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Abstract
This study aims to investigate the performance of a data-driven methodology for quantifying damage based on the
use of a metamodel obtained from the Polynomial Chaos-Kriging method (PC-Kriging). The investigation seeks to
quantify the severity of the damage, described by a specific type of debonding in a wind turbine blade as a function of a
damage index. The damage indexes used are computed using a data-driven vibration Structural Health Monitoring
(VSHM) methodology. The blade’s debonding damage is introduced artificially, and the blade is excited with an
electromechanical actuator that introduces a mechanical impulse causing the impact on the blade. The acceleration
responses’ vibrations are measured by accelerometers distributed along the trailing and the wind turbine blade. A
metamodel is formerly obtained through the PC-Kriging method based on the damage indexes, trained with the blade’s
healthy condition and four damage conditions, and tested with the other two damage conditions. The PC-Kriging
manifests promising results for capturing the proper trend for the severity of the damage as a function of the damage
index. This research complements the damage detection analyzes previously performed on the same blade.

Keywords
Structural Health Monitoring, wind turbine blades, damage quantification, damage features, data-driven metamodel,
Polynomial Chaos-Kriging

Introduction
Currently, the society aims for a future where the generation
of energy is clearer. Thus, there is an expansion in offshore
wind turbines, making studies in this area necessary.
Additionally, the maintenance of wind turbine blades
involves, in most part, methods based on visual inspection,
which can be dangerous and expensive (Garcı́a and
Tcherniak 2019). Therefore, a system for monitoring wind
turbines’ conditions is of great industrial interest, demanding
further development of methodologies for detecting and
quantifying damage to these structures (Ciang et al. 2008).

Structural Health Monitoring (SHM) methods are used
to diagnose and extract meaningful information about the
health from a structure of interest, based on the measured
data from sensors distributed and permanently installed
along the structure (Larrosa et al. 2014). SHM techniques
have four functional levels of the classification proposed
by Rytter (1993): Level 1 – damage detection, Level
2 – damage location, Level 3 – damage quantification,
and Level 4 – remaining useful life estimate. In the
literature, the first three levels are also categorized as
diagnosis and the last as prognosis. This work focuses
on damage quantification to complement a methodology
for damage detection by Garcı́a and Tcherniak (2019) and
thus provide a full damage diagnosis of debonding wind
turbine blades. The contribution concerns the quantification
of the damage, obtaining the severity by the damage indices,
assuming the inherent uncertainties to obtain a robust
damage quantification.

The damage detection methodology used in Garcı́a and
Tcherniak (2019) followed the idea of Vibration-based

Structural Health Monitoring (VSHM), which measures
vibration responses from a artificial excitation. Thus,
the structure’s health/current state can be analyzed by
monitoring its vibration response changes. The methodology
was applied to an SSP 34 m wind turbine blade. Conventional
classification of VSHM methodologies is the division
between model-based (Maes et al. 2016) and non-model-
based (or data-driven) methods (Love 2002; Avendaño-
Valencia et al. 2015). In the methodology of this work,
a data-driven approach is used. Non-model-based methods
depend exclusively on the data measured from the structure
under study. These methods also involve the construction
of a model, but that model is based on data rather than
numerical or analytical models (Avendaño-Valencia et al.
2015). The measurements in the structure’s initial state
are considered reference states, where these observations
can be compared with the structure measurements in
operation. Any deviation of the new observations from

1UNESP - Universidade Estadual Paulista, Departamento de Engen-
haria Mecânica, Ilha Solteira, SP, Brasil
2IFMS - Instituto Federal de Mato Grosso do Sul, Três Lagoas, MS, Brasil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
4 University of Edinburgh, School of Engineering, Institute for Infrastruc-
ture and Environment, Scotland, UK

Corresponding author:
Bruna Pavlack, UNESP - Universidade Estadual Paulista, Departamento
de Engenharia Mecânica, Av. Brasil, 56, Ilha Solteira, 15385-000, SP,
Brasil.
IFMS - Instituto Federal de Mato Grosso do Sul, Três Lagoas, MS, Brasil
Email: bruna.pavlack@ifms.edu.br

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

the reference state might be considered an indication of
damage. In Tcherniak and Mølgaard (2015), an analysis of
an unsupervised methodology was carried out that combined
the correlation between the signals measured from different
accelerometers. This study demonstrated that methodologies
based on data-driven techniques have a big potential for
detecting damage on large structures. Currently, many data-
driven methodologies are being developed; for example, in
Soize and Orcesi (2020) a machine learning approach was
presented using only an experimental database, consisting of
a small number of records, to detect changes in the rigidity
of engineering structures.

