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SUMMARY

The differential effective medium (DEM) theory studied in this article describes elastic

moduli of a fractured medium with help of differential equations, where crack density

is the independent variable and fluid saturation is a parameter. The effective medium

is isotropic for randomly oriented flat ellipsoidal cracks and thus fully characterized by

two elastic constants. In this article we derive an analytical solution of the equation for

Poisson’s ratio and we transform the differential equation for Young’s modulus into a non-

linear algebraic equation. Fluid saturation and crack density can then be determined from

measured wave propagation velocities by a simple algorithm. We also derive approximate

solutions for elastic moduli as a function of crack density and saturation, which allows to

quantify the uncertainty of the result due to measurement errors. The DEM theory leads

to higher crack densities than the self-consistent (SC) method and to lower crack densities

than the non-interacting (NI) theory for measured elastic moduli, while all three methods

give similar fluid saturation fractions. As an example of application of our theoretical

results, we study weathered granite in the Strengbach water catchment in the Vosges

mountains in France. We have performed full waveform sonic logging measurements
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in an 86 m deep borehole located at an altitude of 1130 m above sea level, which is

used for hydro-geophysical and geochemical studies of a granitic aquifer. The logging

data allows us to investigate P and S waves in the depth range between 40 and 80 m.

The P and S wave propagation velocities take average values of 5.0 km/s and 2.7 km/s,

respectively, with the highest values of 5.8 km/s and 3.2 km/s at 75–80 m depth. From

these velocities we obtain a water saturation of 75± 25 %. The crack density describes the

degree of weathering of the granite, which generally decreases with depth, but takes high

values near layers of strongly weathered granite. Crack density is on average 0.5, with

the highest value of 1.0 at 65 m and the lowest value of 0.2 at 75 m depth. The analysis

of the full waveform logging data by the DEM method supports results from previous

geochemical and hydrological studies in the Strengbach catchment which concluded that

water is stored in deeper layers of the granitic aquifer.

Key words: Acoustic properties; Body waves; Downhole methods; Hydrogeophysics;

Wave propagation.

Introduction

The effect of a stress field on a single crack in a 3D elastic medium was first investigated by Sack

(1946), Sneddon (1946), Segedin (1951) and Eshelby (1957) who calculated the change in elastic

strain energy. The presence of many small cracks reduces the elastic moduli of a material and cor-

respondingly the velocities of compressional and shear waves which propagate through the cracked

medium. In fracture mechanics and geophysics ’static’ effective medium theories for inclusions and

cracks were developed for example by Bristow (1960); Walsh (1965); Salganik (1973); O’Connell

& Budiansky (1974); Budiansky & O’Connell (1976); Bruner (1976); Kachanov (1980); Henyey &

Pomphrey (1982); Kemeny & Cook (1986). Scattering theory was used to obtain ’dynamic’ effective

moduli (Chatterjee & Knopoff 1978; Hudson 1980). The wavelength is supposed to be large com-

pared to crack size and crack spacing, so that the resulting fractured medium can be described as a

homogeneous effective medium. Another fracture model is based on parallel slip interfaces (Schoen-

berg & Douma 1988).

Elastic moduli as a function of crack density differ considerably between effective medium theo-

ries, even for methods which are based on the same single crack model. For the ’self-consistent’ (SC)

method of O’Connell & Budiansky (1974) and Budiansky & O’Connell (1976) the elastic moduli
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Application of the elastic differential effective medium theory 3

become zero at a finite crack density. Bruner (1976) and Henyey & Pomphrey (1982) have em-

phasized that the potential energy should be calculated by an incremental way. For this ’differential

effective medium’ (DEM) method or ’differential self-consistent’ method the elastic moduli are zero

only at infinite crack density. This is also the case for Kachanov’s ’non-interacting’ (NI) crack the-

ory (Kachanov 1980, 1992). The figures in Sayers & Kachanov (1991) show that for small crack

densities the DEM method leads to static moduli which are close to the dynamic moduli obtained by

Hudson (1980) with scattering theory. The DEM moduli remain bounded for high crack density when

the solution by second order scattering theory diverges and thus fails. Computer simulations were per-

formed with Finite Element and Finite Difference methods to simulate wave propagation in 2D and

3D cracked media. Seismic velocities of these simulations were then compared to effective medium

theories and often the numerical results were explained best by the DEM theory (Dahm & Becker

1998; Saenger & Shapiro 2002; Saenger, Krüger & Shapiro 2004; Vasylevskyi, Drach & Tsukrov

2018). DEM results for Young’s modulus are close to the result obtained by the effective field method

of Levin et al. (2004) for a 2D crack problem (see also Kanaun & Levin (2008)). Berryman, Pride &

Wang (2002) calculated approximate solutions to the coupled DEM equations for the shear and the

bulk modulus.

The DEM, SC and NI crack theories were applied to various problems in seismology, rock physics

and near surface geophysics. O’Connell & Budiansky (1974) developed the SC crack theory and used

it to interpret observed seismic velocity variations before the 1971 San Fernando earthquake in terms

of changes in crack density and saturation. Zhao & Mizuno (1999) and Mishra & Zhao (2003) esti-

mated crack density and saturation rate in the Kobe and Bhuj earthquake areas from seismic velocities

obtained by travel time tomography. Bressan et al. (2016) did the same for the Friuli region and com-

pared the resulting saturation and crack density maps with seismicity. Popp & Kern (1994) compared

modeled velocities of low-porosity crystalline rocks with ultrasound experiments on samples from the

deep drilling site KTB in Germany. Reuschlé et al. (2003) used Kachanov’s NI theory to model ul-

trasound P-wave velocities in thermally cracked granite. Adelinet et al. (2011a) calculated dry elastic

moduli for Biot-Frenkel-Gassmann’s poroelastic theory with the goal to characterize the fluid state

of the Earth’s crust beneath Iceland. Holbrook et al. (2019) used the DEM theory to model fracture

density of weathered granitic gneiss in the Appalachian Mountains. We follow their approach in our

application example, but first we derive a solution to the DEM equations for the inverse problem. Our

theoretical results simplify the application of the DEM to measured data for estimating crack density

and fluid saturation fraction.

We consider the model of an isotropic elastic background medium with two sets of isolated flat

ellipsoidal cracks which are randomly oriented, one set of cracks is completely saturated with an
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incompressible fluid (wet cracks) while the other cracks are empty (dry cracks). The non-linear differ-

ential equation for Poisson’s ratio decouples and can be solved in closed form for crack density. We

obtain an algebraic equation for Young’s modulus which depends on fluid saturation fraction. We also

derive approximate solutions for the elastic moduli as a function of crack density and fluid saturation.

