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Abstract

The detrended fluctuation analysis (DFA) and its higher-order variant make

it possible to estimate the Hurst exponent and therefore to quantify the long-

range dependence of a random process. These methods are popular and used in

a wide range of applications where they have been proven to be discriminative

to characterize or classify processes. Nevertheless, in practice, the signal may

be short-memory. In addition, depending on the number of samples available,

there is no guarantee that these methods provide the true value of the Hurst

exponent, leading the user to draw erroneous conclusions on the long-range

dependence of the signal under study. In this paper, using a matrix formulation

and making no approximation, we first propose to analyze how the DFA and

its higher-order variant behave with respect to the number of samples available.

Illustrations dealing with short-memory data that can be modeled by a white

noise, a moving-average process and a random process whose autocorrelation

function exponentially decays are given. Finally, to avoid any wrong conclusions,

we propose to derive abacuses linking the value provided by the DFA or its

variant with the properties of the signal and the number of samples available.
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1. Introduction

In many applications, the estimation of the Hurst exponent [1] can be used

to characterize or classify signals. This is of real interest in different cases:

biomedical applications [2–9], econometrics [10, 11], meteorology [12, 13], or

geophysics [14].

Various approaches have been proposed in the literature to estimate the Hurst

exponent, from the rescaled range (R/S) analysis [15] and the variance-of-

residuals method [16] [17] to the analysis of the power spectral density (PSD)

of the time series [18–20], passing by semi-parametric methods [21, 22]. The

reader may refer to [23] for an exhaustive state of the art and details about each

method. Among all these approaches, the detrended fluctuation analysis (DFA)

-initially introduced by Peng et al. in [24] after a first approach called fluctua-

tion analysis (FA) [25]- is one of the most popular methods to estimate the long

range dependence of a time series. It is mainly based on two principles: on the

one hand, the extraction of the trend1 of what is called the profile, which is the

integrated centered signal, and on the other hand, the square of the fluctuation

function which can be seen as the estimation of the variance of the residual,

i.e. the detrended profile, decimated by a factor equal to N . By setting N at

different values, the variances of the resulting sequences are related to one an-

other through a function depending on the self-similarity of the signal, leading

to an estimation of the Hurst exponent. The success of the DFA can probably

be explained by the fact that the method does not require advanced skills in

mathematics and signal processing. In addition, its computational cost is not

high as it is based on standard resolutions of least-squares (LS) optimisation

issues such as the determination of a regression line. A great deal of attention

has been paid to this method, leading to different variants which mainly differ

by the way the trend is estimated. The first family of methods is based on an

1A trend can be defined as a long-term change in a time series that does not appear to be

periodic. In the standard DFA, the trend is assumed to be a piecewise linear function.
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a priori model of the local trends. Thus, in the higher-order DFA, the local

trends are no longer considered as straight lines, i.e. polynomials of order 1,

but as polynomials of order larger than 1. Concerning the continuous DFA

(CDFA) [26], a constraint of continuity is added between the consecutive local

trends. We can also cite the regularized DFA [27], based on a regularized LS

criterion, and the adaptive fractal analysis (AFA) [28], the purpose of which is

to combine two piecewise linear trends shifted in time from each other by several

samples and obtained with a DFA-inspired method in order to get a continuous

global trend. The second family includes low-pass filtering based methods. In

this case, the algorithms differ in the way to design the low-pass linear filter to

get the trend. It can be based on a single filter causal or not, with a finite or

infinite impulse response, but with a linear phase in order to preserve the signal

phase relationships in the passband. An alternative is to design a structure of

a null-phase filter with a non-linear-phase filter. In [29], the authors propose

to analyze one structure based on two filters in parallel whose inputs are the

signal and its reversed version in time to get the detrended signal. In this fam-

ily, one of the most popular methods is the detrended moving average (DMA)

[30–32]. More recently, extensions of the DMA method have been proposed in

the literature. The first one is labelled as the higher-order DMA [33]. If one

refers to mathematical concept, it amounts to applying the locally estimated

scatterplot smoothing (LOESS)-based method. In other words, a part of signal

is modeled by a dth-degree polynomial but only one sample of this local trend

is kept to model the global trend. A sliding-window approach is then used

to deduce the global trend. Its derivation with the locally weighted scatterplot

smoothing-based method has been also presented in [34]. The implementation of

these approaches significantly increases the computational cost, but they make

it possible to bridge the gap between the filtering-based method and the one

based on a priori model of the local trends.

Developing variants of the DFA has not been necessarily the only type of con-

tributions that have been made for the last years. In addition to comparative

studies based on sets of time series generated using different generators of frac-
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tional Gaussian noises and fractional Brownian motions (see [35] for instance),

many other questions have been addressed by different authors. Among them

and without being exhaustive: how to derive bivariate linear regression analysis

[36]? How to deal with multifractal time series [37]? How to conceive fast ver-

sions [38, 39]? How to make connections between the estimation of the variance

of the detrended profile and the correlation function of the signal [23, 40, 41]?

How to analyze the single-frequency responses of the DFA and some of its vari-

ants such as the centered DMA and the higher-order ones [42–44]? How to

deal with non-stationarities [45, 46]? How to derive probabilistic properties of

the estimation of the variance of the detrended profile for wide-sense stationary

(w.s.s.) processes or not, for the DFA and eventually its variants [40, 47–51]:

in these papers, some signals have been more particularly considered such as

a white noise, a first-order autoregressive process and a fractional Gaussian

noise process. The cases of profiles modeled by a fractional Gaussian noise

or a fractional brownian motion have been also addressed. Nevertheless, the

mathematical formalism used by the authors are not necessarily the same.

When the practitioners use the DFA or its higher-order variant, they do not

necessarily check a priori if the signal under study is a short or long-memory

process2. The users can ask themselves different questions. Among them, how

to trust the result provided by the DFA or its higher-order variant, all the more

so as the number of samples may be small? In this paper, we focus our attention

on the use of these methods when dealing with short-memory processes. Our

contributions are threefold:

1/ using a matrix formulation for each step of the methods and making no

approximation, we analyze the statistical mean of the square of the fluctuation

function for a white noise for the DFA and its higher-order variant. It is true

that similar analyzes were made in [40] or [41]. However, their methodology was

2Indeed, when the sum of all the terms of the normalized autocovariance function is

bounded, the process is said to be short-memory. When this condition is no longer satis-

fied, the signal is a long-memory process.
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different. If all the approaches provide the same results for the standard DFA,

the expression proposed by Höll in [40] and the one we obtain for a second-

order DFA tend to coincide when N is large but are all the more different as N

becomes small. This is due to the fact that our approach is based on the standard

definition of the correlation function of a random process whereas Höll’s analysis

is based on a definition of the correlation function using a temporal mean.

2/ we analyze the accuracy of the Hurst exponent estimate based on the DFA

when a finite number of samples of a wide-sense-stationary (w.s.s.) short-

memory process is available. We will see that the methods give the theoretical

value of the Hurst exponent if the number M of samples available tends to infin-

ity and the values of the decimation factor N are as large as possible. Otherwise,

the estimate of the Hurst exponent may be drastically different. Illustrations

are given for three types of signals such as a white noise, a moving-average

process and a random process whose autocorrelation function exponentially de-

cays. Since the way to address the problem is not the same, our work is com-

plementary to the recent studies conducted by Höll et al. [40, 46], the empirical

analysis for 1st and 2nd-order AR processes presented in [52] and the paper

written by Maraun et al. [53] dealing with the evolution of the Hurst-coefficient

estimate averaged on 1000 realizations provided by the standard DFA and the

higher-order DFA with respect to the duration of a synthetic long-range cor-

related process or a linear combination of three 1st-order autoregressive (AR)

processes. Finally, our study is related to the work done in [54] where the author

suggested correcting the values of the fluctuation function for small values of

N , as he noticed that the fluctuation function was under-evaluated.