The damage quantification is not yet extensively addressed
by the scientific community, but it is crucial to improve the
safety and useful life of structures, and thus motivating the
scientific community to develop some damage quantification
methods. Paixão et al. (2020) used AutoRegressive (AR)
models on Lamb wave signals measured on a composite
material plate to calculate damage-sensitive features for
calculating indexes using the Mahalanobis square distance.
Quantification was achieved by training a defined curve,
using cubic spline functions to predict the delamination
area. Da Silva et al. (2019) executed a similar idea when
manipulating the possibility of extrapolating these trend
curves to future prognostic states when the delamination
grows in the same place and with a similar effect. These
studies demonstrated that the resources that use AR models
are precisely correlated with the structural state and with
a smooth tendency that allows the use of cubic spline
functions.

Many studies have addressed experiments in wind turbines
in the literature, but there is a lack of methodologies
to quantify the damage to them. One of the difficulties
in quantifying wind turbine blades’ damage is that these
structures work under variability (temperature, climate,
etc.). Therefore, it is of great importance to consider
uncertainty quantification. A method with valid results
in obtaining uncertainty quantification models is the
Polynomial Chaos Expansion (PCE). The PCE method
with application in engineering was introduced in Ghanem
and Spanos (1990). They proposed a new method using
convergent orthogonal expansion for solving problems
involving material variability. The material property was
modeled as a random field. The results found had a
good agreement with the results obtained through a Monte
Carlo simulation. In Ghanem and Spanos (1991), the PCE
was used to quantify the uncertainty applied to some
problems involving mechanical systems. The use of different
types of orthogonal polynomials to represent non-Gaussian
processes was introduced in Xiu and Karniadakis (2002),
which presents a method for solving stochastic differential
equations based on Galerkin projections on a polynomial
chaos basis. They represented stochastic processes based on
an Askey family of orthogonal polynomials, that reduced
the dimensionality of the system and led to the exponential
convergence of the error. This new methodology, which
is reviewed in Xiu (2010), presents satisfactory results in
terms of computational cost and precision. One of the
significant advantages seen in using the PCE is its rapid
convergence and expressing the final solution as a random
process and not just as a set of statistics. Bogoevska

et al. (2017) mentions that operational structures such
as wind turbines have complex dynamic behavior that
challenges the applicability of existing SHM strategies
for condition evaluation. Thus, Bogoevska et al. (2017)
proposes a structure based on the symbiotic treatment of
environmental/operational variables acting on the structure’s
vibration response. A probabilistic model of the PCE was
used for uncertainty quantification in the identified structural
performance indicators. Avendaño-Valencia et al. (2017)
emphasized that effective fatigue monitoring and prediction
algorithms for structures such as wind turbines require an
accurate representation of their dynamic response in the
short and long term scale. The long term can be achieved
in a computationally efficient way through the use of
metamodels. That article discussed a two-step methodology,
in which the first consisted of projecting the Power Spectral
Density (PSD) of the measured dynamic response of the
wind turbine linearly in an alternative representation space
through Principal Component Analysis (PCA). In the second
stage, the coefficients of the PCA-based projection were used
as a vector of characteristics, represented by a probability
density model in the characteristic space, which is associated
with environmental/operational variables measured by the
Supervisory Control and Data Acquisition (SCADA) of the
wind turbine through the PCE. The proposed methodology
facilitated the detection of different wind turbine modes,
although it can still be used for fatigue simulation and
prediction, only by sampling from the resource space. This
methodology was demonstrated with real data measured on a
wind turbine located in Lübbenau, Germany, measured over
three months.

In this study, the methodology discussed for quantifying
the size of damage like trailing edge debonding of a
wind turbine blade is based on obtaining a metamodel
using the Polynomial Chaos-Kriging (PC-Kriging) method.
Polynomial Chaos Expansions (PCE) and Kriging are two
popular non-intrusive metamodeling techniques (they do
not modify or adapt the original model equations). The
PCE replaces the computational model with a series of
orthonormal polynomials in the input variables, where the
polynomials are chosen in coherence with the probability
distributions of these input variables (Ghanem and Spanos
1991; Ghanem et al. 2017). The Kriging method assumes
that the computational model behaves as a realization of a
Gaussian random process whose parameters are estimated
from the available computer executions, that is, input vectors
and response values (Lataniotis et al. 2015). The PC-Kriging
presents itself as a new non-intrusive metamodel approach
combining PCE and Kriging. The PCE is close to the
computational model’s global behavior, while Kriging is
responsible for its local variability. Combining these two
methods leads to better accuracy, or at least as good, as either
method alone (Schöbi et al. 2014; Schöbi et al. 2015). That
is why the choice of applying both methods as a combined
approach in this work.

