. Let Σin be the component

of Σ which intersects W s
η (Q′) = {1

2}×[−η, 0]. To perform the surgery depicted in Fig. 3 [left-center],

we define:

φ :
⋃

t∈[−1,0]

φtH(Σout)→
⋃

t∈[0,1]

φtH(Σin) ,

such that for (θ, r) ∈ Σout, φ(θ, r) = φ1
H(1

2 − θ, r) and for t ∈ [0, 1], φ ◦ φt−1
H (r, θ) = φtH(1

2 − θ, r).
Note that the map φ is analytic and symplectic with range

⋃
t∈[0,1] φ

t
H(Σin). Moreover it respects

H. Let W−/R be equal to W− quotiented by the equivalence relation R spanned by:

∀(r, θ) ∈
⋃

t∈[−1,0]

φtH(Σout), and (r′, θ′) ∈
⋃

t∈[0,1]

φtH(Σin), (r, θ)R(r′, θ′) iff (r, θ) = φ(r′, θ′).
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As φ is an analytic diffeomorphism which sends the intersection of its domain with ∂W− \ Σ into

∂W− \Σ, the space W−/R is an analytic surface with boundary. Moreover, we notice that W−/R
is equal to the closed disk D̄ without two disks D+ and D− , as depicted in Fig. 3 [center]:

W−/R = D̄ \ (D+ t D−)

This surgery respects the symplectic form Ω and the Hamiltonian H, which remains analytic on

W−/R. Hence they push-forward to a symplectic form and a Hamiltonian still denoted by Ω and

H. Note also that the analytic continuation of f on W−/R is still equal to the time one map of

the Hamiltonian H.

2.5 Blowing down holes surrounded by rotations

Now we would like to blow-down the circles (∂D− t ∂D+) to fixed points P− and P+. These

blow-downs will construct a pair of disks depicted in Fig. 3 [Center-Right]. In order to do so, we

first observe that on ∂D+ t ∂D−, the function H is constant (equal to resp. η3 and −η3) and its

symplectic gradient does not vanish. So we can apply the classical action-angle coordinate change:

Lemma 2.1. Let V0 be a neighborhood V0 of C = R/Z× {0} in R/Z× R+ and H : V0 → R be an

analytic Hamiltonian constant on C and whose differential does not vanish on C. Then there are

δ > 0, a neighborhood V ′0 ⊂ V0 of C and an analytic and symplectic map ψ : V ′0 → R/Z× [0, δ] so

that H ◦ ψ−1 sends the orbit of each point of V ′0 to a horizontal circle R/Z× {ρ}.

Proof of Lemma 2.1. For δ′ > 0 small enough, the section Π := {0} × [0, δ′] is transverse to the

orbits of the Hamiltonian H. Every point z in Π is periodic of a period T (z). The union of the

orbits of points in z ∈ Π is equal to a neighborhood V ′0 ⊂ V0 of C. Let us define the following flow

box:

ψ0 : V ′0 → R×Π/ ∼ with (t, z) ∼ (t+ kT (z), z), k ∈ Z .

In these coordinates the flow φtH of H is the translation by (t, 0). We shall reshape the range of ψ0

so that it equals R/Z × [0, δ] with δ = Leb(R × Π/ ∼). To this end we consider a primitive T̂ of

T |Π which vanishes at 0 ∈ Π ∩ C:

T̂ : (0, r) ∈ Π = {0} × [0, δ′] 7→
∫ r

0
T (0, x)dx .

Note that δ := T̂ (δ′). Let ζ : R×Π/∼ → R/Z× [0, δ] be defined by:

ζ(z, t) = (−t/T (z), T̂ (z)) .

We observe that ζ is analytic and symplectic. Thus ψ = ζ ◦ ψ0 is an analytic and symplectic map

from V ′0 onto R/2Z× [0, T̂ (δ)] which sends each orbit to a horizontal circle R/Z× {ρ}.

Thus for every ± ∈ {−,+}, there exist a neighborhood V± of ∂D± endowed with analytic and

symplectic coordinates ψ± : V± → R/Z × [0, δ] such that H ◦ ψ−1
± (θ, r) = h±(r) for an analytic

maps h±. So we can perform a blow-down of the circle ∂D± to a fixed point P±. This blow-down

sends V± to a disk of radius
√
δ/π and the dynamics on this disk is the time one map given by the

Hamiltonian P± + (x, y) 7→ h±(x2 + y2), which is indeed integrable and displays an elliptic island.
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3 Application of the construction

3.1 Proof of Theorem A and Corollary B

Steps §2.1 and §2.2 constructed an analytic diffeomorphism f∗ on the sphere S∗ without four holes

with positive metric entropy. At step §2.3, we saw that this dynamics could be extended at the

neighborhood ≡ R/Z × (−ε, ε) of boundary ≡ R/Z × {0} of each of these holes by the time one

map of the Hamiltonian:

H(θ, r) = λ
π · r · sin(2πθ).