3/ given the mathematical developments presented in this paper, abacuses link-

ing the number of samples with the model parameters (e.g. the MA parameters

or the parameter describing the way the correlation decays) are provided. The

methodology to obtain them is presented so that it can be easily extended to

other types of processes.

The remainder of this paper, which is a follow-up of the theoretical comparative

study we recently made on variants of the DFA [23], is organized as follows:
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in Section 2, the notion of self-similarity is briefly recalled. In Section 3, the

fluctuation analysis (FA) is presented whereas Section 4 deals with the main

steps of the DFA and its higher-order variant. Presenting the approaches using

a matrix form, as we did in [26] [23], has the advantage of characterizing the

fluctuation function by means of a matrix Γ1,d. Its structure and properties are

then studied in Section 5. This part will be useful for the rest of the paper. The

accuracy of the Hurst exponent estimate with the DFA when dealing with a finite

number of samples of short-memory processes is then addressed in Section 6.

Illustrations and abacuses are given in Section 7. Conclusions and perspectives

end up the paper.

2. Brief reminder of the self-similarity of a signal

A time-continuous process y(t) is said to be self-similar with parameter H

if and only if:

y(Nt)
d
= NHy(t) (1)

where y(Nt) is time-scaled signal by a scale factor N ,
d
= means an equivalency

in terms of distribution and H is the self-similarity parameter or the Hurst

exponent. One also speaks of the Hurst exponent when analyzing the regularity

of a signal [1]. Thus, H is equal to 0.5, 0 and −0.5 for a Brownian noise, a pink

noise and a white noise, respectively. In a general manner, the Hurst exponent

takes the value 0.5 for the short-memory processes that are of interest in this

study [55].

However, evaluating if two processes have similar probability density functions

is not necessarily straightforward. One option involves the study of divergences

such as Kullback-Leibler, Jeffreys or Rényi divergences. When dealing with

Gaussian processes, an alternative is to compare the means and the standard

deviations of both processes. If zero-mean processes are considered, one has

to compare the standard deviation F (N) of y(Nt) with F (1), the standard

deviation of y(t). They are linked by:

F (N) = NHF (1) (2)
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Given a set of values {Ni}i whose cardinal is larger or equal than 2. the slope

of the regression line of the set of values {log(Ni), log(F (Ni)}i can be estimated

in the LS sense.

Finally, in most of real-world applications, the processes under study are bounded.

They cannot exhibit relatively large values, no matter the size of the analysis

window. As a consequence, bounded processes with different patterns may

lead to an identical estimation of H. One solution consists in mapping these

bounded processes into self-similar time-series by integrating them. Using these

integrated processes may provide a significantly greater differentiation in terms

of self-similarity. It is then an essential step in the study of the latter. In this

case, the integration step adds +1 to the estimation of H.

Among the approaches proposed in the literature, a first solution was the fluc-

tuation analysis (FA) which is presented in the next section, with additional

comments. It should be noted that, for the sake of clarity, the subscript 000 will

be used in some notations to refer to this method. This choice is motivated by

the fact that FA was the initial method proposed by Peng.

3. Properties of the fluctuation analysis (FA) method

To estimate the Hurst exponent of a time series, the FA was proposed early in

the 90ies by Peng [25]. It operates in three steps: the signal y is first integrated.

This leads to a new sequence, denoted as yint,000.

yint,000(m) =

m∑
i=1

y(i) (3)

Then, what can be called the fluctuation function F000(N) is computed for dif-

ferent values of the lag N , as follows:

F000(N) =
√
< (yint,000(i+N)− yint,000(i))2 > (4)

where < . > is the temporal mean.

Finally, as F000(N) is proportional to NH+1, log(F000(N)) is represented as an

affine function of log(N) in order to estimate H in the LS sense.
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Let us deduce the mean of the square of the fluctuation function. To this end,

the definition (4) of F000(N) can be rewritten as follows:

F 2
000 (N) =

〈 i+N∑
j=i+1

y(j)

2〉
=

〈
i+N∑
j=i+1

y2(j) + 2

i+N−1∑
j=i+1

i+N∑
k=j+1

y(j)y(k)

〉
(5)

=

〈
i+N∑
j=i+1

y2(j) + 2

N−1∑
r=1

i+N−r∑
j=i+1

y(j)y(j + r)

〉

When dealing with a w.s.s. signal, the expectation of F 2
000 (N) is expressed from

the autocorrelation function Ry,y(τ) of the signal in the following manner:

E[F 2
000 (N)] =

N−1∑
r=1−N

(
Tr(Γ000, r)

)
Ry,y(r) =

N−1∑
r=1−N

(N − |r|)Ry,y(r) (6)

where E[.] is the expectation, Γ000 is a square matrix of size N whose every

element is equal to 1 and Tr([.], r) denotes the rth diagonal of the matrix [.].

Based on the Wiener-Khintchine theorem and by introducing the inverse Fourier

transform (FT−1) and Syy(f) the power spectral density (PSD) of y, E[F 2
000 (N)]

can be rewritten as follows:

E[F 2
000 (N)] = FT−1

((
N−1∑
r=1−N

Tr(Γ000, r)e
−j2πfnr

)
Syy(f)

)∣∣∣
τ=0

= FT−1
(

Ψ000(f)Syy(f)
)∣∣
τ=0

(7)

where τ is the time variable of the inverse Fourier transform and fn is the

normalized frequency. In this case, Ψ000(f)Syy(f) corresponds to the PSD of the

signal y filtered by a filter whose transfer function H000(z) =
∑
n h000(n)z−n =∑N−1

n=0 z
−n satisfies:

Ψ000(f) = |H000(z)|2z=exp(jθ) (8)

with θ = 2πf/fs the normalized angular frequency.

As a consequence, E[F 2
000 (N)] is the power of the filter output. F000(N) can be

seen as an approximation of the standard deviation F (N), under some implicit

assumptions made by Peng that are introduced in the previous section.

Since the FA was sensitive to signals exhibiting fluctuations around trends vary-

ing over time, the detrended fluctuation analysis (DFA) was developed in [24].
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Then, its variant of order d was proposed. They are presented in the next sec-

tion. They consist in estimating the trend of the integrated centered process,

and then analyzing the self-affinity of the process when the trend has been re-

moved. In the standard version of the DFA, the trend is defined as a piecewise

linear approximation of the integrated centered process whereas a polynomial

of degree d > 1 is considered for a higher-order DFA. Finally, the subscript 1,d1,d1,d

may be used in some notations to make the difference with the ones used with

the FA.

4. About the detendred fluctuation analysis (DFA) and its higher-

order variant

In this section, the DFA and its higher-order variant are presented by using

a matrix form, using the same formalism as the one proposed in [27] [23].

4.1. Notations

• 1j×k and 0j×k are matrices of size j × k filled with 1s and 0s, respectively.

• diag([.], l) is a matrix whose elements are null except the lth diagonal which

is equal to [.]. Thus, Ij = diag(11×j , 0) is the identity matrix of size j.

diag(11×N−1, 1) is the square matrix of size N whose 1st sub-diagonal above

the main one has its elements equal to 1.