These equations can be used for modeling instead of the differential equations and they show how

measurement errors influence the accuracy of the obtained results.

We apply the theoretical method to experimental data from full waveform sonic logging measure-

ments. We recorded the borehole data in the Strengbach water catchment area in the Vosges mountains

in Alsace (France). P and S wave velocities are converted to crack density and water saturation. As a

result we quantify the degree of weathering of the granite in the borehole between 40 and 80 m depth.

Solution of the elastic DEM equations

Solution for ε and E(ξ), µ(ξ), K(ξ)

Bruner (1976) derived the following differential equations for Poisson’s ratio ν and Young’s modulus

E with crack density ε as the independent variable:

dν

dε
= −16

45

1− ν2

2− ν

[
(1− ξ)(2 + 5ν − 3ν2)− 2(1− 2ν)

]
, (1)

1

E

dE

dε
= −16

45

1− ν2

2− ν
[3(1− ξ)(2− ν) + 4] . (2)

For N flat ellipsoidal cracks in a volume V the crack density is defined by ε = N
V 〈a

3〉 where a is

the larger half-axis of the ellipsoid. The brackets denote an average over different crack sizes. The

cracks are randomly oriented, so that the effective medium is isotropic and fully described by two

elastic moduli. The parameter ξ, where 0 ≤ ξ ≤ 1, denotes the fraction of (wet) cracks saturated by

an incompressible fluid, while 1 − ξ is the fraction of unsaturated (dry) cracks. Salganik (1973) has

derived these differential equations first for the special case of dry cracks (ξ = 0). Equations 1 and 2

can be solved numerically with initial values ν(ε = 0) ≡ ν0 and E(ε = 0) ≡ E0 for an unfractured

medium. An exact solution in closed form can be calculated for the case that all cracks are saturated,

ξ = 1 (appendix A).

The crack density ε does not appear explicitly on the right hand side (rhs) of eq. 1 for the Poisson’s

ratio, so that this non-linear equation decouples and can be solved by separation of variables (Courant

& John 1974). The details are given in appendix B.

ε(ξ, ν0, ν) = 45
64

1
3−2ξ ln 1−ν

1−ν0 + 45
64

1
2−ξ ln 1+ν

1+ν0
− 45

128
5−3ξ

(2−ξ)(3−2ξ) ln 3(1−ξ)ν2−(9−5ξ)ν+2ξ
3(1−ξ)ν20−(9−5ξ)ν0+2ξ

+ 45
128

(9−5ξ)(7−5ξ)−4(1−ξ)(3−ξ)
(2−ξ)(3−2ξ)w(ξ) ln 6(1−ξ)νν0−(9−5ξ)(ν+ν0)+w(ξ)(ν−ν0)+4ξ

6(1−ξ)νν0−(9−5ξ)(ν+ν0)−w(ξ)(ν−ν0)+4ξ , (3)
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Application of the elastic differential effective medium theory 5

where

w(ξ) =
√

(9− 5ξ)2 − 24ξ(1− ξ). (4)

By substituting dν
dε of eq. 1 in the rhs of eq. 2 crack density is eliminated from the equations. We obtain

the following algebraic equation for Young’s modulus as a function of saturation ξ (appendix B):

E

E0
(ξ, ν0, ν) =

[
9− 5ξ + w(ξ)− 6(1− ξ)ν
9− 5ξ + w(ξ)− 6(1− ξ)ν0

]w(ξ)−11+7ξ
2w(ξ)

[
9− 5ξ − w(ξ)− 6(1− ξ)ν
9− 5ξ − w(ξ)− 6(1− ξ)ν0

]w(ξ)+11−7ξ
2w(ξ)

.(5)

Instead of the differential equations 1 and 2 we now have the more simple equations 3 and 5; see also

Case (1984), Zimmerman (1985) and Hashin (1988) for the special case of dry cracks (ξ = 0).

Suppose we measure the elastic constants ν0, E0 of the unfractured medium and ν,E of the fractured

medium and we want to determine crack density ε and saturation ξ. The saturation is obtained from eq.

5 by 1D numerical root searching and the crack density is then given directly by eq. 3. We demonstrate

in appendix B that there is a unique solution for ξ which fulfills eq. 5.

Differential equations for the shear modulus µ and the bulk modulusK can be easily derived from

eqs. 1 and 2 by differentiating the standard relations between elastic moduli for isotropic media:

1

µ

dµ

dε
= −32

45

1− ν
2− ν

[3 + (1− ξ)(2− ν)] , (6)

1

K

dK

dε
= −16

9
(1− ξ) 1− ν2

1− 2ν
. (7)

If we use dν
dε to eliminate crack density from eq. 6 or 7 then we obtain the same rhs as in eq. 5 and as a

multiplicative factor the usual functions of Poisson’s ratio which transform elastic moduli from E to

µ and from E to K.

A differential equation for the Lamé parameter λ does not have the same simple form. Henyey &

Pomphrey (1982) derived that equation for the limiting cases of fully saturated (ξ = 1) and dry

(ξ = 0) cracks.

Solution for approximated ε and ν

The Poisson’s ratio ν(ε) is required on the rhs of eqs. 2, 6 and 7 to obtain a solution for the elastic

moduli as a function of crack density. Since eq. 3 cannot be solved explicitly for ν, we look for an

approximation and follow Bruner (1976) who noticed that 1−ν2
2−ν varies by less than 7% in the interval

0 ≤ ν < 1
2 . We approximate the factor by 1

2 to obtain the following equation:

dν

dε
= − 8

45

[
(1− ξ)(2 + 5ν − 3ν2)− 2(1− 2ν)

]
. (8)

This Riccati equation can be solved with a variable transformation (Ince 1926):

ν(ε, ξ, ν0) =
[4ξ − ν0(9− 5ξ)]

(
1− e−

8
45
w(ξ)ε

)
+ ν0w(ξ)

(
1 + e−

8
45
w(ξ)ε

)
[9− 5ξ − ν06(1− ξ)]

(
1− e−

8
45
w(ξ)ε

)
+ w(ξ)

(
1 + e−

8
45
w(ξ)ε

) , (9)
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6 M. Zillmer, B.M. Kashtan, F. Doukoure and J.-M. Marthelot

where w(ξ) is given by eq. 4.

We can solve eq. 9 for ε(ν) or eq. 8 by separation of variables which leads to:

ε(ξ, ν, ν0) =
45

8w(ξ)
ln

6(1− ξ)νν0 − (9− 5ξ)(ν + ν0) + w(ξ)(ν − ν0) + 4ξ

6(1− ξ)νν0 − (9− 5ξ)(ν + ν0)− w(ξ)(ν − ν0) + 4ξ
. (10)

Eq. 10 has the form of the fourth term of eq. 3 with a slightly different coefficient.

