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Abstract

Most categorization models are insensitive to the order in which stimuli are

presented. However, a vast array of studies have shown that the sequence re-

ceived during learning can influence how categories are formed. In this paper,

the objective was to better account for effects of serial order. We developed a

model called Ordinal General Context Model (OGCM) based on the Generalized

Context Model (GCM), which we modified to incorporate ordinal information.

OGCM incorporates serial order as a feature along ordinary physical features,

allowing it to account for the effect of sequential order as a form of distortion

of the feature space. The comparison between the models showed that inte-

grating serial order during learning in the OGCM provided the best account of

classification of the stimuli in our data-sets.

Keywords: Categorization, sequencing, category transfer models, Generalized

Context Model (GCM), rule-based order, similarity-based order, 5-fold

cross-validation.

1. Introduction

The C major scale can convey a sense of joy or sadness, depending on the

order in which the notes are played. The scale “do re mi fa sol la si” is typically
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classified as a joyful melody, while the scale “si la sol fa mi re do” is typically

classified as a somber one. A large number of studies have confirmed the in-5

tuition that the order in which information is presented can alter perception

(Birnbaum et al., 2012; Carvalho & Goldstone, 2014a; Clapper, 2014; Rohrer,

2009, 2012), representation (Corcoran et al., 2011; Elio & Anderson, 1981, 1984;

Mathy & Feldman, 2016; Sana et al., 2016; Zeithamova & Maddox, 2009), and

learning (Bloom & Shuell, 1981; Carpenter & Mueller, 2013; Carvalho & Gold-10

stone, 2015a; Helsdingen et al., 2011; Kornell & Bjork, 2008; Kornell et al., 2010;

Lipsitt, 1961; Mathy & Feldman, 2009; Samuels, 1969; Sandhofer & Doumas,

2008; Zulkiply & Burt, 2012). More specific experimental studies have investi-

gated how the temporal context influences the way categories are learned and

encoded (Brady, 2008; Carvalho & Goldstone, 2020, 2014b; Jones & Sieck, 2003;15

Kang & Pashler, 2012; Li et al., 2012; Mack & Palmeri, 2015; Mcdaniel et al.,

2013; Qian & Aslin, 2014; Yan et al., 2017; Zotov et al., 2011; Zulkiply et al.,

2012); however, only few of them have attempted to model and account for

order effects through the conception and use of computational models.

Computational models implement theories of learning by expressing the prin-20

ciples underlying the theories in more rigorous mathematical terms (Farrell &

Lewandowsky, 2010). Moreover, the ability of models to generate quantitative

predictions allows researchers to evaluate precisely how plausible the imple-

mented theories are. Despite their advantages, only a few models have been

designed to investigate how the temporal contiguity of stimuli can affect cog-25

nition. One example is the distributed Temporal Context Model (TCM) by

Howard and Kahana (Howard & Kahana, 2001) that was developed to account

for recency and contiguity effects in serial memory and free recall. Another ex-

ample is the Memory And Contrast (MAC) model (Stewart et al., 2002) which

aims at explaining the contrast effect in categorization by supposing that par-30

ticipants classify stimuli by estimating the relative difference between successive

stimuli. A more recent example is the Sequential Attention Theory Model (SAT-

M) (Carvalho & Goldstone, 2019) by Carvalho and Goldstone, in which features

of a stimulus are encoded depending on how they relate to immediately preced-
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ing stimuli and their category assignment. Based on the Sequential Attention35

Theory (SAT) (Carvalho & Goldstone, 2015b) , the SAT-M aims at explaining

the diverse benefits of interleaved and blocked presentations of categories.

Despite these efforts, we think that a more general model is still lacking.

We here present a new context model aiming at accounting for contiguity in

categorization. Our hypothesis is that the contiguity of stimuli can distort40

how stimuli are perceived, which could influence both learning and transfer of

category representations. Learning refers to the formation of the categories

upon stimulus presentation (usually, a sample of stimuli is used repeatedly,

grouped by blocks in which the stimuli are randomly permuted, until a learning

criterion is reached), whereas transfer refers to the ability to categorize new45

stimuli. In a natural context, people continuously face new stimuli and must

adapt their categories, but for simplicity reasons, the transfer phase generally

follows the learning phase in a laboratory experiment. Categorization models

can be divided into two classes, following this experimental logic: i) Learning

models, which have the ability to evolve over time, which is convenient to model50

both learning and transfer and ii) Transfer models, which can only account for

performance during transfer.

The model that we propose here is a transfer model. Although our model is

flexible enough to account for a large variety of order effects, we here focus on

how ordering the stimuli within a category can affect transfer. We here used a55

distinction made in the literature between rule-based vs. similarity-based pre-

sentation orders. In the similarity-based order, members of a same category are

arranged in order to maximize the similarity between adjacent exemplars, while

in the rule-based order, members of a same category are ordered following a

“principal rule plus exceptions” structure. Research has shown that rule-based60

order is more beneficial than similarity-based order during both learning (Elio

& Anderson, 1981; Mathy & Feldman, 2009) and transfer (Elio & Anderson,

1984; Mathy & Feldman, 2016). Although this result is particularly true be-

cause the categories which have been tested so far in these studies used stimuli

involving discrete features that tend to favor the formation of rules, this dis-65
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tinction remains crucial to test models. The rationale is that a model should

be more sensitive to a presentation order inspired of the mechanisms at play in

the model. For instance, a rule-based model should be more sensitive to a rule-

based presentation in which the non-diagnostic features are ordered randomly,

and with the exceptions clearly separated from the examples obeying the main70

rule. On the contrary, a similarity-based model should be more sensitive to a

presentation favoring similarity between contiguous examples. The idea is that

in both cases, the environment would fit the internal mechanism of a model and

should facilitate the extraction of the categories.