• Jj = Ij − 1
j1j×j .

• Tl is a N × 1 vector storing the values of the lth local trend tl(n).

• Y and Yint are two column vectors storing respectively the samples

{y(n)}n=1,...,M and {yint(n)}n=1,...,M that are related as follows:

Yint = [yint(1), yint(2), ..., yint(M)]T = HMJMY (9)

with HM =
∑M−1
r=0 diag(11×M−r,−r) a lower triangular matrix filled with 1s.

• A(i : j, k : l) is the part of the matrix A corresponding to the elements

belonging to the rows i to j and to the columns k to l .

• Given the following matrix of size (j,M):

Cj,k = [0j×k Ij 0j×(M−(j+k))] (10)
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the first LN elements of the vector Yint can be expressed as follows:

Yint(1 : LN) = [yint(1), yint(2), ..., yint(LN)]T = CLN,0Yint =
(9)
CLN,0HMJMY

(11)

4.2. Steps of the DFA and its higher-order variant with some comments

The DFA and its higher-order variant operate with following steps when M

consecutive samples {y(m)}m=1,...,M are available.

• Step 1: The profile yint is obtained by centering and integrating y:

yint(m) =

m∑
i=1

(y(i)− µy) (12)

where µy = 1
M

∑M
m=1 y(m) denotes the mean of y.

• Step 2: The trend of the profile is estimated by splitting the profile into L

non-overlapping segments of length N , denoted as {yint,l(n)}l=1,...,L with

n ∈ [[1;N ]]. This means that only the first LN samples of the sequences

are considered. Using a vector form, the dth-degree polynomial trend of

the lth segment can be expressed as:

Tloc,l,d = Al,dθl,d ∀l ∈ [[1;L]] (13)

where the parameter vector is θl,d =
[
al,0 al,1 ... al,d

]T
. When d = 1,

the local trend is a linear function, al,1 being the local slope and al,0 the

vertical intercept. In addition, Al,d is a N × d matrix whose dth column

is defined by the set of values {[(l − 1)N + n]d}n=1,...,N .

Given the parameter vector Θ111,d =
[
θ1,d . . . θL,d

]T
of size dL× 1, and the

(LN × dL) matrix A111,d which is block diagonal defined from the set of

matrices {Al,d}l=1,...,L, the parameters of the local trends can be deduced

by minimizing
∣∣∣∣∣∣CLN,0Yint −A111,dΘ111,d

∣∣∣∣∣∣2. For d > 0, this leads to:

Θ̂111,d = (AT111,dA111,d)
−1AT111,dCLN,0Yint (14)
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Therefore, combining (9) and (14), the global trend vector T111,d is given

by:

T111,d = A111,dΘ̂111 = A111,d(A
T
111,dA111,d)

−1AT111,dCLN,0HMJMY (15)

Remark: When dealing with the zero-th order DFA, the trend vector is

given by:

T111,0 =
1

N


1N×N 0N×N . . . 0N×N

0N
. . .

. . . 0N×N
...

. . .
. . .

...

0N×N . . . 0N×N 1N×N

CLN,0HMJMY (16)

=
1

N
(IL ⊗ IN )HMJMY

where ⊗ denotes the Kronecker product.

• Step 3:. Given (15), the residual vector R111,d, i.e. the expression of the

difference between the profile and its trend, can be expressed from the

signal vector Y :

R111,d = CLN,0HMJMY− T111,d = B111,dY (17)

where d > 0:

B111,d =
(
ILN −A111,d(A

T
111,dA111,d)

−1AT111,d
)
CLN,0HMJM (18)

Remark: When dealing with the zero-th order DFA, one has:

B111,0 = (IL ⊗ JN )CLN,0HMJM (19)

Taking into account the properties of self-similarity presented in Section

2, the next step is to estimate the standard deviation of the residual

yint(Nn)− t(Nn). To this end, N subsequences of size L are obtained by

decimating the residual by a factor N . The first one starts with the first

sample of R111,d, the second one with the second sample of R111,d, and so

on. Assuming a statistical mean equal to 0, the variances of the resulting
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sub-sequences are estimated and their average is computed. By reorganiz-

ing the terms, this leads to the definition of the square of the fluctuation

function:

F 2
111,d(N) =

1

LN

LN∑
n=1

(yint(n)− t(n))2 (20)

Once again, the fluctuation function F111,d(N) is an approximation of the

standard deviation F (N), under some assumptions made by Peng. From a

signal processing point of view, the square of the fluctuation function also

corresponds to the power of the residual. Then, introducing the matrix

Γ111,d = 1
LNB

T
111,dB111,d of size M ×M and the trace operator, F 2

111,d(N) can be

rewritten as follows:

F 2
111,d(N) = Tr

(
Γ111,dY Y

T
)

(21)

• Step 4: Steps 2 and 3 are repeated for lN1:max
different values of N , e.g.

N1, N2, ..., Nmax usually selected in the interval [3; bM/2c] where bc is the

floor function.

• Step 5: As mentioned in Section 2, the final step is to search a straight line

fitting the log-log representation of F111,d(N) with regards to N . Its slope

α, which is no longer equal to H but to = H + 1 due to the integration, is

estimated in the LS sense. Each pair (log(F111,d(N)), log(N)) satisfies the

following equation:

log(F111,d(N)) = b+ α log(N) + ε(N), for N = N1, ..., Nmax (22)

with b the vertical intercept and ε(N) the error variable.

In order to write (22) in a matrix form, let us introduce the column vector

F log,111,d of length lN1:max
storing the values of log(F111,d(N)) and the matrix

Alog of size (lN1:max × 2), whose first column is a vector of 1s and whose

second column is equal to the values of log(N). In addition, η is the

column vector storing the parameters b and α and ε is the column vector

of length lN1:max
storing the different errors {ε(N)}. Thus, one has:

F log,111,d = Alogη + ε (23)
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As a consequence, the LS estimation of η can be written as:

η̂ = (ATlogAlog)−1ATlogF log,111,d (24)

Then, the estimation of α can be deduced since α = [0 1]η.

By expressing the inverse of the 2× 2 matrix ATlogAlog in (24), developing

and simplifying, the estimation of the slope α can be expressed as follows3:

α̂111,d(N1, ..., Nmax) =
log(N) log(F111(N))− log(N)× log(F111(N)

log2(N)− log(N)
2 (25)

where log(N) is the mean of log(N) computed for the different values of

N that have been chosen, i.e. N1, N2, ..., Nmax. For instance, consecutive

values of N could be considered. It is true that this estimation of the

slope depends on the values of N that have been selected. The larger M

is, the larger Nmax can be. This is the reason why we have chosen to point

out this dependence in the above equation by writing α̂111(N1, ..., Nmax).

This will be useful in the remainder of the paper. Moreover, the result ob-

tained in (25) is consistent with the result in statistics where log(F111,d(N))

and log(N) are considered as two random variables and log(F111,d(N)) is

assumed to be an affine function of log(N). In this case, α satisfies:

α(N1, ..., Nmax) =
cov(log(F111,d(N)), log(N))

var(log(N))
(26)

=
E[log(F111,d(N)) log(N)]− E[log(F111,d(N))]E[log(N)]

E[log(N)2]− E2[log(N)]

where cov and var respectively denote the cross-covariance and the vari-

ance.

As one could expect, the estimation of α by using the DFA is a non linear

function of the signal due to the presence of the logarithm function in the

vector F log,111,d.

