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Abstract—The Border Gateway Protocol (BGP) is in charge
of the route exchange at the Internet scale. Anomalies in BGP’s
behaviour can have several causes (e.g. mis-configuration, outage
and attacks) and despite being rare, their consequences can
threaten the Internet stability and reliability. The study of
such anomalies requires the extraction of specific features and
internet topology from BGP data. The literature shows that adhoc
procedures and tools have been developed to extract specific
features to train machine learning models for anomaly detection.
In this paper we propose BML, a BGP dataset generation tool
that extracts the majority of known features in the literature,
the internet topology and that allows the user to build specific
features from BGP data. We illustrate the use of BML on a
BGP anomaly by extracting 32 synthetic features and 14 BGP’s
graphs features which allow a comprehensive understanding of
the Border Gateway Protocol.

Index Terms—BGP Anomaly, Machine Learning, Dataset.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the routing protocol

standard on the Internet. A failure of the protocol could impact

any service relying on the Internet. Such failures, namely BGP

anomalies, happen for several reasons ranging from hardware

failures to malicious attacks [1]. BGP anomalies and their

detection are studied using BGP data collection projects such

as [2], [3]. The study of BGP traces is fundamental to the

understanding of the protocol and anomalies that could arise.

BGP data are stored as logs at different collecting points

on the Internet and must be pre-processed to be useful. The

BGP data pre-processing is time consuming due to the amount

of data. Moreover, the data pre-processing method is always

influenced by the anomalies to be studied or the period to be

observed. There is no systematic and standard way to pre-

process BGP data to extract useful information or to be used

in machine learning tools.

Many approaches based on statistical features or graph

features have been developed in the field of BGP anomaly

detection. These features describing the behavior of BGP are

extracted from the BGP data. However, the extraction of the

features of interest is strongly related to the pre-processing

method. Studying different features may lead to different time

consuming pre-processing method. A unique pre-processing
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method should allow the extraction of all important features

at once and therefore eases the study of BGP anomalies.

The authors of [4] developed a tool to build a BGP dataset.

This tool focuses on generating datasets of the most commonly

used BGP statistical features but cannot generate BGP’s graph

structure and embedings as used in [5]–[8]. Their tool also

lacks versatility as it requires to restart the lengthy process

of data collection in order to modify the generated features.

Therefore, the tool developed in [4] is not suitable for machine

learning (ML) approaches for anomaly detection in BGP as the

ones described in [5]–[8]. The tool developed in this paper,

called BML, allows the extraction of BGP synthetic features

(as in [4]), BGP’s graph structure and provides the users with

the opportunity to craft their own features.

This paper focuses on the construction of BGP datasets

to extract synthetic features and graph structure. We propose

BML, a tool that automates the BGP data collection and prepa-

ration processes. BML only needs a set of timestamps that

may relate to relevant BGP events and define the parameters

that affect the trade-off between completeness, collection time

and the storage footprint of the resulting dataset. Once the

dataset is collected, the user can define and apply several data

transformation functions to refactor and exploit the data.

We illustrate the usefulness of BML with a simple use

case where we analyze the BGP behavior during a large scale

anomaly that caused significant disruptions on the Internet and

mainly in Japan. The results shows that the tool only needs a

few minutes on a low-end computer and less than 30 lines of

Python code to collect the relevant BGP data and extract the

32 BGP synthetic features and 14 BGP’s graph features.

The remaining of this paper is structured as follows: sec-

tion II provides a short description of BGP, its anomalies

and a state of the art. Section III describes our tool (BML).

Section IV is dedicated to a use case study, using BML.

Finally, section V concludes and discusses our contribution.

II. BACKGROUND

A. BGP in a nutshell

The Internet consists of Autonomous Systems (ASs) inter-

connected by Border Gateway Protocol (BGP). Most of the

ASs are Internet Service Providers (identified by an ASN) that

own IP prefixes [9]. ISPs operate BGP routers that maintain

TCP connections with a set of BGP neighbors to exchange

routing information with other ASes. Traffic is sent through
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Fig. 1: Iterative workflow of BGP anomaly study.

routes learned by BGP. BGP incrementally updates its routes.