Some works were carried out using the combination
of the PCE and Kriging methods, and thus it was
possible to identify some advantages and disadvantages
of this combination. Some of the PC-Kriging method’s
main advantages are the ease model construction, the low
computational cost, the analytical calculation of classical
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statistical measures of the quantity of interest, and its
simplicity compared to other machine learning techniques.
However, the PC-Kriging is very sensitive to data quality, just
like any other machine learning technique, and impossible
to apply to large problems, these being some of its
disadvantages (Schöbi and Sudret 2014; Du and Leifsson
2020). In Kersaudy et al. (2015), the Specific Absorption
Rate (SAR) was evaluated using a surrogate model to
reduce the computational cost. Thus, it was considered
a sparse representation of the PCE using minimal angle
regression as a selection algorithm to retain the most
influential polynomials, and the selected polynomials are
used as regression functions for the universal Kriging
model. This combination proposal was applied to three
benchmark examples, and the performances were compared
with a standard Kriging model and a sparse PCE classic.
The combination of the methods showed an adequate
performance. In the literature, some studies used PC-Kriging
for quantification problems considering uncertainties. In
Schöbi et al. (2016), a new structural reliability method was
developed based on the PC-kriging approach, which was
coupled to an active learning algorithm known as adaptive
Kriging-Monte Carlo Simulation (AK-MCS). The problem
was formulated so that the calculation of small probabilities
of failure and extreme quantiles were unified. Dubreuil
et al. (2018) carried out a parametric study of engineering
models under uncertainty, using the PC-Kriging approach.
The advantage of the approach developed in this article was
the reduction in computational cost, which was demonstrated
in several numerical examples and also illustrated in the
parametric study of an aircraft wing under uncertainty.

In this study PC-Kriging is used to define a trend curve
that associates a damage index with an estimate of the
damaged area, considering the uncertainties. Each damage
index is calculated based on the data-driven algorithm using
the Mahalanobis distance (MD), considering a baseline
condition as a reference condition. The work is organized
as follows: first, a statement of the problem in question
is performed, then the methodologies that will be adopted
for the detection and quantification of damage in wind
turbine blades are presented. The experiment setup and the
introduction of artificial damage, and the data collection
procedure are presented. Finally, the results are investigated,
and the conclusions have discussed the performances of
the proposed VSHM methodology for detecting damage in
different locations of the accelerometer and the methodology
used to quantify the damage.

Problem statement

The study presented in this work is carried out on an SSP
34 m wind turbine blade. The blade is instrumented with 20
triaxial accelerometers, ten along the trailing edge (TE) and
ten along the leading edge (LE). The results of this study
consist of two parts:

1) Damage detection: the methodology in Garcı́a and
Tcherniak (2019) is used. Such methodology consists of 4
steps: data collection, the reference state, feature extraction,
inspection phase, and decision making. Each of these steps
is detailed throughout the text. An actuator is used to excite

the blade, which is an impact test. An investigation is carried
out on the sensitivity of detection and damage progression.

2) Damage quantification: to quantify the damage’s size,
a metamodel obtained from the PC-Kriging method is used.
The metamodel generates a trend curve related to the damage
indexes obtained in the detection part with the severity of the
damage.

Figure 1 shows a schematic of the entire methodology of
this work, with the damage quantification part being the main
contribution of this work.

Damage assesssment

Methodology for damage assessment in wind
turbine blades
The methodology presented in this study is available
in Garcı́a and Tcherniak (2019). This methodology is
considered a simple nonparametric method for data
compression and information extraction. The procedure is
divided into four steps: data collection, the reference state,
feature extraction, and inspection phase for decision-making
(Garcı́a and Trendafilova 2014).

Data collection
The first step is to collect the data from the struc-

ture/system. Acceleration signals are measured and dis-
cretized into a vector. Each measured signal is first stan-
dardized to have zero mean and unit variance and secondly
transformed into the frequency domain. Each signal vector
realization is arranged in the columns of the matrix Z, i.e.,

Z = (Z1,Z2, . . . ,ZM ) . (1)

The matrix Z is constructed from signal vectors obtained
on the pristine/healthy state of the wind turbine blade, and it
is used for creating the reference state.

Creation of the reference state
A reference state is created based on the matrix Z, where

the observation signal vectors can be compared. First, each
vector signal Zm is embedded into a matrix Žm by W-lagged
copies of itself. All matrices Žm are used to create the full
embedded matrix Ž, i.e.,

Ž =
(
Ž1, Ž2, . . . , ŽM

)
. (2)

The covariance matrix of Ž, which defines the covariance
between the different signal vector realizations, is estimated
by

CZ =
ŽtŽ
N

. (3)

The eigendecomposition of CZ yields λk and Ek

eigenvectors in the same order as their corresponding
eigenvalues. Each eigenvalue defines the partial variance in
the direction of its corresponding eigenvector. A matrix EZ

contains all eigenvectors Ek. Each Principal Component
(PC) Ak associated with each eigenvector Ek is calculated
by projecting the matrix Ž onto EZ . The Reconstructed
Components (RCs) are calculated by convolving the PCs
with the associated Ek. The RCs are then arranged in
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Figure 1. Schematic representation of the proposed methodology for quantifying damage to wind turbine blades.

columns into the matrix R. Therefore, R can be used as
the reference state of the structure/system to which the
observation signal vectors are compared.