Depending on the applications, the number M of samples that are available

may vary. It can take small or large values, e.g. from a few dozens to a few

3The same expression could be obtained with the FA. This would amount replacing the

subscript 111,d by 000 in the equation.
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thousands. In the next sections, we propose to analyze the properties of the

matrix Γ111,d in order to derive statistical properties of the square of the fluctu-

ation functions. This will be the opportunity to deduce some properties on the

slope α with respect to Nmax ≤ bM/2c.

5. Structure and properties of the matrix Γ111,d

5.1. Preamble

In (17)-(18), for d > 0, the matrix ILN − A111,d(A
T
111,dA111,d)

−1AT111,d is block

diagonal. Each block is defined by IN−Al,d(ATl,dAl,d)−1ATl,d with l = 1, ..., L, but

the latter are all equal. Indeed, Al,d(A
T
l,dAl,d)

−1ATl,d corresponds the orthogonal

projector onto the space spanned by the columns of Al,d. However, the 1st

column of Al,d is equal to the 1st column of A1,d. The 2nd column of Al,d is a

linear combination of the 1st and 2nd columns of A1,d. Then, when d > 1, as

the third column of Al,d is a linear combination of the first two columns of Al,d,

it is a linear combination of the first two columns of A1,d. More generally, for

c ≤ d, one can easily show that the cth column of Al,d is a linear combination

of the first (c − 1) columns of Al,d. Consequently, it is a linear combination of

the first two columns of A1,d. So, for l = 1, ..., L, one has:

A111,d = IN −Al,d(ATl,dAl,d)−1ATl,d = IN −A1,d(A
T
1,dA1,d)

−1AT1,d (27)

Remark: When dealing with the zero-th order DFA, one has:

A111,0 = JN (28)

The above matrix A111,d with d > 0 has four main properties that will be used

in the following:

1. A111,d = A111,d
T .

2. The space spanned by the columns of 1N×N corresponds to the space

spanned by the first column of A111,d. Therefore, A111,d1N×N is the null

matrix.
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3. The space spanned by the columns of HN1N×N corresponds to the space

spanned by the two columns of A1,d. Therefore, A111,dHN1N×N is also the

null matrix.

4. By combining the first properties, it can be shown that 1N×NA111,d and

1N×NHT
NA111,d are null matrices.

5.2. Structure of the matrix Γ111,d

First of all, let us look at the zero-th order DFA, one has:

Γ111,0 =
1

LN
HT
MC

T
LN,0(IL ⊗ JN )T (IL ⊗ JN )CLN,0HM (29)

=
1

LN
HT
MC

T
LN,0(IL ⊗ JTNJN )CLN,0HM

=
1

LN
HT
MC

T
LN,0(IL ⊗ JN )CLN,0HM

In what follows, our purpose is to give a detailed expression of Γ111,d, by

highlighting its structure. To this end, using the properties introduced in the

Section 5.1 and what is written above, Γ111,d can expressed as follows for d ≥ 0:

Γ111,d =
111

LN
HT
MC

T
LN,0(IL ⊗A111,d)T (IL ⊗A111,d)CLN,0HM (30)

=
1

LN
HT
MC

T
LN,0(IL ⊗A111,d)CLN,0HM

In (30), Γ111,d depends on CLN,0HM . This matrix is of size LN ×M whose

many parts are null matrices:

CLN,0HM =


HN 0N 0N . . . 0N×(M−LN)

1N HN 0N . . . 0N×(M−LN)

...
. . .

. . .
...

1N . . . 1N HN 0N×(M−LN)

 (31)

Due to the properties of A111,d given in the Section 5.1, one can deduce:

(IL ⊗A111,d)CLN,0HM =


A111,dHN 0N 0N . . . 0N×(M−LN)

0N A111,dHN 0N . . . 0N×(M−LN)

...
. . .

. . .
...

0N . . . 0N A111,dHN 0N×(M−LN)


(32)
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Finally, given (30), it can be shown that Γ111,d is a block-diagonal matrix. By

introducing the square matrix γ111,d of size N defined by:

γ111,d =
1

N
HT
NA111,d

TA111,dHN (33)

the first L blocks of Γ111,d are defined by 1
Lγ111,d while the last of size (M −LN)×

(M − LN) is a matrix of zeros.

Γ111,d =



1
Lγ111,d 0N 0N . . . 0N×(M−LN)

0N
1
Lγ111,d 0N . . . 0N×(M−LN)

...
. . .

. . .
...

0N . . . 0N
1
Lγ111,d 0N×(M−LN)

0(M−LN)×N . . . . . . 0(M−LN)×N 0(M−LN)×(M−LN)


(34)

5.3. Properties of the matrix Γ111,d, for d ≥ 0

In Section 5.2, and more particularly in (33), we saw that Γ111,d could be

expressed from γ111,d. The latter depends on A111,dHN . Our first goal in this sub-

section is to give an analytic expression of each element of the matrix A111,dHN

for d = 0, ..., 3. This intermediary result will be useful to express Tr(Γ111,d, r).

Case d = 0, zero-th order DFA: In this particular case, one has:

A111,0HN = JNHN (35)

The element of the N × N matrix A1,0 = JN located at the rth row and the

cth column is given by:

A1,0(r, c,N) = δc,r −
1

N
(36)

where δc,r = 1 if c = r and 0 elsewhere. In the notation above, we have added

the dependency on the size N explicitly as this will be useful in the following.

As a consequence, one has for c > 1:

A1,0HN (r, c) =
N∑
c1=c

A1,0(r, c1) (37)

Case d = 1, standard DFA: As the first column of HN is a column of 1s, the

first column of A111,1HN is a column of zeros due to the properties mentioned in

subsection 5.1.
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To define the other columns of A111,1HN , the reasoning is the following. First,

it can be shown that:

AT1,1A1,1 =

 N
∑N
n=1 n∑N

n=1 n
∑N
n=1 n

2

 =

 N N(N+1)
2

N(N+1)
2

N(N+1)(2N+1)
6

 (38)

Therefore, one has:

(AT1,1A1,1)−1 =
12

N2(N2 − 1)

N(N+1)(2N+1)
6 −N(N+1)

2

−N(N+1)
2 N

 (39)

After premultiplying (AT1,1A1,1)−1 by A1,1 and postmultiplying by AT1,1, the

element of the N ×N matrix A1,1 = IN −A1,1(AT1,1A1,1)−1AT1,1 located at the

rth row and the cth column is given by:

A1,1(r, c,N) = δc,r −
12

N(N2 − 1)

[N + 1

2

(2N + 1

3
− (r + c)

)
+ rc

]
(40)

In the notation above, we have added the dependency on the size N explicitly

as this will be useful in the following.