When using BGP, a route to an IP prefix is identified by the set

of ASes (namely the AS-PATH) that participate in the traffic

forwarding which avoids routing loops [10].

B. BGP Anomalies

BGP anomalies are failures or malfunctions of the routing

protocol. They can be the result of a protocol vulnerabil-

ity [11], a configuration error [12], an external event such

as a hardware failure [13] or a worm spread [14]. Anomalies

can cause instability or overload on the BGP routers. They

can lead to invalid network topologies [9] that may result in

the unreachability of some prefixes. They can also be used to

impersonate some prefixes or for traffic interception [15]. To

alleviate the effect of BGP anomalies, several works have been

done on the detection of BGP anomalies [1] using time series

analysis, statistical pattern recognition or machine learning.

C. State of the art for BGP data collection

RouteViews [2] and RIPE RIS [3] projects have been

collecting and archiving BGP data from different collectors

distributed across the world since 2000. The collection of BGP

routing information is the cornerstone for any analysis of the

BGP protocol. Each of these collectors receives BGP updates

from all its neighbors and updates its Routing Information

Base (RIB) accordingly. Data from RouteViews and RIPE

RIS projects require cleaning and time rearrangement from

the different collectors. The BGPStream framework [16] has

been designed to sanitize data from BGP routing information.

Once sanitized, the BGP data need transformation to extract

useful information. In the literature, a widely adopted BGP

data transformation is feature extraction. These features falls

into different categories: i) volume features that captures

BGP’s stability and AS-PATH features that capture topological

changes [17]–[21] and ii) graphs features that capture the

underlying graph structure of BGP [8]. However, none of the

work from the literature provide an systematic approaches to

extract all of the features from BGP data.

In the literature, each contribution develops its own tool

to extract BGP information. On one hand, in [5]–[8], BGP’s

graph structure and embedings are used to study BGP behav-

ior. In these papers, the extraction processes are developed
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Fig. 2: BGP data collection.

for the specific purpose of each paper and do not allow easy

reuse. Moreover, these papers do not extract volume features

and AS-PATH features (synthetic features). On the other hand,

Fonseca et al. in [4] developed a tool for the construction

of BGP datasets. Their representation of BGP’s structure and

dynamic is limited to synthetic features. The tool described

in [4] is the closest to ours but does not capture the graph

structure of BGP especially needed for machine learning (ML)

models. Unlike other tools in the literature, BML can change

the data representation and features without recollecting the

data. BML developed in this paper fills the gap in the literature

by providing both the extraction of volume features, AS-PATH

features and the extraction of BGP’s graphs features but also

allows the user to define its own features.

III. OUR PROPOSAL

Our proposal (BML) allows BGP specialists and machine

learning practitioners to focus on developing and evaluating

BGP or ML models by automating part of the BGP workflow

(see Figure 1). Once the period of interest is defined in

step ➊, in step ➋ BML automatically collects the data with

a specific data structure (see Section III-A for more details).

For each period of interest, BML extracts periodic snapshots

of the BGP routes and produces a lossless yet storage efficient

representation in step ➌ (see Section III-B for more details).

During step ➍, BML proposes helper functions to ease the

development of a data transformation that fits the requirements

of the user or an ML model (see Section IV for an example).

The output of this transformation function can be interpreted

or used to train and test a ML model (step ➎).

The workflow presented in Figure 1 is iterative and relies

on a try-and-error methodology. Our goal is to speed up the

iterations of the model by ensuring that: first, constructing and

updating a dataset only requires to define periods of interest

and a set of parameters, and second, a change in an ML model

and/or the data transformation does not require to recollect the

BGP data.