Substituting eq. 9 on the rhs of eqs. 2, 6 and 7 does not lead to a solution by elementary integrals.

Therefore we further approximate the differential equation 8 by neglecting the term proportional to ν2

on the rhs:

dν

dε
=

8

45
[2ξ − (9− 5ξ)ν] . (11)

The solution of this equation is given by

ε(ξ, ν, ν0) =
45

8(9− 5ξ)
ln

2ξ − (9− 5ξ)ν0
2ξ − (9− 5ξ)ν

, (12)

ν(ε, ξ, ν0) =
2ξ − [2ξ − ν0(9− 5ξ)] e−

8
45

(9−5ξ)ε

9− 5ξ
. (13)

Note that neglecting the term proportional to νν0 on the rhs of eq. 10 and approximating w ≈ 9− 5ξ

also leads to eq. 12. By using w ≈ 9− 5ξ, eq. 9 takes a similar form as eq. 13 with an additional term

in the denominator.

Fig. 1 shows Poisson’s ratio ν(ε) as a function of crack density.

The 1D root searching solution of eq. 3 is to numerical precision identical to the solution of the

differential equation 1 by a Runge-Kutta method. The two approximations of ν(ε), eqs. 9 and 13,

work very well in the interval 0 ≤ ν, ν0 <
1
2 . The formulas also work for a certain range of negative

Poisson’s ratios but this is not important for geophysical applications.

Solution for approximated E, µ and K

If we substitute ν(ε) of eq. 13 on the rhs of eq. 2 and use the method of separation of variables, then

we obtain elementary integrals with exponential functions in the integrand, which can be solved in

closed form (Gradstein & Ryshik 1981). This leads to the following approximate solutions, where the

moduli are functions of crack density ε and fluid saturation ξ. They also depend on the Poisson’s ratio

ν0 of the unfractured medium.

ln
E

E0
(ε, ξ, ν0) ≈ −16

45

[
2(9−5ξ)
3(3−2ξ) + 3(1− ξ)

] [
1−

(
2ξ

9−5ξ

)2]
ε

+ 8y0
(9−5ξ)2

[
1− 3ξ(1−ξ)

9−5ξ

] [
1− e−

8
45

(9−5ξ)ε
]

+
3(1−ξ)y20
(9−5ξ)3

[
1− e−

16
45

(9−5ξ)ε
]

+ 4
3−2ξ ln 6(3−2ξ)+y0e−

8
45 (9−5ξ)ε

(9−5ξ)(2−ν0) , (14)

ln
µ

µ0
(ε, ξ, ν0) ≈ −16

45
9−7ξ
3−2ξ ε− (1− ξ)3245

9−7ξ
9−5ξ ε
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Application of the elastic differential effective medium theory 7

−4(1−ξ)y0
(9−5ξ)2

[
1− e−

8
45

(9−5ξ)ε
]

+ 2
3−2ξ ln 6(3−2ξ)+y0e−

8
45 (9−5ξ)ε

(9−5ξ)(2−ν0) , (15)

ln
K

K0
(ε, ξ, ν0) ≈ −16

27
(9−7ξ)(3−ξ)

9−5ξ ε+ 5(1−ξ)y0
(9−5ξ)2

[
1− e−

8
45

(9−5ξ)ε
]

+5
6 ln (9−5ξ)(1−2ν0)

9(1−ξ)+2y0e
− 8

45 (9−5ξ)ε
, (16)

where

y0 = 2ξ − ν0(9− 5ξ). (17)

Fig. 2 shows that the approximations for E, µ and K, eqs. 14–16, work very well compared to the

numerical solution of the differential equations with a Runge-Kutta method.

For the P -wave modulus we can use

K + 4
3µ

K0 + 4
3µ0

=
1

3

1 + ν0
1− ν0

K

K0
+

2

3

1− 2ν0
1− ν0

µ

µ0
(18)

with µ
µ0

and K
K0

from eqs. 15 and 16.

The first term of a Taylor series in crack density ε gives the same result for µ and for K + 4
3µ as

Hudson’s scattering theory for two sets of randomly oriented cracks, a set of dry cracks which occupies

the volume fraction ξ and a set of wet cracks with volume fraction 1−ξ (Hudson 1980, 1981; Hudson

& Knopoff 1989). The second order terms are not identical. For dry cracks and small crack density our

approximation is also the same as Bristow’s results (Bristow 1960) except for the missing denominator

in Bristow’s formula for µ; the correct result was published by Laws & Brockenbrough (1987).

Elastic wave propagation velocities

Since flat cracks occupy little volume, we neglect the change in bulk density. Then we obtain the

reduction of the P - and S-wave velocities vp and vs caused by the cracks from the following equations:

vs
vs0
≈
√
µ

µ0
,

vp
vp0
≈

√√√√ K + 4
3µ

K0 + 4
3µ0

, (19)

where vp0 and vs0 are the velocities of the waves in the unfractured isotropic medium.

Fig. 3 illustrates this relation between the velocity reductions and crack density and saturation. With

measurement errors in vp and vs it might be difficult to distinguish up to ca. 50 % saturation from

dry cracks. We see also that it is more difficult to determine saturation ξ with high precision, if the

Poisson’s ratio ν0 of the unfractured medium is small.

A second approximation for the elastic moduli

The results of the numerical experiment in Fig. 2 show that Young’s modulus is rather independant

of ν0, which is not the case for the shear modulus µ and the bulk modulus K. This is caused by the
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8 M. Zillmer, B.M. Kashtan, F. Doukoure and J.-M. Marthelot

fact that the third term in eq. 14 is small and the second and fourth terms nearly cancel each other. We

write eq. 2 as

1

E

dE

dε
= −16

45

[
3(1− ξ)(1− ν2) + 4

1− ν2

2− ν

]
, (20)

and approximate 1− ν2 ≈ 1 and 1−ν2
2−ν ≈

1
2 . Then we obtain the following solution for E which does

not depend on ν0:

ln
E

E0
≈ −16

45
(5− 3ξ)ε. (21)

This is a simplification of the first term in eq. 14.

Sevostianov & Kachanov (2019) mentioned that for dry cracks Young’s modulus depends only slightly

on ν0. Their approximate formula for E can also be obtained from eq. 14.