As a consequence, one has for c > 1:

A1,1HN (r, c) =

N∑
c1=c

A1,1(r, c1) (41)

Case d = 2, 2ndorder DFA: As done in the previous case, let us first look at

the expression of AT1,2A1,2:

AT1,2A1,2 =


N

∑N
n=1 n

∑N
n=1 n

2∑N
n=1 n

∑N
n=1 n

2 ∑N
n=1 n

3∑N
n=1 n

2 ∑N
n=1 n

3 ∑N
n=1 n

4

 (42)

It is a 3 × 3 Hankel matrix whose antidiagonals are defined by
∑N
n=1 n

l, with

l = 0, ..., 4. After development and simplification, this leads to:

(AT1,2A1,2)−1 =
3

N(N − 1)(N − 2)
× (43)

3N2 + 3N + 2 −6(2N + 1) 10

−6(2N + 1) 4 (8N+11)(2N+1)
(N+2)(N+1)

− 60
N+2

10 − 60
N+2

60
(N+2)(N+1)
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The element of IN − A1,2(AT1,2A1,2)−1AT1,2 located at the rth row and the cth

column is given by:

A1,2(r, c,N) = δc,r −
3

N(N − 1)(N − 2)

[
3N2 + 3N + 2− 6r(2N + 1) + 10r2 (44)

+ c(−6(2N + 1) + 4
r(8N + 11)(2N + 1)

(N + 2)(N + 1)
− 60

r2

N + 2
)

+ c2(10− 60r

N + 2
+

60r2

(N + 2)(N + 1)
)
]

Case d = 3, 3rd-order DFA: First, it can be shown that:

AT1,3A1,3 =


N

∑N
n=1 n

∑N
n=1 n

2
∑N
n=1 n

3∑N
n=1 n

∑N
n=1 n

2
∑N
n=1 n

3
∑N
n=1 n

4∑N
n=1 n

2
∑N
n=1 n

3
∑N
n=1 n

4
∑N
n=1 n

5∑N
n=1 n

3
∑N
n=1 n

4
∑N
n=1 n

5
∑N
n=1 n

6

 (45)

It is a 4 × 4 Hankel matrix with AT1,3A1,3(2, 1) = N(N+1)
2 ,

AT1,3A1,3(3, 1) = N2(N+1)2

4 , AT1,3A1,3(4, 1) = N2(N+1)2

4 ,

AT1,3A1,3(4, 2) = N(N+1)(2N+1)(3N2+3N−1)
30 , AT1,3A1,3(4, 3) = N2(N+1)2(2N2+2N−1)

12

and AT1,3A1,3(4, 4) = N(N+1)(2N+1)(3N4+6N3−3N+1)
42 .

Following the same reasoning, one has:

(AT1,3A1,3)−1 = (46)
8 2N3+3N2+7N+3

NB1,3
−20 6N2+6N+5

NB1,3
120 2N+1

NB1,3
− 140
NB1,3

−20 6N2+6N+5
NB1,3

200 6N4+27N3+42N2+30N+11
NC1,3

−300 9N2+21N+10
ND1,3

280 6N2+15N+11
NC1,3

120 2N+1
NB1,3

−300 9N2+21N+10
ND1,3

360 18N2+35N+13
NC1,3

− 4200
ND1,3

− 140
NB1,3

280 6N2+15N+11
NC1,3

− 4200
ND1,3

2800
NC1,3


with

B1,3 = N3 − 6N2 + 11N − 6 = (N − 1)(N − 2)(N − 3) (47)

C1,3 = N6 − 14N4 + 49N2 − 36 (48)

D1,3 = N5 −N4 − 13N3 + 13N2 + 36N − 36 (49)

= (N − 1)(N − 2)(N − 3)(N + 2)(N + 3)

The element of IN − A1,3(AT1,3A1,3)−1AT1,3 located at the rth row and the cth

column then satisfies:
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A1,3(r, c) = δc,r

−
[
8

2N3 + 3N2 + 7N + 3

NB1,3
− 20

r(6N2 + 6N + 5)

NB1,3
+ 120

r2(2N + 1)

NB1,3
− 140

r3

NB1,3

+
c

N

(
− 20

6N2 + 6N + 5

B1,3
+ 200

r(6N4 + 27N3 + 42N2 + 30N + 11)

C1,3

− 300
r2(9N2 + 21N + 10)

D1,3
+ 280

r3(6N2 + 15N + 11)

C1,3

)
+
c2

N

(
120

2N + 1

B1,3
− 300

r(9N2 + 21N + 10)

D1,3
+ 360

r2(18N2 + 35N + 13)

C1,3
− 4200

r3

D1,3

)
+
c3

N
(− 140

B1,3
+ 280

r(6N2 + 15N + 11)

C1,3
− 4200

r2

D1,3
+ 2800

r3

C1,3
)
]

(50)

Given the above mathematical development and the properties of A1,dHN , let

us comment on the block 1
Lγ111,d which is repeated L times on the main diagonal

of the matrix of Γ111,d. Due to the structure of A1,dHN , the elements of its

first row and first column are all equal to 0. Then, each element can be easily

deduced by taking advantage of (36) when d = 0, (40) and (41) when d = 1,

(44) when d = 2 and (50) when d = 3. Therefore, when computing the trace

of Γ111,d, it corresponds to 1
N Tr(H

T
NA1,d

TA1,dHN ). It does not depend on L.

More generally, for r = 0, ..., N − 1, one has:

Tr(Γ111,d, r) =
1

N
Tr(HT

NA1,d
TA1,dHN , r) = Tr(γ111,d, r) (51)

Tr(Γ111,d, r) does not depend on L. In addition, when r > N − 1, the trace is

null.

5.4. Asymptotic properties of the matrix Γ111,d when N increases

When N increases, one has:

lim
N→+∞

A1,d(r, c,N) = δc,r (52)

or equivalently:

lim
N→+∞

A1,d = IN (53)

It should be noted that the Q-convergence can be studied. Thus, for d = 1 one

can show that A1,1(r, c,N) logarithmically converges to δc,r. Indeed, as

lim
N→+∞

A1,1(r, c,N + 1)− δc,r
A1,1(r, c,N)− δc,r

= 1 (54)
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the convergence is sublinear. In addition, one has:

lim
N→+∞

A1,1(r, c,N + 2)−A1,1(r, c,N + 1)

A1,1(r, c,N + 1)−A1,1(r, c,N)
= 1 (55)

When d > 0, the expression of the trace becomes:

lim
N→+∞

1

N
Tr(HT

NA1,d
TA1,dHN , r) = lim

N→+∞

1

N
Tr(HT

NHN , r) (56)

As HT
NHN =



N N − 1 . . . 2 1

N − 1 N − 1 . . . 2 1
...

. . .
. . .

...
...

2 2 . . . 2 1

1 1 . . . 1 1


, and if N takes large values, it

comes:

Tr(Γ111,d, r) ≈
1

N
Tr(HT

NHN , r) ≈
1

2

(N − |r|)(N − |r|+ 1)

N
(57)

≈ 1

N
Tr(Γ000, r)(1−

|r| − 1

2
) ≈ 1

2
Tr(Γ000, r)w(r)

with w(r) = (1 − |r|−1N ) for r = 1 − N, ..., N − 1. When N tends to infinity,

the influence of the weights disappears. This result will be useful in the next

section.

6. Accuracy of the Hurst exponent estimate with the DFA when deal-

ing a finite number of samples of short-memory processes

After showing that the statistical mean of the square of the fluctuation func-

tion E[F 2
111,d(N)] converges to E[F 2

000 (N)] when N tends to infinity up to a multi-

plicative factor, we will see that the estimation of the slope tends to the theo-

retical value of the Hurst exponent when larges values of N are considered and

so for different short-memory processes such as a white noise, a moving-average

process and a random process whose correlation function exponentially decays.

