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INTRODUCTION

Landslide is a gravitational hazard causing substantial cost in life losses and damaging infrastructure worldwide each year. Most of the landslides are triggered by heavy precipitation; earthquakes and human activities such as construction work can be other reasons. Avoiding building infrastructure near or on the exposed zone is a suitable strategy in landslide risk management, while stabilizing unstable slopes and installing protecting structures are some of the other available options. However, with rapid urbanization, infrastructures are still being constructed in a landslide-prone zone [START_REF] Nyambod | Environmental Consequences of Rapid Urbanisation: Bamenda City, Cameroon[END_REF]. The implementation of Early Warning Systems (EWS) can help take timely actions to reduce life and economic losses [START_REF] Krøgli | The Norwegian forecasting and warning service for rainfall-and snowmelt-induced landslides[END_REF]. These EWS's use specific monitoring strategies that assess the environment's current status and determine trends in environmental parameters to generate accurate warnings.

Some of the landslide EWS works on a rainfall threshold approach to establish a trend between movement and the triggering precipitation from past data. As this critical value of precipitation is defined on statistical and experience bases, this approach often provides false alarms [START_REF] Guzzetti | Rainfall thresholds for the initiation of land-slides in central and southern Europe[END_REF]. One of the perspective approaches is based on seismic measurements, in which seismic parameters are derived from monitoring that provides a significant precursory signal (Fiolleau et al., This work is supported by the French National Research Agency in the framework of the Investissements d'Avenir program (ANR-15-IDEX-02) 2020). Another approach of landslide forecasting makes use of monitoring displacement (or velocity). This approach generates warning based on a change in slope displacement rates over time, e.g., inverse velocity criteria [START_REF] Petley | The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphological hazard and human impact in mountain environments[END_REF]. Sometimes these warnings provide less reaction time to take necessary precautionary measures. Therefore, this approach can be enhanced by utilizing physics-based landslide models, e.g., sliding-consolidation model [START_REF] Hutchinson | A sliding-consolidation model for flow slides[END_REF], viscoplastic sliding-consolidation model [START_REF] Corominas | Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain)[END_REF][START_REF] Herrera | A landslide forecasting model using ground based SAR data: The Portalet case study[END_REF][START_REF] Bernardie | Prediction of changes in landslide rates induced by rainfall[END_REF] and extended sliding-consolidation model [START_REF] Iverson | Regulation of landslide motion by dilatancy and pore pressure feedback[END_REF] to predict future displacement/velocity. A similar approach has already been studied in [START_REF] Corominas | Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain)[END_REF][START_REF] Herrera | A landslide forecasting model using ground based SAR data: The Portalet case study[END_REF][START_REF] Bernardie | Prediction of changes in landslide rates induced by rainfall[END_REF]. These models are sensitive to the initial conditions, parameter values, and input to the model, i.e., rainfall, water table height, or pore water pressure time-series. In this context, an additional interesting approach could be to analyze the changes in mechanical properties of the material (parameters) prior to events. This paper presents combined state and parameter estimation for a simplified viscoplastic sliding model of a landslide. This system is described by an ODE with displacement as a state and landslide geometrical and material properties as parameters. The model is further simplified so as to apply Kalman filter approach to estimate displacement and unknown parameters (material properties, e.g., friction angle and viscosity). Finally, two illustrative examples validate the presented approach on two different cases: i) synthetic test case and ii) Super-Sauze landslide data taken from the literature [START_REF] Bernardie | Prediction of changes in landslide rates induced by rainfall[END_REF]. A similar perspective of displacement and parameter estimation on the Super-Sauze landslide is studied in [START_REF] Bernardie | Prediction of changes in landslide rates induced by rainfall[END_REF] using sequential quadratic programming (SQP) algorithm. For the extended slidingconsolidation model of a landslide, observer problems are solved by adjoint method [START_REF] Mishra | Optimal parameter estimation in a landslide motion model using the adjoint method[END_REF] and observer design (Mishra et al., 2020a) on synthetically generated noisy data. Kalman filter-based estimation approach demonstrated its effectiveness in many studies and applications, for instance, state and parameter estimation in linear lung model [START_REF] Saatci | Dual Kalman Filter based State-Parameter Estimation in Linear Lung Models[END_REF], lithiumion battery [START_REF] Meng | A New Cascaded Framework for Lithium-Ion Battery State and Parameter Estimation[END_REF], and asynchronous motors (T ¸iclea [START_REF] Besançon | Observer Scheme for State and Parameter Estimation in Asynchronous Motors with Application to Speed Control[END_REF][START_REF] Atkinson | Observers for induction motor state and parameter estimation[END_REF]. The paper's structure is as follows: A landslide model depicting landslide dynamics, and the problem statement is given in Section 2. Section 3 presents the proposed solution method. In Section 4, simulation results demonstrate the effectiveness of the proposed approach. Finally, some conclusions and future directions of the work are discussed in Section 5.