Feature extraction
A Feature Vector (FV) is obtained for each new

observation signal vector, which will be subjected to damage
evaluation by comparing its similarity to the reference state
defined by R. An FV is calculated by multiplying an
observation signal vector z with each RC in the reference
state R, as shown in (4) where j = 1, . . .W .

Tj =

N∑
n=1

znRnj (4)

Each Tj value represents the inner product between an
observation signal vector and each RC. All Tj are arranged
into a vector T with dimension W. The FV T characterizes
the observation signal vector onto the feature space.

Inspection phase and decision making
The baseline feature matrix TB is created. Once the

baseline is defined, an observation FV is then compared with
the baseline TB . Using the Mahalanobis distance damage
index is obtained,

Di =

√
(Ti − µB)tΣ−1(Ti − µB), (5)

where µB is the mean row of the baseline feature matrix
TB ; Σ is its corresponding covariance matrix, and Di is the
damage index.

It is necessary to set a threshold against which damage
rates can be assessed to label an observation as an outlier or
inlier. A probabilistic threshold DT based on the probability
density function (pdf) of the distances measured by the
baseline FVs for the baseline matrix is calculated TB .
As the damage indexes are always positive (Di > 0),
a lognormal probability density function was used to
approximately adjust the data considered as a training set,

to define a limit to distinguish between observations of the
healthy and damaged structure. The DT limit is calculated
by the inverse of the lognormal cumulative density. Thus,
the definition of whether or not there is damage is given by
the decision below:

H0 : Di ≤ DT ⇒ Undamage wind turbine blade

H1 : Di > DT ⇒ Damaged wind turbine blade

Damage quantification methodology
After detecting the initial trailing edge debonding in the
wind turbine blades using a data-driven approach, the user
needs to decide if there is an imminent structural failure or
if the system can be kept in operation under monitoring to
track the damage progression and its impact on structural
safety conditions. Therefore, it is imperative to obtain the
quantification of the debonding length.

Computer simulation of many problems in modern
engineering and applied sciences has a high computational
cost. In this context, the metamodelling tries to reduce
computational costs and perform sophisticated analyzes,
such as reliability analysis and design optimizations (Schöbi
et al. 2017). One method for obtaining metamodels is
investigated: Polynomial Chaos-Kriging (PC-Kriging). In
the next subsection, the method algorithm is presented.

Polynomial Chaos-Kriging
The PCE method works as a type of “response surface”,

which locally interpolates the model hypersurface. This
method obtains the computational model by sum the
orthonormal polynomials to the input variables. This
orthogonal expansion decouples stochastic and deterministic
objects, that is, the polynomial basis is random and the
numerical coefficients are deterministic, obtained from the
data. This property made the metamodel construction easier.

In this context, consider a finite-variance computational
model M : DX ⊂ RM 7→ R, which receives and input a
M−dimensional vector X = (X1, · · · , XM ) ∈ RM with a
given probability density function (PDF) fX defined on the
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support Dx, and returns as output the scalar quantity of
interest Y =M(X) ∈ R, such as illustrated in Figure 2.

computational
modelinput output

Figure 2. Computational model under uncertainty.

According to Marelli and Sudret (2015), the Polynomial
Chaos Expansion ofM(X) is given by

Y =M(X) ≈MPC(X) =
∑
α∈A

yαΨα(X), (6)

where A ⊂ NM is a subset of the polynomial indexes,
Ψα(X) is a family of orthonormal polynomials with respect
to fX , and yα are real-valued deterministic coefficients to be
determined.

The appropriate family of polynomials is chosen
according to the probability distributions of the input
variables (Xiu 2010; Ghanem et al. 2017). One of the
significant advantages seen in using the PCE is its rapid
convergence and expressing the final solution as a random
process and not just as a set of statistics.

The Kriging method, also known as Gaussian Process
Regression (GPR), is a non-parametric Bayesian approach
that has the advantages of working on small data sets
and providing measurements that consider the predictions’
uncertainties. A Kriging model is called ordinary Kriging
when the trend is a single parameter with an unknown value.
When the trend is a sum of functions, it is called universal
Kriging.