However, for small values of M , the estimation of the slope may be drastically

different and depend on the number M of samples available.
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6.1. Statistical mean of the square of the fluctuation function

Let us recall the statistical mean of the square of the fluctuation function

we derived in [50]. For this purpose, (21) was written in various ways: either

by operating along the subdiagonals of Γ111,d or by operating along each row and

by taking advantage of the symmetry of Γ111,d:

F 2
111,d(N) =

LN∑
k=1

Γ111,d(k, k)y2(k) (58)

+

LN−1∑
r=1

LN−r∑
k=1

[Γ111,d(k, k + r) + Γ111,d(k + r, k)]y(k)y(k + r)

=

LN∑
k=1

Γ111,d(k, k)y2(k) + 2

LN−1∑
l=1

LN∑
m=l+1

Γ111,d(l,m)y(l)y(m)

By assuming that y is w.s.s. and taking the statistical mean of (58), one has:

E[F 2
111,d(N)] =

LN−1∑
r=−LN+1

Tr(Γ111,d, r)Ry,y(r) (59)

where Ry,y(r) is the autocorrelation function of the process y.4 As Γ111,d is a

block-diagonal matrix with blocks of size N × N , Tr(Γ111,d, r) = 0 for r ≥ N .

Therefore, the sum reduces to the sum of 2N − 1 terms:

E[F 2
111,d(N)] =

N−1∑
r=−N+1

Tr(Γ111,d, r)Ry,y(r) (60)

=

(51)

N−1∑
r=−N+1

Tr(Γ111,d, r)Ry,y(r)

As γ111,d only depends on N , E[F 2
111,d(N)] only depends on N . In other words, it

does not depend on L and M .

4Let us recall that the correlation function is here defined by Ryy(k1, k2) = E[y(k1)y(k2)].

When y is wide-sense stationary, the following three conditions are satisfied: E[y(k1)] is

a constant, Ryy(k1, k2) = Ryy(τ) where τ = k1 − k2 and Ryy(0) is bounded. Finally,

when y is also ergodic, the statistical mean can be substituted by the temporal mean

over an infinite duration of one realization of the random process, leading to Ryy(τ) =

limK→∞
1

2K+1

∑K
k=−K y(k)y(k − τ). When only a few samples are available, the correla-

tion of the function is estimated. This comment will be useful in the rest of the paper.
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6.2. Impact on the estimation of the slope

In the following, we propose to study the behaviour of the estimated slope

when the square of the fluctuation function is replaced by its statistical mean.

It should be noted that our purpose is not to analyze the statistical mean of the

slope, but to obtain meaningful information about the influence of the number

of samples and consequently of Nmax.

Given (25), let us look at the following quantity:

α̂111(N1, ..., Nmax) =
1

2

log(N) log(E[F 2
111,d(N)])− log(N)× log(E[F 2

111,d(N)])

log2(N)− log(N)
2

(61)

or equivalently:

α̂111(N1, ..., Nmax) =
1

2
(

log2(N))− log(N)
2
)× (62)

log(N) log
( N−1∑
r=−N+1

Tr(Γ111,d, r)Ry,y(r)
)
− log(N)× log

( N−1∑
r=−N+1

Tr(Γ111,d, r)Ry,y(r)
)

At this stage, we suggest combining all the results above in order to analyze

the accuracy of the estimation of the Hurst coefficient depending on the number

of samples available. Different types of processes are analyzed: a white noise,

a moving-average process, a random process with an exponentially decaying

correlation.

6.2.1. Case 1: white noise

When the process is a w.s.s. zero-mean white noise with variance σ2
m, its

correlation function satisfies:

Ry,y(τ) = σ2
mδ(τ) (63)

where δ(τ) = 1 if τ = 0 and 0 otherwise. In this case, (60) reduces to:

E[F 2
111,d(N)] = σ2

mTr(Γ111,d, 0) = σ2
mTr(γ111,d, 0) (64)

When d = 1, using (33), (40) and (41), calculating the trace Tr(γ111,1, 0) amounts

to summing the square of each element of A1,1HN (r, c) and dividing the result
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by N . Using numerical simulations, it confirms the result obtained by [40, 51]

based on alternative formalisms:

E[F 2
111,1(N)] = σ2

m

N2 − 4

15N
(65)

The order of magnitude of the difference between our method and their analyt-

ical expression is 10−13.

When d = 2, Höll [40] proposed the following expression:

E[F 2
111,2(N)] = σ2

m

3N2 − 18

70N
(66)

The expectation of the square of the fluctuation function obtained by Höll and

by us for σ2
m = 1 and the normalized difference, expressed in percentage, are

respectively given in Fig. 1 and 2. Given these numerical simulations, it appears

that the expression (66) is not exactly the true one, i.e. (64), when N is small

(< 40). It should be noted that the definition of the correlation function of

the random process we consider is the standard one based on the expectation

whereas Höll takes into account a definition based on a temporal mean, which

implicitly means that the random process is assumed to be wide-sense-stationary

and ergodic. This hence explains the difference for small value of N represented

in Fig. 1 and Fig. 2. We already pointed out some differences with Höll’s work

when N is small in [23].

Let us now go back to the expression (62) of the slope. It becomes:

α̂111(N1, ..., Nmax) =
1

2
(

log2(N))− log(N)
2
)× (67)

log(N) log
(
σ2
mTr(γ111,d, 0)

)
− log(N)× log

(
σ2
mTr(γ111,d, 0)

)
However,

log
(
σ2
mγ111,d, 0)

)
= log(σ2

m) + log
(
Tr(γ111,d, 0)

)
(68)

Therefore, as log(σ2
m) = log(σ2

m), the terms σ2
m vanish in (68) and one has:

α̂111(N1, ..., Nmax) =
1

2
(

log2(N))− log(N)
2
)× (69)

log(N) log
(
Tr(γ111,d, 0)

)
− log(N)× log

(
γ111,d, 0)

)
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Figure 1: Difference between expressions of E[F 2
111,2(N)]: comparison between Höll’s approach

and ours for d = 2 when dealing with a white noise

Figure 2: Zoom on the normalized difference between expressions of E[F 2
111,2(N)] (in %): com-

parison between Höll’s approach and ours for d = 2 when dealing with a white noise
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It is also coherent with the fact that the slope cannot depend on the power of

the signal under study.

Moreover, given the properties of the trace of Γ111,d and Γ000 we mentioned in (51),

the slope α̂111 should converge to α̂000 obtained with the FA provided large values

of N are considered. When the latter is used, one has:

E[F 2
000 (N)] = Nσ2

m (70)

The expression (62) of the slope applied to the FA with the statistical mean of

the square of the fluctuation function is given by:

α̂000(N1, ..., Nmax) =
log(N) log

(
Nσ2

m)− log(N)× log
(
σ2
mN

)
2
(

log2(N))− log(N)
2
) (71)

=
log2(N)− log(N)

2

2
(

log2(N))− log(N)
2
) =

1

2

Therefore, when the variates N1, ..., Nmax take large values:

lim
N1,...,Nmax→+∞

α̂111(N1, ..., Nmax) ≈ lim
N1,...,Nmax→+∞

α̂000(N1, ..., Nmax) =
1

2
(72)

As a conclusion, when large values of N1, ..., Nmax are selected and if the statis-

tical mean of the square of the fluctuation function is considered in the DFA, the

estimation of the slope tends to the true one, i.e. α = H + 1 = −0.5 + 1 = 0.5

in the case of a white noise.