PROBLEM FORMULATION

Simplified viscoplastic sliding model

The viscoplastic sliding model [START_REF] Corominas | Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain)[END_REF][START_REF] Herrera | A landslide forecasting model using ground based SAR data: The Portalet case study[END_REF][START_REF] Bernardie | Prediction of changes in landslide rates induced by rainfall[END_REF] of a landslide assumes a slide block overlying thin shear zone, as shown in Fig. 1. Net destabilizing inertial force F di is given by

F di = ρHAa(t) = F g + F r + F c + F p + F v (1)
where ρ is the soil density, H is the slide block height, A is the slide block base area, a(t) is acceleration of the slide block, F g is gravity imposed driving force (F g = ρHAg sin θ), F r is basal Coulomb friction force (F r = -ρHAg cos θ tan φ), F c is cohesive force (F c = -CA), F p is fricion force due to pore pressure (F p = p(t)A tan φ), F v is viscous force (F v = -ηv(t)A/s t ), g is the acceleration due to gravity, θ is the inclination angle, φ is the friction angle, C is the cohesion, p(t) is pore water pressure at time t, η is the viscosity, v(t) is velocity of the slide block, and s t is the basal shear zone thickness.

The dimensional analysis shows that the inertia term ρHAa(t) is expected to remain much smaller than the other terms (i.e., steady-state is indeed reach very fast), so this term assumed to be null. Also, with the assumptions of a groundwater flow parallel to the slope surface, the pore water pressure is defined by

p(t) = ρ w g cos 2 θw t (t)
(2) where ρ w is the pore water density and w t (t) is water table height as shown in Fig. 1. Therefore, ignoring the inertia term, substituting F g , F r , F c , F p , F v and (2) in (1), and rearranging the equation leads to dynamics

ḋ = v(t) = ρ η s t Hgsinθ - ρtanφ η s t Hgcosθ - 1 η s t C + tanφ η s t ρ w gcos 2 θw t (t) (3)
where d is displacement of the slide block.

Notice that the upslope motion of the slide block is physically impossible, i.e., the slide block velocity can not be negative ( ḋ = v(t) ≮ 0). Such a situation arises 

w crit t = C -ρHg sin θ + ρHg cos θ tan φ ρ w g cos 2 θ tan φ . (4) 
Thus, when w t (t) ≤ w crit t landslide obeys following dynamics ḋ = v(t) = 0.

(5)

Therefore, the combined dynamics of the landslide is represented as

ḋ =    ρ η stHgsinθ -ρtanφ η stHgcosθ -1 η stC + tanφ η stρwgcos 2 θwt(t), if wt(t) > w crit t 0, otherwise. ( 6 
)
Based on the model ( 6), this paper's primary goal is to estimate displacement d and unknown parameters from available measurements d mea , known parameters and input w t (t). In most cases, geometrical parameters (H,θ,s t ) could be well known while few of the material properties, for instance, friction angle φ and viscosity η need to be estimated. Notice that model switches when w t (t) ≤ w crit t , therefore it is required to estimate w crit t which itself depends on parameter values in the estimation scheme.

Note: In the formulated problem, water table height w t (t) acts as an input, which is assumed to be known. In many scenarios, instead of w t (t), pore water pressure measurements could be available, and in such a situation w t (t) can be reconstructed from p(t) using (2).

KALMAN FILTER BASED STATE AND PARAMETER ESTIMATION

In order to address the defined problem, let us first normalize parameters, by introducing a scaling factor η in equation (3) as follows:

η ḋ = η η s t ρHgsinθ - ηtanφ η s t ρHgcosθ - η η s t C + ηtanφ η s t ρ w gcos 2 θw t (t). (7) 
Now considering that η and φ are the parameters to be identified, the other ones being known, let us set:

θ 1 θ 2 = s t ρHg sin θ -C -ρHg cos θ 0 ρ w gcos 2 θ η/η η tan φ/η . (8) 
Substituting ( 8) in ( 7), the model can then be extended by two state varaiables θ 1 , θ 2 with θ1 = θ2 = 0. Taking into account w crit t it reads:

ḋ = θ1 η + θ2 η w t (t) if w t (t) > w crit t 0 otherwise θ1 = 0 θ2 = 0. ( 9 
)
Owing to discrete measurements, let us write the system dynamics in discrete time,

  d k+1 θ k+1 1 θ k+1 2   =                                  Āk 1    1 dt η dt η w k t 0 1 0 0 0 1      d k θ k 1 θ k 2   , if w k t > w crit t   1 0 0 0 1 0 0 0 1   Āk 2   d k θ k 1 θ k 2   , otherwise (10) 
where dt is the discrete time step, and the measurement is

y k = d k mea = C d k θ k 1 θ k 2 + v k (11) 
where C = [1 0 0] and v k denotes some measurement noise.