In this article, we propose a transfer model of human categorization which75

takes into account the order in which stimuli are presented. Different concep-

tions of order led to the creation of a few versions of the model. Then, we present

the experiments as well as the statistical method used to compare the different

versions of our model to an alternative transfer model. Finally, we show that

our model best fits our data-sets and we discuss its benefits as compared to the80

existing models.

2. A new model of category transfer: Ordinal General Context Model

(OGCM)

Our new model is an extension of the Generalized Context Model (GCM)

(Medin & Schaffer, 1978; Nosofsky, 1986). Although GCM is a well-known85

exemplar model, we provide a rapid description of this model in order to fix the

notation.

According to GCM, the probability of classifying a stimulus x as belonging

to a given category A is given by the summed similarities of that stimulus to

all learning exemplars of category A, divided by the summed similarities of

stimulus x to all learning exemplars of all categories:

P(A |x) =

∑
a∈A∩L S(a, x)∑

K∈K
∑
k∈K∩L S(k, x)

, (1)

where L represents the set of learning items and K represents the set of all

categories. The term S(a, x) denotes the similarity between stimuli a and x, and
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it is computed as an exponentially decaying function of the distance between

the two stimuli:

S(a, x) = e−c·d(a,x)p , (2)

where d(a, x) denotes the distance between stimuli a and x; p is a positive

constant; and c is a freely estimated sensitive parameter (c ≥ 0). The distance

between stimuli a and x is computed by:

d(a, x) =

[
N∑
i=1

ωi · |ai − xi|r
] 1

r

,

where ωi is the attention allocated to dimension i (ωi ≥ 0 and
∑N
i=1 ωi = 1);

r is a positive constant; ai and xi are the feature values of stimuli a and x on

dimension i; and N is the number of dimensions (stimuli are embedded in a90

N-dimensional psychological space).

Although GCM has proven to provide accurate predictions in the catego-

rization domain (Nosofsky et al., 1992, 2017, 2018a,b; Rehder & Hoffman, 2005;

Sanders & Nosofsky, 2020), its mathematical formulation does not integrate any

component that is sensitive to different presentation orders.95

2.1. Model description

The new Ordinal General Context Model (OGCM) is an extension of GCM

allowing stimuli to be encoded as a function of both their physical features and

their ordinal distance. With the objective of evaluating different definitions

of ordinal distance, we declined OGCM into four versions: i) OGCM-A, which100

integrates the average presentation order received during learning; ii) OGCM-F,

which integrates the most frequent presentation order received during learning;

iii) OGCM-M, which integrates the median presentation order received during

learning; and iv) OGCM-T, which integrates the presentation order received

during transfer.105

The probability of classifying a stimulus x as belonging to a given category

A is defined as in Equation (1). In the same way, the similarity between two

stimuli a and x is defined as in Equation (2). The single aspect that differentiates
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OGCM from GCM is how the distance between two stimuli is defined. According

to OGCM, the distance between stimuli a and x is determined by both physical

and ordinal features as follows:

d̃(a, x) =

[
N∑
i=1

ωi · |ai − xi|r + ωO · d̄O(a, x)r

] 1
r

,

where the first term
∑N
i=1 ωi · |ai − xi|

r
is the component associated with the

physical features of the stimuli; d̄O(a, x) is the normalized ordinal distance be-

tween stimuli a and x; ωO is the attention allocated to ordinal features; and r

is a positive constant (ωi, ωO ≥ 0 and
∑N
i=1 ωi + ωO = 1). Normalizing ordinal

distances allows us to compare the magnitude of the attention allocated to or-110

dinal features to the magnitude of the attention allocated to other dimensions.

The normalized ordinal distance d̄O(a, x) is differently defined, depending on

the version of the model. For each version of the model, we define the ordinal

distance and we explain how to normalize it:

i) In OGCM-A, the ordinal distance between two learning stimuli is defined115

as the average temporal proximity between the two stimuli across the

learning phase (see Figure 1 for an example). In order to maintain an

equal comparison with the other physical dimensions, this averaged value

is normalized. The normalized ordinal distance is obtained by multiply-

ing the ordinal distance by
max

i=1,...,N
max

a,x∈L∪T
|ai−xi|

|L| × 0.9, where L is the set120

of learning stimuli and T is the set of transfer stimuli. Since the maxi-

mal temporal proximity between two learning stimuli (during learning) is

equal to |L|, the normalized ordinal distance has an upper bound value

of max
i=1,...,N

max
a,x∈L∪T

|ai − xi| × 0.9. Multiplying this value times 0.9 allows

pairs of learning stimuli to be perceived as closer as compared to pairs of125

stimuli in which one of them is a transfer item. Indeed, if one of the two

stimuli is a transfer stimulus, then the normalized ordinal distance between

them is set equal to max
i=1,...,N

max
a,x∈L∪T

|ai − xi|.

ii) In OGCM-F, the ordinal distance between two learning stimuli is defined

as the most frequent temporal proximity between the two stimuli across the130
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learning phase (see Figure 1 for an example). This value is normalized in

the same manner as in OGCM-A to maintain an equilibrium between the

dimensions. When one of the stimuli is a transfer stimulus, the normalized

ordinal distance is defined as in OGCM-A.

iii) In OGCM-M, the ordinal distance between two learning stimuli is defined as135

the median temporal proximity between the two stimuli across the learning

phase (see Figure 1 for an example). Again, this value is normalized as in

OGCM-A. When one of the stimuli is a transfer stimulus, the normalized

ordinal distance is again defined as in OGCM-A.