Since the cracked medium is isotropic, only two elastic moduli are independent. We use eqs. 21 for E

and eq. 13 for ν together with the standard relations between elastic moduli for isotropic media. We

obtain

µ

µ0
≈ (1 + ν0)(9− 5ξ)e−

16
45

(5−3ξ)ε

3(3− ξ)− [2ξ − ν0(9− 5ξ)] e−
8
45

(9−5ξ)ε
, (22)

K

K0
≈ (1− 2ν0)(9− 5ξ)e−

16
45

(5−3ξ)ε

9(1− ξ) + 2 [2ξ − ν0(9− 5ξ)] e−
8
45

(9−5ξ)ε
, (23)

and

K + 4
3µ

K0 + 4
3µ0
≈ µ

µ0

1− 2ν0
1− ν0

9− 7ξ + [2ξ − ν0(9− 5ξ)] e−
8
45

(9−5ξ)ε

9(1− ξ) + 2 [2ξ − ν0(9− 5ξ)] e−
8
45

(9−5ξ)ε
. (24)

Fig. 4 shows the elastic moduli of eqs. 21 – 23 as a function of crack density for different satura-

tions ξ. Wave propagation velocities are shown in Fig. 5, which is very similar to Fig. 3.

The preferred method to determine crack density and the fluid saturation fraction from measured

data is to use eqs. 3 and 5, since these equations decouple and no approximation has been used.

The SC and NI crack theories

Like the DEM method O’Connell and Budiansky’s self-consistent (SC) and Kachanov’s non-interacting

(NI) crack theories were derived by calculating the potential energy of a single crack in an elastic

medium. The theories differ in the ways how the potential energy is calculated for many cracks. In

Appendix C we write the corresponding SC and NI equations for our model of a mixture of a wet

crack system and a dry crack system. In Figs. 6 and 7 we show the relation between P and S wave

velocities and crack density and saturation for the SC and NI methods for comparison with Fig. 3 or 5

for the DEM method.

All three crack theories show a similar spread of the curves vp
vp0

versus vs
vs0

with saturation ξ, and
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Application of the elastic differential effective medium theory 9

this spread varies in a similar manner with Poisson’s ratio ν0 of the unfractured medium. We conclude

that for measured P and S wave velocities all three theories lead to similar saturations. The isolines

of constant crack density are much less/more closely spaced for the SC/NI method in comparison to

the DEM method, which means that the SC method gives much lower and the NI method much higher

crack densities.

Application of the DEM method to full waveform sonic logging data

Full waveform acoustic logging in the Strengbach catchment

We have recorded full waveform sonic logging data in a 86 m deep borehole in the Vosges mountains

in France on 19 July 2017. The borehole F1B is one of six boreholes in granite, which were drilled for

hydro-geophysical and geochemical studies in the Strengbach water catchment (Viville et al. 2017;

Pierret et al. 2018). The borehole has a diameter of 12.5 cm and it is not cased except for the first 8

m. The water level in the borehole was at 4.8 m below the surface. We used a Mount Sopris 2SAA-

1000-F full waveform sonic probe with two ceramic-piezoelectric receivers at 0.9 m (R1) and 1.2 m

(R2) distance from the transducer. The probe has a diameter of 4.4 cm. A monopole source with 30

kHz center frequency and a bandwidth of ± 15 kHz was used. The seismograms were sampled with a

1µs time step. The measurement was repeated each 10 cm in depth.

The wavelength used in the logging experiment is on the decimeter scale, just like the spacing

between the two receivers of the sonic probe. We assume that the granite can be described as a homo-

geneous effective medium on this length scale and that crack size and crack spacing are much smaller.

This includes intra- and inter-granular micro-cracks generated during the formation of the granite but

most importantly fracturation due to weathering (Gilkes et al. 1980; Štyriaková et al. 2012; Lybrand

et al. 2019). The Brézouard granite in the area is composed of ca. 30 % quartz, K-feldspar and albite,

respectively, and of 5 % biotite (Fichter et al. 1998). The fresh and slightly weathered granite has a

low permeability of 0.2 mD (Sausse et al. 2001).

A variable area plot of 470 data traces is shown in Fig. 8 for the depth interval between 35 and 82

m. The P head wave is the first arrival at about 250µs (R1) and 300µs (R2). The S head wave can also

be identified in this depth range, which is not the case for the first 35 m, where the granite is highly

fractured by weathering. The S head wave arrives at about 400µs (R1) and 500µs (R2). The direct P

and S head waves are followed by head waves, which are multiple reflected between the probe and

the borehole wall.

Several depth intervals can be identified in Fig. 8 for which the head waves are delayed, most

prominantly at 59–61 m and 62–63 m depth. In these two layers the rock has a sand-like quality and
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10 M. Zillmer, B.M. Kashtan, F. Doukoure and J.-M. Marthelot

presumably a high porosity (direct observations on cores by R. Wyns, BRGM). Since the DEM theory

uses the model of isolated flat cracks with low crack porosity, we are interested in the depth intervals

where the granite has microfractures but is otherwise intact. High porosity layers are excluded from

the following analysis. (Holbrook et al. 2019) model high-porosity layers by Biot’s theory (see also

Pride, S.R. (2005)).

We select a subset of the data with a very good S/N ratio, for which it is possible to clearly identify

P and S wave signals on both receivers. The signals should not change its wave form and period when

they propagate between the two receivers. Based on these criteria only 70 of 470 traces were selected.

An example of the selected data is shown in Fig. 9. The traces are muted except for one period of the

P and S wave signals. The recorded signals have a dominant period of ca. 20 kHz. The only signal

processing applied is a 4-th order Butterworth bandpass filter with -3 dB points at 7 kHz and 60 kHz

to suppress noise outside of the source signal’s bandwidth.

The P wave signals recorded at both receivers are cross-correlated and the same is done with the

S waves signals. The maxima of the cross-correlation functions give the time shifts which are about

60–70 µs for the P wave and 105–135 µs for the S wave. P and S wave velocities are computed

dividing the receiver spacing of 30 cm by the time shifts. The velocities are shown in Fig. 10.

The P and S wave velocities follow the same general trend: they show limited variations in the

depth interval from 38 to 58 m, take lower values at 65 m near the two zones of highly damaged

granite, are increasing between 70 and 75 m and remain constant between 75 and 80 m depth. The

time shifts are determined with an accuracy of ca. 3µs. Since the relative velocity error is the same as

the relative travel time error, we obtain ca. 4 % accuracy for the P wave velocity and 3% for the S

wave velocity.

By using eqs. 5 and 3 we determine the fraction of cracks saturated with water and the crack density.