Steps §2.4 and §2.5 constructed a cap for any of the holes of S∗. This is an analytic dynamics f̂

on the disks which displays two elliptic fixed points and which is integrable: it is the time one map

of an Hamiltonian. Moreover this Hamiltonian coincide at the neighborhood boundary the disk

≈ R/Z × {0} with the Hamiltonian H. As a matter of fact, we can fillup any hole of S∗ endowed

with f∗, by a a disk endowed with f̂ .

Let us perform surgeries with these two objects in order to deduce Theorem A and Corollary B.

Proof of Theorem A. Case where S is the sphere. In the above construction, we recap each of the

four holes of S∗ with a disk, and we endow S∗ with f∗ and each four disks with the cap’s dynamics f̂ .

We obtained an analytic, sympletic map of the sphere with positive metric entropy and displaying

four elliptic islands.

Case where S is the torus. In the above construction, we fill up two holes of S∗ with two disks,

and we endow S∗ with f∗ and each disk with the cap’s dynamics f̂ . This defines a symplectic

dynamics fA of the annulus A with positive entropy and four elliptic points (two in each cap). A

neighborhood of ∂A in A is diffeomorphic to
⊔
±∈{+,−}R/Z× [±1,±(1−ε)] and in these coordinates

the dynamics fA is the time one of the flow of H(θ, r ± 1) with:

H(θ, r ± 1) = λ
π · r · sin(2πθ).

We glue both boundaries of A by: (θ, r + 1) ∼ (θ, r − 1) for r small. This defines an analytic and

symplectic map on the torus with a priori non-trivial isotopy class.

Case where S is a surface of higher genus. In the above construction, we recap only one holes of

S∗ with a disk to form a pair of pants P: a disk with two holes. We endow S∗ with f∗ and the

disk with the cap dynamics f̂ . This defines a symplectic dynamics fP on P. We recall that every

closed, oriented surface S of genus ≥ 2 displays a pants decomposition. We glue canonically (as

above) the pants at their boundaries to obtain the sought dynamics.

Proof of Corollary C for S equal to the torus and f isotopic to the identity. We constructed above

a symplectic and analytic maps fA on the annulus A such that at the neighborhood
⊔
±∈{+,−}R/Z×

[±1,±(1− ε)] of the boundary ∂A the dynamics fA is the times one of the flow of H(θ, r± 1) with:

H(θ, r ± 1) = λ
π · r · sin(2πθ).

We saw that if we glue both boundaries of A by (θ, r+ 1) ∼ (θ, r− 1) for r small, the dynamics is a

priori in a non-trivial isotopy class. To vanish this isotopy class, the idea is to glue f∗ with its inverse

9



f∗−1. At the boundary of A, the map f∗−1 is the time one of the flow of −H(θ, r±1) = H(−θ, r±1).

So we glue two copies A1 and A2 of A along their respective boundaries by (θ1, r1+1) ∼ (−θ2, r2−1)

and (θ1, r1− 1) ∼ (−θ2, r2 + 1) for r1, r2 small and any θ1, θ2. The space Â obtained is a 2-covering

of a Klein bottle, which is a torus. The dynamics induced by f∗ and f∗−1 on Â is analytic,

symplectic and isotopic to the identity. Moreover the dynamics on the torus displays the coexistence

phenomenon.

Proof of Corollary B. We first start with the above analytic diffeomorphism f∗ on the sphere S∗

with four holes. We recap three holes with caps and we endow each of them with the dynamics f̂ .

This defines an analytic and symplectic map fD on the disk D. Note that the disk is not endowed

with its standard sympletic form, but using [?], we can analytically conjugate it to one which leaves

invariant the standard symplectic form on D. The image I of S∗ in D is depicted Fig. 4. Therein the

Lyapunov exponent function Λ is Leb a.e. equal to a positive constant. In the sense of [?] (inspired

Figure 4: Stochastic island I in grey.

from [?, ?, ?]), the set I is called a stochastic island. This means that I is a disk with three holes;

and that the boundary of I is formed by four pairs of heteroclinic bi-links {(Ľai , Ľbi) : 0 ≤ i ≤ 3}.
Each Ľai ∪ Ľbi is a smooth circle included in the stable and unstable manifolds of hyperbolic fixed

points P̌i and Q̌i respectively:

Ľai ∪ Ľbi ⊂W u(P̌i; f
D) ∪W s(Q̌i; f

D) .

For every f which is C1-close to fD, for every 0 ≤ i ≤ 3, the hyperbolic continuations Pi and Qi of

P̌i and Q̌i are uniquely defined hyperbolic fixed points for f . If {W u(Pi; f)∪W s(Qi; f) : 0 ≤ i ≤ 3}
form four heteroclinic bi-links {Lai ∪ Lbi : 0 ≤ i ≤ 3} close to {Ľai ∪ Ľbi : 0 ≤ i ≤ 3}, then we say

that the bilinks are persistent for the perturbation f .