A. BGP data collection

In BML, an event that is worth including in the dataset

is called a period of interest P x = [txa, t
x
b ] (notations are



Symbol Description

P = {P 1, ..., Px, ..., PN} a set of period of interest

N the number of periods of interest

Px = [txa, t
x
b ] a period of interest starting at time txa and

ending at time txb
Pmx = [txa − Dpm, txb ] the priming period for a period of interest Px

Dpm the duration of the priming data collection

D = txb − txa the duration of a period of interest

U[ti,tj ]
= {u1, u2, ...} a time-ordered set of BGP updates messages

whose timestamp tx are such that ti < tx <

tj

rp = {rp,0, ..., rp,j , ...} rp is a set of routes collected toward a prefix

p and rp,j the list of routes (peer:AS-PATH)

obtained from a collector j

St = {r1, ..., rp, ...} a snapshot of the routes at time t

Sx = {Stxa
, Stxa+∆, ..., Stx

b
} the sequence of routes snapshots for a period

of interest Px

T (.) a user-defined data transformation function

Tx = T (Sx) the sequence of transformed data for a period

of interest Px

∆ the interval for the extraction of routes snap-

shots

TABLE I: Table of notations.

summarized in Table I). All of the BGP updates from the

selected collectors (section II-C) whose timestamp lies in

[txa, t
x
b ] interval will be included in the dataset. However, at

txa there is obviously not enough information to reflect the

actual BGP Routing Information Base (RIB). Indeed, as the

BGP protocol is incremental, we face a cold start as the routing

updates collected between txa and txa + ǫ do not cover all the

routes nor they allow to reproduce BGP’s graph at time txa+ǫ.

To overcome this issue, we introduce a priming data collection

period Pmx = [txa − Dpm, txa] where BGP data is collected

before the period of interest (see Figure 2). BML can also

leverage the most recent RIB dump available on the collector

augmented with the updates received until txa. However, the use

of RIB dumps comes with twofold increase in the execution

time and should only be used if relevant.

After the priming data collection, the BGP updates whose

timestamp falls within [txa, t
x
b ] are also collected.

1) Data storage: The priming period is stored as a route

snapshot obtained from algortihm. 1. This representation al-

lows a reduction of the storage space. The updates collected

during the period of interest cannot be stored in such route

dumps as their temporal dimension needs to be preserved. The

default priming period is set to 10h and needs an average of

20MB while the period of interest requires 75MB of storage

per hour.

2) Data collection parameters: The following parameters

cannot be modified after the data collection. They have a

significant impact on the execution time, storage and data

quality, and as such, they need to be chosen carefully : i) List

of periods of interest: the bound of each period of interest

should be txb − txa specified as well as the duration of the

priming period Dpm which should be large enough for to

prevent cold start while considering its impact on the dataset

size and collection time. ii) List of collectors: this parameter

highly depends on the use case as in some cases, the location

of the collectors may be important.

Algorithm 1: Routes snapshot

Input: U an ordered set of updates, R a dictionary of

routes

Output: R updated dictionary of routes

begin

foreach update u in U do

if utype = announcement then
R[uprefix, ucollector, upeer]←− uas−path

end

else if utype = withdrawal then
R[uprefix, ucollector, upeer]←− ∅

end

end

end

B. Data transformation

Once the data is collected it must be transformed to fit

the goal of practitioners and the ML model requirement.

Using algorithm 1, BML first generates a route snapshot

every ∆ seconds for the period of interest P x = [txa, t
x
b ]

resulting in a set of
txb−txa

∆ routes snapshots denoted as Sx =
{Stxa

, Stxa+∆, ..., Stx
b
}. An example of such a snapshot is given

in Figure 3.

To complete the data transformation, a feature specific data

transformation function T (.) is applied to the sequence of

routes snapshot Sx = {Stxa
, Stxa+∆, ..., Stx

b
}. The result is the

representation sequence T x = T (Sx). Alternatively, the data

transformation can take as input the update sequence instead of

the corresponding routes snapshot. This might be required for

some transformation such as the computation of the number

of routes announcements made within the period of interest.

1) Examples of data transformation functions: Various fea-

tures and data representation have been or may be used by ML

models for BGP analysis:

{

"195.252.70.0/24":{

"rrc19":{

"37468":"37468 5483 6700",

"37697":"37697 37468 8400 6700 6700",

"57695":"57695 328383 327782 37100 8400 6700 6700",

"37640":"37640 8400 8400 8400 8400 8400 6700 6700"

},

"rrc00":{

"202365":"202365 49697 5483 6700",

"396503":"396503 6939 5483 6700",

...