Crack density as a function of depth is a mirror image of the velocity–depth functions (Fig. 10). It has

a mean average of about 0.5 for the interval from 38 to 55 m depth, takes higher values of 0.8–1 at

64 m depth and decreases to 0.3 at 80 m depth. Water saturation is around 75 % for the whole depth

range.

Uncertainty of the results for crack density and saturation

A source of error is the unknown background velocity of the unfractured granite. We have made a

seismic experiment in the old silver mine ’Gabe Gottes’ near Sainte-Marie-Aux-Mines on the 6 July

2016. The mine is located in a valley in the base of the mountain at an altitude of 620 m, ca. 4 km to

the west of borehole F1B, which is near a summit at 1130 m altitude. The rock in the mine is gneiss.

Since it is not exposed to weathering as the granite on top of the mountain near the borehole, it should
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Application of the elastic differential effective medium theory 11

give us an idea about the velocities of an unfractured or less fractured rock in the same area. We used

a 4.5 kg sledgehammer as a seismic source and a few 1C and 3C geophones in the 150 m long gallery

of the mine. The analysis of this seismic experiment lead to a P wave velocity of 6.0 km/s and an S

wave velocity of 2.9–3.0 km/s (Zillmer et al. 2019). By looking at the trend of the velocities in Fig.

10 we choose vp0 = 6.3 ± 0.2 km/s and vs0 = 3.6 km/s ± 0.15 km/s as P and S wave velocities of the

unfractured granite.

Error propagation gives the standard deviation ∆ of the relative velocity reduction caused by the cracks

as

∆
(
v
v0

)
(
v
v0

) =

√(
∆v

v

)2

+

(
∆v0
v0

)2

, (25)

where v is the P or S velocity in the fractured medium and v0 is the velocity in the unfractured

medium. For our data the total error of the reduced velocities is then ca. 5% for both P and S waves.

Fig. 11 shows two selected data points. The rectangles represent errors of 5 % in vp
vp0

and in vs
vs0

.

The saturation is badly constrained for low crack density, ε ≈ 0.2, where nearly all values between

zero and one are possible. For higher crack densities, ε ≈ 0.6, the saturation is better constrained.

The absolute error in crack density is rather constant, while the relative error is larger for small crack

densities.

Comparison with the SC and NI crack theories

For comparison we compute fluid saturation fraction ξ and crack density ε for our logging data also

with O’Connell & Budiansky’s SC method and Kachanov’s NI method (appendix C). It turns out that

the saturation varies by less than 2 % between the SC, NI and DEM methods. The NI theory leads

to the highest and the SC theory to the lowest crack density (Fig. 12) as expected given the different

decrease rates of the elastic moduli E and µ with increasing crack density for the three methods

(Sayers & Kachanov 1991). The SC method might underestimate and the NI method overestimate

crack density because they use the completely fractured and unfractured rock as background medium.

The close match of the saturation fraction between all three methods was surprising, so that we

performed the following computer experiment: We integrated the DEM equations, eqs. 1 and 2, nu-

merically for a set of initial values E0, ν0 with different saturation parameters ξ. Then we computed

the saturation with eqs. (C.5) and (C.12). The saturation of the SC method is often close to the ξ pa-

rameter which was chosen to integrate the differential equations. We suggest to use this value as an

initial guess for root searching with eq. 5, if it is located in the same half-infinite interval as the root

(appendix B).
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Validation of results and impact on hydrological modeling

Viville et al. (2006) measured oxygen-18 concentrations in water as an environmental tracer in the

Strengbach catchment with the goal to determine water transit time and storage capacity. By using the

model of Małoszewski & Zuber (1982) they concluded that the amount of water stored in the catch-

ment corresponds to a thick layer of granitic bedrock (> 45 m) with an average porosity of 5 %. The

hydrological model which successfully explained the measured oxygen-18 concentrations consists of

two water reservoirs: an upper unsaturated reservoir with a short transit time and a lower groundwater

reservoir. Chabaux et al. (2017) measured geochemical and isotope composition of spring water and

of borehole water in the Strengbach catchment. They also concluded that water circulates differently

near the surface and at depth.

Our crack density and saturation profiles for borehole F1B show that the weathered granite in the

Strengbach catchment is highly fractured in the depth range from 40 to 80 m and that most cracks are

water saturated (Fig. 10). We have identified several layers in the logging data where P and S wave

travel times are delayed (Fig. 8), in particular the low velocity layers at 58–60 m and 61–62 m depth.

These layers are potential fluid flow paths if they are not restricted to the vicinity of the borehole. Our

results support the hypothesis that water is stored and can flow at depth. This information might be

useful for hydrological modeling (Weil et al. 2017) and for the modeling of geochemical weathering

(Goddéris et al. 2006) in the Strengbach catchment.

Conclusions

The differential equations of the elastic DEM theory are solved for the model of two sets of randomly

oriented flat ellipsoidal cracks, one set of dry cracks and the second set filled with an incompressible

fluid. This leads to a simple and exact numerical algorithm for the inverse problem, so that fluid

saturation and crack density can be determined from measured data. Approximate formulas which

connect the elastic moduli and velocities with crack density and saturation are also derived. They can

be used for forward modeling and error estimation. A comparison of different methods shows that the

DEM, SC and NI theories lead to similar saturation fractions for the same input data; the SC method

gives the smallest and the NI method the highest crack density.

By applying the method to P and S wave velocities measured in full waveform acoustic logging

data we have obtained crack density and saturation depth profiles for a borehole in the Strengbach

catchment in the Vosges mountains in France. The weathered granite has a crack density systemati-

cally higher than 0.4 at 40 to 80 m depth below the surface. Second order scattering theory for wave

propagation in fractured media cannot be used to analyse the logging data because the solution is di-
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Application of the elastic differential effective medium theory 13

vergent for such high crack densities. This justifies a posteriori the use of the DEM theory instead of

scattering theory. Our results validate previous hydrological and geochemical studies which concluded

that water is stored and flows at depth in the catchment.
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Figure 1. Poisson’s ratio ν(ε, ξ): Numerical solution by eq. 1 or eq. 3 (left column) and approximations by

eqs. 9 (middle column) and 13 (right column) for ν0 = 0 (top) and ν0 → 1
2 (bottom). We consider various

saturation values ξ = 0, 0.2, . . . , 1.0 where ξ = 0 is marked by open circles. ν ≡ ν0 for ξ = 1, ν0 → 1
2 . We

used the program ’ut’ with a Runge-Kutta (4,5) formula pair as a part of the program package rksuite (Brankin,