For dynamics ( 10)-( 11), Kalman filter [START_REF] Anderson | Optimal Filtering[END_REF] provide estimates of d, θ1 and θ2 (see also [START_REF] Besançon | State and parameter estimation via discrete-time exponential forgetting factor observer[END_REF] for a version with forgetting factor). Based on these estimates at each time step firstly η/η and η tan φ/η are reconstructed using (8

) η/η η tan φ/η = 1 s t ρHg sin θ -C -ρHg cos θ 0 ρ w gcos 2 θ -1 θ1 θ2 , (12) followed by η = η [η/η] (13) and φ = tan -1 η tan φ/η × η η . ( 14 
)
In the proposed estimation scheme w crit t plays an important role, which depends on the parameter values, therefore at each step it is estimated as

ŵcrit t = C -ρHg sin θ + ρHg cos θ tan φ ρ w g cos 2 θ tan φ . (15) 
Notice that from equation ( 9), only two parameters are structurally identifiable [START_REF] Walter | Identification of Parametric Models[END_REF]. This means that in addition to d, one could also estimate η and C or η and ρ for instance.

To estimate d, η and C, (8) can be replaced by

θ 3 θ 4 = s t -1 ρHg sin θ -ρHg cos θ 0 tan φρ w gcos 2 θ ηC/η η/η (16)
while for estimation of d, η and ρ, (8) can be replaced by

θ 5 θ 6 = s t Hg(sin θ -cos θ tan φ) -C 0 tan φρ w gcos 2 θ ηρ/η η/η . ( 17 
)
Notice also, still from ( 9), that actual identification of the parameters needs enough excitation [START_REF] Besançon | Nonlinear observers and applications[END_REF], and that when w t (t) lies below w crit t , identifiability is lost.

ILLUSTRATIVE EXAMPLES

Synthetic test case

To validate the effectiveness of our approach, a measured displacement profile d k mea is generated synthetically by solving system equations (6). The parameter values used for the simulation are summarized in Table 1. The water table height time-series is assumed to be sinusoidal in the simulations, representing seasonal variation. This water table height profile crosses w crit t calculated using (4). Simulated synthetic displacement measurement (with signal to noise ratio 40db white Gaussian noise) and water table profile are shown in Fig. 2. The proposed approach is utilized to estimate d, η, φ, and w crit t assuming all other parameters are known (Table 1). Initial states and scaling factor used in the simulation are introduced in Table 2. Note that, θ10 and θ20 are calculted using (8) with η 0 and φ 0 equals to 2 × 10 8 P a.s and 15 deg, respectively. A convergence in state and paramater estimates can be seen in Fig. 3,Fig. 4,Fig. 5,Fig. 6,and Fig. 7 respectively. In practice some of the parameter values change with time. In order to take such a situation into consideration, a step change in viscosity η is introduced. This change in parameter value and its corresponding estimate can be seen in Fig. 5. In simulation results, it is observed that intial convergence time is two days and for the next change in parameter value convegence time is three days. As a second example, let us consider the case of an actual landslide. The Super-Sauze landslide is situated in the French South Alpes. To apply the proposed estimation strategy, displacement d k mea and pore water pressure p k data are taken from [START_REF] Bernardie | Prediction of changes in landslide rates induced by rainfall[END_REF]. This data corresponds to one of the most active parts of the landslide for a period of high groundwater level from 07/05/1999 to 23/05/1999 (16 days), as shown in Fig. 8. At that position (location B 2 ), displacement and pore water pressure are measured by a wire extensometer and piezometer, respectively. In the proposed scheme, water table height timeseries w k t is required as an input, which is reconstructed from p k as follows (2)