iv) In OGCM-T, the ordinal distance between two stimuli (learning or transfer140

stimuli) is defined as the temporal proximity between the two stimuli within

the considered transfer block (see Figure 1 for an example). In order to

maintain an equilibrium between the dimensions, this value is multiplied by
max

i=1,...,N
max

a,x∈L∪T
|ai−xi|

|L∪T | , where L is the set of learning stimuli and T is the set

of transfer stimuli. Since during the transfer phase the maximal temporal145

proximity between two stimuli is equal to |L ∪ T |, the normalized ordinal

distance has an upper bound value of max
i=1,...,N

max
a,x∈L∪T

|ai − xi|. Because

we consider the temporal proximity within a transfer block, a distinction

between pairs of learning stimuli and pairs of stimuli in which one of them

is a transfer item is no longer needed.150

3. Method

The four versions of OGCM were compared to GCM to determine which

model could best account for category transfer. We now present the experiments

which were used to gather data to feed the models. We then describe the

statistical method used for the comparisons, and we finally present the results155

of this analysis.
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learning phase transfer phase

1 2 1 2

Figure 1: Example of how the ordinal distance between two stimuli is defined in OGCM,

depending on its versions. We consider a simple case in which the learning phase is composed

of three blocks and the transfer phase of one block. We focus our attention on computing

the ordinal distance between the blue circle and the gray square. The plain curve lines

and the numbers denote the temporal proximity within each block between the two selected

stimuli. In OGCM-A, OGCM-F, and OGCM-M, the ordinal distance between the blue circle

and the gray square is given by, respectively, the average (mean(1, 2, 1) = 1.33), the mode

(mode(1, 2, 1) = 1), and the median (median(1, 2, 1) = 1) of their temporal proximity across

the learning phase. In OGCM-T, the distance between the blue circle and the gray square

is given by their ordinal position within the transfer block (i.e., 2). These values are then

normalized to maintain an equilibrium between the dimensions.

3.1. Experiments

Models were compared based on two separate data-sets: The first data-set

corresponds to the results of an experiment conducted by (Mathy & Feldman,

2016). The procedure of this experiment is recalled in our section Experiment 1,160

although it is not a novel experiment. We thought that all the details needed to

be reminded to the reader. This experiment was essentially designed to assess

the effects of within-category orders on category transfer. Experiment 2 is a

novel experiment that we carried out to use a larger number of experimental

conditions than in Experiment 1.165

3.1.1. Experiment 1

Experiment 1 used the famous 5-4 categories, which were first analyzed by

Medin and Schaffer (Medin & Schaffer, 1978) and reanalyzed in many subse-

quent studies (Cohen & Nosofsky, 2003; Johansen & Kruschke, 2005; Johansen

& Palmeri, 2003; Lafond et al., 2007; Lamberts, 2000; Minda & Smith, 2002;170

Rehder & Hoffman, 2005; Smith & Minda, 2000; Zaki et al., 2003). Because the

5-4 category structure has been evaluated several times without diminishing its

current importance, it seemed like a solid starting point. In this experiment,
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Figure 2: Categories and stimulus items of Experiment 1. The items varied along four Boolean

dimensions (shape, color, size and filling pattern) represented here in a Hasse Diagram forming

a hypercube. At the top, the structure of the 5-4 category set. The examples of category A are

indicated by black dots, those of category B by white dots, and transfer item are represented

by empty vertices. At the bottom, illustration of the items of Experiment 1.

participants were instructed to learn a 4-feature category structure based on

either a rule-based presentation order or a similarity-based presentation order.175

The participants (N = 44) were instructed to learn one category set (Figure

2, on the top), which was composed of 24 = 16 items. This structure allowed to

study the way in which 7 unclassified stimuli were categorized during a transfer

phase, after the learning of 5+4 = 9 stimuli. In this structure, 5 items belonged

to category A and 4 items belonged to category B, for a total of 5+4 = 9 learning180

items. The remaining 7 items were exclusively presented during a transfer phase.

Participants were instructed to press the response key corresponding to the right

category. A feedback indicated whether the chosen category was correct, except

in the transfer phase.

Stimuli. Stimuli varied along four Boolean dimensions (shape, color, size, and185

filling pattern). The values for each dimension were: square or circle for shape;

blue or gray for color; small or big for size; and plain or striped for filling

pattern. The combination of the values of the four Boolean dimensions formed

24 = 16 items (Figure 2, on the bottom). Each dimension was instantiated
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by the same physical feature for all participants. As seen in Figure 2, color190

differentiated the objects at the top of the hypercube from those at the bottom;

shape differentiated the objects at the front of the hypercube from those at the

back; size distinguished the objects in the left cube from those in the right cube;

and filling pattern differentiated the right and left objects within the cubes.

Phases. The experiment was composed of a supervised learning phase (in which195

feedback was provided at each trial), followed by an unsupervised transfer phase

(in which no feedback was provided). Participants had to correctly classify

stimuli in four consecutive blocks of 9 stimuli to complete the learning phase.

Once participants met this learning criterion, a transfer phase was initiated.

The transfer phase was composed of 5 blocks of 16 stimuli (the 9 learning items200

plus 7 transfer items).

Ordering of stimuli. During learning, training blocks we used to manipulate

order. These training blocks were alternated with random blocks, in which

stimuli were presented in a random order. The random blocks allowed to monitor

the learning process while the training blocks allowed to manipulate order of the205

stimuli. In training blocks, order was manipulated following either a rule-based

or a similarity-based order. Half of the participants were randomly assigned to

the rule-based condition.

In the rule-based order, the stimuli were ordered following a “principal rule

plus exceptions” structure, meaning that examples obeying the principal rule210

were presented strictly before the exceptions. The specific “principal rule plus

exceptions” structure on which the rule-based order was based is the following:

all gray items belong to category A except for the small hatched circle, while

all blue items belong to category B except for the big plain circle (see Figure

2, page 9). Therefore, the main rule was “gray items are members of category215

A and blue items are members of category B”, while the exceptions were the

small gray hatched circle and the big blue plain circle.

In the similarity-based order, members within a category were presented in

a way that maximized the similarity between adjacent learning stimuli. The
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first stimulus was randomly chosen, while subsequent stimuli were (randomly)220

chosen among those that were the most similar to the immediately previous item.