},

...

}

Fig. 3: Sample of a JSON routes snapshot which maps

every (prefix , collector , peer) triples observed to an AS-PATH

{AS0, AS1, ..., ASj}. We can see that the collector “rrc19”

has four routes to the prefix “195.252.70.0/24” and that one

of these routes is announced by its peer “37468” with the

AS-PATH “37468 5483 6700”.



Type of feature Number of features Total Used in

Statistical
Volume 15

32 [4], [17]–[21]
AS-PATH 17

Graph

Centrality 6

14 [8]
Clique 2

Clustering 3
Distance 1
Topology 2

TABLE II: Features extracted by BML (by default).

• Statistical features: e.g. number of prefixes or routes,

average hop count of the routes [19], [21], [22].

• Graphs: as BGP reflects the internet topology, a route

snapshot can easily be represented as a graph whose

structure may differ depending on the ML model [5]–[7].

• Graph features: while many ML models can’t exploit

graph structured data, they can consume synthetic metrics

derived from BGP graphs such as the centrality metrics

[8] or adjacency matrix.

2) Data transformation parameters: The data transforma-

tion step requires only two inputs from the user :

• The snapshotting interval ∆: defines the interval between

each route snapshot in each period of interest.

• The data transformation function T (.): takes as input a

routes snapshot and produces a representation adequate

for the ML model.

Note that if these parameters need to be modified, the

practitioner only needs to re-execute the data transformation

step and not the data collection steps. This allows quick

iterations of the BGP workflow and gains in productivity.

IV. USE CASE

In this section, we illustrate how BML may benefit ML

practitioners and other BGP specialists by studying the BGP

anomaly induced by the Google leak1 that occurred on the

25th of August 2017. At 03:22 UTC, the AS 15169 owned

by Google accidentally started to announce several routes to

prefixes it does not own and thus became a transit provider.

This error caused significant disruptions on the Internet and

mainly in Japan.

BML is configured to collect the period of interest

P=[03:00;04:00] with a default priming period of 10 hours

from the RIPE RIS collector rrc06 which is located in

Japan. BML integrates 46 predefined transformation func-

tions including 32 statistical features that are mostly used

in the anomaly detection literature (please refer to Table II).

The entire pipeline of the dataset definition, collection, and

transformation takes only 20 lines of Python code as shown

in Figure 4. The code shows how simple it is to extract

features with BML since the variables in this code are mostly

descriptions.

During our test case, the data collection took 4 minutes

and 21 seconds to complete2. We set ∆ = 1 minute. The

1https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-
beyond/

2 During our test case, we used a computer with the following specification:
3.7GHz/8 cores processor with 64 Gb of RAM running Ubuntu 18.04

from BML.data import Dataset

from BML.transform import DatasetTransformation

from BML import utils

#################

# Data collection

folder = "dataset/"

dataset = Dataset(folder)

dataset.load({

"PrimingPeriod": 10*60*60, # 10 hours of priming data

"IpVersion": [4], # only IPv4 routes

"Collectors": ["rrc06"], # rrc06: at Otemachi, Japan

"PeriodsOfInterests":

[{

"name": "GoogleLeak",

"label": "anomaly",

"start_time": utils.getTimestamp(2017, 8, 25, 3, 0, 0),

# August 25, 2017, 3:00 UTC

"end_time": utils.getTimestamp(2017, 8, 25, 4, 0, 0)

# August 25, 2017, 4:00 UTC

}]

})

# run the data collection

utils.runJobs(dataset.getJobs(), folder+"collect_jobs")

#####################

# Data transformation

# features extraction every minute

datTran = DatasetTransformation(folder,

"BML.transform", "Features", 1)

# run the data transformation

utils.runJobs(datTran.getJobs(), folder+"transform_jobs")

Fig. 4: BML code to collect the data of the Google leak use

case.

changes of the settings regarding the data transformation e.g.

the snapshotting interval ∆ or the features, only take a few

seconds since BML will not recollect the data.