6.2.2. Case 2: moving-average process

Let us consider the w.s.s. qth-order MA process. Its kth sample, denoted as

y(k), is defined as follows:

y(k) =

q∑
j=0

bju(k − j) (73)

where u(k) is the kth sample of the driving process, assumed to be white, Gaus-

sian, zero-mean with variance σ2
m. b0 = 1 and {bj}j=0,...,q denote the MA

parameters. This can be seen as a filtering of the driving process whose transfer

function is given by H(z) =
q∑
j=0

bjz
−j . The latter is defined by its zeros which

may be inside or outside the unit-circle in the z-plane.
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However, there may be statistical links between a MA process with zeros inside

the unit-circle in the z-plane and a MA process with zeros outside the unit-circle

in the z-plane. Thus, let us take the example of a 1st-order MA process defined

by the following transfer function:

Hzl(z) = (1− zlz−1) = |zl|Hbla,zl(z)

(
1− 1

z∗l
z−1
)

(74)

where z∗l denotes the conjugate of zl, Hbla,zl(z) = 1
|zl|

1−zlz−1

1− 1
z∗
l
z−1 is a Blaschke

product, representative of a transfer function of an all-pass filter.

The above equation (74) amounts to saying that the two filters with transfer

functions Hzl(z) and
(

1− 1
z∗l
z−1
)

have the same frequency responses up to a

multiplicative factor equal to |zl|. In other words, the MA process defined by

the driving process with variance σ2
m and the MA parameters (1,−zl) and the

MA process defined by the driving process with variance Klσ
2
m = |zl|2σ2

m and

by the MA parameters (1,− 1
z∗l

) have the same power spectral densities and

consequently the same correlation function. In addition, the MA processes with

transfer functions Hzl(z) and
(

1− 1
z∗l
z−1
)

have the same normalized correlation

function5. This result can be generalized to any qth-order MA process.

Following the same reasoning as in the previous section, one can show that the

expression of the slope does not depend on σ2
m. Therefore, if 1st-order MA

processes are analyzed by using the DFA, the value obtained with the DFA for

the set of MA parameters (1, b1) is the same as (1, 1
b1

). One can reduce the

simulation protocol to MA processes corresponding to minimum-phase filters,

i.e. with zeros inside the unit-circle in the z-plane.

When the FA is used and in the case of a 1st-order process, one has:

E[F 2
000 (N)] =

(
N(1 + b21) + 2(N − 1)b1

)
σ2
m =

(
N(1 + b1)2 − 2b1

)
σ2
m (76)

5Note that the correlation function is defined as follows:
Ry,y(|τ |) = σ2

m

q∑
j=|τ |

bjbj−|τ | for 0 ≤ |τ | ≤ q

Ry,y(|τ |) = 0 otherwise

(75)
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When 1+2b1+b21 = (1+b1)2 6= 0 or equivalently b1 6= −1, E[F 2
000 (N)] depends on

N . When N increases, N(1+b1)2 >> 2b1. Taking into account the expression of

the slope using the FA with the statistical mean of the square of the fluctuation

function, one can easily deduce that for large values of {N1, . . . , Nmax}:

α̂000(N1, ..., Nmax) =
log(N) log(N(1 + b1)2)− log(N)× log

(
N(1 + b1)2

)
2
(

log2(N))− log(N)
2
) (77)

=
log2(N)− log(N)

2

2
(

log2(N))− log(N)
2
) =

1

2

Then, the estimation of the Hurst coefficient tends to − 1
2 .

When b1 = −1, E[F 2
000 (N)] = 2σ2

m, the slope is equal to:

α̂000(N1, ..., Nmax) =
log(N) log(2σ2

m)− log(N)× log
(

2σ2
m

)
2
(

log2(N))− log(N)
2
) = 0 (78)

Therefore, the estimation of the Hurst exponent tends to be equal to −1.

Let us now analyze a 2nd-order MA process. In this case, when the FA is used,

one has:

E[F 2
000 (N)] =

(
N(1 + b21 + b22) + 2(N − 1)(b1 + b1b2) + 2(N − 2)b2

)
σ2
m (79)

=
(
N(1 + b21 + b22 + 2b1 + 2b2 + 2b1b2)− 2(b1 + 2b2 + b1b2)

)
σ2
m

In the above expression, (1+b21+b22+2b1+2b2+2b1b2) = (1+b1+b2)2. Therefore,

E[F 2
000 (N)] does not depend on N when 1 + b1 + b2 = 0. In this case, α̂000 = 0. In

the other case, following the same reasoning as above, one can easily show that

α̂000 = 1
2 . One can generalize the above result for a qth-order MA process. α̂ = 1

2

except when
∑q
j=0 bj = H(z)|z=1 = 0 for which α̂ = 0. This would mean that

that the FA using the statistical mean of the square of the fluctuation function

tends to the true result except when
∑q
j=0 bj = H(z)|z=1 = 0, i.e. when the

PSD of the MA process is characterized by a total rejection of the null frequency.

Consequently, when N1, ..., Nmax take large values, the DFA based on the sta-

tistical mean of the square of the fluctuation function would lead to the same

results.

27



6.2.3. Case 3: random process with correlation function decaying exponentially

The ARMA process of order (p, q) is defined defined by6:

y(k) = −
p∑
i=1

aiy(k − i) +

q∑
j=0

bju(k − j) (80)

The correlation function for τ ≥ q + 1 satisfies:

Ry,y(τ) = −
p∑
i=1

aiRy,y(τ − i) (81)

By setting a0 = 1, this is a recurrence relation defined by the following charac-

teristic equation:
p∑
i=0

aix
p−i = 0 (82)

It has its roots equal to {pi}i=1,...,p. The latter correspond to the poles of the

transfer function H(z) = 1∑p
i=0 aiz

−i . If the roots are of order of multiplicity

equal to 1, the correlation function can be expressed as follows:

Ry,y(τ) =

p∑
i=1

cip
|τ |
i (83)

If the root pp has its order of multiplicity larger than 1 and equal to m, one has:

Ry,y(τ) =

p−1∑
i=1

cip
|τ |
i + cp,0p

|τ |
p + cp,1|τ |p|τ |p + ...+ +cp,m−1|τ |m−1p|τ |p (84)

As a consequence, the correlation function of an ARMA process decays expo-

nentially.

In the following, let us consider another type of w.s.s. process with short memory

whose correlation function decays exponentially, with a decay constant β:

Ry,y(τ) = σ2
me
−β|τ |T = σ2

mρ
|τ | (85)

where τ is the difference between two consecutive instants, T is the sampling fre-

quency, ρ = e−βT , and σ2
m is the power of the process. The latter characterizes

the acceleration of a Singer motion model.

6The AR processes is defined by y(k) = −
∑p
i=1 aiy(k− i) + u(k). It is an ARMA process

of order (p, q = 0).
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Therefore, (60) becomes:

E[F 2
111,d(N)] = σ2

m

N−1∑
r=−N+1

Tr(Γ111,d, r)ρ
|r| (86)

Remark: When the FA is used, one has:

E[F 2
000 (N)] = σ2

m

N−1∑
r=−N+1

Tr(Γ000, r)ρ
|r| = σ2

m

N−1∑
r=−N+1

(N − |r|)ρ|r| (87)

Let us express it differently.