Similarity between two items was computed by counting the number of common

features that they shared and ties were solved randomly. The similarity-based

order was thought to have the objective of reinforcing exemplar memorization

(Elio & Anderson, 1981, 1984).225

In training blocks, categories were strictly blocked, meaning that stimuli

belonging to a same category were blocked together (AAAABBBB or BBBB-

AAAA). Because this repetitive order facilitated correct responses, random

blocks were added to test the participants independently of our manipulation of

order. In each random blocks, the nine stimuli were randomly permuted. For230

further details we refer the reader to (Mathy & Feldman, 2016).

3.1.2. Experiment 2

Experiment 2 was an extension of Experiment 1, but using a wider variety

of types of orders. In addition to the within-category manipulations used in

Experiment 1, both between-category manipulations and across-blocks manip-235

ulations were used. The introduction of these variations were thought to avoid

possible interaction with the chosen types of ordering (rule-based or similarity-

based). For instance, the blocked study might be beneficial for participants in

the rule-based condition, but might create a disadvantage in participants in the

similarity-based condition. Therefore, in comparison to Experiment 1, Experi-240

ment 2 was thought to improve the generality of our conclusions. In spite of the

presence of several factors in this second experiment, the analysis of the present

study only focused on the rule-based and similarity-based effects. The other

factors are expected to be analyzed in a separate study.

Participants. The participants were 130 sophomore or junior students from the245

University Côte d’Azur (France), who received course credits in exchange for

their participation.
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Categories and stimuli. The studied categories and stimuli were the same as in

Experiment 1.

Phases. As in Experiment 1, a learning phase was followed by a transfer phase.250

However contrary to Experiment 1, Experiment 2 made use of an unsupervised

random block (i.e., participants did not get any feedback while tested). This

modification was thought to better separate, at least in the participant’s mind,

the blocks dedicated to learning and those to testing. These unsupervised ran-

dom blocks allowed us to assess learning without neither order manipulation nor255

feedback interfering with the measure of performance. Experiment 2 made use

of two blocks of supervised learning (in which the order of the stimuli was ma-

nipulated and feedback was provided), followed by one block of unsupervised

learning (in which stimuli were randomly presented with no feedback). This

pattern was repeated until the end of the learning phase. The unbalanced ratio260

of 2 supervised blocks followed by 1 unsupervised block aimed at increasing the

influence of our manipulation, with the idea that the random block could inter-

fere with the learning process. Participants had to correctly classify stimuli in

three unsupervised blocks of 9 stimuli (not necessarily consecutive) to complete

the learning phase. Once participants met the learning criterion, the transfer265

phase was initiated. As in Experiment 1, the transfer phase was composed of 5

blocks of 16 stimuli.

Ordering of stimuli. The experiment was characterized by a full factorial de-

sign. Three factors were used, each one having two levels: a within-category

order manipulation (rule-based vs. similarity-based) (Mathy & Feldman, 2016),270

a between-category order manipulation (interleaved vs. blocked) (Carvalho &

Goldstone, 2014b), and a manipulation of order across blocks (variable vs. con-

stant). The combination of these types of order formed eight conditions (e.g.,

“rule-based + interleaved + constant”, etc.). The number of participants as-

signed to each condition is given in Table 1.275

In the interleaved order, categories were strictly alternated (ABABABAB),

while in the blocked order, categories were strictly blocked (AAAABBBB or

12



rule-based similarity-based

interleaved blocked interleaved blocked

constant 16 17 13 21

variable 14 15 15 19

Table 1: Number of participants assigned to each of the 8 conditions of Experiment 2.

BBBBAAAA). The introduction of random blocks during learning was thus

necessary to measure the learning process, because the regularity of the pat-

terns within blocks could hardly have participants commit classification errors.280

As described above, in the rule-based order, members within a category were

presented following a “principal rule plus exceptions” structure, while in the

similarity-based order, members within a category were presented in a way that

maximized the similarity between contiguous stimuli. In the variable manipu-

lation across blocks, the sequence of stimuli varied from one block to another285

(but obeying the constraints of the between- and within-category orders), while

in the constant manipulation across blocks, the same sequence of stimuli (again,

obeying the constraints of the between- and within-category orders) was pre-

sented in all blocks.

Procedure. The categorization task was computer-driven and was conducted290

online. Participants received instructions before the task began. Stimuli were

presented one at a time for 3 s on the center of the computer screen. Category

A was associated with the up key, while category B was associated with the

down key. Participants had to classify the stimulus in one of the two categories

(A and B) using these two response keys. Once the key pressed during the295

supervised blocks (exclusively), a feedback indicating the correctness of partic-

ipants’ classification appeared for 1 s at the bottom of the screen. If no key

was pressed, the text ’too late’ appeared for 1 s at the bottom of the screen. In

order to encourage learning, the percentage of correct responses in a block was

displayed for 1 s at the end of each random block.300

13



3.2. Statistical method

Here, we first describe how the parameters of the models were estimated

and we cite some numerical examples validating our estimation method. Then,

we review the statistical inference method used to determine which model best

accounts for category transfer. Numerical simulations were used to assess the305

robustness of the method.

3.2.1. Parameter Estimation

The parameters of the models were estimated using the Maximum Likelihood

Estimation (MLE) (Aldrich, 1997):

θ̂ ∈ arg min
θ∈Θ

{− logLM (D ; θ)} , (3)

where M denotes the model, LM its likelihood, and D the data-set used for the

estimation. The MLE was performed using the gradient descent algorithm. To

avoid local minima, the gradient descent algorithm was run 10 times, taking310

each time different initial conditions. Numerical simulations were conducted

to assess the quality of the parameter estimation as a function of the size of

the data-set. The results showed that an accurate estimation of the parameters

needed at least 40 blocks (for further details, see Chapter 4 of (Mezzadri, 2020)).

Both experiments meet this condition, guarantying an accurate estimation of315

the parameters.

