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Abstract: In this work we present a novel classification model that can detect kick-scooters
from inertial and pressure sensors. The detection is performed with kick-scooters being trained
with other activities and transportation modes including still, walking, biking, taking bus and
tramway. Results show that kick-scooters can be precisely detected up to 99% for three different
sensor placements: on-foot, waist-attached and in the trouser’s pocket. Thus, this paper provides
a first contribution where kick-scooters can be classified and studied for further applications such
as mobility behavior analysis and navigation.
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1. INTRODUCTION

Micro-mobility refers to lightweight and speed-limited
urban locomotion. Recently, it has become part of the
global urban transportation ecosystems. Within the large
range of existing micro-vehicles, such as bikes, segways,
mono-wheels, skateboards, or hoverboards, kick-scooters
together with bikes seem to be the most popular even
among adults and seniors. For instance, the Priestman-
Good’s kick-scooter for life 1 was specifically designed
to promote physical activity for the elderly. Furthermore,
kick-scooters seem to be an effective solution to the prob-
lem of the first mile last mile (FMLM) distance, McKenzie
(2020), i.e. the distance between home or work and the
nearest public transport station. In fact, transit accessibil-
ity was found to be highly increased by the use of bikes over
walking to travel the FMLM distance, Zuo et al. (2020).
Though, the same conclusion could be made for any other
micro-vehicle since the important factor is the speed of
motion. Note that the lack of speedy mobility is an increas-
ing factor to travelling the FMLM distance by individual
motorized vehicles, Shiv et al. (2018). The popularity of
kick-scooters can further be explained by their efficiency in
meeting both the citizens need for rapidity and availability,
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as they can be parked easily due to their small size; they
can also be folded for a major part of them, and therefore
can be carried in public transport, unlike bicycles, but
they additionally meet the environmental requirements
of a green and smooth mobility as they are either hu-
man powered or electric. From the infrastructure usage
perspective, kick-scooters are pretty convenient as they
are allowed to share bike lanes and other public spaces,
Kostrzewska and Macikowski (2017). In summary, kick-
scooters seem to be user-friendly, healthy, and recreational
for both adults and younger populations, Kostrzewska and
Macikowski (2017). Yet, they are still not much considered
in recent researches dedicated to transportation mode de-
tection (TMD) methods, whereas travel mode information
is crucial for analyzing mobility behaviors and adapting
policies to environmental and traffic challenges. This pa-
per aims at filling this gap through the elaboration of a
classification model that recognizes kick-scooters among
other transportation modes that include on-foot activities,
bike, tramway, and bus.

The integration of kick-scooter detection is novel to TMD
methods. To the best of the authors knowledge, the only
study that has ever considered classifying kick-scooter
data, Prentow et al. (2015), was based on a dataset con-
taining only 10 minutes of kick-scooter signals from an
unknwon number of participants. Thus, as a first step
towards the integration of kick-scooters to the global land-
scape of common TMD methods, we use an improved
database of 48 hours collected by 34 participants, including
4 hours of kick-scooter signals from 18 participants using
low-cost inertial and pressure sensors. With this dataset,
we suggest two classification models selected based on the
accuracy of kick-scooter detection for 3 different place-
ments of the sensors: on-foot, waist-attached, and in the
trouser’s pocket.

https://www.priestmangoode.com/project/scooter-for-life/


The paper is organized as follows: Section 2 presents an
overview of existing TMD studies. Section 3 presents data
collection. Section 4 is about the classification approach.
Section 5 provides the results of the classification. Section
6 is a brief conclusion of this work.

2. RELATED WORKS

Several technologies have been used for TMD purposes.
For example, Global Positioning Systems (GPS), Xiao
et al. (2015), or mobile networks, Huang et al. (2019).
Besides, Geographical Information Systems (GIS), Gong
et al. (2012), Semanjski et al. (2017), have been a valuable
aid to these methods. Less common are methods based
on Bluetooth or Wireless Fidelity (WIFI), Coroamă et al.
(2019). Also, inertial sensors have been extensively used for
TMD purposes: accelerometers, Liang and Wang (2017),
gyroscopes, Zhao et al. (2019), barometers and magne-
tometers, Su et al. (2017). More recently, microphones
have also shown promising TMD results, Carpineti et al.
(2018). In general, multiple data sources are fused to in-
crease the classification accuracy. For example, accelerom-
eter and GPS, Shafique and Hato (2015), inertial sensors
and a microphone in Carpineti et al. (2018), inertial sen-
sors, a light sensor, a barometer, and a magnetometer in
Su et al. (2017).