E[F 2
000 (N)] = σ2

m

(
N + 2

N−1∑
r=1

(N − r)ρr
)

(88)

= σ2
m

(
N + 2N

N−1∑
r=1

ρr − 2ρ

N−1∑
r=1

rρr−1
)

= σ2
m

(
N + 2Nρ

1− ρN−1

1− ρ
− 2ρ

d

dρ

(ρ− ρN
1− ρ

))
= σ2

m

(
N + 2Nρ

1− ρN−1

1− ρ
− 2ρ

1−NρN−1 + (N − 1)ρN

(1− ρ)2

)
When taking the limit of the above expression when N increases and takes a

large value, one has:

lim
N→+∞

E[F 2
000 (N)] (89)

= lim
N→+∞

σ2
m

(
N + 2Nρ

1− ρN−1

1− ρ
− 2ρ

1−NρN−1 + (N − 1)ρN

(1− ρ)2

)
= lim
N→+∞

σ2
m

(
N(1 +

2ρ

1− ρ
)− 2ρ

(1− ρ)2

)
Therefore, when N1, ..., Nmax are large and the statistical mean of the square of

the fluctuation function is considered, the slope obtained with the FA satisfies:

lim
N1,...,Nmax→+∞

α̂000(N1, ..., Nmax) =
1

2
(

log2(N))− log(N)
2
)× (90)

log(N) log
(
N(1 +

2ρ

1− ρ )− 2ρ

(1− ρ)2

)
− log(N)× log

(
N(1 +

2ρ

1− ρ )− 2ρ

(1− ρ)2

)
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This leads to:

lim
N1,...,Nmax→+∞

α̂000(N1, ..., Nmax) =
1

2
(

log2(N))− log(N)
2
)× (91)

log(N) log
(
N(1 +

2ρ

1− ρ )
)
− log(N)× log

(
N(1 +

2ρ

1− ρ )
)

=
log2(N)− logN

2

2
(

log2(N))− log(N)
2
) =

1

2

Consequently, the DFA used with large values of N1, ..., Nmax and the statistical

mean of the square of the square of the fluctuation function leads to the same

result.

In what follows, various illustrations are given.

7. Illustrations

In this section, we suggest analyzing how the estimation α̂ evolves when M

increases. It is true that our analysis is based on the statistical mean of the

square of the fluctuation function whereas the DFA uses the square of the fluc-

tuation function only. Thus, the performance of the DFA in its standard version

are necessarily worse. Note that the practitioner could consider a larger set of

samples, create several realizations of the process by using a sliding window,

compute the squares of the resulting fluctuation functions and average them.

We would then come closer to the analysis conditions that we introduced in this

paper.

Given what we presented in the above sections, the following comments can be

made:

• Whatever M , E[F 2
111,d(N)] has always the same value.

• Assuming that M is even, the diagram representing log(E[F111,d(N)]) as a

function of log(N) for a signal of length M + 1 is the same as the one

obtained for the signal of length M .

• The diagram representing log(E[F111,d(N)]) as a function of log(N) for a

signal of length M+2 is composed of the M/2 points of the curve obtained
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from the signal of length M and an additional point whose coordinates

are log(E[F111((M + 1)/2)]), log((M + 1)/2) to be computed.

• The behaviour of the DFA tends to the one of the FA when M increases.

7.1. Case 1: white noise

In this section, three strategies are considered for the selection ofN1, . . . , Nmax.

For the first one, N1, . . . , Nmax take consecutive values, whose lower bound is

equal to
⌊
M
12

⌋
and upper bound is

⌊
M
2

⌋
. The second one consists in taking con-

secutive values from N = 20 to
⌊
M
2

⌋
, whereas the last strategy is to consider

all the values between 3 to
⌊
M
2

⌋
. The first two strategies avoid using too small

values of N to be in accordance with the theory presented in the previous sec-

tion and to take into account the comments made by Kantelhardt [54] where

the fluctuation function is under-estimated and has to be corrected. The last

approach has the advantage of being applicable when only very few samples are

available. Selecting d = 0 and d = 1 provides the best results when the number

M of samples is small. The abacuses based on the DFA and the higher-order

DFA with d = {0, 1} and d = {2, 3} that provide α̂111 − 1 are given respectively

in Fig. 3 and Fig. 4.
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Figure 3: Abacuses for a white noise, giving α̂111 − 1 for different values of M , based on three

strategies and and d = {0, 1}

Figure 4: Abacuses for a white noise, giving α̂111 − 1 for different values of M , based on three

strategies and d = {2, 3}

One can see that when the number of samples is small, the value is not equal to
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−0.5 whatever the strategy that is considered. The first strategy converges to

the true value faster than the second method as it does not take into account

small values for {Ni}i=1,2,.... Indeed, the lower bound for N1 increases when the

first strategy is considered whereas it is fixed in the second strategy. Moreover,

the abacus obtained with the third strategy is necessarily above the abacus

obtained with the second one because small values of {Ni}i=1,2,... are considered

in the third one, leading to underestimated values of the fluctuation function

and consequently larger estimates of the slopes. When comparing the first and

the second strategy, as the lower bound for N1 are respectively equal to
⌊
M
12

⌋
and

20, the abacus based on the first strategy is necessarily above the one obtained

with the second for M smaller than 20× 12 = 240. Finally, strategy 3 leads to

the wider range of values for the estimation of the regularity, depending on the

samples available.

In the next section, as few samples are usually available in various applications,

we propose to provide abacuses based on the third strategy7. In the next cases,

the abacuses are presented for d = 1, but the abacuses for other values of d can

be easily obtained.

7.2. Case 2: moving-average process

In this sub-section, a 1st-order MA process is analyzed. First of all, let us

confirm that the results obtained for the set of MA parameters (1, b1) and (1, 1
b1

)

are the same. In Fig. 5 and 6 for the DFA and the FA respectively, the MA

parameter b1 varies from -3 to 3 and M can take different values equal to 50,

75, 100, 250, 500, 750, 1500, 2000, 5000, 10000 and 19000. This confirms what

we show in the theoretical part in Section 6.

Let us now analyze how the estimation of the Hurst exponent evolves when

the number M increases. The MA parameters varies from −1 to 1 with a step

size equal to 0.2. This makes it possible to analyze a large panel of spectral

7As a matter of fact, the practitioner can design his own abacus following the approach we

propose based on the values N1, N2, ...,Nmax he chooses.
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Figure 5: Abacus giving α̂111 − 1 vs MA parameter b1, for different values of M in the case of

the DFA

Figure 6: Abacus giving α̂000 − 1 vs MA parameter b1, for different values of M in the case of

the FA
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properties.

Figure 7: Abacus based on the DFA giving α̂111 − 1 for different values of M and different MA

parameters

When M becomes larger and larger, the value tends to be the same and equal

to −0.5. However, when M is small, the results that are obtained differ and

depend on the values of the MA parameter.

Remark: The abacus for the FA approach is given Fig. 8.

7.3. Case 3: random process with correlation decaying exponentially

Here is the abacus that provides α̂111− 1 for values of β equal to 0.001, 0.005,

0.01, 0.05, 0.1, 0.5, 1 and 5. T = 1s and σ2
m = 1 (even if the latter parameter

does impact on the result).

The larger β, the faster it converges to −0.5.

8. Conclusions and perspectives

In this paper, we first confirm that the DFA does not provide the true

estimation of the Hurst exponent when the number of samples is not large for

short-memory processes and the sizes N of the segments are not set to large
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Figure 8: Abacus based on FA giving α̂000 − 1 for different values of M and different MA

parameters

Figure 9: Abacus giving α̂111 − 1 for different values of β and M
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Figure 10: Zoom on the abacus giving α̂111 − 1 for different values of β and M

values. Then, we present a method to derive abacuses linking the value provided

by the DFA to the properties of the w.s.s. short-memory random process and

the number of samples available. This approach is based on the expression

of the statistical mean of the square of the fluctuation function, without any

approximation and by using a matrix formulation. No assumption of ergodicity

is made.

In the future, we plan to analyze the case of long-memory processes such as

fractionally integrated white noises and autoregressive fractionally integrated

moving-average processes. We also plan to derive statistical properties of the

estimation of the Hurst exponent by using the matrix formalism we have used.
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