3.2.2. Model selection

In order to fit the studied models to the transfer phase of both Experiment 1

and Experiment 2, we used the 5-fold cross-validation method. The use of this

technique was preferred to probabilistic statistical criteria, such as the Akaike320

Information Criterion (AIC) or the Bayesian Information Criterion (BIC), be-

cause of its flexibility and robustness. The 5-fold cross-validation method is

based on the holdout method, which consists in training the models on a subset

of the data and testing the models on the remaining subset. Using the 5-fold

cross-validation method, data are split in 5 sets and the holdout method is325
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applied 5 times. Each time, a different set is used as the testing set and the

remaining 5 − 1 = 4 sets are used as the training set. The choice of splitting

the data into 5 sets is motivated by the fact that it is common advice in the

literature to take either 5 or 10 sets (Arlot & Lerasle, 2016; Breiman & Spector,

1992; Hastie et al., 2009).330

The predictions of the models were evaluated with either the Sum of Squared

Deviations (SSD) or the likelihood. The SSD is given by the sum of the squared

difference between the prediction of the model and the participants’ response

across the testing set:

ESSD(M) =
∑

x(t)∈DT

(
Pθ̂M

(
A |x(t)

)
− z(t)

)2

, (4)

where M denotes the model; Pθ̂M
(
A |x(t)

)
is the prediction of the model for the

stimulus x(t); z(t) is the response given by the participant for the classification

of the stimulus x(t); and DT is the testing set. The parameter θ̂ was estimated

on the training set.

The evaluation of the model using the likelihood is given by:

EL(M) = − logLM (DT ; θ̂), (5)

where M denotes the model; LM its likelihood; θ̂ the estimated parameter335

on the training set; and DT the testing set. Both criteria are largely used in

mathematics and psychology. While in mathematics, the use of the likelihood

is generally preferred, especially when the parameter estimation is performed

using the MLE, in psychology, the use of the SSD is more popular than the

likelihood (Carvalho & Goldstone, 2019; Nosofsky et al., 1992, 1994, 2018b;340

Palmeri, 1999). Both criteria were adopted to simultaneously provide a more

robust evaluation and allow a continuity with previous studies.

Finally, the model characterized by the lowest averaged evaluation over the

5 application of the holdout method is the model that best fits our data-sets:

M̂ ∈ arg min
M

{ mean
i=1,...,5

Ei∗(M)}, (6)
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where Ei∗(M) is the evaluation of the model M obtained at the i-th application

of the holdout method using either the SSD or the likelihood criterion. The

final estimated parameter is obtained by using the MLE on the whole data-set:

θ̂ ∈ arg min
θ∈Θ

{− logLM (D ; θ)} , (7)

where M denotes the model, LM its likelihood, and D the whole data-set.

3.2.3. Numerical simulations

Numerical simulations were conducted to assess the robustness of the method.345

First, the studied models were used to generate a set of artificial data, and then,

the 5-fold cross-validation was applied to these artificial data-sets to determine

the model that best fits them. These steps were iterated 100 times to give a

statistical significance to the study. The results of the numerical simulations are

shown in Figure 3. The graph shows the percentage of times that the simulated350

data-sets were actually generated by the model that has the lowest evaluation

(by means of the SSD or the likelihood criteria). Both criteria gave similar

results.

If the model with the lowest evaluation was either GCM or OGCM-T, then

this model generated the simulated data-set with a probability of 77-82%. If the355

model with the lowest evaluation was either OGCM-A or OGCM-M, then this

model generated the simulated data-set with a probability of 51-56%. Finally

if the model with the lowest evaluation was OGCM-F, then this model gen-

erated the simulated data-set with a probability of 40%. Although OGCM-A,

OGCM-F, and OGCM-M were not easily distinguishable, the simulations ensure360

us that, when one of these three versions has the lowest evaluation, then the

generative model is a model accounting for the order received during learning

with a probability of 80-88%.
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Figure 3: Results of the numerical simulations assessing the robustness of the method. The

graph shows the percentage of times that the simulated data-sets were actually generated by

the model with the lowest evaluation (using the SSD or the likelihood criteria). The procedure

was iterated 100 times and a 5-fold cross-validation was adopted. Models were fit on the same

sequence of stimuli used in the transfer phase of Experiment 1. The parameters used to

simulate participants’ responses were the result of the application of the MLE to the transfer

phase of Experiment 1.
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3.3. Results

3.3.1. Experiment 1365

One participant (in the similarity-based order) did not meet the learning

criterion and was removed from the analysis.

Fitting all participants. Table 2 (on the top) shows the model selection criteria,

as well as the estimated parameters, when models were fit to the transfer phase

of Experiment 1. All participants were fit together. OGCM-M and OGCM-F370

were the models with the lowest evaluation with the SSD criterion (SSD=91.4),

and OGCM-M was the model with the lowest evaluation with the likelihood cri-

terion (− logL = 288.9). The numerical simulations ensure us that the model

underlying the data is a model that accounts for the order received during learn-

ing (i.e., OGCM-A, OGCM-F, or OGCM-M) with a probability of 80-88% (see375

Figure 3). However, the probability that the generative model is OGCM-M

specifically is much lower (50%). Therefore, although we cannot determine the

specific model underlying the data, we can affirm with a confidence of 80-88%

that the generative model is a model that integrates serial order during learning.

The estimated attention allocated to dimension 3 had the highest average value380

(ω̂3 = 0.36 on average). This is not surprising since the third dimension corre-

sponds to the feature that allows participants to reach the highest proportion

of correct responses, which is the color. Indeed using exclusively the cue color,

participants were able to correctly classify 5 of 7 learning items, which is the

highest attainable value with a single cue. The last column (i.e., ω̂O) is the col-385

umn with the highest standard deviation (σ = 0.07). The estimated attention

allocated to ordinal features was close to zero for OGCM-T (ω̂O = 0.06), and

far from zero for OGCM-A (ω̂O = 0.17), OGCM-F (ω̂O = 0.20), and OGCM-M

(ω̂O = 0.21). Moreover, the ordinal dimension was the second relevant dimen-

sion (after dimension 3) for OGCM-A, OGCM-F, and OGCM-M. Conversely,390

the ordinal dimension was the least relevant dimension for OGCM-T.