As for the considered transportation modes, a refining
of TMD classifications has been observed through time.
While only on-foot versus few vehicle modes were rec-
ognized in the first TMD works, Gonzalez et al. (2010),
today car, Gonzalez et al. (2010), bus, Shafique and Hato
(2015), train, and metro, Wang et al. (2019), have all
been considered individually. Furthermore, electric bikes
(E-bike) versus human-powered bikes were distinguished
in Xiao et al. (2015). Recently, combined indoor-outdoor
TMD works have also been developed, Taia Alaoui et al.
(2021). Kick-scooters have been considered in Prentow
et al. (2015) with a very limited sample size of 10 minutes.

Previous TMD studies have shown that decision trees
and more specifically random forests (RF) are the most
efficient in the case of TMD problems, Carpineti et al.
(2018), Lorintiu and Vassilev (2016), Wang et al. (2018).
Lately, many studies suggested that neural networks also
provide satisfying results, for example feed-forward neural
networks (ANN), Fang et al. (2017), convolutional neural
networks (CNN), Liang and Wang (2017), and long-short
term memory (LSTM) neural networks, Asci and Guven-
san (2019). Generally, several algorithms are compared for
model selection, Carpineti et al. (2018), Wang et al. (2019).

In terms of dataset, few databases are publicly available,
Carpineti et al. (2018), Yu et al. (2014). Overall, the
sample size, i.e. number of participants, is generally low or
absent. For example, this information is lacking in Liang
et al. (2019), Liang and Wang (2017), Asci and Guvensan
(2019) and Ballı and Sağbaş (2017). On the other hand,
few studies indicate the placement of the sensors on
the body, Zhao et al. (2019), Wang et al. (2019), and
Ahmed et al. (2019). Thus, these discrepancies in terms of
sample size and data description and availability, together
with the differences in adopted classifications, make the
major part of TMD studies unreproducible. One of the
objectives of this study is to allow reproducibility and

provide enough information on the database construction
and the methodological approach.

3. DATA COLLECTION

In this study, 34 healthy adults volunteered for the exper-
iments, 20 males and 14 females. They were aged from 18
to 50. Experiments were led during workdays at different
hours, including rush hours (8-9am, 12-2pm, 4-6pm) and
under different weather conditions (sunny, cloudy, rainy).
The trips were planned in advance using an experimental
protocol document given to the participants together with
a data use agreement at the moment of their arrival. They
were equipped in the laboratory office and were accompa-
nied during the whole experiment by the person in charge
of later labelling the data. In the experimental protocol,
2 different buses and tramways had to be taken by each
participant in order to vary the signal patterns relative to
each vehicle. For biking and scooter-riding, a minimum
trip duration was imposed. However, participants were
free to make longer trips for these two transportation
modes. 18 subjects collected data from a kick-scooter.
They were asked to switch legs during experiments in order
to prevent any biases related to the choice of the pushing
leg. The total number of used kick-scooters was 6. The
left locomotion modes involved at least 20 different par-
ticipants and included walking, biking, and taking public
transport (tramway, bus). However, some of these classes
have more than 20 participants, such as walking with a
number of 34 participants. The recordings were made using
3 Inertial Measurements Units (IMUs) that include a 3-
axis accelerometer, a 3-axis gyroscope and a barometer
each. They were placed on the foot, on the waist and in
the trousers’ pocket (Fig. 1). The smartwatch, camera,
wrist-worn, and hand-held IMUs are of not interest in this
study. The total time duration of the data collected is
around 48 hours. The total duration of collected signals
for each locomotion mode is given in Fig. 2. This dataset
was publicly released and can be accessed through this
link 2 . The data used in this work were subsampled at a
frequency of 32Hz.