Then the next proposition implies Corollary B.

Proposition 3.1 ([?, prop. 2.1]). For every conservative map f which is C2-close to fD and for

which the bi-links are persistent, then the continuations of these bilinks bound a stochastic island.

In particular, the metric entropy of f is positive.
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3.2 Proof of Corollary C

It remains the case of mappings isotopic to pseudo-Anosov maps. To carry them we will need to

generalize the construction of cap to prove:

Proposition 3.2. Let U ⊂ R2 be a neighborhood of 0. Let f : U → R2 be an analytic and

symplectic map with 0 as a saddle fixed point with positive eigenvalues. Then there exist ρ > ρ′ > 0

arbitrarily small, an analytic and symplectic map φ : D(ρ) \ D(ρ′)→ D(
√
ρ2 − ρ′2) \ {0} such that

on:

Û := (U \ {0}) t D(ρ)/ ∼ with U 3 u ∼ d ∈ D(ρ) iff u = φ(d) ,

the map f |U \ {0} extends to a symplectic and analytic map f̂ on Û which leaves invariant the disk

D(ρ′) and on which its restriction is integrable and displays three elliptic fixed points.

Proof of Corollary C for f isotopic to a pseudo-Anosov map. Let (S,Ω) be a symplectic orientable,

closed surface. Then by [?, ?], any orientation preserving pseudo-Anosov isotopy class is represented

by an analytic and symplectic map f on S.

Lemma 3.3. The map f displays a hyperbolic periodic cycle (Pi)i∈Zq with positive eigenvalues.

Proof. As f has positive topological entropy, it displays a horseshoe [?] with at least two rectangles.

There are two possibilities: Either one of these rectangles is not rotated by the induced dynamics,

and so we get immediately a saddle periodic cycle with positive eigenvalues. Or both rectangle are

rotated by a half turn. Then we can compose the induced dynamics by these two rectangles to

obtain a hyperbolic periodic cycle with positive eigenvalues.

Let U0 be neighborhood of P0 and let Ui := f i(U0) for every i. We assume U0 small enough

so that U0 ∪ Uq can be identified to a subset of R2. Then each Ui, 1 ≤ i ≤ q − 1, can also

be identified to subset of R2 using the diffeomorphism f q−i : Ui → Uq. In these identifications,

U1 ≡ · · · ≡ Uq−1 ≡ Uq, f |Ui → Ui+1 is the identity for 1 ≤ i ≤ q − 1 and f |U0 ≡ f q|U0.

We apply Proposition 3.2 to f q|U0. This blows up P0 to a disk, and so U0 and Uq to Û0

and Ûq. Furthermore we can lift f : U0 → U1 to f̂ : Û0 → Û1 so that f̂ q|Û0 displays three

elliptic islands. Using the above identifications, we also blow up each U1 ≡ · · · ≡ Uq−1 ≡ Uq to

Û1 ≡ · · · ≡ Ûq−1 ≡ Ûq. We lift each f |Ui ≡ id to f̂ |Ûi ≡ id for 1 ≤ i ≤ q − 1.

All these blow-ups can define a blow up Ŝ of S along the orbit (Pi)i∈Zq , and a lifting f̂ of f

which displays the sougth properties.

Proof of Proposition 3.2. By [?], there exists analytic and symplectic coordinates of a neighborhood

of 0 for which the dynamics is of the following form with λ an analytic function:

f(x, y) = (exp(λ(x · y)) · x, exp(−λ(x · y)) · y), with λ(x · y) > 0 .

Let Λ be an integral of the function λ so that Λ(0) = 0. Note that f is the time one of the flow

of the Hamiltonian H1 : (x, y) 7→ Λ(x · y). Let us follow the same lines as in Sections 2.3 to 2.5.

11



The difference is that the function λ here is not constant. Also we will not perform the quotient

R/2Z× R→ R/Z× R. Hence basically, we will construct a 2-covering of the previous cap.

First, we perform a symplectic and analytic blow-up of 0. For ε > 0 small, let rε :=
√

2
π ε. The

rε-neighborhood D(rε) of 0 is blown up to an annulus via the map:

π0 : (θ, r) ∈ R/2Z× [0, ε] 7→ (
√

2r
π cos(πθ),

√
2r
π sin(πθ)) ∈ D(rε) .

This blow up defines a symplectic and analytic annulus D∗ as :

D∗ := (D(rε) \ {0}) t R/2Z× [0, ε]/π0 .