Fitting participants in the rule-based order. Table 2 (in the middle) shows the

model selection criteria and the estimated parameters, when only participants
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in the rule-based order were considered. OGCM-M and OGCM-F were the

models with the lowest evaluation with the SSD criterion (SSD=43.5), while395

OGCM-A was the model with the lowest evaluation with the likelihood criterion

(− logL = 141.2). Again, the estimated attention allocated to dimension 3 had

the highest average value (ω̂3 = 0.59 on average). However, its average value was

1.62 times higher than the average value obtained fitting all participants. This

means that the rule-based order induced participants to almost exclusively focus400

their attention to the dimension corresponding to the principal rule. Although

the values on the other dimensions is low, we observe that the ordinal dimension

was the second relevant dimension for OGCM-A, OGCM-F, and OGCM-M,

while for OGCM-T was the least relevant dimension.

Fitting participants in the similarity-based order. Table 2 (on the bottom) shows405

the model selection criteria and the estimated parameters, when only partici-

pants in the similarity-based order were considered. OGCM-M and OGCM-F

were the models with the lowest evaluation with the SSD criterion (SSD=46.0),

and OGCM-M was the model with the lowest evaluation with the likelihood cri-

terion (− logL = 143.5). Again, the estimated attention allocated to dimension410

3 had the highest average value (ω̂3 = 0.27 on average). However, this value

was 2.17 times lower than the average value obtained fitting participants in the

rule-based order. This difference shows that participants in the rule-based or-

der were highly biased toward the dimension associated with the principal rule,

while participants in the similarity-based order allocated less attention to this415

particular dimension. Moreover, the average value of the attention allocated to

dimension 4 was significantly higher as compared to the one obtained fitting

participants in the rule-based order (ω̂4 = 0.23 for similarity-based participants

and ω̂4 = 0.09 for rule-based participants). We also observe that the attention

directed to the ordinal dimension had the same magnitude as the attention allo-420

cated to other dimensions, for OGCM-F (ω̂O =0.19) and OGCM-M (ω̂O =0.21).

However, the attention directed to the ordinal dimension had a lower or neg-

ligible magnitude as compared to the attention allocated to other dimensions,
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for OGCM-A (ω̂O =0.10) and OGCM-T (ω̂O =0.01). Finally, the average value

of the estimated sensitive parameter ĉ was lower as compared to the one of the425

rule-based participants (ĉ = 10.98 in the rule-based order and ĉ = 7.38 in the

similarity-based order). This means that participants in the similarity-based

order classified items giving more importance to the closest items.

3.3.2. Experiment 2

A total of 42 participants were removed from the analysis: 6 of them (1 in the430

rule-based + blocked + variable condition, 2 in the rule-based + interleaved +

constant, 2 in the similarity-based + blocked + variable, and 1 in the similarity-

based + interleaved + variable) did not meet the learning criterion, and the

remaining 36 (3 in the rule-based + interleaved + constant condition, 4 in the

rule-based + interleaved + variable condition, 4 in the rule-based + blocked435

+ constant condition, 5 in the rule-based + blocked + variable condition, 1

in the similarity-based + interleaved + constant condition, 6 in the similarity-

based + interleaved + variable condition, 9 in the similarity-based + blocked +

constant condition, and 4 in the similarity-based + blocked + variable condition)

correctly classify less than 75% of the training items during the transfer phase.440

These participants were removed because we were interested in observing how

categories were represented in participants who learned and remembered the

categorization. The fact that almost 28% of participants did not remember the

classification once they reached the transfer phase is probably due to running

the experiment online.445

Regarding empty cells in the data-set, participants did not select a category

in 1.4% of the analyzed data. For these trials, one of the two categories was

randomly selected to facilitate modeling.

Fitting all participants. Table 3 (on the top) shows the model selection criteria,

as well as the estimated parameters, when models were fit to the transfer phase450

of Experiment 2. All participants were fit together. OGCM-F had the lowest

evaluation with both criteria (SSD=175.2 and − logL = 560.6). Similarly to
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the results on Experiment 1, the estimated attention allocated to dimension 3

had the highest average value (ω̂3 = 0.35 on average). Moreover, the ordinal

dimension was the second relevant dimension for OGCM-F (ω̂O =0.18), while455

for the other versions the ordinal dimension was the least relevant (for OGCM-A

ω̂O =0.13, for OGCM-M ω̂O =0.11, and for OGCM-T ω̂O =0.08).

Fitting participants in the rule-based order. Table 3 (in the middle) shows the

model selection criteria and the estimated parameters, when only participants

in the rule-based order were considered. OGCM-A and OGCM-F had the low-460

est evaluation with both criteria (SSD=84.2 and − logL = 271.0). Again, the

estimated attention allocated to dimension 3 had the highest average value

(ω̂3 = 0.42 on average) and its was 1.19 times higher than the average value

obtained fitting all participants. This confirms that the rule-based order en-

couraged participants to focus their attention on the dimension corresponding465

to the principal rule. In OGCM-A, OGCM-F, and OGCM-M, the attention allo-

cated to the ordinal dimension had the same magnitude as the other dimensions,

with the exception of dimension 3 (ω̂O =0.15, 0.19, and 0.14, respectively). In

OGCM-T, the attention allocated to the ordinal dimension had a lower magni-

tude as compared to all other dimensions (ω̂O =0.09).470

Fitting participants in the similarity-based order. Table 3 (on the bottom) shows

the model selection criteria and the estimated parameters, when only partici-

pants in the similarity-based order were considered. OGCM-A and OGCM-F

were the models with the lowest evaluation with the SSD criterion (SSD=90.2),

and OGCM-A was the model with the lowest evaluation with the likelihood475

criterion (− logL = 287.5). The dimension that received the highest attention

were dimensions 3 and 4 (ω̂3 = 0.28 and ω̂4 = 0.27 on average). Similarly to

Experiment 1, the average estimated attention given to dimension 3 was 1.56

times lower than its average estimated value obtained fitting participants in the

rule-based order. Again, this difference shows that participants in the rule-based480

order were more likely to be biased toward the dimension associated with the

principal rule. As in Experiment 1, the average value of the attention allocated
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to dimension 4 was higher as compared to the one obtained fitting participants in

the rule-based order (ω̂4 = 0.27 for similarity-based participants and ω̂4 = 0.16

for rule-based participants). We also observe that the ordinal dimension was485

relevant only for OGCM-A and OGCM-F (ω̂O =0.18 and 0.17, respectively).