Gladwell & Shampine 1992) for the numerical solution of the differential equations. Alternatively we also used

the program ’lsode’ of ODEPACK by Hindmarsh (1983). The program ’fzero’ for root searching is based on a

method by Dekker (1969).
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Figure 2. Young’s modulus E(ε, ξ, ν0), shear modulus µ(ε, ξ, ν0) and bulk modulus K(ε, ξ, ν0) for ν0 = 0 and

ν0 → 1
2 (ν0 = 0.4 for the bulk modulus). Numerical solutions (solid lines) by eqs. 2, 6 and 7 and approximations

(dots) by eqs. 14, 15 and 16 are compared. Various fluid saturation values are considered: ξ = 0, 0.2, . . . , 1.0

where ξ = 0 is marked by open circles.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggab077/6147045 by guest on 05 M

ay 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

20 M. Zillmer, B.M. Kashtan, F. Doukoure and J.-M. Marthelot

0 0.5 1.0
crack density

0

0.2

0.4

0.6

0.8

1.0

s
a
tu

ra
ti
o
n

nu_0 = 0.0

0 0.5 1.0
crack density

0

0.2

0.4

0.6

0.8

1.0

s
a
tu

ra
ti
o
n

nu_0 = 0.2

0 0.5 1.0
crack density

0

0.2

0.4

0.6

0.8

1.0

s
a
tu

ra
ti
o
n

nu_0 = 0.4

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

v
p
 /
 v

p
0

nu_0 = 0.0

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

v
p
 /
 v

p
0

nu_0 = 0.2

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

v
p
 /
 v

p
0

nu_0 = 0.4

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

v
p
 /
 v

p
0

nu_0 = 0.0

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

v
p
 /
 v

p
0

nu_0 = 0.2

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

v
p
 /
 v

p
0

nu_0 = 0.4

0.9

0.7

0.5

0.8

0.6

0.25

0.5

0.75

1

epsilon

xi = 0

xi = 1

xi = 0

xi = 1

Figure 3. Top: The reduction in P wave velocity vp/vp0 and S wave velocity vs/vs0 for different values of

saturation ξ (dotted lines) and crack density ε (dashed lines). Fluid saturation takes the values 0, 0.1, . . . 1 (from

bottom to top) and crack density the values 0.25, 0.5, . . . (from left to right). Bottom: The reduction in P wave

velocity vp/vp0 (solid lines) and S wave velocity vs/vs0 (dashed lines) for different values of saturation ξ and

crack density ε. The iso-velocity lines take the values 0.9, 0.8, . . . (from left to right), where 0.9, 0.7 and 0.5 are

printed bold. Equations 15-19 are used here.
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Figure 4. Young’s modulus E(ε, ξ, ν0), shear modulus µ(ε, ξ, ν0) and bulk modulus K(ε, ξ, ν0) for ν0 = 0 and

ν0 → 1
2 (ν0 = 0.4 for the bulk modulus). Numerical solutions (solid lines) by eqs. 2, 6 and 7 and approximations

(dots) by eqs. 21, 22 and 23. Various fluid saturation values are considered: ξ = 0, 0.2, . . . , 1.0 where ξ = 0 is

marked by open circles.
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Figure 5. Same as Figure 3 but computed with eqs. 19, 22 and 24.
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Figure 6. Same as Figure 3 but computed for O’Connell and Budiansky’s SC method.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggab077/6147045 by guest on 05 M

ay 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

24 M. Zillmer, B.M. Kashtan, F. Doukoure and J.-M. Marthelot

0 0.5 1.0
crack density

0

0.2

0.4

0.6

0.8

1.0

sa
tu

ra
tio

n

nu_0 = 0.0

0 0.5 1.0
crack density

0

0.2

0.4

0.6

0.8

1.0

sa
tu

ra
tio

n

nu_0 = 0.2

0 0.5 1.0
crack density

0

0.2

0.4

0.6

0.8

1.0

sa
tu

ra
tio

n

nu_0 = 0.4

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

vp
 / 

vp
0

nu_0 = 0.0

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

vp
 / 

vp
0

nu_0 = 0.2

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

vp
 / 

vp
0

nu_0 = 0.4

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

vp
 / 

vp
0

nu_0 = 0.0

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

vp
 / 

vp
0

nu_0 = 0.2

0.60.70.80.91.0
vs / vs0

0.6

0.7

0.8

0.9

1.0

vp
 / 

vp
0

nu_0 = 0.4

Figure 7. Same as Figure 3 but computed for Kachanov’s NI method.
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Figure 8. Full waveform sonic logging data recorded in granite in borehole F1B of the Strengbach catchment

in Alsace (France) in July 2017. The distance between the piezoelectric transducer and receivers 1 and 2 is 0.9

m and 1.2 m, respectively. The P and S head waves are marked.
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Figure 9. Example of selected P and S signals recorded by the two receivers. Data traces of worse quality are

muted.
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Figure 10. P and S wave velocities as a function of depth in borehole F1B which are obtained by analysing the

travel times in the data shown in Figs. 8 and 9. The velocities (left) are used to determine the fraction of water

saturated cracks from eq. 5 (middle) and crack density from eq. 3 (right). Depth intervals without data points

refer to layers of strongly fractured granite where signals could not be clearly identified. We assume that the

DEM model of isolated cracks can not be applied for these layers.
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Figure 11. The uncertainty of saturation ξ and crack density ε for 5% error in measured reduced P and S wave

velocities. For the left data point with low crack density the saturation is nearly undetermined, while it is better

constrained for the right data point at higher crack density. The Poisson’s ratio of the unfractured material is

ν0 ≈ 0.26.
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Figure 12. Crack density ε as a function of depth in borehole F1B in the Strengbach catchment calculated with

the SC theory (eq. C.4) and with the NI theory (eq. C.11).
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APPENDIX A: ELASTIC MODULI FOR MEDIA WITH SATURATED CRACKS

For the case that all cracks are fluid saturated, ξ = 1, the differential equation 1 for Poisson’s ratio ν,

dν

dε
=

32

45

(1− ν2)(1− 2ν)

2− ν
, (A.1)

can be solved by separation of variables and by partial fractions (Courant & John 1974):

ε =
45

64
ln

1− ν2

1− ν20
+

45

32
ln

1− 2ν0
1− 2ν

. (A.2)

This equation can be solved for ν(ε). We could also transform eq. A.1 into an Abel differential equa-

tion of the first kind. It has a special relation between its coefficients and for this case a solution has

been derived by Scalizzi (1917) (according to Kamke (1983)). This leads to

ν(ε) =

√
3(1− ν20) + (1− 2ν0)2e

− 64
45
ε − 2(1− 2ν0)e

− 32
45
ε

2
√

3(1− ν20) + (1− 2ν0)2e
− 64

45
ε − (1− 2ν0)e

− 32
45
ε
. (A.3)

We substitute eq. A.3 on the rhs of eq. 2 for Young’s modulus E,

1

E

dE

dε
= −64

45

1− ν2

2− ν
, (A.4)

to obtain

E(ε)

E0
=

3e−
32
45
ε

2
√

3(1− ν20) + (1− 2ν0)2e
− 64

45
ε − (1− 2ν0)e

− 32
45
ε
. (A.5)

From eq. 7 follows that the bulk modulus of cracks saturated with an incompressible fluid does

not change with crack density: K ≡ K0.