Figure 5 shows a plot of the 32 statistical features re-scaled

using min-max normalization. Among the plotted features,

nb A and nb W are respectively the number of route an-

nouncements and withdrawals received during the snapshotting

interval. First, between 03:22 UTC and 03:27 UTC a lot of

announcements are received due to the routes leak. Then,

between 03:31 UTC and 03:36 UTC a second wave of with-

drawals and announcements arrived due to Google team fixing

the error. While this work doesn’t focus on feature evaluation,

the data generated by BML clearly shows that these features

are relevant for anomaly detection.

BML also implements data transformation that generates a

graph structure on which are computed a total of 14 graph

features. Using ∆ = 1 minute, this transformation took

7 minutes and 47 seconds to complete2. The computation of

these graph features are much more complex compared to the

statistical features. Figure 6 shows a plot of these features re-

scaled using min-max normalization. The impact of the BGP

anomaly seems to be better rendered with the graph features

than with the statistical features.
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Fig. 5: Statistical features during Google leak.

Modern ML models tend to rely on multiple features. To

illustrate the relevance of BML in this context, we computed a

principal component analysis (PCA) on all of the 32 statistical

features (resp. all of the 14 graph features) which are then

plotted on two dimensions. Figure 7 shows the 2d projection of

the PCA which allows to visualize the separability of the data

during the normal behavior of BGP and during an anomaly.

The data within the interval 03:22 UTC and 03:37 UTC are

labeled as anomalous. We can see that the non-anomalous data

tend to be projected close to each other whereas the anoma-

lous data are more randomly distributed. The non-anomalous

projection generated from the graph features appears to be

more compact than the one generated from the statistical

features. With the ability of BML to extract several features,

the development of ML models relying on multiple features

is simplified.

A major benefit of BML is the ability for a user to easily

define its own data transformation function. To demonstrate

this functionality of BML, suppose we want to compute the

number of announcements received during an interval where

the Google AS (AS 15169) is in the AS-PATH. As shown on

Figure 8 this transformation can be implemented in only 10

lines of Python code. We computed this transformation every

minute and it took only 7 seconds to complete2. Figure 9

shows a plot of this transformation and we observe a similar

pattern as the statistical features.
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Fig. 6: Graph features during Google leak.

V. PERSPECTIVE AND CONCLUSION

This paper introduced BML3, a tool for BGP dataset’s

collection used to study BGP anomalies. BML eases the

development of machine learning models by automating the

dataset collection for BGP researchers and allowing the ML-

practitioners to focus on the training and optimization of their

models. While similar tools were limited to the collection of

statistical features dataset, BML stores the data in a loss-less

yet affordable data structure. BML then allows to generate

32 of the most used statistical features and 14 graph features.

Users can also leverage the data transformation helper function

to create their custom features without the need to recollect

3https://github.com/KevinHoarau/BML
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from BML.transform import BaseTransform

class GoogleRoutes(BaseTransform):

computeRoutes = False

def transforms(self, index, routes, updates):

n = 0

for update in updates:

if update["type"]=='A':

if "15169" in update["fields"]["as-path"]:

n += 1

return(n)

Fig. 8: Example of user-defined data transformation.

the data. We illustrated BML’s capability on the BGP anomaly

induced by the Google leak of 2017. It included a principal

component analysis that showed that machine learning tools

using multiple features may be promising, emphasizing the

need to easily generate a wide variety of features in a short

amount of time. Tools such as BML may also help researcher

to share datasets and promote reproducibility and replicability.

It is worth noting that BML is the first data collection

tool that allows to generate graph representation. These have

recently been shown promising to enhance the performance

of BGP anomaly detection models and our evaluation on

Google’s BGP leak showed similar insight.
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using machine learning techniques,” in 2016 IEEE International Confer-

ence on Systems, Man, and Cybernetics (SMC), Oct 2016, pp. 003 352–
003 355.

[18] Y. Li, H. J. Xing, Q. Hua, X. Z. Wang, P. Batta, S. Haeri, and
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