Finally inversely to Experiment 1, the average value of the estimated sensitive

parameter ĉ has the same magnitude as the one of the rule-based participants.

We believe that the introduction of variations in between-category and across-

blocks orders lessened the effect of the blocked study and constant manipulation490

across blocks on the parameter c.

4. Discussion

Previous models of category learning and transfer have rarely taken into ac-

count the order in which stimuli are actually encountered (Diamond & Kirkham,

2005; Komatsu, 1992; Murphy, 2002). Our research addressed this question,495

with a particular focus on within-category ordering (rule-based vs. similarity-

based orders).

Our main contribution includes the development of OGCM, a model that

accounts for sequencing effects by extending the usual feature space in GCM

to serial order. OGCM describes how temporal proximity between stimuli “dis-500

torts” the psychological space generated by the chosen examples. We found that

OGCM is the model that best fits the transfer phase of both Experiment 1 and

Experiment 2. In particular, the data-set of Experiment 1 was best fit (on aver-

age) by OGCM-M, which integrates the median order received during learning,

while the data-set of Experiment 2 was best fit (on average) by OGCM-F, which505

integrates the most frequent order received during learning. Investigating the

reasons of this difference is an open interesting perspective.

In both cases, a model including ordinal features of the learning phase had

the lowest model selection criterion. Moreover, the numerical simulations we

conducted guarantee with a high confidence (80-88%) that the model underlying510

our data is a model that accounts for serial order during learning. Finally, by
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analyzing the attention parameter allocated to the ordinal dimension, we found

that its estimated value was significantly higher when attention was focused on

ordinal information of the learning phase rather than when attention was focused

on ordinal information of the transfer phase. This shows that the integration515

of the order in which stimuli were encountered during the learning phase can

allow an ordinal model to better describe the data.

By separately fitting participants in the rule-based and similarity-based or-

ders, we found that participants in the rule-based condition allocated greater

attention to the dimension associated with the principal rule as compared to par-520

ticipants in the similarity-based condition (this dimension was also the most rel-

evant for both groups). Moreover in Experiment 1, participants in the similarity-

based order directed greater attention to both the 4-th and ordinal dimensions

as compared to participants in the rule-based order. This shows that, in the ab-

sence of the perception of a main cue, participants in the similarity-based order525

relied more on ordinal information along with an additional physical feature to

classify stimuli. Similarly to Experiment 1, in Experiment 2 the attention allo-

cated to dimension 4 was higher in participants in the similarity-based order as

compared to participants in the rule-based order. However, the difference in at-

tention directed to ordinal information was no longer there. Further analyses are530

needed to determine whether the introduction of variations in between-category

and across-blocks orders in Experiment 2 erased this difference.

Although GCM has extensively proved to provide good prediction in a large

variety of contexts, it is not sensitive to sequencing effects. OGCM improves

GCM by conferring the original context model the ability to adapt its predictions535

on the basis of the sequences of examples received by participants. This allowed

OGCM to better describe the data, as well as to quantify the relevance of ordinal

information on participants’ classification.

As seen in the introduction, another promising modification of GCM is SAT-

M. SAT-M adds to GCM four encoding weight parameters that enables the540

modulation of the difference between the current stimulus and the immediately

preceding one. Our model is more minimalist since it extends GCM by adding
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one more parameter. Moreover, the higher the number of parameters, the higher

the number of blocks that are necessary to obtain an accurate estimate. There-

fore, OGCM appears statistically more robust than SAT-M, given a data-set of545

a specific size.

Finally, comparing OGCM with the MAC strategy model, OGCM has a

more general formulation and can be applied to a larger variety of categories.

The MAC strategy also classifies items on the basis of the relative difference be-

tween the current stimulus and the immediately preceding stimulus. Therefore,550

this strategy can only account for the contiguity of pairs of stimuli and cannot

account for the temporal proximity of the whole set of stimuli. Moreover, the

MAC strategy model can exclusively be applied to mono-dimensional stimuli in

which an ordinal relation between them can be defined (e.g., tones ordered from

the lowest frequencies to the highest frequencies).555

4.1. Limitations and Perspectives

Although OGCM was the model that best performed, the model selection

criteria of the studied models were overall similar. Further analyses and dif-

ferent experiments are needed to pursue the investigation of the potential gain

of integrating ordinal or temporal features into a model. One perspective is to560

compare the performance of GCM and OGCM in categorization tasks character-

ized by different stimuli and different categories. This comparison would allow

us to determine whether the advantage of integrating the sequence of study is

preserved with different materials and study conditions.

Our study was explicitly focused on transfer models and did not include565

learning models (Ashby et al., 1998; Erickson & Kruschke, 1998; Gluck & Bower,

1988; Kruschke, 1992; Kruschke & Johansen, 1999; Love et al., 2004; Nosofsky

& Palmeri, 1998). Learning models integrate a learning mechanism that allows

them to adjust their predictions over time. However, this feature does not

necessarily imply their sensitivity to different types of order. Plus, sensitivity570

to order could exist independently of the exact learning mechanisms. A second

perspective is to consider learning models and to assess their ability to predict
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different mental representations of the learned categories as a function of the

sequence being studied.