We substitute eq. A.3 on the rhs of eq. 6 for the shear modulus µ,

1

µ

dµ

dε
= −32

15

1− ν
2− ν

, (A.6)

and integrate:

µ(ε)

µ0
=

(1 + ν0)e
− 32

45
ε√

3(1− ν20) + (1− 2ν0)2e
− 64

45
ε − (1− 2ν0)e

− 32
45
ε
. (A.7)

For the shear modulus the first two terms of a Taylor series in ε are given by

µ(ε)

µ0
≈ 1− 32

15

λ0 + 2µ0
3λ0 + 4µ0

ε+
1

6

(
32

15

)2 (λ0 + 2µ0)(9λ
2
0 + 36λ0µ0 + 28µ20)

(3λ0 + 4µ0)3
ε2, (A.8)

where λ0 and µ0 are the Lamé parameters of the unfractured medium.

Hudson (1980) obtained µ to second order in ε by using scattering theory. He noted that his result

agrees with the self-consistent theory of O’Connell & Budiansky (1974) only to first order, but not to

second order. This happens again here with the DEM theory.

Henyey & Pomphrey (1982) derived the solution for Poisson’s ratio ν as a function of crack

density ε, but for the other moduli only by eliminating ε from the equations. A part of their result is

incorrectly printed.
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Application of the elastic differential effective medium theory 31

APPENDIX B: SOLUTION OF THE DIFFERENTIAL EQUATIONS FOR POISSON’S

RATIO AND YOUNG’S MODULUS

In this appendix we first show how to obtain the solution of the differential equation for Poisson’s

ratio. We write eq. 1 in the form

dν

dε
=

16

45

1− ν2

2− ν

[
3(1− ξ)ν2 − (9− 5ξ)ν + 2ξ

]
, (B.1)

and determine the roots ν1, ν2 of the quadratic polynomial on the rhs:

3(1− ξ)ν2 − (9− 5ξ)ν + 2ξ = 3(1− ξ)(ν − ν1)(ν − ν2). (B.2)

We obtain

ν1(ξ) =
9− 5ξ + w(ξ)

6(1− ξ)
, ν2(ξ) =

9− 5ξ − w(ξ)

6(1− ξ)
, (B.3)

where

w(ξ) =
√

(9− 5ξ)2 − 24ξ(1− ξ). (B.4)

Eq. B.1 then takes the form

dν

dε
=

4

135(1− ξ)
1− ν2

2− ν
[6(1− ξ)ν − (9− 5ξ) + w] [6(1− ξ)ν − (9− 5ξ)− w] . (B.5)

By separation of variables we obtain the following integrals:∫
(2− ν)(1− ξ)

(1 + ν)(1− ν) [6(1− ξ)ν − (9− 5ξ) + w] [6(1− ξ)ν − (9− 5ξ)− w]
dν =

4

135

∫
dε. (B.6)

Applying the method of partial fractions to the integral on the left hand side we obtain the solution

(eq. 3) after some basic calculations:

ε(ξ, ν, ν0) = 45
64

1
3−2ξ ln 1−ν

1−ν0 + 45
64

1
2−ξ ln 1+ν

1+ν0
− 45

128
5−3ξ

(2−ξ)(3−2ξ) ln
[
ν−ν1(ξ)
ν0−ν1(ξ)

ν−ν2(ξ)
ν0−ν2(ξ)

]
+ 45

128
(9−5ξ)(7−5ξ)−4(1−ξ)(3−ξ)

(2−ξ)(3−2ξ)w(ξ) ln
[
ν−ν1(ξ)
ν0−ν1(ξ)

ν0−ν2(ξ)
ν−ν2(ξ)

]
. (B.7)

Next, we derive an algebraic equation for Young’s modulus by eliminating crack density from the

differential equations. Substituting dν
dε of eq. 1 in the rhs of eq. 2 gives

1

E

dE

dε
=
dν

dε
(−)

(2− ν) + 4
3(1−ξ)

(ν − ν1)(ν − ν2)
, (B.8)

where ν1 and ν2 are given by eq. B.3. By using partial fractions we obtain

ln
E

E0
=

3(1− ξ)(ν1 − 2)− 4

3(1− ξ)(ν1 − ν2)
ln
ν1 − ν
ν1 − ν0

+
3(1− ξ)(2− ν2) + 4

3(1− ξ)(ν1 − ν2)
ln
ν − ν2
ν0 − ν2

, (B.9)

2w ln
E

E0
= (w − 11 + 7ξ) ln

ν1 − ν
ν1 − ν0

+ (w + 11− 7ξ) ln
ν − ν2
ν0 − ν2

(B.10)

and finally eq. 5:

E

E0
=

(
ν1(ξ)− ν
ν1(ξ)− ν0

)w(ξ)−11+7ξ
2w(ξ)

(
ν − ν2(ξ)
ν0 − ν2(ξ)

)w(ξ)+11−7ξ
2w(ξ)

. (B.11)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggab077/6147045 by guest on 05 M

ay 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T
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If ν0, ν, E0 and E are known from measurements, where 0 < E
E0

< 1, then the saturation ξ can be

found by searching a root of E
E0
− f(ξ) = 0, where f is the function on the rhs of eq. B.11.

Let’s assume for the moment that ξ can take any value on the real axis. The function f(ξ) has the

following properties:

f(ξ → ±∞)→ 1+3ν
1+3ν0

, (B.12)

f(ξ = ξ0) = 0, ξ0 = 3ν(3−ν)
(2−ν)(1+3ν) , (B.13)

f(ξ → ξ+∞ → +∞, ξ+∞ = 3ν0(3−ν0)
(2−ν0)(1+3ν0)

. (B.14)

The function f(ξ) is not defined for ξ in the interval between ξ0 and ξ+∞ since the base of the second

factor on the rhs of eq. B.11 has to be positive for a real exponent.