The combination of the Polynomial Chaos Expansion
(PCE) and Kriging methods results in the method called
Polynomial Chaos-Kriging (PC-Kriging). This combination
results in technique metamodeling more accurately than the
PCE and Kriging separately. The PC-Kriging uses the PCE
type regression to capture the computational model’s global
behavior and the interpolation type Kriging to capture the
variations. The PC-Kriging is considered a universal Kriging
technique that obtains the trend from a set of orthonormal
polynomials (Schöbi et al. 2014). One of PC-Kriging’s main
advantages is the ease in building the model and the low
computational cost; however, PC-Kriging may not perform
well on high-dimensional problems.

The construction of the metamodel by PC-Kriging
consists of two stages: (i) the determination of a set of
polynomials that defines the trend and (ii) the determination
of the ideal correlation parameters and the trend parameters.
The polynomials that define the trend are calculated using
the PCE by employing the Least Angle Regression (LARS)
algorithm. The trend parameters and correlation parts are
calculated as in the universal Kriging algorithm by solving
the log-likelihood function’s maximization using a gradient-
based optimization algorithm. These two steps are processed
in series, as the set of polynomials can be determined
independently of Kriging’s settings (Schöbi et al. 2015,
2016; Kersaudy et al. 2015; Schöbi et al. 2017).

The idea of applying PC-Kriging in the damage
quantification level is to employ a metamodel to capture

the trend between the local damage index and damage size,
which has been observed by Garcı́a and Tcherniak (2019).
The local damage index is used as input, and the damage
size is used as output for the construction of a PC-Kriging
model. The PC-Kriging can be described as

S ∼=
∑
α∈A

yαΨα(Di) + σ2Z(Di, ω), (7)

where Di ∈ R is the local damage index with a given
Probability Density Function (PDF) fX , S is the damage
size, with S ∈ R. The

∑
α∈A yαΨα(Di) is a weighted sum

of orthonormal polynomials that describes the PC-Kriging
model trend, where Ψα(Di) are orthonormal polynomials
in relation to fX , α ∈ A are the indices and yα are the
corresponding coefficients; σ2 is the variance of the process,
and Z((Di), ω) is a Gaussian random process with zero
mean. ω describes outcomes of the underlying probability
space with a correlation familyR and its hyperparameters θ.
That is, the correlation function R = R(x, x′, θ) describes
the correlation between two samples of the input space.
For example, x and x′ depends on the hyperparameters θ
(Lataniotis et al. 2015). The PC-Kriging can be interpreted
as a universal model of Kriging with a specific trend.

The PC-Kriging algorithm can be done in two ways:
sequential and optimal. In sequential PC-Kriging (SPCK),
the set of polynomials and the Kriging metamodel are
determined sequentially. First, the ideal set of polynomials
is determined by the PCE based on LARS. Every set of
polynomials is incorporated into the PC-Kriging equation,
and then the PC-Kriging metamodel is calibrated as a usual
Kriging model, including the calculation of the coefficients
yα. In the optimal PC-Kriging (OPCK), the model is
obtained iteratively. As in SPCK, the ideal set of polynomials
is determined by LARS. The LARS algorithm results in
a dispersion of the set of polynomials classified according
to their correlation with the current residual in each LARS
iteration (in decreasing order). Each polynomial is then
added individually to the trend of a PC-Kriging model. In
each iteration, a new PC-Kriging model is calibrated. At the
end of this process, the PC-Kriging models are compared
using their leave-one-out (LOO) error estimators. The PC-
Kriging metamodel optimal is chosen according to the one
that minimizes the LOO error (Schöbi et al. 2017). The LOO
error can be defined as (Schöbi et al. 2015)

εLOO =
1

N

N∑
i=1

(
Y(i) − µŷ,(−i)(X (i))

)2
, (8)

where µŷ,(−i)(X (i)) is the prediction mean µŷ of sample
X (i) by a Kriging metamodel based on the experimental
design X (−i) = X\X (i) and Y = {Y(i), i = 1, · · · , N} is
the exact model response.

In Schöbi et al. (2015), the performances of the Kriging,
PCE, SPCK, and OPCK methods, in terms of generalization
of relative error in the analytical reference functions, are
compared. The results showed that PC-Kriging is better
than, or at least as good as, Kriging and PCE methods
separately for small experimental projects. Moreover, it was
concluded that OPCK is preferable to SPCK because it
reduces the number of polynomials in the regression part
and, therefore, reduces the metamodel’s complexity. Based
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on this conclusion, the OPCK algorithm was employed in
this work.

The implementation of the PC-Kriging algorithms was
performed using the UQLab*, which is a MATLAB-
based software framework designed to bring uncertainty
quantification (UQ) techniques and algorithms to a broad
audience. The UQLab offers an extensive list of algorithms
for UQ, including the PC-Kriging method (Marelli and
Sudret 2014).