Camera

Smartwatch

Waist-attached IMU

Foot-mounted IMU

IMU placed in the pocket

Hand-held IMU

Wrist-worn IMU

Fig. 1. Placement of the sensors on the body

4. CLASSIFICATION APPROACH

4.1 Adopted classification

Fig. 3 shows the adopted classification in this paper that
consists of 5 classes: Still - Walk - Bike - Public Transport
2 https://perscido.univ-grenoble-alpes.fr/datasets/DS310
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Fig. 2. Accumulated time duration for each transportation
mode

(PT), resulting from the fusion of tramway and bus, and
Kick-scooter (KS).

Fig. 3. Transportation modes considered in this study

4.2 Pre-processing of signals

In order to remove peaks that are isolated and that do
not relate to the transportation modes (eg. somebody
touching their head or moving hands), signals have been
pre-processed as follows:

• Acceleration and angular rate: a sliding window of
1sec was used to computed signal frames, without
overlapping. Based on the boxplot of each signal
frame, the upper and lower outliers were respectively
replaced by the maximum and minimum of the box-
plot. This processing was applied to each axis inde-
pendently before computing the signals norms.

• Atmospheric pressure: Due to high frequency noise in
measured pressure, the raw signal was replaced by its
average envelope.

In addition, all signals were standardized according to
equation (1) in order to avoid any training biases related
to scale and unit.

Scaled(Xk) =
Xk − µ

σ
(1)

where Xk is the kth term of the time series X to be scaled,
µ is the mean of the time series and σ is its standard
deviation.

4.3 Classification algorithms

A CNN and RF have been selected in this work. Their ar-
chitecture is unique to this classification problem. For RF,
the model designing is rather intuitive as it consists in only
choosing the number of trees, which is 60, and the number
of features to be used in each tree, which is 8. The chosen
split criterion is the Gini index. For the CNN, multiple
tests have been performed by varying the model archi-
tecture (number of layers) and parameters (learning rate,

optimizer, etc.) for model selection. The CNN architecture
consists of 3 convolutional layers of 30 filters each. The
kernel (or filter size) was respectively of 3/8sec for the first
layer, 3/4sec for the second, and then 3/2sec for the last
convolutional layer. This way, the kernel was first chosen
very small and was gradually increased in order to catch
different data structures inside signal frames. A Maximum
pooling of 2 was chosen after each convolutional layer. Two
fully connected dense layers relate the convolutional layers
to the neural network output layer. They have respectively
200 and 50 neurons. The chosen activation function for the
three convolutional layers was LeakyRelu with an Alpha
(or slope) value equal to 0.1. The activation function of the
dense layers was the relu function. The output layer which
has 5 neurons corresponding to the classes has a softmax
activation function. The cost function was the categorical
cross-entropy. The chosen optimizer was Adam, with a
learning rate initialized at 0.01. The stopping criterion was
based on the validation loss.

4.4 Feature computation

Data were manually segmented and labelled by an expert
person according to a segmenting window of 3sec that
was empirically chosen. Afterwards, time and frequency-
domain features were calculated, see Table 1. The features
computed in this study can be also found in the literature
such as in Wang et al. (2019). RF automatically selects
the most relevant features while constructing the differ-
ent decision trees. For the CNN, we chose to train the
algorithm directly using the preprocessed signal frames
rather than using descriptive features. In fact, ordering
descriptive features as if they were an image, for example
in Yanyun et al. (2017), may result in totally different
models based on the order of the features. Besides, this
order lacks physical equivalent, while the internal structure
of a time sequence remains relevant and does not interfere
with the model design.

4.5 Statistical tools to assess the classification performance

A 3 fold-cross validation process was realized. Therefore,
the confusion matrices given in section 5 have float terms.
In each fold, 70% of labelled data were used for training
and the left 30% were used for validation. The statistical
tools used to evaluate the classification are valid for
a binary classification, and for multi-class problems by
recursively considering each class as Positive and all others
as Negative. Then, each confusion matrix has 4 types of
data: True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). Due to the
unequal time-distribution of the transportation modes,
the overall accuracy is provided together with the macro-
averaged F1-Score as the latter is not sensitive to class
distribution. Details about these accuracy metrics can
be found in Hossin and Sulaiman (2015). In this work,
confusion matrices have columns dedicated to ground
truth, and rows dedicated to predictions.