Note that H1 lifts to R/2Z× [0, ε] as the mapping:

H : (θ, r) 7→ Λ( rπ sin(2θ))

Observe that Ω = dθ ∧ dr and H extend canonically to V := R/2Z× (−ε, ε). On C = R/2Z× {0},
the dynamics displays four saddle fixed points Qi = ( i2 , 0) with i ∈ Z/4Z, so that

⋃2
i=1W

s(Q2i) ∪
{Q2i+1} =

⋃2
i=1W

u(Q2i+1) ∪ {Q2i} = C. In particular C consists of four heteroclinic links. Thus

we can conclude by applying the next lemma with k = 2.

Lemma 3.4 (Generalized cap). Let H be an analytic Hamiltonian defined on a neighborhood V of

C = R/2Z×{0} in R/Z×R such that C is an union of 2k-heteroclinic links: C =
⋃
i∈Zk

W s(Q2i)∪
{Q2i+1} =

⋃
i∈Zk

W u(Q2i+1) ∪ {Q2i}. Then there exists there exists δ > 0 and an analytic map φ

from R/2Z× (−δ, 0] to a neighborhood of ∂D in D̄ such that H ◦φ−1 extends to an analytic function

on D̄ which displays exactly k + 1 critical points in D with definite Hessian.

Proof. We depict the construction for k = 2 in Fig. 5 [left-center]. For k = 1, this lemma implies

§2.4 and 2.5; its proof is similar.

Figure 5: Making an integrable generalized cap by surgery with k = 2.

On C the function H must be constant; let us assume it equal to 0. For η > 0 small, we define:

W− := {(θ, r) ∈ R/2Z× [−η, 0] : |H(θ, r)| ≤ η3 and |r| ≤ η} .
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The boundary of W− is made by 4k + 1 curves (see Fig. 3[left]); 2k of them form:

Σ := {θ ∈ R/2Z : |H(θ, r)| ≤ η2} × {−η} .

For every i ∈ Zk, let Σout,i be the component of Σ which intersects W u
2η(Q2i) and Σin,i be the

component of Σ which intersects W s
2η(Q2i+1). On each Σout,i, the restriction H|Σout,i is a diffeo-

morphism onto [−η3, η3]. Thus there is a canonical parametrization of Σout with [−η3, η3] × Zk.
Likewise there is a canonical parametrization of Σin with [−η3, η3]× Zk. Let φtH the Hamiltonian

flow of H. To perform the surgery depicted in Fig. 5 [left-center], we define:

ψ :
⋃

t∈[0,1]

φ−tH (Σout)→
⋃

t∈[0,1]

φtH(Σin) ,

such that for t ∈ [0, 1], the point (θ, r) = φ−tH (θ0, r0) with (r0, θ0) ∈ Σout parametrized by (x, i) ∈
[−η3, η3]×Zk, is sent by ψ to φ1−t

H (θ′0, r
′
0) with (r′0, θ

′
0) ∈ Σin parametrized by (x, i) ∈ [−η3, η3]×Zk.

Note that the map ψ is analytic and symplectic. Moreover it respects H. Let W−/R be equal to

W− quotiented by the equivalence relation R spanned by:

(r, θ)R(r′, θ′) if (r, θ) = ψ(r′, θ′), ∀(r, θ) ∈
⋃

t∈[0,1]

φ−tH (Σout) and (r′, θ′) ∈
⋃

t∈[0,1]

φtH(Σin) .

Also as φ is an analytic diffeomorphism which sends the intersection of its domain with ∂W− \ Σ

into ∂W− \ Σ, the space W−/R is an analytic surface with boundary. Moreover, we notice that

W−/R is equal to the closed disk D̄ without k + 1 disks (Di)0≤i≤k as depicted in Fig. 5 [center]:

W−/R = D̄ \ (
k⋃
i=0

Di)

This surgery respects the symplectic form Ω and the Hamiltonian H, which remains analytic on

W/R that we still denote by H.

Now we would like to blow-down the circles ∂Di to fixed points Pi. These blow-downs construct

k + 1 disks depicted in Fig. 5 [Center-Right]. In order to do so, we first observe that on
⊔
i ∂Di,

the function H is locally constant (equal to respectively η3, −η3 and η3) but DH does not vanish

on these circles. So we can apply Lemma 2.1. For every i, it gives the existence of a neighborhood

Vi of ∂Di endowed with analytic and symplectic coordinate ψσ : Vi → R/Z × [0, δ] such that

H ◦ψ−1
i (θ, r) = hi(r) for an analytic map hi. So we can perform a blow-down of the circle ∂Di to a

fixed point Pi. This blow-down sends Vi to a disk of radius
√
δ/π and on this disk the continuation

of the Hamiltonian is equal to Pi + (x, y) 7→ hi(x
2 + y2). As the unique critical points of H|W−

were (Qi)i∈Z2k
, these surgeries creates only k+1-new critical points at Pi which are all with definite

Hessian.
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