Experimental Application
The data set used in the experimental application proposed
in this work belongs to Bruel & Kjaer. This data set has been
explored recently to validate different methodologies (Garcı́a
and Tcherniak 2019; Ulriksen et al. 2016; Hernandez Crespo
2016). A brief description of the experimental setup will be
provided below. A detailed description of the experimental
setup can be found in Nielsen et al. (2010).

The experimental application of the methodology pro-
posed was performed in the SSP 34 m wind turbine blade.
The blade was manufactured by SSP-Technology A/S, and
the experiments were performed on a test rig at the Wind
Energy department, the Technical University of Denmark.
The blade of the wind turbine and the experiment’s facilities
can be seen in Figure 3(b).

The blade was instrumented with 20 triaxial accelerom-
eters, model Bruel & Kjaer Type 4524-B, positioned as
represented in the scheme in Figure 3(a). Ten accelerom-
eters were placed in the trailing edge (TE) and ten in the
leading edge (LE). In the experiment, acceleration signals
were collected for the blade’s impact response under healthy
and progressive damaged conditions. Figure 3(c) show the
electromechanical actuator used to generate the impact in
the structure, and it was placed on the surface outside of the
blade at the position indicated in Figure 3(a). In total, 386
signals were collected for seven structural health conditions
simulated, being a healthy condition, and six with damage
(see Table 1).

Condition Damage Size Number of Signals

H - 53
D20 20 cm 70
D40 40 cm 61
D60 60 cm 60
D80 80 cm 49

D100 100 cm 54
D120 120 cm 39

Total 386
Table 1. Number of signals measured on each experimental
test (Garcı́a and Tcherniak 2019).

One of the main types of damage in wind turbine blades
is the adhesive joint debonding (Montesano et al. 2016).
This type of damage occurs when an adhesive bond between
the laminates of the pressure and suction sides of the blade
breaks can happen on both leading and trailing edges. Small
debonding size can grow up to a level at which repair is
impossible, and the entire blade should be replaced (Garcı́a
and Tcherniak 2019). First, a series of holes through the

adhesive between the blade’s pressure and suction sides were
drilled. Then, using a saw and a chisel, the holes were
merged, forming an opening that was gradually extended
from 20 cm up to 120 cm by increments of 20 cm. The
debonded parts were connected by bolts, placed at 10
cm intervals. The healthy condition was then simulated
by tightening all the bolts, and the progressive damaged
conditions were reproduced by loosening some bolts. The
number of loosened bolts defined the damage size. The
location of the damage can be seen in Figure 3(a). More
details about the experiment can be found in Garcı́a and
Tcherniak (2019).

Results and Discussions
This section presents the results of the damage detection and
the quantification of the area of the trailing edge debonding.
To obtain the results is used the software MATLAB. For
damage quantification results is used the toolbox UQLab. It
is used to estimate the trailing edge debonding size, using the
damage index and optimizing the PC-Kriging model.

Damage detection
The methodology for damage detection described previously
is applied in the dataset of SSP 34 m wind turbine blade.
The data set provides acceleration signals collected from
sensors placed in the trailing and leading edges. In Garcı́a
and Tcherniak (2019), the authors defined the parameters
chosen for the best methodology performance, which are
employed in this work. In the creation of the reference
state, it is considered a M = 10 signal vector realizations
with a sliding window size of W = 10. The feature vector
dimension is set to p = 5. The baseline matrix construction is
performed using s = 26 feature vectors of dimension p = 5
extracted from healthy condition signals. In the inspection
phase, the risk of false alarm probability is set to α = 0.01 in
the lognormal density function. A detailed discussion of each
one of these parameters on the methodology performance
can be found in Garcı́a and Tcherniak (2019).

Figure 4 shows the damage index by damage size
obtained, considering the accelerometers in the TE to the
actuator’s position. Figure 5 shows the damage index by
damage size obtained, considering the accelerometers in the
LE. It can be seen that the accelerometers along the TE
detected the damage better than the accelerometers along
with the LE.

The damage detection results present three scenarios: i)
Damage indexes can detect and track the severity of the
damage. This case can be seen in Figure 4, in sensors 2
and 4; ii) The damage is not well detected, as it has many
false negatives. However, as the damage increases, there
is a tendency for the damage indexes, so the damage’s
progression is somehow detected. In this case, there is a time-
dependent feature for damage detection. This can be seen
in Figure 4, in sensors 1, 3 and 8, and Figure 5 in sensors
4 and 5; iii) A final scenario is when the damage indexes
cannot detect the damage or track its progress. In Figure 4,
this can be seen in sensors 6 and 9 and Figure 5, in almost

∗https://www.uqlab.com/
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(a) Accelerometers, damage and actuator locations scheme.

(b) test rig set-up. (c) Electromechanical actuator.