In terms of data size, 510532 samples were used for training
and 170178 for testing with the foot-mounted sensor,
473574 for training and 157858 for testing with the waist-
attached sensor, and 491778 train samples and 163927 test
samples with the sensor placed in the trouser’s pocket.



Table 1. Training dataset composition

Signal channel Features

Acceleration norm (norm
acc), Gradient of the norm
of acceleration (grad acc),
Integral of the norm of ac-
celeration (int acc), Angular
rate norm (norm gyr), Gra-
dient of the norm of angular
rate (grad gyr), Integral of
the norm of angular rate (int
gyr)

Mean, Energy, Standard deviation,
Variance, Main frequency compo-
nent, Power of the main frequency
component, Spectral energy be-
tween 0 and 2Hz, Spectral energy
ratio between 0 and 2Hz, Spec-
tral energy between 2 and 4Hz,
Spectral energy ratio between 2
and 4Hz, Spectral energy between
4 and 10Hz, Spectral energy ratio
between 4 and 10Hz, Spectral en-
ergy between 10 and 30Hz, Spectral
energy ratio between 10 and 30Hz,
Spectral centroid, Spectral spread,
Entropy, Number of zero crossings

Smoothed pressure (pres) Spectral centroid, Spectral Spread,
Number of zero crossings after scal-
ing, Main frequency component,
Power of the main frequency com-
ponent, spectral energy between 0
and 2Hz, Spectral energy ratio be-
tween 0 and 2Hz, Spectral energy
between 2 and 4Hz, Spectral energy
ratio between 2 and 4Hz, Spectral
energy between 4 and 10Hz, Spec-
tral energy ratio between 4 and
10Hz, Spectral energy between 10
and 30Hz, Spectral energy ratio be-
tween 10 and 30Hz

Gradient of smoothed pres-
sure (grad pres) and inte-
gral of smoothed pressure
(int pres)

Mean, Min, Max, Standard devi-
ation, Main frequency component,
Power of the main frequency com-
ponent, Spectral centroid, Spectral
spread, Number of zero crossings

5. CLASSIFICATION RESULTS AND ANALYSIS

5.1 RF Algorithm

Feature importance Fig. 4, Fig. 5 and Fig. 6 show
the computed importance of each input feature. Two
thresholds were chosen to create 3 feature importance
groups: the highest in red, average in green and the lowest
in blue. The features are given numbers from 0 to 139.
From these figures, it is observed that the same signal
channels do not have the same importance depending
on the placement of sensors. For instance, for the foot-
mounted sensor, the most important features are based
on the gradient of acceleration (feature number between
18 and 36). We observe a strong concentration of the
important features in this channel over all the left ones. For
the waist-attached sensor, the acceleration norm (between
0 and 17) seems more important than the gradient of
acceleration. The gradient of pressure and pressure-based
features are also classified as highly important (between
108 and 139). Finally, for the sensor placed in the trouser’s
pocket, the distribution of the most important features is
sparse and involves first the pressure-based features, the
gradient of acceleration, the integral of acceleration (37-
55), and the gradient of angular rate (75-93).

Fig. 4. Feature importance for the foot-mounted sensor

Fig. 5. Feature importance for the waist-attached sensor

Fig. 6. Feature importance for the sensor placed in the
pocket

Foot-mounted sensor The results of the classification for
the foot-mounted sensor are given in Table 2. The mean
overall accuracy, computed for 3 random folds, is 99.76%
and the mean Macro-averaged F1-Score is 98.97%. The
mean F1-Score relative to kick-scooter is 99.00%.

Waist-attached sensor The results of the classification
for the waist-attached sensor are given in Table 3. The
mean overall accuracy is 99.72% and the mean Macro-
averaged F1-Score is 98.98%. The mean F1-Score relative
to kick-scooter is 99.60%.