We calculate the derivative of E(ξ) from eq. B.11:

dE

dξ
= E

10

w3

{
(ν − ν0)w
6(1− ξ)

[
w + 3− 7ξ

(ν2 − ν0)(ν2 − ν)
−

w − (3− 7ξ)

(ν1 − ν0)(ν1 − ν)

]
+ (3− 7ξ) ln

(
ν2 − ν
ν2 − ν0

ν1 − ν0
ν1 − ν

)}
. (B.15)

A closer look at this function shows that for 0 ≤ ν, ν0 < 1
2 the derivative dE

dξ has the same sign as

the factor ν − ν0, so that E(ξ) and f(ξ) are either stricly increasing or strictly decreasing.

We conclude that eq. B.11 has exactly one solution on the real ξ axis. This solution is located in the

interval ξ0 ≤ ξ < +∞, if ν > ν0. For the case ν < ν0, we obtain the following result: If E
E0

< 1+3ν
1+3ν0

,

then eq. B.11 has a solution in the interval −∞ < ξ ≤ ξ0. If E
E0

> 1+3ν
1+3ν0

, then it has a solution

in the interval ξ+∞ < ξ ≤ +∞. Of course physically meaningful is only a solution in the interval

0 ≤ ξ ≤ 1. Other results occur as a consequence of measurement errors in ν0, ν, E0 and E.

For numerical computations eq. B.10 should be used instead of B.11 to avoid overflow.
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Application of the elastic differential effective medium theory 33

APPENDIX C: THE SC AND NI CRACK THEORIES

In this appendix we present the corresponding formulas of O’Connell and Budiansky’s self-consistent

(SC) and Kachanov’s non-interacting (NI) crack theory for comparison with the DEM theory. The

equations are used in the main text for forward modeling (Figs. 6, 7) and inversion (Fg. 12). The

model is a mixture of two sets of randomly oriented cracks: a fraction ξ of wet cracks saturated with

an incompressible fluid and a fraction 1− ξ of dry cracks.

The NI method calculates the change in potential energy by using the elastic moduli of the un-

fractured medium, while the SC method uses the moduli of the completely fractured medium. As a

consequence there is a certain symmetry in the formulas for crack density and fluid saturation when

moduli E0, ν0 are interchanged with E, ν.

SC crack theory

The elastic moduli are given by eqs. 17 of O’Connell & Budiansky (1974),

K
K0

= 1− 16
9

1−ν2
1−2ν (1− ξ)ε, (C.1)

E
E0

= 1− 16
45

1−ν2
2−ν [4 + 3(1− ξ)(2− ν)]ε, (C.2)

µ
µ0

= 1− 32
45

1−ν
2−ν [3 + (1− ξ)(2− ν)]ε, (C.3)

and crack density by their eq. 18,

ε =
45

16

(2− ν)(ν − ν0)
(1− ν2)[2(1− 2ν0)− (1− ξ)(1 + 3ν0)(2− ν)]

. (C.4)

By substituting ε on the rhs of eq. (C.2) for Young’s modulus we obtain for the fluid saturation fraction

ξ =
3ν(3− ν)− E

E0
[10ν0 − (1 + 3ν0)ν]

(2− ν)
[
1 + 3ν − (1 + 3ν0)

E
E0

] , (C.5)

and if we substitute this result for ξ on the rhs of eq. C.4 then we obtain for crack density

ε =
9

32

2− ν
1− ν2

(1 + 3ν)E0 − (1 + 3ν0)E

E0
. (C.6)

If we write the moduli as functions of P and S wave velocities then we obtain eq. 62 of Budiansky

& O’Connell (1976). The inverse problem to determine fluid saturation ξ and crack density ε from

measured data ν0, E0, ν, E is solved by eqs. (C.5) and (C.6).

The P wave modulus follows from (C.1) and (C.3) with eq. (18):

K + 4
3µ

K0 + 4
3µ0

= 1− 16

27

1 + ν0
1− ν0

1− ν2

1− 2ν
(1− ξ)ε− 64

135

1− 2ν0
1− ν0

1− ν
2− ν

[3 + (1− ξ)(2− ν)]ε. (C.7)

Poisson’s ratio ν of the fractured medium is needed to compute elastic moduli as functions of ε and ξ.

It is obtained as one of the roots of a cubic equation which follows from (C.4).
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NI crack theory

Kachanov’s NI theory (Kachanov 1992) leads for Young’s modulus and for the shear modulus to

E0

E
= 1 + 16

45
1−ν20
2−ν0 [4 + 3(1− ξ)(2− ν0)]ε, (C.8)

µ0
µ

= 1 + 32
45

1−ν0
2−ν0 [3 + (1− ξ)(2− ν0)]ε. (C.9)

Poisson’s ratio ν is then given by

ν =
ν0 + 16

45
1−ν20
2−ν0 [2− (1− ξ)(2− ν0)] ε

1 + 16
45

1−ν20
2−ν0 [4 + 3(1− ξ)(2− ν0)] ε

(C.10)

and we obtain for the crack density

ε =
45

16

(2− ν0)(ν − ν0)
(1− ν20)[2(1− 2ν)− (1− ξ)(1 + 3ν)(2− ν0)]

. (C.11)

By substituting this result in the rhs of eq. (C.8) for Young’s modulus we obtain the saturation

ξ =
3ν0(3− ν0)− E0

E [10ν − (1 + 3ν)ν0]

(2− ν0)
[
1 + 3ν0 − (1 + 3ν)E0

E

] , (C.12)

and then for the crack density

ε =
9

32

2− ν0
1− ν20

(1 + 3ν)E0 − (1 + 3ν0)E

E
. (C.13)

We calculate the P wave modulus by using (C.10)

K0 + 4
3µ0

K + 4
3µ

=
µ0
µ

1− ν0
1− 2ν0

1− 2ν

1− ν
=
µ0
µ

1 + 16
9

1−ν20
1−2ν0 (1− ξ)ε

1 + 32
45

1+ν0
2−ν0 [1 + 2(1− ξ)(2− ν0)]ε

, (C.14)

where the shear modulus is given by eq. (C.9).

By using eq. (C.10) the P wave modulus can be written as

K0 + 4
3µ0

K + 4
3µ

= 1 +
16

27

1 + ν

1− ν
1− ν20
1− 2ν0

(1− ξ)ε+
64

135

1− 2ν

1− ν
1− ν0
2− ν0

[3 + (1− ξ)(2− ν0)]ε, (C.15)

which is a similar form as the corresponding equation (C.7) of the SC theory.

Eqs. (C.9) and (C.14) can be used for forward modeling and eqs. (C.12) and (C.13) for the inverse

problem.
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