Figure 3. Experimental setup of the SSP 34 meters wind turbine blade manufactured by SSP-Technology A/S. The blade was
instrumented with 10 accelerometers along the leading edge (LE) and 10 along the trailing edge (TE) and was excited by an
electromechanical actuator. The debonding damage was introduced into the blade (Garcı́a and Tcherniak 2019).

Figure 4. Damage index (Di) by damage size (S) for accelerometers in the trailing edge (TE). The damage index in the healthy
( ) and damaged (x) conditions The dashed line ( ) corresponds to the threshold defined by a risk of false alarm probability
equal set to α = 0.01.
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Figure 5. Damage index (Di) by damage size (S) for accelerometers in the leading edge (LE). The damage index in the healthy
( ) and damaged (x) conditions The dashed line ( ) corresponds to the threshold defined by a risk of false alarm probability
equal set to α = 0.01.

all sensors. These results of damage detection influence the
results of damage quantification because damage indexes are
used.

Damage quantification
The damage quantification methodology used is based on
the construction of a PC-Kriging metamodel, which obtains
the trailing edge debonding size as a function of the local
damage index. The local damage index is used as input for
building a PC-Kriging metamodel. In the model training
stage, the following conditions’ local damage index is
considered: H, D40, D80, D100, and D120. The damaged
conditions D20 and D60 are used in the test steps to validate
the prediction of damage quantification using metamodel.

In the first stage of the PC-Kriging metamodel construc-
tion, the polynomials set that define the trend through the
PCE are defined using the LARS algorithm. In the second
stage, the ideal correlation parameters and the tendency
parameters are calculated the same way they are calculated
in the universal Kriging algorithm.

For this work results, an optimal PC-Kriging approach
is used; that is, the metamodel is obtained iteratively, and
the one chosen is the one that minimized the leave-one-
out (LOO) error. The optimal PC-Kriging is chosen because
it already has better performance in the literature than the
sequential PC-Kriging (Schöbi et al. 2015). Figure 6 shows a
schematic representation of the Optimal Polynomial Chaos-
Kriging algorithm. The damage index is always positive, so
in the PCE settings, the distribution used is lognormal, and
the moments of the PCE settings are the mean and standard
deviation of the training data. In the Kriging configuration, a
correlation function based on an exponential and ellipsoidal
family is used to optimize the maximum likelihood estimate

performed by a gradient method to define the GPR model
(Lataniotis et al. 2015). The trained models represent a mean
and 95% confidence interval of the predicted distribution.
Figure 7 attests to the severity, that is, the size of the trailing
edge debonding as a function of the damage index obtained
by the PC-Kriging method for the sensors in the TE, and
Figure 8 present the results for each sensor in the LE.

Figures 7 and 8 show that most of the damage indexes
used in the training and test stages are within the region of
the confidence interval, inferring an adequate selection of
the training parameters. It is also noted that the PC-Kriging
model captured the damage index trend adequately well.

The Root Mean Squared Error (RMSE) metric is chosen
to validate the model prediction for test conditions D20
and D60. This metric is frequently used measure of the
differences between values estimated by a model or an
estimator and the values measured. The RMSE in this work
can be defined as

RMSE =

√√√√ n∑
i=1

(Sest − Smea)
2

n
, (9)

where Sest are estimated values for the quantification of the

debonding area, Smea are measured values of the debonding
area and n is number of observations. The validations of the
PC-Kriging model prediction for the test conditions in the TE
and LE are presented in Figures 9 and 10. Ideally, the points
would concentrate on the diagonal line, as this is where the
estimated damage size coincides with the measured damage
size. Table 2 presents the RMSE values and the mean of the
estimated value for the test conditions (D20 and D60) for
each sensor in the TE and LE.

Prepared using sagej.cls



Pavlack et al. 9

Damage indexPCE Universal Kriging

Input distribution Autocorrelation function
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LARS (iteration 1) LARS (iteration 2) LARS (iteration p)

.. .

PC-Kriging metamodel
Quantification of the 

debonding area in 
large wind turbine 

blades

Figure 6. Schematic representation of the Optimal Polynomial Chaos - Kriging algorithm.

Table 2. Value of the root-mean-square error (RMSE) and relative error of the test conditions (D20 and D60) for each sensor along
TE and LE by the PC-Kriging metamodel. The sensors that have detected the damage better have the values shown in blue.