w k t = p k / ρ w g cos 2 θ (18)
The known parameter values [START_REF] Bernardie | Prediction of changes in landslide rates induced by rainfall[END_REF] are indicated in Table 3. Here, the value of ρ is chosen to be the saturated soil density [START_REF] Malet | Triggering conditions and mobility of debris flows associated to complex earthflows. Geomorphological hazard and human impact in mountain environments[END_REF] as the slide block is close to the full saturation level (Fig. 8). The proposed scheme for estimation of displacement d, friction angle φ and viscosity η is performed with initial states, time step and scaling factor given in Table 4. Note that, θ10 and θ20 are calculted using (8) with initial viscosity η 0 and friction angle φ 0 equals to 10 8 P a.s and 35 deg (assumed), respectively. The state and paramater estimates are shown in Fig. 9,Fig. 10,Fig. 11,Fig. 12,and Fig. 13 respectively. Here, simulations are performed twice assuming the lower (ρ = 1700) and upper value (ρ = 2140) of the soil density (Table 3). It is observed that frictional angle φ stays constant (Fig. 12) (33 • /36.7 • ) while viscosity η changes with time (Fig. 11). For first 9 days viscosity is nearly constant (1.15×10 8 /8.7×10 7 P a.s) then it changes to 1.2 × 10 8 /9.2 × 10 7 P a.s till day 12.5 and finally it stablizes to 1.3 × 10 8 /1 × 10 8 P a.s. As mentioned earlier, the available data is for a period of high groundwater level therefore, w k t is always greater than ŵcrit t (see in Fig. 13). This paper employed a Kalman filter for state and parameter estimation of landslides on the synthetic test case and Super-Sauze landslide data from the literature. Firstly, we considered the landslide model depicting a landslide behavior described by an Ordinary Differential Equation (ODE). Secondly, the model is simplified to utilize the Kalman filter approach for information reconstruction, i.e., estimation of displacement and material properties (friction angle and viscosity) of landslides under investigation. In the simulation result for the Super-Sauze case (with real measurements), it is observed that friction angle almost remains constant while viscosity varies significantly through time.

A future direction for work will be to utilize the proposed approach for different landslides with extended time horizon data, which could comprise low groundwater level, i.e., less than critical water table height.
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 1 Fig. 1. Geometrical variables of the slide block whenever water table height goes below critical water table height w crit t . The value of w crit t is evaluated as (derived from ḋ = v(t) = 0)
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 4 Fig. 2. Synthetic displacement measurement d k mea and water table height time-series w k t
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 9101112 Fig. 9. Time evolution of state estimate d1 (ρ = 1700 kg/m 3 ) and d2 (ρ = 2140 kg/m 3 )

Table 1 .

 1 Parameter values (Synthetic test case)

	Parameters	Value	Unit
	Initial slide block displacement, d 0	0	m
	Slide block thickness, H	2	m
	Average inclination angle, θ	12	deg
	Shear zone thickness, st	0.01	m
	Acceleration due to gravity, g	9.8	m/s 2
	Pore water density, ρw	1000	kg/m 3
	Cohesion, C	1200	P a
	Slide block mass density, ρ	1600	kg/m 3
	Time step, dt	3600	sec
	Critical water table height, w crit t	1.55	m
	Friction angle, φ	18	deg
	Viscosity, η	10 8 , 5 × 10 7	P a.s

Table 2 .

 2 Initial states/Scaling factor/Filter coefficients

	State/Time step/Scaling fector		Value
	Scaling factor,η				10 8
	Initial displacement, d0			0.01 m
	Initial state, θ10				-24.15
	Initial state, θ20				20.92
	Initial state estimation error auto-covariance,P 0	10 3 × I 3×3
	Process noise auto-covariance matrix,Q	10 -11 × I 3×3
	Measurement noise auto-covariance matrix,R	10 -9
	Process noise gain matrix,G		I 3×3
	Water table height (m)	0 1 2 3 4	0	4	8	12	16
					Time (days)		

Table 3 .

 3 Parameter values (Super-Sauze)

	Parameters	Value	Unit
	Slide block thickness, H	9	m
	Average inclination angle, θ	25	deg
	Shear zone thickness, st	0.2	m
	Acceleration due to gravity, g	9.8	m/s 2
	Pore water density, ρw	1000	kg/m 3
	Cohesion, C	14000	P a
	Slide block mass density, ρ	1700 -2140	kg/m 3

Table 4 .

 4 Initial state/Time step/Scaling factor/Filter coefficients

	State/Time step/Scaling fector		Value
	Time step,dt				8640 sec
	Scaling factor,η				10 8
	Initial displacement, d0			0.5 m
	Initial state, θ10				-8.89 × 10 3
	Initial state, θ20				1.17 × 10 3
	Initial state estimation error auto-covariance,P 0	10 3 × I 3×3
	Process noise auto-covariance matrix,Q		10 -11 × I 3×3
	Measurement noise auto-covariance matrix,R	10 -9
	Process noise gain matrix,G			I 3×3
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	Water table height (m)	8.5 9					w k t d k mea	1 2 3	Displacement (m)
		8	0	4	8	12	16 0
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	Fig. 8. The Super-Sauze landslide data from the liter-
		ature: Displacement measurement d k mea and water table height time-series w k t (Bernardie et al., 2014)