Because we explicitly focused on transfer models, we exclusively considered575

order effects during transfer. However, research has shown that different types

of order can also impact the speed at which categories are learned (Elio & An-

derson, 1981; Kang & Pashler, 2012; Kornell & Bjork, 2008; Mathy & Feldman,

2009). Therefore, a third perspective is to understand whether learning models

are capable of reproducing these findings.580

Finally, our study only examined within-category orders, in particular rule-

based vs. similarity-based orders. Other types of orders, such as interleaved

vs. blocked study or dissimilarity-based vs. similarity-based orders, has been

largely proven to impact the way we learn and represent categories as well

(Birnbaum et al., 2012; Carvalho & B. Albuquerque, 2012; Carvalho & Gold-585

stone, 2014b, 2015a; Carpenter & Mueller, 2013; de Zilva & Mitchell, 2012;

Kang & Pashler, 2012; Kornell & Bjork, 2008; Kornell et al., 2010; Kost et al.,

2015; Kurtz & Hovland, 1956; Mathy & Feldman, 2009; Rawson et al., 2014;

Rohrer, 2009, 2012; Sana et al., 2016; Taylor & Rohrer, 2010; Yan et al., 2017;

Wahlheim et al., 2011, 2012; Zulkiply & Burt, 2012; Zulkiply et al., 2012). A590

fourth perspective includes the study of the ability of the existing categorization

models to predict whether different study sequences will be more or less bene-

ficial to learners. This could significantly improve the way we adapt stimulus

presentation to help learning.
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SSD -logL ĉ ω̂1 ω̂2 ω̂3 ω̂4 ω̂O

GCM 93.1 293.8 7.6 0.22 0.20 0.37 0.21 -

OGCM-A 92.0 290.7 7.4 0.17 0.14 0.36 0.15 0.17

OGCM-F 91.4 289.3 7.3 0.16 0.14 0.36 0.14 0.20

OGCM-M 91.4 288.9 7.3 0.16 0.13 0.36 0.14 0.21

OGCM-T 92.9 293.5 7.7 0.20 0.19 0.37 0.19 0.06

(a) Fitting all participants

SSD -logL ĉ ω̂1 ω̂2 ω̂3 ω̂4 ω̂O

GCM 44.7 144.8 8.3 0.18 0.17 0.51 0.15 -

OGCM-A 43.6 141.2 17.4 0.06 0.05 0.76 0.04 0.09

OGCM-F 43.5 141.4 10.3 0.10 0.09 0.59 0.07 0.14

OGCM-M 43.5 141.3 10.2 0.10 0.09 0.58 0.07 0.15

OGCM-T 44.6 144.7 8.7 0.16 0.15 0.51 0.13 0.06

(b) Fitting all participants in the rule-based order

SSD -logL ĉ ω̂1 ω̂2 ω̂3 ω̂4 ω̂O

GCM 46.7 145.4 7.6 0.24 0.21 0.29 0.26 -

OGCM-A 46.4 144.9 7.4 0.21 0.18 0.27 0.23 0.10

OGCM-F 46.0 143.9 7.2 0.19 0.15 0.26 0.21 0.19

OGCM-M 46.0 143.5 7.1 0.19 0.14 0.25 0.21 0.21

OGCM-T 46.7 145.4 7.6 0.23 0.21 0.29 0.26 0.01

(c) Fitting all participants in the similarity-based order

Table 2: Goodness-of-fit of the GCM and the OGCM to the transfer phase of Experiment 1,

as well as the estimated parameters. Models were fit to all the participants (on the top), to

participants in the rule-based order (in the middle), and to participants in the similarity-based

order (on the bottom). A 5-fold cross-validation was used. Parameters were estimated using

the MLE and models were evaluated using either the SSD or the likelihood.
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SSD -logL ĉ ω̂1 ω̂2 ω̂3 ω̂4 ω̂O

GCM 176.7 564.4 7.8 0.23 0.17 0.36 0.24 -

OGCM-A 175.6 561.6 7.8 0.19 0.13 0.35 0.20 0.13

OGCM-F 175.2 560.6 8.0 0.17 0.10 0.36 0.18 0.18

OGCM-M 175.9 562.4 7.8 0.20 0.13 0.35 0.21 0.11

OGCM-T 176.1 562.8 7.9 0.21 0.15 0.35 0.22 0.08

(a) Fitting all participants

SSD -logL ĉ ω̂1 ω̂2 ω̂3 ω̂4 ω̂O

GCM 85.3 274.1 7.9 0.23 0.15 0.43 0.20 -

OGCM-A 84.2 271.0 7.8 0.18 0.09 0.44 0.14 0.15

OGCM-F 84.2 271.0 7.9 0.18 0.09 0.39 0.15 0.19

OGCM-M 84.3 271.4 7.9 0.19 0.10 0.43 0.14 0.14

OGCM-T 84.8 272.9 8.1 0.20 0.13 0.41 0.17 0.09

(b) Fitting all participants in the rule-based order

SSD -logL ĉ ω̂1 ω̂2 ω̂3 ω̂4 ω̂O

GCM 90.7 289.1 8.0 0.21 0.18 0.31 0.30 -

OGCM-A 90.2 287.5 8.1 0.17 0.13 0.27 0.25 0.18

OGCM-F 90.2 289.9 8.1 0.17 0.13 0.27 0.26 0.17

OGCM-M 90.5 288.5 8.0 0.18 0.15 0.28 0.27 0.12

OGCM-T 90.6 288.6 8.0 0.20 0.16 0.29 0.27 0.07

(c) Fitting all participants in the similarity-based order

Table 3: Goodness-of-fit of the GCM and the OGCM to the transfer phase of Experiment 2,

as well as the estimated parameters. Models were fit to all the participants (on the top), to

participants in the rule-based order (in the middle), and to participants in the similarity-based

order (on the bottom). A 5-fold cross-validation was used. Parameters were estimated using

the MLE and models were evaluated using either the SSD or the likelihood.
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