Sensor 1 2 3 4 5 6 7 8 9 10

TE
RMSE 16.8 10.0 11.4 5.83 31.1 32.0 30.6 16.4 33.6 38.5

D20: Mean est. damage[cm] 25.81 15.58 3.31 13.99 23.31 49.04 22.89 25.14 50.40 57.52
D60: Mean est. damage[cm] 36.77 47.95 52.25 63.54 15.78 56.23 17.86 72.04 71.38 83.89

LE
RMSE 34.3 32.3 32.3 28.5 26.5 38.5 35.5 32.9 36.1 32.4

D20: Mean est. damage[cm] 56.40 52.14 44.43 50.69 28.47 58.38 52.94 55.69 55.33 62.37
D60: Mean est. damage[cm] 46.99 72.16 59.80 52.44 56.62 78.79 74.91 60.41 82.85 64.50

The sensors located in the TE also had a better
performance for the quantification of the damage. The results
show that the location of the sensor in the TE and LE
influences the results. The sensors that fall under scenarios
i) and ii) referred to in damage detection are the ones that
present the best results. In TE, sensors 1, 2, 3, 4, and 8 had the
best results. Sensor 10 had the worst result in the TE, which
did not detect the damage well. The results of the LE sensors
were not good, with sensors 4 and 5 that best quantified the
damage, and these sensors were the ones that detected a trend
in the progression of damage. The metamodel obtained by
PC-Kriging presents promising results for the quantification
of the damage to the DIs that present good detection of the
damage or capture the damage progression trend.

Conclusions

This work approached the debonding area’s quantification
due to the debonding in wind turbine blades, using a new
methodology considering the uncertainties and interpolation
through a metamodel obtained by the Polynomial Chaos-
Kriging (PC-Kriging) method. The metamodel obtained
relates the damage indexes to trailing edge debonding. To
obtain the damage indexes, the methodology presented in

Garcı́a and Tcherniak (2019) was used. This methodology
was applied to an SSP 34 m wind turbine blade, instrumented
with one actuator, ten accelerometers in the trailing edge
(TE), and ten in the leading edge (LE). It is observed that the
accelerometers located in the TE detected the damage better
than those located in the LE. The excellent performance of
accelerometer 4 in the TE stands out, it is located close
to the damage and far from the actuator. It is also noted
that the damage introduced is located in the TE, where the
accelerometers obtained more favorable results.

The PC-Kriging method was used to obtain a metamodel
that relates the damage index with severity to quantify the
trailing edge debonding. A trend curve was obtained for
this relationship, considering a 95% confidence interval.
The PCE method captures the computational model’s global
behavior, while the Kriging method, of the interpolation type,
captures local variations. For this reason, PC-Kriging, which
is the combination of the two methods, presents itself as a
more robust method for obtaining metamodels.

In this study, the quantification of the damage using
the PC-Kriging showed better TE’s accelerometers’ per-
formances, highlighting the TE’s accelerometer 4. With
that, it can be concluded that the accelerometers that bet-
ter detected the damage obtained better damage indexes,
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Figure 7. Damage severity (S) by the damage index (Di) for accelerometers 1 to 10 on the trailing edge (TE). The metamodel
was trained using five conditions ( ) and tested with two conditions (x). The bold line ( ) corresponds to the trend mean and the
gray-colored region ( ) to the 95 % of confidence interval.
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Figure 8. Damage severity (S) by the damage index (Di) for accelerometers 1 to 10 on the leading edge (LE). The metamodel
was trained using five conditions ( ) and tested with two conditions (x). The bold line ( ) corresponds to the trend mean and the
gray-colored region ( ) to the 95 % of confidence interval.
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Figure 9. Validation of the estimated damage size using the PC-Kriging metamodel by the actual damage size for each sensor in
the TE and test condition. The estimated damage size for all damage indexes ( ) and the mean of estimated damage size ( ) for
each test condition.
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Figure 10. Validation of the estimated damage size using the PC-Kriging metamodel by the actual damage size for each sensor in
the LE and test condition. The estimated damage size for all damage indexes ( ) and the mean of estimated damage size ( ) for
each test condition.

and consequently resulted in a good performance for the
quantification. It is also observed that the location of the
accelerometers influences the results. The PC-Kriging trend
curve, in general, managed to capture a monotonic increase
in damage indexes, showing promising results for quantifi-
cation. The advantages observed in the use of PC-Kriging
were its simplicity and ease in constructing the metamodel
since the toolbox UQLab is available, which allows an easy
implementation of the method. It is also observed the low
computational cost to obtain the results.

This study presents a contribution to the data-driven SHM
methodology regarding the quantification of damages in
mechanical structures, as it addresses the use of a method
that is not yet widely explored in this area. This study
collaborates with the development of research in damage
quantification so that better results are always obtained, and
thus, it is possible to apply in the industrial context and
contribute to society.
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Da Silva S, Paixão J, Rébillat M and Mechbal N (2019)
Data-driven autoregressive model identification for structural
health monitoring in anisotropic composite plates. In:
Ayech Benjeddou NM and Deü JF (eds.) IX ECCOMAS
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