Table 2. Confusion Matrix for the foot-
mounted sensor using RF algorithm

Still Walk Bike PT KS

Still 4339.7 0 5.7 55.7 0.7
Walk 0 6410.7 6.3 40 7.7
Bike 0 0.7 4225.7 17 18.3
PT 112.3 14 48.3 149351 22.3
KS 0 12.7 30 14.3 5445

Table 3. Confusion Matrix for the wais-
attached sensor using RF algorithm

Still Walk Bike PT KS

Still 4616 1.7 3.7 48 0
Walk 0 8575 18.3 28.3 10
Bike 0 8.3 3981.7 37 0.7
PT 172.7 25.7 60 135040.7 18.7
KS 0.3 2.3 3.3 6 5199.7

Pocket-placed sensor The results of the classification for
the sensor located in the pocket are given in Table 4. The
mean overall accuracy is 99.81% and the mean Macro-
averaged F1-Score is 99,33%. The mean F1-Score relative
to kick-scooter is 99.58%.

Table 4. Confusion Matrix for the sensor in the
pocket using RF algorithm

Still Walk Bike PT KS

Still 4726 0 0 17 0
Walk 0 6831.7 35.5 18.7 17
Bike 2.3 16 6727.3 27.3 0.3
PT 83.3 8 35.7 137562.3 7.7
KS 8.3 10.3 12.7 8.7 7771

5.2 CNN Algorithm

Foot-mounted sensor The results of the classification for
the foot-mounted sensor are given in Table 5. The overall
accuracy is 97,67% and the Macro-averaged F1-Score is
88,33%. For the kick-scooter, the F1-Score is 94,2%.

Table 5. Matrix for the foot-mounted sensor
using the CNN

Still Walk Bike PT KS

Still 2103 45 6 532.3 4.7
Walk 32 6106.3 7.7 68.3 46
Bike 2 2.7 4016 137 192.7
PT 2246.3 101.7 145.3 148789 112.3
KS 1.7 24.3 185 77.3 5193.3

Waist-attached sensor The results of the classification
for the waist-attached sensor are given in Table 6. The
mean overall accuracy is 97.07% and the mean Macro-
averaged F1-Score is 87.61%. The kick-scooter relative
mean F1-Score is 91.8%.

Table 6. Confusion Matrix for the waist-
attached sensor using the CNN

Still Walk Bike PT KS

Still 2614.7 21 6.7 718.7 1
Walk 176.7 8439 38 118.7 41.7
Bike 12 12.3 3670.3 176 114.3
PT 2030.7 151.3 284.3 133797.7 90
KS 12 50.3 368.7 216 5003

Sensor placed in the trouser’s pocket The results of the
classification for the sensor put in the pocket are given
in Table 7. The mean overall accuracy is 94.34% and the
mean Macro-averaged F1-Score is 90.77%. The mean F1-
Score relative to the kick-scooter is 94.15%.

Table 7. Confusion Matrix for the sensor in the
pocket using the CNN

Still Walk Bike PT KS

Still 3082.7 56.3 10 641 4
Walk 9 6546.7 18.7 33.7 54
Bike 29.3 19.7 6150 133 167
PT 1804 62.7 122.3 136707.7 133
KS 14 41.7 345 180.7 7562

5.3 Discussion of the results

Fig. 7 recapitulates the F1-Scores obtained for the class
kick-scooter using RF and CNN. It is observed that RF
outperforms the CNN. One possible explanation for this
result is that RF is itself an embedded feature-selection
method, which is not the case for the CNN. More globally,
model selection in this work suggests that RF achieves
a high classification performance while not requiring an
important tuning effort as compared with the CNN.

86
88
90
92
94
96
98

100

RF CNN

F1-Score relative to kick-scooter (%)

Foot Waist Pocket

Fig. 7. F1-Score relative to kick-scooter with CNN and RF
algorithms for the 3 sensor placements

A frequent error was the confusion of KS, biking, and PT.
In fact, pushing and biking may result in similar signal
patterns. For PT, these confusions seem to be more related
to cruising phases either for bike or KS. In fact, the signals
are flat if the user is neither pushing nor biking, which
is also the case in PT. For the same reason, confusions
between PT and static are also frequent.

6. CONCLUSION

In this work, we have explored the possibility of detecting
kick-scooters among other urban transportation modes.
The classification included being still, walking, biking,
being in public transport and kick-scooter riding. The
obtained overall accuracy and F1-Score were above 99%
for RF, and above 91% for the CNN algorithm, which is
rather promising. In future work, a refining of kick-scooter
modalities should be considered to separate pushing from
cruising patterns.
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